
Fast Implementation of Depth Contours using Topological Sweep∗

Kim Miller† Suneeta Ramaswami‡ Peter Rousseeuw§ Toni Sellarès¶

Diane Souvaine† Ileana Streinu‖ Anja Struyf§

Abstract

The concept of location depth was introduced in
statistics as a way to extend the univariate no-
tion of ranking to a bivariate configuration of data
points. It has been used successfully for robust esti-
mation, hypothesis testing, and graphical display.
These require the computation of depth regions,
which form a collection of nested polygons. The
center of the deepest region is called the Tukey me-
dian. The only available implemented algorithms
for the depth contours and the Tukey median are
slow, which limits their usefulness. In this paper
we describe an optimal algorithm which computes
all depth contours in O(n2) time and space, using
topological sweep of the dual arrangement of lines.
Once the contours are known, the location depth
of any point is computed in O(log2 n) time. We
provide fast implementations of these algorithms
to allow their use in everyday statistical practice.
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1 Introduction

The location depth of a given point a relative to
a bivariate data set first occurred (without being
given a name) as a test statistic of Hodges [8] for
the hypothesis that a is the center of the proba-
bility distribution from which the data was drawn.
More recently, Liu and Singh [11] constructed other
statistical tests based on location depth.

Definition. Let P = {p1, . . . , pn} be a finite set
of points in R2 and a be an arbitrary point,
not necessarily in P . The location depth of a
relative to P is the minimum number of points
of P lying in any closed halfplane determined
by a line through a.

The location depth thus varies between 0 (when
a lies outside the convex hull of P ) and n (when
all points of P coincide with a). Figure 1 shows
a point a with location depth 1. The more a is
centrally located, the higher its depth. For sets P
in general position, the depth can be at most bn/2c
(this occurs when P is symmetric about a).

a

Figure 1: Point a has location depth 1.
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Definition. For a fixed positive integer k, the set
of points in the plane with location depth ≥ k
is a convex polygonal region, whose boundary
is the k-th depth contour (referred to as the k-
hull in the computational geometry literature).

Tukey [18] proposed to use depth contours in a
graphical display of the data. The k-th contour
is the “inner” intersection of all halfplanes of a set
yielding the same location depth (see Figure 2).
Note that depth contours are different from convex
layers; they have as vertices both points from the
original set and new points from the intersection
of halfplanes of the same contour. The maximum
depth (over all a) of P is denoted by k∗, and from
Helly’s theorem it follows that k∗ ≥ bn/3c is always
true (this fact is also known as the existence of at
least one centerpoint of P ).

Figure 2: Depth contour 2 is drawn in bold.

Definition. The Tukey Median, T ∗, is the center
of gravity of the deepest contour.

Donoho and Gasko [5] showed that T ∗ is a location
estimator with several desirable properties. It is
robust in the statistical sense, meaning that it does
not change much when there are some outlying
data points. (Such outliers can be the result
of measurement errors, exceptional phenomena,
heterogeneity of the population, or other deviations
of the standard assumptions.) The Tukey median
has a good breakdown value (making it more
robust than the median based on simplicial depth),

and it is equivariant under affine transformations
(unlike the spatial median, which is based on
distances).

We also need to compute the bag, first proposed
by Rousseeuw, Ruts, and Tukey [15], which is part
of a larger construct called the bagplot. The bag-
plot is a two-dimensional generalization of Tukey’s
univariate boxplot [19], and provides a visual repre-
sentation of the location, spread, correlation, skew-
ness, and tails of the data. The bag is a convex
polygon containing at most 50% of the original data
points. It is determined by an interpolation be-
tween the two adjacent depth contours that enclose
more than half, and less than half, respectively, of
the original points.

1.1 Previous implementations and our
results

Theoretical complexity results on depth contours,
or k-hulls, have been known for some time [2].
The best known theoretical result for comput-
ing the Tukey median is an O(n log5 n) algo-
rithm by Matoušek [12], but its complex struc-
ture makes it an unlikely candidate for practical
applications. Fast implementations of depth con-
tours are critical for several statistical applications.
Not many implemented algorithms were available.
The program ISODEPTH [17] computes the k-th
depth contour in O(n2 logn) time, and hence needs
O(n3 logn) time to compute all depth contours.
The programs HALFMED [14] and BAGPLOT [15]
give O(n2 log2 n) implementations to compute the
Tukey median and the bag. These programs be-
come impractically slow for large data sets.

We present an O(n2) time implementation for
computing all the depth contours, as well as the
location depth of all the data points. Consequently,
we compute the Tukey median and the bag in the
same time bounds. All our implementations are
robust in the algorithmic sense, i.e. numerically
stable. Our code allows collinearities in the point
set, but currently assumes that no two points have
the same x-coordinate. We also give empirical
results on the dramatic speed-up (of more than 300
for data sets of size 700 and higher) provided by
our implementation over those of ISODEPTH and
HALFMED.



2 The Algorithms

2.1 Determining the Depth Contours

Constructing the depth contours involves three
major steps.

1. First we use a standard dual mapping to define
an arrangement of lines.

2. Then we use topological sweep to efficiently
find all intersections of lines within the ar-
rangement. Each intersection in the dual cor-
responds to a line between two points in the
primal. As we find each intersection we can
determine the depth contour to which the cor-
responding halfplane potentially belongs.

3. Finally, for each contour, we find the inter-
section of its halfplanes to give us the convex
depth contour.

This method was first suggested by Cole,
Sharir, and Yap [2], but without using topologi-
cal sweep. We also make explicit several important
details that are necessary for the efficient imple-
mentation of depth contours, the focus of our work.

Creating the Arrangement. We use a stan-
dard dual mapping of points to lines (e.g. [6,
4]) p(a, b) → l : y = −ax + b to create the
arrangement. The mapping preserves the or-
der of points along the x-axis (as the slope of
the lines). A line through two points in the
primal maps to the intersection point of the
corresponding lines in the arrangement. The
mapping preserves the above/below relation-
ship: if a point is above a line between two
points in the primal, then the corresponding
line is above the corresponding point in the
dual.

For every intersection point in the arrange-
ment, we determine the contour to which the
corresponding halfplane in the primal con-
tributes. Let L be a line through two points
in the primal corresponding to the intersec-
tion point I in the dual. The vertical line V
through I in the dual intersects every line of

the arrangement, some above I and some be-
low I . The number of lines intersected above
I (resp. below I) exactly equals the number
of points lying above L (resp. below L) in
the primal. Let m be the number of crossings
above I . Let r be the number of crossings be-
low I . The contour to which L contributes is
therefore the minimum of m and r (this is also
said to be the level of I). After the intersec-
tions have been examined we are left with a
list of halfplanes/intersections for each poten-
tial contour. See Figure 3.

Each depth contour is the “interior” intersec-
tion of the halfplanes that potentially belong
to this contour. During the sweep, the half-
planes for each contour are split into upper
and lower sets. If m was the minimum, more
points lie “below” the halfplane in the primal
and therefore it belongs to the upper set. Con-
versely, if r was the minimum, it belongs to the
lower set.

I2

I1

V V21

Figure 3: Intersection point I1 has 4 lines above
and 0 line below; hence it belongs to the lower set
of the first contour. Intersection point I2 has 1 line
above and 3 lines below; hence it belongs to the
upper set of the second contour.

The lines containing the edges of the lower
convex hull of the upper set of dual intersec-
tions correspond to the vertices of the upper
boundary of the contour in the primal. The
lines containing the edges of the upper convex



hull of the lower set of dual intersection cor-
respond to the vertices of the lower boundary
of the contour. The intersection of the lower
hull of the upper set and the upper hull of the
lower set is the complete contour. If the inter-
section is empty, the depth contour does not
exist.

Topological Sweep. Topological sweep allows
the traversal of all vertices of an arrange-
ment of lines in O(n2) time and linear space
[7]. The typical vertical sweepline method
maintains a priority queue (heap) of poten-
tial next points in the vertical sweep, at a cost
of O(logn) per update and a total time com-
plexity of O(n2 logn) and linear space. Ex-
plicit construction of the arrangement as a pla-
nar graph uses O(n2) time and space. Topo-
logical sweep improves the time complexity
for finding all intersections by maintaining a
data structure called the horizon tree (effi-
ciently implemented using arrays). The hori-
zon tree stores one line segment per level of
the arrangement and uses a stack that con-
tains all points of intersection of current line
segments on adjacent levels, represented as ar-
ray indices. The algorithm ostensibly sweeps
a curved line across the arrangement, over the
intersection points of currently incident line
segments. Each line segment has at most two
neighbors, so the stack remains linear in size.
If we are computing all depth contours, how-
ever, all Θ(n2) intersection points of the ar-
rangement are saved to generate a halfplane
for the computation of contours, producing
quadratic space complexity.

Intersection of Halfplanes. The upper and
lower hulls of a set of points can be computed
in linear time, if the points are given in
sorted order. After the topological sweep,
we have the sorted list of intersection points
that form the upper and lower sets for each
contour. Hence, we find the lower convex
hull of the upper set, and the upper convex
hull of the lower set in time linear in the size
of the sets. Note that while the size of the
k-th depth contour is always O(n) [12], the

best known upper bound on the size of the
k-level is O(nk1/3) [3]. The hulls represent
the upper envelope and lower envelope of the
corresponding halfplanes in the primal. See
Figure 4. The two hulls are then intersected,
which gives us the k-contour (if it exists) in
time linear in the size of the k-level. The total
run-time of this step is O(n2).

Figure 4: The dashed (dotted) lines are the half-
planes associated with the upper (lower) set of in-
tersection points in the arrangement.

2.2 Location Depth of a Single Point

After Contour Calculations After calculating
all the depth contours, finding the depth of a
single point is reduced to O(log2 n) complex-
ity. The initial contour calculations provide a
set of concentric convex polygons representing
each depth contour. Determining if a point is
inside or outside of a convex polygon can be
done in O(logn) time. To determine the depth
of a single point we can thus perform a binary
search on the depth contours to achieve the
result in O(log2 n) time.

Without Contour Calculations The depth
contours need not be calculated first to find
the depth of a single point. An alternative
O(n logn) time algorithm is as follows: As
before, consider a point set P and a point



a. The minimum number of points found on
either side of the lines pa, p ∈ P, is the depth
of a in P . The first step in the algorithm is to
sort the points p in P radially around a and
store the slope of line pa in an array. Let’s
say the slopes are stored counterclockwise in
the array (around a). The array can then
be sectioned off into “quadrants”. The first
quadrant represents all points to the left and
above a, the second all points left and below,
the third all points below and right, the fourth
all points above and right. Then, for each
point(slope) p in the array, we index the slope
in only the opposite quadrant of the array
using binary search. Let’s call this index i2.
The number of points to either side of the line
pa can then be calculated by subtracting the
index of p from i2 and i2 from the index of p
modulo the array size.

Recently it was shown [9] that any algorithm
for computing the location depth of a point
needs Ω(n logn) time, so the above algorithm
has optimal time complexity.

2.3 The Bag

There are three main steps in the construction of
the bag. Recall that the bag contains at most half
of the original data points, and lies between the
contour containing less than or equal to half and
the contour containing more than half of the points.

1. The first step in the construction is to identify
these two contours. Let Dk and Dk−1 be two
consecutive contours containing respectively
nk and nk−1 data points within, such that
nk ≤ bn/2c < nk−1. Since the contours have
already been calculated, start at the deepest
and count the number of original points lying
on each contour until the count exceeds bn/2c.
The contour at which we stop counting isDk−1

and the previous one is Dk.

2. Next, we calculate the value of a parameter
λ, which determines the relative distance from
the bag to each of the two contours. This is
given by λ = (50 − J)/(L − J), where Dk

contains J% of the original points and Dk−1

contains L% of the original points.

T*
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Figure 5: Determining the vertices of the bag

3. Finally, the bag is constructed by interpolating
between the two contours by using the λ value.
For each vertex on Dk or Dk−1 let l be the line
extending through v and the Tukey median
T ∗. Let u be the intersection of l with the
other contour (Dk−1 or Dk). Each vertex w
of the bag will lie on l, interpolated between v
and u, i.e., w = λv+ (1− λ)u. The value of λ
weights the position of the bag towards Dk or
Dk−1. See Figure 5.

Figure 6 shows the bagplot of the engine dis-
placement versus the weight of 60 cars (the data
can be found in [1]). The Tukey median T ∗ is de-
picted by a cross, and the dark grey area around
the median is the bag, which gives us an idea of the
shape of the data cloud. Here we see that there is a
positive correlation between the two variables. The
light grey area is the convex hull of the bag and
the non-outliers. A data point is considered a non-
outlier if it lies inside of the fence (not displayed in
the bagplot), which is obtained by inflating the bag
by a factor 3 relative to T ∗. The computation of
the fence and the light grey area are immediate if
the Tukey median and the bag are known. Here we
have four outlying observations, depicted by stars,
in the upper right corner of the plot. These four
cars have a high engine displacement relative to
their weight.
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Figure 6: Bagplot of car weight versus engine displacement of 60 cars.

3 The Implementations

Our implementation of the algorithms for comput-
ing depth contours and the bagplot was carried out
largely in response to requests made by statisti-
cians who wish to use the code for practical pur-
poses. The algorithm described in the previous sec-
tion has theoretical running time faster than any
existing implementation for depth contours. As our
empirical results show, this is borne out in practice
as well.

3.1 Complexity

The overall complexity of the implementation is
O(n2) time and O(n2) space to compute all the
depth contours of a set of n planar points. Topo-
logical sweep in itself uses linear space. Nonethe-
less, the space complexity is Θ(n2) when all of the
contours are found, because all intersection points
of the arrangement need to be saved. Note that the
space complexity would be linear if only the k-th
depth contour is needed, because the convex hull
of the k-set can be computed incrementally and, as

pointed out earlier, the size of any depth contour
is always O(n).

The complexity of each step is as follows.
Specifying the arrangement takes O(n) time and
space. Topological sweep takes O(n2) time and
O(n) space. Since we compute all the contours
for the testing of the code, our runs use O(n2)
space. Computing the upper and lower hull of
the intersection points in the arrangement for all
contours requires O(n2) time and space.

3.2 The code

The main focus of the implementation is the com-
putation of all depth contours and the bag. Our
program is implemented in C++ using the LEDA li-
braries [10]. The bivariate data points may be en-
tered interactively or by reading from a file, and the
contours can be output either in graphical form, or
as a file containing lists of vertices for each contour.
See Figures 7 and 8 for examples of the graphical
output produced by our program.

Once the contours are available, computing the



Figure 7: Depth contours produced by our program for a set of 20 points.

bag requires only linear time. Our implementation
referred to the C code for topological sweep given
in [13], but we re-wrote the code in order to make it
compatible with the LEDA libraries. A linear time
incremental algorithm for computing the upper
and lower hulls of points given in sorted order
was implemented as well. This step also identifies
the location depth of the original data points,
which is required for the bag computation. Our
implementation allows collinearities in the input
set of points, but currently assumes that no two
points have the same x-coordinate. All primitive
geometric computations rely on LEDA and inherit
their robust implementation.

3.3 Significance

The testing phase consists of run-time comparisons
for computing the Tukey median. To check the cor-
rectness of our code, we first ran it on sets of data
for which the Tukey median was known previously.
As mentioned earlier, the previously best-known
implementation for computing the Tukey median
is HALFMED [14], which uses an O(n2 logn) time
algorithm to compute a single contour. It then

uses binary search to repeatedly apply this algo-
rithm until the deepest contour is found, giving
an O(n2 log2 n) algorithm for computing the Tukey
median (the center of gravity of the deepest con-
tour). Our algorithm finds the Tukey median by
computing all the contours, as described in Sec-
tion 2, in O(n2) time.

Our implementation was tested on a Sun Ul-
trasparc 167 MHz workstation, running SunOS,
and was compiled using the GNU C++ compiler.
HALFMED is written in Fortran, and was com-
piled using the GNU Fortran compiler. The test-
ing was done on randomly generated point sets of
various sizes. Ten points sets of each size were gen-
erated, and the total run-time for each size was
recorded using perl benchmark scripts. The av-
erage run-times for HALFMED and our code are
shown in Table 1.

As Table 1 shows, our implementation provides
a dramatic speed-up over that of HALFMED for
input sets of size greater than 40. For smaller
data sets, the overhead of computing the arrange-
ment and using more sophisticated data struc-
tures causes the run-time to be slower than for



Figure 8: Depth contours produced by our program for a set of 79 points.

HALFMED. However, the improvement in run-
time for larger data sets is notable, and of practical
significance to statisticians. The graph in Figure 9
illustrates the speed-up of our implementation over
that of HALFMED.

4 Concluding Remarks

We have given fast implementations for computing
all depth contours and consequently, the Tukey me-
dian and the bag. Our results provide a dramatic
speed-up over existing implementations. The code,
which requires LEDA 3.8 or higher, is available
at http://www.eecs.tufts.edu/~dls/locdepth.
Our code currently assumes that no two points in
the input set have the same x-coordinate. This as-
sumption can be easily removed, for example, by
an appropriate linear transformation of the input
set. In the next version of our program, we intend
to remove this non-degeneracy assumption.

A natural open question, and one of particular

interest to statisticians, is on faster implementa-
tions for computing only the Tukey median. The-
oretically, faster algorithms are known [12]. How-
ever, a more implementable algorithm is required
in practice. The problem of an efficient implemen-
tation for computing the Tukey median in o(n2)
time is the outstanding open problem from a prac-
tical point of view. We are currently working on
an implementation of a randomized version of Ma-
toušek’s algorithm [12] for computing the Tukey
median.



n Average CPU time over 10 runs (seconds)

HALFMED Our code

10 0.034 2.098

20 0.094 2.060

40 .607 2.085

80 5.599 2.202

100 11.822 2.335

160 37.222 2.822

200 84.449 3.075

320 490.231 4.481

500 759.655 6.011

640 1142.619 8.317

750 4953.736 14.231

1000 9002.314 22.071

Table 1: Average run-times.

200 400 600 800 1000
# points

20

40

60

80

cpu (seconds)

Figure 9: Comparison of run-times: HALFMED (solid) vs. our implementation (dotted)
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