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Abstract

It is known that for any set V of n ≥ 4 points in the plane, not in convex position, there is a
3-connected planar straight line graph G = (V, E) with at most 2n− 2 edges, and this bound is
the best possible. We show that the upper bound |E| ≤ 2n continues to hold if G is constrained
to contain a given graph G0 = (V,E0), which is either a 1-factor (i.e., disjoint line segments)
or a 2-factor (i.e., a collection of simple polygons), but no edge in E0 is a proper diagonal of
the convex hull of V . Since there are 1- and 2-factors with n vertices for which any 3-connected
augmentation has at least 2n − 2 edges, our bound is are nearly tight in these cases. We also
examine possible conditions under which this bound may be improved, such as when G0 is a
collection of interior disjoint convex polygons in a triangular container.

1 Introduction

A graph is k-connected if it remains connected upon deleting any k − 1 vertices along with all
incident edges. Connectivity augmentation problems are an important area in optimization and
network design. The k-connectivity augmentation problem asks for the minimum number of edges
needed to augment an input graph G0 = (V,E0) to a k-connected graph G = (V,E), E0 ⊆ E.
In abstract graphs, the connectivity augmentation problem can be solved in O(|V |+ |E|) time for
k = 2 [4, 7, 8], and in polynomial time for any fixed k [9].

Researchers have considered the connectivity augmentation problems over planar graphs where
both the input G0 and the output G have to be planar (that is, they have no K5 or K3,3 minors).
Kant and Bodlaender [10] proved that already the 2-connectivity augmentation over planar graphs
is NP-hard, and they devised a 2-approximation algorithm that runs in O(n log n) time. We consider
3-connectivity augmentation over planar geometric graphs, where the given straight line embedding
of the input graph has to be preserved.

A planar straight-line graph (for short, pslg) is a graph with a straight-line embedding in the
plane That is, the vertices are distinct points in the plane and the edges are straight-line segments
between the incident endpoints (that do not pass through any other vertices). The k-connectivity
augmentation for pslgs asks for the minimum number of edges needed to augment an input pslg
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G0 = (V, E0) to a k-connected pslg G = (V,E), E0 ⊆ E. Rutter and Wolff [13] showed that
this problem is NP-hard for any 2 ≤ k ≤ 5. Note that the problem is infeasible for k ≥ 6, since
every planar graph has a vertex of degree at most 5. There are two possible approaches to get
around the NP-hardness of the augmentation problem: (i) approximation algorithms, as was done
for planarity-preserving 2-connectivity augmentation; and (emphii) proving extremal bounds for
the minimum number of edges sufficient for the augmentation in terms of the number of vertices,
which we do here.

It is easy to see that for every n ≥ 4, there is a 3-connected planar graph with n vertices and
d3n/2e edges, where all but at most one vertex have degree 3. On a set V of n ≥ 4 points in the
plane, however, a 3-connected pslg may require many more edges. Garćıa et al. [5] proved that if
3 ≤ h < n points lie on the convex hull of V , then it admits a 3-connected pslg G = (V, E) with
at most max(d3n/2e, n + h− 1) ≤ 2n− 2 edges, and this bound is best possible. If the points in V
are in convex position (that is, h = n), then V does not admit any 3-connected pslg.

Tóth and Valtr [14] characterized the 3-augmentable planar straight-line graphs, which can
be augmented to 3-connected pslgs. Specifically, a pslg G0 = (V,E) is 3-augmentable if and
only if E0 does not contain any edge that is a proper diagonal of the convex hull of V . Every
3-augmentable pslg on n vertices can be augmented to a 3-connected triangulation, which has up
to 3n− 6 edges, but in some cases significantly fewer edges are sufficient. As mentioned above, the
3-connectivity augmentation problem for pslgs is NP-hard, and no approximation is known for this
problem. It is also not known how many new edges are sufficient for augmenting any 3-augmentable
pslg with n vertices. Such a worst case bound is known only for edge-connectivity: Al-Jubeh et
al. [3] proved recently that every 3-edge-augmentable pslg with n vertices can be augmented to a
3-edge-connected pslg by adding at most 2n− 2 new edges.

Our results. In the 3-connectivity augmentation problem for pslgs, we are given a pslg G0 =
(V, E0), and asked to augment it to a 3-connected pslg G = (V, E), E0 ⊆ E. Intuitively, the edges
in E0 are either “useful” for constructing a 3-connected graph or they are “obstacles” that prevent
the addition of new edges which would cross them. In this note, we explore which 3-augmentable
pslgs with n ≥ 4 vertices can be augmented to a 3-connected pslgs which have at most 2n edges.
Recall that 2n−2 edges may be necessary even for a completely “unobstructed” input G0 = (V, ∅).
We prove that if G0 is 1-regular (that is, a crossing-free perfect matching) or 2-regular (a collection
of pairwise noncrossing simple polygons), then it can be augmented to a 3-connected pslg which
has at most 2n− 2 or 2n edges, respectively.

Theorem 1. Every 1-regular 3-augmentable pslg G0 = (V,E0) with n ≥ 4 vertices can be aug-
mented to a 3-connected pslg G = (V, E), E0 ⊆ E, with |E| ≤ 2n− 2 edges.

Theorem 2. Every 2-regular 3-augmentable pslg G0 = (V, E) with n ≥ 4 vertices can be aug-
mented to a 3-connected pslg G = (V, E), E0 ⊆ E, with |E| ≤ 2n edges.

Figures 1(a)-1(b) depict 1- and 2-regular pslgs, respectively, where all but one of the vertices
are on the boundary of the convex hull. Clearly, the only 3-connected augmentation is the wheel
graph, which has 2n− 2 edges. We conjecture that Theorems 1 and 2 can be generalized to pslgs
with maximum degree at most 2.

Conjecture 1.1. Every 3-augmentable pslg G0 = (V, E) with n ≥ 4 vertices and maximum degree
at most 2 can be augmented to a 3-connected pslg G = (V,E), E0 ⊆ E, with |E| ≤ 2n− 2 edges.
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(a) (b) (c)

Figure 1: (a-b) 1- and 2-regular pslgs whose only 3-connected augmentation is the wheel graph. (c). Nested
copies of K4, for which every 3-connected augmentation has at least 9

4n− 3 edges.

It is not possible to extend Theorem 1 and 2 to 3-regular pslgs. For example, if G0 = (V, E0)
is a collection of nested 4-cliques as in Fig. 1(c), then every 3-connected augmentation requires
3(n

4 − 1) new edges, which gives a total of 9
4n− 3 edges.

As mentioned above, every set of n ≥ 4 points in the plane, h ≤ n of which lie on the boundary
of the convex hull, admits a 3-connected pslg with at most max(d3n/2e, n + h − 1) ≤ 2n − 2
edges [5]. We could not strengthen our Theorems 1 and 2 to be sensitive to the number of hull
vertices. Some improvement may be possible for 1-regular pslgs with fewer than n− 1 vertices on
the convex hull; the best lower bound construction we found with a triangular convex hull requires
only 7

4(n−2) edges in total (Fig. 2(a)). For 2-regular pslgs, however, one cannot expect significant
improvement even if h = 3. If G0 = (V, E0) consists of n

3 nested triangles (Fig. 2(b)), then any
augmentation to a 3-connected pslg has at least 2n− 3 edges.

(a) (b) (c)

Figure 2: (a) A 1-regular pslg on n vertices with a triangular convex hull whose 3-connected augmentations
have at least 7

4 (n−2) edges. (b) A 2-regular pslg on n vertices with a triangular convex hull such that every
3-connected augmentation has at least 3n − 3 edges. (c) Interior disjoint simple polygons in a triangular
container, for which every 3-connected augmentation has 3n− 3 edges.

Obstacles in a container. We have considered whether Theorem 2 can be improved for col-
lections of simple polygons, where the convex hull is a triangle, and there is no nesting among
the remaining polygons. We model such 2-regular pslgs as a collection of interior disjoint simple

3



polygons in a triangular container. Figure 2(c) shows a construction where every 3-connected aug-
mentation still requires 3n − 3 edges. In this example the polygons are nonconvex, and they are
“nested” in the sense that each polygon is visible from at most one larger polygon.

In Section 5, we derive lower bounds for the 3-connectivity augmentation of 2-regular pslgs G0,
where G0 is a collection of interior disjoint convex polygons (called obstacles) lying in a triangular
container. All our lower bounds in this section are below 2n − 2, which suggests that Theorem 2
may be improved in this special case.

Organization. In Section 2, we introduce a general framework for 3-connectivity augmentation,
and prove that every nonconvex simple polygon with n vertices can be augmented to a 3-connected
pslg which has at most 2n− 2 edges. We prove Theorems 1 and 2 in Section 3 and 4, respectively.
Lower bounds for the model of disjoint convex obstacles in a triangular container are presented in
Section 5. We conclude with open problems in Section 6.

2 Preliminaries

In this section, we prove two preliminary results about abstract graphs, which are directly applicable
to the 3-connectivity augmentation of simple polygons. In an (abstract) graph G = (V, E), a subset
U ⊆ V is called 3-linked if G contains at least three disjoint paths between any two vertices of U .
(Two paths between the same two vertices are called disjoint if they do not share any edges or
vertices apart from their endpoints.) By Menger’s theorem, a graph G = (V, E) is 3-connected if
and only if V is 3-linked in G. The following lemma gives a criterion for incrementing a 3-linked
set of vertices with one new vertex.

Lemma 2.1. Let G = (V, E) be a graph such that U ⊂ V is 3-linked. If G contains three disjoint
paths from v ∈ V \ U to three distinct vertices in U , then U ∪ {v} is also 3-connected.

Proof. Assume that G contains three disjoint paths from v ∈ V \U to distinct vertices u1, u2, u3 ∈ U .
It is enough to show that for every u ∈ U , there are three vertex disjoint paths between v and u.
By Menger’s theorem, it is enough to show that if we delete any two vertices w1, w2 ∈ V \ {u, v},
the remaining graph G \ {w1, w2} still contains a path between v and u. Since there are three
disjoint path from v to u1, u2, and u3, the graph G \ {w1, w2} contains a path from v to ui for
some i ∈ {1, 2, 3}. If ui = u, then we are done. Otherwise, G \ {w1, w2} contains a path from ui to
u, since U is 3-connected. The union of these two paths (from v to ui and from ui to u) contains
a path from v to u.

Lemma 2.2. Let GA = (V, A) be a connected graph with minimum degree 2, and let GC = (V, C)
be a 3-connected graph with A ⊆ C. Let UA ⊆ V be the set of vertices that have degree 3 or higher in
GA, and assume that UA is 3-linked in GA. Then GA = (V, A) can be augmented to a 3-connected
graph GB = (V, B) with A ⊆ B ⊆ C, by adding at most |V \ UA| new edges. Furthermore, if
UA = ∅, then |V | − 2 new edges are enough for the augmentation.

Proof. We describe an algorithm that augments GA = (V, A) to a 3-connected graph GB = (V,B)
incrementally. We maintain a graph Gi = (V, Ei) with A ⊆ Ei ⊆ C. Initially, we start with
i = 0 and E0 = A. We augment Gi incrementally by adding new edges from C until Gi becomes
3-connected, and then output GB = Gi. We also increment a set Ui ⊆ V of vertices that have
degree 3 or higher in Gi, and maintain the property that Ui is 3-linked in Gi. In each step, we will
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increment Gi with one new edge such that Ui increases by at least one new vertex. If U = ∅ or
|U | = 2, then we can add one new edge such that U increases by two new vertices. Our algorithm
terminates with Ui = V , and the above properties guarantee that altogether at most |V \ U0| new
edges are added, and if U0 = ∅, then at most |V | − 2 new edges are added.
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q
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q
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(d)

Figure 3: Illustration for the proof of Lemma 2.2. Edges of GA are black, additional edges of GC are gray,
vertices in Ui are marked with large dots. (a) GA is a Hamiltonian cycle. (b) GA has two vertices of degree 3.
(c) Both p and q lie in the interior of some paths between vertices of Ui. (d) Vertex q is in Ui.

It remains to describe one step of the augmentation, in which we increment Ei with one new
edge from C. We distinguish between three cases.

Case 1: Ui = ∅. Since Gi is connected and has minimum degree 2, it is a Hamiltonian cycle
(Fig. 3(a)). Pick an arbitrary edge pq ∈ C \ E0, and set Ei+1 = Ei ∪ {pq}. Let Ui+1 = {p, q} be
the set of the two vertices of degree 3. Note that Ui+1 is indeed 3-linked, as required.

Case 2: |Ui| = 2. Denote the vertices in Ui by u and v. Every edge in Ei is part of a path
between u and v (Fig. 3(b)). Let Pi denote the set of all (at least three) paths of Gi between u and
v. Note that every vertex in V \ Ui lies in the interior of a path in Pi. Since Gi is a simple graph,
at least two paths in Pi have interior vertices. Let P ∈ Pi be a path with at least one interior
vertex. Graph GC contains some edge pq ∈ C between an interior vertex p of P and a vertex q
outside of P , otherwise the deletion of u and v would disconnect GC . Set Ei+1 = Ei ∪ {pq} and
Ui+1 = Ui ∪ {p, q}. Note that Gi+1 now contains three disjoint paths between any two vertices of
Ui+1 = {u, v, p, q}.

Case 3: |Ui| 6= 3. In this case, every edge in Ei is part of a path between two vertices in Ui.
Let Pi denote the set of all paths of Gi between vertices in Ui. Note that every vertex in V \ Ui

lies in the interior of a path in Pi. Pick two vertices u, v ∈ Ui connected by a path in Pi, and let
Vuv be the set of interior vertices of all paths in Pi between u and v. Let P ∈ Pi be a path with at
least one interior vertex, and denote its endpoints by u, v ∈ P (Fig. 3(c)–3(d)). Graph GC contains
some edge pq ∈ C between a vertex p ∈ Vuv and a vertex q outside Vuv ∪ {u, v}, otherwise the
deletion of u and v would disconnect GC . Set Ei+1 = Ei ∪ {pq}. Now Gi+1 contains three disjoint
paths from p to three vertices of Ui: disjoint paths to u and v along a path in Pi, and a third path
starting with edge pq and, if u 6∈ Ui, then continuing along a path containing q to a third vertex
in Ui. Similarly, if q 6∈ Ui, then G now contains there disjoint paths from q to three vertices of
Ui ∪ {p}. By Lemma 2.1, Ui ∪ {p, q} is 3-linked in Gi+1. So we can set Ui+1 = Ui ∪ {p, q}.

Let H be a simple polygon in the plane with n vertices, that is, a straight-line embedding of a
Hamiltonian cycle. We show that it can be augmented to a 3-connected pslg with at most 2n− 2
edges.
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Corollary 2.3. Every simple polygon with n ≥ 4 vertices, not all in convex position, can be
augmented to a 3-connected pslg which has at most 2n− 2 edges.

Proof. The edges and vertices of a simple polygon form a Hamiltonian cycle G0 = (V,E0). By the
results of Valtr and Tóth [14], if the polygon is nonconvex, then it is 3-augmentable, so there is a
3-connected pslg G2 = (V, E2), E0 ⊂ E2. Lemma 2.2 completes the proof.

3 Disjoint Line Segments

In this section, we prove Theorem 1. Let GA = (V, A) be a straight-line embedding of a perfect
matching with n ≥ 4 vertices, not all in convex position. We show that if no edge in M is a
proper chord of the convex hull of the vertices, then GA can be augmented to a 3-connected pslg
which has at most 2n − 2 edges. We use the result by Hoffmann and Tóth [6] that GA can be
augmented to a Hamiltonian pslg GH . If GA is 3-augmentable, then GH is also 3-augmentable
and can be augmented to a 3-connected Hamiltonian pslg GC . In the following lemma, we use
such a 3-connected Hamiltonian supergraph, but we no longer rely on the straight-line embedding
of the matching GA.

Lemma 3.1. Let GA = (V, A) be a perfect matching with n ≥ 4 vertices, and let GC = (V, C) be
a 3-connected Hamiltonian plane graph with A ⊆ C. Then GA = (V,A) can be augmented to a
3-connected graph GB = (V, B) with A ⊆ B ⊆ C, such that |B| ≤ 2n− 2.

Proof. Let (V, H) be an arbitrary Hamiltonian cycle in GC . If A ⊂ H, then the result follows from
Lemma 2.2. Suppose that A 6⊂ H.

We construct a 3-connected graph GB, A ⊆ B ⊆ C, incrementally. We maintain a 2-connected
graph Gi = (V,Ei) with Ei ⊆ C. We also maintain a set Ui ⊆ V of special vertices called hubs,
and a set Pi of paths in Gi between hubs. We maintain the following properties for Gi.

(i) Ui ⊆ V is 3-linked in Gi,
(ii) Ei contains every edge of A spanned by vertices of Ui,
(iii) |Ei| ≤ (n− 2) + |Ui|,
(iv) for every edge e ∈ Ei there is a path P ∈ Pi such that either e ∈ P or e joins an endpoint of

P to an interior point of P .
(v) no path in Pi is dangerous (defined below).

In each step, we will modify Gi such that the set of hubs strictly increases, and the number of
edges is bounded by |Ei| ≤ (n− 2) + |Ui|. The algorithm terminates when Ui = V . At that time,
Gi is a 3-connected subgraph of GC , all edges of A are contained in Ei, and |Ei| ≤ 2n − 2, so we
can output GB = Gi. We note here that the set of hubs Ui monotonically increases, but the set of
edges Ei does not always increase. Sometimes we may delete edges from Ei.

In our algorithm, we will maintain the that Pi contains no dangerous path (property (v)). Let
P be a path in Pi or a proper subpath of some path in Pi. We say that P is dangerous if

(1) each endpoint u, v of P is connected to some interior point of P by an edge in A \Ei, and
(2) for every edge st in C between an interior vertex s of P and a vertex t outside of P , there is

an edge in A \ Ei between s and an endpoint of P (see Fig. 4).
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In order to avoid dangerous paths, we also need the following definition. An interior vertex p of a
path P ∈ Pi with endpoints u and v is dangerous if the subpath of P between u and p or between
v and p is dangerous.

u

v

s

t

P

Figure 4: A dangerous path P between u and v, and a dangerous vertex v. Solid edges are in Ei, dashed
edges are in A \ Ei, and gray edges are in C \ Ei, respectively.

Initialization. Recall that GH = (V, H) is a Hamiltonian cycle in GC , with n edges, such that
A 6⊂ H. Let pq ∈ A be an arbitrary chord of H. Vertices p and q decompose the Hamiltonian
cycle H into two paths, each of which has some interior vertices. Since GC is 3-connected, it
contains an edge st ∈ C between two interior vertices of two distinct paths. Let G0 = (V, E1) with
E0 = H ∪ {uv, st}. Let U0 = {u, v, s, t}, which is 3-linked in G0. The matching A contains pq
and possibly st, so E0 contains all edges spanned by U0. We have |G0| = n + 2, U0 = 4, and so
|E0| ≤ (n− 2) + |U0| holds. All edges in E0 lie along paths between hubs, which we denote by P0.
Note also that every path in P0 with interior vertices is incident to p or q, which are incident to
the unique edge pq ∈ A of the matching, so no path in P0 is dangerous.

General Step i. We are given a graph Gi = (V, Ei), a set of hubs Ui, and a set of paths Pi with
properties (i)–(v). We distinguish three cases. In all three cases, we augment Gi with an edge pq
where p is an interior vertex of a path P ∈ Pi and q is outside of path P . We will add vertex p
to Ui. If q happens to be an interior vertex of another path P ′ ∈ Pi, then we add q to Ui as well,
and we also augment Gi with any possible edge of qq′ ∈ A \ Ei that joins q to another vertex of
P ′. This ensures that even if q is a dangerous vertex of P ′, the two subpaths of P ′ in Pi+1 will
not be dangerous. Since vertex q is treated the same way in all three cases, we will not discuss
these possibilities below—we assume for simplicity that q is in Ui. The three cases differ only on
the handling of vertex p and path P ∈ Pi.
Case 1. There is an edge pq ∈ A such that p is an interior vertex of a path P ∈ Pi and
q is outside of path P . (Fig. 5(a).) Let Ei+1 = Ei ∪ {pq} and Ui+1 = Ui ∪ {p}. By Lemma 2.1,
Ui+1 is 3-linked in Gi+1. Vertex p decomposes P into two subpaths, which are not dangerous. We
construct Pi+1 by replacing P with its two subpaths.
Case 2. Every edge in A \ Ei connects vertices within the same path of Pi. There is
an edge pq in C \ (Ei ∪A) such that p is an interior vertex of a path P ∈ Pi, q is outside
of path P , p is not a dangerous vertex, and there is no edge in A \ Ei between p and
an endpoint of path P . (See Fig. 5(b).) Let Ei+1 = Ei ∪ {pq} Ui+1 = Ui ∪ {p}. By Lemma 2.1,
Ui+1 is 3-linked in Gi+1. Vertex p decomposes path P into two subpaths, which are not dangerous.
We construct Pi+1 by replacing P with its two subpaths.
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Figure 5: Cases 1-3a. Vertex p is in the interior of a path P and q is outside of path P . (a) Case 1:
pq ∈ A \ Ei. (b) Case 2: pq ∈ C \ A but there is no edge in A \ Ei between p and an endpoint of P . (c)
Case 3: pq ∈ C \A and there is an edge in A \ Ei between p and an endpoint of P .

Case 3. Every edge in A \Gi connects vertices within the same path in Pi. For every
edge pq ∈ C between an interior vertex p of a path P ∈ Pi and a vertex q outside of
that P , either p is dangerous or there is an edge in A \ Ei between p and an endpoint
of P . We consider two subcases.

Subcase 3a: There is an edge pq ∈ C such that p is an interior vertex of a path
P ∈ Pi, vertex q is outside of P , and edge mp ∈ A \Gi connects p to an endpoint of P .
(Fig. 5(c).) Denote the two endpoints of P by u and v, and assume without loss of generality that
mp = pu. We would like to add p to Ui, but then we have to augment Gi with both pq and pu (to
maintain property (ii)). We will augment Ui with three interior vertices of P . Vertex p decomposes
path P into two paths: let P1 ⊂ P be the subpath between u and p, and P2 between p and v. Note
that P1 has at least one interior vertex since pu ∈ A \ Ei, but P2 may be a single edge. Since C is
3-connected, there is some edge st between an interior vertex s of P1 and some vertex t outside of
P1. Observe that s cannot be a dangerous vertex, and there is no edge in A \Ei between s and an
endpoint of P , otherwise P would be a dangerous path. Therefore t must be a vertex of P , that
is, either t is an interior vertex of P2 or we have t = v. We examine both possibilities.

Subcase 3a(i): There is an edge st ∈ C such that s is an interior vertex of P1 and t
is an interior vertex of P2. Let Ei+1 = Ei ∪ {pq, pu, st} and Ui+1 = Ui ∪ {p, s, t}.

Subcase 3a(ii): For every edge st ∈ C such that s is an interior vertex of P1 and
t is outside of P1, we have t = v. We show that P2 has no interior vertices. Suppose, to the
contrary, that P2 has interior vertices. Since T is 3-connected, there is an edge s′t′ between an
interior vertex s′ of P2 and a vertex t′ outside of P2. Note that there is no edge in A \ Ei between
s′ and an endpoint of P , otherwise P would be dangerous, and s′ is not dangerous, since sv ∈ C.
Hence t′ must be a vertex of path P . We have assumed that t′ is not an interior vertex of P1, and
t′ 6= u because T is planar. Hence t′ cannot be outside of P2, which is a contradiction. We conclude
that P2 is a single edge P2 = {pv}. Let Ei+1 = (Ei \ {pv}) ∪ {pq, pu, sv} and Ui+1 = Ui ∪ {p, s}.
Subcase 3b. Every edge in A \ Ei connects vertices within the same path in Pi. For
every edge pq ∈ C between an interior vertex p of a path P ∈ Pi and a vertex q outside of
that P , vertex p is dangerous. Denote the two endpoints of P by u and v. Vertex p decomposes
path P into two paths: let P1 ⊂ P be the subpath between u and p, and P2 between p and v.
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Assume without loss of generality that P1 ⊂ P is a dangerous path. Let p′ and u′ be the interior
vertices of P1 such that pp′, uu′ ∈ A \ Ei. Since GC is 3-connected, C has an edge between an
interior vertex of P1 and a vertex outside of P1. However, P1 is a dangerous path, so only p′ or u′

may be connected to a vertex outside of P1. Note that p′ and u′ are not dangerous vertices of P .
Therefore, they can only be connected to some vertex in P . If there is an edge p′t between p′ and
an interior vertex of P2, then let Ei+1 = Ei ∪ {pq, pp′, p′t} and Ui+1 = Ui ∪ {p, p′, t}. Similarly, if
there is an edge u′t between u′ and an interior vertex of P2, then let Ei+1 = Ei ∪ {pq, uu′, u′t} and
Ui+1 = Ui ∪ {p, u′, t}. Now assume that neither p′ nor u′ is adjacent to any interior vertex of P2.
Then at least one of them is adjacent to v.

Similarly to case 3a, we can show that P2 is a single edge P2 = {pv}. Suppose, to the contrary,
that P2 has interior vertices. Since GC is 3-connected, there is an edge s′t′ between an interior
vertex s′ of P2 and a vertex t′ outside of P2. Note that there is no edge in A \Ei between s′ and an
endpoint of P , otherwise P would be dangerous, and s′ is not dangerous, since C contains an edge
between v and one of p′, u′. Hence t′ must be a vertex of path P . We have assumed that t′ is not
an interior vertex of P1, and t′ 6= u because C is planar. Hence t′ cannot be outside of P2, which
is a contradiction. We conclude that P2 is a single edge P2 = {pv}. We distinguish two subcases
depending on the order of vertices p′ and u′ along path P1.
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Figure 6: Cases 3b. Solid edges are part of graph Gi, dashed edges are in A \ Ei. Vertex p is dangerous
in the interior of a path P . (a) Case 3b: There is an edge between u′ and an interior vertex of P2. (b)
Case 3b(i): Vertices u, p′, u′, p appear in this order along P1. (c) Case 3b(ii): Vertices u, u′, p′, p appear in
this order along P1.

Subcase 3b(i): The vertices u, p′, u′, p appear in this order along P1. If p′v ∈ T ,
then let Ei+1 = (Ei \ {pv}) ∪ {pq, pp′, p′v} and Ui+1 = Ui ∪ {p, p′}. If u′v ∈ T , then let Ei+1 =
(Ei \ {pv}) ∪ {pq, uu′, u′v} and Ui+1 = Ui ∪ {p, u′}.

Subcase 3b(ii): The vertices u, u′, p′, p appear in this order along P1. Denote by P3 the
subpath of P between p and p′. Path P3 has an interior vertex because pp′ ∈ M \ Gi. Since T is
3-connected, there is an edge s′′t′′ in T such that s′′ is an interior vertex of P3, and t′′ is outside of
P3. By our assumptions, t′′ must be a vertex of P1 (possibly t′′ = u). Let Ui+1 = Ui ∪{p, p′, s′′, t′′}.
If t′′ ∈ Ui, then let Ei+1 = Ei ∪ {pq, pp′, s′′t′′}; otherwise augment Ei with {pq, pp′, s′′t′′} and any
edge in A \ Ei incident to t′′.
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Corollary 3.2. Every 3-augmentable planar straight-line matching with n ≥ 4 vertices can be
augmented to a 3-connected pslg which has at most 2n− 2 edges.

Proof. Let GA = (V, A) be a 3-augmentable planar straight-line matching with n ≥ 4 vertices. By
the results of Hoffmann and Tóth [6], there is a pslg Hamiltonian cycle H on the vertex set V
that does not cross any edge in A. Since the Hamiltonian cycle H is crossing-free, none of its edges
is a chord of the convex hull of vertices (otherwise the removal of this edge would disconnect H).
Hence both (V,H) and (V,A ∪ H) are 3-augmentable [14]. That is, there is a 3-connected pslg
GC = (V, C) such that A ∪H ⊂ C. Lemma 3.1 completes the proof.

4 A Collection of Simple Polygons

In this section, we prove Theorem 2. We are given a 2-regular pslg GA = (V, A) with n ≥ 4 vertices
and n edges. If GA is 3-augmentable, then it is contained in some 3-connected pslg GC = (V, C),
say a triangulation of GA, which may have up to 3n − 6 edges. Note that the outer face of GC is
a simple polygon. We will construct an augmentation GB = (V,B), A ⊆ B ⊆ C, with |B| ≤ 2n
edges.

Lemma 4.1. Let GA = (V,A) be a 2-regular graph with n ≥ 4 vertices, and let GC = (V,C) be a
3-connected plane graph with A ⊆ C such that all bounded faces are triangles. Then GA = (V,A)
can be augmented to a 3-connected graph GB = (V, B) with A ⊆ B ⊆ C, such that |B| ≤ 2n.

Proof. Consider a straight-line embedding of GC . Since QC is 3-connected, its outer face is a
simple polygon, which we denote by QC . We construct a 3-connected graph GB, A ⊆ B ⊆ C,
incrementally. We maintain a 2-connected graph Gi = (Vi, Ei) with Vi ⊆ V and Ei ⊆ C. We also
maintain a set Ui ⊆ V of vertices, called hubs, which is the set of all vertices in Vi with degree 3
or higher in Gi. The hubs naturally decompose Gi into a set Pi of paths in Gi between hubs. We
maintain the following properties for Gi.

(i) QC ⊆ Ei ⊆ C,
(ii) Ui ⊆ Vi is 3-linked in Gi,
(iii) every bounded face of Gi is incident to at least three vertices in Ui,
(iv) no edge of C \ Ei joins nonconsecutive vertices of any path in Pi.

Initially G0 will have 4 vertices, and we incrementally augment it with new edges and vertices, until
we have Ui = V . The vertex sets Vi, Ui, and the edge set Ei will monotonically increase during
this algorithm, and we gradually add all edges of A to Ei. When our algorithm terminates and
Ui = V , the graph Gi is a 3-connected subgraph of GC , which contains all edges of A. Whenever
we add an edge e ∈ C \A to Ei, we charge e to one of the endpoints of e, such that every vertex is
charged at most once. This charging scheme guarantees that we add at most n edges from C \ A,
in addition to the n edges of A.

Initialization. We construct the initial graph G0 with |U0| = 4 hubs. Consider the 3-connected
pslg GC with where QC is the boundary of the outer face. Let v ∈ V be a vertex in the interior
of QC , and let u and w be its two neighbors in the 2-regular graph GA.

Construct an auxiliary graph G∗
C = (V ∪ {a, b}, C∗), with C ⊂ C∗, as follows. The edges of

G∗
C are all edges in C, edges au, av, and aw, and edges connecting the the auxiliary vertex b to
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all vertices of the outer face QC . By Lemma 2.1, G∗
2 is 3-connected (albeit not necessarily planar).

Hence G∗
C contains three disjoint path between a and b. Fix three disjoint paths of minimal total

length. The minimality implies that no two nonconsecutive vertices in any path are joined by an
edge of C. Replace the edges au and aw with vu and vw, respectively, to obtain three disjoint
paths in C from v ∈ V to three distinct vertices of the outer face QC , such that two of these paths
leave v along edges of A. Denote by P1, P2, P3 the three paths, with endpoints p1, p2, p3 along QC ,
respectively.

v

(a)

v
u

w

a

b

(b)

v
u

w

p1

p2

p3

(c)

Figure 7: (a) A 2-regular pslg GA (black) in a 3-connected triangulation GC (gray). (b) Graph G∗C with
two auxiliary vertices, a and b, is also 3-connected. (c) Three disjoint paths from v to three boundary points
p1, p2, and p3.

Let our initial graph G0 = (V0, E0) consists of all edges and vertices of QC ∪P1∪P2∪P3. There
are exactly four vertices of degree 3, namely U0 = {v, p1, p2, p3}, which are 3-linked in G0. Each
of the three bounded faces G0 is incident to 3 hubs. So G0 has properties (i)–(iii). For property
(iv), note also that no edge in C joins nonadjacent vertices of QC , otherwise GC would not be
3-connected.

Let us estimate how many edges of G0 are from C \A. Orient QC counterclockwise, and charge
every edge e ∈ C \ A along QC to its origin. Clearly, every vertex if QC is charged at most once.
Direct the paths P1, P2, and P3 from v to p1, p2, and p3; and charge each edge e ∈ C \A along the
paths to its origin. Since two paths leave v along edges of A, vertex v is charged exactly once. All
interior vertices of the three paths are charged at most once, because the paths are disjoint.

Phase 1. In the first phase of our algorithm we augment Gi = (Vi, Ei) until Vi = V , but at the
end of this phase some edges of A may still not be contained in Ei. We augment Gi = (Vi, Ei) with
new edges and vertices incrementally. It is enough to describe a general step of this phase.

Pick an arbitrary vertex v ∈ V \ Vi. We will augment Gi to include v (and possibly other
vertices). Our argument is similar to the initialization. Let Qv denote the boundary of the face of
Gi that contains v. Let Gv be the subgraph of C that contains all edges and vertices of GC in the
closed polygonal domain bounded by Qv. Let u and w be the neighbors of v in the 2-regular graph
GA; note that both u and v must be vertices of Gv.

Construct an auxiliary graph G∗
v as follows. The vertices of G∗

v are the vertices of Gv and two
auxiliary vertices, a and b. The edges of G∗

v are the edges of Gv; the edges au, av, and aw; and
edges between b and every hub vertex along Qv. We claim that graph G∗

v is 3-connected. Indeed,
it is easy to verify that the deletion of any two vertices cannot disconnect G∗

v. Therefore, there
are three disjoint paths in G∗

v between a and b. Fix three disjoint paths with a minimum total
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number of edges lying in the interior of Qv. The minimality implies that each path goes from a to
a vertex along Qv, then follows Qv to a hub on Qv, and then continues to b along a single edge. In
particular, no two nonconsecutive vertices of any of the three paths between a and Qv are joined by
an edge of G∗

v (i.e., no shortcuts). Replace the edges au and aw with edges vu and vw, respectively,
to obtain three disjoint paths from v to three distinct hubs along Qv, such that two of these paths
leave v along edges of A. Denote by P1, P2, and P3 the initial portions of the paths between a and
Qv; and let p1, p2, and p3 be their endpoints on Qv (these endpoints are not necessarily hubs of
Gi).

We construct Gi+1 by augmenting Gi with all vertices and edges of the paths P1, P2, and P3.
The new vertices of degree 3 are v and, if they were not hubs already, p1, p2, and p3. In Gi+1, three
disjoint paths connects v to three hubs in Ui, so Ui ∪ {v} is 3-linked in Gi+1. Similarly, p1, p2, and
p3 are each connected to three hubs in Ui ∪ {v} along three edge disjoint paths. We conclude that
Ui+1 := Ui ∪ {u, p1, p2, p3} is 3-linked in Gi+1. We construct Pi from Pi by adding the three new
paths P1, P2, and P3; and splitting the paths containing p1, p2, and p3 into two pieces if necessary.

Paths P1, P2, and P3 decompose a face of Gi into three faces, each of which is incident to at
least three hubs of Ui+1. So properties (i)–(iv) hold for Gi+1. Direct the paths P1 ∪ P2 ∪ P3 from
v to p1, p2, and p3; and charge any new edge e ∈ C \ A to its origin. Each new vertex of Vi+1

is charged at most once: v is charged at most once because two incident new edges are contained
in A; and any other new vertices are charged at most once because the paths P1, P2, and P2 are
disjoint.

Phase 2. In the second phase, we augment Gi = (V, Ei) with edges of A \ Ei successively until
A ⊆ Ei. We can add all edges of A at no charge, we only need to check that that properties (i)–(iv)
are maintained. We describe a single step of the augmentation. Consider an edge pq ∈ A \Ei. Let
Gi+1 = (V, Ei+1) with Ei+1 = Ei ∪ {pq} and Ui+1 = Ui ∪ {p, q}. By Lemma 2.1, Ui+1 is 3-linked
in Gi+1. The edge pq subdivides a bounded face of Gi into two faces of GI+1. Since pq does not
join two vertices of the same path in Pi, both new faces are incident to at least three hubs in Ui+1

(including p and q. The paths in Pi+1 are obtained from Pi by adding the 1-edge path pq, and
possibly decomposing the paths containing p and q into two. Since Pi has property (iv), no edge
in C joins two nonconsecutive vertices of any path in Pi+1, either. So properties (i)–(iv) hold for
Gi+1.

Phase 3. We have a graph Gi = (V,Ei) with A ⊆ E ⊆ C, where the set Ui of vertices of degree 3
or higher is 3-linked in Gi. This implies that every vertex v ∈ V \Ui has degree 2 in Gi. Since GA

is 2-regular, and A ⊆ Ei, no edges of C \ A have been charged to v. Let x denote the number of
vertices of Gi of degree 2. Apply Lemma 2.2 to augment Gi = (V,Ei) to a 3-connected graph GB

with x additional edges.
The input graph GA is 2-regular, and has n edges. In all three phases, we augmented Gi with

at most n edges from C \A. So when our algorithm terminates, GB = Gi has at most 2n edges.

5 Obstacles in a Container

In this section, we consider augmenting a pslgs G0 = (V,E) with n ≥ 6 vertices that consists of a
set of interior disjoint convex polygons (obstacles) in the interior of a triangular container. Since
no edge is a proper chord of the convex hull, every such pslg is 3-augmentable [14], and in fact is
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it not difficult to see that any triangulation of G0 is a 3-connected graph with 3n − 6 edges. We
believe, however, that significantly fewer edges are sufficient for 3-connectivity augmentation. The
best lower bounds we were able to construct require fewer than 2n− 2 edges.

When there is only one convex obstacle, three edges are obviously required for connecting it
to the container. However, for k ∈ N convex obstacles at least 3k − 1 edges are necessary in the
worst case. Our lower bound construction is depicted in Figure 8(a). It includes one large convex
obstacle which hides one small obstacle behind each side (except the base), such that each small
obstacle can “see” only three different vertices (the top vertex of the container and two adjacent
vertices of the large obstacle). Thus, we need three edges for each small obstacle and only two
edges for the larger obstacle, connecting its two bottom vertices to the two endpoints of the base
of the container.

(a) (b)

Figure 8: (a) 3-connectivity augmentation for k interior disjoint convex obstacles in a triangular container
requires 3k − 1 new edges. (b) For k interior disjoint triangular obstacles in a triangular container, we need
(5k + 1)/2 new edges.

The large obstacle in the above construction is a convex k-gon, and so the lower bound 3k − 1
does not hold if every obstacle has at most s sides, for some fixed 3 ≤ s < k. In that case we use
a similar construction, in which a big s-sided obstacle hides s − 1 smaller obstacles behind all its
sides except one, and the construction is repeated recursively. This construction corresponds to a
complete tree with branching factor s−1, in which the smaller obstacles are the children of a larger
obstacle. For a fixed value of s, we set h as the height of the complete (s− 1)-ary tree. Thus, the
number of obstacles,

k =
(s− 1)h − 1

s− 2
,

can be as high as we desire. The number of leaves in the tree is (s− 1)h−1. A simple manipulation
of this equation shows that this number equals k − k−1

s−1 . Hence, the number of internal nodes in
the tree is k−1

s−1 . For the 3-connectivity augmentation, each leaf obstacle needs at least s new edges
and each nonleaf obstacle needs at least two new edges. The total number of edges required is at
least

s

(
k − k − 1

s− 1

)
+ 2

(
k − 1
s− 1

)
= sk − s− 2

s− 1
(k − 1) = (n− 3)− s− 2

s− 1
·
(

n− 3
s

− 1
)

,

which ranges from 5
6n − 5

2 to n − O(
√

n) for 3 ≤ s ≤ k. Figure 8(b) depicts this lower bound
construction for s = 3.
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6 Discussion

We have shown that a 1- or 2-regular pslg with n vertices, where no edge is a chord of the convex
hull, can be augmented to a 3-connected pslg which has at most 2n−2 edges (Theorems 1 and 2).
We conjecture that our result generalizes to pslgs with maximum degree at most 2 (Conjecture 1.1).

The bound of 2n − 2 for the number of edges is the best possible in general, but it may be
improved if few vertices lie on the convex hull, and the components of the input graph are interior
disjoint convex obstacles, possibly with a container. It remains an open problem to derive tight
extremal bounds for 3-connectivity augmentation for (i) 1-regular pslgs with n vertices, h of which
lie on the convex hull; and (ii) 2-regular pslgs formed by n

s interior-disjoint convex polygons, each
with s vertices for s ≥ 3.

The 3-connectivity augmentation problem (finding the minimum number of new edges for a
given pslg) is known to be NP-hard [13]. However, the hardness proof does not apply to 1- or
2-regular polygons. It is an open problem whether the connectivity augmentation remains NP-hard
restricted to these cases.

We have compared the number of edges in the resulting 3-connected pslgs with the benchmark
2n − 2, which is the best possible bound for 0-, 1-, and 2-regular pslgs. More generally, for a
3-augmentable pslg G0 = (V,E0) with n ≥ 4 vertices, let f(G0) = |E1| be the minimum number
of edges in a 3-connected augmentation (V, E1) of the empty pslg (V, ∅); and let g(G0) = |E2| be
the minimum number of edges in a 3-connected augmentation (V, E2), E0 ⊆ E2, of the pslg G0. It
is clear that f(G0) ≤ g(G0). With this notation, we can characterize the pslgs G0 where all edges
in E0 are “useful” for 3-connectivity: these are the pslgs for which f(G0) = g(G0) is possible. In
general, it would be interesting to study the behavior of the difference g(G0)− f(G0).
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