A Sketch-Based Interface for Detail-Preserving Mesh Editing

Andrew Nealen
Olga Sorkine
Marc Alexa
Daniel Cohen-Or

Presented for Comp250 by Alexandra Lauric
Ideas and Contributions

- **A sketch-based interface...**
 - Feature modification
 (object-space silhouettes)
 - Feature creation
 (sharp features, ridges, ravines)

- **... For detail-preserving mesh editing**
 - Adjust remaining geometry around the modified/created feature such that shape characteristics are preserved
Sketch-Based Interfaces and Modeling

- Previous work
 - SKETCH [Zeleznik et al. 96]
 - Teddy [Igarashi et al. 99 and 03]
 - Variational implicits [Karpenko et al. 02]
 - Relief [Bourguignon et al. 04]
 - Sketching mesh deformations [Kho]
 - Parametrized objects [Yang et al. 05]
Mesh Modeling Framework 1/4

- Satisfy linear modeling constraints
- Preserve local detail after imposing editing constraints.
Mesh Modeling Framework 2/4

- Preserve the Laplacian of the original geometry, $G = (V, E)$, in the least squares sense.

$$V' = \arg \min_w \| \Delta V - \Delta W \|^2$$

- Equivalent to solving a linear system in the least squares sense.

$$AV' = b \quad \Rightarrow \quad A^T AV' = A^T b$$
Constraints:

- Operations are restricted to ROI. The anchor vertices keep their positions: $v'_i = v_i$
- Relative positions of points on edges and inside triangles are preserved.
- Set restrictions on the normal direction and the resulting curvature.
Mesh Modeling Framework}

- δ_i is the Laplacian of vertex v_i

$$\delta_i = v_i - \sum_{\{i,j\} \in E} w_{ij} v_j$$

- $\delta_{\text{cotangent}} : w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$

- δ_i points in the normal direction and $||\delta_i||$ is proportional to the mean curvature around vertex i

\implies add constraints: $v'_j - \sum_{\{i,j\} \in E} w_{ij} v'_j = \delta'_i$
The Possibilities

- Silhouette Sketching
- User-Defined Sketching
- Sharp Features
- Suggestive Contours
Silhouette Sketching

- Using silhouettes as handles
 - Detect silhouette as polyline with vertices q_i
 - Project vertices to screen space and parametrize over $[0,1]$
 - Represent sketch as polyline with vertices s_i and parametrize over $[0,1]$
 - Find correspondences and define a new screen space position q_i
 - Use q_i as positional constraints while retaining depth value
 - The weighting of positional constraints along the silhouette determine the final position.
Silhouette Sketching

- Using silhouettes as handles
 - Detect silhouette as polyline with vertices q_i
 - Project vertices to screen space and parametrize over $[0,1]$
 - Represent sketch as polyline with vertices s_i and parametrize over $[0,1]$
 - Find correspondences and define a new screen space position q'_i
 - Use q'_i as positional constraints while retaining depth value
 - The weighting of positional constraints along the silhouette determine the final position.
Silhouette Sketching

- Approximate sketching
 - Balance weighting between detail and positional constraints
Silhouette Sketching

- Approximate sketching
 - Balance weighting between detail and positional constraints
Approximate sketching

- Weighting the positional constraints retains the surface characteristics.
User-Defined Sketching

- We wish to influence (discrete) differential properties of the mesh for arbitrary sketches defined by the user.

- The solution
 - Adjust mesh geometry to lie under the sketch (as seen from the camera), while preserving mesh topology and ensuring well shaped triangles.
Geometry Adjustment

- First: **min cost edge path (close to sketch)**
Geometry Adjustment

- Second: projection onto sketch
Geometry Adjustment

- Second: **projection onto sketch**
 - Approximates the sketch very well
 - Can introduce skinny triangles
Geometry Adjustment

- Third: **local mesh regularization**
 - Improve triangle shapes by relaxing vertices closed to the sketch so that their umbrella Laplacian equals the cotangent Laplacian.

\[A \mathbf{v} = \delta \]
Geometry Adjustment

- Third: **local mesh regularization**
 - Well shaped triangles and nice piecewise linear approximation of the users sketch
Sharp Features

- Edit: *scale (or add to) Laplacians*
Sharp Features

- Edit: *scale (or add to) Laplacians*
Suggestive Contours
Suggestive Contours
Suggestive Contours
Suggestive Contours
Conclusions

- **Avantages**
 - Intuitive, easy to use, sketch-based User Interface for silhouette deformation and feature creation/modification.
 - Preserves surface detail as much as possible.

- **Disadvantages**
 - The update time is proportional with the number of vertices in ROI.
 - Doesn’t work on noisy surfaces.
 - Editing differential properties can take time to learn.
Thank You!