Resources for bosonic quantum computational advantage

October 25, 2022
3:00-4:15 pm ET
Cummings 270, Zoom
Speaker: Ulysse Chabaud
Host: Saeed Mehraban

Abstract

Abstract, a joint work with Mattia Walschaers: Quantum computers promise to dramatically outperform their classical counterparts. However, the non-classical resources enabling such computational advantages are challenging to pinpoint, as it is not a single resource but the subtle interplay of many that can be held responsible for these potential advantages. In our work, we show that every bosonic quantum computation can be recast into a continuous-variable sampling computation where all computational resources are contained in the input state. Using this reduction, we derive a general classical algorithm for the strong simulation of bosonic computations, whose complexity scales with the non-Gaussian stellar rank of both the input state and the measurement setup. We further study the conditions for an efficient classical simulation of the associated continuous- variable sampling computations and identify an operational notion of non-Gaussian entanglement based on the lack of passive separability, thus clarifying the interplay of bosonic quantum computational resources such as squeezing, non-Gaussianity and entanglement.

Bio:

Ulysse Chabaud is a postdoctoral scholar at the Institute for Quantum Information and Matter at Caltech. His research interests cover various topics related to quantum information theory, such as quantum computing, quantum cryptography and quantum communication. He investigates the necessary resources for quantum advantages and how they translate to foundational questions, in the context of continuous-variable quantum computational models in particular.

Please join meeting in Cummings 270 or via Zoom.

Join Zoom Meeting: https://tufts.zoom.us/j/96038251227

Meeting ID: 960 3825 1227

Passcode: see colloquium email

Dial by your location: +1 646 558 8656 US (New York)

Meeting ID: 960 3825 1227

Passcode: see colloquium email