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Abstract 

 

 

Most of today’s Graphical User Interfaces (GUI) and toolkits are based on serial, 

discrete, token based, paradigms that seem to acceptably implement traditional 

WIMP (Window, Icon, Menu, Pointer) interfaces.  These tools however, are not suited 

for “next generation” interaction techniques such as Virtual Reality (VR).  These 

interaction techniques rely upon asynchronous, parallel, and continuous 

user/computer interaction.  This work proposes a specification paradigm, DLoVe, 

which provides a framework of techniques and abstractions that directly addresses 

these issues.  In addition, DLoVe also provides a mechanism for executing programs 

designed for a single machine to be executed in a distributed environment, where 

updates on DLoVe variables are processed in parallel.  DLoVe’s framework also 

provides the abstractions for writing multi-user VR programs or transforming 

existing single-user programs into multi-user ones.  Moreover, DLoVe addresses 

issues of performance and maintainability, providing mechanisms, drivers, and 

utilities that allow run time tuning and network management to be specified in a 

simple manner.  

 

This thesis describes in detail the proposed system, evaluates it, and provides 

examples and analysis of several applications developed within DLoVe’s paradigm, 

and provides a guide on how applications can be implemented in this framework.   
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Chapter 1:  Introduction 

 

 

 

Overview 

 

For the last 20 years, desktop systems have been continuously enhanced, providing 

the user community with such tools as line and raster graphics, window-icon-

mouse-pointer graphical user interfaces, and advanced multimedia extensions.  

With the help of immersive virtual environments, users now have access to 3D (3 

dimensional) space.   

 

The Responsive Workbench is an example of a 3D space environment.  It is a virtual 

environment that allows the users to locate virtual objects and control tools on a 

real “workbench”.  The virtual objects are projected onto the surface of the 

workbench.  This virtual environment duplicates the actual work environment of an 

operating room, an architect’s office, etc, where several people can work together in 

this environment on a common task [Krueger 94]. 
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The state of practice in user-interfaces today is the familiar direct manipulation, GUI 

(Graphical User Interface), or WIMP (Window, Icon, Menu, Pointer) style interface 

[Shneiderman 92].  The next generation’s computer interfaces have been called non-

WIMP [Green 91] and are characterized by parallel and continuous interactions.  

Examples are virtual reality and virtual environments [Foley 87].  Existing languages 

and models, event-based software, methods and tools do not satisfy the next 

generation requirements.  For that reason we need a new model and framework for 

describing and implementing these interfaces from the point of view of the user and 

the dialogue.  

 

Most of today’s examples of non-WIMP interfaces have been designed and 

implemented with event-based models that are more suited to previous interface 

styles.  Because there is no software that can describe continuous, parallel 

interaction explicitly (which is needed for virtual reality) and the old models (event-

driven) fail to capture continuous, parallel interaction explicitly, new interfaces have 

required considerable low-level programming.  While some of these interfaces are 

very inventive, they have made such systems difficult to develop, reuse, and 

maintain. 

 

DLoVe (Distributed Links over Variables evaluation) is my new model for next 

generation dialogues.  This model expresses non-WIMP formal structure in the same 

way that existing technology expresses command-based, textual and event-based 

dialogues.  My model combines a data-flow or constraint-like component for the 

continuous relationships with an event-based component for discrete interactions.  

The modules describing the continuous relationships between objects form a 

constraint graph, which can be evaluated by DLoVe’s constraint engine.  The 

constraint engine ensures that all relationships between the related objects are 
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satisfied.  Individual continuous relationships can be enabled or disabled on the fly.  

Programs designed in this framework, not only capture continuous and parallel 

interaction explicitly, but also allow programs to run in parallel when there is a need 

for faster computation.  In addition, this framework allows programs to run in a 

multi-user environment where users can participate in a collaborative environment.   

 

In DLoVe, one can write programs designed for a single machine but can execute 

them in a distributed environment without any code modification.  The majority of 

research done in parallel systems has concentrated either upon computational 

models, parallel algorithms, or machine architecture.  By contrast, little attention 

has been given to software development environments or program construction 

techniques required in order to translate algorithms into operational programs 

[Sunderam 90].  

 

For implementing this framework, DLoVe assigns roles to different machines.  For 

example, one machine, the Coordinator, is responsible for rendering the graphics on 

the screen and reading all input devices, and all other machines, the Workers, are 

responsible for keeping the constraints between Variables up-to-date and serving 

requests to the Coordinator.  As a result, the Coordinator has more time to spend 

refreshing the screen and providing an immersive environment to the user, because 

the responsibility of keeping all the Variables up-to-date is taken away from it and 

given to other machines that are dedicated to this task. 

 

All machines/processes involved in running a program in parallel have an identical 

copy of the constraint-graph so that every machine/process works on the same 

constraint graph.  However, each machine/process is only responsible for evaluating 

part of the constraint graph.  This way, the constraint graph seems to be distributed 
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among many machines/processes.  Because every machine is responsible for only a 

sub-graph of the constraint graph, the Coordinator can request services in parallel 

from the machines that are dedicated to parts of the constraint graph.  In other 

words, by distributing the constraint graph and then partitioning it, so that, 

different machines are responsible for different parts of the constraint graph, the 

queries get partitioned.  By having the queries partitioned, the Coordinator can 

request services in parallel where some queries always go to machine ‘A’ others to 

machine ‘B’ and so on.   

 

 

Ease of Use 

 

Ease of use is determined by how fast and effortlessly the application can be learned 

and used by users as well as by counting the frequency of errors when interacting 

with the application.  Often, applications that are robust, functional, and exhibit 

good performance, are abandoned by the user community due to difficult or foreign 

user interfaces.  The success of an application is largely determined by how easily 

the application can be learned and used [Larson 92].   

 

When using the programming paradigm of DLoVe, the programmer uses a 

production programming language with which he/she is familiar.  One can use, for 

example, C++ to write programs as he/she formerly wrote for a single machine and a 

single user.  However, DLoVe gives the programmer the flexibility to run the same 

program in parallel if he/she wishes, without any additional programming effort, 

making DLoVe a desirable model for describing Virtual Reality Environments and 

behavior.  When such a program is transformed to a multi-user program the 
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programmer must manually make large, but trivial, revisions to the program.  

However, its base form will remain same. 

 

To transform a single-user program that runs sequentially to a program that runs in 

parallel, no modifications are required.  The user can just recompile using a 

different set of libraries.  To transform a single-user program to a multi-user 

program, some trivial modifications must be made.  In a multi-user environment we 

need to designate and differentiate between the input and output devices so we can 

give different roles to different users.  Also, the users must be able to see each other 

in the virtual environment, whereas in the single-user environment there is only one 

user and one view of the virtual world.   

 

By using DLoVe, programmers can write networked and distributed virtual reality 

programs without any knowledge of networked, distributed, or parallel 

programming, making Virtual Reality programming quick, simple and fun. 

 

 

Outline of the Dissertation 

 

Chapters 2 through 5 describe background and related work.  Chapter 2 describes 

Virtual Reality, Virtual Environments, and the basic problem of real time rendering 

that DLoVe solves.  Chapter 3 describes constraint graphs and constraint engines 

that define DLoVe’s framework and programming paradigm.  Chapter 4 describes 

techniques used in programming Parallel and Distributed systems, which motivate 

DLoVe’s approach to parallelism.  Chapter 5 describes multi-user interfaces, and 
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builds a framework for understanding virtual environments and multi-user 

programming.   

 

Chapters 6 through 9 describe the DLoVe programming.  Chapter 6 describes Links 

and Variables of the DLoVe underlying framework, and its incremental constraint 

solver that keeps the constraint graph up-to-date.  Chapter 7 describes how a 

program written in DLoVe that runs on a single machine can be transformed to run 

in parallel on multiple machines, and how this is accomplished.  Chapter 8 

describes Parallel computation in DLoVe, where one can describe a program that 

runs on a single machine for a single user, which allows programs to run on 

multiple machines for multiple users.  Chapter 9 describes all methods that the 

DLoVe protocol supports, how all machines connect to each other, how the Partition 

algorithm works and the good and bad points of each of the methods used to run a 

parallel program in DLoVe.   

 

Chapters 10 through 12 demonstrate the use of DLoVe’s paradigm in creating 

Virtual Reality applications.  Chapter 10 describes in detail the creation of a simple 

VR program (arms).  Then it describes how such a program can be executed in a 

distributed environment.  Finally, it describes the transformation of the arms 

program to be executed in a multi-user environment.  Chapter 11 describes an 

application that uses multiple input devices such as Polhemus and an eye tracker 

device to implement the 2zoom application where a user can select and manipulate 

remote objects.  Chapter 12 describes a large-scale application that involves 

interaction between multiple users and multiple computer-simulated entities, call 

Humanoids.  The virtual environment is a Virtual Park where the Humanoids play 

with a virtual ball.  The simulation requires execution of computationally expensive 
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algorithms for the animation of the Humanoids and the interaction between then as 

well as between the users.  

 

In chapters 13 I present the results of the performance measurements.  Traditional 

measurements failed to describe accurately the performance of DLoVe   New 

algorithm and ideas are presented in this chapter for measuring performance in 

DLoVe that describe it accurately.   

 

Chapter 14 evaluates DLoVe and describes its applicability and limitation.  Chapter 

15 presents the open problems and future work that needs to be conducted to both 

improve DLoVe’s paradigm and also its performance.  Chapter 16 is a summary of 

this dissertation. 
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Chapter 2:  Related Work - Virtual 

Reality 

 

 

 

Introduction 

 

DLoVe is, primarily, a mechanism for creating VR systems.  Virtual Reality (VR) 

eliminates the need to work with a flat 2D image, the keyboard, mouse and monitor.  

All of these interface methods have become very familiar to the users, but they still 

remain unnatural and limiting.  VR, on the other hand, allows the user to interact 

in a virtual world naturally, as he/she would interact in the physical world.  Real 

time 3D interaction allows the user to touch, feel, and lift objects as he/she would 

in the physical world.  VR visually isolates the user from the physical world and 

substitutes an imaginary 3D.  This imaginary world is constructed using computer-

generated images displayed to the user through a head-mounted display (HMD) (or 

some other immersive display devices) and a spatial interaction device such as 

DataGlove or PowerGlove (Satava, 1993, pp. 203-05).   
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Virtual Reality is a breakthrough technology that alters the way users interact with 

computers and it consists of three major elements: interaction, 3-D graphics, and 

immersion [Prat 95].  Making a virtual environment realistic is not enough; that 

environment must also allow the user to interact with it in real time in order for it to 

be called a Virtual Reality environment [Stephen 94] [Barfield 95].  The goal of a VR 

developer is to let the user focus on the virtual model or environment, to disregard 

everything else [Hodges 95].  Clicking and dragging might be interactive, but it is not 

VR because it is not immersive.  VR lets the user manipulate and navigate through 

the virtual model in real time.  VR is available in amusement arcades, films of the 

future, and is widely used for research purposes, and lately for industrial settings. 

 

 

Why use Virtual Reality 

 

The great benefit of using Virtual Reality is the ability to work in a virtual 

environment without the attendant danger, impracticality, or significantly greater 

expense that would be encountered in the same environment if it were physical.  

That means saving money and time, and enhancing creativity, in product 

prototyping, hazardous task training, molecular modeling, medical education, 

entertainment content creation, and a range of other mission-critical tasks.  VR 

adds value to virtually any application where it is vital to experience spatial 

relationships, and analyze, design, engineer and understand such relationships.  

 

Today, VR is used in many different areas in research that include manufacturing, 

architecture, medicine and healthcare, entertainment, scientific data visualization, 
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the military and many more.  For example, a surgeon can perform surgery from a 

remote site, or the surgeon may perform surgery on a virtual patient first before 

performing it on the actual patient, for practice or training purposes [Bowman 95]. 

 

Researchers at Georgia Institute of Technology’s Graphics, Visualization, and 

Usability Center are using VR for therapy of patients with psychological disorders 

such as acrophobia.  The patients were moved up on high elevators in a Virtual 

Environment, or given the illusion of looking through a third floor window, but they 

were physically in a safe environment, a lab [Hodges 95].  This way, patients could 

overcome the fear of heights and adjust more easily to real world situations.   

 

Using VR designers are able to design large structures, work in them and make 

modifications and strategic changes to these structures.  For example, in the Virtual 

Factory Project, researchers in Iowa State University designed a factory where robots 

replace finished parts and move along virtual tracks.  This helps manufacturers 

investigate new technology and architects re-design structures before they are built, 

because modifying a structure after it is built is expensive and time consuming. 

[Kelsick 98] 

 

 

Limitations in VR 

 

Traditionally, computers use input devices ranging from switches and punched 

cards to keyboards and mice.  However, such devices are insufficient for specifying 

actions in a virtual world.  For example, how would you express the simple act of 

drinking from a cup of water by using a mouse?  Typing a keyboard command may 
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come to mind, but this quickly becomes cumbersome, as you will have to specify 

which cup to drink from, and how much to drink.  You will also have to learn the 

correct syntax to convey the information to the computer.  This is definitely not a 

simple task [Vince 95][Burdea 94].  That is why new input devices needed to be 

created, such as 6D mice, joysticks, wands, force balls, DataGloves, and 

PowerGloves that use Polhemus [Aukstakalnis 92] to describe their location and 

orientation in space.  A Dexterous Hand Master (DHM) is an exoskeleton that is 

attached to the fingers using velcro straps.  Attached to each finger joint is a device 

called a Hall effect sensor whose purpose is to measure the finger-joint angle. Tod 

Machover used an Exos DHM at the MIT Media Lab to control acoustic parameters 

in live musical performances [Sturman 92].  

 

The ability to feel objects in virtual environments can markedly enhance the 

effectiveness of many applications, particularly for training, scientific visualization, 

and telepresence [Langreth 95].  Haptic devices for presenting tactile and force 

sensations, are being developed in several laboratories, but are not yet widely used 

elsewhere.  For example, Makato Sato of the Tokyo Institute of Technology’s 

Precision and Intelligent Laboratory has developed a force-reflecting system called 

Spidar (Space Interface Device for Artificial Reality).  With this system, the user 

inserts his or her thumb tips and index finger into a pair of rings, each of which 

have four strings attached to rotary encoders. String movements are restricted with 

breaks, providing touch sensations [Bowman 95]. 

 

The visual sense is used more than any other to process information.  Even a quick 

glance at an intricate picture will be enough to process most of the details of the 

scene.  Visual input is a necessary requirement for an engaging virtual environment.   
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Stereoscopic vision occurs when two separate images are generated and viewed.  

The left eye views the left image and the right eye views the right image.  The two 

images differ slightly due to visual parallax, caused by the distance between the eyes 

[Vince 95] [Burdea 94]. 

 

To help users immerse in a virtual environment headmouted (HMD) displays are 

being used where two monitors or LCD displays are always in front of the eyes.  

Other output device include Projected HMD and Mini HMD, Heads-up displays 

which can then overlay the “real” world with additional information, thus 

augmenting the “real” world.  Virtual reality can be used to enhance actual reality 

[Adam 93] [Doyle 95]. 

 

Different input and output devices are suitable for different tasks, but one 

requirement for any device to work well in VR is that the lag between the action and 

what appears on the screen cannot be too great.  For example, if you move your 

DataGlove and the direction is changed only 5 seconds later, you can be easily 

confused and the device becomes hard to use. 

 

VR systems have one important limitation, the inability to move around the virtual 

environment in a natural way.  An observer is either constrained by the physical 

boundaries, as with the CAVE system [Bowman 95], or by the range of a head 

tracking system.   

 

The CAVE system (Cave Automatic Virtual Environment) developed at the Electronic 

Visualization Laboratory of the University of Illinois, Chicago, uses stereoscopic 

video projectors to display images on three surrounding walls and on the floor.  The 

participants wear glasses with LCD shutters to view the 3D images [Bowman 95]. 
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Physiological dangers of VR  

 

Problems arise because of an important phenomenon of latency between head 

movements and the image that the computer sends to the HMD.  In this case, the 

human brain receives conflicting information from the involved senses.  Since the 

represented image does not truly reflect the movement perceived by the semicircular 

canals, the brain cannot decide which is the right information. 

 

Another cause of conflict is the difference between the convergence of the eyes and 

the convergence created by the pair of stereoscopic images.  In everyday life, we are 

constantly forced to focus on objects at distances from 28mm away to infinity.  An 

HMD helmet has two liquid crystal screens that are essentially two-dimensional 

devices.  The two images are merged to create a stereoscopic illusion.  In spite of 

everything, there is a difference between the stereoscopic image created by the HMD 

helmet, and that perceived in reality.  In the case of an HMD helmet, the two images 

are presented with the aid of a combination of optical lenses.  This creates a virtual 

image at a fixed distance, which is located from several meters ahead to infinity, 

according to the model of HMD helmet used.  As a result, the user always focuses at 

a fixed distance, which is something that is not happening in real life. 

 

There is the notion of conflict due to contradictory information.  Each time there is a 

conflict, there will be an effect perceived by the human body.  These observations 

must not be taken lightly.  Certain types of trauma are very pronounced, although 

they have a short duration.  For example, latency caused by an HMD helmet, a 
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glove, or a slow computer can cause some to experience heart rate increase, 

seasickness, and vomiting.  Others are unable to focus adequately once they return 

to the real world, and after a while can regain some hours, according to the length of 

the immersion [Reason 78]. 
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Chapter 3:  Related Work - Constraints 

and Constraints in UIMSs 

 

 

 

Introduction 

 

Since the earliest interactive graphical editors, systems have attempted to provide 

sophisticated editing features.  Sketchpad [Sutherland 63] introduced not only 

direct graphical interaction, but also constraints and snapping1.  Constraints are 

useful in programming languages, user interface toolkits, databases, database 

queries, simulation packages, and other systems, because they allow programmers 

or users to state declaratively a relation that is to be maintained, rather than 

requiring them to write procedures to maintain the relation themselves.   

                                                           
1 Snapping is a method that allows users to select, align, etc. objects on a grid or a virtual gravitational 
force.  For example, when a user wants to select a line in a drawing application, the user can click near 
the line and the application selects the line without the need of the programmer to click right on the 
line, enhancing his/her selection skills.  Snapping is implemented in numerous applications.  Another 
application is to help users align objects on a grid.  The users draw and drag objects, and the 
application always snaps the objects on a virtual grid. [Bier 86] 
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Maintaining that relation is left up to the underlying system, instead of being the 

responsibility of the programmer.  A constraint typically contains both a declarative 

description of the relation and a set of procedures for making that relation hold, 

which are used by the underlying constraint satisfier/engine.  The emphasis on 

constraints helps define a new style of programming, one in which the focus is on 

computing data values instead of writing methods [Myers 92b]. 

 

Any large, complex application contains hundreds, even thousands of inter-

dependent relationships.  For example, a graphical application must deal with the 

relationships arising from moving objects on the screen, displaying feedback when 

the user moves/deletes objects, keeping text labels on buttons centered, displaying 

an alarm on the screen when the reactor gets overheated, and in general keeping 

the view consistent with the data they represent.  Constraints provide a convenient 

way to specify relationships and have them automatically maintained at run time by 

the constraint solver/evaluator.  In contrast, in a traditional programming language 

constraint handling is not even specified.   

 

For example, suppose that a slider indicates the speed of a rotating object.  When 

the slider is at the top, the rotating object rotates at maximum speed, and when the 

slider is at the bottom, the rotating object rotates at minimum speed.  In constraint 

programming, wherever the application/user changes the slider’s position, the 

constraint solver automatically changes the speed of the rotating object.  In 

contrast, a conventional language forces the designer to write code to figure out 

where the slider is, and change the speed of the rotating object.  This might not 

seem such a difficult task, but when an application contains thousands of such 

relationships, the bookkeeping needed to maintain them increases so rapidly that 
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adding new functionality to the application becomes difficult, and the time required 

to debug the changes also increases substantially. 

 

 

Evolution of Constraints 

 

In addition to simplifying the creation of applications and increasing their 

robustness, constraints lend themselves to incremental re-computation/re-

evaluation.  When a user changes one or more parameters in an application, or adds 

or deletes a number of constraints, most of the existing constraints remain satisfied 

and only a small number must be re-evaluated.  An incremental constrained-solving 

algorithm, such as Eval/vite [Hudson 91] and the algorithms presented in [Zanden 

94], can automatically identify which constraints must be reevaluated and limit its 

solving to these constraints.  Such an algorithm can be used with any application 

written for that constraint system.  In contrast, a conventional language requires 

the designer to create a new incremental algorithm for each application.  Of course, 

a conventional language also lets the designer take advantage of any special 

characteristics of the application, so that he or she can write a custom algorithm 

that might be faster than a general-purpose constraint solver. 

 

 

One-way and Multi-way Constraints 

 

Constraints can be either one-way or multi-way.  One-way constraints differentiate 

variables as being inputs or outputs.  When there is a change in the input variables, 
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the change propagates to the output variables so that the relationships are all 

satisfied.  If there is a change in the output variables however, the change does not 

propagate backwards to the input variables.  In contrast, in multi-way constraints if 

there is a change in either input or output variables, the change propagates to the 

variables on the other side of the graph.  All variables are treated as both inputs and 

outputs. 

 

For example, using the example above with the slider and the rotating object, if the 

slider moves the rotating object also changes speed with the respect to the slider’s 

value.  However, if the speed of the rotating object changes via another input and 

not the slider, the slider does not move, in a one-way constraint solver, to 

correspond to the newly changed speed of the rotating object.  However, in a multi-

way constraint solver, the slider would have changed to reflect the corresponding 

speed of the rotating object.   

 

Multi-way constraints are obviously more powerful than one-way constraints, but 

this increased expressiveness comes at a price.  One-way constraint solving 

algorithms only have to evaluate constraints in one direction, making them simpler 

to implement and more efficient than multi-way constraint solvers that must also 

choose which variable in a constraint should be modified.   

 

Multi-way constraints can also introduce ambiguity at the design level.  For 

example, suppose we have the constraint A - B - C = 0.  If “A” changes, the 

constraint solver must choose whether to change “B”, “C”, or both.  One approach to 

eliminate this ambiguity is to divide constraints into hierarchies, or assign priority 

levels, or strengths to constraints [Sannella 94] [Freeman-Benson 90] [Lopez 94a] 

[Lopez 94b].  The constraint solver then tries to satisfy as many constraints as 
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possible, solving the highest priority constraints first, and then the next highest, 

and so on.  One issue that constraint hierarchies do not address is how to specify a 

constraint when multiple values should change.  For example, what happens when 

“A” changes, should both “B” and “C” change, or should just “B” change, or should 

just “C” change?  Given a constraint hierarchy, where constraints have associated 

strengths, a constraint solver may leave weaker constraints unsatisfied in order to 

satisfy stronger constraints.  

 

In addition to constraints of varying strength or priorities, Kaleidoscope [Lopez 94a] 

[Lopez 94b] has constraints of varying duration.  Constraint duration specifies the 

period of validity for constraints.  The most flexible model would allow constraints to 

be asserted and retracted at arbitrary points in time.  However, this would lead to 

difficulties in predicting behavior, since any piece of code could have a side effect on 

which constraints are active.  In Kaleidoscope the default constraint duration is 

‘always’, which causes a constraint to remain active forever.  A ‘once’ duration 

instructs the system to assert the constraint causing it to be enforced at that 

moment (and thus potentially affecting values), and then immediately retracts it.  

Finally, the ‘assert/during’ construct specifies that a constraint should remain in 

force during the execution of a block or loop. 

 

 

Lazy and Eager Constraint Solving 

 

Constraint solving can be in either a lazy or eager style [Zanden 94].  Lazy 

evaluation (used by Garnet [Myers 90a] [Myers 90b], Eval/vite [Hudson 91] and 

other systems, evaluates a constraint only if it affects a result that the user 
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requests.  Eager evaluation evaluates a constraint immediately when values change.  

Thus, a lazy-evaluation system can obtain variables whose values are out of date.  

Lazy evaluation avoids unnecessary work if relatively few values are needed to 

compute the result the user requests.  However, lazy evaluation also introduces 

extra bookkeeping, since the constraint solver must keep track of out-of-date 

variables.  In addition, lazy evaluation can result in potential delays when the values 

of out-of-date variables are demanded.  Lazy evaluation is most effective in 

applications where the user wants to view only a limited portion of the application’s 

data and where changes are occurring to all parts of the application’s data.  

Otherwise, eager evaluation is preferable, since it is conceptually cleaner than lazy 

evaluation because all variables are almost always up-to-date.  

 

 

Constraint Systems 

 

People have developed constraint solvers that support both lazy and/or eager 

evaluations, incremental solving and one-way and multi-way constraint solvers.  For 

example, the DeltaBlue [Freeman-Benson 90] algorithm (an incremental version of 

Blue) and SkyBlue [Sannella 94] (a more general successor of the DeltaBlue) 

maintain an evolving solution to the constraint hierarchy as constraints are added 

and removed.  DeltaBlue minimizes the cost of finding a new solution after each 

change by exploiting its knowledge of the last solution. 

 

Both DeltaBlue and SkyBlue exploit their knowledge by associating sufficient 

information with each variable to allow the algorithm to predict the effect of adding a 
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given constraint by examining only the immediate operands of that constraint.  This 

information is called the ‘walkabout strength’ of the variable, defined as follows: 

 

“Variable v is determined by methods m of constraint c.  v’s walkabout strength is the 
minimum of c’s strength and the walkabout strengths of m’s input.” [Freeman-Benson 
90] 
 

The walkabout strength is the weakest constraint that can be revoked; thus weaker 

walkabout strengths propagate through stronger constraints. 

 

There are constraint solvers that support cycles in the constraint graph, such as 

SkyBlue [Sannella 94], and others that do not, such as DeltaBlue [Freeman-Benson 

90].  To satisfy cycles, SkyBlue calls external cycle solvers based on Gaussian 

elimination to satisfy the constraints around the cycle, and uses local propagation to 

satisfy the rest of the constraints.  If the available cycle solvers cannot satisfy the 

constraints in a cycle, the variables are marked invalid, so the programmer can tell 

when the cycle constraints are not satisfied. 

 

Both DeltaBlue and SkyBlue support required and preferential constraints.  The 

required constraints must hold.  The system should try to satisfy the preferential 

constraints if possible, but no error condition arises if it cannot.  SkyBlue and 

DeltaBlue allow an arbitrary number of levels of preference, each successive level 

being weaker than the previous one.  The set of all constraints, both required and 

preferred, labeled with their respective strengths, is called the constraint hierarchy.  

[Freeman-Benson 90][Sannella 94] 

 

Many systems have been designed based on these powerful and flexible constraint 

solvers.  For example, the Multi-Garnet package [Sannella 92] uses SkyBlue to add 
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support for multi-way constraints and constraint hierarchies to Garnet [Myers 90a].  

Garnet is a user interface toolkit built on Common Lisp and X windows with 

emphasis on handling objects’ run-time behavior and on handling all visual aspects 

of a program’s user interface, including its graphics and the contents of all 

application-specific windows [Myers 90b].  Multi-Garnet constraints support many 

of the useful features of Garnet’s one-way constraints, including indirect references 

to constrained object slots through a series of other slots and inheritance of 

constraints in Garnet’s prototype-based system.   

 

TBAG [Elliott 94] is a toolkit for creating interactive 3D graphics that uses 

constraints to maintain relationships between time-varying properties of graphic 

objects such as their positions and the derivatives of their positions.  These relations 

may be given different strengths since TBAG uses SkyBlue to maintain the 

constraints.   

 

The VB2 [Gobbetti 93] Virtual Reality system also uses SkyBlue to maintain 

connections between 3D input devices and objects in the virtual world, and to 

attach virtual tools to objects that the user is editing.  These constraints can be 

added or removed as the user manipulates different virtual objects in the virtual 

world.   

 

The Kaleidoscope language [Lopez 94a] [Lopez 94b] integrates constraints and 

imperative, object-oriented programming.  The current implementation of this 

language (Kaleidoscope’93) uses SkyBlue to maintain primitive constraints. 

 

Alan Borning [Borning 86] describes a bi-directional system where the constraints 

can be Static or Temporal, and can be designated as Reference only, or Anchor. 
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A Static constraint describes a relation that must hold at all times. Static 

constraints are similar to required constraints in SkyBlue and DeltaBlue.  Each 

such constraint is represented as a predicate, which may be used to test if the 

constraint is satisfied, and a set of methods that can be invoked to satisfy the 

constraint.  If any of the methods are invoked, the constraint will be satisfied.  

Optionally, a constraint may also have an error method that returns a real number 

indicating how nearly the constraint is satisfied. 

 

Temporal constraints have a somewhat different representation.  Two sorts of 

temporal constraints are provided:  those that describe continuous evolution of 

objects - time function constraints and time differential constraints - and those for 

discrete evolution - trigger constraints.  Time, as in TBAG [Elliott 94], is a 

distinguished variable in several respects and may not be effectively treated as an 

ordinary variable in a standard constraint relation.   

 

Each kind of constraint is satisfied differently.  Temporal constraints must be 

satisfied globally, in contrast to the normal local satisfaction of static constraints.  

In addition, normal constraint relations have the property of satisfying themselves 

in multiple directions, depending on computational circumstances.   

 

Reference-only constraints include additional instructions on how they may be 

satisfied.  Whether or not the constraint is satisfied is partially determined by the 

value(s) of the attached input variable(s), but the variable(s) may not be altered to 

satisfy the constraint.   
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Anchor constraints may be used to specify that an object’s value is fixed.  The 

reference-only and anchor designations are related but not the same.  If a variable is 

designated as reference-only by a particular constraint, that constraint may not 

alter the variable, but some other constraint can.  If a variable is anchored, no 

constraint may alter it.  [Borning 86] 

 

Kaleidoscope’93 [Lopez 94a] [Lopez 94b] combines constraint and object-oriented 

programming while preserving a familiar object model from imperative 

programming.  Objects have states and methods, as in most object-oriented 

languages.  Constraints may be placed between objects and object slots, and once a 

constraint is established, the system attempts to enforce the constraint by filling 

slots with values.  As objects change by assignment, these long-lived constraints re-

execute and find new values for their slots.  Similar to methods, these constructors 

are able to reference variables indirectly through many levels of pointers.  Indirect 

references were the key extension to constraints, which allowed Garnet to be the 

first comprehensive user interface toolkit to be built on top of a constraint system 

[Myers 92a] [Myers 90a].  The success of indirect constraints in Garnet has inspired 

their use in many other systems including MultiGarnet [Sannella 92], Rendezvous 

[Hill 93], Eval/vite [Hudson 91], and others. 

 

Kaleidoscope’93 is similar to many other object-oriented languages.  It has classes, 

objects with mutable state, methods, destructive assignments, and so forth.  The 

key difference between constraint imperative programming and imperative 

programming is the ability to relate variables (such as slots/instance variables, 

locals, globals, etc.) by constraints.  When a variable has one or more constraints on 

it, the constraint solver is allowed to alter the binding of the variable, or the state of 

the object bound to the variable, to satisfy the constraints.   
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Other Constraint Imperative Languages (CIPs) do not allow constraints between 

arbitrary objects, and restrict constraints to instance variables.  For example, Siri, 

another CIP language that is probably the closest relative to Kaleidoscope’93, only 

re-satisfies constraints between instance variables within the representation of a 

single object [Horn 92a] [Horn 92b].  Most of these systems support a mechanism for 

deleting constraints at run time.  This is necessary when the constraints are no 

longer needed.  However, since most constraints will be needed in the future, 

deleting them and then re-creating them and updating the constraint graph may be 

expensive.   

 

This is why in DLoVe constraints are never deleted.  Instead, when a constraint is 

not needed any more, the constraint is marked as disabled.  The effect of this is the 

same as deleting or removing the constraint but instead of recreating the constraint 

and attaching it to its dependencies, DLoVe only marks the constraint as enabled.  

This implements instantaneous removal and insertion of constraints.   

 

 

Algorithms in Constraint Solving 

 

Constraint solving algorithms are typically either data driven or demand driven.  

Data-driven algorithms start at the point(s) of change and propagate that change 

outward.  Demand-driven algorithms start at the point(s) where the data are 

ultimately used, and work toward the point of change.  Each of these approaches 

has advantages.  Eval/vite [Hudson 91], DLoVe, and the algorithms in [Zanden 94] 
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use a combination of both to capture the good features of both, data and demand 

driven algorithms.  

 

 

Data-Driven  

 

Data-Driven algorithms start with the direct change set of a transaction, that is, the 

set of variables that have been modified by the operations of a transaction, and 

proceed by evaluating constraints that are known to need re-evaluation.  The fact 

that a constraint needs to be re-evaluated is recorded by its membership in the 

“work” set.  A constraint is placed in the “work” set if and only if one of its input 

variables has changed value.  Such an algorithm may be implemented as 

incremental with little effort so that it does not evaluate all constraints after a 

change, only those whose input variables change value either directly by the user, or 

indirectly by the solver.  Constraints whose variables are unrelated to the change 

are not evaluated.  While a data-driven algorithm can be made efficient in some 

cases, it will not directly support lazy computations [Hudson 91].  It will always 

evaluate any constraints whose input variables change value even if the new value 

of that variable will never actually be used.  If not all variables are needed at any 

given time, it may be possible to obtain significant savings by avoiding the 

computation of constraints whose variables are not used.   
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Demand-Driven 

 

Demand-driven algorithms start with the set of variables whose values are actually 

needed at any given time and recursively evaluate the constraints needed to 

compute those values as a part of a depth-first traversal.  This results in a 

topological ordering of evaluations.  The problem with such algorithms is that they 

may end up evaluating constraints whose variables are not needed at the moment 

resulting in wasted computations. 

 

 

The nullification/re-evaluation scheme 

 

The nullification/re-evaluation scheme describes the methodology that a one-way 

constraint system needs to take in order to keep relationships satisfied.  When the 

value of a variable changes, either by direct modification or by installation of a new 

formula/constraint in the variable, all variables that directly or indirectly depend on 

this changed variable are marked out-of-date (nullification phase).  When the value 

of a variable is requested, the constraint that computes its value starts demanding 

the values of other variables upon which it depends (reevaluation phase).  If these 

variables are out-of-date, they will recursively demand the values of the variables 

they depend on, until variables are reached whose values are up-to-date, at which 

point constraints can compute their values and return [Hudson 91] [Zanden 94]. 

 

 



Leonidas Deligiannidis 
 

 
 

 

 
Page 29 

Description of Algorithms for Constraint Solving 

 

The three algorithms are presented in [Zanden 94] and Eval/vite [Hudson 91] are 

the algorithms that mostly inspired and challenged me to develop the DLoVe 

constraint solver.  The first algorithm in [Zanden 94] supports lazy evaluation, the 

second supports eager evaluation (with no cycles) and the third supports eager 

evaluation with cycles. 

 

The lazy evaluation algorithm is constructed based on the nullification/reevaluation 

strategy presented in [Hudson 91].  Nullification/re-evaluation algorithms were 

originally constructed with the assumption that the edges in the graph remain 

unmodified while the constraint solver is evaluating the graph.  Since the pointer 

variables may change, indirect reference constraints can cause the graph to change 

dynamically while the constraints are being evaluated, causing constraints to access 

information from a different set of input variables.  To handle this situation, this 

algorithm extends to the point that dependencies can be dynamically deleted as the 

constraints are being invalidated.  This is implemented by using timestamps on both 

the nodes and the edges of the graph.  Node timestamps represent the number of 

times the node has been evaluated; each time the node is evaluated, the timestamp 

is incremented by one.  The timestamp on an edge is the value of the timestamp on 

the node that the edge points to at the time the dependency was either created or 

last updated.  A dependency’s timestamp is updated whenever a node requests the 

value of the node that the dependency originated from.  A variable’s out-of-date flag 

is set to false before a formula is evaluated to ensure that cycles terminate after one 

loop.  If a variable is requested a second time, it will return its old value instead of 

trying to evaluate itself again, thus terminating the cycle. 
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The eager-evaluation algorithm, which does not support cycles, uses a variation of 

an eager evaluator developed by Hoover [Hoover 87].  This algorithm assigns position 

numbers to the nodes in the graph.  The position numbers indicate the node’s 

relative position in topological order, which is always less than the position numbers 

of any of its successors.  When a node changes value, all of its immediate 

successors are added to a priority queue based on their position numbers. The 

Hoover [Hoover 87] algorithm assumes that dependency graphs cannot change once 

constraint evaluation begins, so the reordering scheme and the evaluator can be 

invoked in sequence.  However, indirect reference and conditional constraints may 

cause the edges of the graph to change during constraint evaluation.  Thus the 

numbers assigned to the nodes may become incorrect and force an equation to be 

evaluated prematurely.  To overcome this difficulty, this algorithm dynamically 

updates the position numbers each time the graph changes, and evaluates nodes 

according to this revised topological order. 

 

The eager algorithm that does support cycles is a modified version of the previous 

algorithm.  This is done by collapsing cycles into a single node, with each of the 

equations in the cycle having the same position number.  Variables that are not in a 

cycle are evaluated, as they were when cycles were not allowed.  Variables in a cycle 

are evaluated using the nullification/reevaluation scheme. 
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Comparison of Constraints 

 

While pointer variables are commonly incorporated in programming languages, they 

have been incorporated only recently in their full generality in constraint systems.  

ThingLab [Borning 81] provides a limited form of indirect reference constraints.  

Programmers can construct path names that allow a constraint to traverse a 

structure hierarchy to find an object.  When one of the components in the structure 

hierarchy changes, the new object is automatically referenced by the constraint.  

However, the constraint-solving algorithm does not support arbitrary references to 

objects through pointer variables. 

 

Coral also supported a restricted version of indirect reference constraints [Szekely 

88].  Coral allowed designers to declare the slots of an object that could be used as 

pointer variables for indirect reference constraints.  Designers could then define 

constraints that accessed objects indirectly via these variables.  However, the Coral 

pointer variables are not completely integrated into the constraint system. 

Programmers have to know whether a slot of an object is a pointer variable or not, 

and to set it, they have to use the constraint’s appropriate procedure.  In addition, 

the values of pointer variables cannot themselves be defined using a constraint, and 

so they restrict applicability of the indirect reference constraints. 

 

Eval/vite [Hudson 91] supports a model of indirect reference constraints that is 

somewhat more restrictive than the one presented in [Zanden 94].  Eval/vite allows 

constraints to be defined in a limited subset of C++ and then translated into C++ 

code for incremental update.  Iteration is not yet supported, and constraints cannot 

have a variable number of inputs, which precludes writing constraints over dynamic 
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sets of objects. The restriction that constraints can only have a fixed number of 

input variables does lead to a more efficient implementation, because it is never 

necessary to dynamically add or remove edges from the graph.  Since each variable 

has a fixed number of input edges, it is possible simply to adjust edges instead.  For 

example, if a pointer variable causes a constraint to reference ‘rect.right’ rather 

than ‘circle.top’, the incoming edge can be adjusted so that it originates from 

‘rect.right’ rather than ‘circle.top’. 

 

Rendezvous [Hill 93] supports indirect constraints for both the source and targets of 

a constraint, permits both variable numbers of sources and targets, and allows 

constraints to consist of arbitrary Lisp expressions.  Rendezvous uses eager 

evaluation, but it differs in two respects from the algorithms in [Zanden 94].  First, 

it does not use position numbers but instead uses depth-first search to visit and 

topologically order all the variables that are affected.  Then it evaluates all the 

variables that are affected.  This approach may evaluate more than the minimum 

possible number of variables but it does not have the overhead of computing 

position numbers.  Second, Rendezvous will not try to evaluate a constraint until it 

is sure that all of the constraint’s predecessors have been computed. Rendezvous 

knows the constraint’s predecessors in advance because of programmer-written 

source specifications.  If there is any doubt as to whether a constraint should be 

evaluated, the constraint becomes suspended.  In contrast however, Garnet [Myers 

90a] does not determine a constraint’s inputs until the constraint is evaluated.  

Thus there is no way to predict in advance if a constraint’s position number is still 

valid, and the constraint is evaluated on the assumption that the position number is 

valid. The absence of an input expression has the disadvantage of causing Garnet to 

start evaluating some variables prematurely.  However, by detecting sources 

dynamically, Garnet can determine the exact set of sources used by a constraint on 
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each invocation.  In contrast, Rendezvous identifies the sources statically, which 

requires that all potential sources be listed.  On any given constraint invocation, the 

set of sources actually used may be a subset of the sources listed.  For example, if a 

constraint has a conditional of the form: 

 

dÅval = if (thisÅval > 0) then (bÅval + 10) else (cÅval +10) 

Constraint A 

 

then the potential set of sources is the set (thisÅval, bÅval, cÅval), but the 

actual set of sources is the set {thisÅval, bÅval} if thisÅval is greater than 0, 

and {thisÅval, cÅval} if thisÅval is less than or equal to 0.  For example, a 

change to cÅval will always cause the above constraint to be reevaluated in 

Garnet.  Eval/vite [Hudson 91] handles correctly such constraints, though.  DLoVe, 

however, will always evaluate the constraint A if cÅval changes. 

 

Kaleidoscope [Lopez 94a], which also uses pointer variables, supports a different 

type of abstraction rather than procedural abstraction.  Procedures (called 

constraint constructors) consist of a set of constraint statements and produce as 

output a set of constraints instantiated with the parameters passed to the 

procedure.  The constraints may contain indirect references, such as rectÅleft = 

object_overÅleft.  Kaleidoscope has a well-defined notion of time, as TBAG 

[Elliott 94] does, and at each user-directed advance of time, object_over may be 

rebound (internally rebinding is treated as the retraction of one constraint). 

Kaleidoscope can satisfy constraints using an appropriate algorithm that handles 

direct references, such as DeltaBlue [Freeman-Benson 90].  The pointer model 

presented in [Zanden 94] differs from the Kaleidoscope model in that pointer 
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variables are directly handled by the constraint satisfaction algorithm rather than 

by asserting and retracting constraints. 

 

 

Continuous and Discrete Time 

 

TBAG is a paradigm and toolkit for rapid prototyping of interactive animated 3D 

graphics programs, designed to support a continuous time model, like Bramble 

[Gleicher 93] and DLoVe. Bramble is a toolkit for constructing graphical editing 

application whose constraint manages non-linear constraints and maps interactive 

controls and constraints to object parameters.  Both TBAG and Bramble provide an 

almost invisible syntactic interface to the continuous time model. 

 

A constrainable represents a conceptually continuous flow of values, out of which 

the application (or the system) can retrieve a value corresponding to a specific time 

using type-parameterized functions (templates in C++), which can be interpreted as 

an infinite family of function declarations.  As noted above, interaction that is 

conceptually continuous is encoded directly into constrainables, and thus the 

application does not need to deal with tracking events from conceptually continuous 

devices.   

 

Examples of conceptually continuous interaction include, drinking from a cup in a 

virtual world, throwing a ball in a virtual park, and driving a car.  There are 

however, other interactions that are fundamentally discrete (event-based).  

Examples include button presses and menu choices.   
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TBAG applications generally deal with such discrete input events by retracting some 

existing assertions and asserting new constraints. Bramble uses a similar 

mechanism [Gleicher 93].  In DLoVe I send event tokens to event handlers to 

enable/disable Links.   

 

For instance, when the user’s virtual hand intersects with a virtual object, the user 

can press the left mouse button to send an event to indicate that the virtual object 

should be attached to his/her virtual hand’s position in space.  Thus, when the user 

moves his/her hand, the object moves along with his/her hand.  Releasing the 

mouse button sends another token that indicates that this hand – object relation 

should be terminated.  Both TBAG [Elliott 94] and DLoVe were designed to provide a 

fundamentally continuous, rather than discrete, treatment of naturally continuous 

phenomena such as time and motion.  
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Chapter 4:  Related Work - Parallel and 

Distributed Systems 

 

 

 

Introduction 

 

The need for more and more computing speed in rendering and simulating Virtual 

Environments has caused many people to consider use of parallel or distributed 

computing.  In parallel computing, several machines or processors are devoted to 

solving one problem in the shortest possible time.  In distributed computing, system 

resources from a network of general-purpose computers work on solving many 

problems at the same time.   

 

A telephone system is distributed because it can simultaneously connect 

independent calls, and many unrelated conversations are transmitted over the 

system at once.   
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An orchestra is a parallel system because all members of the orchestra are dedicated 

to producing one outcome.  It is similar to a single machine with multiple processors 

working together on solving a single problem.  This would be distributed computing 

if we had multiple machines, connected with a network, working together on solving 

a problem in the context of also doing other things.  Using all of the system 

resources, everyone in the orchestra is playing from the same sheet of music and 

has to work together, in concert, to produce the right sounds [Rewini 98]. 

 

Very often applications need more computational power than a sequential computer 

can provide.  One way of overcoming this limitation is to improve the operating 

speed of processors and other components so that they can offer the power required 

by computationally intensive applications such as Virtual Environments [Buyya 99a] 

[Buyya 99b]. 

 

A computing cluster is a collection of interconnected computers working together.  

This cluster functions as a single system from the point of view of users and 

applications.  Such clusters can provide a cost-effective way to gain features and 

benefits that have historically been found only on more expensive proprietary shared 

memory systems [Buyya 99a].  Shared memory clusters offer a simple and general 

programming model, but they suffer from scalability problems. 

 

Parallel and distributed programming involves more challenges than serial 

programming, such as data and task partitioning, task scheduling, and 

synchronization [Crowcroft 95] [Clark 90] [Shoch 82].  Writing parallel and 

distributed software may require substantial investment of time and effort [Rewini 
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98].  Software performance is greatly affected by bandwidth and message latency, 

both of which are difficult to predict without direct measurement. 

 

A distributed system using message passing may operate in synchronous, or 

asynchronous modes.  In synchronous mode, the program sends a message to a 

neighbor computer and must listen for the response before it can send another 

round of messages.  Asynchronous mode is very flexible; a program can send 

multiple messages to neighbor computers before receiving any replies and 

communication delays are unpredictable.  Unlike synchronous mode, the program 

can continue working and is not forced to wait for each reply [Tagg 97].  (DLoVe 

operates in asynchronous mode, making its evaluation more complex.) 

 

 

Flynn’s Taxonomy 

 

A taxonomy is a classification of a large set of items into a smaller number of 

representative classes.  In 1966 M. J. Flynn proposed a taxonomy of parallel 

computing architectures [Flynn 66].  Parallel systems are classified as having one of 

two types of instruction streams, single (SI) or multiple (MI) instruction streams, 

and two types of data streams, single (SD) or multiple (MD) data streams. [Fountains 

94]  [Dowd 98] 

 

In a Multiple Instruction Multiple Data (MIMD) architecture, each processor has it’s 

own set of instructions, which are executed under the control of the control unit 

associated within that processor.  MIMD computers can be further classified into 
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Multiprocessor Systems, where processors share memory, and Multi-Computers, 

where computers communicate through message-passing instead of shared memory.  

 

MIMD architectures can be further classified into Single Program Multiple Data 

(SPMD) architectures.  In SPMD architectures all processes share the same 

executable but they may be working on a different set of data [Sunderam 90].  A 

difference between SIMD and SPMD is that in SPMD architectures, different 

instructions can be executed at the same cycle [Hwang 98].  DLoVe utilizes a SPMD 

message-passing distributed model. 

 

 

Performance Evaluation 

 

Distributed computing attempts to increase processing speed by computing several 

tasks on otherwise autonomous computers at the same time [Jeffrey 96][Dowd 98]. 

 

To evaluate how well a distributed system behaves one must evaluate its 

performance, by comparing it against other ways of achieving the same result.  In 

practice, these comparisons are difficult to make. 

 

The most often quoted measure of performance in parallel and distributed systems 

is speedup.  The speedup is computed by dividing the time to compute a solution to 

a certain problem using one processor, by the solution time using N processors.  Let 

S be the speedup achieved by using N processors instead of one processor to solve a 

problem: 
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where T(1) is the processing time of the program when executed on a single 

processor, and T(N) is the time taken to solve the same problem using N processors.  

For example, if solving a problem using one processor takes 60 seconds and solving 

the same problem using N processors takes 20 seconds, then the speedup S is: 

3
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Amdahl’s Law [Amdahl 67] [Rewini 98] [Buyya 99a] describes limits of how an 

application can use parallel processing.  Amdahl’s law states that the speed of a 

program in execution on a multiple-processor computer is limited by its slowest 

sequential part.  According to Amdahl, a program contains two types of calculations, 

those that must be done serially, and those that can be executed in parallel on an 

arbitrary number of processors.  If the time taken to do the serial calculations is 

some fraction β of the total time τ, 0 < β ≤ 1, then the parallelizable portion is (1-β� �

of the total time τ.  If we suppose that the parallelizable portion achieves linear 

speedup, for example, using N number of processors a problem can be solved N time 

faster, then the speedup on N processors will be: 
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The serial part of the program can be computed in time equal to βτ and the parallel 

part of the program in time (1-β)τ/N because the ideal case where “N workers can do 

the job in 1/N of the time of one worker” [Kenneth 97]. 

 

For example, assume that a program consist of 35% (β = 0.35 ) code that cannot be 

executed in parallel, and 65% of code that can be executed in parallel.  The speedup 

of using 10 processors is: 

 

41.2
)35.01(1035.0

10 =
−+∗

=S  

 

This tells us that by using 10 processors we can solve the same problem 2.41 time 

faster. 

 

Later Amdahl’s law was challenged by John Gustafson and Ed Barsis, who showed 

that for some problems the regularity of the problem can feed as many parallel 

processors as are needed.  Therefore, by adding processors, the size of matrix 

calculations can grow without bound [Rewini 98] [Kenneth 97]. 

 

Gustafson and Barsis [Gustafson 88b] show that problem size s and N are not 

independent of each other.  Gustafson-Barsis law is relative to Amdahl’s law but 

with an assumption about the problem size.  Gustafson-Barsis law says that the 

size of the problem and the number of processors increases together, thus by adding 

more processors the speedup can increase accordingly.  In Gustafson-Barsis law, 

T(1) is equal by the amount of time needed to compute the sequential part of the 

program plus the parallel part that can be executed on N processors: 
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Substituting into the speedup equation yields: 
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Parallel software 

 

Parallel Virtual Machine PVM is a message-passing software system that allows the 

utilization of a heterogeneous network of parallel and serial computers as a single 

computational resource [Sunderam 90].  PVM provides an emulating SPMD 

architecture.  It consists of a library of routines for initiation and termination of 

tasks, synchronization, and altering the virtual machine configuration.  A PVM 

application is made up of a number of separate sequential programs that cooperate 

to jointly provide a solution to a single problem.  Each program corresponds to one 

or more processes in a parallel execution.  PVM parallel applications can utilize 

many different communication patterns.  One of the most common patterns is the 

star graph.  In the star graph, the middle node is called the supervisor or 

coordinator and the rest of the nodes are workers.  Another form of PVM 

communication is a tree.  The root of the tree is the supervisor, and underneath 

there are several levels of sub-supervisors, with workers at the leaves.   
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Star graph (left), and tree graph (right) 

 

The biggest advantage of PVM is its flexibility that includes portability, 

interoperability between heterogeneous platforms, and fault tolerance.  Not only can 

a PVM program be executed on different platforms running the same operating 

system, but it can also be executed on an environment that consists of multiple 

different platforms running different operating systems.  This makes it very 

amenable to its use as a parallel programming tool in typical clusters, which consist 

of heterogeneous platforms.  PVM provides other various run time features such as 

dynamic spawning of tasks, dynamic changes to the cluster on which a PVM 

program is being run, and dynamic process groups.  These allow a PVM application 

to incorporate fault tolerance and load balancing by detecting changes in the cluster 

and moving tasks from one machine to another in their cluster in response to such 

changes.   

 

PVM’s performance suffers because of the flexibility its framework supports, 

including dynamic task management, load balancing, and heterogeneity.  Its set of 

library functions supporting point-to-point communication is not as rich as that for 

MPI.  For example, PVM does not support the truly asynchronous receive of a 

message sent from one task to another, as MPI does using message buffering [Clark 

90]. 

 



Leonidas Deligiannidis 
 

 
 

 

 
Page 44 

The Message-Passing Interface (MPI) is a standard specification designed for writing 

distributed memory parallel processing utilizing message-passing.  Like PVM, it 

provides library routines that can be called from C and FORTRAN programs and can 

utilize star and tree graphs for communication.  MPI provides a rich collection of 

point-to-point communication routines and collective operations for data movement, 

global computation, and synchronization [MPI 94] [Pacheco 97a].  MPI attempts to 

establish a practical, portable, efficient, and flexible standard for message-passing 

[Buyya 99a] [Buyya 99b].   

 

The biggest advantages of MPI over PVM are its performance, a larger collection of 

point-to-point communication models, support for hardware-provided multicast and 

broadcast, and a larger set of collective communication calls.   

 

However, MPI is not as flexible as PVM in that it does not support dynamically 

changing the cluster or creating dynamic groups of processes.  In general MPI 

implementation cannot be run on a heterogeneous cluster consisting of machines of 

different types, since interoperability is not a requirement of the MPI standard.  It 

neither defines details of a parallel programming environment, such as allocation of 

tasks to processors.  These are left to individual implementations of the standard, 

and thus results in diverse ways to accomplish the same goal, leading to a further 

variation between the MPI environment across platforms. 
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DLoVe and other distributed systems 
 

There are three main differences between DLoVe and other parallel systems.  While 

DLoVe’s tasks appear externally similar to those in PVM, task allocation is done at 

compile time, so that there is not appreciable overhead for task management.  The 

purpose of task allocation, in DLoVe, is to allow the Coordinator to always request 

the same Variables from the same Workers.  In other words, the queries the 

Coordinator sends to the Workers are partitioned, so that the Workers can execute 

multiple different queries in parallel. 

 

DLoVe’s task handling, unlike PVM or MPI, is designed to support multi-user, multi-

input application development.  Adding a second user to DLoVe’s framework, adds a 

second Coordinator.  This means that the Workers now have to serve requests for 

both Coordinators making each of the Workers work harder, consume more 

resources, and load the network with more messages. 

 

The third difference concerns performance requirements.  DLoVe is designed 

primarily for Virtual Reality applications and thus requires high frame rate.  

Distributed applications using DLoVe’s framework are characterized by real-time 

computations and constraints.  Thus, not only number of evaluations, but also 

timing factors need to be taken into account when evaluating DLoVe [Jeffrey 96].   

 

Timing constraints in DLoVe arise from interaction requirements between the 

Coordinator and the user, and between the Coordinator and the Workers.  The 

communication between the Coordinator and the Workers is described by three 

operations: sampling, processing, and responding.  The Coordinator continuously 

samples data from the input devices.  Sampled data is sent to the Workers that 
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process it immediately.  Then the Workers send the processed data back to the 

Coordinator in response to its request.  All three operations must be performed 

within specified times; these are the timing constraints [Jeffrey 96] [Bran 94].  For 

example, if the user moves his real hand, and the movement of his virtual hand 

appears after a couple of seconds on the screen, the user may be confused and 

disoriented, making the application unusable and definitely not a Virtual Reality 

application. 
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Chapter 5:  Related Work - Multi-user 

UIMS/CSCW Software for Virtual 

Reality 

 

 

 

Introduction 

 

The recent explosion in the quantity and quality of user interface development 

environments is simplifying or even eliminating the need of programming the 

Graphical User Interface (GUI) of an application.  However, current tools address 

only single-user/single-machine applications.  Distributed, multi-user applications 

are much more complex.  Pieces of such applications typically run in separate 

address spaces, often on heterogeneous networks of machines.  The pieces must 

communicate and synchronize with each other, sharing and replicating data as 

needed, and must handle users’ interaction at each site.   
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Diamond Park was designed at the Mitsubishi Electric Research Laboratory (MERL) 

using SPLINE (Scalable Platform for Large Interactive Environments).  Diamond 

Park is a social virtual reality system in which multiple geographically separate 

users can speak to each other and participate in joint activities in a mile-square 

virtual prototype.  In this park human visitors can interact with each other and with 

computer simulated tour buses and autonomous animated figures [Waters 96] 

[Anderson 95].   

 

Much software has been developed and many techniques have been tested; each has 

its advantages and disadvantages.  Some systems were designed for a specific 

application domain, such as DIS and SimNet, for military simulations.  Other 

systems, such as RENDEZVOUS and Visual Obliq, described in chapter 3, are not 

designed for VR systems and thus they do not need to handle the VR necessities 

described in chapter 2.   

 

RENDEZVOUS is a language and architecture to help people build interactive multi-

user systems using constraints and callbacks [Hill 92] [Hill 94].  Visual Obliq 

[Bharat 94] is a user interface development environment for constructing 

distributed, multi-user applications using callbacks, and distributed callbacks 

[Bharat 94]. 

 

 

Systems that use Dead Reckoning 

 

SimNet, a research simulation system, was developed in the early 1980’s the 

DARPA, Defense Advanced Research Projects Agency, and the US Army to 
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demonstrate the feasibility and effectiveness of networked training.  Currently, over 

200 SimNet tank trainers are in use at four locations throughout the world.  To 

achieve this massively distributed environment, SimNet proposed a new concept 

based on the old idea of "dead reckoning".  Dead Reckoning means that the current 

location of any object (such as a tank) can be extrapolated from its previous position 

and velocity.  It works as follows: during any one simulation loop, a tank simulator 

computes its next position and orientation based on a dynamic model that takes 

into account a number of factors, including previous position and velocity, terrain 

grade, engine speed, and soil conditions.  It then computes its position again, this 

time using a limited set of inputs.  Next, using the same set of limited inputs, the 

tank simulation extrapolates the position of all other remote tanks in the 

simulation.  If the difference between the first detailed calculation and the second 

limited state calculation exceeds a certain threshold, then the tank broadcasts a 

network message containing its updated position information based on detailed 

calculation.  If the difference between the two calculations is below the threshold, 

the tank simulation does not generate a new network message.  This way, the 

vehicles send messages only when needed to maintain simulation accuracy.  

Because all the tank simulators follow this procedure, it drastically reduces the 

number of network messages. [Johnston 92] 

 

An additional advantage of the Dead Reckoning approach is the ability of the 

simulation network to recover from breakdown.  If one or more units leave the 

network for a short period of time, the other units will not notice the visual miscues 

because of the repeated extrapolations.  When a unit comes back on line, its true 

position is smoothly integrated.  The benefits of dead reckoning do not come without 

a price, and in this case, positional accuracy is the tradeoff.  Because an object’s 



Leonidas Deligiannidis 
 

 
 

 

 
Page 50 

position and orientation are extrapolated rather than exactly calculated, objects may 

appear in different locations on different units. 

 

Although Dead Reckoning works well in DIS, it is not suitable for general-purpose 

VR systems where the behavior of the objects and the users in a Virtual 

Environment is unpredictable.  Dead Reckoning works well in DIS because the 

position of every object can be extrapolated from its previous location. 

 

The History-based approach also uses Dead Reckoning but in a more efficient way to 

get better results than DIS [Singhal 95] [Singhal 94].  The history-based approach 

offers smooth, accurate visualizations of remote objects, which is providing a 

scalable solution.   

 

Dead reckoning techniques are central to the large virtual environments targeted by 

the Distributed Interactive Simulation (DIS) protocols.  The current DIS protocol 

transmits position, velocity, and acceleration information whenever the remote 

object model exceeds a threshold or a five second timeout elapses.  Using the most 

recent position, velocity, and acceleration information, DIS dead reckoning 

algorithms generate a second-order model to predict the future object location.  The 

position history-based protocol performs at least as well as DIS for smooth object 

motion, and it potentially performs better than DIS for non-smooth object motion 

while requiring less network bandwidth. 

 

The history-based protocol actually performs comparably to the DIS protocol in 

networked applications containing smoothly moving objects.  The effectiveness of the 

DIS protocol is limited because the tracking relies on acceleration information.  An 

object’s acceleration can change more rapidly than its position, so if packets are 
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delayed, then DIS algorithm is likely to use out-of-date information to predict object 

behavior.  The position history-based protocol is potentially superior to the DIS 

protocol for tracking non-smooth object motion.   

 

The DIS protocol is highly sensitive to sudden acceleration changes because the 

algorithm utilizes only the most recent update information.  Better performance on 

these non-smooth paths makes the history-based protocol more useful than DIS 

protocols in virtual reality applications and visual simulations where entities move 

in unpredictable ways.  [Singhal 95] [Singhal 94] 

 

Another software that implements Dead Reckoning is the Log-Based Receiver-

Reliable Multicast (LBRM) [Holbrook 95].  The LBRM protocol provides scalable, 

timely dissemination of state updates, meeting the needs of multicast sources like 

DIS terrain entities.  The application chooses a threshold according to the freshness 

requirement of the data being disseminated.  Shortening the threshold results in 

fresher data, but more network traffic.  For entities with strict real-time delivery 

requirements, the threshold must be small.   

 

In the Log-Based Receiver-reliable Multicast (LBRM) approach, reliability is provided 

by a logging server that logs all transmitted packets from the source.  When a 

receiver detects a lost packet, it requests the missing packet from the logging server.  

The logging server needs not be co-located with the source host, but if the two are 

separated, then the source must retain the data until it has received a positive 

acknowledgment from the logging server.  The logging server may be replicated to 

provide greater reliability (distributed logging server, one primary and multiple 

slaves where the primary talks to the slaves).  The use of a logging server for 

reliability generalizes the buffering of outstanding data performed by the sender in a 
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conventional transport protocol [Holbrook 95].  In TCP, the buffered data at the 

sender is effectively a log of transmissions, from which acknowledged packets have 

been flushed.  

 

 

Update Filtering and Area Of Interest (AOI) 

 

Update Filtering is a partition of a Virtual Environment into a large number of 

“cells”, much like the way the cellular telephone system works.  Each host 

participating in the simulation determines an Area of Interest (AOI), consisting of a 

number of cells within its range of vision [Macedonia 95a] [Macedonia 95b] 

Macedonia 95c]. 

 

The DIS system uses multicasting, and that approach seems promising for more 

general distributed VR application as well.  The idea is that any given host, in 

addition to having its own Internet address, can belong to a number of  “multicast 

groups”.  Each multicast group has it is own special Internet address, which belongs 

to a certain range of addresses that have been set aside for this purpose.  When any 

host sends a message to a multicast address, that message is sent to all the hosts 

that belong to that multicast group.  In effect, it is like broadcasting to a subnet that 

spans continents.  Sending a multicast message is better than having to send point-

to-point messages to every host in the simulation, so it is easier on the sender.   

 

The most important problem with multicasting is that it is not universally 

implemented.  Some systems have it and some do not.  An effort is underway to link 

small pockets of multicast-capable machines to each other over the Internet; the 
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result is a “multicast backbone” or MBONE.  The MBONE system uses “tunneling”; 

it wraps the IP packets destined for a multicast address inside another IP packet, 

which travels trough the regular Internet from one MBONE subnet to another 

[Casner 94].   How does multicasting fit in with Area Of Interest management?  In 

the DIS system, each cell has its own multicast group address; in other words, there 

is a one-to-one correspondence between cells and multicast addresses.  As 

participants move around, they enter and leave cells; this corresponds to entering 

and leaving multicast groups.  Since participants only receive messages for 

multicast groups they are in, the multicast system itself implements the Update 

Filtering. 

 

 

Key Frame Animation 

 

Using the Key Frame Animation approach, a designer can design the geometry of 

objects and also specify their behavior.  Key Frame Animation can be used in Virtual 

Environments where the position and the behavior of the users or simulated objects 

is unpredictable.   

 

JDCAD+ is an interactive 3D geometry modeling system and animation editor  

[Halliday 94].  These objects can be imported in a Virtual Environment and users 

can interact with them.  Behaviors such as walking, jumping, and drinking from a 

cup are very hard to code by hand because of the complexity of the motion.  

JDCAD+ uses key frame animation, which gives the ability to the 

programmer/designer to specify key frames of the motion of the objects so that the 

system will know what the next key frame is and animate the motion.  After editing 



Leonidas Deligiannidis 
 

 
 

 

 
Page 54 

the key frame animation, JDCAD+ produces OML code for the behavior.  This code 

can be edited/modified latter if someone wants to alter the behavior of the object.   

 

In systems such as The Alias System [Alias] the animation sequences are not 

interactive.  Once a keyframe sequence starts there is no way of interrupting it, and 

thus the object cannot respond to events that occur while a keyframe sequence is 

running.  In JDCAD+ however, the keyframe process is implemented by OML code 

that can respond to events occurring in the environment.  In The Alias System, once 

a keyframe sequence has been defined there is no way of modifying it or combining 

it with other types of motion. 

 

 

Other User Interfaces 

 

Repo-3D is a general-purpose, object-oriented library for developing distributed 

interactive 3D graphics applications across a range of heterogeneous workstations.  

It emphasizes developing applications for Computer Supported Cooperative Work 

(CSCW) and Distributed Virtual Environments (DVEs).  All shared data is fully 

networked transparent because it is encapsulated within the programming language 

objects.  Distribution of new objects between the processes is as simple as passing 

them back and forth as parameters to, or return values from, method calls.  The 

underlying system takes care of the rest with no additional effort on the part of the 

programmer.  In addition, updates to objects are automatically reflected in all 

replicas, the same way DLoVe works. 
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There are times however, when a shared graphical scene may need to be modified 

locally (Local Variation); this is supported by Repo-3D and in limited form in DLoVe.  

For example, a programmer may want to highlight the object under one user’s 

mouse pointer without affecting the scene graph viewed by other users.   

 

Most high-level graphics libraries, such as Inventor [Strauss 92a] and Java 3D 

[Sowizral 98], do not provide any support for distribution.  Others, such as 

Performer [Rohlf 94] [Zyda 93], provide support for distributing components of the 

3D graphics system across multiple processors, but do not support distribution 

across multiple machines.   

 

TBAG [Elliott 94], a high-level constrained-based, declarative 3D graphics 

framework, scenes are defined using constrained relationships between time-varying 

functions.  TBAG allows a set of processes to share a single, replicated constrained 

graph.  This is done by two sets of functions.  The “externalization” functions map 

constrainables and assertions into machine-independent identifiers that can be 

passed to different processes of different machines.  The other set of functions 

“internalizes” the externalized identifiers back into C++ constrainables and 

assertions.  The programmer thinks of the externalize/internalize sequence of calls 

as providing access to existing constrainables or assertions in a separate process, 

thus allowing constrainables to be asserted on and values to be retrieved from 

remote constrainables.  Any changes made to any constrainable are reflected in all 

processes that access that constrainable.  Whenever a process creates a 

constrainable, all other involved TBAG processes create “clones” of that 

constrainable.  Then, whenever a constraint is asserted/retracted in any process, all 

related TBAG processes are informed of that assertion/retraction and perform it 

themselves locally.  Thus, each process has a semantically identical copy of the 
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entire constraint network, which makes this TBAG limited in scalability because all 

processes have a copy of (and must evaluate) all constraints, whether or not they 

are interested in them.  DLoVe works the same way but it only evaluates the 

constraints that it needs, not all of them.  TBAG, unlike Repo-3D and DLoVe, does 

not support local variations of the scene in different processes. [MacIntyre 98] 

 

Workroom is a general-purpose simulation infrastructure that allows multiple 

participants to interact in unpredictable ways while minimizing simulation latency. 

Client processes manage the local simulation, interact with mechanical devices such 

as motion bases and position trackers, and perform image generation.  In some 

cases, a separate, dedicated client process handles interaction with devices such as 

the MR toolkit [Shaw 93].  The server process has the responsibility of maintaining 

the state of all simulation objects running on all the clients.  The server handles all 

requests for data about the environment or the state of each simulation object.   

 

For example, if there are two clients and each is simulating the behavior of a 

differently flying colored object, the server keeps track of each flying object’s 

location.  When the server is queried, it sends a data packet containing the location, 

velocity, and color for each flying object.   

 

In Workroom, and in DLoVe, dead reckoning cannot be implemented because of the 

unpredictable participants’ behavior (humans unlike vehicles or projectile are not 

able to extrapolate their positions).  The way to control objects in these systems is by 

sending network messages.  And because there are too many messages on the 

network, the network may be overloaded.  One solution to this problem, which is 

implemented in DLoVe, is to use low and high priority messages.  The system can 

lose low-priority messages (like current object position) without consequence.  High-
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priority messages (like constraint attachment) use confirmation or redundancy 

schemes to ensure that a message arrived at its destination [Pimentel 94]. 

 

NPSNET [Macedonia 95a] [Macedonia 95b] [Macedonia 95c] [Macedonia 97], uses 

multicasts, instead of broadcasts like SimNet, and instead of point-to-point 

communication like DIVE (discussed below) [Carlsson 93] and MASSIVE which 

supports up to only ten users [Greenhalgh 95a] [Greenhalgh 95b].  The MR Toolkit 

[Shaw 93] uses an internal client/server model for communicating between I/O 

devices and the application.  However, point-to-point UDP communication is used to 

maintain consistency between users.  In addition, it uses an example where cells are 

hexagonal, somewhat like a strategy board game or certain types of military 

simulation computer games.  This hex grid is well suited to military simulations, 

and is a closer model for circular Areas of Interest than a square grid would be.  As 

a participant moves around, cells will enter and leave their Area of Interest; at any 

given time, they are only receiving updates for cells they can see, resulting in a 

small, manageable number of updates.  The combination of AIO filtering and dead 

reckoning produces significant bandwidth savings.  

 

The Performance Architecture for Advanced Distributed Interactive Simulation 

Environments (PARADISE) project [PARADISE] [Singhal 99] in addition to focusing 

on the graphical aspects of networked VR design, it also addresses network software 

architecture issues that environments containing thousands of users, face.  The 

PARADICE system used IP multicast, assigning a different multicast address to each 

active object in the VE.  However, because the early workstations available to the 

group did not support multicast at the time, they implemented a multicast 

simulator on the local network.  PARADISE uses a similar mechanism to transmit 

updates for local objects in much the same way as SIMNET and DIS.  To further 
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reduce bandwidth, a hierarchy of area of interest (AOI) servers is used to collect 

subscriptions from each host.  The servers monitor the positions of objects and 

notify hosts to which objects’ multicast groups they should subscribe. 

 

Unlike SIMNET, PARADISE treats all objects uniformly as first-class entities.  In 

addition, PARADISE recognizes that in a VR environment there are some objects 

that change their positions rapidly and some others slowly.  This means that the 

rapidly changing objects need to send updates more frequently than the slowly 

changing objects.  

 

To support rapidly changing entities, PARADICE uses improved dead reckoning 

protocols such as Position History-Based Dead Reckoning (PHBDR) [Singhal 95], 

which transmits smaller update packets and provides better accuracy when objects 

move wildly [Singhal 96].  To support slowly changing entities, PARADISE focused 

on reliable multicast protocols to eliminate the frequent heartbeat messages present 

is DIS.  Log-Based Receiver-Reliable Multicast [Holbrook 95] provides a lightweight 

reliable multicast service that includes a persistence mechanism.  

 

The Swedish Institute of Computer Science Distributed Interactive Virtual 

Environment (DIVE) is another early and ongoing academic virtual environment 

[Carlsson 93] [DIVE] [Hagsand 96].  DIVE uses a distributed, fully replicated 

database similar to SIMNET and DIS-compliant systems.  Unlike SIMNET and DIS, 

DIVE’s entire database is dynamic.  DIVE has the capability to add and remove new 

objects and modify the existing databases in a reliable and consistent manner.  This 

is implemented via a reliable multicast protocol for distributed database locking, 

adding significant communication overhead.  And because of this DIVE is difficult to 

scale beyond 1 to 32 participants.  However, DIVE does well in situations where 
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database changes must be guaranteed and accuracy is a major criterion such as in 

collaborative environments. 
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Chapter 6:  Basics of DLoVe 

 

 

 

Introduction 

 

DLoVe is designed on a two-component model for describing and programming the 

fine-grained aspects of non-WIMP (non- Window Icon Mouse Pointer) interaction 

(such as virtual environments).  It is based on the notion that the essence of a non-

WIMP dialogue is a set of continuous relationships, most of which are temporary.  

This model combines a data-flow or constraint-like component for the continuous 

relationships with an event-based component for the discrete interactions, which 

can enable or disable individual continuous relationships. 

 

Other current Graphical User Interfaces (GUIs) or (WIMP) interfaces, also involve 

parallel, continuous interaction with the user.  But, most other user interface 

description languages and software systems are based on serial, discrete, token-

based interaction.   
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DLoVe is designed to provide a fundamentally continuous, rather than discrete, 

treatment of naturally continuous phenomena such as time and motion.  However, 

it does treat discrete events as discrete events and it provides a mechanism for 

communication between the continuous and the discrete sub-system. 

 

 

Continuous Time 

 

DLoVe’s sub-system consists of object elements that define the relationship between 

variables.  The entire set of these elements connected together form a constraint-like 

graph.  Changes on one end of the graph propagate to the other end.  Interaction 

that is conceptually continuous is encoded directly into these elements, and thus 

the application does not need to deal with tracking events from conceptually 

continuous devices.  Examples of conceptually continuous interaction include, 

drinking from a cup in a virtual world, throwing a ball in a virtual park, and driving 

a car in a virtual city. 

 

Continuous time in DLoVe is handled via Variables and Links, explained below.  

Based on these Links and Variables a network can be designed to describe the 

behavior of objects and interaction techniques.  

 

Variables are objects in DLoVe that store values and know which Links need them 

as inputs and which for output.  They are invariant data flow graph elements that 

serve as both continuous and short-term data repositories.  Some Variables are 

directly connected to input devices, some to outputs and some to application 
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semantics.  They are used for communication within the user interface model or 

they are just used to hold intermediate results of Link calculations.   

 

Links are objects that contain functions and are attached at both ends to Variables.  

Links get input from Variables and place the result of their calculations into other 

Variables.  The body of a Link specifies how the attached Variables are related.  

Links can be enabled or disabled in response to user inputs.  When a Link is 

disabled, it is as if this Link were not part of the constraint network anymore.  By 

enabling and disabling Links we can quickly change the constraint network on the 

fly since only a flag needs to be set or cleared to indicate that a Link is enabled or 

disabled.  

 

Conditions are also provided to enable and disable groups of Links instead of 

enabling or disabling Links individually.  For example, we can attach five Links to a 

Condition; every time we want to enable all five Links we can just enable this 

particular Condition, which then enables all five Links individually. 

 

 

Links and Variables 

 

The above diagram shows the Variables as circles and the Links as rectangles.  

When a Link is created, it is enabled by default.  In the DLoVe constraint graph I 

A 

B 

C 

D 

E L1 L2 
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draw a crossed circle on top of a Link to indicate that is disabled.  A DLoVe graph is 

read from left to right.  For example, the Variables ‘A’ and ‘B’ are inputs to Link L1, 

and the Variable ‘C’ is its output Variable.  When L1 is disabled a crossed circle is 

drawn on top of it and it is as if this Link was deleted from the network.  However, a 

disabled Link is still part of the data structure and when it becomes enabled again it 

knows how it is supposed to be attached to its Variables.  In this case, if the Link 

‘L1’ is disabled, the graph would look like the following figure. 

 

 

A disabled Link 

 

The relationship between ‘A’, ‘B’ and ‘C’ is terminated temporarily until ‘L1’ becomes 

enabled again.   

 

Links can have multiple outputs, unlike DeltaBlue [Freeman-Benson 90], and 

multiple inputs.  For example, all of the following combinations are valid in a DLoVe 

constraint network. 

 

 

A 

B 

C 

D 

E L2 L1 
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Combinations of Variables attached to a Link 

 

In addition, a single Variable may be used as input or output to multiple Links, as 

illustrated below. 

 

 

Combinations of Links attached to Variables 

 

When a Variable is used as output to more than one Link, the result may be 

unpredictable, since both Links try to bring the Variable up-to-date using different 

constraints, as in (b).  In this case, Link L1 and Link L2 try to bring Variable v3 up-

to-date using different dependencies – L1 uses v1 and L2 uses v2 –.  DLoVe will use 

the Link that was created last.  For example, if L2 was created after L1, DLoVe will 

update Variable v3 according to the constraint in Link L2.  This might seem 

confusing and ambiguous, but it is very useful when only one of the two Links is 

enabled at a time.   

 

L2 

L1 

(a) (b) 

v1 

v2 
v3 
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Let us say that in a virtual factory there are moving objects on an assembly line.  

Let us also assume that Variable v2 is time and Variable v1 is the position of a 

virtual hand.  When the object on the assembly line is moving, only Link L2 is 

enabled.  This way, the object’s position depends on time.  However, if the user 

grabs the object with his virtual hand to examine the moving part/object, Link L2 

becomes disabled, while Link L1 becomes enabled.  Now the user has the ability to 

lift the object off the assembly line and examine it.  The object is no longer on the 

assembly line, and its position does not depend on time.  The constraint graph in 

the following figure is (a) when the user examines the object, and is (b) when the 

object is moving on the assembly line. 

 

 

A Variable used for output by multiple Links 

 

 

Discrete Time 

 

There are however, other interactions that are fundamentally discrete (event-based) 

and for that I use the event-based component of DLoVe.  Such examples include 

button presses, menu choices and gesture recognition verifications.  TBAG 

applications [Elliott 94] generally deal with such discrete input events by retracting 

some existing constraints and asserting new ones.  Bramble uses a similar 

mechanism [Gleicher 93].   

(a) (b) 

L2 

L1 v1 

v2 
v3 

L2 

L1 v1 

v2 
v3 
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DLoVe handles the discrete time using Event Handlers, objects that capture tokens 

and respond to them.  Event handlers contain a user specified body that describes 

the response to tokens.  The application sends a token to all event handlers, and 

only those event handlers that are interested in the token execute their body.  The 

responses might include setting Variables, making custom procedure calls and 

setting or clearing Conditions on Links.  Event handlers recognize states and state 

transitions, and can provide different services depending on the state they are in.  

For example, the user might intersect his/her virtual hand with a virtual object.  

The event handler will receive an INTERSECT token and it will move to its ‘intersect’ 

state.  In this state if the user presses the left mouse button, the event handler 

enables a Condition and transitions to the ‘dragging’ state.  As a result the object is 

now attached to the virtual hand so that wherever the user moves his/her hand the 

object follows the movement of the virtual hand.  When the user releases the mouse 

button, the event handler disables the Condition, transitions to the ‘start’ state, and 

the continuous relationship hand-object is terminated.  

 

A token is a structure similar to a record in Pascal or struct in C.  It contains a 

timestamp, an id, and other optional fields such as position and other user defined 

variables.  For instance, when the user’s virtual hand intersects with a virtual 

object, the user can press the left mouse button to send token.  This token indicates 

that the virtual object should be attached to the user’s hand position in space, so 

that when the user moves his/her hand, the object moves along with his/her hand.  

Releasing the mouse button sends another token that indicates that this hand–

object relation should be terminated.  In this case, when the user’s hand intersects 

with the virtual object and then the user presses the left button; the LEFTDN token 

is send to all event handlers.  The event handler that is responsible for attaching the 



Leonidas Deligiannidis 
 

 
 

 

 
Page 67 

virtual object to the user’s virtual hand enables the appropriate Link so that a hand-

object relation is established.  

 

The application reads all X events and hands them over to a DeviceXWindow DLoVe 

object.  This object then turns X events into tokens and sends them to all event 

handlers.   

 

Enabling a Link is similar to asserting a constraint, and disabling a Link is similar 

to retracting a constraint from the constraint graph.  Even though enabling and 

disabling Links is similar to retracting and asserting constraints, enabling and 

disabling occurs more quickly; Enable only marks a Link as part of the graph and 

Disable as not.  The global structure of the constraint graph does not vary.  When a 

Link becomes enabled, a single flag is cleared to indicate that this particular Link is 

part of the constraint graph again.  There is no need to remember and set all the 

dependencies, since the object was never deleted from the memory.  This makes 

DLoVe very efficient for modifying the constraint graph on the fly.  At creation time 

the programmer specifies the dependencies of a Link and does not have to remember 

them ever again when he/she needs to assert/retract a constraint. 

 

In the example of the factory and the moving objects on the assembly line the Event 

Handler’s state diagram might look like the following: 
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State Diagram of the Event Handler in the factory example 

 

When the user’s hand intersects with the moving object, the event handler receives 

a token (e.g. “ENTER”), the object becomes highlighted, and the event handler 

transitions to the ‘Intersect’ state.  At this state, if the user presses the right mouse 

button, the event handler receives another token (e.g. “LEFTDN”), transitions to the 

“Follow Hand” state, enables Link L1, and disables Link L2.  Now a Hand – object 

relation has been established, and the object follows the movement of the hand.  

When the mouse button is released, the event handler receives another token (e.g. 

“LEFTUP”), transitions to the ‘start’ state, disables Link L1, and enables Link L2.  At 

this point, the hand-object relationship is terminated. 

 

 

 

Hand – object, intersect Right mouse button Pressed 

Right mouse button Released 

Start 

Intersect 

Follow Hand 

• Enable  L1 
• Disable  L2 

• Disable  L1 
• Enable  L2 

Hand – object, do not intersect 
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Communication Between Continuous and Discrete Time 

 

The Continuous and Discrete models can communicate with each other to provide a 

more powerful environment.  Event Handlers can enable and disable 

Conditions/Links and thus re-write the network graph.  In other cases, a Link may 

be reading input Variables and by performing a complex function on them over time 

it may generate a token that is processed by an Event Handler.  This can be useful 

for gesture recognition or for eye tracking applications where when the user looks at 

an object for over five seconds, the object becomes selected.  An application is 

presented in chapter 11 where the user selects with his/her eye an object to 

manipulate. 

 

 

Data Structures 

 

The network consisting of all the Links and Variables forms a data-flow-like 

network, where Variables store values and Links satisfy relationships among 

Variables.  DLoVe includes a one-way constraint engine whose primary 

responsibility is to keep all constraints satisfied when possible.  Each Link has an 

Evaluate() member function which is used to bring its output Variables up-to-date.  

When the constraint engine needs to bring a Variable up-to-date, it executes the 

Evaluate() functions of the Links involved in the constraint.  This function gives the 

relation between input and output Variables and is specified by the programmer. 
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The constraint solver uses an incremental approach that guarantees that Links will 

not be Evaluated more than once in each iteration and only when needed.  The 

programmer specifies the input and output Variables that each Link uses and the 

relationship between them, as well as the Evaluate() member function.  

 

 

Data-flow Graph 

 

In the above figure, incoming arrows to Links point from Variables used as inputs, 

and outgoing arrows from Links point to Variables used as outputs.  The user 

specifies this along with the Evaluate() member for each Link.  The Evaluate() 

member is a function that describes how the input and output Variables are related 

with each other.  This graph is called the “data-flow” graph because it indicates 

which Variables produce which Variables.  For example, Variables ‘A’ and ‘B’ 

produce ‘C’, and Variables ‘C’ and ‘D’ produce ‘E’. 

 

After all Links and Variables are created, DLoVe automatically generates the second 

set of pointers as shown below: 
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E L1 L2 
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Data-dependency Graph 

 

In the above graph, outgoing arrows from Links point to Variables that are needed to 

produce its output Variables.  Incoming arrows to Links point from Variables where 

the result of the execution of the Evaluate() function will be stored.  This graph is 

also called “data-dependency” graph because it indicates which Variables depend 

upon which other Variables.  For example, Variable ‘E’ depends upon ‘C’ and ‘D’.  

And Variable ‘C’ depends upon ‘A’ and ‘B’. 

 

Using the second set of pointers, the constraint engine can work very quickly to 

determine incrementally which Variables are out-of-date and which Links need to be 

evaluated to bring the demanded Variables up-to-date.  The constraint graph at the 

end looks as follows: 

 

DLoVe constraint Graph 
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Internally, each Link has two sets of pointers.  The first set of pointers points to 

Variables that the current Link is using as inputs.  The second set of pointers points 

to Variables that are used as output by the current Link.   

 

Just as each Link has two sets of pointers, each Variable has two sets of pointers.  

The first set of pointers point to Links that use the current Variable as input, where 

the second set of pointers points to Links that use the current Variable as output.  

The data structure of the above diagram is shown below: 

 

 

 

Data structure that holds the Links and Variables 

 

L1 L2 

A B C D E 

Links 

Variables 

Variables 

Pointers to Links that use this Variable as Output 

Pointers to Links that use this Variable as Input 

Links 
Pointers to Input Variables 

Pointers to Output Variables 
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At the top of the figure are all the Links, each having two sets of pointers.  At the 

bottom are all the Variables, with their two sets of pointers.  The programmer sets 

up only half of the pointers; pointers from Links to Variables.  DLoVe sets up the 

pointers from the Variables to Links automatically. 

 

 

Internal flags of the Solver 

 

Variables and Links are C++ objects that have member variables and functions.  

Each Variable contains the following flags: 

 

• dirty 
• assigned2worker 
• L_counter 

 

The ‘dirty’ flag indicates that the current value of a Variable has been changed 

since the last time it was requested.  The value of a Variable can be changed by 

either directly by the user program or indirectly by the constraint solver.  When a 

Variable is out-of-date its ‘dirty’ flag is set.  The constraint solver uses the ‘dirty’ 

flag to figure out which Links must be evaluated to bring a demanded Variable up-

to-date.  Using this flag the algorithm marks which Variables are out-of-date and 

implements incremental solving by evaluating the Links in topologically sorted 

order. 

 

The ‘assigned2worker’ flag is used by the Partition algorithm discussed later.  

DLoVe uses this variable when it runs in the distributed mode.  This variable stores 

the id of the Worker that is responsible for keeping the current Variable up-to-date.   
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The ‘L_counter’ is also used when DLoVe runs in the distributed mode.  This 

variable holds the number of Links that need to be evaluated in the worst case to 

bring a Variable up-to-date. 

 

Each Link contains the following variables: 

 

• enabled 
• visited 
• dirty 
• mark4partition 

 

The ‘enabled’ flag indicates whether or not a Link is enabled.  A Link that is 

disabled is not really part of the constraint graph.  When a Link is disabled the 

constraint solver skips the disabled Link as if it was not there.  Instead of deleting 

the object (Link), which specifies the relation of Variables, it only clears the enabled 

flag to indicate that the current Link is disabled.  This speeds up the 

removal/insertion of constraints.   

 

The ‘visited’ flag is used to detect cycles in the constraint graph.  When a cycle is 

detected, the iteration stops after it goes through once instead of staying in an 

infinite loop.  When a cycle in the constraint graph is detected, DLoVe evaluates the 

Links in the cycle once and then it breaks the cycle so that it stops the recursion. 

 

When the ‘dirty’ flag of a Link is set, the Link must be evaluated even if its input 

Variables have not changed since the last iteration.  We fall in this case only when a 

Variable is used as input to more than one Link.  This is the only case where this 

flag is used and an example is shown later. 
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When DLoVe runs in the distributed mode, the Partition algorithm uses the 

‘mark4partition’ flag to partition the graph correctly when there is a Link that 

uses multiple Variables as input. 

 

 

Operations on Links 

 

Each Link has an Evaluate() member function specified by the programmer, that 

tells the relationship between the Link’s input and output Variables.  When the 

constraint solver needs to bring a Variable up-to-date, it evaluates all the Links in 

the path of the Variable, by traversing the “dependency-graph” starting at the 

Variable in demand.  What the solver actually does is execute the Evaluate() 

function of each Link that needs to be evaluated. 

 

Enabling and Disabling, directly or indirectly via Conditions, are operations 

performed on Links.  Each Link has an Enable() and a Disable() member function 

that simply set and clear the ‘enabled’ flag in the Link.  As we will see later, because 

these operations re-wire the graph, when the system runs in distributed mode, 

these operations must be visible throughout the entire set of machines participating 

in the distributed environment.  
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Operations on Variables 

 

Similarly to Links, Variables also have member functions that the programmer can 

use to operate on their values.  The operations that can be performed on each 

Variable are:  

 

• two flavors of Set (to assign a value to a Variable) 
• two flavors of Get (to get a value of a Variable).   

 

The two Set operations are SetI(), which stands for ‘Set Internal’, and SetE(), which 

stands for ‘Set External’.  SetI() is performed within the Evaluate() member of the 

Link and this is something that the programmer has to know and follow.  SetE() is 

performed by the main program to set a Variable as well.  Both Set operations set 

the value of the Variable and also set the ‘dirty’ flag of the Variable.  Their behavior 

is identical in the non-distributed mode, but it is very different when the system 

runs in the distributed mode as it is explained in chapters 7 and 8. 

 

The two Get operations are GetI(), which stands for ‘Get Internal’, and GetE(), which 

stands for ‘Get External’.  GetI() returns the raw value of a Variable and it is mainly 

used in the Evaluate() member of a Link as the SetI().  If GetI() is called from the 

main program, it may return the value of the Variable which is out-of-date, because 

it does not trigger the constraint solver to run.  GetE() however, triggers the 

constraint solver and returns the value of the Variable up-to-date.  The behavior of 

these functions depends on how the system is running.  As it is shown later, when 

the system is running in distributed mode, SetE() and GetE() are sent over the 

network as requests to Workers from the Coordinators.  The return value of a GetE() 

in the distributed mode is passed back to the Coordinator over the network.   
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Constraint Solver 

 

To keep the Variables up-to-date, DLoVe implements an incremental constraint 

solver that supports lazy evaluation, similar to Eval/vite [Hudson 91].  The 

algorithm finds the set of Links that need to be evaluated to bring the demanded 

Variable up-to-date.  Then, based on topological ordering (using depth-first sorting), 

it evaluates Links and brings the demanded Variable up-to-date.  The solver 

guarantees that each of these Links will be evaluated only once, after its 

dependencies become up-to-date.   

 

Each Variable knows if it is up-to-date or not.  Using this information the Constraint 

solver uses an incremental update and evaluates only the Links whose input 

Variables are dirty or otherwise out-of-date.   

 

Variables may change but that does not trigger the constraint solver to run.  The 

Constraint solver is lazy, which means that it will only update Variables when they 

are requested by the user or by the constraint solver itself.  When a Variable is 

requested, the Do_evaluation() function of the solver is called on the demanded 

Variable.  Do_evaluation() clears the ‘visited’ flag’ on all Links, and then calls the 

constraint solver on this Variable.  The Solve() function of the constraint solver is 

the main function that brings Variables up-to-date. 

 

1   Do_evaluation(demanded_var) 
2 ClearALLvisited(); 
3 Solve(demanded_var) 
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The Solve() function finds the set of all Links that need to be evaluated to bring the 

demanded Variable up-to-date, and then each Link is evaluated in order, if needed.  

The pseudo-code of the Solve() function is shown below: 

 

1   Solve(demanded_var) 
2 
3 foreach Link link that uses demanded_var as output Variable do 
4 
5  if link is enabled and not visited then 
6   linkÅSetVisited(); 
7 
8   foreach Variable var that is an input to Link link do 
9 
10    Solve(var); 
11 
12    if var is dirty then 
13     foreach Link lptr that uses var as input do 
14      lptrÅSetDirty(); 
15 
16   if link is dirty then 
17    foreach Variable vv that Link link is using as input do 
18     vvÅClearDirty(); 
19 
20    linkÅEvaluate(); 
21    linkÅClearDirty(); 

 

 

How it Works 

 

Recursively, starting at the Variable in demand, the algorithm traverses the 

constraint graph and finds all Variables upon which the demanded Variable 

depends.  If at least one of these Variables is dirty (line 12), the algorithm marks all 

Links that input the current dirty Variable as dirty to indicate that these Links need 

to be evaluated (lines 13-14).  It then clears the dirty flag of all input Variables (lines 

17-18), since the current Link’s output Variable is up-to-date, and its own dirty flag 

(line 21), because it was just evaluated.  It then calls the Evaluate() (line 20) member 

function for each such Link to bring the output Variables of the Link up-to-date.  

Lines 5-6 ensure that only enabled Links are considered.  If there is a cycle in the 

graph, it is broken after detection, so that the algorithm does not fall into an infinite 
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recursion.  DLoVe breaks cycles using the ‘visited’ flags of the Links, which keep it 

from going around in cycles. 

 

The algorithm is triggered and executed when the programmer calls the GetE() 

member function of a Variable.  The constraint solver is executed and returns the 

up-to-date value of the demanded Variable that is up-to-date.   

 

All the ‘foreach’ loops execute very quickly because each Link has stored all the 

pointers to its input and output Variables.  Similarly, Variables have stored all the 

pointers to Links that need them as inputs or outputs.  

 

The algorithm ensures that first, Links nearest to the changed/dirty Variables are 

evaluated and so on until the demanded Variable becomes up-to-date.  In the 

following example, the Variable ‘A’ has changed and the user requests the Variable 

‘C’ as shown in (a).  The constraint solver calls Do_evaluation() on Variable ‘C’ which 

is the requested Variable (b).  Then the algorithm finds Link ‘L1’, which is the Link 

that uses ‘C’ as output Variable (c), (line 3).  In (d) the algorithm finds the first input 

Variable to Link ‘L1’ (line 8) and calls Do_evaluation() on ‘B’ (line 10) and returns 

since there are no Links using Variable ‘B’ as output (e).  Then it repeats on the 

second input Variable to Link ‘L1’ which is Variable ‘A’ and returns (f, g).  Lines 12-

14 are represented in (h) where the algorithm sets as dirty the current Link ‘L1’ 

because at least one of its input Variables is dirty ( ‘A’ is marked as dirty ).   

 

Then it clears both input Variables ‘A’ and ‘B’ (i) (lines 16-18) because it will now 

bring the output Variable ‘C’ up-to-date.  Line 20 calls the Evaluate() function of 

Link ‘L1’ and stores the result in ‘C’ (j).  Now ‘C’s dirty flag is set because the result 

in it has just changed.  Then (line 21) it clears L1’s dirty flag (k) because it was just 
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evaluated.  Then in (l) and (m) the algorithm unwraps the recursion and finishes, 

leaving ‘C’ dirty to indicate that its value has just changed. 

 

 

Animation of the Solve algorithm 
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The following example illustrates the incremental behavior of the algorithm.  

Continuing from the previous example where the value of the Variable ‘C’ has 

changed and thus it is marked as dirty, let us say the user requests Variable ‘D’ as 

shown in (a).  The algorithm then recursively traverses the graph down to Variable 

‘B’ (b) then down to ‘A’ (c).  In (d) (line 16) finds that the Link ‘L1’ is clean since its 

input Variables have not changed since last time and unwraps the recursion in (e).  

In (f) (line 12) Link’s ‘L2’ input Variable is dirty and so it marks all Links that use 

Variable ‘C’ as input Variables, as dirty (lines 13-14).  This causes both Links ‘L2’ 

and ‘L3’ to be marked as dirty.  (g) shows lines 17-18 where L2 input Variables’ dirty 

flag gets cleared.  Then the Evaluate() function of L2 gets called (h) (line 20) and the 

result is stored in L2’s output Variable ‘D’ and so, it is also marked as dirty.  Note 

that the Evaluate() uses SetI() to store a result to a Variable which also sets the 

‘dirty’ flag of that Variable.  The algorithm finishes and leaves Variable ‘D’ up-to-date 

with its dirty flag set, since it just has been changed, and the ‘L3’s dirty flag also set. 

 

The reason that the algorithm leaves ‘L3’s dirty flag set is to remember that even 

though the ‘dirty’ flag of ‘C’ is clear, a request on Variable ‘E’ should trigger the 

evaluation of Link ‘L3’ even though the input Variable of ‘L3’ is not dirty.  The 

reason that the ‘dirty’ flag of ‘C’ is clear is because the evaluation of Link ‘L2’ cleared 

the ‘dirty’ flag of ‘C’. 
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A second example of the Solve algorithm 

 

The reason that we need a dirty flag in Links is illustrated in the following example 

that is a continuation of the previous example.  Let us say the user at this point 

requests Variable ‘E’ as shown in (a).  The algorithm traverses the graph in (b) and 

(c) and then unwraps as shown in (d) since there were no changes to Variables ‘A’, 

‘B’ and ‘C’.  In (d) however, L3’s dirty flag is set (line 16) and so, it must be 

evaluated.  Note here that even though L3’s input Variable is clean from the 

previous run, it has to be evaluated to bring the demanding Variable ‘E’ up-to-date.  

So, in (e) L3’s Evaluate function is called, and the result is stored in its output 

Variable ‘E’, that gets marked as dirty since it has just been changed.  The algorithm 
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finished and leaves Variable ‘D’ dirty, from the previous run, and Variable ‘E’ as 

dirty as well from this run. 

 

 

A third example of the Solve algorithm 
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Chapter 7:  Distributed/Parallel DLoVe 

 

 

 

Introduction 

 

One of the major difficulties with existing software lies in transforming a program 

written for a sequential machine into a program that runs on multiple machines on 

a network in parallel.  A program written in DLoVe however, can be initially written 

to execute on a single sequential machine; with minor programming effort the same 

program can execute in parallel on multiple workstations.  The only difference 

between the parallel and serial versions is that different libraries are used in 

compiling this program.  When compiling for parallel execution, compilation 

generates two different executables, the executable for the Coordinator (the machine 

mainly responsible for the graphics and the input devices), and another executable 

for the Workers (the machines responsible for doing constraint calculations).  The 

Coordinator is a workstation with a display device and input devices.  It is 

responsible for reading all data from the input devices and generating the graphics.  

Workers are only responsible for doing calculations based on the Coordinator’s 
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requests.  Workers are workstations that do not need to have any input or output 

devices attached to them: “headless workstations”. 

 

 

Basic Structure of the ‘main()’ function 

 

To program in DLoVe, the programmer must construct the program from Links and 

Variables.  This is a similar but simpler process than programming in C++ using 

inheritance, encapsulation, and overloaded functions.  The main program of any 

application looks like the following: 

 

1   main() { 
2 Link::InitCommunication() 
3 SetUp_Window_System() 
4 Create_and_Setup_Links_and_Varables() 
5 Link::InitSystem() 
6 
7 while( true ) { 
8  Link::START() 
9  read-inputs() 
10  request-outputs() 
11 draw-display() 
12 Link::FSTOP() 
13 } 
14   } 

 

The call to Link::InitCommunication() (line 2) connects all Workers to the 

Coordinator using the DLoVe protocol, built on top of TCP/IP.  The program then 

sets up the windowing system (line 3), and creates all Links and Variables (line 4).   

 

The call to Link::InitSystem() (line 5) has different effects on the Coordinator and on 

the Workers.  During this call, the Coordinator partitions the network of Links and 

Variables, and assigns roles and responsibilities to each Worker.  During the same 

call, the Worker(s) loop forever, reading and satisfying requests from the 
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Coordinator.  The Worker(s) become “servers” listening for requests from the 

Coordinator and providing services to it.   

 

The rest of the main() function is only executed by the Coordinator.  The Coordinator 

continually (line 7 – 13) reads input devices, requests Variables from Workers (line 

10), and renders the display (line 11).  The two calls Link:START() (line 8) and 

Link::FSTOP() (line 12) are used to build multiple requests that are send to Workers 

in a block message.  This is needed to get better performance out of the network.  It 

is better to send fewer, larger messages, than to send many, smaller messages.  

Later we will see details on the evolution of DLoVe and why I had to pack multiple 

requests into a single big message. 

 

A simple set-up of 3 Workers and a Coordinator on a LAN looks like the following 

figure where ‘C’ denotes the Coordinator and ‘W’ a Worker 

 

 

Coordinator and Workers on a LAN 

 

 

 

 

C 

W W W 
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High level system architecture 

 

When a DLoVe program is executed in non-distributed mode, the 

Link::InitCommunication() and Link::InitSystem() calls do not do anything and 

simply return.  But, when the program executes in distributed mode, these calls set 

up the entire execution environment for the program to run this mode.  In the 

distributed mode, several modules (called “managers”) cooperate during this setup 

and at runtime both the Coordinator and each Worker initialize network 

communication (‘Set up’ section of the figure below).  Runtime managers (‘Run Time’ 

section in the figure below) handle communication between Coordinator and 

Workers when the system is in execution.  This communication always consists of 

requests from the Coordinator that invoke responses from Worker(s).  There is no 

direct communication between Workers other than though the Coordinator. 

 

The ‘Executive Manager’ on the Coordinator is only involved when the system 

executes in Multi-user mode described in the following chapter. 
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To execute a DLoVe program in distributed mode one must first invoke the 

Coordinator.  Then the Coordinator accepts connections from Workers, as they are 

invoked on different workstations.  This is managed in the “Connection Manager” 

that is part of both the Coordinator and Workers.  The “Communication Manager” 

uses a configuration file to dynamically produce the socket binding between 

Coordinator and Workers.  During this process, each authenticates itself, 

exchanging information with the Coordinator and establishes a communication 

channel. 

 

Then the Coordinator partitions the graph (Link::InitSystem call) of Links and 

Variables, assigning a disjoined subset of Variables to each Worker using its “Load 

Manager”.  These are the Variables a Worker will be “responsible for computing”.  

When each Worker receives its assignment, it executes its own algorithm in the 

“Constraint Graph Optimizer” manager to determine which sub-graph of the whole 

graph it will need to evaluate in order to compute its assigned Variables.  For 

example, the following graph will be partitioned into two sub-graphs as shown 

below: 

 

 

Partition into two sub-graphs 

 

After partitioning is completed, the Coordinator starts executing the main 

application and the Workers start listening to requests from the Coordinator.  The 

Coordinator reads all its input devices, requests Variables in parallel from the 

Partition for Worker 1 

Partition for Worker 2 
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Workers, and renders the screen.  The Workers handle all requests from the 

Coordinator. 

 

The last set of Managers, in the ‘Run Time’ section, handle all request-reply pairs 

between the Coordinator and Worker(s).  The Coordinator executes the user’s 

program.  Using the “Message Manager” it incorporates requests into network 

messages that can be passed to Workers over the network.  The “Network Optimizer” 

in the Coordinator is responsible for building large messages out of smaller ones, so 

that it can use the network more efficiently.  It also makes sure not to overflow 

network capacity by sending too many messages over the network.   

 

Critical messages, such as commands that enable or disable a Link, are always sent.  

Non-critical messages may be dropped if Workers seem overloaded.  Each Worker 

uses the “Poll Facility” to get requests from the Coordinator and unpacks messages 

that may contain multiple requests.  Then the “Constraint Engine” in the Worker 

processes all the GetE requests.  In case there are several GetE requests that need 

to be returned to the Coordinator, the “Network Optimizer” builds a large message 

that contains several GetE replies, and sends it to the Coordinator as a reply in a 

single message. 

 

The Coordinator also owns a “Constraint Engine” manager and thus it can perform 

any calculations it wants locally instead of requesting a Worker to do that for it.  

This is controlled by the programmer.  We will see later in detail how the protocol 

works and how the messages look. 
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Communication Protocol 

 

The very first call in the main() function should be Link::InitCommunication().  This 

call takes care of all the connections between the Coordinator and Workers.  The 

configuration file supplies the DNS name or IP address of the Coordinator and the 

port number upon which the Coordinator is listening.  Then the Workers connect to 

the Coordinator based on dynamic binding the same way ftpd works on a UNIX 

workstation.  Every machine involved in running a program in the distributed mode 

must have a copy of the same configuration file.  Each Worker requests a connection 

from the Coordinator.  The Coordinator accepts and it then requests the Workers to 

reconnect back to it on different port numbers that it supplies and then 

disconnects.  The Workers now know the new port number the Coordinator is 

listening on, and they reconnect (dynamic binding).  There is a different port 

number for each connection.  This process continues until all Workers connect to 

the Coordinator.  The Coordinator knows how many Workers are going to connect 

because this information is supplied in the configuration file.  When the system is 

running in non-distributed mode, this call does nothing, it simply returns.  During 

this process, the Coordinator assigns a unique id to each Worker.  This id is very 

important in the partition algorithm discussed later.  The Coordinator holds an 

array (called Warray) of pointers to the connections to the Workers.  The array index 

tells the Coordinator to which Worker this communication channel is connected as 

shown in the following figure: 
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Multiple Workers connected to a Coordinator 

 

After the call to Link::InitCommunication() (line 2), the user creates the window(s) in 

the application (line 3) and all the Links and Variables (line 4).  Then the main() 

function calls Link::InitSystem() (line 5).  Any GetE() requests prior to the 

Link:InitSystem() call, which trigger the constraint solver, use the local constraint 

solver on the Coordinator to get the requested Variables up-to-date.  The reason the 

Coordinator does not initiate requests to the Workers at this point is because the 

Coordinator has not executed the partition algorithm of the graph and thus, it does 

not know where to send the requests.   

 

Workers, however, calls Link::InitSystem() and they never exit from this function.  

They stay in it in a loop, listening for requests from the Coordinator.  The 

Coordinator, before exiting the Link::InitSystem() uses the “Load Manager” to 

partition the constraint graph and assign Variables to Workers.  What is actually 

happening in the partition of the graph is that the Coordinator partitions the 
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Coordinator 
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queries.  By doing that it knows which Workers are paying more attention to which 

Variables and it only asks the specified Workers for the specified Variables.  The 

Coordinator knows where to request each Variable because it knows which Worker 

is responsible for which Variables.  Even though all Workers, and the Coordinator, 

have exactly the same copy of the constraint graph in memory, and their constraint 

solver can bring any Variable up-to-date, Workers pay attention only to Variables 

assigned by the Coordinator.  After the partition algorithm finishes, the Coordinator 

starts running the main application, ‘Run Time’ section, and any SetE(), GetE(), Link 

Enable/Disable requests, are formed into messages and sent as requests over the 

network to Workers. 

 

 

Partition Algorithms 

 

Besides the constraint algorithm there are two other main algorithms in DLoVe that 

take place in the “Load Manager”.  The first one is the partition algorithm performed 

by the Coordinator and consists of 2 phases.  In this algorithm the Coordinator 

partitions the constraint graph and assigns the Variables to Workers.  By doing this, 

the Coordinator actually partitions the queries so that it can request Variables in 

parallel.  The Workers perform the second algorithm (optimization) in the 

“Constraint Graph Optimizer” after the Coordinator finishes the partition algorithm 

and transmits the partition information to Worker(s).  The Worker(s) select the 

smallest set of Variables that they can pay most attention to so they can take 

advantage of their incremental constraint-solving algorithm. 
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Partition (2 phases) (Partition Queries) 

 

The first phase of the partition algorithm marks each Variable with a number that 

indicates the number of dependencies.  The second phase assigns variables to 

different workers in order, starting with the Variables with the most dependencies.  

The Partition algorithm is static, which means that it may assign easy tasks to 

powerful machines and difficult tasks to less powerful machines.  It does not take 

into consideration the time needed to bring a Variable up-to-date or the speed of the 

machines on which Workers are running.  A better approach would be to use a 

dynamic algorithm where the Coordinator would determine at run time the speed of 

each machine and partition accordingly.  But because the constraint graph can 

change on the fly by enabling/disabling Links there is a big overhead for trying to 

re-partition the graph at run time.  The pseudo-code of the Partition algorithm is 

shown below: 

 

1   Partition( ) { 
2 
3 MaxVarsNeeded = -1; 
4 
5 foreach Variable var do 
6  ClearALLVisited(); 
7 
8  foreach Link link do 
9   linkÅmark4partition = false; 
10 
11  Partition_phase_1(var, var);  // Modifies ‘MaxVarsNeeded’ 
12 
13 
14 got_some = false; 
15 int Wid = 0; 
16 for ( i = MaxVarsNeeded; i >= 0; i-- ) { // i==0) for detached Variables 
17  foreach Variable var do 
18   if varÅL_counter == i and not varÅassigned then 
19    got_some = false; 
20    ClearALLVisited(); 
21 
22    Partition_phase_2( var, Wid); // Modifies ‘got_some’ 
23 
24    if got_some == true then 
25     Wid = (Wid + 1) mod ParticipatingWorkers; 
26 
27 SendPartitionInfo_to_all_Workers(); 

 



Leonidas Deligiannidis 
 

 
 

 

 
Page 95 

The first part of the Partition algorithm (lines 3 – 13) loops around all Variables in 

the system and calls the recursive function Partition_phase_1().  For each Variable 

before calling Partition_phase_1(), the algorithm clears the mark4partition flag of 

each Link.  This mark4partition flag ensures that the correct number of 

dependencies is counted for each Variable.   

 

After the loop (lines 5 – 11) the algorithm knows how many Links are needed to 

bring each Variable up-to-date.  The Variable MaxVarsNeeded (line 3), which gets 

modified by Partition_phase_1(), is used to find out the maximum number of Links 

needed by Variables with the most dependencies.  This variable is used later by the 

Partition algorithm in (line 16).   

 

The second part of the algorithm (lines 14-25) is used to actually partition the 

constraint graph.  The got_some Boolean variable indicates whether a Variable has 

been assigned to a Worker (true) or not, (false).  The Wid Variable indicates the id of 

the Worker to which a Variable is going to be assigned.  The ‘for’ loop (line 16 – 25) 

uses the MaxVarsNeeded variable.  This loop first assigns the Variable with the most 

dependencies, the most Links that need to be evaluated in the worst case to bring a 

Variable up-to-date.  Then the ‘foreach’ loop (lines 17 – 25) loops around each 

Variable.  If the number of Links needed to be evaluated in the worst case is equal to 

the current number of the variable ‘i’ and the current Variable is not yet assigned to 

any Worker, the recursive Partition_phase_2() function is called.  This function 

assigns the current Variable, and recursively, all Variables in its dependency path to 

the Worker with id equal to Wid.  If Partition_phase_2() assigns any Variables to 

Worker with id equal to Wid, it sets the ‘got_some’ to true, and in line 25 selects the 

next Worker that will be assigned Variables, using a circular-like array.  After all 
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Variables are assigned to Workers, Partition() communicates this information to the 

Workers so that they know to which Variables they have been assigned (line 27). 

 

Partition_phase_1(), below, recursively finds the Variables that are not used as 

output by any Links.  Then after it reaches the end of the tree in the graph (line 11), 

it unwraps the recursion.  For each Link that has not been marked 

(marked4partition set to true), it increments the L_counter of the requested 

Variable, which keeps track of the number of Links needed to bring this Variable 

up-to-date.  Lines 16 – 17 store the maximum number of Links needed by any 

Variable. 

 

1   Partition_phase_1(output_var, on_this) 
2 
3 foreach Link link that uses output_var as output do 
4 
5  if not linkÅIsVisited() then 
6   linkÅSetVisited(); 
7 
8   foreach Variable var that is an input to Link link do 
9 
10    Partition_phase_1(var, on_this); 
11 
12    if not linkÅmark4partition then 
13     linkÅmark4partition = true; 
14     on_thisÅL_counter += 1; 
15 
16     if on_thisÅL_counter > MaxVarsNeeded then 
17      MaxVarsNeeded = on_thisÅL_counter; 

 

Partition_phase_2() uses a depth first search approach, as the previous algorithm, 

and assigns Variables to a Worker.  It recursively traverses the graph to the 

Variables that are not used as output Variables by any Links, the leaves of the tree.  

The algorithm is shown below: 

 

1   Partition_phase_2(output_var, Wid) 
2 
3 foreach Link link that uses Variable output_var as output do  
4 
5  if not linkÅIsVisited() then 
6   linkÅSetVisited(); 
7 
8   foreach Variable var that is input to link do 
9    if not varÅassigned then 
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10     varÅassigned = true; 
11     CCÅAssignVar( Wid, var->GetId() ); 
12     got_some = true; 
13 
14     varÅ assigned_to_which_W = Wid; 
15    fi 
16    Partition_phase_2( var, Wid ); 
17 
18 
19 if not output_varÅassigned then 
20  output_varÅassigned = true; 
21  CCÅAssignVar( Wid, output_varÅGetId() ); 
22  got_some = true; 
23  output_varÅassigned_to_which_W = Wid; 

 

The bottom section (lines 19 – 23) is the special case where only the original 

requested Variable is tested to be assigned to a Worker, in case that all other 

Variables upon which it depends, have already been assigned to a Worker.  Note 

here that if any Variable of the dependency path of the original Variable is assigned 

to a Worker the got_some variable is set to true.  Lines 19 – 23 are executed in 

graphs that look like (a) below (Links have multiple outputs): 

 

 

The L_counter of the Variables 

 

The numbers below the Variables in (a) show the L_counter variable of each 

Variable.  This number is assigned to these Variables by the Partition_phase_1() 

algorithm.  With these Variables, the Partition() algorithm would call in descending 

order Partition_phase_2() on either Variable ‘v4’ or ‘v5’, because they both have the 
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maximum L_counter among all Variables.  Let us assume that ‘v4’ is selected and 

there are two Workers in the distributed environment.  Then all Variables shown in 

(b) would be assigned to Worker 0.  The next Variable that would be selected is ‘v5’ 

and the Partition_phase_2() would be called again this time on ‘v5’.  The ‘if’ 

statement (line 9) would prevent setting the got_some variable because all Variables 

that ‘v5’ depends on have been assigned to Worker 0 in the previous run.  As a 

result the Partition_phase_2() would unwrap to the first call of itself that was called 

on Variable ‘v5’ in line 19.  Since Variable ‘v5’ has not been assigned to any Worker 

yet, it will be assigned (line 21) to the next available Worker, Worker 1 as shown in 

(c). 

 

For Worker 0 to bring ‘v4’ up-to-date it needs to evaluate both Links.  So does 

Worker 1 to bring ‘v5’ up-to-date.  Both Workers have the same semantic copy of the 

graph and they both know how to bring any Variable up-to-date.  It does not matter 

that Worker 0 also got assigned Variables ‘v1’, ‘v2’, and ‘v3’.  We will see later that 

when Worker 0 runs its optimization algorithm, it will focus only on Variable ‘v4’.  

Worker 0 knows that by bringing Variable ‘v4’ up-to-date ‘v3’ is also up-to-date.  

Worker 1 also brings Variable ‘v3’ up-to-date when it brings ‘v5’ up-to-date, and yes, 

there is some redundancy in DLoVe – and in this case total redundancy.  However, 

when the Coordinator wants to request Variable ‘v3’ it will request it from Worker 0, 

since Worker 0 was assigned this Variable by the Coordinator. 
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Optimization (Workers) (MyMainVars) 

 

The Workers in the “Constraint Graph Optimizer” Manager run the optimization 

algorithm.  Even though the Coordinator may assign many Variables to Workers, 

Workers run this algorithm to find which Variables are the most important so they 

can pay more attention to them and take advantage of the incremental nature of the 

solver.   

 

1   MainVarsSetUp() 
2 
3 MaxVarsNeeded = -1; 
4 
5 foreach Variable var in WW->MyVars do 
6  var->L_counter=0; 
7 
8 foreach Variable v in  WW->MyVars do 
9 
10  ClearALLvisited(); 
11 
12  foreach Link  l do 
13   l->mark4partition = false; 
14 
15  Partition_phase_1(v, v); // Pass v twice, Modifies MaxVarsNeeded 
16 
17 int i; 
18 for ( i = MaxVarsNeeded; i > 0; i-- ) do  
19  foreach Variable v in WW->MyVars do 
20   if v->L_counter == i then 
21    MainVarsSetUp_phase_2(v); 

 

The algorithm shown above first initializes the L_counter variable of every Variable 

similarly to what the Coordinator does in the Partition algorithm.  This variable 

holds the number of Links that need to be evaluated in the worst case to bring the 

specified Variable up-to-date (lines 5 – 6).  The foreach loop (lines 8 – 15) goes 

through all Variables that the Coordinator assigned to this Worker, clears the visited 

flag so it can detect and break cycles (line 10).  Then it sets the mark4partition 

flag to false and calls recursively the Partition_phase_1().  Note that, this function is 

also used by the Coordinator in the Partition algorithm.  The Worker calls this 

function because it also needs to know the maximum number of Links that need to 
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be evaluated for each Variable in the worst case; this information is stored in the 

L_counter variable in each Variable. 

 

Then starting in descending order (line 18) it calls the MainVarsSetUp_phase_2() 

function for every Variable that the Coordinator assigned to this Worker. 

 

1   MainVarsSetUp_phase_2(output_var) 
2 
3 if output_var not in WWÅMainVars then 
4  foreach Variable var in WWÅMainVars do 
5   if output_var is a Variable that var depends on then 
6    return 
7 
8  WW->MainVars->Add(output_var); // add it to the MainVars 

 

The MainVarsSetUp_phase_2() collects all the Variables, from the set of Variables 

the Coordinator assigned to it, that are not needed by any Link in the graph as 

input.  All these Variables are collected into the MainVars set (line 8). 

 

 

Parallel Computation on a Distributed Graph 

 

Every Worker and the Coordinator owns the same constraint graph representation.  

However, the Coordinator partitions the graph and assigns Variables to Workers.  

The Workers pay attention only to Variables that they have been assigned by the 

Coordinator.  The set of Variables assigned to them represents a sub-graph of the 

entire constraint graph.  For example, in the following example (a) where only two 

Workers are participating: 
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Partitioned graph to two Workers 

 

Worker 0 will be assigned the Variables in (b) and Worker 1 will be assigned the 

Variable in (c).  After the Workers run the optimization function, the Worker 0 will 

pay all its attention to Variable ‘D’ as shown in (a) below and Worker 1 to Variable 

‘E’ as shown in (b) below.  This way the Worker 0, for example, knows that by 

bringing the Variable ‘D’ up-to-date, all its Variables assigned by the Coordinator, 

are also up-to-date. 

 

 

Partitioned graph after the optimization algorithm is run on the Workers 
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By partitioning the constraint graph, the Coordinator actually partitions the queries.  

By partitioning the queries, the Coordinator can initiate requests that are processed 

in parallel.  For example, if the Coordinator calls varEÅGetE() and varDÅGetE(), the 

requests will be processed by Worker 1 and Worker 0 respectively.  Parallel 

processing on Variables is done specifically based on which Variable is demanded.  

Even though a varEÅGetE() request could be processed by Worker 0, since both 

Workers have an identical copy of the constraint graph and both Workers run the 

same constraint solver, the Coordinator knows who is the best Worker to process 

this request.  If the Coordinator initiates varCÅGetE(), it will be processed by 

Worker 0 because Worker 0 was assigned Variable ‘C’ and even though Worker 0 ran 

the optimization algorithm, it will process this request from the Coordinator.  This 

gives room for fault tolerance where one of the Workers crashes, the Coordinator 

can detect this failure and re-direct requests to another live Worker. 

 

 

Two flavors of constraint solvers 

 

The Workers run their constraint solver when the Coordinator requests Variables.  

After the constraint solver finishes the Workers reply back to the Coordinator with 

the up-to-date values of the requested Variables.  However, there are cases where 

the Coordinator needs to run its constraint solver and update Variables locally, 

instead of sending requests to Workers.  This is appropriate when the partition 

algorithm is not yet run but the user needs some Variables to set up his/her 

program.  The Coordinator does not know where to send these requests because the 

Variables have not yet been assigned to any Worker.  In addition, the Workers are 

expecting Partition information at this point since this is how the DLoVe protocol 
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works.  It also applies when the Coordinator wants to update critical Variables very 

fast.  Such Variables in Virtual Reality include the position of the user’s head and 

hand.  Finally, it could also be used to support local variation as in Repo-3D 

[MacIntyre 98] 

 

 

Constraint Solver on the Coordinator 

 

To avoid motion sickness, and user frustration, any Virtual Reality system should 

support many frames per second.  The head movement and the hand movement are 

an example of the most critical Variables that exist in a Virtual Environment.  So, 

instead of sending requests to Workers and then waiting for replies and then 

updating the display, the Coordinator runs its local constraint solver to update such 

critical Variables.  This is done as follows: 

 

Instead of calling varEÅGetE(), it calls the following two functions in order: 

 

• Do_evaluation(varE); 
• varEÅGetI(); 

 

The Do_evaluation(varE); runs the constraint solver on Variable varE that brings it 

up-to-date, and then it gets its raw value by using the GetI() member function of the 

demanded Variable.  It is alright to see a bouncing ball in the background a little bit 

jerky, but it is unacceptable for the user to turn his/her head or hand and have the 

display show the position of the head/hand with a two 2 second delay. 
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Constraint Solver on the Worker(s) 

 

The Workers call the Link::InitSystem() and never exit from this function.  They stay 

in an infinite loop listening for requests from the Coordinator.  When a GetE request 

comes in, they run the Do_evaluation() function which is the constraint engine and 

they return the updated value of the demanded Variable to the Coordinator.  The 

return value to the Coordinator is built into a reply message and is sent to the 

Coordinator.  The user however, is still using the same SetE(), GetE(), Enable(), and 

Disable() functions.  Their functionality is totally transparent to the user. 

 

 

Configuration file 

 

The configuration file is a text, colon ‘:’ delimited file.  The first field is the port 

number the Coordinator is listening for all Workers to connect.  The second field 

specifies the DNS name or the IP address of the Coordinator, and the last field 

specifies the number of Workers that are going to participate in the program.  A 

simple configuration file with 3 Workers is shown below: 

 

PORT NUMBER:  2016 
Master Coordinator:  mondrian.eecs.tufts.edu 
Workers:   3 
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Chapter 8:  Multi-user DLoVe 

 

 

 

Introduction 

 

Using the Links and Variables paradigm to program Virtual Environments gives the 

programmer the flexibility to execute in distributed mode a program that is designed 

to run on a single machine with minor code modification.  Since the constraint 

graph is distributed and the Coordinator knows how to query/request Variables 

from the Workers and how to set Variables on the Workers, it is simple to add 

additional Coordinators to the picture to run multi-user programs.  In fact, in a 

distributed system where there is a Coordinator and Worker(s), adding another 

user/Coordinator is simply specifying the number of additional Coordinators in the 

configuration file and running the additional Coordinators that are the same 

executable as the original Coordinator.   

 

The DLoVe protocol does support multiple Coordinators in a DLoVe framework.  

However, there are several issues on how to run a multi-user program and I will 
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explain them shortly.  The most important issue is that when more Coordinators are 

added to the framework, all Coordinators will have access to the same input 

Variables.  That means that each Coordinator may control any other’s hand, or any 

other input Variable that is attached to an input device.  As we will see, one of the 

most important issues is to be able to specify that a specific device is attached to a 

specific workstation.  The next issue is to create rules on how to transform a single 

user program into a multi-user program and assign roles to each user.  There are 

some modifications that need to be performed to a program that is designed to run 

in a single user environment.  And this is unavoidable since we need to give different 

responsibilities to each user and then each needs to know where the others are 

located in a virtual world. 

 

 

Multiple Coordinators 

 

In a multi-Coordinator environment, the first Coordinator is called the Master 

Coordinator, and all the other Coordinators are called Slaves.  As with the Workers, 

all Slave Coordinators have to connect to the Master Coordinator and exchange 

information.  The Master Coordinator always has id of 0 and the Slaves have an 

incremental id that is assigned to them by the Master, as with the Workers.  The 

Slaves follow the dynamic binding paradigm, similarly to Workers, to connect to the 

Master.  The Master keeps a separate array of pointers to channels to Slaves, and 

the index of the array indicates the id of the Slave.  After all Workers and Slaves 

connect to the Master, the Master requests the Slaves to be servers and accept 

connections from the Workers on specified port numbers.  It then requests the 

Workers to connect to each Slave following the same dynamic binding paradigm 
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when they connected to him the first time.  After all Workers connect to the Slaves, 

all Workers inform the Master that they are connected to the Slaves and the main 

application starts.  After this point the connections between all Slaves to Master are 

no longer needed and so they are terminated. 

 

 

Multiple Workers connected to multiple Coordinators 

 

The figure above shows the connections between all Workers to all Coordinators, 

and the temporary connection from the Slave to Master, which is terminated before 

the main application starts.  The Coordinators have an array of pointers to 

communication channels to the Workers.  The index in the array indicates the id of 

the Worker to which they are connected.  They also have an array of pointers to 

communication channels between the Master and themselves.  In the above figure, 
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the Master Coordinator uses the array index 1 which means that it is connected to 

Slave with id of 1.  On the other end, the Slave uses the index 0 in the array to 

indicate that it is connected to the Coordinator with id 0, which is the Master.  The 

Workers also have an array of pointers to communication channels to Coordinators.  

They are also using the index of the array to indicate which Coordinator they are 

connected to.  The details on what kind of information is exchanged and what type 

of messages is passed back and forth are shown in the next chapter.  

 

 

Issues – Transforming to Multi-user 

 

The first issue to resolve is to identify devices that are attached to different 

machines.  We need that so different users can interact in a virtual environment 

independently.  The distinction between the different machines and thus the 

different input/output devices is done in the configuration file.  In the configuration 

file, the IP address or the DNS name of a machine can be associated with an 

application level identification number.  For example, the following lines in the 

configuration file 

 

ID: mondrian.eecs.tufts.edu=4 
ID: vermeer.eecs.tufts.edu=3 
 

associate the machine with DNS mondrian.eecs.tufts.edu with the application level 

id equal to 4 and the machine vermeer with id equal to 3.  Depending on the 

number of Coordinators in the multi-user environment, the representing number of 

ID fields must be present.  For example, one might specify that machine ‘A’ can grab 

only red objects and machine ‘B’ can only grab blue objects.  Later, by swapping the 
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identification numbers in the configuration file and without any recompilation, 

machine ‘A’ can only grab blue objects and machine ‘B’ can only grab ‘red’ objects. 

 

The second part of the problem is to actually be able to attach input Variables to 

same devices but on different machines.  Let us say in a very simple program that 

the mouse controls a virtual hand on the screen that can grab and control a Slider.  

That can be represented in an aggregate form as shown in the following figure part 

(a): 

 

 

Distinguishing input devices 

 

Using the token-based sub-system, the discrete model, we can test to see if the 

virtual hand intersects with a slider and if the user presses the left mouse button 

then Link ‘L2’ becomes enabled and the slider follows the virtual hand (a).  In a 

multi-user environment, each user needs to see where the other user is, or at least 

where the other user’s hand is.  So we need to create two sets of virtual hands, one 

for user ‘A’ on machine ‘A’ and one for user ‘B’ on machine ‘B’.  We can specify that 

the mouse attached on machine ‘A’ is called mouse_A and the mouse attached to 
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machine ‘B’ is called mouse_B, using the ID: field in the configuration file.  At this 

point the user on machine ‘A’ can do VRhand_A->GetE() to find its position and 

draw itself.  It can also do VRhand_B->GetE() to find the other user’s position so it 

can draw that as well.  Similarly the user on machine ‘B’ can draw his hand and 

also the other user’s hand.   

 

The first rule is that every Link that uses the VRhand Variable as input, needs to be 

duplicated along with all its dependencies.  The output of such Links needs to be the 

same.  For example, in (b) ‘L2’ needs to be duplicated into ‘L2a’ and ‘L2b’ that use 

the Variable Slider as output.  However, ‘L2a’ uses as input Variable VRhandA and 

‘L2b’ uses as input Variable VRhandB.  Depending on which system grabs the 

Slider, the representing L2 Link gets enabled.  If both users grab the slider, then 

both L2 Links are enabled and both users can move the Slider.  If one user moves 

the Slider to the top and the other to the bottom, DLoVe is going to execute both 

constraints and the users will see the Slider jumping up and down.  This can be 

fixed by using a switch mechanism where the programmer can specify that only one 

user is allowed to grab the slider.  An example of a switch is shown in another 

chapter.  When a switch is involved, then if user ‘A’ grabs the slider from user ‘B’, 

the Slider is taken away from user ’B’ and user ‘B’ does not control the position of 

the Slider any longer.  User ‘B’ has to re-grab the slider to gain control over it.  But 

this mechanism is not present in the single user environment, and additional code 

needs to be written. 

 

All the events sent by the discrete subsystem are relabeled to indicate which 

machine caused the event.  For example, in non-distributed mode when the right 

mouse button is pressed the event RMbuttonPRESSED may be sent.  In the 

distributed environment, the discrete subsystem sends the event 
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RMbuttonPRESSED_3 if the machine with application level id equal to 3 cased this 

event or RMbuttonPRESSED_4 if the machine with application level id equal to 4 

caused this even.  This way the Coordinators know which Link to Enable/Disable 

and send the correct message to the Workers.  The programmer does not see how 

the events get re-labeled.  The programmer only needs to know that events get re-

labeled so he/she can write the proper code to catch the events and take the correct 

action.  There are cases however, where we do not care which machine initiated the 

event.  For this reason the discrete subsystem also sends the original event before it 

gets re-labeled. 

 

 

Backward Notification of Events 

 

There are cases where we want to specify things like user ‘A’ can only grab red 

objects and user ‘B’ can only grab blue objects.  But with specific action or gesture 

the behavior should change and user ‘A’ can only grab blue objects and user ‘B’ only 

grab red objects.  And with another event, both users can grab both kinds of 

objects, blue and red.  Let us say for simplicity that when the character ‘t’ is pressed 

whoever could grab blue objects can now only grab red objects and vice versa.  And 

when the character ‘T’ is pressed both users can grab both kinds of objects.  Note 

here that both users can press the ‘t’ and ‘T’ character.  If user ‘A’ is moving a blue 

object and user ‘B’ types the ‘t’ character, user ‘A’ must immediately not be able to 

move the object he was moving because he is now only allowed to grab and move red 

objects.   
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We need a mechanism to immediately notify the other Coordinator of this event.  

Because the Coordinators at run time do not communicate directly with each other 

but rather via the Workers, we could set a Variable on the Workers so that when the 

other Coordinator queries the Worker it will see that that Variable has changed and 

take the appropriate action.  But how often should we query the Workers for this 

specific Variable.  The ‘t’ event is a discrete event and does not happen very often.  

That was the main reason I separated the UIDL into continuous and discrete 

subsystems. 

 

To implement this behavior a new SetE() function needs to be used called 

SetE_Broadcast() and it is used for backward notification.  When a Coordinator 

needs to set a Variable that would indicate a specific event, in this case that the 

character ‘t’ was pressed, it uses this new one function SetE_Broadcast().  This 

function works the same way as the SetE() function but it also instructs the Worker 

to return in a reply message the result of the Variable that just got set, to all other 

Coordinators in the system.  Even though all Workers get the SetE requests, only 

one of them will send this backward notification to all other Coordinators; only the 

Worker that is responsible for this Variable.  The Coordinators will receive this 

notification as if they requested this Variable with GetE; they will not notice the 

difference. 

 

 

The Need for Local Evaluation 

 

In the single user distributed DLoVe framework, the position of the head and the 

hand were the most critical Variables and thus they were updated locally on the 
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Coordinator.  In a multi-user environment however, each user needs to see where 

others are to work in a collaborative environment.  Each Coordinator must update 

the head and hand position locally and also send that information to the Workers so 

the Workers know where each Coordinator is.  Then each Coordinator can request 

the position of the head and hand of all other Coordinators with the GetE() member 

function.  This way the local user does not feel any delay on the camera, which is 

moved by the head and it also informs the Workers on its location so they can reply 

back to the other Coordinators when they are queried.  Some delay or jerky behavior 

of the position of the other users’ head and hand is acceptable, since it is not that 

critical.  Another use of local Evaluation is a limited form of Local Variation.  When 

the user intersects his/her hand with an object that he/she can grab, since there is 

no feedback to tell the user if the object has been touched by his/her hand, we need 

to highlight the object to indicate intersection with the virtual hand.  The other 

users do not have to see that the object is highlighted however.  Highlighting an 

object is an operation local to the user to assist him/her see that the object in 

consideration has been touched.   

 

 

Time is a special Variable 

 

When the system runs in multi-user mode, time sensitive simulation becomes a 

problem.  Since the Coordinator sets the time, in multi-user mode all Coordinators 

try to set the timer according to their own clocks.  This may come in conflict with 

the current setting of the timer.  To avoid this conflict only the Master Coordinator 

sets the clock and all other Coordinators get the time value through the Workers.  

So computer simulation objects are consistent among all Coordinators since they 
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share the same clock.  Time sensitive object behavior is for example, the tossing of a 

ball, where its position is calculated based on time, speed, and acceleration.  If two 

machines had different clocks, then one machine would set the clock to 30 the other 

to 100 and the position of the ball would move back and fourth depending on whose 

timer it was using.  By having a single shared clock, all simulated objects are 

consistent among all Coordinators. 
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Chapter 9:  Messaging (DLoVe Protocol) 

 

 

 

Introduction 

 

The first thing I will explain in this chapter is how all the machines get connected 

before main program starts, and then the type of DLoVe messages that are going 

over the network.  DLoVe uses a message passing mechanism to communicate to all 

systems in its environment.  There are three flavors on the format of messages sent 

to Workers from the Coordinators:  Single messaging, Multi-messaging and blocking 

for replies, and Multi-messaging without blocking for replies, also called 

asynchronous mode.  Even though, only the third one is recommended, I will 

describe all of them and explain how I arrived at them and why the first two do not 

work.  Finally I will show how the same protocol works for multi-user environments 

with some code modifications. 
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Machine connections in Distributed Mode 

 

The first machine/process that must come up before any other is the Coordinator.  

The Coordinator starts listening on a port number provided in the configuration file.  

The configuration file also provides the number of Workers that will connect to 

Coordinator.  Then all the Workers connect to the Coordinator using dynamic 

binding.  This way the entire set of machines can connect to a single port and the 

rest is left up to the Coordinator to orchestrate.  The messages between the 

Coordinator and the Workers have four fields.  The first field indicates the type of a 

message.  ‘I’ means information, ‘PS’ means that the Partition information is to 

follow, ‘P’ indicates Partition information, ‘PE’ means that the Partition has finished, 

and ‘R’ means that the system is ready to accept and process requests.  The rest of 

the fields may be null or if they are used they are explained below.  The arrows 

indicate the direction of the message.  Both the Coordinator and the Workers block 

after each message they send in a synchronized way. 

 

In detail, first the Coordinator comes up and starts listening for connections and 

then the Workers connect one after the other (a).  After a Worker connects, it sends 

a message to the Coordinator that indicates that it is a Worker (second field) and its 

IP address (b).  Both fields are not needed in the distributed mode but they are 

needed in the multi-user mode, and for the protocol to be consistent Workers supply 

this information to the Coordinator.  Then the Coordinator sends a message to the 

Worker that includes newly assigned id, a new port number for the Worker to 

reconnect and also the Coordinator’s id; which is always 0 (c).  Here is where the 

Coordinator assigns ids to Workers.  The fourth field is always 0 since in the 

distributed mode there is only one Coordinator.  Later in the multi-user mode, other 



Leonidas Deligiannidis 
 

 
 

 

 
Page 117 

Coordinators place there their own id.  The connection Worker – Coordinator gets 

terminated and the Worker requests another connection to the Coordinator on the 

new port number it received (d).  This is the end of the dynamic binding.  The 

Coordinator goes through this process for every Worker assigning new ids and 

providing new port numbers for them to connect.  After all Workers connect to the 

Coordinator, the Coordinator sends a message to all Workers informing them that 

the Partition process is going to start (e).  It then runs the Partition() algorithm and 

for every Variable it sends a message to the Worker that gets assigned this Variable 

a message (f).  All Variables have a unique id among all systems that participate in 

the distributed environment.  This id gets assigned to each Variable based on the 

order of creation.  Since all Variables get created before the Partition algorithm is 

run, Workers and Coordinators have the same Variables with the same ids assigned 

to them.  After the Partition() algorithm finishes, the Coordinator sends another 

message to all Workers indicating that the Partition reached its end (g).  The 

Workers at this point run their optimization algorithm and when they are ready they 

notify the Coordinator (h).  The Coordinator in the mean time is waiting for this 

message from every Worker.  When every Worker is ready the Coordinator starts 

running the main application.   
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DLoVe’s Connection Protocol 

 

 

Machine Connections (Multi-User) 

 

In a multi-user environment there are more than multiple Coordinators and thus 

the protocol is a bit different.  The first Coordinator that starts is called the Master 

Coordinator and all the others Slave Coordinator.  In the configuration file the IP 

address or the DNS name of the Master Coordinator is specified, and the number of 

Coordinator Worker 
Connect (a) 

I W 24.5.7.22 Coordinator Worker (b) 

I id 6091 0 Coordinator Worker (c) 

Coordinator Worker 
Re-Connect (d) 

PS Coordinator Worker (e) 

P vid Coordinator Worker (f) 

PE Coordinator Worker (g) 

R Coordinator Worker (h) 
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Slaves that are participating in the multi-user environment.  Later the Workers need 

to connect to all Slaves but the Master coordinates all this as it is shown below.  The 

Master and the Slaves run the same executable and their behavior is almost 

identical.  They are mostly different in the initialization process where all systems 

connect with each other.  The following example, for simplicity purposes, involves 

two Coordinators and one Worker.  The port number that the Coordinator is 

listening on is 6090, which is also specified in the configuration file.  The id number 

assigned to each machine is indicated in a little circle next to the machine type.   

 

First the Master Coordinator starts up and then the Worker connects to it on port 

6090 as shown in (a).  The Worker then sends a message indicating that it is a 

Worker process requesting the connection, the ‘W’ in the second field (b).  In the 

third field it specifies its IP address.  Then the Coordinator sends a message that 

assigns an id to the Worker, which is zero in the second field (c).  The new port 

number that the Worker should re-connect, port 6091, is specified in the third field. 

The fourth field indicates the id of the Coordinator itself, which is zero since it is the 

Master Coordinator.  In (d) the Worker re-connects on the new port number, which 

is 6091.  The Coordinator gets the initial port number from the configuration file; it 

then requests clients to reconnect to a new port number that is an increment of the 

initial port number. 
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Worker connects to Master Coordinator using dynamic binding 

 

Then, using the same procedure the Slave Coordinator connects to the Master 

Coordinator (e).  The Slave sends a message that specifies that it is a Slave 

Coordinator requesting a connection using ‘S’ in the second field, and in the third 

field supplies its IP address (f).  In (g) the Master assigns an id to the Slave which is 

one, in the second field, since it is the next Coordinator in the system – zero is 

always the Master.  The third field contains the new port number to which the Slave 

should reconnect, and the fourth field is the Master’s id.  In (h) the Slave reconnects 

on the new port number which is 6092. 

 

Slave Coordinator connects to Master Coordinator 

Connect on port 6090 Master id=0 Worker id=? (a) 

Re-Connect on port 6091 Master id=0 Worker id=0 (d) 

I W 24.5.7.22 Master id=0 Worker id=? (b) 

I id=0 6091 0 Master id=0 Worker id=0 (c) 

Master id=0 Slave id=? Connect on port 6090 (e) 

Re-Connect on port 6092 Master id=0 Slave id=1 (h) 

I S 24.5.7.23 Master id=0 Slave id=? (f) 

I id=1 6092 0 Master id=0 Slave id=1 (g) 
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After the Slave connects, the Master sends a message requesting the Slave to start 

listening on port ‘initial port number from configuration’ + 100 (i).  In a while the 

Master will request the Worker to connect to the Slave.  So the Slave should be 

listening for incoming connections.  The reason the port number is an offset of 100 

from the initial port number to allow multiple coordinators to run on a single 

machine in case the programmer wants to run some tests while developing a 

software. 

 

Then the Master starts the partition process (j).  Then it partitions the graph and 

sends the information over to the Worker (k).  The vid in the second field is the id of 

a Variable that this Worker was assigned.  In this example all Variables will get 

assigned to this one Worker, but in practice when multiple Workers participate each 

one will get a sub-graph of the original graph. 

 

In (l) the Master requests the Worker to connect to the Slave Coordinator.  It 

provides the port number the Slave is listening on and its IP address. 

After that the Master is done and sends an ‘End of Partition’ message in (m).  After 

this message is sent out, the Master waits untill all the other systems are ready to 

proceed. 
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Slaves start listening for connections, Master partitions the graph, and the Workers are 
requested to connect to Slaves 

 

Then the Worker connects to the Slave Coordinator (n) on port 6190.  Then the 

Worker sends its IP address, and also in the fourth field its id, which is 0 (o).  The 

Worker has to tell to the Slave its id because the Slave is not allowed to assign ids to 

Workers.  The Slave in (p) now knows that a Worker with id of 0 is connecting and 

does not need to assign a new id and thus the second field is null.  The third field is 

the new port number the Worker should reconnect and the fourth field is the id of 

the Slave which is 1. 

 

SV 6190 Master id=0 Slave id=1 (i) 

PS Master id=0 Worker id=0 (j) 

P vid Master id=0 Worker id=0 (k) 

Master id=0 Worker id=0 CS 6190 24.5.7.23 (l) 

PE Master id=0 Worker id=0 (m) 
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Worker connects to Slave Coordinator using dynamic binding 

 

In a similar manner to the Master, the Slave Coordinator starts the Partition (r).  In 

(s) it partitions the graph and sends the information over to the Worker.  The Slave 

is not allowed to modify the partition of the graph.  The graph was partitioned once 

by the Master and that is how the partition should be.  However, the Slave 

partitions the graph and sends the information over to Worker for double-checking.  

If there is any discrepancy, an error is printed and all machines terminate.  It is not 

possible to have Coordinators that are working on different partitioned graphs.  In (t) 

the Slave sends the ‘End of Partition’ message to indicate that it is also done, and it 

is waiting for any other system to get ready so they can all proceed. 

 

Slave Coordinator partitions the graph (just for verification) 

 

Slave id=1 Worker id=0 Connect on port 6190 (n) 

Re-Connect on port 6191 Slave id=1 Worker id=0 (q) 

I  6191 1 Slave id=1 Worker id=0 (p) 

Slave id=1 Worker id=0 I W 24.5.7.22 0 (o) 

PS Worker id=0 Slave id=1 (r) 

P vid Worker id=0 Slave id=1 (s) 

PE Worker id=0 Slave id=1 (t) 
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At this point both Coordinators are waiting a message from the Worker to tell them 

that it is ready to process requests.  The Worker runs its optimization algorithm and 

then it notifies both Workers that it is ready to process requests (u) and (v). 

 

 

Worker is ready to process requests and so it notifies the Coordinators 

 

Now the multi-user program starts and the Coordinators request Variables from the 

Worker.  The Worker on the other is listening and satisfies requests. 

 

 

Flavors of Message-passing in DLoVe 

 

There are three configurations for message passing.  The first one is the Single 

Messaging, where each request is a single TCP packet.  Each packet is sent to the 

Workers in a non-blocking fashion with the exception of GetE requests.  When the 

Coordinator requests a value of a Variable, it blocks until the Worker replies back to 

the Coordinator with the value of this Variable.  The second configuration is similar 

to the previous one.  GetE requests work the same way.  However, all other requests 

that include SetE, Enable, and Disable, are packaged up in a big message and sent 

to Workers.  In the third configuration, is the most appropriate for TCP/IP.  The 

R Worker id=0 Slave id=1 (u) 

R Master id=0 Worker id=0 (v) 
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Coordinator packages all requests, including GetE, in a big message and sends them 

over to Workers.  The Coordinator does not block for GetE replies.  It keeps sending 

requests and gets them back when they arrive.  Until the requests comes back, the 

Coordinator uses the previous values of the Variables.  Because there is a danger 

that the Coordinator may overflow the network, it keeps count of how many pending 

messages there are on the network.  If the pending requests cross the threshold, the 

Coordinator drops the requests.  The only exception is when the messages contain 

Enable or Disable requests, because these re-wire the graph. 

 

 

Single messaging 

 

In Single messaging each Message has four fields: 

 

• type 
• size 
• id 
• value 

 

The ‘type’ field indicates the type of request, which includes SetE, Enable, Disable, 

or GetE.  The ‘size’ field indicates the number of bytes in the ‘value’ field.  The ‘id’ 

field is to indicate on which Variable (for SetE and GetE requests) or Link (for 

Enable and Disable requests) this request is to be performed.  The last field, ‘value’, 

holds the value of a Variable.  When a SetE request is sent the ‘size’ field indicates 

the number of bytes in the ‘value’ field.  When Enable/Disbale/GetE requests are 

initiated, the ‘size’ field is zero because there is no value in the ‘value’ field.  For 

GetE requests, the Worker returns the updated value of the demanded Variable in a 

same format message.  When the Workers reply, they put the value of the demanded 
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Variable in the ‘value’ field, the number of bytes of the value in the ’size’ field, and 

send the message to the Coordinator.  

 

For every request, the Coordinator builds a message, puts the request in the 

message and sends it over to the Workers.  For SetE/Enable/Disable requests the 

Coordinator does not expect any reply from the Workers.  However, for GetE 

requests it does.  When the Coordinator sends a GetE request, it blocks until the 

Worker replies back with the value of that Variable.  Sending many small packets 

using TCP over the Ethernet is not very efficient for the network [Halabi 97] [Lewis 

98] [Lewis 98].  For simple programs it seems to work, but for Virtual Reality 

programs where many Variables are changing very fast, this configuration is 

unacceptable.  Performance is so low that some times the user thinks that the 

program is not even running because the Coordinator requests many Variables and 

blocks for each one of them. 

 

Requests made into Messages 

 

type size id value 
0 33 NULL ENABLE 

(c) 

type size id value 
8 46 10011…. SETE 

(a) 

type size id value 
0 33 NULL DISABLE 

(d) 

type size id value 
0 47 NULL GETE 

(b) 

type size id value 
16 47 101001.... GETE 

(e) 
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In the figure above, (a), (b), (c), and (d) are the four types of messages sent to 

Workers from the Coordinator.  (e) is the reply message sent by the Workers to a 

GetE request. 

 

 

Multi-messaging - Block for replies 

 

In this configuration, the Coordinator builds a multi-message that consists of 

several SetE, Enable, and Disable requests and sends this multi-message to 

Workers.  However, as in Single-messaging, GetE requests are sent following the 

Single-messaging mechanism.  The Coordinator still blocks to get the reply from the 

Worker to which the request was sent.  The multi-message is patched with a header 

so that the Workers know how many requests are included, and how large the 

multi-message is.  The multi-message header includes the following fields: 

 

• nRequests 
• mSize 
• buffer 

 

The ‘nRequests’ indicates the number of requests in the multi-message.  The 

‘mSize’ indicates the size of the ‘buffer’ field.  All the requests are stored in the 

‘buffer’ field.  The ‘buffer’ field consists of multiple Single messages the same as 

those in Single-messaging. 
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Multi-message containing multiple mini-messages 

 

Even though this mechanism is increasingly faster than Single-messaging, it is still 

slow and unacceptable for Virtual Reality.  Its slowness is because the Coordinator 

still blocks while waiting for replies from the Workers.  It is faster than Single-

messaging because it better utilizes the network by sending fewer but bigger 

messages over the network.  All the requests in the ‘buffer’ field are the same as the 

ones in Single-messaging. 

 

 

Multi-messaging - Non-Block 

 

The next mechanism of sending messages is similar to the previous one.  Here the 

Coordinator builds again a multi-message and this time even the GetE’s are 

included.  The Coordinator does not block for replies however.  It rather sends the 

requests, and when the GetE replies come back it uses them.  In the mean time, it 

uses old values of the Variables.  In Virtual Reality this is acceptable as long as the 

delay is not too big.  Using this asynchronous approach introduces several 

problems.  The first one is that the Coordinator keeps sending requests without 

blocking for replies and this may overflow the network and as a result the 

application crashes.  The Coordinator needs to know when the network is getting 

buffer 

type size id value 
8 46 10011…. SETE 

type size id value 
0 33 NULL DISABLE 

type size id value 
8 46 10011…. SETE 

type size id value 
8 46 10011…. SETE 

type size id value 
8 46 10011…. SETE 

nRequests mSize 

5 102 
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near the overflow threshold so that it stops sending messages.  That is why there is 

a tunable parameter in the configuration.  This parameter indicates the threshold 

line of how many pending messages/requests are allowed on the network.  The 

Coordinator keeps building the messages but if it already sent too many messages, 

crossing the threshold, it then disregards the messages instead of sending them to 

the Workers.  This, however, causes another problem.  What happens if the message 

that was disregarded included an Enable/Disable request?  Enable/Disable requests 

modify the constraint graph on the fly.  If one of these messages does not get to the 

Workers, the Workers will work on the wrong constraint graph.  That is why before 

the Coordinator disregards a message it checks its mini-messages, in the ‘buffer’ 

field, and if it includes Enable/Disable requests, it sends them to the Workers even 

if it crosses the threshold.  Enable/Disable requests are of high priority and cannot 

be disregarded.   

 

There is also another problem with the GetE requests.  In the previous two 

messaging mechanisms when the Coordinator sent a GetE request, the Worker got 

it, ran the constraint engine and replied back to the same Coordinator on the same 

communication channel where it received the request.  In the non-blocking 

mechanism however, all Workers see the GetE requests.  They are smart enough to 

check to see if they are responsible for each GetE request however.  If they are not, 

then they disregard the requests, otherwise they reply back to the Coordinator.  But 

what happens when there are several Coordinators in case of a Multi-user 

environment.  The Workers need to know which Coordinator initiated the request so 

they can reply back to that Coordinator.  To solve this problem, when the 

Coordinator initiates a GetE request, it places its own ‘id’ in the unused ‘size’ field of 

the mini-message.  This way, Workers know who initiated the request and reply 

back to the requestor.  In an environment where we have two Coordinators, one with 
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id=0 and the other with id=1 and the Coordinator with id=1 requests the Variable 

with id 71, a sample multi-message would look like the following figure: 

 

 

GETE requests embedded into the multi-message 

 

 

Configuration file 

 

The configuration file is a text file that contains several colon-delimited fields.  This 

file is shared among all Coordinator(s) and Worker(s).  It contains the following: 

 

• The number of Workers in the system 
• The number of Slave Coordinators when in Multi-user 
• The IP address or DNS name of the Master Coordinator that eventually all 

systems will connect to. 
• The Port number of the Master Coordinator that is listening on 
• The IDs of each Coordinator when in Multi-user mode (to individualize 

Coordinators) 
• The flavor of the message-passing algorithm.   
• The threshold of how many pending messages can be on the network 

 

The only information the Workers need is the IP address or the DNS name of the 

Master coordinator and the Port number upon which the Master is listening.  The 

buffer 

type size id value 
8 46 10011…. SETE 

type size id value 
0 33 NULL DISABLE 

type size id value 
8 46 10011…. SETE 

type size id value 
1 71 NULL GETE 

type size id value 
8 46 10011…. SETE 

nRequests mSize 

5 94 

This is the ID of the Coordinator 
requesting Variable with id 71 
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rest is communicated to them via the Coordinator by the DLoVe protocol.  For 

simplicity however, all machines participating in the DLoVe environment are 

provided with the same copy of the configuration file.  A complete description of the 

configuration file is provided in Appendix B. 
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Chapter 10:  The ‘arms’ Application 

 

 

 

Overview 

 

DLoVe was designed to address a variety of issues inherent in the specification and 

implementation of non-WIMP user interfaces.  Its level of success can be measured 

directly or indirectly by attempting to create applications that rely upon the 

purposed features of the UIMS.  The lessons learned from the development 

exercises, combined with a concrete measure of how easy and correct the 

application performed, may be interpreted as an indicator of the success or failure of 

the UIMS itself. 

 

Over twenty complete applications and a variety of code fragments have been 

developed to test the correctness and robustness of DLoVe.  From this set of 

applications, several sample development efforts will be presented in detail in this 
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chapter.  For every application I present, I will explain how it can also be 

transformed to run in a multi-user environment.  

 

The ‘arms’ program consists of two sets of arms.  The first set of arms consists of 

one double-jointed arm, an arm that has attached to it to movable sub-arms, called 

Arm2.  The second set of arms consists of twenty-four single-jointed arms, called 

ArmSlaves.  The ArmSlave arms follow the direction of where the Arm2 is pointing.  

The user can grab any of the two sub-arms of the Arm2 and move them. Half of the 

ArmSlave arms follow the first tip of the Arm2 and the other half the second tip. 

 

Initially the ‘arms’ program was designed to run on a single machine for a single 

user.  With no modifications, the same program can run in a distributed mode 

evaluating the Links in parallel.  Lastly I will show how the arms program was 

modified to run in a multi-user environment and how roles can be assigned to each 

user participating in the virtual environment.  A screen dump of the program in 

execution is shown in the following figure: 
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Snapshot of the ‘arms’ program 

 

The Arm2 arm is shown in the foreground of the figure.  And all the ArmSlave arms 

are shown in the background.  Half of the ArmSlave arms are pointing to the first tip 

of the Arm2 arm marked as “tip 1” in the screen dump above and the other half at 

the second tip of the Arm2 arm, marked as “tip 2”.   

 

 

Objects in ‘arms’ - single user. 

 

In the ‘arms’ program the user can grab any of the two sub-arms of the double-

jointed arm and move them.  The hand of the user is shown in the scene graph as a 

small cube.  The Polhemus sensor is sending six floating point numbers that 

indicate the positionand angle of the hand/sensor in space.  In every cycle in the 

Virtual Hand 

tip 2 

tip 1 
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main program the polhemus[0] Variable gets set with the SetE operation with what 

the Polhemus sensor sends.  Then the Link ‘LinkNormal’ extracts the 3D coordinates 

and the 3 angles and places the result in Variable ‘pos’ and ‘angle’ respectively as 

shown in the figure below.  The Link ’LinkMat’ uses these two Variables to construct 

a matrix and place the result in Variable ‘mat’.  This Variable is attached to a 

Performer matrix so it can draw the Virtual hand.  Performer has ‘Dynamic 

Coordinate System’, DCS, matrices that can change at run time.  In DLoVe these 

matrices change by first attaching Variables to matrices and then modifying the 

results in them.   

 

 

The cursor object 

 

The object above is called ‘cursor’ and when it gets created the user’s virtual hand is 

drawn in the scene. 

 

In the diagram above I am using the polhemus[0] Variable.  This array of pointers to 

polhemus variables is used internally to distinguish the multi-users’ hands in a 

multi-user environment.  If the system is running in single user mode, then the 

Variable polhemus also can be used instead.  In multi-user environments however, 

we need to distinguish the different physical polhemus devices.  The index in the 

array indicates the application level identification number that is supplied by the 

user in the configuration file.  If we have in the configuration file the lines 

 

polhemus[0] 

LinkNormal 

pos 

angle 

mat 

LinkMat 
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ID: mondian.eecs.tufts.edu=4 
ID: vermeer.eecs.tufts.edu=7 

 

then the valid indices in the polhemus array are 4 and 7. 

 

Both users need the following code: 

 

cursors[4] = new PolhemusCursor(……, polhemus[4]); 
cursors[7] = new PolhemusCursor(……, polhemus[7]); 
 

Next I will describe how the arms were designed.  All arms are subclasses of the 

class Arm1.  Arm1 arms are single-jointed arms that the user can grab and move.  

The diagram consisting of the Links and Variables that describes Arm1 arms is 

shown below: 

 

 

The Arm1 object 

 

The Variable ‘curPos’ is the position of the cursor or else, the position of the Virtual 

hand.  The ‘pivot1Var’ Variable indicates the position of the join of the movable sub-

arm and the base.  The ‘dir1Var’ indicates the direction of the arm.  The Link ‘linkc1’ 

when enabled computes the rotation matrix of the movable sub-arm of Arm1.  This 

is the matrix that gets installed in Performer’s scene graph so that when the 

Variables change the rotation of the sub-arm, the change appears in the scene.  

Variable ‘scr2var’ holds the length of the sub-arm.  The Link ‘linktip1’ uses the 

pivot1Var 

dir1Var 

curPos 

linkc1 linktip1 

rot1 

scr2var 

tip1 
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rotation of the sub-arm along with the length of it and calculates the position of the 

sub-arm’s tip.   

 

 

The parts of an Arm1 object 

 

The Link ‘linkc1’ gets enabled only when the mouse button gets pressed while the 

arm and the Virtual Hand intersect.  This operation indicates that the user grabed 

the arm and now can move it.  When the user releases the mouse button the hand-

arm relationship terminates by disabling the Link ‘linkc1’. 

 

Similarly the Arm2 is constructed.  Arm2 is a subclass of Arm1.  Arm2 is the same 

as Arm1 in addition to a second sub-arm that is attached at the tip of the first sub-

arm as shown below. 

 

 

The parts of the Arm2 object 

The tip of the sub-arm 
Sub-arm attached to Base 

Length of sub-arm 

Base of Arm 

Second sub-arm attached at the 
tip of the first sub-arm 

First sub-arm attached at the Base  

Tip of first sub-arm  

Tip of second sub-arm  
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In the figure below the second sub-arm (shown below) is similar to the first one 

shown previously.  The second sub-arm needs to also know about the cursor 

position, Variable ‘curPos’, and it also needs to know the length of the second sub-

arm since it can be of different length than the first one. 

 

 

Links and Variables of the Arm2 object 

 

The ArmSlave arm is also a subclass of Arm1.  ArmSlave is the same as Arm1 but 

when created instead of passing the cursor pointer, the tip of another arm is passed.  

These arms cannot be grabbed.  Instead they follow the direction of other arms 

depending on what object we tell them to follow.  The object does not have to be 

another arm.  ArmSlave arms can point to any object’s direction, as long as the 

direction to follow is a Variable of type Variable<Pos6>. 

 

 

 

 

tip2 

pivot1Var 

curPos 
linkc2 

rot2 

scr3var rot1 

scr2var 

linktip2 
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 ‘arms’ in distributed mode 

 

If we denote an ArmSlave arm with the following symbol            where the output is 

at the right of the symbol, then in the ‘arms’ program the wiring looks like the 

following figure: 

 

 

ArmSlave objects wired to an Arm2 object 

 

Half of the ArmSlave arms are pointing at the tip of the first sub-arm of the Arm2 

and the other half at the second.  A diagram showing the cursor, the two tips of the 

Arm2 and all the ArmSlave arms is shown below. 

 



Leonidas Deligiannidis 
 

 
 

 

 
Page 140 

 

Half ArmSlave objects attached to first tip of an Arm2 object and the other half to the 
second tip 

 

Such an application can run in distributed mode where the position of the ArmSlave 

arms is calculated in parallel.  If we have 24 Workers, then each Worker will 

calculate the position of one of the twenty-four ArmSlave arms.  For simplicity only 

the first four Workers are shown below along with the ArmSlave arms that are 

responsible to maintain. 

 

 

 

cursor 

tip1 

tip2 
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ArmSlave objects evaluated in parallel 

 

When fewer than 24 Workers are available, Workers will have to maintain multiple 

ArmSlave arms.   

 

The original program that was designed to run in non-distributed mode can now run 

in distributed mode where the calculations to maintain the correct direction of the 

ArmSlave arms is done in parallel.  There is no code to modify.  The 

user/programmer only has to recompile and link against the distributed set of 

libraries of DLoVe.   

 

cursor 

tip1 

tip2 

cursor 

tip1 

tip2 

cursor 

tip1 

tip2 

cursor 

tip1 

tip2 

(a) (b) 

(c) (d) 
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‘arms’ for a multi-user environment 

 

To run the same ‘arms’ program in multi-user multiple users are needed.  Multiple 

users means multiple hands or multiple cursor objects.  The number of Slave 

Coordinators has to be specified in the configuration file.  Then the Slaves can start 

up since the executable file for the Master and the Slaves is the same.  In a scenario 

where two Coordinators exist, where one is the Master and the other is the Slave, 

both Coordinators control the single Virtual hand.  This is because all systems 

participating in the multi-user environment, Workers and Coordinators, know about 

a single cursor object.  Both Coordinators try to modify the position of the cursor’s 

position since they are both attached to a Polhemus sensor.  The Worker(s) see a 

SetE operation for the polhemus Variable.  Clearly we need two cursor objects.  One 

for the Master and one for the Slave Coordinator since both users need a Virtual 

hand in the Virtual World.   

 

We also need to add some additional Links and Variables and wire them such that 

both cursors/users can grab the sub-arms of Arm2.  A diagram with the additional 

cursor and the additional wiring is shown below: 
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Two-user interface in the ‘arms’ program 

 

First the new cursor, cursor B above, must be created.  Then all the Links that are 

using cursor A as input must be duplicated so cursor B can be attached to these 

new Links as shown below highlighted: 

 

 

Only one user controlling an Arm2 object 

cursor A tip1 

tip2 cursor B 

pivot1Var 

dir1Var 

linkc1 linktip1 

rot1 

scr2var 

tip1 

curPos A 

linkc1_b 

curPos B 
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Link ‘linkc1’ uses cursor A for input and so it must be duplicated.  The duplicated 

Link is ‘linkc1_b’.  When creating ‘linkc1_b’ the cursor B has to be passed instead of 

cursor A.  The rest stays the same.  The important point here is to note that the 

output Variable of the duplicated Link is the same.  This indicates that both cursor 

can modify the position of the sub-arms.  The same procedure needs to be done for 

any other object in a program that gets transformed from a single-user to multi-user 

program. 

 

The second part of the modification is the state machine.  The sub-arms can be 

moved only when the user intersects his/her hand with a sub-arm and presses the 

mouse button, which in turn enables the ‘linkc1’/’linkc1_b’ Link.  The discrete time 

machine sends events for every mouse event it catches.  When the mouse button 

gets pressed, the discrete time machine will send an event indicating that the mouse 

button was pressed to all objects in the system.  And thus, both Links ‘linkc1’ and 

‘linkc1_b’ will get the event and they will both get enabled, eventhough only one user 

pressed the mouse button.  For this reason the discrete time machine also re-writes 

the label of the event appending the application identification number at the end of 

each event, which is taken from the configuration file.  The programmer needs to 

modify the code where the event gets caught in the Links.  Each Coordinator needs 

to compare its application identification number with the received event to 

determine whether it needs to enable its Link or not.  They both need to compare 

the events against the application id because they both run the same executable 

and the only way to figure out who is who, is by checking their ids.  In this 

environment having one Coordinator with id equal to 3 and the other equal to 4 the 

state diagram looks like the following figure: 
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State transition diagram of the Event Handle of an Arm1 object and the code that is 
executed based on the state transition 

 

The code that gets executed is shown the boxes.  The Coordinators need to test if the 

event gets generated locally so they can perform the correct operation on the correct 

Link.  The Workers do not execute the code in the boxes.  The Coordinators only 

execute it.  The Coordinators generate the events and then based on the event they 

perform an operation, in this case Enable and Disable operations.  Then these 

Enable/Disable operations are sent to the Workers over the network as requests to 

modify the graph accordingly. 

 

With the above state diagram, both users can grab the sub-arm at the same time.  

And both ‘linkc1’ and ‘linkc1_b’ Links can be enabled at the same time.  Because 

both Links store their output in the same Variable ‘rot1’, half of the time one user 

Hand – object, intersect Right mouse button Pressed 

Right mouse button Released 

Start 

Intersect 

Follow Hand 

if event(R_MouseButtonDown_3) && (myID == 3) then 
 linkc1ÅEnable() 
else if event(R_MouseButtonDown_4) && (myID == 4) then 
 linkc1_bÅEnable() 
fi 

Hand – object, do not intersect 

if event(R_MouseButtonUp_3) && (myID == 3) then 
 linkc1ÅDisable() 
else if event(R_MouseButtonUp_4) && (myID == 4) then 
 linkc1_bÅDisable() 
fi 
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controls the arm and half the other.  To work around such problems more 

conditional code needs to be inserted between the ‘if’ statements above to ensure 

that the first user who grabs the sub-arm controls it until the user releases the 

mouse button. 

 

 

The ‘switch’ mechanism’ 

 

Transforming a program from single-user to multi-user involves modification of 

existing code.  Adding functionality however involves adding new code.  In multi-

user environments it makes sense to give different roles to different users.  For 

example, in a virtual operating room there is one instructor that is teaching new 

graduates how an operation is performed, and the graduate students that are 

watching and learning.  Or in our example of the double-jointed arm and the 

ArmSlave arms, one user is allowed to grab only the first sub-arm and the other the 

second sub-arm.  This can be specified with the diagram above.  However, how can 

the roles be switched at run time.  Let us say that user A is allowed to grab the first 

sub-arm and user B the second.  Then by pressing the character ‘t’ the roles get 

swapped.  Or by pressing the character ‘T’ both users are allowed to grab both sub-

arms.  The difficulty of the problem is that both users can type in the character ‘t’ or 

‘T’.  How would one user know that the other user typed the character ‘t’?  If we 

have a single Variable ‘V’ that both Coordinators can query we might drop the 

message that includes a GetE operation on Variable ‘V’.  Multi-messaging 

mechanism without blocking for replies tries not to overflow the network by 

dropping messages.  Querying Variable ‘V’ in every loop in the main program is not a 

solution because events are happening in discrete not in continuous time.   



Leonidas Deligiannidis 
 

 
 

 

 
Page 147 

 

If we have two users, user A and user B, where user A initially is allowed to grab 

arm A and user B arm B and then user A presses the ‘t’, both users might end up 

grabbing arm B at the same time.  When user B finally sees the change, he/she will 

switch roles but it may be too late and user A will be confused because of the wrong 

behavior of the application.  In the following figure the action of the users is shown 

and also the value of the Variable ‘V’ as seen by each Coordinator and assuming just 

one Worker.  When the Variable ‘V’ is set to 0 then user A can grab the first sub-arm 

and the user B the second.  When the Variable ‘V’ is set to 1 the roles are reversed.  

 

Inconsistency issue in a multi-user VE 

 

Initially (a) user A is allowed to grab arm A and user B arm B.  All see ‘V’ as set to 0.  

Then user A types in the character ‘t’ (b) to switch roles with user B, and sets ‘V’ 

equal to 1.  User A sends a message to the Worker and both Coordinator A and the 

Worker see ‘V’ as equal to 1.  However, Coordinator B does not see the change.  This 

is because Coordinator B dropped the message that included a GetE request on 

Variable ‘V’.  To guaranty that this SetE operation arrives at the Worker we also 

User A User B Worker 

Grab A 0 Grab B 0 0 (a) 

Press ‘t’ 1 Grab B 0 1 (b) 

Grab B 1 Grab B 0 1 (c) 

Grab B 1 Grab B 0 1 (d) 

Grab B 1 Grab B 0 1 (e) 

Grab B 1 Grab A 1 1 (f) 
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have to send the message as a high priority message so it does not get dropped.  

This can be implemented by Enabling a fake Link; Enable and Disable operations 

are of high priority.  In (c) and (d) both users can grab arm B.  The same happens in 

(e) as well, but now the Coordinator actually sends the message to the Worker with a 

GetE request on Variable ‘V’.  Finally in (f) the Worker replies back to Coordinator B 

and all machines see the same Value on Variable ‘V’.  It is more confusing when the 

Coordinator B still thinks that Variable ‘V’ is set to 0 and types in ‘t’.  This mess is 

due to the fact that we are using the continuous time subsystem to implement 

something that is discrete.  The Coordinators are querying a continuous Variable 

that it changes based on discrete events.  That is why we need a message that can 

travel from a Coordinator to all other Coordinators.  But since there is no direct 

connection between the Coordinators, this can be done via a Worker.  Using the 

“Backward Notification of Events”, a Coordinator can request a Worker to notify all 

other Coordinators.  This way the Coordinators do not have to query in every loop 

that special Variable ‘V’.  When one Coordinator wants to set such a special Variable 

it uses the SetE_Broadcast() operation which is also of high priority message.  The 

Worker sets the value on the requested Variable and then it sends a message to all 

other Coordinators to notify them about the change.  This message looks like a GetE 

reply from the Worker to the Coordinators.  The Coordinators do not care if they 

requested that Variable or not.  This way a change on one Coordinator is visible by 

all other Coordinators in the multi-user environment. 
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Chapter 11:  An Eye Tracking 

Application 

 

 

 

Overview 

 

DLoVe is designed to adapt to the evolving needs of non-WIMP user interfaces.  

DLoVe supports the mechanisms for new input and output devices without 

requiring modifications to the UIDL.  In this chapter I present an application that 

reads input from an X window, a Polhemus 3D tracker for the location and the 

orientation of the head and hands, and from an eye-tracking device.   

 

In this application, 2Zoom, there is a virtual world with virtual objects away from 

the reach of the user.  When the user looks at a virtual object for over 5 seconds, 

the object becomes selected and highlighted.  The user can operate on the selected 

object using his/her hands.  To deselect an object, the user has to look away from 

the selected object.  All the virtual objects are semi-transparent.  The more the user 
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looks at an object, the more solid it becomes up to the point when the object 

becomes selected.  The left hand of the user simulates the origin of the operation, 

and the right hand operates on the object.  The right hand, depending on the 

location of the left hand, can move and rotate the remote virtual object in space.  

When the right hand comes close (within an inch) with the left hand, the object 

stops moving.  

 

 

Hand Movement for Object Manipulation 

 

The user using both of his/her hands can move and rotate selected objects from a 

distance.  When the object is near his/her reach, he/she can reach out and grab the 

object and manipulate it.  In contrast, when an object is far away the user has to 

bring the object near him/her to examine it or build more complex objects out of 

more primitive objects.  The left hand serves as a base or origin that the right hand 

uses as reference.  The right hand can move around the left hand to indicate in 

which direction the selected object should move.  There are three perimeters around 

the left hand, which represent the speed of the remote object.  For example, when 

the right hand moves on top of the left hand, the remote object keeps moving 

upward.  When the right hand moves about 15 inches on top of the left hand, the 

remote virtual object still keeps moving upward but with a higher speed.  To slow 

down the object the user has to move his right hand closer to the left.  When the 

right hand comes to an inch away from the left, the object stops moving.  The 

following figure illustrates the movement of the hands to manipulate a remote 

virtual object: 
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Hand movement for eye-selected object manipulation 

 

Designing the Application 

 

Each object can be selected by looking at it for over 5 seconds and then 

manipulated, or if it is close enough to the user, it can be grabbed and then 

manipulated.  The following figure shows the Links and Variables that describe each 

object this application: 

 

3rd speed 

2nd speed 

1st speed 

Left Hand 

Right Hand 

Z plane  

3D sensor 

X-Y plane 
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Two hand positions controlling the position of an eye-selected object 

 

Each object is encapsulated with in a ‘TargetSelect’ class.  Each object, if it is 

close to the user, can be grabbed with one hand in which case Link ‘Identity’ 

becomes enabled and Link ‘Zoom’ becomes disabled.  In this scenario, the object 

follows the position of ‘cursor1’, which is the user’s right hand.  If the object is 

selected, (e.g. by looking at it for over 5 seconds) it can be manipulated using both 

hands. 

 

There is also one Link in the application that controls the brightness and the 

selection of the objects.  The ‘Select’ Link uses the ‘eyePosition’ and ‘eyeTag’ 

Variables that indicate in which direction the user is looking.  The ‘Select’ Link 

keeps a histogram of the ‘brightness’ value of each object.  If the user looks at an 

object for over 5 seconds, the Link initiates a token to that object’s event handler 

that indicates that a specific object is selected. 

 

cursor1ÅGetMat() 

cursor2ÅGetMat() 

Identity 

Zoom 

position 



Leonidas Deligiannidis 
 

 
 

 

 
Page 153 

 

Brightness and eye-selection of objects 

 

When an object becomes selected, the Link initiates an EYESELECT token to the 

selected object’s event handler.  And when the object transitions from being selected 

to not being selected, an EYEDESELECT token is initiated. 

 

The event handler of each object consists of four states.  Initially all objects are in 

the ‘start’ state by default.  In the following figure, the tokens that cause the state 

transition are shown on top of the arrows and the lines with the ♦ indicate the 

action that takes place during the transition; which is enabling or disabling Links.  

The ‘Z’ pointer refers to the ‘Zoom’ Link and the ‘I’ refers to the ‘Identity’ Link.  

Some state transitions involve a test condition to figure out whether or not the 

user’s hand intersects with an object (e.g. from ‘start’ to ‘drag’, and from 

‘selected’ to ‘drag_select’). 

Sends the following tokens  
• EYESELECT  
• EYEDESELECT 

when appropriate 

eyePosition 

eyeTag 

Select 

brightness of obj (1) 

brightness of obj (2) 

brightness of obj (3) 

brightness of obj (N) 

N number of 
eye-selectable objects 
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State transition diagram of the 2Zoom application 

 

For example, if the user looks at an object for over 5 seconds, the ‘Select’ initiates 

an EYESELECT token, the object’s event handler enables Link ‘Zoom’ and then it 

transitions to the ‘selected’ state; where the object can now be manipulated using 

both hands.  If the user moves the object near his/her reach and grabs it (by 

intersecting his/her hand with the object and pressing the middle mouse button), 

DLoVe initiates a MIDDLEDN token.  The event handler sees the token, checks to see 

if the user actually touches the object, and if it does it disables Link ‘Zoom’, enables 

‘Identity’, and transitions to state ‘drag_select’.  At this point the object follows 

the user’s hand position and orientation. 

 

A snapshot of the application at run time is shown below: 

 

♦  ZÅDisable() 

drag_select 

selected 

start 

drag 

EYESELECT 

EYEDESELECT 

MIDDLEUP 

EYESELECT 

MIDDLEDN 

MIDDLEUP 

EYEDESELECT 

MIDDLEDN &&  cursor1->GetHit() 

&&   cursor1->GetHit() 

♦  ZÅEnable() 

♦  IÅEnable() 

♦  IÅDisable() 

♦  ZÅDisable() 

♦  ZÅEnable() 

♦  IÅDisable() 

♦  IÅEnable() 

♦  IÅEnable() 

♦  IÅEnable() 
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Snapshot of the 2Zoom application 

 

The two hands of the user are visible as well as several objects that can be selected 

and manipulated. 

Left hand Right hand 
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Chapter 12:  The DLoVe Virtual Park 

 

 

 

Introduction 

 

The programming examples given in Chapters 10 and 11 were each designed to test 

a limited subset of the DLoVe system’s purported features and capabilities.  These 

small applications echo the themes that large-scale non-WIMP interfaces encounter.  

However, these examples did not require facing challenges encountered in full scale 

Virtual Environment application development.  Developing a large application using 

DLoVe’s paradigm can claim its programming suitability for Virtual Environments.  

The application developed in this chapter was done on a Silicon Graphics 

workstation, using Performer as the graphics-rendering library.   

 

Three variations on the basic design were implemented.  The first is a desktop 

application that allows the user to explore and interact with the world; using 

keyboard and mouse controls.  The second is a head mounted display version that 

employed Polhemus trackers to sense the user’s position, orientation, perspective, 
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and activities within the virtual environment.  The third is a multi-user 

implementation where one user uses the keyboard and mouse, and the other the 

Polhemus and an HMD to interact. 

 

 

The Actors 

 

The application consists mainly of a Virtual Park with trees, computer simulated 

entities called Humanoids, and several plane-like objects that are flying over the 

park.  The main actors in the park are the Humanoids.  The Humanoids are entities 

that walk and interact with each other and with a virtual ball, or just wonder in the 

park.  In their spare time they play with a virtual ball.  They also have a constraint 

that makes them always stay in the playground and not go on the green.  Both, the 

users, and the Humanoids, can hit the ball and change its velocity and trajectory.  A 

Humanoid is shown below: 

 

 

 

A Humanoid and its parts 

 

Legs 

Hands 

Eyes 

Upper Lip 

Lower Lip 

Nose 
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The Humanoids have eyes and ears, and so they can hear and see the ball and each 

other.  For example, if they are walking straight and the ball drops just behind 

them, they rotate so that they face the ball and eventually hit it.  Their heads, when 

the ball is close enough, follow the trajectory of the ball.  The Humanoids do not 

always follow the ball.  If they are very close to the ball, they rotate their body to 

walk towards the ball.  If the ball passes by them, then they only look at it and they 

keep walking the same direction they were.  But even in this case, they cannot 

rotate their heads over 45 degrees.  When they can reach the ball, they lift their 

hands and hit the ball at which point the ball starts traveling upward, up to a point 

where gravity will bring it back down to the park.  The following figure shows the 

actions taken by a Humanoid depending on where the ball is: 

 

 

Actions of a Humanoid based on the Virtual ball’s position 

 

The following snapshot shows a Humanoid looking at the traveling ball in the virtual 

park: 

 

Turn head to look at the ball. 
Turn body and walk towards the ball. 

Hit the ball. 

Turn head to look at the ball, but 
keep walking straight. 

Humanoid Do not look at the ball, 
keep walking straight. 
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A snapshot of a Humanoid that its head follows the trajectory of the ball 

 

The following snapshot shows a Humanoid at the time when he hits the ball.  The 

Humanoid has just lifted his hand to change the velocity and trajectory of the ball. 

 

 

 

A Humanoid at the point of hitting the ball 
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The Humanoids can be picked up and moved by the user(s).  They do not like the 

experience, however, and they go into a panicking mode where they move their 

heads left and right, their hands and legs back and forth, and their lower lip up and 

down.   

 

There are also other objects in the park such as sliders and arms.  The user(s) can 

manipulate the sliders to modify the speed of the flying objects, and the arms to 

modify the position of the lower lip of the Humanoids.  All Humanoids know where 

all other Humanoids are in the park and they try to avoid them by not colliding into 

them.  The arms objects were explained in chapter 10 and the sliders with the 

rotating objects will be explained below. 

 

When this application is executed in a two-user environment, each user has a 

different roll, and they can also see each other.  For example, one of the users is 

allowed to only grab the first arm of the 2-handle arm, and the other user the 

second.  However, the users can reverse the roles by pressing the character ‘s’ on 

the keyboard.  When the ‘b’ character is pressed, then both users can grab both of 

the arms of the two-handle arm.  Both users can type the characters ‘s’ and ‘b’ to 

reverse their roles.   

 

 

Sliders and Orbiting objects 

 

The sliders are simple objects that have a handle bar that can be moved up and 

down to change a value of a Variable.  The orbiting objects depend on time and 
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speed.  By modifying the value of the slider we can control the speed of the orbiting 

objects.  The following diagram shows the Links and Variables that make up an 

orbiting object: 

 

 

An orbiting object 

 

An orbiting object uses the output Variable ‘rot’, which is a performer matrix, to 

draw itself based on time and speed.  The user can modify the speed of an orbiting 

object using the slider.  The Links and Variables diagram that make up the slider 

object is shown below: 

 

 

The Slider object 

 

The ‘lowVar’ and ‘highVar’ Variables indicate the minimum and maximum values of 

the slider.  The Variable ‘valueArg’ indicates the value of the Slider, and the 

‘handle’ Variable indicates the position of the handle of the slider.  The user’s hand 

position is the Variable ‘cursorÅGetPos()’.  When the user grabs the handle of the 

time 

speed 

rot 
linkrot 

scsVar 

highVar 

handle 
ztoval valtoz 

lowVar 

cursorÅGetPos() 

valueArg 
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slider, Link ‘ztoval’ becomes enabled and the user can modify the position of the 

handle and as a result the value of the slider (Variable ‘valueArg’).  A slider object 

that controls the speed of an orbiting object is shown below: 

 

 

 

Snapshot of a Slider controlling an orbiting object 

 

Variable ‘valueArg’ is used as input to the orbiting object to modify its speed.  The 

following diagram shows the wiring of a slider and an orbiting object where the 

slider can modify the speed of an orbiting object: 

 

Handle of slider 

A slider object 

An orbiting airplane whose speed is 
determined by the value of the slider. 
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Slider modifies speed of an orbiting object 

 

As with the ‘arms’ program, when the slider object is used in a two-user 

environment, Link ‘ztoval’ needs to be duplicated since it is using a Variable that is 

attached to the user’s hand (in this case cursorÅGetPos()).  For example, in a 

two-user environment, the above diagram looks like the following figure: 

 

time 

rot 
linkrot 

scsVar 

highVar 

handle 
ztoval valtoz 

lowVar 

cursorÅGetPos() 

valueArg 
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Slider wiring in a two-user environment 

 

In the figure above, each user’s hand is attached to the Variables 

‘cursorÅGetPos()’ and ‘cursor2ÅGetPos()’ respectively.  The first user’s hand is 

attached to Link ‘ztoval’ and the second user’s hand to ‘ztoval2’.  Each user can 

only enable the corresponding Link, and as a result, each user can control the 

corresponding Link independently from each other. 

 

 

Collision Prevention 

 

Each Humanoid has a unique id and based on this id and the force, explained 

below, the Humanoids prevent collision with each other.  Each Humanoid knows the 

position of all the other Humanoids.  All Humanoids act as magnets with the same 

time 

rot 
linkrot 

scsVar 

highVar 

handle 
valtoz 

lowVar 

cursorÅGetPos() 

valueArg 

ztoval 

ztoval2 

cursor2ÅGetPos() 

Becomes enabled when 
user2 controls the slider. 

Becomes enabled when 
user1 controls the slider. 
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polarity that makes them push each other away based on a force that is calculated 

as follows: 

 

1 CalculateForce() 

2 force = 0; 

3 MyPos = thisHumanoidÅGetPosition(); 

4 

5 for( i = 0; i < TotalHumanoids; i++ ) { 

6  for( k = 0; k < TotalHumanoids; k++) { 

7   foreach Humanoid man do 

8    other = manÅGetPosition(); 

9    if( InRadius( MyPos, other, 25) ) { 

10     if ( k > 2*i || i > 3*j ) { 

11      force += (i + k); 

 

Not all Humanoids affect each other.  Only the ones that are near (within a radius of 

25 –line 9–) to the Humanoid in question are in consideretion.  Out of these 

Humanoids in consideration, only the ones that actually satisfy the condition in line 

10 above affect the Humanoid in question. 

 

When a Humanoid with a low id is going to collide with a Humanoid with higher id, 

it gets pushed back based on the force calculated as shown above, and then it stops 

moving for a few seconds.  The other Humanoid, the humanoid with a higher id, also 

gets pushed back based on the force but it first changes its rotation and then keeps 

moving.  

 

 

Implementation Issues 
 

Implementing the collision prevention algorithm for a single/non-distributed 

environment was straightforward.  However, several issues were encountered when 

an attempt was made to execute the same program in the distributed mode.  In the 



Leonidas Deligiannidis 
 

 
 

 

 
Page 166 

non-distributed mode, each Humanoid before updating its position, it is doing a 

collision check to prevent collision with the other Humanoids.  However, in a 

distributed environment where each Humanoid is simulated by a different Worker, 

the current design does not work.  This is because each Worker only knows about 

the position of the Humanoid it is simulating and no one else’s.  To prevent 

collisions, a Worker needs to simulate all Humanoids.  However, there is an 

application design strategy that can be implemented, where a Worker knows the 

position of all other Humanoids that are being simulated by other Workers, even 

though each Humanoid is simulating a subset of the total number of Humanoids.  

This can be implemented using ‘synthetic Variables’.   

 

Synthetic Variables are regular Variables in DLoVe that they get updated by the 

application and not by DLoVe’s constraint engine.  The Coordinator collects all the 

Humanoid positions from all the Workers.  Then it updates all the Workers with all 

the Humanoid positions so they can run their algorithm for collision prevention.  A 

detailed explanation of this implementation is given below.   

 

 

Designing the Virtual Park 

 

The Humanoids are the main actors in the Virtual Park.  Their behavior is primarily 

determined by the virtual ball and by the position of most of the other Humanoids.  

As explained previously, the Humanoids try to find where the ball is so they can hit 

it.  However, if they collide with other Humanoids they get pushed back and maybe 

away from the ball. 
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The Virtual Ball 

 

The ball is an object that can be hit by the Humanoids and travel over the park.  

Gravitational forces bring it down to the park.  The user(s) can also grab the ball 

and toss it in the park.  The Links and Variables with which the ball is made up, is 

shown below: 

 

 

The virtual ball 

 

The Links ‘Identity’ and ‘lsavelast’ become enabled when the user grabs and 

moves the ball.  Otherwise, Link ‘toss’ uses the last position of itself, the time, and 

the velocity, to determine its position at a given time. 

 

 

The Humanoids 

 

The Humanoids are computer-generated entities that walk and wander around the 

virtual park.  They can be picked up by the user and manipulated.  Their main 

timer 
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interest is to find the virtual ball and hit it.  The following diagram shows the Links 

and Variables and their connections that make up a Humanoid object. 

 

 

A Humanoid object 

 

Each Humanoid knows where the ball is located, so it can take the appropriate 

action depending on its position.  Link ‘Simulate’ also runs a collision prevention 

algorithm that prevents Humanoids colliding with each other.  When the Virtual 

Park application is executed in a single non-distributed environment, each 

Humanoid can figure out where all other Humanoids are by executing the following 

code: 

 

foreach Humanoid i; do 
i->GetE(); 

done 
 

However, in a distributed environment collision prevention will not work with the 

current design because the Workers simulating one Humanoid cannot determine the 

position of the other Humanoids that are being simulated by the other Workers.  

They would have to simulate all Humanoids, and so, there would not be a need for 

timer 
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multiple Workers.  Synthetic Variables will play a key design strategy in solving this 

problem, and the implementation is shown later. 

 

 

Partition Issues 

 

With the current design of the Humanoids, DLoVe would partition the constraint 

graph very inefficiently.  The partition algorithm, as explained in chapter 7, assigns 

Variables to Workers based upon the number of Links that a Variable depends.  In 

the following figure where 3 Workers are available, the partition algorithm may 

assign ‘posn’ and ‘walkState’ to Worker 1, ‘Rotation’ to Worker 2, and ‘Speed’ to 

Worker 3. 

 

Issues in partitioning a Humanoid’s graph 

 

This above assignment is done as shown above because each of the four output 

Variables depends upon the same number of Links.  Even though the algorithm 

correctly assigns the output Variables to different Workers, it makes sense to have a 

single Worker updating all four Variables of the same Humanoid; all four Variables 
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become updated by a single evaluation of the Link ‘Simulate’ or ‘Identity’.  In 

addition, Workers 2 and 3 would also spend time evaluating the Links involved to 

bring these Variables up-to-date, ending up with redundant evaluations.  A single 

evaluation of the Link ‘Simulate’ brings all four output Variables up to date. 

 

To fix this inefficiency, I attached all four output Variables to an auxiliary Link ‘aux’ 

that is using an auxiliary Variable ‘auxVar’ as output, as shown below 

 

 

Correcting the partition inefficiency 

 

The Link ‘aux’ and the Variable ‘auxVar’ are never used by the application at run 

time.  They are only there to give a hint to the partition algorithm to assign all four 

output Variables of each Humanoid to a single Worker. 
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Collision Prevention and ball simulation issues in a 

Distributed Environment 

 

In a non-distributed environment each Humanoid can determine the position of all 

other Humanoids very easily as explained previously.  In a distributed environment 

however, where each Humanoid is simulated by a different Worker, there is no way 

for a Humanoid to know the position of the other Humanoids.  This is because, by 

design, there is no direct communication between the Workers.  The following figure 

illustrates how three Humanoids are attached to the ball and how they are 

partitioned so that, they are simulated by a different Worker. 

 

 

Three Humanoids assigned to be simulated by three different Workers 

 

In addition to this problem, in the figure above each Humanoid also simulates the 

position of the ball.  Since each Humanoid only knows about its position, it will not 

Worker 1 

Worker 2 

Worker 3 
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know when some other Humanoid hit the ball.  As a result, each Humanoid will 

think that the ball is at a different position. 

 

 

Synthetic Variable for ball position 

 

To fix the problem that each Humanoid simulates its own version of the ball, the 

Humanoids are not wired to the ball (so they do not update its position) but still 

have to know the position of the ball.  To solve this problem I use a synthetic 

Variable.  Each Worker has a synthetic Variable as input, which indicates the 

position of the ball.  The Coordinator, which simulates the trajectory of the ball, 

informs all Workers about the position of the ball.  This way all Humanoids have a 

consistent value of the position of the ball and they can act accordingly.  The 

Coordinator, which simulates the ball, and also knows the position of each 

Humanoid, changes the trajectory of the ball and eventually informs all Workers.  

The partition algorithm cuts the graph horizontally, where with the use of synthetic 

Variables the designer cuts the graph vertically; something that is left for future 

work to be automated.  The following figure shows the use of synthetic Variables for 

the position of the ball: 
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Synthetic Variables for the position of the ball 

 

In the figure above, each Humanoid is simulated by a different Worker.  The 

Coordinator simulates the position of the ball.  The Humanoids are not directly 

attached to the position of the ball.  However, they know the position of the ball via 

a synthetic Variable.  The Coordinator that updates the position of the ball, informs 

all the Workers about the position of the ball, which is stored in a synthetic variable.  

The Coordinator executes the following code in every loop: 

 

 forever do; 
  bpos = ballÅGetE(); 
  for every Humanoid i; do 
   iÅGetBallSyntheticVar()->SetE(bpos); 
  done; 
 done; 
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Evaluation on the 
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the graph 
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This way all Humanoids know the consistent position of the ball and they act 

accordingly. 

 

This is a solution to this problem that the designer needs to make.  DLoVe partitions 

the graph based on a horizontal cut where each Variable is assigned to a Worker 

based upon the number of Links it depends.  The use of synthetic Variables requires 

the designer to cut the graph vertically, at the design level, and insert code in the 

application that updates all the synthetic Variables in the system. 

 

 

Synthetic Variables for Collision Prevention 

 

The Humanoids needs to know about all other Humanoids’ position to prevent 

collision with each other.  But, all Humanoids are simulated on different Workers.  

To solve this problem I used synthetic Variables, as I did for the ball’s position.  The 

Coordinator, which queries all Workers, knows all the information about all the 

Humanoids so it can draw them on the screen.  The Coordinator queries every single 

Worker about the position of the Humanoids and then informs all the Workers about 

all the other Humanoids.  The following diagram shows the use of synthetic 

Variables for every Humanoid to know the position of every other Humanoid: 
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Use of Synthetic Variable for Collision Detection 

 

The Coordinator executes the following code to update the ball’s position and also 

the position of every Humanoid: 
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1 foreach iteration; 
2 bpos = ballÅGetE(); // get the ball’s position 
3 
4 // 
5 // get position of each Humanoid 
6 // 
7 for every Humanoid i; do 
8  i ÅGetPos()->GetE(); //  
9 done; 
10 
11 // 
12 // update synthetic Variable of balls position 
13 // and Humanoid’s position 
14 // 
15 for every Humanoid i; do 
16  i ÅGetBallSyntheticVar()->SetE(bpos); 
17 
18  // 
19  // inform every Humanoid about every other Humanoid 
20  // 
21  for every Humanoid h; do 
22 if( i != h ) then // do not inform itself about its position 
23 h ÅGetPos() ÅSetE(i ÅGetPos() ÅGetI()); 
24   endif 
25  done; 
26 done; 
27 done; 

 

Coordinator updates all Synthetic Variables on Workers 

 

In every iteration of the main loop, the Coordinator gets the up-to-date position of 

the ball (line 2).  Then it queries all Workers for every Humanoid’s position (lines 7 – 

9).  In the loop (lines 15- 26) the Coordinator updates all the synthetic Variables.  

First it updates the position of the ball (line 16) and then the position of every 

Humanoid (lines 21 – 24).  The ‘if’ statement, (line 22), is to avoid updating the 

position of the current Humanoid. 

 

When multiple users participate in the virtual park, and thus multiple Coordinators, 

only the Master Coordinator updates the synthetic Variables.  In this case the code 

in lines 15 – 26 is executed by the Master Coordinator only.  This avoids the 

problem of updating the same Variables from multiple machines that could result in 

inconsistent values of the synthetic Variables.  
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A snapshot of the Virtual Park simulating 8 Humanoids (only seven are shown) in a 

non-distributed environment is shown below: 

 

 

The DLoVe Virtual Park 

 

A snapshot of the same application in a two-user environment is shown below.  One 

user is using an HMD and the Polhemus to interact, and the second user is using 

the mouse to manipulate the camera (position and orientation of the head) and also 

the virtual hand. 
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Master Coordinator using an HMD and the Polhemus to interact 

 

Three Humanoids are visible here and the trees in the background.  The Humanoid 

on the right has just hit the ball and is looking at it as it is traveling over the trees. 

 

While this user is looking into the virtual park from this angle, the second user is 

trying to manipulate the controls.  The following snapshot was taken at the same 

time I took the above one.   
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Slave Coordinator using the mouse to interact 

 

In the above snapshot all the controls are visible at the front.  The three sliders on 

the right that both users can manipulate to change the speed of the three orbiting 

objects are visible.  In this snapshot only one of the orbiting objects is visible (the 

airplane top left).  There are also three ArmSlave arms similar to the arms in the 

‘arms’ program that follow the direction of the Arm2 arm.  The Arm2 arm is the same 

as described in the ‘arms’ program in chapter 10 where one user can grab the first 

sub-arm and the other the second.  And by pressing the ‘s’ character the role is 

reversed and the first user can grab the second sub-arm and the second user the 

first. 

 

 

This user’s virtual hand

The other user’s virtual hand 
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Summary 

 

The Virtual Park is a complete virtual world with a non-trivial level of complexity.  

The code examples presented here are the entire specification of the application for 

the desktop, the head-mounted display and the other variations on the application.  

Also, the modules needed to interface to external devices such as the Polhemus 

sensors and Performer rendering engine were presented.  

 

It took me about 100 hours to develop the non-distributed version of the application 

where 30 hours were only for the 3 dimensional objects using external applications 

such as Showcase and i3dm.  It then took me another 60 hours to develop the 

distributed and the multi-user versions of the application. 

 

The goal of this programming exercise was to demonstrate that the DLoVe’s claim, 

explored and supported by small test cases in chapters 10 and 11 continued to be 

valid when faced with a large scale, non-trivial, VR applications.  According to the 

results of this exercise I think that this goal has been achieved.   
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Chapter 13:  Performance Analysis 

 

 

 

Overview 

 

Two factors greatly influence the goodness of a graph partition.  A given graph 

should be partitioned into concurrent modules to obtain the shortest possible 

program execution time.  Secondly, one must choose the best size for each 

concurrent module that will result in fastest execution, while using a minimal 

number of processors.  The grain-packing problem is related to optimal scheduling 

where an “optimal” scheduler executes in minimum time, well known to be NP 

complete in general. 

 

DLoVe’s partition algorithm may be compared against load balancing and 

scheduling, but in reality it is someplace in between. Load Balancing, and more 

precisely Dynamic Load Balancing, tries to keep all processors equally busy, but 

does not try to reduce overall execution time.  Only when the calculations are more 

expensive than the communication, the applications may run faster [Hesham 94].  
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Dynamic Load Balancing handles process migration and reacts to conditions that 

vary in the network.  DLoVe’s partition algorithm determines at compile time how to 

partition the constraint graph.  DLoVe does not modify the partition of a given graph 

dynamically to efficiently implement Dynamic Load Balancing.  It tries to partition 

the graph assuming that all Links are equally computationally expensive.   

 

DLoVe assigns tasks to Workers in a manner similar to a scheduler.  A single task in 

a scheduler corresponds to a single Link where in DLoVe a task corresponds of a set 

of interconnected Links as described in chapter 7.  DLoVe uses the constraint graph 

itself to give extra information, making determining task allocation easier.  Though a 

real scheduler allows tasks to have any cost, DLoVe assumes that all Links 

comprising a task have the same cost.  This may cause DLoVe to create unbalanced 

task schedules but seems to work fine for many constraint graphs used in Virtual 

Reality. 

 

DLoVe uses a greedy round-robin scheduling algorithm, which is not optimal in 

general.  For example, assume there are 5 tasks with costs 3, 2, 2, 1, 1, and 

suppose there are two Workers available.  Using greedy round-robin assignment, 

Worker 1 will be assigned tasks with costs 3+2+1=6 while Worker 2 will be assigned 

tasks with costs 2+1=3.  An optimal scheduler might assign tasks of cost 3+1+1=5 

to Worker 1 and tasks of cost 2+2=4 to Worker 2, with imbalance of 1 time unit. 
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Strategy for analysis 
 

Two sets of experiments were conducted to measure the performance of DLoVe.  The 

first set tested the performance of the Virtual Park while simulating 32 Humanoids.  

I measured the results of the non-distributed and the distributed versions using up 

to three Workers.  To assess performance, I counted the number of evaluations of the 

‘SimulateLink’ Link of each Humanoid routine for each Humanoid, as described in 

chapter 12.  I also measured the resulting frame rate at which the Coordinator was 

able to render the graphics on the display.  I purposely implemented a 

computationally expensive collision prevention algorithm for the Humanoids in order 

to overcome the network bandwidth bottleneck.  This experiment employed a 

traditional approach for measuring performance: the overall computational 

throughput for the system. 

 

The second set of experiments uses a new approach for measuring the performance 

of VR systems, by quantifying the accuracy of each frame rendered on the display.  I 

defined the accuracy of a frame as the difference between the wall clock time and the 

minimum time since all output Variables (used for rendering the display) were last 

updated.  Unlike the previous experiment, this one was conducted within a 

homogeneous environment.  For this set of experiments I used a very simple 

simulation executed on Sun ultra 5 workstations running Solaris 2.7.  I measured 

the latency of each network message as well as the number of requests initiated, the 

number of replies, and the number of messages that were discarded.  This allowed 

me to compute the accuracy of each frame rendered.  Results of this experiment 

show that traditional techniques for performance analysis do not accurately describe 

VR performance.   
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Performance with the Humanoids 
 

As described in chapter 12, ‘SimulateLink’ simulates a Humanoid by advancing its 

position and running the collision prevention algorithm making a Humanoid look at 

the ball and wander in the park.  Each ‘SimulateLink’ Link is executed at most 

once in every loop.  To measure performance, I counted the total number of 

evaluations of this type of Link.  Then I compared the results of the non-distributed 

version against the distributed version, utilizing between one and three Workers in 

the latter.  For the distributed version only, I measured results for different values of 

the ‘drop’ threshold variable (discussed in chapter 7) to tune the ‘Network Optimizer’ 

module (discussed in chapter 8) of the Coordinator.  I also compared frame rates 

with which the Coordinator was rendering the display in each case. 

 

 

Collision Prevention Internals 
 

The most computationally expensive Link in the Virtual Park application is the 

‘SimulateLink’ Link.  This Link takes care of the actions of a Humanoid as well as 

collision prevention.  A Humanoid first tests to see if it is positionally close to any 

other Humanoids and then acts depending upon its identity and the identities of the 

other Humanoids close to it (as discussed in chapter 12).   

 

 

Computer Network used for the Experiment 
 

This experiment was conducted on Silicon Graphics workstations using SGI 

Performer as the graphics-rendering library.  The four machines used had differing 
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hardware architectures.  Thus the scheduler’s task assumption that all Workers 

possess the same throughput is false, so that scheduling is less optimal than it 

would be in a homogeneous environment.  The four machines, as well as the 

Polhemus (with the sensors and the transmitter) and the Eye tracking PC were 

connected as follows:  

 

The SGI Experiment 

 

The machine used for the graphics, for the distributed and non-distributed version, 

was ‘mondrian’.  All the others were used as Workers when running the simulation 

in the distributed environment.  The PC above in the figure is the eye tracking 

hardware.  For this experiment, even though I did not use the eye tracking 

hardware, I used the PC to read the Polhemus input though it. 

 

The characteristics of the four machines are shown below, where the processor type, 

memory size, and cache differ between all four machines. 

 

 

Intel 486 PC 

10MB Ethernet 

mondrian 

jumpa pantha monet 

Polhemus 

Transmitter 

HMD 

sensor2 

sensor1 
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mondrian 
1 250 MHZ IP22 Processor 
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0 
CPU: MIPS R4400 Processor Chip Revision: 6.0 
Data cache size: 16 Kbytes 
Instruction cache size: 16 Kbytes 
Secondary unified instruction/data cache size: 2 Mbytes on Processor 0 
Main memory size: 64 Mbytes 
Graphics board: High Impact 
 

jumpa 
1 195 MHZ IP28 Processor 
CPU: MIPS R10000 Processor Chip Revision: 2.5 
FPU: MIPS R10010 Floating Point Chip Revision: 0.0 
Data cache size: 32 Kbytes 
Instruction cache size: 32 Kbytes 
Secondary unified instruction/data cache size: 1 Mbyte 
Main memory size: 128 Mbytes 
Graphics board: High Impact 
 
pantha 
1 250 MHZ IP22 Processor 
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0 
CPU: MIPS R4400 Processor Chip Revision: 6.0 
Data cache size: 16 Kbytes 
Instruction cache size: 16 Kbytes 
Secondary unified instruction/data cache size: 2 Mbytes on Processor 0 
Main memory size: 128 Mbytes 
Graphics board: High Impact 
 
monet 
1 200 MHZ IP22 Processor 
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0 
CPU: MIPS R4400 Processor Chip Revision: 6.0 
Data cache size: 16 Kbytes 
Instruction cache size: 16 Kbytes 
Secondary unified instruction/data cache size: 1 Mbyte on Processor 0 
Main memory size: 64 Mbytes 
Graphics board: GU1-Extreme 

 

‘Jumpa’ and ‘Pantha’ mounted the Performer run time libraries of ‘mondrian’, via the 

Network File System (NFS), adding even more overhead to the network and to 

‘mondrian’, ‘monet’ has its own copy of the libraries: 

 

 

Mounting Performer run time libraries 

10MB Ethernet 

mondrian 

jumpa pantha monet 

Performer run 
time Libraries 

Mount Performer 
libraries 

Mount Performer 
libraries 
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Analyzing the Results 
 

Two variables were varied during measurement of distributed version: the number of 

Workers participating, and the ‘drop’ threshold variable.  As it was discussed in 

chapter 9, the Coordinator needs to disregard messages that it builds when there 

are many pending requests on the network.  As a result, for this experiment I first 

ran the non-distributed version, counting the number of the ‘SimulateLink’ Link 

evaluations and measuring the frame rate.  Then I ran the distributed version with 

one, two, and three Workers.  Finally I repeated the distributed version experiment 

with a new value for the ‘drop’ threshold.   

 

Recall that the ‘drop’ threshold is used to limit the number of requests sent from 

the Coordinator to Workers and thus avoid overloading the network.  If this 

threshold is too small, then Workers will not receive enough tasks to keep them 

busy.  If the threshold is too large then two conditions may arise.  The Coordinator 

may overload the network with Worker requests, and eventually crash, or it may 

spend most of its time trying to send requests to Workers, thus spending less time 

rendering the display, reading replies from the Workers, and reading input devices.  

On the other hand, the Workers may be so busy serving the Coordinator’s requests 

that all replies come back to the Coordinator too late to be useful.  In Virtual Reality, 

when most of the replies come back to the Coordinator too late there is no real-time 

interaction and the result cannot be called Virtual Reality anymore, even if the 

frame rate stays high.  In this case frame rate alone does not accurately describe the 

efficiency of a rendering system. 
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For this set of experiments I utilized one, two, and three Workers.  ‘Jumpa’ was 

always the first Worker selected, then ‘pantha’, and finally ‘monet’ in this order.  For 

example, when two Workers were used for the simulation, ‘jumpa’ was the first 

Worker to connect to the Coordinator and ‘pantha’ was the second one.  This way 

the first, third, fifth, etc Humanoids were simulated by ‘jumpa’ and the second, 

fourth, sixth, etc Humanoids were simulated by ‘pantha’.   

 

Since there are 32 Humanoids, when 3 Workers are utilized for the simulation 

‘jumpa’ and ‘patha’ simulate 11 Humanoids where ‘monet’ simulates only 10.  Recall 

that the most powerful machine is ‘jumpa’ and the least powerful one is ‘monet’.  If 

the same experiment is conducted starting ‘monet’ first or second the results might 

be different. 

 

The following graphs show the results of running the application in non-distributed 

mode and in distributed mode using one, two, and three Workers.  The horizontal 

axis shows the value of the ‘drop’ threshold, while the vertical axis shows the 

number of evaluations of the Link ‘SimulateLink’.  One must note the difference in 

the Y-axis scale when reading the following two graphs: 
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Comparing the number of evaluations of the non-distributed and the distributed 
version of the Virtual Park application using computational expensive evaluations.  

‘SimulateLink’ is O(n3) where n is the number of Humanoids (32).  

 

 

 

‘SimulateLink’ is O(n4) where n is the number of Humanoids (32). 

 

In this experiment, by increasing the number of Workers, we increase the number of 

evaluations and thus seem to observe better performance.  This is because in the 
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non-distributed version, a single machine is trying to simulate all 32 Humanoids, 

where in the distributed version the workload is given to multiple machines 

simulating the Humanoids “in parallel”.  The distributed version with one Worker 

outperforms the non-distributed version because the Worker simulates the 

Humanoids while the Coordinator handles all user’s requests and the drawing of the 

scene.  Also in the distributed version I always used the most powerful Worker for 

the most complex tasks, then the next powerful one, and so on.   

 

We can also see the effect of the ‘drop’ threshold variable.  To tune this threshold, 

the designer needs to run several simulations to figure out the best value for the 

specific application and the specific network.  From this experiment we can see that 

the most evaluations are taking place when we use three Workers and we set the 

‘drop’ threshold around 1000.   

 

However, the more Workers we utilize, the fewer frames per second we get: 

 

 

Number of frames when the running time of ‘SimulateLink’ is O(n3), where n is the 
number of Humanoids 
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Number of frames when the running time of ‘SimulateLink’ is O(n4), where n is the 
number of Humanoids 

 

When we use more Workers, we get fewer frames per second because the 

Coordinator saturates the network faster due to sending the same messages to 

multiple Workers.  The Coordinator sends the same messages to all Workers 

because DLoVe is build on top of TCP/IP simulating multicasting.  For example, 

when there are three Workers the Coordinator has to send the same message three 

times, once for each Worker. This adds a lot of overhead to the Coordinator and as a 

result it spends less time updating the display.  The greatest decrease in frame rate 

is when the ‘drop’ threshold is over 2000.  This is because the Coordinator is trying 

to write too many messages on the network, and the network becomes saturated 

and network resources become temporarily unavailable.  The Coordinator keeps 

trying until it successfully writes the messages on the network, losing critical time 

on updating the display.  Several times the application crashed when I was using 

one Worker with a ‘drop’ threshold of over 2000.   
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The distributed version outperformed the non-distributed version in frame rate, 

because in the non-distributed version one machine is trying to simulate all 32 

Humanoids, leaving it no time to update the display.  In fact, the non-distributed 

version was so slow (2 frames per second) that it would disorient any person using 

it.  The frame rate on the distributed version could be improved if a different 

technique was used, for network communication, such as multicasting instead of 

unicasting.  If DLoVe outperforms the non-distributed version using TCP/IP for 

point-to-point communication, it promises even greater performance if it is re-

implemented using multicasting. 

 

The above experiment demonstrates that by using more Workers we get more 

evaluations, but fewer frames per second.  Because the ‘SimulateLink’ evaluation 

is computationally very expensive (more precisely the ‘CalculateForce()’ function 

described in chapter 12) the application computation load is the critical bottleneck 

rather than the network.  This means that the time needed to simulate the 

Humanoids is much greater than the cost of sending the requests over the network.   

 

To study what would happen if ‘SimulateLink’  was inexpensive, I re-ran the same 

experiment without the ‘CalculateForce()’ function, allowing the Humanoids to 

collide with each other.  In this case the non-distributed version of the application 

outperformed the distributed versions.  Also the more Workers I used, the fewer 

evaluations I received: 
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Comparing number of evaluations of the non-distributed and the distributed version of 
the Virtual Park application using computational inexpensive – O(n) – evaluations. 

 

This is because sending a request over the network is more computationally 

expensive than doing the evaluation locally.  Thus the more Workers I used, the 

more time the Coordinator lost in sending requests to each Worker. 

 

In addition, the more Workers the Coordinator used, the fewer frames it rendered, 

because it was spending most of its time trying to send/receive requests on the 

network:  

 

3           30          300       1,000      2,000      3,000    10,000     30,000 
‘drop’ 

threshold 

# of ‘SimulateLink’  
Evaluations  x  103 

non-distributed 

1 Worker 

2 Workers 

3 Workers 
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Comparing the frame rate of the non-distributed and the distributed version of the 
Virtual Park application using computational inexpensive – O(n) – evaluations 

 

Another issue I encountered in both experiments when the ‘drop’ threshold was 

somewhere over 3000 is that replies from the Workers exhibited large latencies. 

Even though the number of evaluations increases, as the ‘drop’ threshold increases, 

all replies became older.  In Virtual Reality, this means that when the user moves 

his hand, the system responds after many milliseconds, giving the impression that 

the user’s hand is not really attached to the virtual hand.  Or the user may turn his 

head and after some considerable wait, the system draws the correct perspective of 

the view. 

 

The actual latency of replies was not measured by this experiment, although it led 

us to suspect that latencies were abnormally large. 

 

I tried to run the same experiment with two users but encountered two problems.  

The second machine I had available was not attached to a Polhemus tracker.  This 

problem was resolved by simulating a second Polhemus with a mouse (this is 

3           30          300       1,000      2,000      3,000    10,000     30,000 
‘drop’ 

threshold 

Frames per second 

non-distributed 

1 Worker 

2 Workers 

3 Workers 
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something that DLoVe supports in its framework).  The second problem was that 

this second machine was a very slow Silicon Graphics workstation where the 

rendering was done in software; whereas ‘mondrian’ uses hardware for rendering.  

This second machine was so slow that even without using the ‘CalculateForce()‘ 

function, I was only getting 40% of the evaluations of the same application using 

‘CalculateForce()’ on ‘mondrian’.   

 

 

Performance with the ‘Perf’ program 
 

The analysis of the Virtual Park, even though it illustrated some of the positive and 

negative aspects of DLoVe was conducted within a heterogeneous environment.  The 

outcome of the experiment might have been different if all machines were exactly of 

the same architecture and all possessed a local copy of the Performer run-time 

libraries.  Clearly I needed a more carefully conducted procedure for conducting the 

experiment to get more conclusive and more accurate results. 

 

To address this, I implemented a very simple “Perf” application that was executed in 

a homogeneous environment, and made accurate measurements of its performance.  

I was able to measure latency of individual messages sent by the Coordinator, and 

the number of messages that were built and discarded by the Coordinator due to the 

setting of the ‘drop’ threshold. 

 

The ‘Perf’ benchmark program consists of 4 Links and 5 Variables.  It was designed 

so that DLoVe can partition it into at most 3 Workers.  The following figure shows 

the Links and Variables within this application: 
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DLoVe graph of the ‘perf’ application 

 

The ‘main’ loop of the application first sets the Variable ‘input’ and then requests the 

values of the three output Variables (out2, out3, and out4).  When this program is 

executed using three Workers, each Worker is assigned one output Variable as 

shown below, and thus the Coordinator can request these three output Variables in 

parallel from the three Workers: 

 

Partition of the DLoVe graph of the ‘perf’ application 

 

 

State machine of the run time system 
 

The Coordinator can be thought of as possessing five independent states.  The 

Coordinator builds a message consisting of several requests and sends it out to the 

Worker(s).  Initially, the Coordinator is in a ‘start’ state.  When it sees a need to 

request set or get a Variable’s value or to enable or disable a Link, it transitions to 

common 

branch1 

branch2 

branch3 

input middle 
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the ‘build’ state within which it builds the message that it may send to the 

Workers.  This message consists of requests such as SetE, GetE, Enable, and 

Disable.  At the end of the main loop, just before sending the message, it checks its 

internal counters, which indicate the number of pending requests on the network to 

each Worker.  If a counter is below a chosen threshold, it transitions to ‘send’ state, 

sends the message, and returns to the ‘start’ state.  Else, it discards the message 

and returns to the ‘start’ state.   

 

While in the ‘start’ state, it checks to see if any replies came back from the 

Workers.  If replies have arrived, it transitions to the ‘get’ state and processes all 

the replies.  When all replies are processed, it transitions back to the ‘start’ state 

where is starts building messages all over again.  The ‘start’ state is a state 

indicating idle time and it is used as a starting point in describing the functionality 

of the Coordinator.  The fifth state is the ‘render’ state in which the Coordinator 

transitions to render the display.  The following figure shows the five states and the 

transitions between them: 
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Internal state machine of DLoVe when executed in the distributed mode 

 

 

What is Measured 
 

The experiments were run for 60 seconds, where DLoVe collected two kinds of 

performance statistics every second.  Statistics included the number of requests 

initiated by the Coordinator, the number of messages that were discarded, and the 

number of replies that came back to the Coordinator.  Additional performance data 

included latency of each request.  Every request was timestamped with the time of 

initiation before being sent to the Worker(s).  The Worker that responded to the 

requests preserved the timestamp in its reply.  The Workers also marked a GetE 

reply with the amount of time it took the Worker to update the requested Variable.  

When the Coordinator received the reply, it calculated the elapsed time of the 

request and subtracted the amount of time the Worker needed to update the 

requested Variable.  I implemented utilities that utilize the xgraph program to plot 

the network latency for every request, as well as the computational time a Worker 

took to update the requested Variable. 
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The following figure shows the state transitions where I measure how many 

messages the Coordinator sends, how many it drops, and how many it receives 

every second: 

 

Measurement of DLoVe 

 

Performance in time required measuring the elapsed time between pairs of state 

transitions as shown in the following figure.  tbuild is the time it takes the 

Coordinator to build a message before sending it to the Workers or discarding it, 

which is the difference between tbuild_end and tbuild_start , or between tbuild_start and 

tbuild_discard representing the time at which the build ended and when it started.  tsend 

is the time it takes the Coordinator to put the message on the network, which is the 

difference between tsend_end and tsend_start indicating the time the Coordinator completed 

the transmition of the message and the time it started transmitting.  tget is the time 

it takes the Coordinator to process the replies from the Workers, which is the 

build send 
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difference between tget_start and tget_end indicating the time it started reading replies 

and the time it read all replies from all Workers.  tcycle indicates the time it takes a 

request to come back as a reply, which is the difference between tbuild_end and tget_end.  

This is the latency of each message and this is what in which I am the most 

interested.  That the Coordinator receives many replies from the Workers is a goal I 

would like to achieve.  However, if the messages are all too old, then user interaction 

is minimized and this is not what I want since DLoVe is designed for real-time 

applications such as Virtual Reality. 

 

Measuring latency in the internal state machine 
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start 

get render 
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Analyzing the Results 

 

As in the previous experiment in the Virtual Park, the following graph shows that 

increases in Workers provide increases in throughput. 

 

 

Throughput of DLoVe with different ‘drop’ and APE  

 

30 300 3,000 ‘drop’ threshold  
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However, throughput of a Virtual Reality system does not describe how well it 

performs.  A more critical factor in VR is how high a frame rate it can achieve, and 

how accurately each frame represents the virtual world. 

 

Accuracy of rendition is difficult to measure.  In DLoVe, the Coordinator issues GetE 

requests to update certain Variables to render the display.  These requests are sent 

to the Workers that update the requested Variables, which then send the results 

back to the Coordinator.  These replies are not instantaneous, but arrive with some 

latency that depends on performance upon the network.  So, one measure of 

accuracy is message latency.  Another is how up-to-date the frames are when 

rendered, relative to user input and the real state of the virtual world. 

 

The following 12 graphs show the latency of each request sent to each Worker.  

Each request is time-stamped before it is sent.  Workers also time-stamp each 

request with the amount of time taken to bring a requested Variable up-to-date.  

When the Coordinator receives the requested Variable from a Worker, it calculates 

the elapsed time of the request minus the amount of time a Worker needed to bring 

the requested Variable up-to-date.  This yields to the amount of time a request 

spends on the network.  For this experiment I utilized 3 Workers and tuned two 

variables: ‘drop’ threshold and expensiveness of the ‘branch’ Link.  I simulated 

expensiveness of the ‘branch’ Links by performing multiple floating-point additions.  

I call this variable “Additions Per Evaluation” (APE).  The APE of each ‘branch’ Link 

took the following values: 100, 1,000, 10,000, and 100,000.  For each of these 

values, I used a ‘drop’ threshold of 30, 300, and 3,000, yielding a total of 12 

experiments.  These experimental measurements showed abrupt changes in average 

latency over time, which at first puzzled me.  Note also the different scales for all 

these graphs. 
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GraphID(001L) drop=30, APE=100 
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GraphID(002L) drop=300, APE=100 
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GraphID(003L) drop=3000, APE=100 
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GraphID(004L) drop=30, APE=1000 
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GraphID(005L) drop=300, APE=1000 
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GraphID(006L) drop=3000, APE=1000 
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GraphID(007L) drop=30, APE=10000 
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GraphID(008L) drop=300, APE=10000 
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GraphID(009L) drop=3000, APE=10000 
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GraphID(010L) drop=30, APE=100000 
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GraphID(011L) drop=300, APE=100000 

 

The above graph as well as the following graph puzzled me the most the first time I 

studied them.  These graphs show the message latency is 6.5 seconds for some time 

and then 3.5 seconds repeating over time.  These graphs proved that there was a 

critical issue in DLoVes performance, which challenged me to modify the Worker’s 

algorithm to fix this problem as it is shown further in this chapter. 



Leonidas Deligiannidis 
 

 
 

 

 
Page 214 

 

GraphID(012L) drop=3000, APE=100000 

 

These latency graphs show inefficient behavior, because the Coordinator sends 

many requests to the Workers, overloading the sockets.  Thus the Workers have a 

difficult time sending replies.  A new modified algorithm, shown later, resolves this 

problem.   

 

I hypothesized that the latency of Workers increases due to evaluating older and 

older requests.  The Coordinator continues sending requests to the Workers, 
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swamping them with requests.  The Workers buffer the requests and reply back to 

the Coordinator in the order in which they receive the requests.  After a few seconds, 

however, Workers start processing older and older requests, and as a result, sockets 

become congested.  The Coordinator may use a high frame rate, but the frames 

become more and more out-of-date. 

 

 

Workers drifting in responding back to Coordinator 

 

The Coordinator sends requests to all three Workers so that replies come from all 

three Workers, adding much network traffic.  We seem to observe a step increase in 

latency every time there is an increase in congestion.  The higher the latency, the 

older the requests the Workers are processing. 
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Frame Validity and Statistical Skew 

 

Latency shows how long a message spends on the network to get to the Workers and 

then come back to Coordinator (time required by a Worker to evaluate a Link is not 

counted).  However, this does not show how accurate the frame rendering is.  To 

visualize how valid the frames are, I used a statistical clock skew as show below: 

 

skew = (wall clock) - min(time of request of all Variables) 

 

For every frame, the minimum time of request of all output Variables is subtracted 

from the current time (wall clock).  This skew describes the worst difference between 

what is shown and what the user is doing.  I plotted graphs that show this skew 

over time.  The following 12 graphs show how out-of-date each frame is.  Let us call 

the set of Variables that the Coordinator uses to render the display “render”.  Every 

time a request comes back from a Worker it is time-stamped with the current time 

indicating the time the Variable is lastly updated.  When the Coordinator is about to 

render the display it gets the system’s clock and subtracts from it the minimum 

time of the Variables in the set “render”. 
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GraphID(001F) drop=30, APE=100 
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GraphID(002F) drop=300, APE=100 
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GraphID(003F) drop=3000, APE=100 
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GraphID(004F) drop=30, APE=1000 
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GraphID(005F) drop=300, APE=1000 
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GraphID(006F) drop=3000, APE=1000 
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GraphID(007F) drop=30, APE=10000 
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GraphID(008F) drop=300, APE=10000 
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GraphID(009F) drop=3000, APE=10000 
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GraphID(010F) drop=30, APE=100000 
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GraphID(011F) drop=300, APE=100000 

 

The above graph shows that in the best case the Coordinator renders the display 

with information that is 3.5 seconds old.  This is expected when we study the 

message latency graph of this experiment (GraphID(001L)).  Because all messages 

are either 3.5 seconds old or 6.5 seconds old, the Coordinator uses Variables that 

were requested so many seconds ago, thus frame accuracy graphs follow message 

latency graphs patterns. 
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GraphID(012F) drop=3000, APE=100000 

 

 

 

Modified Algorithm for the Workers 

 

To overcome the problem of the stepwise increase in both latency and frame 

accuracy graphs, I modified the algorithm of the Workers to throw away any old 
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requests in the queue and only evaluate the most recent ones.  The following graphs 

show latency using this modified version of the Workers’ algorithm. 

 

 

GraphID(101L) drop=30, APE=100 
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GraphID(102L) drop=300, APE=100 
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GraphID(103L) drop=3000, APE=100 
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GraphID(104L) drop=30, APE=1000 
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GraphID(105L) drop=300, APE=1000 
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GraphID(106L) drop=3000, APE=1000 
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GraphID(107L) drop=30, APE=10000 
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GraphID(108L) drop=300, APE=10000 
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GraphID(109L) drop=3000, APE=10000 
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GraphID(110L) drop=30, APE=100000 
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GraphID(111L) drop=300, APE=100000 

 

Latency 

Evaluation time 
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GraphID(112L) drop=3000, APE=100000 

 

 

This new modified algorithm has a dramatic effect on the accuracy of the frames.  

The accuracy stays the same throughout the experiment.  This algorithm allows the 

Coordinator to use the most up-to-date Variables for rendering because messages 

are sent back and fourth very quickly as a result of a decrease in network 

congestion. 

Latency 

Evaluation time 
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In the above 12 graphs, the abrupt increase in the latency disappeared.  This is 

because the Workers only process the most recent requests, disregarding any older 

requests (and this is okay since the transactions are performed in a streaming 

manner as it was shown earlier).  Using the modified version of the Workers’ 

algorithm, we remove the congestion from the sockets allowing the Workers to send 

replies to Coordinator more quickly, with data of greatest accuracy.  I conclude that 

my hypothesis about performance problem is correct! 

 

The following graphs show the accuracy of the frames using the modified algorithm: 



Leonidas Deligiannidis 
 

 
 

 

 
Page 242 

 

GraphID(101F) drop=30, APE=100 
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GraphID(102F) drop=300, APE=100 
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GraphID(103F) drop=3000, APE=100 
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GraphID(104F) drop=30, APE=1000 
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GraphID(105F) drop=300, APE=1000 
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GraphID(106F) drop=3000, APE=1000 
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GraphID(107F) drop=30, APE=10000 
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GraphID(108F) drop=300, APE=10000 
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GraphID(109F) drop=3000, APE=10000 
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GraphID(110F) drop=30, APE=100000 

 

The above and the following two graphs show that frame accuracy varies between 25 

and 48 msecs.  This is due to the high value of the APE variable.  The statistical 

skew uses the difference between the oldest request of all output Variables and the 

wall clock.  Since these requests are computationally expensive (APE = 100000) they 

will come back to the Coordinator as replies with great latency.   
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GraphID(111F) drop=300, APE=100000 
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GraphID(112F) drop=3000, APE=100000 

 

 

Throughput in DLoVe 

 

The modified algorithm of the Workers not only fixed the stepwise increase in the 

message latency, but also improved dramatically the accuracy of the frames with 

very little throughput penalty. 
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The following graph shows the number of evaluations achieved by the modified 

algorithm of the Workers. 

 

Throughput of DLoVe utilizing the new algorithm on the Workers 

 

The following graph shows the number of evaluations achieved by both the original 

and the modified algorithm. 

30 300 3,000 ‘drop’ threshold  
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Comparing throughput between the original and the new algorithm  

 

The penalty in throughput using the modified algorithm is only 12% in return for 

much more accurate frames.  Also the number of frames should be observed that 

increases dramatically when evaluations are computationally expensive 

(APE=100,000).  Comparing the graphs with GraphID 010, 011, 012 against 110, 

111, and 112 the increase in frame rate can be visualized.  Using the old algorithm 

Orig. Alg. APE=100,000 

Modified Alg. APE=100,000 

30 300 3,000 ‘drop’ threshold  
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the Coordinator achieves 56 frames/second (3400/60) where using the modified 

algorithm the Coordinator achieves 416 frames/second (25000/60).  Note that the 

‘Perf’ program does not render the display.  Throughout these experiments, I assume 

that when a frame is rendered it takes zero time. 

 

The number of evaluations in the non-distributed version is not plotted due to its 

wide range of numbers, where plotting the data would not be very useful.  The 

following table shows that when evaluations are computationally inexpensive (APE < 

10,000), which means that it is better performing the calculations locally than 

sending requests over the network the non-distributed version outperforms the 

distributed version.  However, when the calculations are computationally expensive, 

the distributed version outperforms the non-distributed version by a factor of 2.9 

(APE = 100,000). 

 

drop threshold 30 300 3,000 30 300 3,000

non-distributed 582,008 582,008 582,008 201,686 201,686 201,686

dist. New 50,606 50,677 50,535 50,070 49,962 49,542

APE

drop threshold 30 300 3,000 30 300 3,000

non-distributed 26,066 26,066 26,066 3,036 3,036 3,036

dist. New 50,827 50,721 50,833 8,809 8,813 8,816

APE

100 1,000

10,000 100,000  

Comparing throughput between non-distributed and distributed version of ‘Perf’ 

 

When calculations are computationally expensive, using the modified version of the 

algorithm we achieve more frames per second; that enables the Coordinator update 

the display more frequently.  Updating the display more frequently does not yield 

anything additional if the data is old or the same as the 10 previous frames, because 

messages did not come back from the Workers.  However, the camera and hand 
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position and orientation in DLoVe are calculated locally since these are critical 

factors in any virtual environment.  Even though the simulated objects may be 

displayed the same for the past 10 frames for example, navigation and immersion of 

the user in the virtual environment is achieved because of the larger number of 

frames per second. 

 

 

Asynchronous Frame Rate in DLoVe 

 

It does not make sense to measure frame rate in DLoVe because the frame rate is 

asynchronous and even if we measure it, we cannot tell how fresh the data is that 

the Coordinator uses to render the display.  The following graph shows why the 

frame rate in DLoVe is asynchronous: 
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Asynchronous rendering in DLoVe 

 

The Coordinator renders the display as soon as it sends the data to Workers.  If the 

network is congested, the Coordinator spends more time trying to send the requests 

to Workers.  Also, depending on how loaded the network is the propagation time 

from the Coordinator to Workers and visa versa varies.  As a result, the frame rate is 

not constant because it depends on the time the Coordinator spends sending 

requests to Workers. 
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Summary of Results 

 

The experiments demonstrated that DLoVe not only describes specification of Virtual 

Reality programs well, but also improves overall performance of applications 

designed in its framework by dramatically increasing the validity of the rendered 

frames.  In addition, DLoVe supports mechanics for implementing or transforming 

single user programs into multi-user programs.   

 

Chapters 10, 11, 12 demonstrated that DLoVe can be used to implement large scale 

Virtual Reality applications, and when speed in required, DLoVe’s framework is able 

to provide the additional CPU cycles needed by real time application by utilizing 

multiple machines.  The modified algorithm on the Workers proved to be successful 

in eliminating the network congestion and providing more valid frames with a small 

throughput penalty of about 12 percent.   

 

This chapter showed the need for a different method of measuring performance that 

describes DLoVe accurately, where traditional methods fail by providing seemingly 

acceptable performance measures that in actuality reflected poor performance.  

Throughput is not enough to describe performance, but throughput in conjunction 

with statistical skew do accurately describe DLoVe’s performance. 

 

More experiments need to be conducted to understand how DLoVe behaves in high-

speed networks and how multiple Coordinators influence the performance of DLoVe.  

However, because appropriate equipment was unavailable, these experiments must 

be deferred for future investigation as described in the next chapter. 
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Chapter 14:  Evaluation 

 

 

 

Overview 

 

Chapter 13 measures and evaluates the distributed and parallel aspect of DLoVe.  It 

discusses problems and resolutions of measuring the distributed and parallel 

version of DLoVe.  Chapter 13 demonstrates that DLoVe performs well by measuring 

both overall throughput and frame latency.  This chapter evaluates DLoVe by 

looking at it primarily as a paradigm for designing VR applications for a single user 

and a single machine. 

 

DLoVe is designed to provide a framework to programmers for defining and 

implementing both serial and distributed VR applications for single or multiple 

users.  Its architecture includes features and techniques that explicitly address 

issues encountered when developing applications such as virtual environments and 

multi-user VR interfaces.  Test applications were developed and implemented using 

these features, and were discussed in chapters ten, eleven, and twelve. 
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Conceptual Applicability 

 

While in the real world processes exhibit continuous changes in state, any computer 

model of these changes consists instead of a discrete change of measurement 

events.  This, however, should not influence the programmer’s understanding of 

how these events interrelate.  It is this conceptual understanding that should be 

captured in the design, not the mechanics of its implementation. 

 

DLoVe supports specification mechanisms that allow interaction object behavior and 

manipulation to be described in both continuous and discrete terms.  It supports 

mechanics to allow the designer to combine continuous and discrete domains to 

express his/her conceptual model being designed.  The responsibility of running a 

program in distributed mode falls upon DLoVe itself. 

 

 

Scalability Issues 

 

Virtual Park demonstrates that DLoVe is capable of creating large-scale applications 

employing non-WIMP interactions.  The park demonstrates that DLoVe’s 

programming paradigm results in a specification that is relatively quick and easy to 

implement.  The specification modules themselves e.g. ball, arm1, arm2, etc, retain 
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the ability to perform low-level manipulation where needed, and combined produce a 

higher level of abstraction in the program without higher levels of complexity. 

 

Even though the number of Workers (when a DLoVe application is executed in a 

distributed environment) can be increased by modifying a single line in the 

configuration file, the number of Workers that can practically participate is limited.  

The bottleneck preventing parallelism is the bandwidth of the physical network 

connecting the Workers and the Coordinators.   

 

DLoVe applications would execute much faster in a shared memory machine.  But 

even in this case the number of processes could not exceed twenty, because of the 

lack of scalability in the shared memory environment itself.  Even if twenty Workers 

run on a single shared machine, networking would still be necessary when 

designing multi-user applications.  Applications designed using DLoVe’s paradigm 

exhibit larger speedup when evaluations are computationally expensive, but the 

distributed version offers no benefit, when evaluations are inexpensive.  However, 

even in the case where DLoVe does not exhibit any speedup, due to lack of 

constraint complexity, it still supports multi-user application development. 

 

Modifying a single line in the configuration file allows one to increase the number of 

Coordinators participating in a distributed environment.  However, one must also 

modify code to inform all the modules of new input and output devices. 
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Extensibility Issues 

 

DLoVe is designed to adapt to the evolving needs of non-WIMP user interfaces.  To 

remain viable DLoVe must handle new input and output devices and the 

introduction of new interaction objects.  Encapsulated Links and Variables within 

device drivers allow external devices to be introduced to the system without 

requiring any modification to the UIDL.  For example, DLoVe does not care if the 

user reads from the Polhemus 3D tracker, an eye tracker device, or inputs from an 

X window.  The mechanics of reading from any of these devices are hidden from the 

designer.  The sample applications presented in Chapters 10, 11, and 12 include an 

interface to X Windows, an interface to the Performer graphics engine, a device 

driver for Polhemus 3D tracker, and in chapter 11 a device driver for the eye 

tracker. 

 

In a multi-user environment, different users can utilize different input/output 

devices to interact with each other and with the same virtual world.  When the 

‘arms’ program (chapter 10), the eye tracking program (chapter 11), and the Virtual 

Park (chapter 12) are executed in a two-user environment, one user operates the 

head and hand position, and orientation with the mouse, while the other uses the 

Polhemus 3D tracker.  One user uses the monitor as an output device and the other 

an HMD. 
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Preserving Intellectual Investments 

 

New tools, programming languages, and any kind of software, that takes longer to 

apply to any given problem than to solve the problem manually will eventually be 

abandoned by users.  In an effort to avoid this, DLoVe seeks to capitalize on existing 

notations, concepts, and standards wherever the opportunity presents itself.  

Feedback from students using DLoVe for their programming assignments suggests 

that embedding new concepts within familiar programming methods provides a 

stable launching point for exploring and experimenting with the new paradigm.  The 

ability to call C++ procedures protects the substantial investment of academia and 

industry in this language. 
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Chapter 15:  Open Problems and 

Further Study 

 

 

 

Overview 

 

DLoVe has proven that it is an applicable paradigm for designing and implementing 

non-distributed and distributed Virtual Reality applications.  It performs relatively 

well in a networked environment.  It supports mechanics for transforming serial 

programs into distributed programs by following a simple pattern.  It also supports 

mechanics needed for multi-user applications.  Several open problems with DLoVe 

should be addressed.  DLoVe’s paradigm can also be enhanced by further work. 
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Enhancing and Improving DLoVe’s Paradigm 

 

DLoVe assumes that all objects in a virtual environment are created before the 

application begins reading input devices.  If the Coordinator creates any new objects 

after the Link::InitSystem() call, DLoVe’s protocol cannot notify the Workers of those 

changes.  When a DLoVe application is executed in non-distributed mode, however, 

there is a workaround allowing dynamic creation of objects.  DLoVe’s protocol must 

be extended in order to allow Workers to adapt to dynamic changes.  This is needed, 

for example, when a user selects car parts to design a futuristic car model.  Each 

created part becomes a new object in the constraint space. 

 

Many enhancements are possible in how DLoVe automatically handles code 

changes, needed to support multi-user interfaces.  To change a single-user interface 

to multi-user, all input Variables (and the Links to which these input Variables are 

attached) need to be duplicated and the network re-wired – for the duplications.  

Since this process is well understood, it is possible to automate it and remove this 

burden from the programmer.  Chapters 10 and 12 describe, using examples, the 

process of changing a single-user interface into a multi-user interface. 

 

In DLoVe’s current paradigm, the programmer must manually introduce artificial 

auxiliary Variables to combine multiple output Variables from a single Link so that 

those output Variables will not automatically be assigned to different Workers, thus 

causing redundant computations.  This situation is easily detectable automatically 

by BFT of the constraint graph, so we could automate this process and save manual 

effort.  An illustration of artificial auxiliary Variables is given in the Virtual Part 

application where each Humanoid is simulated entirely by a Worker. 
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DLoVe’s partition algorithm partitions the constraint graph assuming that all Links 

take comparable computation time, so that DLoVe’s task assignment does not 

balance loads for structures for which Links vary greatly in expense.  To achieve 

load balancing, the programmer must assume that all Links are roughly equivalent 

in cost and that Workers are equal in performance.  To alleviate this responsibility, 

we could improve DLoVe’s partition algorithm to account for task expense and 

machine speed.  Currently, partitions are determined at compile time but should be 

determined dynamically based upon the structure of the graph and machine 

performance.  It is unclear whether dynamic load balancing would improve many 

programs, due to the overhead involved in rebalancing. 

 

In the current implementation of DLoVe’s protocol, programmers have to deal with 

cyclic graphs by cutting the constraint graph vertically and introducing synthetic 

Variables.  Without synthetic Variables, programs with cyclic dependencies cannot 

be executed in a multi-Worker environment, as illustrated in Chapter 12.  Synthetic 

Variables are used for inter-dependencies among simulated objects such as the 

Humanoids in the Virtual Park.  DLoVe’s partition algorithm could be extended to 

automatically insert synthetic Variables where needed, by using a BFT algorithm, 

and also to insert code that will update all the synthetic Variables. 

 

Hierarchies of Workers could increase the performance of DLoVe when synthetic 

Variables are introduced in a program.  DLoVe’s partition algorithm partitions the 

constraint graph by cutting it horizontally.  Use of synthetic Variables requires a 

vertical cut of a cyclic constraint graph in order to execute a program in parallel.  

Sub-graphs of the constraint graph that contain synthetic Variables can be assigned 

to a special set of Workers to handle updates in parallel.  There can be a ‘root’ 
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Worker that will use other regular Workers to update synthetic Variables.  The ‘root’ 

Worker with its Workers can exist on a different network to avoid network 

congestion.  The following diagram describes this environment: 

 

‘root’ Worker incorporated in DLoVe to handle synthetic Variables in cyclic constraint 
graphs 

 

Workers 3, 4, and 5 are connected to the ‘root’ Worker that communicates Variable 

updates to Coordinator.  These machines communicate with each other as shown 

below: 

 

 

 

 

Coordinator 

Worker 1 Worker 2 

Worker 4 Worker 3 Worker 5 

‘root’ Worker 

Network B 

Network A 
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Node connection with the ‘root’ Worker 

 

The ‘root’ Worker can be a similar process to a regular Worker.  The difference is 

that the ‘root’ Worker synchronizes data delivery of synthetic Variables to 

Coordinator.  This separates the network traffic into two types of messages.  Request 

messages directly from the Coordinator, and synthetic Variable updates.   

 

My research suggests that by re-implementing DLoVe using UDP instead of TCP, its 

performance will greatly be increased [Singhal 99].  TCP is a reliable protocol but it 

does not best characterize DLoVe’s transactions.  If some requests, such as SetE 

and GetE, are lost, they do not impact programs using DLoVe’s paradigm due to the 

frequency of requests.  In cases of Enable and Disable requests (that re-wire the 

constraint graph), requests can be initiated with an acknowledgment requirement.  

The Coordinator will keep a vector of which Workers need to be updated on such 

requests and the acknowledgments it received from the Workers.  If such messages 

are lost, the Coordinator will retransmit the state of the constraint graph.  This 

technique will improve the performance of DLoVe due to using a less reliable but 

significantly faster protocol (UDP) than TCP. 

 

Coordinator 

Worker 4 Worker 3 Worker 5 

‘root’ Worker 

Worker 2 Worker 1 



Leonidas Deligiannidis 
 

 
 

 

 
Page 270 

My research suggests that multicasting may be more efficient in distributed 

environments as an alternative to unicasting over TCP or UDP.  Currently, the 

Coordinator must send each message to each Worker individually.  This means that 

communication is proportional to the number of Workers.  Multicasting would 

enable the Coordinator to deliver a message to multiple Workers with a single send 

operation.  However, the Coordinator still must poll each Worker individually for any 

replies they might have.  But this will decrease the time needed to send a request 

out to the Workers. 

 

Failures on Workers can be detected by the Coordinators, which can then redirect 

network traffic to still functioning machines.  All systems in DLoVe’s distributed 

environment have an exact copy of the constraint graph.  All machines are capable 

of bringing Variables up to date and replying to Coordinators’ requests.  In the 

current implementation when a failure is detected all processes terminate.  DLoVe’s 

protocol can be very easily extended and automatically redirect traffic to still 

functioning machines when failures occur.  This may require the Coordinators to re-

execute the partition algorithm to achieve the best performance possible.   

 

In a multi-user environment, a crash or a disconnect of one Coordinator should not 

result in the termination of the entire simulation.  The current implementation 

terminates the simulation if any of the Workers or the Coordinators terminate.  

DLoVe’s protocol should be more flexible to allow Coordinators to connect and 

disconnect while the simulation is executing. 

 

To make DLoVe a software package that can be used even more easily by 

programmers, it must also contain a GUI interface where designers and 

programmers can define Links, Variables, EventHandlers, and their relationships, in 
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a visual fashion.  This GUI should also be able to generate C++ code, or read C++ 

code and display the visual representation of the constraint graph. 

 

 
To understand even more how the type and speed of a network, and the speed of the 

machines (such as Sun ultra 250 servers) influence the performance of DLoVe more 

experiments need to be conducted on different types of networks such as a 100MB 

or Gigabit switched Ethernet.  The state-of-the-art Ethernet is the Gigabit Ethernet 

with two major advantages over regular Ethernet.  First, it preserves Ethernet’s 

simplicity while enabling a smooth migration to Gigabit-per-second (Gbps) speeds.  

Second, it delivers a very high bandwidth to aggregate multiple Fast Ethernet 

segments to support high-speed server connections, switched backbones, and high-

speed workgroup networks [Buyya 99a].   

 

Moreover, more experiments need to be conducted to understand how much 

multiple Coordinators influence the performance of DLoVe.  Multiple Coordinators 

imply increase in the number of requests sent to Workers, thus increasing workload 

on the Workers as well as on the network.  The following figure shows a the 

connections of multiple Coordinators on a high speed switched network, such as 

100MB or Gigabit switched Ethernet: 
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Performance Measurement of a 100MB switched network using multiple Coordinators 

 

 

Worker 1 Worker 4 Worker 3 Worker 2 

Coordinator 1 Coordinator 2 

100MB Ethernet 

Switch Port 5/2 Switch Port 5/3 Switch Port 5/4 Switch Port 5/5 

Switch Port 6/4 Switch Port 6/5 
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Chapter 16:  Conclusion 

 

 

DLoVe was designed to provide a specification paradigm and a framework to assist 

in defining and implementing non-WIMP interfaces.  It allows programs to be 

executed in a distributed or non-distributed environment where speed is a 

requirement without major code modifications.  It allows programmers to design and 

implement VR applications in a high level of abstraction where their code can be 

modular and re-useable.  It allows easy specification of functionality for multi-user 

interfaces, following a simple pattern.  Its run-time engine is responsible for 

performance optimization and network control; problems faced by distributed non-

WIMP user interfaces.  It hides all the networking aspects of message passing among 

the machines participating in a distributed environment.  As a result, the DLoVe 

programmer does not need to understand distributed and parallel systems to employ 

DLoVe.  The programmer need only be familiar with C++ one of the most common 

languages for application development. 

 

DLoVe was tested against each of these claims and found to be successful and 

robust.  Utilities are provided by DLoVe to allow fine performance tuning of 

applications designed within its framework.  My own as well as others’ experiments 
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of solving problems and implementing applications suggest that DLoVe is successful 

in achieving its goals and meeting the needs of non-WIMP user interface designers. 

 

DLoVe is a new specification paradigm for designing and implementing VR 

applications.  Applications designed to be executed in a single machine can also be 

executed in a distributed environment involving multiple workstations, with minor 

code modifications to achieve greater throughput.   

 

Chapter 13 demonstrates how well DLoVe performs when calculations are 

computationally expensive.  Chapter 13 also shows the need for a different method 

of measuring performance that describes VR systems accurately, where traditional 

methods fail by providing seemingly acceptable performance measures that in 

actuality reflect poor performance.  Throughput is not enough to describe 

performance, but throughput in conjunction with statistical skew do accurately 

describe DLoVe’s, and in general VR systems’, performance.  Multi-user applications 

can also be designed or translated from single-user into multi-user with little 

programming effort following a simple pattern.  Chapter 10 illustrates how a 

program designed for a single user can be translated into a multi-user one.  
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Appendix  A 

 

 

 

The directory hierarchy of the entire DLoVe software is shown below.  The top level 

directory of the hierarchy is the directory ‘implem’ that contains several 

subdirectories that as shown below: 

 

• basic 

• data 

• opt 

• solve 

• eye 

• net 

• scripts 

• state 

• use.x 

• use.pf 

• use.eye 

• use.perf 

• use.pf.Humanoids 

• use.pf.arms 

• use.pf.2Zoom 
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Directory: basic 

 

In this directory reside the files that describe the part of the UIMS.  It contains code 

for reading input devices and uses it to operate plugboard Variables and events.  

 

 

 

Directory: data 

 

Any 3D models the user wants to use with his program are going in this directory. 

 

 

 

Directory: opt 

 

This directory contains optional utility features that are built on top of the files in 

‘basic’.  These are utilities that a programmer can use, or build equivalent ones to fit 

new environments.  The following modules are included in the ‘opt’ directory: 

 

• Links 

A collection of pre-defined Links for some common arithmetic 

operations. 

• Quitter 
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A simple EventHandler object that accepts an ESCAPE key on the 

keyboard and exits the program. 

• PfWindow 

This is a convenience class for use with the Performer graphics 

engine.  It initializes Performer, creates the window, and creates the 

corresponding DeviceXWindow, which is used for reading input. 

• XWindow 

This is a convenience class for use with X (not Performer). It 

initializes X, creates one window, and creates the corresponding 

DeviceXWindow. 

 

 

 

Directory: solve 

 

This directory contains DLoVe’s source code of the constraint solver.  It also 

contains the code with which the programmer can operate on the Variables such as 

SetE(), SetI(), GetI(), and GetE() functions. 

 

New constraint solvers can be written by replacing these files with code of a new 

constraint solver.  Currently, besides DLoVe’s constraint solver, there is another 

simple-minded and inefficient constraint solver, which was designed about 4 years 

ago (this was by Prof. Jacob, and it was the starting point of this dissertation).  New 

constraint solvers can be written simply as subclasses of VariableBase and 

LinkBase, modules residing in ‘basic’ directory. 
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Directory: eye 

 

The ‘eye’ directory contains code for reading and processing data received on serial 

port from ISCAN eye tracker (kept in separate directory, because most sites will not 

have this device).  The Polhemus data is read via the eye tracker and not directly 

from Polhemus. 

 

 

 

Directory: net 

 

This directory contains the code needed in making distributed and multi-user 

interfaces.  All necessary network programming is contained in the files in this 

directory and no additional user network programming and learning is required. 

 

 

 

Directory: scripts 

 

Scripts for performance analysis reside in this directory.  These scripts manipulate 

data coming directly out of DLoVe to measure frame validity, message latency, and 

other things. 
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Directory: state 

 

This state diagram translator resides in this directory, which is part of an earlier 

system for processing and executing state diagrams (designed by Prof. Jacob).  This 

state diagram translator has many features not required for the present usage.  If 

for any reason dealing with the state diagram translator proves troublesome, one 

can still write his/her IhIo() routines in plain C++ with "if" statements rather than 

using the state diagram notation, and remove the "translate5" lines from the 

makefiles. 

 

 

 

Multiple directories: use.*/* 

 

These directories all contain code that demonstrates the use of the UIMS, including 

Links and Variables, defined for each particular user interface one wants to build.  

 

• use.x  

This directory contains example and skeleton programs without 

Performer (using X or using no graphics)  

• use.pf  

This directory contains example programs using Performer graphics. 

• use.eye  

This directory contains example programs using the eye tracker and 

Performer.  

• use.perf 
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This directory contains the code for the ‘Perf’ program that was used 

for the performance analysis of DLoVe (chapter 13). 

• use.pf.Humanoids 

This directory contains the code for DLoVe’s Virtual Park application 

described in chapter 12.   

• use.pf.arms 

This directory contains the code of the ‘arms’ application described in 

chapter 10. 

• use.pf.2Zoom 

This directory contains the code for the ‘2Zoom’ application described in 

chapter 11. 
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Appendix  B 

 

 

 

This appendix describes a complete configuration file needed along with every 

applications designed in DLoVe’s framework.  The configuration file is called 

config.txt and contains ‘:’ delimited fields.  Comments can be specified in the 

configuration file.  The ‘#’ symbol indicates comment in the configuration file.  

 
PORT NUMBER:  6326 
Alarm Time:  1 
Number of Alarms: 60 
 
Drop Line:  3000 
MODE:   MULTI_MESSAGING 
GETE MODE:  NB_GETE 
Workers Drop:  YES 
 
Master Coordinator: u5.eecs.tufts.edu 
Slave Coordinators: 1 
Workers:   3 
 
ID: u6.eecs.tufts.edu=1 
ID: c15=2 
ID: u8=3 
ID: c13=4 
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PORT NUMBER This field indicated the port number the Master Coordinator 

binds and listens on for connections.  All machines 

participating in a DLoVe distributed application need to know 

this port number. 

 

Alarm Time This field is only used when a DLoVe program is compiled 

with the LVSTATS flag as described later.  It indicates the 

frequency of alarms DLoVe will receive to dump internal data 

to standard output.  When it is set to 2 for example, DLoVe 

will set the timer to receive an alarm every 2 seconds and will 

then print out various measurements described in chapter 13.  

If this variable is set to 0, then DLoVe will not receive any 

alarms at all even if it is compiled with the LVSTATS flag. 

 

Number of Alarms In this field the programmer specifies the number of alarms 

DLoVe will receive before terminating.  If it is set to 30, then 

after 30 alarms the application will terminate.  This field is 

used together with conjunction with the Alarm Time field, 

which specifies the frequency of the alarms.  This is used to 

make sure that all experiments execute the same amount 

time.  If this field is set to 9999, then the application executes 

forever and it can receive alarms based upon the Alarm Time 

field. 

 

Drop Line This field defines the ‘drop’ threshold variable.  The number 

assigned to this variable determines how many pending 
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requests the Coordinator can tolerate before starting 

disregarding messages. 

 

MODE This field describes upon which protocol DLoVe will operate.  

Chapter 9 describes the 3 variations upon which DLoVe can 

operate.  DLoVe can operate in single-messaging mode 

(SINGLE-MESSAGING) where each individual message such 

as SetE, GetE, Enable, and Disable are sent to the Workers 

from the Coordinator as single messages.  Multi-messaging 

(MULTI-MESSAGING) allows DLoVe to send multiple messages 

to Workers.  It is strongly recommended that this field is 

always set to MULTI-MESSAGING.  SINGLE-MESSAGING has 

not been tested for a couple of years and it is not know if it 

still works.  This field is used with conjunction with the next 

field described below. 

 

GETE MODE When DLoVe operates in multi-messaging, GetE requests can 

be defined to block or not to block for replies to come back 

from the Workers.  When this field is set to NB_GETE, GetE 

requests are non-blocking, else they are, as described in 

chapter 9.  It is strongly recommended that this field be 

always set to NB_GETE, because it is the optimum operation 

mode for DLoVe. 

 

Workers Drop If this field is set to YES, then the Workers also drop messages 

to implement the new modified algorithm described in chapter 
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13.  It is strongly recommended that this field be always set to 

YES. 

 

Master Coordinator This field must be set to the IP address or the DNS name 

where the Master Coordinator is executed. 

 

Slave Coordinators This field indicates the number of Slave Coordinators 

participating in a multi-user Virtual Environment. 

 

Workers This field indicates the number of Workers participating in a 

Virtual Environment. 

 

ID This field may exist multiple times in the configuration file.  It 

indicates the application layer ids of all Coordinators.  For 

example, in a multi-user VR application with 3 Coordinators 

(one being the Master Coordinator) we could have: 

 

ID: mondrian.eecs.tufts.edu=1 
ID: monet=2 
ID: 130.64.23.184=3 

 

The IP address or the DNS name of the machines can be 

specified.  Immediately after the IP address or the DNS name 

follows a ‘=’ symbol and then the application layer id of that 

specific machine.  DLoVe utilizes these application layer id 

number to associate devices with workstations, as described 

in chapters 8, 10, and 12. 
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Appendix  C 

 

 

 

The following code is a complete Virtual Reality program in DLoVe.  A user uses an 

HMD to view the virtual world, and a Polhemus for a virtual hand with which 

he/she can grab and manipulate the 3D objects (program needs to be compiled with 

the source code defines HEAD and POLHEMUSCURSOR as shown in the code below.  If 

this program is complied with MOUSECURSOR and MOUSECOUPLER instead, the user 

can manipulate the camera and the virtual hand using the mouse. 

 

 
// Choose (BOTH MOUSE...) OR POLHEMUSCURSOR 
#define MOUSECURSOR 1 
#define MOUSECOUPLER 1 
// #define POLHEMUSCURSOR 1 
  
// Choose this or not 
// #define HEAD 1 
 
 
 
 
#include "../pmiw.h" 
#include "../opt/PfWindow.h" 
#include "../basic/DeviceTimer.h" 
#include "../eye/DeviceEye.h" 
  
#include "../opt/HeadCoupler.h" 
#include "../opt/MouseCoupler.h" 
#include "../opt/PolhemusCursor.h" 
#include "../opt/MouseCursor.h" 
#include "../opt/Quitter.h" 
  
#include <Performer/pf.h> 
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#include <Performer/pf/pfGroup.h> 
#include <Performer/pf/pfScene.h> 
#include <Performer/pf/pfGeode.h> 
#include <Performer/pr/pfGeoSet.h> 
#include <Performer/pf/pfChannel.h> 
#include <Performer/pr/pfLight.h> 
#include <Performer/pr/pfMaterial.h> 
#include <Performer/pf/pfDCS.h> 
#include <Performer/pfdu.h> 
#include <Performer/pf/pfEarthSky.h> 
 
#include "Grab4.h" 
 
static PfWindow *pfwindow; 
static DeviceTimer *deviceTimer; 
 
pfLight *light; 
 
CursorBase *cursor = NULL; 
DeviceEye *deviceeye = NULL; 
HeadCoupler *headcoupler = NULL; 
 
  
static void makeGreen (pfGroup *parent) { 

const float ROOMSIZE = 1000000.f; // Width and depth 
const float ROOMBOT = -2.0; 

 
pfGeoSet *gset = new pfGeoSet; 
gset->setPrimType(PFGS_QUADS); 
gset->setNumPrims(1); 

 
int i = 0; 
pfVec3 *scoords = (pfVec3*) new (4*sizeof(pfVec3)) pfMemory; 
scoords[i++].set (-ROOMSIZE/2., -ROOMSIZE, ROOMBOT);  // Front left 
scoords[i++].set (ROOMSIZE/2., -ROOMSIZE, ROOMBOT);  // Front right 
scoords[i++].set (ROOMSIZE/2., ROOMSIZE, ROOMBOT);  // back right 
scoords[i++].set (-ROOMSIZE/2., ROOMSIZE, ROOMBOT);  // back left 

 
gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, scoords, NULL); 

 
pfVec3 *snorms = (pfVec3*) new (1*sizeof(pfVec3)) pfMemory; 
snorms[0].set( 0.0f,  0.0f,  1.0f); 

 
gset->setAttr(PFGS_NORMAL3, PFGS_PER_PRIM, snorms, NULL); 

 
pfVec4 *scolors = (pfVec4*) new (sizeof(pfVec4)) pfMemory; 
scolors[0].set (0.1, 0.7, 0.2, 1.); 
gset->setAttr(PFGS_COLOR4, PFGS_OVERALL, scolors, NULL); 

 
pfGeoState *gstate = new pfGeoState; 
gset->setGState (gstate); 

 
pfGeode *geode = new pfGeode; 
geode->addGSet (gset); 
parent->addChild (geode); 

} 
 
 
 
void InitializeHook() { 
 

pfGroup *root = new pfGroup; 
pfGroup *rootPickable = new pfGroup; 
root->addChild (rootPickable); 

 
#if POLHEMUSCURSOR || HEAD 

deviceeye = new DeviceEye (); 
#endif 
 
 
#ifdef HEAD 

headcoupler = new HeadCoupler (pfwindow); 
#endif 
 
#ifdef POLHEMUSCURSOR 

extern Variable<Pos6> *polhemus2; 
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cursor = new PolhemusCursor (root, rootPickable, polhemus2); 
#endif 
 
#ifdef MOUSECOUPLER 

(void) new MouseCoupler (pfwindow); 
#endif 
 
#ifdef MOUSECURSOR 

cursor = new MouseCursor (root, rootPickable, pfwindow); 
#endif 
 
 

// 
// Make ground green (imagine you are in a park :) 
// 
makeGreen(root); 

 
 

// 
// Create 10 random objects that the user can grab and manipulate 
// 
const int NOBJS = 10; 
Grab4 *g4[NOBJS]; 
int j; 
for( j=0; j < NOBJS; j++) { 
g4[j] = new Grab4(rootPickable, pfVec3 (RAND(100)-50 , RAND(50),  

RAND(10)), (int) RAND(4),  
pfVec4 (0.4+RAND(0.6), 0.4+RAND(0.6), 0.4+RAND(0.6), 1.0)); 

} 
 
 
 

// 
// Create the EarthSky (Performer fun) 
// 
pfEarthSky *esky = new pfEarthSky(); 
esky->setMode(PFES_BUFFER_CLEAR, PFES_SKY); 
pfwindow->GetChan()->setESky(esky); 

 
pfScene *scene = new pfScene; 
scene->addChild (root); 
pfwindow->GetChan()->setScene(scene); 
pfNodePickSetup (scene); 

 
 

// 
// ESC will terminate application 
// 
(void) new Quitter (pfExit); 

} 
 
 
/************************************************************************************* 
  Window system initialization 
 
*************************************************************************************/ 
static void InitializeWin () { 

pfwindow = new PfWindow(true, Link::GetHostId()); 
deviceTimer = new DeviceTimer; 

 
pfEnable (PFEN_LIGHTING); 

 
light = new pfLight; 
light->setPos (0, -1., 1, 0.); // Tweak light position 

 
(new pfMaterial)->apply(); 
pfLightModel *lmodel = new pfLightModel; 
lmodel->setAmbient(0.4, 0.4, 0.4);// Tweak light model (add more ambient) 
lmodel->apply(); 

} 
 
 
 
 
/************************************************************************************* 
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*************************************************************************************/ 
main(int argc, char **argv) { 
 

Link::InitCommunication( (argv[1]) ? atoi(argv[1]) : 1); 
InitializeWin (); 
InitializeHook (); 
Link::InitSystem (); 

 
while (true) { 

Link::START(); 
 

pfSync(); 
if (headcoupler) headcoupler->UpdateManual(); 
pfFrame(); 

 
light->on(); 

 
 

pfwindow->GetDeviceXWindow()->Read(); 
if (deviceeye) deviceeye->Read (); 
deviceTimer->Read(); 

 
pfwindow->GetDeviceXWindow()->Dispatch(&LinkStep::Step); 

 
if (deviceeye) deviceeye->Dispatch(&LinkStep::Step); 
deviceTimer->Dispatch(); 

 
cursor->DoHit(); 

 
 

LinkStep::Step(); 
IO::UpdateAll (); 

 
 

Link::FSTOP(); 
} 

} 
 

 

 

When the same program is compiled first using the COORDINATOR and then the 

WORKER flag, two executables will be generated, one for the Coordinator and the 

other for the Worker(s), where the program can be now executed in a distributed 

environment. 

 

The following picture is a snapshot of the program in execution.  The various 3D 

objects are visible as well as the virtual hand of the user. 
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A simple VR program created using the DLoVe’s paradigm 

 

 

 

User’s virtual hand 
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Appendix  D 

 

 

 

Installation instructions 

 

DLoVe is located in the implem top directory.  All sub-directories named use.* 

contain sample programs, and the other sub-directories contain the code for the 

UIMS, which one must compile together with his/her code. 

 

All makefiles use the environment variable HOSTTYPE, which is set by the user’s 

shell at login.  If a system does not set it automatically, it has to be set by the user 

manually.  I use "iris4d" when compiling on SGIs, and "sun4" when compiling on 

Suns.   

 

 

Compatibility 

 

The modules that do not use SGI Performer graphics compile using GNU g++ (ver. 

2.7.2) on a Sun (Solaris ver. 5.5.1) or GNU g++ (ver. 2.7.2) or SGI CC (IRIX ver. 6.2) 



Leonidas Deligiannidis 
 

 
 

 

 
Page 291 

on a Silicon Graphics (IRIX 6.2).  The Performer code compiles only on SGI using the 

CC compiler, because the Performer libraries are generated with that compiler’s 

name mangling conventions and cannot be linked under g++.   

 

The basic UIMS only handles input, not output.  It can read input from several 

sources, including an X window (a regular X window or an SGI mixed-mode 

Performer/GLX window), a Polhemus tracker, and an ISCAN eye tracker.  One can 

add other devices by sub-classing DeviceBase with a new class that follows the same 

interface conventions, and then including calls to Read() and Dispatch() his device in 

the main loop. 

 

Because we separate input event handling from graphics, the basic UIMS is 

compatible with any graphics system.  We have used it with X and with SGI 

Performer.  In addition, we provide optional classes and examples for use with X and 

Performer.  If one is using one of those systems, these will be useful.  If not, one 

must treat the UIMS as an input handling system, and provide his own connection 

to the graphics system. 
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Appendix  E 

 

 

 

Compile instructions 

 

The makefiles in use.*/makefile perform all the necessary steps, but if one wants to 

modify it for his/her own applications or if he/she is not fluent in "makefiles", a 

description of the modules that need to be compiled is given below.  The standard 

files one needs to compile to get the basic UIMS (these are defined as "OBJECTS" in 

the makefile) are shown below:  

 

• basic/IO.cc  

• basic/LinkBase.cc  

• solve/Link.cc  

• opt/Links.cc  

• basic/VariableBase.cc  

• solve/Variable.cc  

• solve/Variables.cc  

• basic/Condition.cc  

• basic/EventHandler.cc  

• basic/Pos.cc  
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• basic/utility.cc  

• basic/DeviceXWindow.cc  

• basic/DeviceTimer.cc  

 

In addition, one would compile his/her main program (like use.x/examplex.cc) and 

his/her interaction objects (like use.x/XSlider.cc)  

 

Building an X Windows application, one also wants to compile ("XOBJECTS" in the 

makefile):  

 

• opt/XWindow.cc 

 

If building a Performer application (that one can only do on an SGI), one generally 

wants to compile the following (which are "PFOBJECTS" in the makefile), in addition 

to the "OBJECTS" listed above:  

 

• opt/PfVariables.cc  

• opt/CursorBase.cc  

• opt/MouseCursor.cc  

• opt/PolhemusCursor.cc  

• eye/DeviceEye.cc  

• opt/HeadCoupler.cc  

• opt/Quitter.cc  

• opt/PfWindow.cc  

 

Also, for Performer, the following libraries need to be included at the end of the CC 

command line (listed as "PFLIBS" in makefile): 

 

-lpf -lpfutil -lmpc -limage -lGL -lXirisw -lfpe -lXmu -lX11 -lm -lmalloc -lC  
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If one writes state diagrams, he/she will need to run his/her .cc files through 

state/{sun4,iris4d}/translate5 before compiling. MouseCursor.cc and 

XSlider.cc are examples of files that require this treatment (the makefile does this by 

creating MouseCursor.cxx first and then compiling the resulting .cxx files instead of 

the .cc)  

 

Creating an application that will be executed in a distributed environment using 

Coordinator(s) and Worker(s), one must also compile the files in the net directory 

using the COORDINATOR and WORKER defines at the compiler’s line.  These files are 

listed in all makefiles as DLOVE_OBJECTS.  These files are listed below: 

 

• net/BasicComm.cc 

• net/Stats.cc 

• net/Config.cc 

• net/Top.cc 

• net/Connect.cc 

• net/Coordinator.cc 

 

The Stats.cc file contains modules responsible for printing out raw data when 

measuring performance.  The files BasicComm.cc, and Top.cc are the super-classes 

of the Coordinator and the Worker.  The Coordinator.cc contains all the code for 

making the Coordinator accept and connections from Workers, and when multiple 

users are involved, this module also directs Workers to connect to the other 

Coordinators (Slave Coordinators).  The Config.cc is a module used for reading and 

parsing the configuration file. 
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Compiler flags 

 

Compiling on Suns using the Gnu g++ compiler the following flags must be at the 

g++ command line: 

-I/usr/openwin/include -fno-implicit-templates 

 

Compiling on SGIs using the CC compiler the following flag must be in the CC 

command line: 

-no_auto_include 

 

The makefiles look for the HOSTTYPE environment variable to find the executable for 

translate5 and to include a host-specific makefile such as 

basic/makefile.$HOSTTYPE.  If normal login does not set this environment 

variable, one must set it manually.  We use "iris4d" when compiling on SGIs, and 

"sun4" when compiling on Suns.  The makefile for sun4 also looks for the 

environment variable OPENWINHOME and one can change or delete this to suit 

his/her compilation. 

 

 

Compilation for distributed environments 

 

All DLoVe’s source files need to be recompiled using the following two flags in order 

to for the user to obtain two executables, one for the Coordinator(s) and one for the 

Worker(s). 

• COORDINATOR 

• WORKER 
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Other flags with which DLoVe can be compiled are: 

• LVSTATS 

• INFO 

• MULTIUSER 

 

The LVSTATS flag is used for DLoVe to generate raw data that can be analyzed to 

measure its performance.  Programs that can be used to measure its performance 

are supplied in the scripts directory.  The INFO flag is used for debugging 

purposes.  DLoVe prints out the data structure of all Links and Variables, types of 

messages exchanged between the Coordinator(s) and the Worker(s), and the output 

of the partition algorithm.  The MULTIUSER flag is used when compiling multi-user 

programs.  When using this flag, either the COORDINATOR or the WORKER flag must 

also be specified on the compiler’s command line. 
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