

DLoVe

A specification paradigm for
designing distributed VR applications

for single or multiple users

A dissertation
submitted by

Leonidas Deligiannidis

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

TUFTS UNIVERSITY

February 2000

Adviser:

Dr. Robert J. K. Jacob

Leonidas Deligiannidis

 ii

Abstract

Most of today’s Graphical User Interfaces (GUI) and toolkits are based on serial,

discrete, token based, paradigms that seem to acceptably implement traditional

WIMP (Window, Icon, Menu, Pointer) interfaces. These tools however, are not suited

for “next generation” interaction techniques such as Virtual Reality (VR). These

interaction techniques rely upon asynchronous, parallel, and continuous

user/computer interaction. This work proposes a specification paradigm, DLoVe,

which provides a framework of techniques and abstractions that directly addresses

these issues. In addition, DLoVe also provides a mechanism for executing programs

designed for a single machine to be executed in a distributed environment, where

updates on DLoVe variables are processed in parallel. DLoVe’s framework also

provides the abstractions for writing multi-user VR programs or transforming

existing single-user programs into multi-user ones. Moreover, DLoVe addresses

issues of performance and maintainability, providing mechanisms, drivers, and

utilities that allow run time tuning and network management to be specified in a

simple manner.

This thesis describes in detail the proposed system, evaluates it, and provides

examples and analysis of several applications developed within DLoVe’s paradigm,

and provides a guide on how applications can be implemented in this framework.

Leonidas Deligiannidis

 iii

Acknowledgments

I wish to take this opportunity to express my sincere thanks to the people who made

this study possible.

In particular, I would like to express the deepest gratitude to my advisor, Prof.

Robert J. K. Jacob, for his consistent encouragement, support, inspiration, and

guidance throughout my studies for my Masters and Ph.D. It is my privilege to be

his student.

I want to thank Prof. Alva L. Couch for dedicating so much time to me to help me

analyze and measure DLoVe’s performance to successfully complete my dissertation

and defense. I thank him for the many hours of discussion and for his continuing

effort to cultivate my ability to write clearly.

Special thanks to Prof. Karen P. Lentz for allowing me to use all her SGI machines to

execute my distributed programs, and for her inspiration and ideas for DLoVe’s

distributed version during my Masters and Ph.D.

I would like to thank Prof. Harriet Fell for always believing in me and challenging

me, encouraging me, and supporting me during my undergraduate studies. It is my

privilege to be her student and I really enjoyed attending her numerous classes.

A special debt of gratitude is owed to my family back in Greece as well as my family

here in Boston because without them I would not be where I am today. My greatest

debt is owed to my lovely wife, Christina, for her abundant love, for her never-

Leonidas Deligiannidis

 iv

ending faith in me, and for her understanding (my long absence from home) during

the preparation and completion of this dissertation.

This work was supported by National Science Foundation Grant IRI-9625573, Office

of Naval Research Grant N00014-95-1-1099, and Naval Research Laboratory Grant

N00014-95-1-G014. We gratefully acknowledge their support.

Leonidas Deligiannidis

 v

Table of Contents

CHAPTER 1: INTRODUCTION .. 2

OVERVIEW..2

EASE OF USE..5

OUTLINE OF THE DISSERTATION..6

CHAPTER 2: RELATED WORK - VIRTUAL REALITY 9

INTRODUCTION..9

WHY USE VIRTUAL REALITY ... 10

LIMITATIONS IN VR... 11

PHYSIOLOGICAL DANGERS OF VR.. 14

CHAPTER 3: RELATED WORK - CONSTRAINTS AND CONSTRAINTS IN UIMSS

.. 16

INTRODUCTION.. 16

EVOLUTION OF CONSTRAINTS... 18

One-way and Multi-way Constraints... 18

Lazy and Eager Constraint Solving ... 20

CONSTRAINT SYSTEMS.. 21

ALGORITHMS IN CONSTRAINT SOLVING... 26

Data-Driven ... 27

Demand-Driven ... 28

The nullification/re-evaluation scheme ... 28

DESCRIPTION OF ALGORITHMS FOR CONSTRAINT SOLVING... 29

COMPARISON OF CONSTRAINTS .. 31

Leonidas Deligiannidis

 vi

CONTINUOUS AND DISCRETE TIME .. 34

CHAPTER 4: RELATED WORK - PARALLEL AND DISTRIBUTED SYSTEMS ... 36

INTRODUCTION.. 36

FLYNN’S TAXONOMY ... 38

PERFORMANCE EVALUATION .. 39

PARALLEL SOFTWARE.. 42

DLOVE AND OTHER DISTRIBUTED SYSTEMS... 45

CHAPTER 5: RELATED WORK - MULTI-USER UIMS/CSCW SOFTWARE FOR

VIRTUAL REALITY ... 47

INTRODUCTION .. 47

SYSTEMS THAT USE DEAD RECKONING .. 48

UPDATE FILTERING AND AREA OF INTEREST (AOI) ... 52

KEY FRAME ANIMATION... 53

OTHER USER INTERFACES ... 54

CHAPTER 6: BASICS OF DLOVE .. 60

INTRODUCTION .. 60

Continuous Time.. 61

Discrete Time... 65

Communication Between Continuous and Discrete Time 69

DATA STRUCTURES .. 69

INTERNAL FLAGS OF THE SOLVER .. 73

OPERATIONS ON LINKS.. 75

OPERATIONS ON VARIABLES... 76

CONSTRAINT SOLVER.. 77

How it Works... 78

Leonidas Deligiannidis

 vii

CHAPTER 7: DISTRIBUTED/PARALLEL DLOVE ... 84

INTRODUCTION.. 84

BASIC STRUCTURE OF THE ‘MAIN()’ FUNCTION ... 85

HIGH LEVEL SYSTEM ARCHITECTURE.. 87

COMMUNICATION PROTOCOL.. 91

PARTITION ALGORITHMS.. 93

Partition (2 phases) (Partition Queries) .. 94

Optimization (Workers) (MyMainVars) ... 99

PARALLEL COMPUTATION ON A DISTRIBUTED GRAPH .. 100

TWO FLAVORS OF CONSTRAINT SOLVERS... 102

Constraint Solver on the Coordinator... 103

Constraint Solver on the Worker(s) .. 104

CONFIGURATION FILE ... 104

CHAPTER 8: MULTI-USER DLOVE ... 105

INTRODUCTION ..105

MULTIPLE COORDINATORS... 106

ISSUES – TRANSFORMING TO MULTI-USER .. 108

Backward Notification of Events ... 111

The Need for Local Evaluation... 112

Time is a special Variable ... 113

CHAPTER 9: MESSAGING (DLOVE PROTOCOL).. 115

INTRODUCTION ..115

MACHINE CONNECTIONS IN DISTRIBUTED MODE.. 116

MACHINE CONNECTIONS (MULTI-USER) ... 118

FLAVORS OF MESSAGE-PASSING IN DLOVE... 124

Leonidas Deligiannidis

 viii

Single messaging... 125

Multi-messaging - Block for replies ... 127

Multi-messaging - Non-Block ... 128

CONFIGURATION FILE ... 130

CHAPTER 10: THE ‘ARMS’ APPLICATION .. 132

OVERVIEW.. 132

OBJECTS IN ‘ARMS’ - SINGLE USER. ... 134

‘ARMS’ IN DISTRIBUTED MODE .. 139

‘ARMS’ FOR A MULTI-USER ENVIRONMENT ... 142

The ‘switch’ mechanism’ ... 146

CHAPTER 11: AN EYE TRACKING APPLICATION 149

OVERVIEW.. 149

HAND MOVEMENT FOR OBJECT MANIPULATION ... 150

DESIGNING THE APPLICATION... 151

CHAPTER 12: THE DLOVE VIRTUAL PARK.. 156

INTRODUCTION..156

THE ACTORS...157

Sliders and Orbiting objects .. 160

COLLISION PREVENTION .. 164

Implementation Issues... 165

DESIGNING THE VIRTUAL PARK... 166

The Virtual Ball ... 167

The Humanoids ... 167

Partition Issues.. 169

Collision Prevention and ball simulation issues in a Distributed Environment.. 171

Leonidas Deligiannidis

 ix

Synthetic Variable for ball position.. 172

Synthetic Variables for Collision Prevention... 174

SUMMARY ..180

CHAPTER 13: PERFORMANCE ANALYSIS .. 181

OVERVIEW.. 181

STRATEGY FOR ANALYSIS... 183

Performance with the Humanoids ... 184

Collision Prevention Internals ... 184

Computer Network used for the Experiment .. 184

Analyzing the Results ... 187

Performance with the ‘Perf’ program ... 195

State machine of the run time system ... 196

What is Measured... 198

Analyzing the Results ... 201

Frame Validity and Statistical Skew ... 216

Modified Algorithm for the Workers .. 228

Throughput in DLoVe .. 253

Asynchronous Frame Rate in DLoVe .. 257

SUMMARY OF RESULTS ... 259

CHAPTER 14: EVALUATION... 260

OVERVIEW.. 260

CONCEPTUAL APPLICABILITY .. 261

SCALABILITY ISSUES... 261

EXTENSIBILITY ISSUES .. 263

PRESERVING INTELLECTUAL INVESTMENTS.. 264

CHAPTER 15: OPEN PROBLEMS AND FURTHER STUDY 265

Leonidas Deligiannidis

 x

OVERVIEW.. 265

ENHANCING AND IMPROVING DLOVE’S PARADIGM ... 266

CHAPTER 16: CONCLUSION .. 273

APPENDIX A.. 275

APPENDIX B.. 281

APPENDIX C.. 285

APPENDIX D.. 290

APPENDIX E.. 292

BIBLIOGRAPHY .. 297

Leonidas Deligiannidis

 xi

List of Figures

CONSTRAINT A ... 33

STAR GRAPH (LEFT), AND TREE GRAPH (RIGHT).. 43

LINKS AND VARIABLES ... 62

A DISABLED LINK.. 63

COMBINATIONS OF VARIABLES ATTACHED TO A LINK.. 64

COMBINATIONS OF LINKS ATTACHED TO VARIABLES... 64

A VARIABLE USED FOR OUTPUT BY MULTIPLE LINKS... 65

STATE DIAGRAM OF THE EVENT HANDLER IN THE FACTORY EXAMPLE.............................. 68

DATA-FLOW GRAPH... 70

DATA-DEPENDENCY GRAPH .. 71

DLOVE CONSTRAINT GRAPH ... 71

DATA STRUCTURE THAT HOLDS THE LINKS AND VARIABLES ... 72

ANIMATION OF THE SOLVE ALGORITHM.. 80

A SECOND EXAMPLE OF THE SOLVE ALGORITHM ... 82

A THIRD EXAMPLE OF THE SOLVE ALGORITHM .. 83

COORDINATOR AND WORKERS ON A LAN... 86

DLOVE’S MANAGERS ... 88

PARTITION INTO TWO SUB-GRAPHS ... 89

MULTIPLE WORKERS CONNECTED TO A COORDINATOR ... 92

THE L_COUNTER OF THE VARIABLES... 97

PARTITIONED GRAPH TO TWO WORKERS .. 101

Leonidas Deligiannidis

 xii

PARTITIONED GRAPH AFTER THE OPTIMIZATION ALGORITHM IS RUN ON THE WORKERS 101

MULTIPLE WORKERS CONNECTED TO MULTIPLE COORDINATORS 107

DISTINGUISHING INPUT DEVICES .. 109

DLOVE’S CONNECTION PROTOCOL ... 118

WORKER CONNECTS TO MASTER COORDINATOR USING DYNAMIC BINDING 120

SLAVE COORDINATOR CONNECTS TO MASTER COORDINATOR 120

SLAVES START LISTENING FOR CONNECTIONS, MASTER PARTITIONS THE GRAPH, AND THE

WORKERS ARE REQUESTED TO CONNECT TO SLAVES ... 122

WORKER CONNECTS TO SLAVE COORDINATOR USING DYNAMIC BINDING........................ 123

SLAVE COORDINATOR PARTITIONS THE GRAPH (JUST FOR VERIFICATION)........................ 123

WORKER IS READY TO PROCESS REQUESTS AND SO IT NOTIFIES THE COORDINATORS 124

REQUESTS MADE INTO MESSAGES.. 126

MULTI-MESSAGE CONTAINING MULTIPLE MINI-MESSAGES.. 128

GETE REQUESTS EMBEDDED INTO THE MULTI-MESSAGE ... 130

SNAPSHOT OF THE ‘ARMS’ PROGRAM ... 134

THE CURSOR OBJECT...135

THE ARM1 OBJECT ...136

THE PARTS OF AN ARM1 OBJECT.. 137

THE PARTS OF THE ARM2 OBJECT .. 137

LINKS AND VARIABLES OF THE ARM2 OBJECT... 138

ARMSLAVE OBJECTS WIRED TO AN ARM2 OBJECT ... 139

HALF ARMSLAVE OBJECTS ATTACHED TO FIRST TIP OF AN ARM2 OBJECT AND THE OTHER HALF

TO THE SECOND TIP ...140

ARMSLAVE OBJECTS EVALUATED IN PARALLEL .. 141

TWO-USER INTERFACE IN THE ‘ARMS’ PROGRAM .. 143

ONLY ONE USER CONTROLLING AN ARM2 OBJECT.. 143

Leonidas Deligiannidis

 xiii

STATE TRANSITION DIAGRAM OF THE EVENT HANDLE OF AN ARM1 OBJECT AND THE CODE THAT

IS EXECUTED BASED ON THE STATE TRANSITION.. 145

INCONSISTENCY ISSUE IN A MULTI-USER VE ... 147

HAND MOVEMENT FOR EYE-SELECTED OBJECT MANIPULATION..................................... 151

TWO HAND POSITIONS CONTROLLING THE POSITION OF AN EYE-SELECTED OBJECT........... 152

BRIGHTNESS AND EYE-SELECTION OF OBJECTS... 153

STATE TRANSITION DIAGRAM OF THE 2ZOOM APPLICATION .. 154

SNAPSHOT OF THE 2ZOOM APPLICATION.. 155

A HUMANOID AND ITS PARTS ... 157

ACTIONS OF A HUMANOID BASED ON THE VIRTUAL BALL’S POSITION.............................. 158

A SNAPSHOT OF A HUMANOID THAT ITS HEAD FOLLOWS THE TRAJECTORY OF THE BALL 159

A HUMANOID AT THE POINT OF HITTING THE BALL ... 159

AN ORBITING OBJECT...161

THE SLIDER OBJECT..161

SNAPSHOT OF A SLIDER CONTROLLING AN ORBITING OBJECT 162

SLIDER MODIFIES SPEED OF AN ORBITING OBJECT... 163

SLIDER WIRING IN A TWO-USER ENVIRONMENT .. 164

THE VIRTUAL BALL .. 167

A HUMANOID OBJECT..168

ISSUES IN PARTITIONING A HUMANOID’S GRAPH... 169

CORRECTING THE PARTITION INEFFICIENCY .. 170

THREE HUMANOIDS ASSIGNED TO BE SIMULATED BY THREE DIFFERENT WORKERS 171

SYNTHETIC VARIABLES FOR THE POSITION OF THE BALL.. 173

USE OF SYNTHETIC VARIABLE FOR COLLISION DETECTION.. 175

THE DLOVE VIRTUAL PARK .. 177

MASTER COORDINATOR USING AN HMD AND THE POLHEMUS TO INTERACT 178

SLAVE COORDINATOR USING THE MOUSE TO INTERACT... 179

Leonidas Deligiannidis

 xiv

THE SGI EXPERIMENT... 185

MOUNTING PERFORMER RUN TIME LIBRARIES ... 186

COMPARING THE NUMBER OF EVALUATIONS OF THE NON-DISTRIBUTED AND THE DISTRIBUTED

VERSION OF THE VIRTUAL PARK APPLICATION USING COMPUTATIONAL EXPENSIVE

EVALUATIONS. ‘SIMULATELINK’ IS O(N3) WHERE N IS THE NUMBER OF HUMANOIDS (32).

... 189

‘SIMULATELINK’ IS O(N4) WHERE N IS THE NUMBER OF HUMANOIDS (32). 189

NUMBER OF FRAMES WHEN THE RUNNING TIME OF ‘SIMULATELINK’ IS O(N3), WHERE N IS THE

NUMBER OF HUMANOIDS.. 190

NUMBER OF FRAMES WHEN THE RUNNING TIME OF ‘SIMULATELINK’ IS O(N4), WHERE N IS THE

NUMBER OF HUMANOIDS.. 191

COMPARING NUMBER OF EVALUATIONS OF THE NON-DISTRIBUTED AND THE DISTRIBUTED

VERSION OF THE VIRTUAL PARK APPLICATION USING COMPUTATIONAL INEXPENSIVE – O(N)

– EVALUATIONS. ...193

COMPARING THE FRAME RATE OF THE NON-DISTRIBUTED AND THE DISTRIBUTED VERSION OF

THE VIRTUAL PARK APPLICATION USING COMPUTATIONAL INEXPENSIVE – O(N) –

EVALUATIONS ...194

DLOVE GRAPH OF THE ‘PERF’ APPLICATION .. 196

PARTITION OF THE DLOVE GRAPH OF THE ‘PERF’ APPLICATION 196

INTERNAL STATE MACHINE OF DLOVE WHEN EXECUTED IN THE DISTRIBUTED MODE 198

MEASUREMENT OF DLOVE ... 199

MEASURING LATENCY IN THE INTERNAL STATE MACHINE ... 200

THROUGHPUT OF DLOVE WITH DIFFERENT ‘DROP’ AND APE 201

GRAPHID(001L) DROP=30, APE=100 ...203

GRAPHID(002L) DROP=300, APE=100 ... 204

GRAPHID(003L) DROP=3000, APE=100 ... 205

GRAPHID(004L) DROP=30, APE=1000 ... 206

Leonidas Deligiannidis

 xv

GRAPHID(005L) DROP=300, APE=1000 ... 207

GRAPHID(006L) DROP=3000, APE=1000 ... 208

GRAPHID(007L) DROP=30, APE=10000 ... 209

GRAPHID(008L) DROP=300, APE=10000 ... 210

GRAPHID(009L) DROP=3000, APE=10000.. 211

GRAPHID(010L) DROP=30, APE=100000 ... 212

GRAPHID(011L) DROP=300, APE=100000.. 213

GRAPHID(012L) DROP=3000, APE=100000.. 214

WORKERS DRIFTING IN RESPONDING BACK TO COORDINATOR 215

GRAPHID(001F) DROP=30, APE=100 ...217

GRAPHID(002F) DROP=300, APE=100 ... 218

GRAPHID(003F) DROP=3000, APE=100 ... 219

GRAPHID(004F) DROP=30, APE=1000 ... 220

GRAPHID(005F) DROP=300, APE=1000 ... 221

GRAPHID(006F) DROP=3000, APE=1000 ... 222

GRAPHID(007F) DROP=30, APE=10000 ... 223

GRAPHID(008F) DROP=300, APE=10000 ... 224

GRAPHID(009F) DROP=3000, APE=10000 ... 225

GRAPHID(010F) DROP=30, APE=100000 ... 226

GRAPHID(011F) DROP=300, APE=100000 ... 227

GRAPHID(012F) DROP=3000, APE=100000.. 228

GRAPHID(101L) DROP=30, APE=100 ...229

GRAPHID(102L) DROP=300, APE=100 ... 230

GRAPHID(103L) DROP=3000, APE=100 ... 231

GRAPHID(104L) DROP=30, APE=1000 ... 232

GRAPHID(105L) DROP=300, APE=1000 ... 233

GRAPHID(106L) DROP=3000, APE=1000 ... 234

Leonidas Deligiannidis

 xvi

GRAPHID(107L) DROP=30, APE=10000 ... 235

GRAPHID(108L) DROP=300, APE=10000 ... 236

GRAPHID(109L) DROP=3000, APE=10000.. 237

GRAPHID(110L) DROP=30, APE=100000 ... 238

GRAPHID(111L) DROP=300, APE=100000.. 239

GRAPHID(112L) DROP=3000, APE=100000.. 240

GRAPHID(101F) DROP=30, APE=100 ...242

GRAPHID(102F) DROP=300, APE=100 ... 243

GRAPHID(103F) DROP=3000, APE=100 ... 244

GRAPHID(104F) DROP=30, APE=1000 ... 245

GRAPHID(105F) DROP=300, APE=1000 ... 246

GRAPHID(106F) DROP=3000, APE=1000 ... 247

GRAPHID(107F) DROP=30, APE=10000 ... 248

GRAPHID(108F) DROP=300, APE=10000 ... 249

GRAPHID(109F) DROP=3000, APE=10000 ... 250

GRAPHID(110F) DROP=30, APE=100000 ... 251

GRAPHID(111F) DROP=300, APE=100000 ... 252

GRAPHID(112F) DROP=3000, APE=100000.. 253

THROUGHPUT OF DLOVE UTILIZING THE NEW ALGORITHM ON THE WORKERS 254

COMPARING THROUGHPUT BETWEEN THE ORIGINAL AND THE NEW ALGORITHM 255

COMPARING THROUGHPUT BETWEEN NON-DISTRIBUTED AND DISTRIBUTED VERSION OF ‘PERF’

... 256

ASYNCHRONOUS RENDERING IN DLOVE .. 258

‘ROOT’ WORKER INCORPORATED IN DLOVE TO HANDLE SYNTHETIC VARIABLES IN CYCLIC

CONSTRAINT GRAPHS ... 268

NODE CONNECTION WITH THE ‘ROOT’ WORKER ... 269

Leonidas Deligiannidis

 xvii

PERFORMANCE MEASUREMENT OF A 100MB SWITCHED NETWORK USING MULTIPLE

COORDINATORS..272

A SIMPLE VR PROGRAM CREATED USING THE DLOVE’S PARADIGM 289

Leonidas Deligiannidis

Page 1

DLoVe

(Distributed Links over Variables evaluation)

A specification paradigm for
designing distributed VR applications

for single or multiple users

Leonidas Deligiannidis

Page 2

Chapter 1: Introduction

Overview

For the last 20 years, desktop systems have been continuously enhanced, providing

the user community with such tools as line and raster graphics, window-icon-

mouse-pointer graphical user interfaces, and advanced multimedia extensions.

With the help of immersive virtual environments, users now have access to 3D (3

dimensional) space.

The Responsive Workbench is an example of a 3D space environment. It is a virtual

environment that allows the users to locate virtual objects and control tools on a

real “workbench”. The virtual objects are projected onto the surface of the

workbench. This virtual environment duplicates the actual work environment of an

operating room, an architect’s office, etc, where several people can work together in

this environment on a common task [Krueger 94].

Leonidas Deligiannidis

Page 3

The state of practice in user-interfaces today is the familiar direct manipulation, GUI

(Graphical User Interface), or WIMP (Window, Icon, Menu, Pointer) style interface

[Shneiderman 92]. The next generation’s computer interfaces have been called non-

WIMP [Green 91] and are characterized by parallel and continuous interactions.

Examples are virtual reality and virtual environments [Foley 87]. Existing languages

and models, event-based software, methods and tools do not satisfy the next

generation requirements. For that reason we need a new model and framework for

describing and implementing these interfaces from the point of view of the user and

the dialogue.

Most of today’s examples of non-WIMP interfaces have been designed and

implemented with event-based models that are more suited to previous interface

styles. Because there is no software that can describe continuous, parallel

interaction explicitly (which is needed for virtual reality) and the old models (event-

driven) fail to capture continuous, parallel interaction explicitly, new interfaces have

required considerable low-level programming. While some of these interfaces are

very inventive, they have made such systems difficult to develop, reuse, and

maintain.

DLoVe (Distributed Links over Variables evaluation) is my new model for next

generation dialogues. This model expresses non-WIMP formal structure in the same

way that existing technology expresses command-based, textual and event-based

dialogues. My model combines a data-flow or constraint-like component for the

continuous relationships with an event-based component for discrete interactions.

The modules describing the continuous relationships between objects form a

constraint graph, which can be evaluated by DLoVe’s constraint engine. The

constraint engine ensures that all relationships between the related objects are

Leonidas Deligiannidis

Page 4

satisfied. Individual continuous relationships can be enabled or disabled on the fly.

Programs designed in this framework, not only capture continuous and parallel

interaction explicitly, but also allow programs to run in parallel when there is a need

for faster computation. In addition, this framework allows programs to run in a

multi-user environment where users can participate in a collaborative environment.

In DLoVe, one can write programs designed for a single machine but can execute

them in a distributed environment without any code modification. The majority of

research done in parallel systems has concentrated either upon computational

models, parallel algorithms, or machine architecture. By contrast, little attention

has been given to software development environments or program construction

techniques required in order to translate algorithms into operational programs

[Sunderam 90].

For implementing this framework, DLoVe assigns roles to different machines. For

example, one machine, the Coordinator, is responsible for rendering the graphics on

the screen and reading all input devices, and all other machines, the Workers, are

responsible for keeping the constraints between Variables up-to-date and serving

requests to the Coordinator. As a result, the Coordinator has more time to spend

refreshing the screen and providing an immersive environment to the user, because

the responsibility of keeping all the Variables up-to-date is taken away from it and

given to other machines that are dedicated to this task.

All machines/processes involved in running a program in parallel have an identical

copy of the constraint-graph so that every machine/process works on the same

constraint graph. However, each machine/process is only responsible for evaluating

part of the constraint graph. This way, the constraint graph seems to be distributed

Leonidas Deligiannidis

Page 5

among many machines/processes. Because every machine is responsible for only a

sub-graph of the constraint graph, the Coordinator can request services in parallel

from the machines that are dedicated to parts of the constraint graph. In other

words, by distributing the constraint graph and then partitioning it, so that,

different machines are responsible for different parts of the constraint graph, the

queries get partitioned. By having the queries partitioned, the Coordinator can

request services in parallel where some queries always go to machine ‘A’ others to

machine ‘B’ and so on.

Ease of Use

Ease of use is determined by how fast and effortlessly the application can be learned

and used by users as well as by counting the frequency of errors when interacting

with the application. Often, applications that are robust, functional, and exhibit

good performance, are abandoned by the user community due to difficult or foreign

user interfaces. The success of an application is largely determined by how easily

the application can be learned and used [Larson 92].

When using the programming paradigm of DLoVe, the programmer uses a

production programming language with which he/she is familiar. One can use, for

example, C++ to write programs as he/she formerly wrote for a single machine and a

single user. However, DLoVe gives the programmer the flexibility to run the same

program in parallel if he/she wishes, without any additional programming effort,

making DLoVe a desirable model for describing Virtual Reality Environments and

behavior. When such a program is transformed to a multi-user program the

Leonidas Deligiannidis

Page 6

programmer must manually make large, but trivial, revisions to the program.

However, its base form will remain same.

To transform a single-user program that runs sequentially to a program that runs in

parallel, no modifications are required. The user can just recompile using a

different set of libraries. To transform a single-user program to a multi-user

program, some trivial modifications must be made. In a multi-user environment we

need to designate and differentiate between the input and output devices so we can

give different roles to different users. Also, the users must be able to see each other

in the virtual environment, whereas in the single-user environment there is only one

user and one view of the virtual world.

By using DLoVe, programmers can write networked and distributed virtual reality

programs without any knowledge of networked, distributed, or parallel

programming, making Virtual Reality programming quick, simple and fun.

Outline of the Dissertation

Chapters 2 through 5 describe background and related work. Chapter 2 describes

Virtual Reality, Virtual Environments, and the basic problem of real time rendering

that DLoVe solves. Chapter 3 describes constraint graphs and constraint engines

that define DLoVe’s framework and programming paradigm. Chapter 4 describes

techniques used in programming Parallel and Distributed systems, which motivate

DLoVe’s approach to parallelism. Chapter 5 describes multi-user interfaces, and

Leonidas Deligiannidis

Page 7

builds a framework for understanding virtual environments and multi-user

programming.

Chapters 6 through 9 describe the DLoVe programming. Chapter 6 describes Links

and Variables of the DLoVe underlying framework, and its incremental constraint

solver that keeps the constraint graph up-to-date. Chapter 7 describes how a

program written in DLoVe that runs on a single machine can be transformed to run

in parallel on multiple machines, and how this is accomplished. Chapter 8

describes Parallel computation in DLoVe, where one can describe a program that

runs on a single machine for a single user, which allows programs to run on

multiple machines for multiple users. Chapter 9 describes all methods that the

DLoVe protocol supports, how all machines connect to each other, how the Partition

algorithm works and the good and bad points of each of the methods used to run a

parallel program in DLoVe.

Chapters 10 through 12 demonstrate the use of DLoVe’s paradigm in creating

Virtual Reality applications. Chapter 10 describes in detail the creation of a simple

VR program (arms). Then it describes how such a program can be executed in a

distributed environment. Finally, it describes the transformation of the arms

program to be executed in a multi-user environment. Chapter 11 describes an

application that uses multiple input devices such as Polhemus and an eye tracker

device to implement the 2zoom application where a user can select and manipulate

remote objects. Chapter 12 describes a large-scale application that involves

interaction between multiple users and multiple computer-simulated entities, call

Humanoids. The virtual environment is a Virtual Park where the Humanoids play

with a virtual ball. The simulation requires execution of computationally expensive

Leonidas Deligiannidis

Page 8

algorithms for the animation of the Humanoids and the interaction between then as

well as between the users.

In chapters 13 I present the results of the performance measurements. Traditional

measurements failed to describe accurately the performance of DLoVe New

algorithm and ideas are presented in this chapter for measuring performance in

DLoVe that describe it accurately.

Chapter 14 evaluates DLoVe and describes its applicability and limitation. Chapter

15 presents the open problems and future work that needs to be conducted to both

improve DLoVe’s paradigm and also its performance. Chapter 16 is a summary of

this dissertation.

Leonidas Deligiannidis

Page 9

Chapter 2: Related Work - Virtual

Reality

Introduction

DLoVe is, primarily, a mechanism for creating VR systems. Virtual Reality (VR)

eliminates the need to work with a flat 2D image, the keyboard, mouse and monitor.

All of these interface methods have become very familiar to the users, but they still

remain unnatural and limiting. VR, on the other hand, allows the user to interact

in a virtual world naturally, as he/she would interact in the physical world. Real

time 3D interaction allows the user to touch, feel, and lift objects as he/she would

in the physical world. VR visually isolates the user from the physical world and

substitutes an imaginary 3D. This imaginary world is constructed using computer-

generated images displayed to the user through a head-mounted display (HMD) (or

some other immersive display devices) and a spatial interaction device such as

DataGlove or PowerGlove (Satava, 1993, pp. 203-05).

Leonidas Deligiannidis

Page 10

Virtual Reality is a breakthrough technology that alters the way users interact with

computers and it consists of three major elements: interaction, 3-D graphics, and

immersion [Prat 95]. Making a virtual environment realistic is not enough; that

environment must also allow the user to interact with it in real time in order for it to

be called a Virtual Reality environment [Stephen 94] [Barfield 95]. The goal of a VR

developer is to let the user focus on the virtual model or environment, to disregard

everything else [Hodges 95]. Clicking and dragging might be interactive, but it is not

VR because it is not immersive. VR lets the user manipulate and navigate through

the virtual model in real time. VR is available in amusement arcades, films of the

future, and is widely used for research purposes, and lately for industrial settings.

Why use Virtual Reality

The great benefit of using Virtual Reality is the ability to work in a virtual

environment without the attendant danger, impracticality, or significantly greater

expense that would be encountered in the same environment if it were physical.

That means saving money and time, and enhancing creativity, in product

prototyping, hazardous task training, molecular modeling, medical education,

entertainment content creation, and a range of other mission-critical tasks. VR

adds value to virtually any application where it is vital to experience spatial

relationships, and analyze, design, engineer and understand such relationships.

Today, VR is used in many different areas in research that include manufacturing,

architecture, medicine and healthcare, entertainment, scientific data visualization,

Leonidas Deligiannidis

Page 11

the military and many more. For example, a surgeon can perform surgery from a

remote site, or the surgeon may perform surgery on a virtual patient first before

performing it on the actual patient, for practice or training purposes [Bowman 95].

Researchers at Georgia Institute of Technology’s Graphics, Visualization, and

Usability Center are using VR for therapy of patients with psychological disorders

such as acrophobia. The patients were moved up on high elevators in a Virtual

Environment, or given the illusion of looking through a third floor window, but they

were physically in a safe environment, a lab [Hodges 95]. This way, patients could

overcome the fear of heights and adjust more easily to real world situations.

Using VR designers are able to design large structures, work in them and make

modifications and strategic changes to these structures. For example, in the Virtual

Factory Project, researchers in Iowa State University designed a factory where robots

replace finished parts and move along virtual tracks. This helps manufacturers

investigate new technology and architects re-design structures before they are built,

because modifying a structure after it is built is expensive and time consuming.

[Kelsick 98]

Limitations in VR

Traditionally, computers use input devices ranging from switches and punched

cards to keyboards and mice. However, such devices are insufficient for specifying

actions in a virtual world. For example, how would you express the simple act of

drinking from a cup of water by using a mouse? Typing a keyboard command may

Leonidas Deligiannidis

Page 12

come to mind, but this quickly becomes cumbersome, as you will have to specify

which cup to drink from, and how much to drink. You will also have to learn the

correct syntax to convey the information to the computer. This is definitely not a

simple task [Vince 95][Burdea 94]. That is why new input devices needed to be

created, such as 6D mice, joysticks, wands, force balls, DataGloves, and

PowerGloves that use Polhemus [Aukstakalnis 92] to describe their location and

orientation in space. A Dexterous Hand Master (DHM) is an exoskeleton that is

attached to the fingers using velcro straps. Attached to each finger joint is a device

called a Hall effect sensor whose purpose is to measure the finger-joint angle. Tod

Machover used an Exos DHM at the MIT Media Lab to control acoustic parameters

in live musical performances [Sturman 92].

The ability to feel objects in virtual environments can markedly enhance the

effectiveness of many applications, particularly for training, scientific visualization,

and telepresence [Langreth 95]. Haptic devices for presenting tactile and force

sensations, are being developed in several laboratories, but are not yet widely used

elsewhere. For example, Makato Sato of the Tokyo Institute of Technology’s

Precision and Intelligent Laboratory has developed a force-reflecting system called

Spidar (Space Interface Device for Artificial Reality). With this system, the user

inserts his or her thumb tips and index finger into a pair of rings, each of which

have four strings attached to rotary encoders. String movements are restricted with

breaks, providing touch sensations [Bowman 95].

The visual sense is used more than any other to process information. Even a quick

glance at an intricate picture will be enough to process most of the details of the

scene. Visual input is a necessary requirement for an engaging virtual environment.

Leonidas Deligiannidis

Page 13

Stereoscopic vision occurs when two separate images are generated and viewed.

The left eye views the left image and the right eye views the right image. The two

images differ slightly due to visual parallax, caused by the distance between the eyes

[Vince 95] [Burdea 94].

To help users immerse in a virtual environment headmouted (HMD) displays are

being used where two monitors or LCD displays are always in front of the eyes.

Other output device include Projected HMD and Mini HMD, Heads-up displays

which can then overlay the “real” world with additional information, thus

augmenting the “real” world. Virtual reality can be used to enhance actual reality

[Adam 93] [Doyle 95].

Different input and output devices are suitable for different tasks, but one

requirement for any device to work well in VR is that the lag between the action and

what appears on the screen cannot be too great. For example, if you move your

DataGlove and the direction is changed only 5 seconds later, you can be easily

confused and the device becomes hard to use.

VR systems have one important limitation, the inability to move around the virtual

environment in a natural way. An observer is either constrained by the physical

boundaries, as with the CAVE system [Bowman 95], or by the range of a head

tracking system.

The CAVE system (Cave Automatic Virtual Environment) developed at the Electronic

Visualization Laboratory of the University of Illinois, Chicago, uses stereoscopic

video projectors to display images on three surrounding walls and on the floor. The

participants wear glasses with LCD shutters to view the 3D images [Bowman 95].

Leonidas Deligiannidis

Page 14

Physiological dangers of VR

Problems arise because of an important phenomenon of latency between head

movements and the image that the computer sends to the HMD. In this case, the

human brain receives conflicting information from the involved senses. Since the

represented image does not truly reflect the movement perceived by the semicircular

canals, the brain cannot decide which is the right information.

Another cause of conflict is the difference between the convergence of the eyes and

the convergence created by the pair of stereoscopic images. In everyday life, we are

constantly forced to focus on objects at distances from 28mm away to infinity. An

HMD helmet has two liquid crystal screens that are essentially two-dimensional

devices. The two images are merged to create a stereoscopic illusion. In spite of

everything, there is a difference between the stereoscopic image created by the HMD

helmet, and that perceived in reality. In the case of an HMD helmet, the two images

are presented with the aid of a combination of optical lenses. This creates a virtual

image at a fixed distance, which is located from several meters ahead to infinity,

according to the model of HMD helmet used. As a result, the user always focuses at

a fixed distance, which is something that is not happening in real life.

There is the notion of conflict due to contradictory information. Each time there is a

conflict, there will be an effect perceived by the human body. These observations

must not be taken lightly. Certain types of trauma are very pronounced, although

they have a short duration. For example, latency caused by an HMD helmet, a

Leonidas Deligiannidis

Page 15

glove, or a slow computer can cause some to experience heart rate increase,

seasickness, and vomiting. Others are unable to focus adequately once they return

to the real world, and after a while can regain some hours, according to the length of

the immersion [Reason 78].

Leonidas Deligiannidis

Page 16

Chapter 3: Related Work - Constraints

and Constraints in UIMSs

Introduction

Since the earliest interactive graphical editors, systems have attempted to provide

sophisticated editing features. Sketchpad [Sutherland 63] introduced not only

direct graphical interaction, but also constraints and snapping1. Constraints are

useful in programming languages, user interface toolkits, databases, database

queries, simulation packages, and other systems, because they allow programmers

or users to state declaratively a relation that is to be maintained, rather than

requiring them to write procedures to maintain the relation themselves.

1 Snapping is a method that allows users to select, align, etc. objects on a grid or a virtual gravitational
force. For example, when a user wants to select a line in a drawing application, the user can click near
the line and the application selects the line without the need of the programmer to click right on the
line, enhancing his/her selection skills. Snapping is implemented in numerous applications. Another
application is to help users align objects on a grid. The users draw and drag objects, and the
application always snaps the objects on a virtual grid. [Bier 86]

Leonidas Deligiannidis

Page 17

Maintaining that relation is left up to the underlying system, instead of being the

responsibility of the programmer. A constraint typically contains both a declarative

description of the relation and a set of procedures for making that relation hold,

which are used by the underlying constraint satisfier/engine. The emphasis on

constraints helps define a new style of programming, one in which the focus is on

computing data values instead of writing methods [Myers 92b].

Any large, complex application contains hundreds, even thousands of inter-

dependent relationships. For example, a graphical application must deal with the

relationships arising from moving objects on the screen, displaying feedback when

the user moves/deletes objects, keeping text labels on buttons centered, displaying

an alarm on the screen when the reactor gets overheated, and in general keeping

the view consistent with the data they represent. Constraints provide a convenient

way to specify relationships and have them automatically maintained at run time by

the constraint solver/evaluator. In contrast, in a traditional programming language

constraint handling is not even specified.

For example, suppose that a slider indicates the speed of a rotating object. When

the slider is at the top, the rotating object rotates at maximum speed, and when the

slider is at the bottom, the rotating object rotates at minimum speed. In constraint

programming, wherever the application/user changes the slider’s position, the

constraint solver automatically changes the speed of the rotating object. In

contrast, a conventional language forces the designer to write code to figure out

where the slider is, and change the speed of the rotating object. This might not

seem such a difficult task, but when an application contains thousands of such

relationships, the bookkeeping needed to maintain them increases so rapidly that

Leonidas Deligiannidis

Page 18

adding new functionality to the application becomes difficult, and the time required

to debug the changes also increases substantially.

Evolution of Constraints

In addition to simplifying the creation of applications and increasing their

robustness, constraints lend themselves to incremental re-computation/re-

evaluation. When a user changes one or more parameters in an application, or adds

or deletes a number of constraints, most of the existing constraints remain satisfied

and only a small number must be re-evaluated. An incremental constrained-solving

algorithm, such as Eval/vite [Hudson 91] and the algorithms presented in [Zanden

94], can automatically identify which constraints must be reevaluated and limit its

solving to these constraints. Such an algorithm can be used with any application

written for that constraint system. In contrast, a conventional language requires

the designer to create a new incremental algorithm for each application. Of course,

a conventional language also lets the designer take advantage of any special

characteristics of the application, so that he or she can write a custom algorithm

that might be faster than a general-purpose constraint solver.

One-way and Multi-way Constraints

Constraints can be either one-way or multi-way. One-way constraints differentiate

variables as being inputs or outputs. When there is a change in the input variables,

Leonidas Deligiannidis

Page 19

the change propagates to the output variables so that the relationships are all

satisfied. If there is a change in the output variables however, the change does not

propagate backwards to the input variables. In contrast, in multi-way constraints if

there is a change in either input or output variables, the change propagates to the

variables on the other side of the graph. All variables are treated as both inputs and

outputs.

For example, using the example above with the slider and the rotating object, if the

slider moves the rotating object also changes speed with the respect to the slider’s

value. However, if the speed of the rotating object changes via another input and

not the slider, the slider does not move, in a one-way constraint solver, to

correspond to the newly changed speed of the rotating object. However, in a multi-

way constraint solver, the slider would have changed to reflect the corresponding

speed of the rotating object.

Multi-way constraints are obviously more powerful than one-way constraints, but

this increased expressiveness comes at a price. One-way constraint solving

algorithms only have to evaluate constraints in one direction, making them simpler

to implement and more efficient than multi-way constraint solvers that must also

choose which variable in a constraint should be modified.

Multi-way constraints can also introduce ambiguity at the design level. For

example, suppose we have the constraint A - B - C = 0. If “A” changes, the

constraint solver must choose whether to change “B”, “C”, or both. One approach to

eliminate this ambiguity is to divide constraints into hierarchies, or assign priority

levels, or strengths to constraints [Sannella 94] [Freeman-Benson 90] [Lopez 94a]

[Lopez 94b]. The constraint solver then tries to satisfy as many constraints as

Leonidas Deligiannidis

Page 20

possible, solving the highest priority constraints first, and then the next highest,

and so on. One issue that constraint hierarchies do not address is how to specify a

constraint when multiple values should change. For example, what happens when

“A” changes, should both “B” and “C” change, or should just “B” change, or should

just “C” change? Given a constraint hierarchy, where constraints have associated

strengths, a constraint solver may leave weaker constraints unsatisfied in order to

satisfy stronger constraints.

In addition to constraints of varying strength or priorities, Kaleidoscope [Lopez 94a]

[Lopez 94b] has constraints of varying duration. Constraint duration specifies the

period of validity for constraints. The most flexible model would allow constraints to

be asserted and retracted at arbitrary points in time. However, this would lead to

difficulties in predicting behavior, since any piece of code could have a side effect on

which constraints are active. In Kaleidoscope the default constraint duration is

‘always’, which causes a constraint to remain active forever. A ‘once’ duration

instructs the system to assert the constraint causing it to be enforced at that

moment (and thus potentially affecting values), and then immediately retracts it.

Finally, the ‘assert/during’ construct specifies that a constraint should remain in

force during the execution of a block or loop.

Lazy and Eager Constraint Solving

Constraint solving can be in either a lazy or eager style [Zanden 94]. Lazy

evaluation (used by Garnet [Myers 90a] [Myers 90b], Eval/vite [Hudson 91] and

other systems, evaluates a constraint only if it affects a result that the user

Leonidas Deligiannidis

Page 21

requests. Eager evaluation evaluates a constraint immediately when values change.

Thus, a lazy-evaluation system can obtain variables whose values are out of date.

Lazy evaluation avoids unnecessary work if relatively few values are needed to

compute the result the user requests. However, lazy evaluation also introduces

extra bookkeeping, since the constraint solver must keep track of out-of-date

variables. In addition, lazy evaluation can result in potential delays when the values

of out-of-date variables are demanded. Lazy evaluation is most effective in

applications where the user wants to view only a limited portion of the application’s

data and where changes are occurring to all parts of the application’s data.

Otherwise, eager evaluation is preferable, since it is conceptually cleaner than lazy

evaluation because all variables are almost always up-to-date.

Constraint Systems

People have developed constraint solvers that support both lazy and/or eager

evaluations, incremental solving and one-way and multi-way constraint solvers. For

example, the DeltaBlue [Freeman-Benson 90] algorithm (an incremental version of

Blue) and SkyBlue [Sannella 94] (a more general successor of the DeltaBlue)

maintain an evolving solution to the constraint hierarchy as constraints are added

and removed. DeltaBlue minimizes the cost of finding a new solution after each

change by exploiting its knowledge of the last solution.

Both DeltaBlue and SkyBlue exploit their knowledge by associating sufficient

information with each variable to allow the algorithm to predict the effect of adding a

Leonidas Deligiannidis

Page 22

given constraint by examining only the immediate operands of that constraint. This

information is called the ‘walkabout strength’ of the variable, defined as follows:

“Variable v is determined by methods m of constraint c. v’s walkabout strength is the
minimum of c’s strength and the walkabout strengths of m’s input.” [Freeman-Benson
90]

The walkabout strength is the weakest constraint that can be revoked; thus weaker

walkabout strengths propagate through stronger constraints.

There are constraint solvers that support cycles in the constraint graph, such as

SkyBlue [Sannella 94], and others that do not, such as DeltaBlue [Freeman-Benson

90]. To satisfy cycles, SkyBlue calls external cycle solvers based on Gaussian

elimination to satisfy the constraints around the cycle, and uses local propagation to

satisfy the rest of the constraints. If the available cycle solvers cannot satisfy the

constraints in a cycle, the variables are marked invalid, so the programmer can tell

when the cycle constraints are not satisfied.

Both DeltaBlue and SkyBlue support required and preferential constraints. The

required constraints must hold. The system should try to satisfy the preferential

constraints if possible, but no error condition arises if it cannot. SkyBlue and

DeltaBlue allow an arbitrary number of levels of preference, each successive level

being weaker than the previous one. The set of all constraints, both required and

preferred, labeled with their respective strengths, is called the constraint hierarchy.

[Freeman-Benson 90][Sannella 94]

Many systems have been designed based on these powerful and flexible constraint

solvers. For example, the Multi-Garnet package [Sannella 92] uses SkyBlue to add

Leonidas Deligiannidis

Page 23

support for multi-way constraints and constraint hierarchies to Garnet [Myers 90a].

Garnet is a user interface toolkit built on Common Lisp and X windows with

emphasis on handling objects’ run-time behavior and on handling all visual aspects

of a program’s user interface, including its graphics and the contents of all

application-specific windows [Myers 90b]. Multi-Garnet constraints support many

of the useful features of Garnet’s one-way constraints, including indirect references

to constrained object slots through a series of other slots and inheritance of

constraints in Garnet’s prototype-based system.

TBAG [Elliott 94] is a toolkit for creating interactive 3D graphics that uses

constraints to maintain relationships between time-varying properties of graphic

objects such as their positions and the derivatives of their positions. These relations

may be given different strengths since TBAG uses SkyBlue to maintain the

constraints.

The VB2 [Gobbetti 93] Virtual Reality system also uses SkyBlue to maintain

connections between 3D input devices and objects in the virtual world, and to

attach virtual tools to objects that the user is editing. These constraints can be

added or removed as the user manipulates different virtual objects in the virtual

world.

The Kaleidoscope language [Lopez 94a] [Lopez 94b] integrates constraints and

imperative, object-oriented programming. The current implementation of this

language (Kaleidoscope’93) uses SkyBlue to maintain primitive constraints.

Alan Borning [Borning 86] describes a bi-directional system where the constraints

can be Static or Temporal, and can be designated as Reference only, or Anchor.

Leonidas Deligiannidis

Page 24

A Static constraint describes a relation that must hold at all times. Static

constraints are similar to required constraints in SkyBlue and DeltaBlue. Each

such constraint is represented as a predicate, which may be used to test if the

constraint is satisfied, and a set of methods that can be invoked to satisfy the

constraint. If any of the methods are invoked, the constraint will be satisfied.

Optionally, a constraint may also have an error method that returns a real number

indicating how nearly the constraint is satisfied.

Temporal constraints have a somewhat different representation. Two sorts of

temporal constraints are provided: those that describe continuous evolution of

objects - time function constraints and time differential constraints - and those for

discrete evolution - trigger constraints. Time, as in TBAG [Elliott 94], is a

distinguished variable in several respects and may not be effectively treated as an

ordinary variable in a standard constraint relation.

Each kind of constraint is satisfied differently. Temporal constraints must be

satisfied globally, in contrast to the normal local satisfaction of static constraints.

In addition, normal constraint relations have the property of satisfying themselves

in multiple directions, depending on computational circumstances.

Reference-only constraints include additional instructions on how they may be

satisfied. Whether or not the constraint is satisfied is partially determined by the

value(s) of the attached input variable(s), but the variable(s) may not be altered to

satisfy the constraint.

Leonidas Deligiannidis

Page 25

Anchor constraints may be used to specify that an object’s value is fixed. The

reference-only and anchor designations are related but not the same. If a variable is

designated as reference-only by a particular constraint, that constraint may not

alter the variable, but some other constraint can. If a variable is anchored, no

constraint may alter it. [Borning 86]

Kaleidoscope’93 [Lopez 94a] [Lopez 94b] combines constraint and object-oriented

programming while preserving a familiar object model from imperative

programming. Objects have states and methods, as in most object-oriented

languages. Constraints may be placed between objects and object slots, and once a

constraint is established, the system attempts to enforce the constraint by filling

slots with values. As objects change by assignment, these long-lived constraints re-

execute and find new values for their slots. Similar to methods, these constructors

are able to reference variables indirectly through many levels of pointers. Indirect

references were the key extension to constraints, which allowed Garnet to be the

first comprehensive user interface toolkit to be built on top of a constraint system

[Myers 92a] [Myers 90a]. The success of indirect constraints in Garnet has inspired

their use in many other systems including MultiGarnet [Sannella 92], Rendezvous

[Hill 93], Eval/vite [Hudson 91], and others.

Kaleidoscope’93 is similar to many other object-oriented languages. It has classes,

objects with mutable state, methods, destructive assignments, and so forth. The

key difference between constraint imperative programming and imperative

programming is the ability to relate variables (such as slots/instance variables,

locals, globals, etc.) by constraints. When a variable has one or more constraints on

it, the constraint solver is allowed to alter the binding of the variable, or the state of

the object bound to the variable, to satisfy the constraints.

Leonidas Deligiannidis

Page 26

Other Constraint Imperative Languages (CIPs) do not allow constraints between

arbitrary objects, and restrict constraints to instance variables. For example, Siri,

another CIP language that is probably the closest relative to Kaleidoscope’93, only

re-satisfies constraints between instance variables within the representation of a

single object [Horn 92a] [Horn 92b]. Most of these systems support a mechanism for

deleting constraints at run time. This is necessary when the constraints are no

longer needed. However, since most constraints will be needed in the future,

deleting them and then re-creating them and updating the constraint graph may be

expensive.

This is why in DLoVe constraints are never deleted. Instead, when a constraint is

not needed any more, the constraint is marked as disabled. The effect of this is the

same as deleting or removing the constraint but instead of recreating the constraint

and attaching it to its dependencies, DLoVe only marks the constraint as enabled.

This implements instantaneous removal and insertion of constraints.

Algorithms in Constraint Solving

Constraint solving algorithms are typically either data driven or demand driven.

Data-driven algorithms start at the point(s) of change and propagate that change

outward. Demand-driven algorithms start at the point(s) where the data are

ultimately used, and work toward the point of change. Each of these approaches

has advantages. Eval/vite [Hudson 91], DLoVe, and the algorithms in [Zanden 94]

Leonidas Deligiannidis

Page 27

use a combination of both to capture the good features of both, data and demand

driven algorithms.

Data-Driven

Data-Driven algorithms start with the direct change set of a transaction, that is, the

set of variables that have been modified by the operations of a transaction, and

proceed by evaluating constraints that are known to need re-evaluation. The fact

that a constraint needs to be re-evaluated is recorded by its membership in the

“work” set. A constraint is placed in the “work” set if and only if one of its input

variables has changed value. Such an algorithm may be implemented as

incremental with little effort so that it does not evaluate all constraints after a

change, only those whose input variables change value either directly by the user, or

indirectly by the solver. Constraints whose variables are unrelated to the change

are not evaluated. While a data-driven algorithm can be made efficient in some

cases, it will not directly support lazy computations [Hudson 91]. It will always

evaluate any constraints whose input variables change value even if the new value

of that variable will never actually be used. If not all variables are needed at any

given time, it may be possible to obtain significant savings by avoiding the

computation of constraints whose variables are not used.

Leonidas Deligiannidis

Page 28

Demand-Driven

Demand-driven algorithms start with the set of variables whose values are actually

needed at any given time and recursively evaluate the constraints needed to

compute those values as a part of a depth-first traversal. This results in a

topological ordering of evaluations. The problem with such algorithms is that they

may end up evaluating constraints whose variables are not needed at the moment

resulting in wasted computations.

The nullification/re-evaluation scheme

The nullification/re-evaluation scheme describes the methodology that a one-way

constraint system needs to take in order to keep relationships satisfied. When the

value of a variable changes, either by direct modification or by installation of a new

formula/constraint in the variable, all variables that directly or indirectly depend on

this changed variable are marked out-of-date (nullification phase). When the value

of a variable is requested, the constraint that computes its value starts demanding

the values of other variables upon which it depends (reevaluation phase). If these

variables are out-of-date, they will recursively demand the values of the variables

they depend on, until variables are reached whose values are up-to-date, at which

point constraints can compute their values and return [Hudson 91] [Zanden 94].

Leonidas Deligiannidis

Page 29

Description of Algorithms for Constraint Solving

The three algorithms are presented in [Zanden 94] and Eval/vite [Hudson 91] are

the algorithms that mostly inspired and challenged me to develop the DLoVe

constraint solver. The first algorithm in [Zanden 94] supports lazy evaluation, the

second supports eager evaluation (with no cycles) and the third supports eager

evaluation with cycles.

The lazy evaluation algorithm is constructed based on the nullification/reevaluation

strategy presented in [Hudson 91]. Nullification/re-evaluation algorithms were

originally constructed with the assumption that the edges in the graph remain

unmodified while the constraint solver is evaluating the graph. Since the pointer

variables may change, indirect reference constraints can cause the graph to change

dynamically while the constraints are being evaluated, causing constraints to access

information from a different set of input variables. To handle this situation, this

algorithm extends to the point that dependencies can be dynamically deleted as the

constraints are being invalidated. This is implemented by using timestamps on both

the nodes and the edges of the graph. Node timestamps represent the number of

times the node has been evaluated; each time the node is evaluated, the timestamp

is incremented by one. The timestamp on an edge is the value of the timestamp on

the node that the edge points to at the time the dependency was either created or

last updated. A dependency’s timestamp is updated whenever a node requests the

value of the node that the dependency originated from. A variable’s out-of-date flag

is set to false before a formula is evaluated to ensure that cycles terminate after one

loop. If a variable is requested a second time, it will return its old value instead of

trying to evaluate itself again, thus terminating the cycle.

Leonidas Deligiannidis

Page 30

The eager-evaluation algorithm, which does not support cycles, uses a variation of

an eager evaluator developed by Hoover [Hoover 87]. This algorithm assigns position

numbers to the nodes in the graph. The position numbers indicate the node’s

relative position in topological order, which is always less than the position numbers

of any of its successors. When a node changes value, all of its immediate

successors are added to a priority queue based on their position numbers. The

Hoover [Hoover 87] algorithm assumes that dependency graphs cannot change once

constraint evaluation begins, so the reordering scheme and the evaluator can be

invoked in sequence. However, indirect reference and conditional constraints may

cause the edges of the graph to change during constraint evaluation. Thus the

numbers assigned to the nodes may become incorrect and force an equation to be

evaluated prematurely. To overcome this difficulty, this algorithm dynamically

updates the position numbers each time the graph changes, and evaluates nodes

according to this revised topological order.

The eager algorithm that does support cycles is a modified version of the previous

algorithm. This is done by collapsing cycles into a single node, with each of the

equations in the cycle having the same position number. Variables that are not in a

cycle are evaluated, as they were when cycles were not allowed. Variables in a cycle

are evaluated using the nullification/reevaluation scheme.

Leonidas Deligiannidis

Page 31

Comparison of Constraints

While pointer variables are commonly incorporated in programming languages, they

have been incorporated only recently in their full generality in constraint systems.

ThingLab [Borning 81] provides a limited form of indirect reference constraints.

Programmers can construct path names that allow a constraint to traverse a

structure hierarchy to find an object. When one of the components in the structure

hierarchy changes, the new object is automatically referenced by the constraint.

However, the constraint-solving algorithm does not support arbitrary references to

objects through pointer variables.

Coral also supported a restricted version of indirect reference constraints [Szekely

88]. Coral allowed designers to declare the slots of an object that could be used as

pointer variables for indirect reference constraints. Designers could then define

constraints that accessed objects indirectly via these variables. However, the Coral

pointer variables are not completely integrated into the constraint system.

Programmers have to know whether a slot of an object is a pointer variable or not,

and to set it, they have to use the constraint’s appropriate procedure. In addition,

the values of pointer variables cannot themselves be defined using a constraint, and

so they restrict applicability of the indirect reference constraints.

Eval/vite [Hudson 91] supports a model of indirect reference constraints that is

somewhat more restrictive than the one presented in [Zanden 94]. Eval/vite allows

constraints to be defined in a limited subset of C++ and then translated into C++

code for incremental update. Iteration is not yet supported, and constraints cannot

have a variable number of inputs, which precludes writing constraints over dynamic

Leonidas Deligiannidis

Page 32

sets of objects. The restriction that constraints can only have a fixed number of

input variables does lead to a more efficient implementation, because it is never

necessary to dynamically add or remove edges from the graph. Since each variable

has a fixed number of input edges, it is possible simply to adjust edges instead. For

example, if a pointer variable causes a constraint to reference ‘rect.right’ rather

than ‘circle.top’, the incoming edge can be adjusted so that it originates from

‘rect.right’ rather than ‘circle.top’.

Rendezvous [Hill 93] supports indirect constraints for both the source and targets of

a constraint, permits both variable numbers of sources and targets, and allows

constraints to consist of arbitrary Lisp expressions. Rendezvous uses eager

evaluation, but it differs in two respects from the algorithms in [Zanden 94]. First,

it does not use position numbers but instead uses depth-first search to visit and

topologically order all the variables that are affected. Then it evaluates all the

variables that are affected. This approach may evaluate more than the minimum

possible number of variables but it does not have the overhead of computing

position numbers. Second, Rendezvous will not try to evaluate a constraint until it

is sure that all of the constraint’s predecessors have been computed. Rendezvous

knows the constraint’s predecessors in advance because of programmer-written

source specifications. If there is any doubt as to whether a constraint should be

evaluated, the constraint becomes suspended. In contrast however, Garnet [Myers

90a] does not determine a constraint’s inputs until the constraint is evaluated.

Thus there is no way to predict in advance if a constraint’s position number is still

valid, and the constraint is evaluated on the assumption that the position number is

valid. The absence of an input expression has the disadvantage of causing Garnet to

start evaluating some variables prematurely. However, by detecting sources

dynamically, Garnet can determine the exact set of sources used by a constraint on

Leonidas Deligiannidis

Page 33

each invocation. In contrast, Rendezvous identifies the sources statically, which

requires that all potential sources be listed. On any given constraint invocation, the

set of sources actually used may be a subset of the sources listed. For example, if a

constraint has a conditional of the form:

dÅval = if (thisÅval > 0) then (bÅval + 10) else (cÅval +10)

Constraint A

then the potential set of sources is the set (thisÅval, bÅval, cÅval), but the

actual set of sources is the set {thisÅval, bÅval} if thisÅval is greater than 0,

and {thisÅval, cÅval} if thisÅval is less than or equal to 0. For example, a

change to cÅval will always cause the above constraint to be reevaluated in

Garnet. Eval/vite [Hudson 91] handles correctly such constraints, though. DLoVe,

however, will always evaluate the constraint A if cÅval changes.

Kaleidoscope [Lopez 94a], which also uses pointer variables, supports a different

type of abstraction rather than procedural abstraction. Procedures (called

constraint constructors) consist of a set of constraint statements and produce as

output a set of constraints instantiated with the parameters passed to the

procedure. The constraints may contain indirect references, such as rectÅleft =

object_overÅleft. Kaleidoscope has a well-defined notion of time, as TBAG

[Elliott 94] does, and at each user-directed advance of time, object_over may be

rebound (internally rebinding is treated as the retraction of one constraint).

Kaleidoscope can satisfy constraints using an appropriate algorithm that handles

direct references, such as DeltaBlue [Freeman-Benson 90]. The pointer model

presented in [Zanden 94] differs from the Kaleidoscope model in that pointer

Leonidas Deligiannidis

Page 34

variables are directly handled by the constraint satisfaction algorithm rather than

by asserting and retracting constraints.

Continuous and Discrete Time

TBAG is a paradigm and toolkit for rapid prototyping of interactive animated 3D

graphics programs, designed to support a continuous time model, like Bramble

[Gleicher 93] and DLoVe. Bramble is a toolkit for constructing graphical editing

application whose constraint manages non-linear constraints and maps interactive

controls and constraints to object parameters. Both TBAG and Bramble provide an

almost invisible syntactic interface to the continuous time model.

A constrainable represents a conceptually continuous flow of values, out of which

the application (or the system) can retrieve a value corresponding to a specific time

using type-parameterized functions (templates in C++), which can be interpreted as

an infinite family of function declarations. As noted above, interaction that is

conceptually continuous is encoded directly into constrainables, and thus the

application does not need to deal with tracking events from conceptually continuous

devices.

Examples of conceptually continuous interaction include, drinking from a cup in a

virtual world, throwing a ball in a virtual park, and driving a car. There are

however, other interactions that are fundamentally discrete (event-based).

Examples include button presses and menu choices.

Leonidas Deligiannidis

Page 35

TBAG applications generally deal with such discrete input events by retracting some

existing assertions and asserting new constraints. Bramble uses a similar

mechanism [Gleicher 93]. In DLoVe I send event tokens to event handlers to

enable/disable Links.

For instance, when the user’s virtual hand intersects with a virtual object, the user

can press the left mouse button to send an event to indicate that the virtual object

should be attached to his/her virtual hand’s position in space. Thus, when the user

moves his/her hand, the object moves along with his/her hand. Releasing the

mouse button sends another token that indicates that this hand – object relation

should be terminated. Both TBAG [Elliott 94] and DLoVe were designed to provide a

fundamentally continuous, rather than discrete, treatment of naturally continuous

phenomena such as time and motion.

Leonidas Deligiannidis

Page 36

Chapter 4: Related Work - Parallel and

Distributed Systems

Introduction

The need for more and more computing speed in rendering and simulating Virtual

Environments has caused many people to consider use of parallel or distributed

computing. In parallel computing, several machines or processors are devoted to

solving one problem in the shortest possible time. In distributed computing, system

resources from a network of general-purpose computers work on solving many

problems at the same time.

A telephone system is distributed because it can simultaneously connect

independent calls, and many unrelated conversations are transmitted over the

system at once.

Leonidas Deligiannidis

Page 37

An orchestra is a parallel system because all members of the orchestra are dedicated

to producing one outcome. It is similar to a single machine with multiple processors

working together on solving a single problem. This would be distributed computing

if we had multiple machines, connected with a network, working together on solving

a problem in the context of also doing other things. Using all of the system

resources, everyone in the orchestra is playing from the same sheet of music and

has to work together, in concert, to produce the right sounds [Rewini 98].

Very often applications need more computational power than a sequential computer

can provide. One way of overcoming this limitation is to improve the operating

speed of processors and other components so that they can offer the power required

by computationally intensive applications such as Virtual Environments [Buyya 99a]

[Buyya 99b].

A computing cluster is a collection of interconnected computers working together.

This cluster functions as a single system from the point of view of users and

applications. Such clusters can provide a cost-effective way to gain features and

benefits that have historically been found only on more expensive proprietary shared

memory systems [Buyya 99a]. Shared memory clusters offer a simple and general

programming model, but they suffer from scalability problems.

Parallel and distributed programming involves more challenges than serial

programming, such as data and task partitioning, task scheduling, and

synchronization [Crowcroft 95] [Clark 90] [Shoch 82]. Writing parallel and

distributed software may require substantial investment of time and effort [Rewini

Leonidas Deligiannidis

Page 38

98]. Software performance is greatly affected by bandwidth and message latency,

both of which are difficult to predict without direct measurement.

A distributed system using message passing may operate in synchronous, or

asynchronous modes. In synchronous mode, the program sends a message to a

neighbor computer and must listen for the response before it can send another

round of messages. Asynchronous mode is very flexible; a program can send

multiple messages to neighbor computers before receiving any replies and

communication delays are unpredictable. Unlike synchronous mode, the program

can continue working and is not forced to wait for each reply [Tagg 97]. (DLoVe

operates in asynchronous mode, making its evaluation more complex.)

Flynn’s Taxonomy

A taxonomy is a classification of a large set of items into a smaller number of

representative classes. In 1966 M. J. Flynn proposed a taxonomy of parallel

computing architectures [Flynn 66]. Parallel systems are classified as having one of

two types of instruction streams, single (SI) or multiple (MI) instruction streams,

and two types of data streams, single (SD) or multiple (MD) data streams. [Fountains

94] [Dowd 98]

In a Multiple Instruction Multiple Data (MIMD) architecture, each processor has it’s

own set of instructions, which are executed under the control of the control unit

associated within that processor. MIMD computers can be further classified into

Leonidas Deligiannidis

Page 39

Multiprocessor Systems, where processors share memory, and Multi-Computers,

where computers communicate through message-passing instead of shared memory.

MIMD architectures can be further classified into Single Program Multiple Data

(SPMD) architectures. In SPMD architectures all processes share the same

executable but they may be working on a different set of data [Sunderam 90]. A

difference between SIMD and SPMD is that in SPMD architectures, different

instructions can be executed at the same cycle [Hwang 98]. DLoVe utilizes a SPMD

message-passing distributed model.

Performance Evaluation

Distributed computing attempts to increase processing speed by computing several

tasks on otherwise autonomous computers at the same time [Jeffrey 96][Dowd 98].

To evaluate how well a distributed system behaves one must evaluate its

performance, by comparing it against other ways of achieving the same result. In

practice, these comparisons are difficult to make.

The most often quoted measure of performance in parallel and distributed systems

is speedup. The speedup is computed by dividing the time to compute a solution to

a certain problem using one processor, by the solution time using N processors. Let

S be the speedup achieved by using N processors instead of one processor to solve a

problem:

Leonidas Deligiannidis

Page 40

)(

)1(

__

__

NT

T

timeprocessorN

timeprocessorOne
S ==

where T(1) is the processing time of the program when executed on a single

processor, and T(N) is the time taken to solve the same problem using N processors.

For example, if solving a problem using one processor takes 60 seconds and solving

the same problem using N processors takes 20 seconds, then the speedup S is:

3
20

60 ==S

Amdahl’s Law [Amdahl 67] [Rewini 98] [Buyya 99a] describes limits of how an

application can use parallel processing. Amdahl’s law states that the speed of a

program in execution on a multiple-processor computer is limited by its slowest

sequential part. According to Amdahl, a program contains two types of calculations,

those that must be done serially, and those that can be executed in parallel on an

arbitrary number of processors. If the time taken to do the serial calculations is

some fraction β of the total time τ, 0 < β ≤ 1, then the parallelizable portion is (1-β� �

of the total time τ. If we suppose that the parallelizable portion achieves linear

speedup, for example, using N number of processors a problem can be solved N time

faster, then the speedup on N processors will be:

τ1)1(=T

N
NT

τββτ)1(
)(

−+=

)1()1(
1

)(

)1(

ββββ −+
=

−+
==

N

N

N
NT

T
S

Leonidas Deligiannidis

Page 41

The serial part of the program can be computed in time equal to βτ and the parallel

part of the program in time (1-β)τ/N because the ideal case where “N workers can do

the job in 1/N of the time of one worker” [Kenneth 97].

For example, assume that a program consist of 35% (β = 0.35) code that cannot be

executed in parallel, and 65% of code that can be executed in parallel. The speedup

of using 10 processors is:

41.2
)35.01(1035.0

10 =
−+∗

=S

This tells us that by using 10 processors we can solve the same problem 2.41 time

faster.

Later Amdahl’s law was challenged by John Gustafson and Ed Barsis, who showed

that for some problems the regularity of the problem can feed as many parallel

processors as are needed. Therefore, by adding processors, the size of matrix

calculations can grow without bound [Rewini 98] [Kenneth 97].

Gustafson and Barsis [Gustafson 88b] show that problem size s and N are not

independent of each other. Gustafson-Barsis law is relative to Amdahl’s law but

with an assumption about the problem size. Gustafson-Barsis law says that the

size of the problem and the number of processors increases together, thus by adding

more processors the speedup can increase accordingly. In Gustafson-Barsis law,

T(1) is equal by the amount of time needed to compute the sequential part of the

program plus the parallel part that can be executed on N processors:

Leonidas Deligiannidis

Page 42

NT ss)()()1()1(ταατ −+=

)()()1()(ssNT ταατ −+=

Substituting into the speedup equation yields:

N
NN

S
ss

ss)1(
)1(

)1(

)1(

)1(

)()(

)()(αα
αα

αα
ταατ

ταατ
−+=

−+
−+=

−+
−+

=

Parallel software

Parallel Virtual Machine PVM is a message-passing software system that allows the

utilization of a heterogeneous network of parallel and serial computers as a single

computational resource [Sunderam 90]. PVM provides an emulating SPMD

architecture. It consists of a library of routines for initiation and termination of

tasks, synchronization, and altering the virtual machine configuration. A PVM

application is made up of a number of separate sequential programs that cooperate

to jointly provide a solution to a single problem. Each program corresponds to one

or more processes in a parallel execution. PVM parallel applications can utilize

many different communication patterns. One of the most common patterns is the

star graph. In the star graph, the middle node is called the supervisor or

coordinator and the rest of the nodes are workers. Another form of PVM

communication is a tree. The root of the tree is the supervisor, and underneath

there are several levels of sub-supervisors, with workers at the leaves.

Leonidas Deligiannidis

Page 43

Star graph (left), and tree graph (right)

The biggest advantage of PVM is its flexibility that includes portability,

interoperability between heterogeneous platforms, and fault tolerance. Not only can

a PVM program be executed on different platforms running the same operating

system, but it can also be executed on an environment that consists of multiple

different platforms running different operating systems. This makes it very

amenable to its use as a parallel programming tool in typical clusters, which consist

of heterogeneous platforms. PVM provides other various run time features such as

dynamic spawning of tasks, dynamic changes to the cluster on which a PVM

program is being run, and dynamic process groups. These allow a PVM application

to incorporate fault tolerance and load balancing by detecting changes in the cluster

and moving tasks from one machine to another in their cluster in response to such

changes.

PVM’s performance suffers because of the flexibility its framework supports,

including dynamic task management, load balancing, and heterogeneity. Its set of

library functions supporting point-to-point communication is not as rich as that for

MPI. For example, PVM does not support the truly asynchronous receive of a

message sent from one task to another, as MPI does using message buffering [Clark

90].

Leonidas Deligiannidis

Page 44

The Message-Passing Interface (MPI) is a standard specification designed for writing

distributed memory parallel processing utilizing message-passing. Like PVM, it

provides library routines that can be called from C and FORTRAN programs and can

utilize star and tree graphs for communication. MPI provides a rich collection of

point-to-point communication routines and collective operations for data movement,

global computation, and synchronization [MPI 94] [Pacheco 97a]. MPI attempts to

establish a practical, portable, efficient, and flexible standard for message-passing

[Buyya 99a] [Buyya 99b].

The biggest advantages of MPI over PVM are its performance, a larger collection of

point-to-point communication models, support for hardware-provided multicast and

broadcast, and a larger set of collective communication calls.

However, MPI is not as flexible as PVM in that it does not support dynamically

changing the cluster or creating dynamic groups of processes. In general MPI

implementation cannot be run on a heterogeneous cluster consisting of machines of

different types, since interoperability is not a requirement of the MPI standard. It

neither defines details of a parallel programming environment, such as allocation of

tasks to processors. These are left to individual implementations of the standard,

and thus results in diverse ways to accomplish the same goal, leading to a further

variation between the MPI environment across platforms.

Leonidas Deligiannidis

Page 45

DLoVe and other distributed systems

There are three main differences between DLoVe and other parallel systems. While

DLoVe’s tasks appear externally similar to those in PVM, task allocation is done at

compile time, so that there is not appreciable overhead for task management. The

purpose of task allocation, in DLoVe, is to allow the Coordinator to always request

the same Variables from the same Workers. In other words, the queries the

Coordinator sends to the Workers are partitioned, so that the Workers can execute

multiple different queries in parallel.

DLoVe’s task handling, unlike PVM or MPI, is designed to support multi-user, multi-

input application development. Adding a second user to DLoVe’s framework, adds a

second Coordinator. This means that the Workers now have to serve requests for

both Coordinators making each of the Workers work harder, consume more

resources, and load the network with more messages.

The third difference concerns performance requirements. DLoVe is designed

primarily for Virtual Reality applications and thus requires high frame rate.

Distributed applications using DLoVe’s framework are characterized by real-time

computations and constraints. Thus, not only number of evaluations, but also

timing factors need to be taken into account when evaluating DLoVe [Jeffrey 96].

Timing constraints in DLoVe arise from interaction requirements between the

Coordinator and the user, and between the Coordinator and the Workers. The

communication between the Coordinator and the Workers is described by three

operations: sampling, processing, and responding. The Coordinator continuously

samples data from the input devices. Sampled data is sent to the Workers that

Leonidas Deligiannidis

Page 46

process it immediately. Then the Workers send the processed data back to the

Coordinator in response to its request. All three operations must be performed

within specified times; these are the timing constraints [Jeffrey 96] [Bran 94]. For

example, if the user moves his real hand, and the movement of his virtual hand

appears after a couple of seconds on the screen, the user may be confused and

disoriented, making the application unusable and definitely not a Virtual Reality

application.

Leonidas Deligiannidis

Page 47

Chapter 5: Related Work - Multi-user

UIMS/CSCW Software for Virtual

Reality

Introduction

The recent explosion in the quantity and quality of user interface development

environments is simplifying or even eliminating the need of programming the

Graphical User Interface (GUI) of an application. However, current tools address

only single-user/single-machine applications. Distributed, multi-user applications

are much more complex. Pieces of such applications typically run in separate

address spaces, often on heterogeneous networks of machines. The pieces must

communicate and synchronize with each other, sharing and replicating data as

needed, and must handle users’ interaction at each site.

Leonidas Deligiannidis

Page 48

Diamond Park was designed at the Mitsubishi Electric Research Laboratory (MERL)

using SPLINE (Scalable Platform for Large Interactive Environments). Diamond

Park is a social virtual reality system in which multiple geographically separate

users can speak to each other and participate in joint activities in a mile-square

virtual prototype. In this park human visitors can interact with each other and with

computer simulated tour buses and autonomous animated figures [Waters 96]

[Anderson 95].

Much software has been developed and many techniques have been tested; each has

its advantages and disadvantages. Some systems were designed for a specific

application domain, such as DIS and SimNet, for military simulations. Other

systems, such as RENDEZVOUS and Visual Obliq, described in chapter 3, are not

designed for VR systems and thus they do not need to handle the VR necessities

described in chapter 2.

RENDEZVOUS is a language and architecture to help people build interactive multi-

user systems using constraints and callbacks [Hill 92] [Hill 94]. Visual Obliq

[Bharat 94] is a user interface development environment for constructing

distributed, multi-user applications using callbacks, and distributed callbacks

[Bharat 94].

Systems that use Dead Reckoning

SimNet, a research simulation system, was developed in the early 1980’s the

DARPA, Defense Advanced Research Projects Agency, and the US Army to

Leonidas Deligiannidis

Page 49

demonstrate the feasibility and effectiveness of networked training. Currently, over

200 SimNet tank trainers are in use at four locations throughout the world. To

achieve this massively distributed environment, SimNet proposed a new concept

based on the old idea of "dead reckoning". Dead Reckoning means that the current

location of any object (such as a tank) can be extrapolated from its previous position

and velocity. It works as follows: during any one simulation loop, a tank simulator

computes its next position and orientation based on a dynamic model that takes

into account a number of factors, including previous position and velocity, terrain

grade, engine speed, and soil conditions. It then computes its position again, this

time using a limited set of inputs. Next, using the same set of limited inputs, the

tank simulation extrapolates the position of all other remote tanks in the

simulation. If the difference between the first detailed calculation and the second

limited state calculation exceeds a certain threshold, then the tank broadcasts a

network message containing its updated position information based on detailed

calculation. If the difference between the two calculations is below the threshold,

the tank simulation does not generate a new network message. This way, the

vehicles send messages only when needed to maintain simulation accuracy.

Because all the tank simulators follow this procedure, it drastically reduces the

number of network messages. [Johnston 92]

An additional advantage of the Dead Reckoning approach is the ability of the

simulation network to recover from breakdown. If one or more units leave the

network for a short period of time, the other units will not notice the visual miscues

because of the repeated extrapolations. When a unit comes back on line, its true

position is smoothly integrated. The benefits of dead reckoning do not come without

a price, and in this case, positional accuracy is the tradeoff. Because an object’s

Leonidas Deligiannidis

Page 50

position and orientation are extrapolated rather than exactly calculated, objects may

appear in different locations on different units.

Although Dead Reckoning works well in DIS, it is not suitable for general-purpose

VR systems where the behavior of the objects and the users in a Virtual

Environment is unpredictable. Dead Reckoning works well in DIS because the

position of every object can be extrapolated from its previous location.

The History-based approach also uses Dead Reckoning but in a more efficient way to

get better results than DIS [Singhal 95] [Singhal 94]. The history-based approach

offers smooth, accurate visualizations of remote objects, which is providing a

scalable solution.

Dead reckoning techniques are central to the large virtual environments targeted by

the Distributed Interactive Simulation (DIS) protocols. The current DIS protocol

transmits position, velocity, and acceleration information whenever the remote

object model exceeds a threshold or a five second timeout elapses. Using the most

recent position, velocity, and acceleration information, DIS dead reckoning

algorithms generate a second-order model to predict the future object location. The

position history-based protocol performs at least as well as DIS for smooth object

motion, and it potentially performs better than DIS for non-smooth object motion

while requiring less network bandwidth.

The history-based protocol actually performs comparably to the DIS protocol in

networked applications containing smoothly moving objects. The effectiveness of the

DIS protocol is limited because the tracking relies on acceleration information. An

object’s acceleration can change more rapidly than its position, so if packets are

Leonidas Deligiannidis

Page 51

delayed, then DIS algorithm is likely to use out-of-date information to predict object

behavior. The position history-based protocol is potentially superior to the DIS

protocol for tracking non-smooth object motion.

The DIS protocol is highly sensitive to sudden acceleration changes because the

algorithm utilizes only the most recent update information. Better performance on

these non-smooth paths makes the history-based protocol more useful than DIS

protocols in virtual reality applications and visual simulations where entities move

in unpredictable ways. [Singhal 95] [Singhal 94]

Another software that implements Dead Reckoning is the Log-Based Receiver-

Reliable Multicast (LBRM) [Holbrook 95]. The LBRM protocol provides scalable,

timely dissemination of state updates, meeting the needs of multicast sources like

DIS terrain entities. The application chooses a threshold according to the freshness

requirement of the data being disseminated. Shortening the threshold results in

fresher data, but more network traffic. For entities with strict real-time delivery

requirements, the threshold must be small.

In the Log-Based Receiver-reliable Multicast (LBRM) approach, reliability is provided

by a logging server that logs all transmitted packets from the source. When a

receiver detects a lost packet, it requests the missing packet from the logging server.

The logging server needs not be co-located with the source host, but if the two are

separated, then the source must retain the data until it has received a positive

acknowledgment from the logging server. The logging server may be replicated to

provide greater reliability (distributed logging server, one primary and multiple

slaves where the primary talks to the slaves). The use of a logging server for

reliability generalizes the buffering of outstanding data performed by the sender in a

Leonidas Deligiannidis

Page 52

conventional transport protocol [Holbrook 95]. In TCP, the buffered data at the

sender is effectively a log of transmissions, from which acknowledged packets have

been flushed.

Update Filtering and Area Of Interest (AOI)

Update Filtering is a partition of a Virtual Environment into a large number of

“cells”, much like the way the cellular telephone system works. Each host

participating in the simulation determines an Area of Interest (AOI), consisting of a

number of cells within its range of vision [Macedonia 95a] [Macedonia 95b]

Macedonia 95c].

The DIS system uses multicasting, and that approach seems promising for more

general distributed VR application as well. The idea is that any given host, in

addition to having its own Internet address, can belong to a number of “multicast

groups”. Each multicast group has it is own special Internet address, which belongs

to a certain range of addresses that have been set aside for this purpose. When any

host sends a message to a multicast address, that message is sent to all the hosts

that belong to that multicast group. In effect, it is like broadcasting to a subnet that

spans continents. Sending a multicast message is better than having to send point-

to-point messages to every host in the simulation, so it is easier on the sender.

The most important problem with multicasting is that it is not universally

implemented. Some systems have it and some do not. An effort is underway to link

small pockets of multicast-capable machines to each other over the Internet; the

Leonidas Deligiannidis

Page 53

result is a “multicast backbone” or MBONE. The MBONE system uses “tunneling”;

it wraps the IP packets destined for a multicast address inside another IP packet,

which travels trough the regular Internet from one MBONE subnet to another

[Casner 94]. How does multicasting fit in with Area Of Interest management? In

the DIS system, each cell has its own multicast group address; in other words, there

is a one-to-one correspondence between cells and multicast addresses. As

participants move around, they enter and leave cells; this corresponds to entering

and leaving multicast groups. Since participants only receive messages for

multicast groups they are in, the multicast system itself implements the Update

Filtering.

Key Frame Animation

Using the Key Frame Animation approach, a designer can design the geometry of

objects and also specify their behavior. Key Frame Animation can be used in Virtual

Environments where the position and the behavior of the users or simulated objects

is unpredictable.

JDCAD+ is an interactive 3D geometry modeling system and animation editor

[Halliday 94]. These objects can be imported in a Virtual Environment and users

can interact with them. Behaviors such as walking, jumping, and drinking from a

cup are very hard to code by hand because of the complexity of the motion.

JDCAD+ uses key frame animation, which gives the ability to the

programmer/designer to specify key frames of the motion of the objects so that the

system will know what the next key frame is and animate the motion. After editing

Leonidas Deligiannidis

Page 54

the key frame animation, JDCAD+ produces OML code for the behavior. This code

can be edited/modified latter if someone wants to alter the behavior of the object.

In systems such as The Alias System [Alias] the animation sequences are not

interactive. Once a keyframe sequence starts there is no way of interrupting it, and

thus the object cannot respond to events that occur while a keyframe sequence is

running. In JDCAD+ however, the keyframe process is implemented by OML code

that can respond to events occurring in the environment. In The Alias System, once

a keyframe sequence has been defined there is no way of modifying it or combining

it with other types of motion.

Other User Interfaces

Repo-3D is a general-purpose, object-oriented library for developing distributed

interactive 3D graphics applications across a range of heterogeneous workstations.

It emphasizes developing applications for Computer Supported Cooperative Work

(CSCW) and Distributed Virtual Environments (DVEs). All shared data is fully

networked transparent because it is encapsulated within the programming language

objects. Distribution of new objects between the processes is as simple as passing

them back and forth as parameters to, or return values from, method calls. The

underlying system takes care of the rest with no additional effort on the part of the

programmer. In addition, updates to objects are automatically reflected in all

replicas, the same way DLoVe works.

Leonidas Deligiannidis

Page 55

There are times however, when a shared graphical scene may need to be modified

locally (Local Variation); this is supported by Repo-3D and in limited form in DLoVe.

For example, a programmer may want to highlight the object under one user’s

mouse pointer without affecting the scene graph viewed by other users.

Most high-level graphics libraries, such as Inventor [Strauss 92a] and Java 3D

[Sowizral 98], do not provide any support for distribution. Others, such as

Performer [Rohlf 94] [Zyda 93], provide support for distributing components of the

3D graphics system across multiple processors, but do not support distribution

across multiple machines.

TBAG [Elliott 94], a high-level constrained-based, declarative 3D graphics

framework, scenes are defined using constrained relationships between time-varying

functions. TBAG allows a set of processes to share a single, replicated constrained

graph. This is done by two sets of functions. The “externalization” functions map

constrainables and assertions into machine-independent identifiers that can be

passed to different processes of different machines. The other set of functions

“internalizes” the externalized identifiers back into C++ constrainables and

assertions. The programmer thinks of the externalize/internalize sequence of calls

as providing access to existing constrainables or assertions in a separate process,

thus allowing constrainables to be asserted on and values to be retrieved from

remote constrainables. Any changes made to any constrainable are reflected in all

processes that access that constrainable. Whenever a process creates a

constrainable, all other involved TBAG processes create “clones” of that

constrainable. Then, whenever a constraint is asserted/retracted in any process, all

related TBAG processes are informed of that assertion/retraction and perform it

themselves locally. Thus, each process has a semantically identical copy of the

Leonidas Deligiannidis

Page 56

entire constraint network, which makes this TBAG limited in scalability because all

processes have a copy of (and must evaluate) all constraints, whether or not they

are interested in them. DLoVe works the same way but it only evaluates the

constraints that it needs, not all of them. TBAG, unlike Repo-3D and DLoVe, does

not support local variations of the scene in different processes. [MacIntyre 98]

Workroom is a general-purpose simulation infrastructure that allows multiple

participants to interact in unpredictable ways while minimizing simulation latency.

Client processes manage the local simulation, interact with mechanical devices such

as motion bases and position trackers, and perform image generation. In some

cases, a separate, dedicated client process handles interaction with devices such as

the MR toolkit [Shaw 93]. The server process has the responsibility of maintaining

the state of all simulation objects running on all the clients. The server handles all

requests for data about the environment or the state of each simulation object.

For example, if there are two clients and each is simulating the behavior of a

differently flying colored object, the server keeps track of each flying object’s

location. When the server is queried, it sends a data packet containing the location,

velocity, and color for each flying object.

In Workroom, and in DLoVe, dead reckoning cannot be implemented because of the

unpredictable participants’ behavior (humans unlike vehicles or projectile are not

able to extrapolate their positions). The way to control objects in these systems is by

sending network messages. And because there are too many messages on the

network, the network may be overloaded. One solution to this problem, which is

implemented in DLoVe, is to use low and high priority messages. The system can

lose low-priority messages (like current object position) without consequence. High-

Leonidas Deligiannidis

Page 57

priority messages (like constraint attachment) use confirmation or redundancy

schemes to ensure that a message arrived at its destination [Pimentel 94].

NPSNET [Macedonia 95a] [Macedonia 95b] [Macedonia 95c] [Macedonia 97], uses

multicasts, instead of broadcasts like SimNet, and instead of point-to-point

communication like DIVE (discussed below) [Carlsson 93] and MASSIVE which

supports up to only ten users [Greenhalgh 95a] [Greenhalgh 95b]. The MR Toolkit

[Shaw 93] uses an internal client/server model for communicating between I/O

devices and the application. However, point-to-point UDP communication is used to

maintain consistency between users. In addition, it uses an example where cells are

hexagonal, somewhat like a strategy board game or certain types of military

simulation computer games. This hex grid is well suited to military simulations,

and is a closer model for circular Areas of Interest than a square grid would be. As

a participant moves around, cells will enter and leave their Area of Interest; at any

given time, they are only receiving updates for cells they can see, resulting in a

small, manageable number of updates. The combination of AIO filtering and dead

reckoning produces significant bandwidth savings.

The Performance Architecture for Advanced Distributed Interactive Simulation

Environments (PARADISE) project [PARADISE] [Singhal 99] in addition to focusing

on the graphical aspects of networked VR design, it also addresses network software

architecture issues that environments containing thousands of users, face. The

PARADICE system used IP multicast, assigning a different multicast address to each

active object in the VE. However, because the early workstations available to the

group did not support multicast at the time, they implemented a multicast

simulator on the local network. PARADISE uses a similar mechanism to transmit

updates for local objects in much the same way as SIMNET and DIS. To further

Leonidas Deligiannidis

Page 58

reduce bandwidth, a hierarchy of area of interest (AOI) servers is used to collect

subscriptions from each host. The servers monitor the positions of objects and

notify hosts to which objects’ multicast groups they should subscribe.

Unlike SIMNET, PARADISE treats all objects uniformly as first-class entities. In

addition, PARADISE recognizes that in a VR environment there are some objects

that change their positions rapidly and some others slowly. This means that the

rapidly changing objects need to send updates more frequently than the slowly

changing objects.

To support rapidly changing entities, PARADICE uses improved dead reckoning

protocols such as Position History-Based Dead Reckoning (PHBDR) [Singhal 95],

which transmits smaller update packets and provides better accuracy when objects

move wildly [Singhal 96]. To support slowly changing entities, PARADISE focused

on reliable multicast protocols to eliminate the frequent heartbeat messages present

is DIS. Log-Based Receiver-Reliable Multicast [Holbrook 95] provides a lightweight

reliable multicast service that includes a persistence mechanism.

The Swedish Institute of Computer Science Distributed Interactive Virtual

Environment (DIVE) is another early and ongoing academic virtual environment

[Carlsson 93] [DIVE] [Hagsand 96]. DIVE uses a distributed, fully replicated

database similar to SIMNET and DIS-compliant systems. Unlike SIMNET and DIS,

DIVE’s entire database is dynamic. DIVE has the capability to add and remove new

objects and modify the existing databases in a reliable and consistent manner. This

is implemented via a reliable multicast protocol for distributed database locking,

adding significant communication overhead. And because of this DIVE is difficult to

scale beyond 1 to 32 participants. However, DIVE does well in situations where

Leonidas Deligiannidis

Page 59

database changes must be guaranteed and accuracy is a major criterion such as in

collaborative environments.

Leonidas Deligiannidis

Page 60

Chapter 6: Basics of DLoVe

Introduction

DLoVe is designed on a two-component model for describing and programming the

fine-grained aspects of non-WIMP (non- Window Icon Mouse Pointer) interaction

(such as virtual environments). It is based on the notion that the essence of a non-

WIMP dialogue is a set of continuous relationships, most of which are temporary.

This model combines a data-flow or constraint-like component for the continuous

relationships with an event-based component for the discrete interactions, which

can enable or disable individual continuous relationships.

Other current Graphical User Interfaces (GUIs) or (WIMP) interfaces, also involve

parallel, continuous interaction with the user. But, most other user interface

description languages and software systems are based on serial, discrete, token-

based interaction.

Leonidas Deligiannidis

Page 61

DLoVe is designed to provide a fundamentally continuous, rather than discrete,

treatment of naturally continuous phenomena such as time and motion. However,

it does treat discrete events as discrete events and it provides a mechanism for

communication between the continuous and the discrete sub-system.

Continuous Time

DLoVe’s sub-system consists of object elements that define the relationship between

variables. The entire set of these elements connected together form a constraint-like

graph. Changes on one end of the graph propagate to the other end. Interaction

that is conceptually continuous is encoded directly into these elements, and thus

the application does not need to deal with tracking events from conceptually

continuous devices. Examples of conceptually continuous interaction include,

drinking from a cup in a virtual world, throwing a ball in a virtual park, and driving

a car in a virtual city.

Continuous time in DLoVe is handled via Variables and Links, explained below.

Based on these Links and Variables a network can be designed to describe the

behavior of objects and interaction techniques.

Variables are objects in DLoVe that store values and know which Links need them

as inputs and which for output. They are invariant data flow graph elements that

serve as both continuous and short-term data repositories. Some Variables are

directly connected to input devices, some to outputs and some to application

Leonidas Deligiannidis

Page 62

semantics. They are used for communication within the user interface model or

they are just used to hold intermediate results of Link calculations.

Links are objects that contain functions and are attached at both ends to Variables.

Links get input from Variables and place the result of their calculations into other

Variables. The body of a Link specifies how the attached Variables are related.

Links can be enabled or disabled in response to user inputs. When a Link is

disabled, it is as if this Link were not part of the constraint network anymore. By

enabling and disabling Links we can quickly change the constraint network on the

fly since only a flag needs to be set or cleared to indicate that a Link is enabled or

disabled.

Conditions are also provided to enable and disable groups of Links instead of

enabling or disabling Links individually. For example, we can attach five Links to a

Condition; every time we want to enable all five Links we can just enable this

particular Condition, which then enables all five Links individually.

Links and Variables

The above diagram shows the Variables as circles and the Links as rectangles.

When a Link is created, it is enabled by default. In the DLoVe constraint graph I

A

B

C

D

E L1 L2

Leonidas Deligiannidis

Page 63

draw a crossed circle on top of a Link to indicate that is disabled. A DLoVe graph is

read from left to right. For example, the Variables ‘A’ and ‘B’ are inputs to Link L1,

and the Variable ‘C’ is its output Variable. When L1 is disabled a crossed circle is

drawn on top of it and it is as if this Link was deleted from the network. However, a

disabled Link is still part of the data structure and when it becomes enabled again it

knows how it is supposed to be attached to its Variables. In this case, if the Link

‘L1’ is disabled, the graph would look like the following figure.

A disabled Link

The relationship between ‘A’, ‘B’ and ‘C’ is terminated temporarily until ‘L1’ becomes

enabled again.

Links can have multiple outputs, unlike DeltaBlue [Freeman-Benson 90], and

multiple inputs. For example, all of the following combinations are valid in a DLoVe

constraint network.

A

B

C

D

E L2 L1

Leonidas Deligiannidis

Page 64

Combinations of Variables attached to a Link

In addition, a single Variable may be used as input or output to multiple Links, as

illustrated below.

Combinations of Links attached to Variables

When a Variable is used as output to more than one Link, the result may be

unpredictable, since both Links try to bring the Variable up-to-date using different

constraints, as in (b). In this case, Link L1 and Link L2 try to bring Variable v3 up-

to-date using different dependencies – L1 uses v1 and L2 uses v2 –. DLoVe will use

the Link that was created last. For example, if L2 was created after L1, DLoVe will

update Variable v3 according to the constraint in Link L2. This might seem

confusing and ambiguous, but it is very useful when only one of the two Links is

enabled at a time.

L2

L1

(a) (b)

v1

v2
v3

Leonidas Deligiannidis

Page 65

Let us say that in a virtual factory there are moving objects on an assembly line.

Let us also assume that Variable v2 is time and Variable v1 is the position of a

virtual hand. When the object on the assembly line is moving, only Link L2 is

enabled. This way, the object’s position depends on time. However, if the user

grabs the object with his virtual hand to examine the moving part/object, Link L2

becomes disabled, while Link L1 becomes enabled. Now the user has the ability to

lift the object off the assembly line and examine it. The object is no longer on the

assembly line, and its position does not depend on time. The constraint graph in

the following figure is (a) when the user examines the object, and is (b) when the

object is moving on the assembly line.

A Variable used for output by multiple Links

Discrete Time

There are however, other interactions that are fundamentally discrete (event-based)

and for that I use the event-based component of DLoVe. Such examples include

button presses, menu choices and gesture recognition verifications. TBAG

applications [Elliott 94] generally deal with such discrete input events by retracting

some existing constraints and asserting new ones. Bramble uses a similar

mechanism [Gleicher 93].

(a) (b)

L2

L1 v1

v2
v3

L2

L1 v1

v2
v3

Leonidas Deligiannidis

Page 66

DLoVe handles the discrete time using Event Handlers, objects that capture tokens

and respond to them. Event handlers contain a user specified body that describes

the response to tokens. The application sends a token to all event handlers, and

only those event handlers that are interested in the token execute their body. The

responses might include setting Variables, making custom procedure calls and

setting or clearing Conditions on Links. Event handlers recognize states and state

transitions, and can provide different services depending on the state they are in.

For example, the user might intersect his/her virtual hand with a virtual object.

The event handler will receive an INTERSECT token and it will move to its ‘intersect’

state. In this state if the user presses the left mouse button, the event handler

enables a Condition and transitions to the ‘dragging’ state. As a result the object is

now attached to the virtual hand so that wherever the user moves his/her hand the

object follows the movement of the virtual hand. When the user releases the mouse

button, the event handler disables the Condition, transitions to the ‘start’ state, and

the continuous relationship hand-object is terminated.

A token is a structure similar to a record in Pascal or struct in C. It contains a

timestamp, an id, and other optional fields such as position and other user defined

variables. For instance, when the user’s virtual hand intersects with a virtual

object, the user can press the left mouse button to send token. This token indicates

that the virtual object should be attached to the user’s hand position in space, so

that when the user moves his/her hand, the object moves along with his/her hand.

Releasing the mouse button sends another token that indicates that this hand–

object relation should be terminated. In this case, when the user’s hand intersects

with the virtual object and then the user presses the left button; the LEFTDN token

is send to all event handlers. The event handler that is responsible for attaching the

Leonidas Deligiannidis

Page 67

virtual object to the user’s virtual hand enables the appropriate Link so that a hand-

object relation is established.

The application reads all X events and hands them over to a DeviceXWindow DLoVe

object. This object then turns X events into tokens and sends them to all event

handlers.

Enabling a Link is similar to asserting a constraint, and disabling a Link is similar

to retracting a constraint from the constraint graph. Even though enabling and

disabling Links is similar to retracting and asserting constraints, enabling and

disabling occurs more quickly; Enable only marks a Link as part of the graph and

Disable as not. The global structure of the constraint graph does not vary. When a

Link becomes enabled, a single flag is cleared to indicate that this particular Link is

part of the constraint graph again. There is no need to remember and set all the

dependencies, since the object was never deleted from the memory. This makes

DLoVe very efficient for modifying the constraint graph on the fly. At creation time

the programmer specifies the dependencies of a Link and does not have to remember

them ever again when he/she needs to assert/retract a constraint.

In the example of the factory and the moving objects on the assembly line the Event

Handler’s state diagram might look like the following:

Leonidas Deligiannidis

Page 68

State Diagram of the Event Handler in the factory example

When the user’s hand intersects with the moving object, the event handler receives

a token (e.g. “ENTER”), the object becomes highlighted, and the event handler

transitions to the ‘Intersect’ state. At this state, if the user presses the right mouse

button, the event handler receives another token (e.g. “LEFTDN”), transitions to the

“Follow Hand” state, enables Link L1, and disables Link L2. Now a Hand – object

relation has been established, and the object follows the movement of the hand.

When the mouse button is released, the event handler receives another token (e.g.

“LEFTUP”), transitions to the ‘start’ state, disables Link L1, and enables Link L2. At

this point, the hand-object relationship is terminated.

Hand – object, intersect Right mouse button Pressed

Right mouse button Released

Start

Intersect

Follow Hand

• Enable L1
• Disable L2

• Disable L1
• Enable L2

Hand – object, do not intersect

Leonidas Deligiannidis

Page 69

Communication Between Continuous and Discrete Time

The Continuous and Discrete models can communicate with each other to provide a

more powerful environment. Event Handlers can enable and disable

Conditions/Links and thus re-write the network graph. In other cases, a Link may

be reading input Variables and by performing a complex function on them over time

it may generate a token that is processed by an Event Handler. This can be useful

for gesture recognition or for eye tracking applications where when the user looks at

an object for over five seconds, the object becomes selected. An application is

presented in chapter 11 where the user selects with his/her eye an object to

manipulate.

Data Structures

The network consisting of all the Links and Variables forms a data-flow-like

network, where Variables store values and Links satisfy relationships among

Variables. DLoVe includes a one-way constraint engine whose primary

responsibility is to keep all constraints satisfied when possible. Each Link has an

Evaluate() member function which is used to bring its output Variables up-to-date.

When the constraint engine needs to bring a Variable up-to-date, it executes the

Evaluate() functions of the Links involved in the constraint. This function gives the

relation between input and output Variables and is specified by the programmer.

Leonidas Deligiannidis

Page 70

The constraint solver uses an incremental approach that guarantees that Links will

not be Evaluated more than once in each iteration and only when needed. The

programmer specifies the input and output Variables that each Link uses and the

relationship between them, as well as the Evaluate() member function.

Data-flow Graph

In the above figure, incoming arrows to Links point from Variables used as inputs,

and outgoing arrows from Links point to Variables used as outputs. The user

specifies this along with the Evaluate() member for each Link. The Evaluate()

member is a function that describes how the input and output Variables are related

with each other. This graph is called the “data-flow” graph because it indicates

which Variables produce which Variables. For example, Variables ‘A’ and ‘B’

produce ‘C’, and Variables ‘C’ and ‘D’ produce ‘E’.

After all Links and Variables are created, DLoVe automatically generates the second

set of pointers as shown below:

A

B

C

D

E L1 L2

Leonidas Deligiannidis

Page 71

Data-dependency Graph

In the above graph, outgoing arrows from Links point to Variables that are needed to

produce its output Variables. Incoming arrows to Links point from Variables where

the result of the execution of the Evaluate() function will be stored. This graph is

also called “data-dependency” graph because it indicates which Variables depend

upon which other Variables. For example, Variable ‘E’ depends upon ‘C’ and ‘D’.

And Variable ‘C’ depends upon ‘A’ and ‘B’.

Using the second set of pointers, the constraint engine can work very quickly to

determine incrementally which Variables are out-of-date and which Links need to be

evaluated to bring the demanded Variables up-to-date. The constraint graph at the

end looks as follows:

DLoVe constraint Graph

A

B

C

D

E L1 L2

A

B

C

D

E L1 L2

Leonidas Deligiannidis

Page 72

Internally, each Link has two sets of pointers. The first set of pointers points to

Variables that the current Link is using as inputs. The second set of pointers points

to Variables that are used as output by the current Link.

Just as each Link has two sets of pointers, each Variable has two sets of pointers.

The first set of pointers point to Links that use the current Variable as input, where

the second set of pointers points to Links that use the current Variable as output.

The data structure of the above diagram is shown below:

Data structure that holds the Links and Variables

L1 L2

A B C D E

Links

Variables

Variables

Pointers to Links that use this Variable as Output

Pointers to Links that use this Variable as Input

Links
Pointers to Input Variables

Pointers to Output Variables

Leonidas Deligiannidis

Page 73

At the top of the figure are all the Links, each having two sets of pointers. At the

bottom are all the Variables, with their two sets of pointers. The programmer sets

up only half of the pointers; pointers from Links to Variables. DLoVe sets up the

pointers from the Variables to Links automatically.

Internal flags of the Solver

Variables and Links are C++ objects that have member variables and functions.

Each Variable contains the following flags:

• dirty
• assigned2worker
• L_counter

The ‘dirty’ flag indicates that the current value of a Variable has been changed

since the last time it was requested. The value of a Variable can be changed by

either directly by the user program or indirectly by the constraint solver. When a

Variable is out-of-date its ‘dirty’ flag is set. The constraint solver uses the ‘dirty’

flag to figure out which Links must be evaluated to bring a demanded Variable up-

to-date. Using this flag the algorithm marks which Variables are out-of-date and

implements incremental solving by evaluating the Links in topologically sorted

order.

The ‘assigned2worker’ flag is used by the Partition algorithm discussed later.

DLoVe uses this variable when it runs in the distributed mode. This variable stores

the id of the Worker that is responsible for keeping the current Variable up-to-date.

Leonidas Deligiannidis

Page 74

The ‘L_counter’ is also used when DLoVe runs in the distributed mode. This

variable holds the number of Links that need to be evaluated in the worst case to

bring a Variable up-to-date.

Each Link contains the following variables:

• enabled
• visited
• dirty
• mark4partition

The ‘enabled’ flag indicates whether or not a Link is enabled. A Link that is

disabled is not really part of the constraint graph. When a Link is disabled the

constraint solver skips the disabled Link as if it was not there. Instead of deleting

the object (Link), which specifies the relation of Variables, it only clears the enabled

flag to indicate that the current Link is disabled. This speeds up the

removal/insertion of constraints.

The ‘visited’ flag is used to detect cycles in the constraint graph. When a cycle is

detected, the iteration stops after it goes through once instead of staying in an

infinite loop. When a cycle in the constraint graph is detected, DLoVe evaluates the

Links in the cycle once and then it breaks the cycle so that it stops the recursion.

When the ‘dirty’ flag of a Link is set, the Link must be evaluated even if its input

Variables have not changed since the last iteration. We fall in this case only when a

Variable is used as input to more than one Link. This is the only case where this

flag is used and an example is shown later.

Leonidas Deligiannidis

Page 75

When DLoVe runs in the distributed mode, the Partition algorithm uses the

‘mark4partition’ flag to partition the graph correctly when there is a Link that

uses multiple Variables as input.

Operations on Links

Each Link has an Evaluate() member function specified by the programmer, that

tells the relationship between the Link’s input and output Variables. When the

constraint solver needs to bring a Variable up-to-date, it evaluates all the Links in

the path of the Variable, by traversing the “dependency-graph” starting at the

Variable in demand. What the solver actually does is execute the Evaluate()

function of each Link that needs to be evaluated.

Enabling and Disabling, directly or indirectly via Conditions, are operations

performed on Links. Each Link has an Enable() and a Disable() member function

that simply set and clear the ‘enabled’ flag in the Link. As we will see later, because

these operations re-wire the graph, when the system runs in distributed mode,

these operations must be visible throughout the entire set of machines participating

in the distributed environment.

Leonidas Deligiannidis

Page 76

Operations on Variables

Similarly to Links, Variables also have member functions that the programmer can

use to operate on their values. The operations that can be performed on each

Variable are:

• two flavors of Set (to assign a value to a Variable)
• two flavors of Get (to get a value of a Variable).

The two Set operations are SetI(), which stands for ‘Set Internal’, and SetE(), which

stands for ‘Set External’. SetI() is performed within the Evaluate() member of the

Link and this is something that the programmer has to know and follow. SetE() is

performed by the main program to set a Variable as well. Both Set operations set

the value of the Variable and also set the ‘dirty’ flag of the Variable. Their behavior

is identical in the non-distributed mode, but it is very different when the system

runs in the distributed mode as it is explained in chapters 7 and 8.

The two Get operations are GetI(), which stands for ‘Get Internal’, and GetE(), which

stands for ‘Get External’. GetI() returns the raw value of a Variable and it is mainly

used in the Evaluate() member of a Link as the SetI(). If GetI() is called from the

main program, it may return the value of the Variable which is out-of-date, because

it does not trigger the constraint solver to run. GetE() however, triggers the

constraint solver and returns the value of the Variable up-to-date. The behavior of

these functions depends on how the system is running. As it is shown later, when

the system is running in distributed mode, SetE() and GetE() are sent over the

network as requests to Workers from the Coordinators. The return value of a GetE()

in the distributed mode is passed back to the Coordinator over the network.

Leonidas Deligiannidis

Page 77

Constraint Solver

To keep the Variables up-to-date, DLoVe implements an incremental constraint

solver that supports lazy evaluation, similar to Eval/vite [Hudson 91]. The

algorithm finds the set of Links that need to be evaluated to bring the demanded

Variable up-to-date. Then, based on topological ordering (using depth-first sorting),

it evaluates Links and brings the demanded Variable up-to-date. The solver

guarantees that each of these Links will be evaluated only once, after its

dependencies become up-to-date.

Each Variable knows if it is up-to-date or not. Using this information the Constraint

solver uses an incremental update and evaluates only the Links whose input

Variables are dirty or otherwise out-of-date.

Variables may change but that does not trigger the constraint solver to run. The

Constraint solver is lazy, which means that it will only update Variables when they

are requested by the user or by the constraint solver itself. When a Variable is

requested, the Do_evaluation() function of the solver is called on the demanded

Variable. Do_evaluation() clears the ‘visited’ flag’ on all Links, and then calls the

constraint solver on this Variable. The Solve() function of the constraint solver is

the main function that brings Variables up-to-date.

1 Do_evaluation(demanded_var)
2 ClearALLvisited();
3 Solve(demanded_var)

Leonidas Deligiannidis

Page 78

The Solve() function finds the set of all Links that need to be evaluated to bring the

demanded Variable up-to-date, and then each Link is evaluated in order, if needed.

The pseudo-code of the Solve() function is shown below:

1 Solve(demanded_var)
2
3 foreach Link link that uses demanded_var as output Variable do
4
5 if link is enabled and not visited then
6 linkÅSetVisited();
7
8 foreach Variable var that is an input to Link link do
9
10 Solve(var);
11
12 if var is dirty then
13 foreach Link lptr that uses var as input do
14 lptrÅSetDirty();
15
16 if link is dirty then
17 foreach Variable vv that Link link is using as input do
18 vvÅClearDirty();
19
20 linkÅEvaluate();
21 linkÅClearDirty();

How it Works

Recursively, starting at the Variable in demand, the algorithm traverses the

constraint graph and finds all Variables upon which the demanded Variable

depends. If at least one of these Variables is dirty (line 12), the algorithm marks all

Links that input the current dirty Variable as dirty to indicate that these Links need

to be evaluated (lines 13-14). It then clears the dirty flag of all input Variables (lines

17-18), since the current Link’s output Variable is up-to-date, and its own dirty flag

(line 21), because it was just evaluated. It then calls the Evaluate() (line 20) member

function for each such Link to bring the output Variables of the Link up-to-date.

Lines 5-6 ensure that only enabled Links are considered. If there is a cycle in the

graph, it is broken after detection, so that the algorithm does not fall into an infinite

Leonidas Deligiannidis

Page 79

recursion. DLoVe breaks cycles using the ‘visited’ flags of the Links, which keep it

from going around in cycles.

The algorithm is triggered and executed when the programmer calls the GetE()

member function of a Variable. The constraint solver is executed and returns the

up-to-date value of the demanded Variable that is up-to-date.

All the ‘foreach’ loops execute very quickly because each Link has stored all the

pointers to its input and output Variables. Similarly, Variables have stored all the

pointers to Links that need them as inputs or outputs.

The algorithm ensures that first, Links nearest to the changed/dirty Variables are

evaluated and so on until the demanded Variable becomes up-to-date. In the

following example, the Variable ‘A’ has changed and the user requests the Variable

‘C’ as shown in (a). The constraint solver calls Do_evaluation() on Variable ‘C’ which

is the requested Variable (b). Then the algorithm finds Link ‘L1’, which is the Link

that uses ‘C’ as output Variable (c), (line 3). In (d) the algorithm finds the first input

Variable to Link ‘L1’ (line 8) and calls Do_evaluation() on ‘B’ (line 10) and returns

since there are no Links using Variable ‘B’ as output (e). Then it repeats on the

second input Variable to Link ‘L1’ which is Variable ‘A’ and returns (f, g). Lines 12-

14 are represented in (h) where the algorithm sets as dirty the current Link ‘L1’

because at least one of its input Variables is dirty (‘A’ is marked as dirty).

Then it clears both input Variables ‘A’ and ‘B’ (i) (lines 16-18) because it will now

bring the output Variable ‘C’ up-to-date. Line 20 calls the Evaluate() function of

Link ‘L1’ and stores the result in ‘C’ (j). Now ‘C’s dirty flag is set because the result

in it has just changed. Then (line 21) it clears L1’s dirty flag (k) because it was just

Leonidas Deligiannidis

Page 80

evaluated. Then in (l) and (m) the algorithm unwraps the recursion and finishes,

leaving ‘C’ dirty to indicate that its value has just changed.

Animation of the Solve algorithm

A

B
C

D L2

E
L1

L3
(b)

A

B
C

D L2

E
L1

L3
(a)

A

B
C

D L2

E
L1

L3
(g)

A

B
C

D L2

E
L1

L3
(c)

A

B
C

D L2

E
L1

L3

(d)

A

B
C

D L2

E
L1

L3
(e)

A

B
C

D L2

E
L1

L3

(f)

A

B
C

D L2

E
L1

L3

(l)

A

B
C

D L2

E
L1

L3
(h)

A

B
C

D L2

E
L1

L3
(i)

A

B
C

D L2

E
L1

L3
(j)

A

B
C

D L2

E
L1

L3
(k)

A

B
C

D L2

E
L1

L3
(m)

Leonidas Deligiannidis

Page 81

The following example illustrates the incremental behavior of the algorithm.

Continuing from the previous example where the value of the Variable ‘C’ has

changed and thus it is marked as dirty, let us say the user requests Variable ‘D’ as

shown in (a). The algorithm then recursively traverses the graph down to Variable

‘B’ (b) then down to ‘A’ (c). In (d) (line 16) finds that the Link ‘L1’ is clean since its

input Variables have not changed since last time and unwraps the recursion in (e).

In (f) (line 12) Link’s ‘L2’ input Variable is dirty and so it marks all Links that use

Variable ‘C’ as input Variables, as dirty (lines 13-14). This causes both Links ‘L2’

and ‘L3’ to be marked as dirty. (g) shows lines 17-18 where L2 input Variables’ dirty

flag gets cleared. Then the Evaluate() function of L2 gets called (h) (line 20) and the

result is stored in L2’s output Variable ‘D’ and so, it is also marked as dirty. Note

that the Evaluate() uses SetI() to store a result to a Variable which also sets the

‘dirty’ flag of that Variable. The algorithm finishes and leaves Variable ‘D’ up-to-date

with its dirty flag set, since it just has been changed, and the ‘L3’s dirty flag also set.

The reason that the algorithm leaves ‘L3’s dirty flag set is to remember that even

though the ‘dirty’ flag of ‘C’ is clear, a request on Variable ‘E’ should trigger the

evaluation of Link ‘L3’ even though the input Variable of ‘L3’ is not dirty. The

reason that the ‘dirty’ flag of ‘C’ is clear is because the evaluation of Link ‘L2’ cleared

the ‘dirty’ flag of ‘C’.

Leonidas Deligiannidis

Page 82

A second example of the Solve algorithm

The reason that we need a dirty flag in Links is illustrated in the following example

that is a continuation of the previous example. Let us say the user at this point

requests Variable ‘E’ as shown in (a). The algorithm traverses the graph in (b) and

(c) and then unwraps as shown in (d) since there were no changes to Variables ‘A’,

‘B’ and ‘C’. In (d) however, L3’s dirty flag is set (line 16) and so, it must be

evaluated. Note here that even though L3’s input Variable is clean from the

previous run, it has to be evaluated to bring the demanding Variable ‘E’ up-to-date.

So, in (e) L3’s Evaluate function is called, and the result is stored in its output

Variable ‘E’, that gets marked as dirty since it has just been changed. The algorithm

A

B
C

D L2

E
L1

L3
(a)

A

B
C

D L2

E
L1

L3
(b)

A

B
C

D L2

E
L1

L3
(c)

A

B
C

D L2

E
L1

L3
(d)

A

B
C

D L2

E
L1

L3
(e)

A

B
C

D L2

E
L1

L3
(f)

A

B
C

D L2

E
L1

L3
(g)

A

B
C

D L2

E
L1

L3
(h)

A

B
C

D L2

E
L1

L3
(i)

Leonidas Deligiannidis

Page 83

finished and leaves Variable ‘D’ dirty, from the previous run, and Variable ‘E’ as

dirty as well from this run.

A third example of the Solve algorithm

A

B
C

D L2

E
L1

L3
(b)

A

B
C

D L2

E
L1

L3
(c)

A

B
C

D L2

E
L1

L3
(d)

A

B
C

D L2

E
L1

L3
(f)

A

B
C

D L2

E
L1

L3
(e)

(a)
A

B
C

D L2

E
L1

L3

Leonidas Deligiannidis

Page 84

Chapter 7: Distributed/Parallel DLoVe

Introduction

One of the major difficulties with existing software lies in transforming a program

written for a sequential machine into a program that runs on multiple machines on

a network in parallel. A program written in DLoVe however, can be initially written

to execute on a single sequential machine; with minor programming effort the same

program can execute in parallel on multiple workstations. The only difference

between the parallel and serial versions is that different libraries are used in

compiling this program. When compiling for parallel execution, compilation

generates two different executables, the executable for the Coordinator (the machine

mainly responsible for the graphics and the input devices), and another executable

for the Workers (the machines responsible for doing constraint calculations). The

Coordinator is a workstation with a display device and input devices. It is

responsible for reading all data from the input devices and generating the graphics.

Workers are only responsible for doing calculations based on the Coordinator’s

Leonidas Deligiannidis

Page 85

requests. Workers are workstations that do not need to have any input or output

devices attached to them: “headless workstations”.

Basic Structure of the ‘main()’ function

To program in DLoVe, the programmer must construct the program from Links and

Variables. This is a similar but simpler process than programming in C++ using

inheritance, encapsulation, and overloaded functions. The main program of any

application looks like the following:

1 main() {
2 Link::InitCommunication()
3 SetUp_Window_System()
4 Create_and_Setup_Links_and_Varables()
5 Link::InitSystem()
6
7 while(true) {
8 Link::START()
9 read-inputs()
10 request-outputs()
11 draw-display()
12 Link::FSTOP()
13 }
14 }

The call to Link::InitCommunication() (line 2) connects all Workers to the

Coordinator using the DLoVe protocol, built on top of TCP/IP. The program then

sets up the windowing system (line 3), and creates all Links and Variables (line 4).

The call to Link::InitSystem() (line 5) has different effects on the Coordinator and on

the Workers. During this call, the Coordinator partitions the network of Links and

Variables, and assigns roles and responsibilities to each Worker. During the same

call, the Worker(s) loop forever, reading and satisfying requests from the

Leonidas Deligiannidis

Page 86

Coordinator. The Worker(s) become “servers” listening for requests from the

Coordinator and providing services to it.

The rest of the main() function is only executed by the Coordinator. The Coordinator

continually (line 7 – 13) reads input devices, requests Variables from Workers (line

10), and renders the display (line 11). The two calls Link:START() (line 8) and

Link::FSTOP() (line 12) are used to build multiple requests that are send to Workers

in a block message. This is needed to get better performance out of the network. It

is better to send fewer, larger messages, than to send many, smaller messages.

Later we will see details on the evolution of DLoVe and why I had to pack multiple

requests into a single big message.

A simple set-up of 3 Workers and a Coordinator on a LAN looks like the following

figure where ‘C’ denotes the Coordinator and ‘W’ a Worker

Coordinator and Workers on a LAN

C

W W W

Leonidas Deligiannidis

Page 87

High level system architecture

When a DLoVe program is executed in non-distributed mode, the

Link::InitCommunication() and Link::InitSystem() calls do not do anything and

simply return. But, when the program executes in distributed mode, these calls set

up the entire execution environment for the program to run this mode. In the

distributed mode, several modules (called “managers”) cooperate during this setup

and at runtime both the Coordinator and each Worker initialize network

communication (‘Set up’ section of the figure below). Runtime managers (‘Run Time’

section in the figure below) handle communication between Coordinator and

Workers when the system is in execution. This communication always consists of

requests from the Coordinator that invoke responses from Worker(s). There is no

direct communication between Workers other than though the Coordinator.

The ‘Executive Manager’ on the Coordinator is only involved when the system

executes in Multi-user mode described in the following chapter.

Leonidas Deligiannidis

Page 88

DLoVe’s managers

Connection Manager Connection Manager

Executive Manager

Load Manager

Constraint Graph
Optimizer

User’s Program

Messaging Manager

Network Optimizer

Constraint Engine

Network Optimizer

Constraint Engine

Poll Facilit y

Dynamic Bindin g

Coordinator Worker

Requests

Replies

Set up

Run Time

Partition

Leonidas Deligiannidis

Page 89

To execute a DLoVe program in distributed mode one must first invoke the

Coordinator. Then the Coordinator accepts connections from Workers, as they are

invoked on different workstations. This is managed in the “Connection Manager”

that is part of both the Coordinator and Workers. The “Communication Manager”

uses a configuration file to dynamically produce the socket binding between

Coordinator and Workers. During this process, each authenticates itself,

exchanging information with the Coordinator and establishes a communication

channel.

Then the Coordinator partitions the graph (Link::InitSystem call) of Links and

Variables, assigning a disjoined subset of Variables to each Worker using its “Load

Manager”. These are the Variables a Worker will be “responsible for computing”.

When each Worker receives its assignment, it executes its own algorithm in the

“Constraint Graph Optimizer” manager to determine which sub-graph of the whole

graph it will need to evaluate in order to compute its assigned Variables. For

example, the following graph will be partitioned into two sub-graphs as shown

below:

Partition into two sub-graphs

After partitioning is completed, the Coordinator starts executing the main

application and the Workers start listening to requests from the Coordinator. The

Coordinator reads all its input devices, requests Variables in parallel from the

Partition for Worker 1

Partition for Worker 2

Leonidas Deligiannidis

Page 90

Workers, and renders the screen. The Workers handle all requests from the

Coordinator.

The last set of Managers, in the ‘Run Time’ section, handle all request-reply pairs

between the Coordinator and Worker(s). The Coordinator executes the user’s

program. Using the “Message Manager” it incorporates requests into network

messages that can be passed to Workers over the network. The “Network Optimizer”

in the Coordinator is responsible for building large messages out of smaller ones, so

that it can use the network more efficiently. It also makes sure not to overflow

network capacity by sending too many messages over the network.

Critical messages, such as commands that enable or disable a Link, are always sent.

Non-critical messages may be dropped if Workers seem overloaded. Each Worker

uses the “Poll Facility” to get requests from the Coordinator and unpacks messages

that may contain multiple requests. Then the “Constraint Engine” in the Worker

processes all the GetE requests. In case there are several GetE requests that need

to be returned to the Coordinator, the “Network Optimizer” builds a large message

that contains several GetE replies, and sends it to the Coordinator as a reply in a

single message.

The Coordinator also owns a “Constraint Engine” manager and thus it can perform

any calculations it wants locally instead of requesting a Worker to do that for it.

This is controlled by the programmer. We will see later in detail how the protocol

works and how the messages look.

Leonidas Deligiannidis

Page 91

Communication Protocol

The very first call in the main() function should be Link::InitCommunication(). This

call takes care of all the connections between the Coordinator and Workers. The

configuration file supplies the DNS name or IP address of the Coordinator and the

port number upon which the Coordinator is listening. Then the Workers connect to

the Coordinator based on dynamic binding the same way ftpd works on a UNIX

workstation. Every machine involved in running a program in the distributed mode

must have a copy of the same configuration file. Each Worker requests a connection

from the Coordinator. The Coordinator accepts and it then requests the Workers to

reconnect back to it on different port numbers that it supplies and then

disconnects. The Workers now know the new port number the Coordinator is

listening on, and they reconnect (dynamic binding). There is a different port

number for each connection. This process continues until all Workers connect to

the Coordinator. The Coordinator knows how many Workers are going to connect

because this information is supplied in the configuration file. When the system is

running in non-distributed mode, this call does nothing, it simply returns. During

this process, the Coordinator assigns a unique id to each Worker. This id is very

important in the partition algorithm discussed later. The Coordinator holds an

array (called Warray) of pointers to the connections to the Workers. The array index

tells the Coordinator to which Worker this communication channel is connected as

shown in the following figure:

Leonidas Deligiannidis

Page 92

Multiple Workers connected to a Coordinator

After the call to Link::InitCommunication() (line 2), the user creates the window(s) in

the application (line 3) and all the Links and Variables (line 4). Then the main()

function calls Link::InitSystem() (line 5). Any GetE() requests prior to the

Link:InitSystem() call, which trigger the constraint solver, use the local constraint

solver on the Coordinator to get the requested Variables up-to-date. The reason the

Coordinator does not initiate requests to the Workers at this point is because the

Coordinator has not executed the partition algorithm of the graph and thus, it does

not know where to send the requests.

Workers, however, calls Link::InitSystem() and they never exit from this function.

They stay in it in a loop, listening for requests from the Coordinator. The

Coordinator, before exiting the Link::InitSystem() uses the “Load Manager” to

partition the constraint graph and assign Variables to Workers. What is actually

happening in the partition of the graph is that the Coordinator partitions the

ID=0 ID=1 ID=2

0 1 2 …..

Coordinator

Worker 2 Worker 1 Worker 0

Warray

Leonidas Deligiannidis

Page 93

queries. By doing that it knows which Workers are paying more attention to which

Variables and it only asks the specified Workers for the specified Variables. The

Coordinator knows where to request each Variable because it knows which Worker

is responsible for which Variables. Even though all Workers, and the Coordinator,

have exactly the same copy of the constraint graph in memory, and their constraint

solver can bring any Variable up-to-date, Workers pay attention only to Variables

assigned by the Coordinator. After the partition algorithm finishes, the Coordinator

starts running the main application, ‘Run Time’ section, and any SetE(), GetE(), Link

Enable/Disable requests, are formed into messages and sent as requests over the

network to Workers.

Partition Algorithms

Besides the constraint algorithm there are two other main algorithms in DLoVe that

take place in the “Load Manager”. The first one is the partition algorithm performed

by the Coordinator and consists of 2 phases. In this algorithm the Coordinator

partitions the constraint graph and assigns the Variables to Workers. By doing this,

the Coordinator actually partitions the queries so that it can request Variables in

parallel. The Workers perform the second algorithm (optimization) in the

“Constraint Graph Optimizer” after the Coordinator finishes the partition algorithm

and transmits the partition information to Worker(s). The Worker(s) select the

smallest set of Variables that they can pay most attention to so they can take

advantage of their incremental constraint-solving algorithm.

Leonidas Deligiannidis

Page 94

Partition (2 phases) (Partition Queries)

The first phase of the partition algorithm marks each Variable with a number that

indicates the number of dependencies. The second phase assigns variables to

different workers in order, starting with the Variables with the most dependencies.

The Partition algorithm is static, which means that it may assign easy tasks to

powerful machines and difficult tasks to less powerful machines. It does not take

into consideration the time needed to bring a Variable up-to-date or the speed of the

machines on which Workers are running. A better approach would be to use a

dynamic algorithm where the Coordinator would determine at run time the speed of

each machine and partition accordingly. But because the constraint graph can

change on the fly by enabling/disabling Links there is a big overhead for trying to

re-partition the graph at run time. The pseudo-code of the Partition algorithm is

shown below:

1 Partition() {
2
3 MaxVarsNeeded = -1;
4
5 foreach Variable var do
6 ClearALLVisited();
7
8 foreach Link link do
9 linkÅmark4partition = false;
10
11 Partition_phase_1(var, var); // Modifies ‘MaxVarsNeeded’
12
13
14 got_some = false;
15 int Wid = 0;
16 for (i = MaxVarsNeeded; i >= 0; i--) { // i==0) for detached Variables
17 foreach Variable var do
18 if varÅL_counter == i and not varÅassigned then
19 got_some = false;
20 ClearALLVisited();
21
22 Partition_phase_2(var, Wid); // Modifies ‘got_some’
23
24 if got_some == true then
25 Wid = (Wid + 1) mod ParticipatingWorkers;
26
27 SendPartitionInfo_to_all_Workers();

Leonidas Deligiannidis

Page 95

The first part of the Partition algorithm (lines 3 – 13) loops around all Variables in

the system and calls the recursive function Partition_phase_1(). For each Variable

before calling Partition_phase_1(), the algorithm clears the mark4partition flag of

each Link. This mark4partition flag ensures that the correct number of

dependencies is counted for each Variable.

After the loop (lines 5 – 11) the algorithm knows how many Links are needed to

bring each Variable up-to-date. The Variable MaxVarsNeeded (line 3), which gets

modified by Partition_phase_1(), is used to find out the maximum number of Links

needed by Variables with the most dependencies. This variable is used later by the

Partition algorithm in (line 16).

The second part of the algorithm (lines 14-25) is used to actually partition the

constraint graph. The got_some Boolean variable indicates whether a Variable has

been assigned to a Worker (true) or not, (false). The Wid Variable indicates the id of

the Worker to which a Variable is going to be assigned. The ‘for’ loop (line 16 – 25)

uses the MaxVarsNeeded variable. This loop first assigns the Variable with the most

dependencies, the most Links that need to be evaluated in the worst case to bring a

Variable up-to-date. Then the ‘foreach’ loop (lines 17 – 25) loops around each

Variable. If the number of Links needed to be evaluated in the worst case is equal to

the current number of the variable ‘i’ and the current Variable is not yet assigned to

any Worker, the recursive Partition_phase_2() function is called. This function

assigns the current Variable, and recursively, all Variables in its dependency path to

the Worker with id equal to Wid. If Partition_phase_2() assigns any Variables to

Worker with id equal to Wid, it sets the ‘got_some’ to true, and in line 25 selects the

next Worker that will be assigned Variables, using a circular-like array. After all

Leonidas Deligiannidis

Page 96

Variables are assigned to Workers, Partition() communicates this information to the

Workers so that they know to which Variables they have been assigned (line 27).

Partition_phase_1(), below, recursively finds the Variables that are not used as

output by any Links. Then after it reaches the end of the tree in the graph (line 11),

it unwraps the recursion. For each Link that has not been marked

(marked4partition set to true), it increments the L_counter of the requested

Variable, which keeps track of the number of Links needed to bring this Variable

up-to-date. Lines 16 – 17 store the maximum number of Links needed by any

Variable.

1 Partition_phase_1(output_var, on_this)
2
3 foreach Link link that uses output_var as output do
4
5 if not linkÅIsVisited() then
6 linkÅSetVisited();
7
8 foreach Variable var that is an input to Link link do
9
10 Partition_phase_1(var, on_this);
11
12 if not linkÅmark4partition then
13 linkÅmark4partition = true;
14 on_thisÅL_counter += 1;
15
16 if on_thisÅL_counter > MaxVarsNeeded then
17 MaxVarsNeeded = on_thisÅL_counter;

Partition_phase_2() uses a depth first search approach, as the previous algorithm,

and assigns Variables to a Worker. It recursively traverses the graph to the

Variables that are not used as output Variables by any Links, the leaves of the tree.

The algorithm is shown below:

1 Partition_phase_2(output_var, Wid)
2
3 foreach Link link that uses Variable output_var as output do
4
5 if not linkÅIsVisited() then
6 linkÅSetVisited();
7
8 foreach Variable var that is input to link do
9 if not varÅassigned then

Leonidas Deligiannidis

Page 97

10 varÅassigned = true;
11 CCÅAssignVar(Wid, var->GetId());
12 got_some = true;
13
14 varÅ assigned_to_which_W = Wid;
15 fi
16 Partition_phase_2(var, Wid);
17
18
19 if not output_varÅassigned then
20 output_varÅassigned = true;
21 CCÅAssignVar(Wid, output_varÅGetId());
22 got_some = true;
23 output_varÅassigned_to_which_W = Wid;

The bottom section (lines 19 – 23) is the special case where only the original

requested Variable is tested to be assigned to a Worker, in case that all other

Variables upon which it depends, have already been assigned to a Worker. Note

here that if any Variable of the dependency path of the original Variable is assigned

to a Worker the got_some variable is set to true. Lines 19 – 23 are executed in

graphs that look like (a) below (Links have multiple outputs):

The L_counter of the Variables

The numbers below the Variables in (a) show the L_counter variable of each

Variable. This number is assigned to these Variables by the Partition_phase_1()

algorithm. With these Variables, the Partition() algorithm would call in descending

order Partition_phase_2() on either Variable ‘v4’ or ‘v5’, because they both have the

(a)
v1

v2
v3

v4

v5

0

0
1

2

2

(b)
v1

v2
v3

v4

v5

(c)
v1

v2
v3

v4

v5

Leonidas Deligiannidis

Page 98

maximum L_counter among all Variables. Let us assume that ‘v4’ is selected and

there are two Workers in the distributed environment. Then all Variables shown in

(b) would be assigned to Worker 0. The next Variable that would be selected is ‘v5’

and the Partition_phase_2() would be called again this time on ‘v5’. The ‘if’

statement (line 9) would prevent setting the got_some variable because all Variables

that ‘v5’ depends on have been assigned to Worker 0 in the previous run. As a

result the Partition_phase_2() would unwrap to the first call of itself that was called

on Variable ‘v5’ in line 19. Since Variable ‘v5’ has not been assigned to any Worker

yet, it will be assigned (line 21) to the next available Worker, Worker 1 as shown in

(c).

For Worker 0 to bring ‘v4’ up-to-date it needs to evaluate both Links. So does

Worker 1 to bring ‘v5’ up-to-date. Both Workers have the same semantic copy of the

graph and they both know how to bring any Variable up-to-date. It does not matter

that Worker 0 also got assigned Variables ‘v1’, ‘v2’, and ‘v3’. We will see later that

when Worker 0 runs its optimization algorithm, it will focus only on Variable ‘v4’.

Worker 0 knows that by bringing Variable ‘v4’ up-to-date ‘v3’ is also up-to-date.

Worker 1 also brings Variable ‘v3’ up-to-date when it brings ‘v5’ up-to-date, and yes,

there is some redundancy in DLoVe – and in this case total redundancy. However,

when the Coordinator wants to request Variable ‘v3’ it will request it from Worker 0,

since Worker 0 was assigned this Variable by the Coordinator.

Leonidas Deligiannidis

Page 99

Optimization (Workers) (MyMainVars)

The Workers in the “Constraint Graph Optimizer” Manager run the optimization

algorithm. Even though the Coordinator may assign many Variables to Workers,

Workers run this algorithm to find which Variables are the most important so they

can pay more attention to them and take advantage of the incremental nature of the

solver.

1 MainVarsSetUp()
2
3 MaxVarsNeeded = -1;
4
5 foreach Variable var in WW->MyVars do
6 var->L_counter=0;
7
8 foreach Variable v in WW->MyVars do
9
10 ClearALLvisited();
11
12 foreach Link l do
13 l->mark4partition = false;
14
15 Partition_phase_1(v, v); // Pass v twice, Modifies MaxVarsNeeded
16
17 int i;
18 for (i = MaxVarsNeeded; i > 0; i--) do
19 foreach Variable v in WW->MyVars do
20 if v->L_counter == i then
21 MainVarsSetUp_phase_2(v);

The algorithm shown above first initializes the L_counter variable of every Variable

similarly to what the Coordinator does in the Partition algorithm. This variable

holds the number of Links that need to be evaluated in the worst case to bring the

specified Variable up-to-date (lines 5 – 6). The foreach loop (lines 8 – 15) goes

through all Variables that the Coordinator assigned to this Worker, clears the visited

flag so it can detect and break cycles (line 10). Then it sets the mark4partition

flag to false and calls recursively the Partition_phase_1(). Note that, this function is

also used by the Coordinator in the Partition algorithm. The Worker calls this

function because it also needs to know the maximum number of Links that need to

Leonidas Deligiannidis

Page 100

be evaluated for each Variable in the worst case; this information is stored in the

L_counter variable in each Variable.

Then starting in descending order (line 18) it calls the MainVarsSetUp_phase_2()

function for every Variable that the Coordinator assigned to this Worker.

1 MainVarsSetUp_phase_2(output_var)
2
3 if output_var not in WWÅMainVars then
4 foreach Variable var in WWÅMainVars do
5 if output_var is a Variable that var depends on then
6 return
7
8 WW->MainVars->Add(output_var); // add it to the MainVars

The MainVarsSetUp_phase_2() collects all the Variables, from the set of Variables

the Coordinator assigned to it, that are not needed by any Link in the graph as

input. All these Variables are collected into the MainVars set (line 8).

Parallel Computation on a Distributed Graph

Every Worker and the Coordinator owns the same constraint graph representation.

However, the Coordinator partitions the graph and assigns Variables to Workers.

The Workers pay attention only to Variables that they have been assigned by the

Coordinator. The set of Variables assigned to them represents a sub-graph of the

entire constraint graph. For example, in the following example (a) where only two

Workers are participating:

Leonidas Deligiannidis

Page 101

Partitioned graph to two Workers

Worker 0 will be assigned the Variables in (b) and Worker 1 will be assigned the

Variable in (c). After the Workers run the optimization function, the Worker 0 will

pay all its attention to Variable ‘D’ as shown in (a) below and Worker 1 to Variable

‘E’ as shown in (b) below. This way the Worker 0, for example, knows that by

bringing the Variable ‘D’ up-to-date, all its Variables assigned by the Coordinator,

are also up-to-date.

Partitioned graph after the optimization algorithm is run on the Workers

A

B
C

D L2

E
L1

L3

(a)

A

B
C

D L2

E
L1

L3

Worker 0

(b)

A

B
C

D L2

E
L1

L3

Worker 1

(c)

A

B
C

D L2

E
L1

L3

Worker 1

(b)

A

B
C

D L2

E
L1

L3

Worker 0

(a)

Leonidas Deligiannidis

Page 102

By partitioning the constraint graph, the Coordinator actually partitions the queries.

By partitioning the queries, the Coordinator can initiate requests that are processed

in parallel. For example, if the Coordinator calls varEÅGetE() and varDÅGetE(), the

requests will be processed by Worker 1 and Worker 0 respectively. Parallel

processing on Variables is done specifically based on which Variable is demanded.

Even though a varEÅGetE() request could be processed by Worker 0, since both

Workers have an identical copy of the constraint graph and both Workers run the

same constraint solver, the Coordinator knows who is the best Worker to process

this request. If the Coordinator initiates varCÅGetE(), it will be processed by

Worker 0 because Worker 0 was assigned Variable ‘C’ and even though Worker 0 ran

the optimization algorithm, it will process this request from the Coordinator. This

gives room for fault tolerance where one of the Workers crashes, the Coordinator

can detect this failure and re-direct requests to another live Worker.

Two flavors of constraint solvers

The Workers run their constraint solver when the Coordinator requests Variables.

After the constraint solver finishes the Workers reply back to the Coordinator with

the up-to-date values of the requested Variables. However, there are cases where

the Coordinator needs to run its constraint solver and update Variables locally,

instead of sending requests to Workers. This is appropriate when the partition

algorithm is not yet run but the user needs some Variables to set up his/her

program. The Coordinator does not know where to send these requests because the

Variables have not yet been assigned to any Worker. In addition, the Workers are

expecting Partition information at this point since this is how the DLoVe protocol

Leonidas Deligiannidis

Page 103

works. It also applies when the Coordinator wants to update critical Variables very

fast. Such Variables in Virtual Reality include the position of the user’s head and

hand. Finally, it could also be used to support local variation as in Repo-3D

[MacIntyre 98]

Constraint Solver on the Coordinator

To avoid motion sickness, and user frustration, any Virtual Reality system should

support many frames per second. The head movement and the hand movement are

an example of the most critical Variables that exist in a Virtual Environment. So,

instead of sending requests to Workers and then waiting for replies and then

updating the display, the Coordinator runs its local constraint solver to update such

critical Variables. This is done as follows:

Instead of calling varEÅGetE(), it calls the following two functions in order:

• Do_evaluation(varE);
• varEÅGetI();

The Do_evaluation(varE); runs the constraint solver on Variable varE that brings it

up-to-date, and then it gets its raw value by using the GetI() member function of the

demanded Variable. It is alright to see a bouncing ball in the background a little bit

jerky, but it is unacceptable for the user to turn his/her head or hand and have the

display show the position of the head/hand with a two 2 second delay.

Leonidas Deligiannidis

Page 104

Constraint Solver on the Worker(s)

The Workers call the Link::InitSystem() and never exit from this function. They stay

in an infinite loop listening for requests from the Coordinator. When a GetE request

comes in, they run the Do_evaluation() function which is the constraint engine and

they return the updated value of the demanded Variable to the Coordinator. The

return value to the Coordinator is built into a reply message and is sent to the

Coordinator. The user however, is still using the same SetE(), GetE(), Enable(), and

Disable() functions. Their functionality is totally transparent to the user.

Configuration file

The configuration file is a text, colon ‘:’ delimited file. The first field is the port

number the Coordinator is listening for all Workers to connect. The second field

specifies the DNS name or the IP address of the Coordinator, and the last field

specifies the number of Workers that are going to participate in the program. A

simple configuration file with 3 Workers is shown below:

PORT NUMBER: 2016
Master Coordinator: mondrian.eecs.tufts.edu
Workers: 3

Leonidas Deligiannidis

Page 105

Chapter 8: Multi-user DLoVe

Introduction

Using the Links and Variables paradigm to program Virtual Environments gives the

programmer the flexibility to execute in distributed mode a program that is designed

to run on a single machine with minor code modification. Since the constraint

graph is distributed and the Coordinator knows how to query/request Variables

from the Workers and how to set Variables on the Workers, it is simple to add

additional Coordinators to the picture to run multi-user programs. In fact, in a

distributed system where there is a Coordinator and Worker(s), adding another

user/Coordinator is simply specifying the number of additional Coordinators in the

configuration file and running the additional Coordinators that are the same

executable as the original Coordinator.

The DLoVe protocol does support multiple Coordinators in a DLoVe framework.

However, there are several issues on how to run a multi-user program and I will

Leonidas Deligiannidis

Page 106

explain them shortly. The most important issue is that when more Coordinators are

added to the framework, all Coordinators will have access to the same input

Variables. That means that each Coordinator may control any other’s hand, or any

other input Variable that is attached to an input device. As we will see, one of the

most important issues is to be able to specify that a specific device is attached to a

specific workstation. The next issue is to create rules on how to transform a single

user program into a multi-user program and assign roles to each user. There are

some modifications that need to be performed to a program that is designed to run

in a single user environment. And this is unavoidable since we need to give different

responsibilities to each user and then each needs to know where the others are

located in a virtual world.

Multiple Coordinators

In a multi-Coordinator environment, the first Coordinator is called the Master

Coordinator, and all the other Coordinators are called Slaves. As with the Workers,

all Slave Coordinators have to connect to the Master Coordinator and exchange

information. The Master Coordinator always has id of 0 and the Slaves have an

incremental id that is assigned to them by the Master, as with the Workers. The

Slaves follow the dynamic binding paradigm, similarly to Workers, to connect to the

Master. The Master keeps a separate array of pointers to channels to Slaves, and

the index of the array indicates the id of the Slave. After all Workers and Slaves

connect to the Master, the Master requests the Slaves to be servers and accept

connections from the Workers on specified port numbers. It then requests the

Workers to connect to each Slave following the same dynamic binding paradigm

Leonidas Deligiannidis

Page 107

when they connected to him the first time. After all Workers connect to the Slaves,

all Workers inform the Master that they are connected to the Slaves and the main

application starts. After this point the connections between all Slaves to Master are

no longer needed and so they are terminated.

Multiple Workers connected to multiple Coordinators

The figure above shows the connections between all Workers to all Coordinators,

and the temporary connection from the Slave to Master, which is terminated before

the main application starts. The Coordinators have an array of pointers to

communication channels to the Workers. The index in the array indicates the id of

the Worker to which they are connected. They also have an array of pointers to

communication channels between the Master and themselves. In the above figure,

0 1 …..

ID=0

0 1 …..

ID=1

0 1 …..

ID=2

0 1 2 …..

ID=0 1

0 1 2 …..

ID=1
0

Master Coordinator Slave Coordinator

Worker 2Worker 1Worker 0

0

Leonidas Deligiannidis

Page 108

the Master Coordinator uses the array index 1 which means that it is connected to

Slave with id of 1. On the other end, the Slave uses the index 0 in the array to

indicate that it is connected to the Coordinator with id 0, which is the Master. The

Workers also have an array of pointers to communication channels to Coordinators.

They are also using the index of the array to indicate which Coordinator they are

connected to. The details on what kind of information is exchanged and what type

of messages is passed back and forth are shown in the next chapter.

Issues – Transforming to Multi-user

The first issue to resolve is to identify devices that are attached to different

machines. We need that so different users can interact in a virtual environment

independently. The distinction between the different machines and thus the

different input/output devices is done in the configuration file. In the configuration

file, the IP address or the DNS name of a machine can be associated with an

application level identification number. For example, the following lines in the

configuration file

ID: mondrian.eecs.tufts.edu=4
ID: vermeer.eecs.tufts.edu=3

associate the machine with DNS mondrian.eecs.tufts.edu with the application level

id equal to 4 and the machine vermeer with id equal to 3. Depending on the

number of Coordinators in the multi-user environment, the representing number of

ID fields must be present. For example, one might specify that machine ‘A’ can grab

only red objects and machine ‘B’ can only grab blue objects. Later, by swapping the

Leonidas Deligiannidis

Page 109

identification numbers in the configuration file and without any recompilation,

machine ‘A’ can only grab blue objects and machine ‘B’ can only grab ‘red’ objects.

The second part of the problem is to actually be able to attach input Variables to

same devices but on different machines. Let us say in a very simple program that

the mouse controls a virtual hand on the screen that can grab and control a Slider.

That can be represented in an aggregate form as shown in the following figure part

(a):

Distinguishing input devices

Using the token-based sub-system, the discrete model, we can test to see if the

virtual hand intersects with a slider and if the user presses the left mouse button

then Link ‘L2’ becomes enabled and the slider follows the virtual hand (a). In a

multi-user environment, each user needs to see where the other user is, or at least

where the other user’s hand is. So we need to create two sets of virtual hands, one

for user ‘A’ on machine ‘A’ and one for user ‘B’ on machine ‘B’. We can specify that

the mouse attached on machine ‘A’ is called mouse_A and the mouse attached to

mouse L1(a)
VR

hand
L2 Slider

mouse
A

L1a

(b)

VR
hand

A

mouse
B

L1b
VR

hand
B

L2a

L2b

Slider

Leonidas Deligiannidis

Page 110

machine ‘B’ is called mouse_B, using the ID: field in the configuration file. At this

point the user on machine ‘A’ can do VRhand_A->GetE() to find its position and

draw itself. It can also do VRhand_B->GetE() to find the other user’s position so it

can draw that as well. Similarly the user on machine ‘B’ can draw his hand and

also the other user’s hand.

The first rule is that every Link that uses the VRhand Variable as input, needs to be

duplicated along with all its dependencies. The output of such Links needs to be the

same. For example, in (b) ‘L2’ needs to be duplicated into ‘L2a’ and ‘L2b’ that use

the Variable Slider as output. However, ‘L2a’ uses as input Variable VRhandA and

‘L2b’ uses as input Variable VRhandB. Depending on which system grabs the

Slider, the representing L2 Link gets enabled. If both users grab the slider, then

both L2 Links are enabled and both users can move the Slider. If one user moves

the Slider to the top and the other to the bottom, DLoVe is going to execute both

constraints and the users will see the Slider jumping up and down. This can be

fixed by using a switch mechanism where the programmer can specify that only one

user is allowed to grab the slider. An example of a switch is shown in another

chapter. When a switch is involved, then if user ‘A’ grabs the slider from user ‘B’,

the Slider is taken away from user ’B’ and user ‘B’ does not control the position of

the Slider any longer. User ‘B’ has to re-grab the slider to gain control over it. But

this mechanism is not present in the single user environment, and additional code

needs to be written.

All the events sent by the discrete subsystem are relabeled to indicate which

machine caused the event. For example, in non-distributed mode when the right

mouse button is pressed the event RMbuttonPRESSED may be sent. In the

distributed environment, the discrete subsystem sends the event

Leonidas Deligiannidis

Page 111

RMbuttonPRESSED_3 if the machine with application level id equal to 3 cased this

event or RMbuttonPRESSED_4 if the machine with application level id equal to 4

caused this even. This way the Coordinators know which Link to Enable/Disable

and send the correct message to the Workers. The programmer does not see how

the events get re-labeled. The programmer only needs to know that events get re-

labeled so he/she can write the proper code to catch the events and take the correct

action. There are cases however, where we do not care which machine initiated the

event. For this reason the discrete subsystem also sends the original event before it

gets re-labeled.

Backward Notification of Events

There are cases where we want to specify things like user ‘A’ can only grab red

objects and user ‘B’ can only grab blue objects. But with specific action or gesture

the behavior should change and user ‘A’ can only grab blue objects and user ‘B’ only

grab red objects. And with another event, both users can grab both kinds of

objects, blue and red. Let us say for simplicity that when the character ‘t’ is pressed

whoever could grab blue objects can now only grab red objects and vice versa. And

when the character ‘T’ is pressed both users can grab both kinds of objects. Note

here that both users can press the ‘t’ and ‘T’ character. If user ‘A’ is moving a blue

object and user ‘B’ types the ‘t’ character, user ‘A’ must immediately not be able to

move the object he was moving because he is now only allowed to grab and move red

objects.

Leonidas Deligiannidis

Page 112

We need a mechanism to immediately notify the other Coordinator of this event.

Because the Coordinators at run time do not communicate directly with each other

but rather via the Workers, we could set a Variable on the Workers so that when the

other Coordinator queries the Worker it will see that that Variable has changed and

take the appropriate action. But how often should we query the Workers for this

specific Variable. The ‘t’ event is a discrete event and does not happen very often.

That was the main reason I separated the UIDL into continuous and discrete

subsystems.

To implement this behavior a new SetE() function needs to be used called

SetE_Broadcast() and it is used for backward notification. When a Coordinator

needs to set a Variable that would indicate a specific event, in this case that the

character ‘t’ was pressed, it uses this new one function SetE_Broadcast(). This

function works the same way as the SetE() function but it also instructs the Worker

to return in a reply message the result of the Variable that just got set, to all other

Coordinators in the system. Even though all Workers get the SetE requests, only

one of them will send this backward notification to all other Coordinators; only the

Worker that is responsible for this Variable. The Coordinators will receive this

notification as if they requested this Variable with GetE; they will not notice the

difference.

The Need for Local Evaluation

In the single user distributed DLoVe framework, the position of the head and the

hand were the most critical Variables and thus they were updated locally on the

Leonidas Deligiannidis

Page 113

Coordinator. In a multi-user environment however, each user needs to see where

others are to work in a collaborative environment. Each Coordinator must update

the head and hand position locally and also send that information to the Workers so

the Workers know where each Coordinator is. Then each Coordinator can request

the position of the head and hand of all other Coordinators with the GetE() member

function. This way the local user does not feel any delay on the camera, which is

moved by the head and it also informs the Workers on its location so they can reply

back to the other Coordinators when they are queried. Some delay or jerky behavior

of the position of the other users’ head and hand is acceptable, since it is not that

critical. Another use of local Evaluation is a limited form of Local Variation. When

the user intersects his/her hand with an object that he/she can grab, since there is

no feedback to tell the user if the object has been touched by his/her hand, we need

to highlight the object to indicate intersection with the virtual hand. The other

users do not have to see that the object is highlighted however. Highlighting an

object is an operation local to the user to assist him/her see that the object in

consideration has been touched.

Time is a special Variable

When the system runs in multi-user mode, time sensitive simulation becomes a

problem. Since the Coordinator sets the time, in multi-user mode all Coordinators

try to set the timer according to their own clocks. This may come in conflict with

the current setting of the timer. To avoid this conflict only the Master Coordinator

sets the clock and all other Coordinators get the time value through the Workers.

So computer simulation objects are consistent among all Coordinators since they

Leonidas Deligiannidis

Page 114

share the same clock. Time sensitive object behavior is for example, the tossing of a

ball, where its position is calculated based on time, speed, and acceleration. If two

machines had different clocks, then one machine would set the clock to 30 the other

to 100 and the position of the ball would move back and fourth depending on whose

timer it was using. By having a single shared clock, all simulated objects are

consistent among all Coordinators.

Leonidas Deligiannidis

Page 115

Chapter 9: Messaging (DLoVe Protocol)

Introduction

The first thing I will explain in this chapter is how all the machines get connected

before main program starts, and then the type of DLoVe messages that are going

over the network. DLoVe uses a message passing mechanism to communicate to all

systems in its environment. There are three flavors on the format of messages sent

to Workers from the Coordinators: Single messaging, Multi-messaging and blocking

for replies, and Multi-messaging without blocking for replies, also called

asynchronous mode. Even though, only the third one is recommended, I will

describe all of them and explain how I arrived at them and why the first two do not

work. Finally I will show how the same protocol works for multi-user environments

with some code modifications.

Leonidas Deligiannidis

Page 116

Machine connections in Distributed Mode

The first machine/process that must come up before any other is the Coordinator.

The Coordinator starts listening on a port number provided in the configuration file.

The configuration file also provides the number of Workers that will connect to

Coordinator. Then all the Workers connect to the Coordinator using dynamic

binding. This way the entire set of machines can connect to a single port and the

rest is left up to the Coordinator to orchestrate. The messages between the

Coordinator and the Workers have four fields. The first field indicates the type of a

message. ‘I’ means information, ‘PS’ means that the Partition information is to

follow, ‘P’ indicates Partition information, ‘PE’ means that the Partition has finished,

and ‘R’ means that the system is ready to accept and process requests. The rest of

the fields may be null or if they are used they are explained below. The arrows

indicate the direction of the message. Both the Coordinator and the Workers block

after each message they send in a synchronized way.

In detail, first the Coordinator comes up and starts listening for connections and

then the Workers connect one after the other (a). After a Worker connects, it sends

a message to the Coordinator that indicates that it is a Worker (second field) and its

IP address (b). Both fields are not needed in the distributed mode but they are

needed in the multi-user mode, and for the protocol to be consistent Workers supply

this information to the Coordinator. Then the Coordinator sends a message to the

Worker that includes newly assigned id, a new port number for the Worker to

reconnect and also the Coordinator’s id; which is always 0 (c). Here is where the

Coordinator assigns ids to Workers. The fourth field is always 0 since in the

distributed mode there is only one Coordinator. Later in the multi-user mode, other

Leonidas Deligiannidis

Page 117

Coordinators place there their own id. The connection Worker – Coordinator gets

terminated and the Worker requests another connection to the Coordinator on the

new port number it received (d). This is the end of the dynamic binding. The

Coordinator goes through this process for every Worker assigning new ids and

providing new port numbers for them to connect. After all Workers connect to the

Coordinator, the Coordinator sends a message to all Workers informing them that

the Partition process is going to start (e). It then runs the Partition() algorithm and

for every Variable it sends a message to the Worker that gets assigned this Variable

a message (f). All Variables have a unique id among all systems that participate in

the distributed environment. This id gets assigned to each Variable based on the

order of creation. Since all Variables get created before the Partition algorithm is

run, Workers and Coordinators have the same Variables with the same ids assigned

to them. After the Partition() algorithm finishes, the Coordinator sends another

message to all Workers indicating that the Partition reached its end (g). The

Workers at this point run their optimization algorithm and when they are ready they

notify the Coordinator (h). The Coordinator in the mean time is waiting for this

message from every Worker. When every Worker is ready the Coordinator starts

running the main application.

Leonidas Deligiannidis

Page 118

DLoVe’s Connection Protocol

Machine Connections (Multi-User)

In a multi-user environment there are more than multiple Coordinators and thus

the protocol is a bit different. The first Coordinator that starts is called the Master

Coordinator and all the others Slave Coordinator. In the configuration file the IP

address or the DNS name of the Master Coordinator is specified, and the number of

Coordinator Worker
Connect (a)

I W 24.5.7.22 Coordinator Worker (b)

I id 6091 0 Coordinator Worker (c)

Coordinator Worker
Re-Connect (d)

PS Coordinator Worker (e)

P vid Coordinator Worker (f)

PE Coordinator Worker (g)

R Coordinator Worker (h)

Leonidas Deligiannidis

Page 119

Slaves that are participating in the multi-user environment. Later the Workers need

to connect to all Slaves but the Master coordinates all this as it is shown below. The

Master and the Slaves run the same executable and their behavior is almost

identical. They are mostly different in the initialization process where all systems

connect with each other. The following example, for simplicity purposes, involves

two Coordinators and one Worker. The port number that the Coordinator is

listening on is 6090, which is also specified in the configuration file. The id number

assigned to each machine is indicated in a little circle next to the machine type.

First the Master Coordinator starts up and then the Worker connects to it on port

6090 as shown in (a). The Worker then sends a message indicating that it is a

Worker process requesting the connection, the ‘W’ in the second field (b). In the

third field it specifies its IP address. Then the Coordinator sends a message that

assigns an id to the Worker, which is zero in the second field (c). The new port

number that the Worker should re-connect, port 6091, is specified in the third field.

The fourth field indicates the id of the Coordinator itself, which is zero since it is the

Master Coordinator. In (d) the Worker re-connects on the new port number, which

is 6091. The Coordinator gets the initial port number from the configuration file; it

then requests clients to reconnect to a new port number that is an increment of the

initial port number.

Leonidas Deligiannidis

Page 120

Worker connects to Master Coordinator using dynamic binding

Then, using the same procedure the Slave Coordinator connects to the Master

Coordinator (e). The Slave sends a message that specifies that it is a Slave

Coordinator requesting a connection using ‘S’ in the second field, and in the third

field supplies its IP address (f). In (g) the Master assigns an id to the Slave which is

one, in the second field, since it is the next Coordinator in the system – zero is

always the Master. The third field contains the new port number to which the Slave

should reconnect, and the fourth field is the Master’s id. In (h) the Slave reconnects

on the new port number which is 6092.

Slave Coordinator connects to Master Coordinator

Connect on port 6090 Master id=0 Worker id=? (a)

Re-Connect on port 6091 Master id=0 Worker id=0 (d)

I W 24.5.7.22 Master id=0 Worker id=? (b)

I id=0 6091 0 Master id=0 Worker id=0 (c)

Master id=0 Slave id=? Connect on port 6090 (e)

Re-Connect on port 6092 Master id=0 Slave id=1 (h)

I S 24.5.7.23 Master id=0 Slave id=? (f)

I id=1 6092 0 Master id=0 Slave id=1 (g)

Leonidas Deligiannidis

Page 121

After the Slave connects, the Master sends a message requesting the Slave to start

listening on port ‘initial port number from configuration’ + 100 (i). In a while the

Master will request the Worker to connect to the Slave. So the Slave should be

listening for incoming connections. The reason the port number is an offset of 100

from the initial port number to allow multiple coordinators to run on a single

machine in case the programmer wants to run some tests while developing a

software.

Then the Master starts the partition process (j). Then it partitions the graph and

sends the information over to the Worker (k). The vid in the second field is the id of

a Variable that this Worker was assigned. In this example all Variables will get

assigned to this one Worker, but in practice when multiple Workers participate each

one will get a sub-graph of the original graph.

In (l) the Master requests the Worker to connect to the Slave Coordinator. It

provides the port number the Slave is listening on and its IP address.

After that the Master is done and sends an ‘End of Partition’ message in (m). After

this message is sent out, the Master waits untill all the other systems are ready to

proceed.

Leonidas Deligiannidis

Page 122

Slaves start listening for connections, Master partitions the graph, and the Workers are
requested to connect to Slaves

Then the Worker connects to the Slave Coordinator (n) on port 6190. Then the

Worker sends its IP address, and also in the fourth field its id, which is 0 (o). The

Worker has to tell to the Slave its id because the Slave is not allowed to assign ids to

Workers. The Slave in (p) now knows that a Worker with id of 0 is connecting and

does not need to assign a new id and thus the second field is null. The third field is

the new port number the Worker should reconnect and the fourth field is the id of

the Slave which is 1.

SV 6190 Master id=0 Slave id=1 (i)

PS Master id=0 Worker id=0 (j)

P vid Master id=0 Worker id=0 (k)

Master id=0 Worker id=0 CS 6190 24.5.7.23 (l)

PE Master id=0 Worker id=0 (m)

Leonidas Deligiannidis

Page 123

Worker connects to Slave Coordinator using dynamic binding

In a similar manner to the Master, the Slave Coordinator starts the Partition (r). In

(s) it partitions the graph and sends the information over to the Worker. The Slave

is not allowed to modify the partition of the graph. The graph was partitioned once

by the Master and that is how the partition should be. However, the Slave

partitions the graph and sends the information over to Worker for double-checking.

If there is any discrepancy, an error is printed and all machines terminate. It is not

possible to have Coordinators that are working on different partitioned graphs. In (t)

the Slave sends the ‘End of Partition’ message to indicate that it is also done, and it

is waiting for any other system to get ready so they can all proceed.

Slave Coordinator partitions the graph (just for verification)

Slave id=1 Worker id=0 Connect on port 6190 (n)

Re-Connect on port 6191 Slave id=1 Worker id=0 (q)

I 6191 1 Slave id=1 Worker id=0 (p)

Slave id=1 Worker id=0 I W 24.5.7.22 0 (o)

PS Worker id=0 Slave id=1 (r)

P vid Worker id=0 Slave id=1 (s)

PE Worker id=0 Slave id=1 (t)

Leonidas Deligiannidis

Page 124

At this point both Coordinators are waiting a message from the Worker to tell them

that it is ready to process requests. The Worker runs its optimization algorithm and

then it notifies both Workers that it is ready to process requests (u) and (v).

Worker is ready to process requests and so it notifies the Coordinators

Now the multi-user program starts and the Coordinators request Variables from the

Worker. The Worker on the other is listening and satisfies requests.

Flavors of Message-passing in DLoVe

There are three configurations for message passing. The first one is the Single

Messaging, where each request is a single TCP packet. Each packet is sent to the

Workers in a non-blocking fashion with the exception of GetE requests. When the

Coordinator requests a value of a Variable, it blocks until the Worker replies back to

the Coordinator with the value of this Variable. The second configuration is similar

to the previous one. GetE requests work the same way. However, all other requests

that include SetE, Enable, and Disable, are packaged up in a big message and sent

to Workers. In the third configuration, is the most appropriate for TCP/IP. The

R Worker id=0 Slave id=1 (u)

R Master id=0 Worker id=0 (v)

Leonidas Deligiannidis

Page 125

Coordinator packages all requests, including GetE, in a big message and sends them

over to Workers. The Coordinator does not block for GetE replies. It keeps sending

requests and gets them back when they arrive. Until the requests comes back, the

Coordinator uses the previous values of the Variables. Because there is a danger

that the Coordinator may overflow the network, it keeps count of how many pending

messages there are on the network. If the pending requests cross the threshold, the

Coordinator drops the requests. The only exception is when the messages contain

Enable or Disable requests, because these re-wire the graph.

Single messaging

In Single messaging each Message has four fields:

• type
• size
• id
• value

The ‘type’ field indicates the type of request, which includes SetE, Enable, Disable,

or GetE. The ‘size’ field indicates the number of bytes in the ‘value’ field. The ‘id’

field is to indicate on which Variable (for SetE and GetE requests) or Link (for

Enable and Disable requests) this request is to be performed. The last field, ‘value’,

holds the value of a Variable. When a SetE request is sent the ‘size’ field indicates

the number of bytes in the ‘value’ field. When Enable/Disbale/GetE requests are

initiated, the ‘size’ field is zero because there is no value in the ‘value’ field. For

GetE requests, the Worker returns the updated value of the demanded Variable in a

same format message. When the Workers reply, they put the value of the demanded

Leonidas Deligiannidis

Page 126

Variable in the ‘value’ field, the number of bytes of the value in the ’size’ field, and

send the message to the Coordinator.

For every request, the Coordinator builds a message, puts the request in the

message and sends it over to the Workers. For SetE/Enable/Disable requests the

Coordinator does not expect any reply from the Workers. However, for GetE

requests it does. When the Coordinator sends a GetE request, it blocks until the

Worker replies back with the value of that Variable. Sending many small packets

using TCP over the Ethernet is not very efficient for the network [Halabi 97] [Lewis

98] [Lewis 98]. For simple programs it seems to work, but for Virtual Reality

programs where many Variables are changing very fast, this configuration is

unacceptable. Performance is so low that some times the user thinks that the

program is not even running because the Coordinator requests many Variables and

blocks for each one of them.

Requests made into Messages

type size id value
0 33 NULL ENABLE

(c)

type size id value
8 46 10011…. SETE

(a)

type size id value
0 33 NULL DISABLE

(d)

type size id value
0 47 NULL GETE

(b)

type size id value
16 47 101001.... GETE

(e)

Leonidas Deligiannidis

Page 127

In the figure above, (a), (b), (c), and (d) are the four types of messages sent to

Workers from the Coordinator. (e) is the reply message sent by the Workers to a

GetE request.

Multi-messaging - Block for replies

In this configuration, the Coordinator builds a multi-message that consists of

several SetE, Enable, and Disable requests and sends this multi-message to

Workers. However, as in Single-messaging, GetE requests are sent following the

Single-messaging mechanism. The Coordinator still blocks to get the reply from the

Worker to which the request was sent. The multi-message is patched with a header

so that the Workers know how many requests are included, and how large the

multi-message is. The multi-message header includes the following fields:

• nRequests
• mSize
• buffer

The ‘nRequests’ indicates the number of requests in the multi-message. The

‘mSize’ indicates the size of the ‘buffer’ field. All the requests are stored in the

‘buffer’ field. The ‘buffer’ field consists of multiple Single messages the same as

those in Single-messaging.

Leonidas Deligiannidis

Page 128

Multi-message containing multiple mini-messages

Even though this mechanism is increasingly faster than Single-messaging, it is still

slow and unacceptable for Virtual Reality. Its slowness is because the Coordinator

still blocks while waiting for replies from the Workers. It is faster than Single-

messaging because it better utilizes the network by sending fewer but bigger

messages over the network. All the requests in the ‘buffer’ field are the same as the

ones in Single-messaging.

Multi-messaging - Non-Block

The next mechanism of sending messages is similar to the previous one. Here the

Coordinator builds again a multi-message and this time even the GetE’s are

included. The Coordinator does not block for replies however. It rather sends the

requests, and when the GetE replies come back it uses them. In the mean time, it

uses old values of the Variables. In Virtual Reality this is acceptable as long as the

delay is not too big. Using this asynchronous approach introduces several

problems. The first one is that the Coordinator keeps sending requests without

blocking for replies and this may overflow the network and as a result the

application crashes. The Coordinator needs to know when the network is getting

buffer

type size id value
8 46 10011…. SETE

type size id value
0 33 NULL DISABLE

type size id value
8 46 10011…. SETE

type size id value
8 46 10011…. SETE

type size id value
8 46 10011…. SETE

nRequests mSize

5 102

Leonidas Deligiannidis

Page 129

near the overflow threshold so that it stops sending messages. That is why there is

a tunable parameter in the configuration. This parameter indicates the threshold

line of how many pending messages/requests are allowed on the network. The

Coordinator keeps building the messages but if it already sent too many messages,

crossing the threshold, it then disregards the messages instead of sending them to

the Workers. This, however, causes another problem. What happens if the message

that was disregarded included an Enable/Disable request? Enable/Disable requests

modify the constraint graph on the fly. If one of these messages does not get to the

Workers, the Workers will work on the wrong constraint graph. That is why before

the Coordinator disregards a message it checks its mini-messages, in the ‘buffer’

field, and if it includes Enable/Disable requests, it sends them to the Workers even

if it crosses the threshold. Enable/Disable requests are of high priority and cannot

be disregarded.

There is also another problem with the GetE requests. In the previous two

messaging mechanisms when the Coordinator sent a GetE request, the Worker got

it, ran the constraint engine and replied back to the same Coordinator on the same

communication channel where it received the request. In the non-blocking

mechanism however, all Workers see the GetE requests. They are smart enough to

check to see if they are responsible for each GetE request however. If they are not,

then they disregard the requests, otherwise they reply back to the Coordinator. But

what happens when there are several Coordinators in case of a Multi-user

environment. The Workers need to know which Coordinator initiated the request so

they can reply back to that Coordinator. To solve this problem, when the

Coordinator initiates a GetE request, it places its own ‘id’ in the unused ‘size’ field of

the mini-message. This way, Workers know who initiated the request and reply

back to the requestor. In an environment where we have two Coordinators, one with

Leonidas Deligiannidis

Page 130

id=0 and the other with id=1 and the Coordinator with id=1 requests the Variable

with id 71, a sample multi-message would look like the following figure:

GETE requests embedded into the multi-message

Configuration file

The configuration file is a text file that contains several colon-delimited fields. This

file is shared among all Coordinator(s) and Worker(s). It contains the following:

• The number of Workers in the system
• The number of Slave Coordinators when in Multi-user
• The IP address or DNS name of the Master Coordinator that eventually all

systems will connect to.
• The Port number of the Master Coordinator that is listening on
• The IDs of each Coordinator when in Multi-user mode (to individualize

Coordinators)
• The flavor of the message-passing algorithm.
• The threshold of how many pending messages can be on the network

The only information the Workers need is the IP address or the DNS name of the

Master coordinator and the Port number upon which the Master is listening. The

buffer

type size id value
8 46 10011…. SETE

type size id value
0 33 NULL DISABLE

type size id value
8 46 10011…. SETE

type size id value
1 71 NULL GETE

type size id value
8 46 10011…. SETE

nRequests mSize

5 94

This is the ID of the Coordinator
requesting Variable with id 71

Leonidas Deligiannidis

Page 131

rest is communicated to them via the Coordinator by the DLoVe protocol. For

simplicity however, all machines participating in the DLoVe environment are

provided with the same copy of the configuration file. A complete description of the

configuration file is provided in Appendix B.

Leonidas Deligiannidis

Page 132

Chapter 10: The ‘arms’ Application

Overview

DLoVe was designed to address a variety of issues inherent in the specification and

implementation of non-WIMP user interfaces. Its level of success can be measured

directly or indirectly by attempting to create applications that rely upon the

purposed features of the UIMS. The lessons learned from the development

exercises, combined with a concrete measure of how easy and correct the

application performed, may be interpreted as an indicator of the success or failure of

the UIMS itself.

Over twenty complete applications and a variety of code fragments have been

developed to test the correctness and robustness of DLoVe. From this set of

applications, several sample development efforts will be presented in detail in this

Leonidas Deligiannidis

Page 133

chapter. For every application I present, I will explain how it can also be

transformed to run in a multi-user environment.

The ‘arms’ program consists of two sets of arms. The first set of arms consists of

one double-jointed arm, an arm that has attached to it to movable sub-arms, called

Arm2. The second set of arms consists of twenty-four single-jointed arms, called

ArmSlaves. The ArmSlave arms follow the direction of where the Arm2 is pointing.

The user can grab any of the two sub-arms of the Arm2 and move them. Half of the

ArmSlave arms follow the first tip of the Arm2 and the other half the second tip.

Initially the ‘arms’ program was designed to run on a single machine for a single

user. With no modifications, the same program can run in a distributed mode

evaluating the Links in parallel. Lastly I will show how the arms program was

modified to run in a multi-user environment and how roles can be assigned to each

user participating in the virtual environment. A screen dump of the program in

execution is shown in the following figure:

Leonidas Deligiannidis

Page 134

Snapshot of the ‘arms’ program

The Arm2 arm is shown in the foreground of the figure. And all the ArmSlave arms

are shown in the background. Half of the ArmSlave arms are pointing to the first tip

of the Arm2 arm marked as “tip 1” in the screen dump above and the other half at

the second tip of the Arm2 arm, marked as “tip 2”.

Objects in ‘arms’ - single user.

In the ‘arms’ program the user can grab any of the two sub-arms of the double-

jointed arm and move them. The hand of the user is shown in the scene graph as a

small cube. The Polhemus sensor is sending six floating point numbers that

indicate the positionand angle of the hand/sensor in space. In every cycle in the

Virtual Hand

tip 2

tip 1

Leonidas Deligiannidis

Page 135

main program the polhemus[0] Variable gets set with the SetE operation with what

the Polhemus sensor sends. Then the Link ‘LinkNormal’ extracts the 3D coordinates

and the 3 angles and places the result in Variable ‘pos’ and ‘angle’ respectively as

shown in the figure below. The Link ’LinkMat’ uses these two Variables to construct

a matrix and place the result in Variable ‘mat’. This Variable is attached to a

Performer matrix so it can draw the Virtual hand. Performer has ‘Dynamic

Coordinate System’, DCS, matrices that can change at run time. In DLoVe these

matrices change by first attaching Variables to matrices and then modifying the

results in them.

The cursor object

The object above is called ‘cursor’ and when it gets created the user’s virtual hand is

drawn in the scene.

In the diagram above I am using the polhemus[0] Variable. This array of pointers to

polhemus variables is used internally to distinguish the multi-users’ hands in a

multi-user environment. If the system is running in single user mode, then the

Variable polhemus also can be used instead. In multi-user environments however,

we need to distinguish the different physical polhemus devices. The index in the

array indicates the application level identification number that is supplied by the

user in the configuration file. If we have in the configuration file the lines

polhemus[0]

LinkNormal

pos

angle

mat

LinkMat

Leonidas Deligiannidis

Page 136

ID: mondian.eecs.tufts.edu=4
ID: vermeer.eecs.tufts.edu=7

then the valid indices in the polhemus array are 4 and 7.

Both users need the following code:

cursors[4] = new PolhemusCursor(……, polhemus[4]);
cursors[7] = new PolhemusCursor(……, polhemus[7]);

Next I will describe how the arms were designed. All arms are subclasses of the

class Arm1. Arm1 arms are single-jointed arms that the user can grab and move.

The diagram consisting of the Links and Variables that describes Arm1 arms is

shown below:

The Arm1 object

The Variable ‘curPos’ is the position of the cursor or else, the position of the Virtual

hand. The ‘pivot1Var’ Variable indicates the position of the join of the movable sub-

arm and the base. The ‘dir1Var’ indicates the direction of the arm. The Link ‘linkc1’

when enabled computes the rotation matrix of the movable sub-arm of Arm1. This

is the matrix that gets installed in Performer’s scene graph so that when the

Variables change the rotation of the sub-arm, the change appears in the scene.

Variable ‘scr2var’ holds the length of the sub-arm. The Link ‘linktip1’ uses the

pivot1Var

dir1Var

curPos

linkc1 linktip1

rot1

scr2var

tip1

Leonidas Deligiannidis

Page 137

rotation of the sub-arm along with the length of it and calculates the position of the

sub-arm’s tip.

The parts of an Arm1 object

The Link ‘linkc1’ gets enabled only when the mouse button gets pressed while the

arm and the Virtual Hand intersect. This operation indicates that the user grabed

the arm and now can move it. When the user releases the mouse button the hand-

arm relationship terminates by disabling the Link ‘linkc1’.

Similarly the Arm2 is constructed. Arm2 is a subclass of Arm1. Arm2 is the same

as Arm1 in addition to a second sub-arm that is attached at the tip of the first sub-

arm as shown below.

The parts of the Arm2 object

The tip of the sub-arm
Sub-arm attached to Base

Length of sub-arm

Base of Arm

Second sub-arm attached at the
tip of the first sub-arm

First sub-arm attached at the Base

Tip of first sub-arm

Tip of second sub-arm

Leonidas Deligiannidis

Page 138

In the figure below the second sub-arm (shown below) is similar to the first one

shown previously. The second sub-arm needs to also know about the cursor

position, Variable ‘curPos’, and it also needs to know the length of the second sub-

arm since it can be of different length than the first one.

Links and Variables of the Arm2 object

The ArmSlave arm is also a subclass of Arm1. ArmSlave is the same as Arm1 but

when created instead of passing the cursor pointer, the tip of another arm is passed.

These arms cannot be grabbed. Instead they follow the direction of other arms

depending on what object we tell them to follow. The object does not have to be

another arm. ArmSlave arms can point to any object’s direction, as long as the

direction to follow is a Variable of type Variable<Pos6>.

tip2

pivot1Var

curPos
linkc2

rot2

scr3var rot1

scr2var

linktip2

Leonidas Deligiannidis

Page 139

 ‘arms’ in distributed mode

If we denote an ArmSlave arm with the following symbol where the output is

at the right of the symbol, then in the ‘arms’ program the wiring looks like the

following figure:

ArmSlave objects wired to an Arm2 object

Half of the ArmSlave arms are pointing at the tip of the first sub-arm of the Arm2

and the other half at the second. A diagram showing the cursor, the two tips of the

Arm2 and all the ArmSlave arms is shown below.

Leonidas Deligiannidis

Page 140

Half ArmSlave objects attached to first tip of an Arm2 object and the other half to the
second tip

Such an application can run in distributed mode where the position of the ArmSlave

arms is calculated in parallel. If we have 24 Workers, then each Worker will

calculate the position of one of the twenty-four ArmSlave arms. For simplicity only

the first four Workers are shown below along with the ArmSlave arms that are

responsible to maintain.

cursor

tip1

tip2

Leonidas Deligiannidis

Page 141

ArmSlave objects evaluated in parallel

When fewer than 24 Workers are available, Workers will have to maintain multiple

ArmSlave arms.

The original program that was designed to run in non-distributed mode can now run

in distributed mode where the calculations to maintain the correct direction of the

ArmSlave arms is done in parallel. There is no code to modify. The

user/programmer only has to recompile and link against the distributed set of

libraries of DLoVe.

cursor

tip1

tip2

cursor

tip1

tip2

cursor

tip1

tip2

cursor

tip1

tip2

(a) (b)

(c) (d)

Leonidas Deligiannidis

Page 142

‘arms’ for a multi-user environment

To run the same ‘arms’ program in multi-user multiple users are needed. Multiple

users means multiple hands or multiple cursor objects. The number of Slave

Coordinators has to be specified in the configuration file. Then the Slaves can start

up since the executable file for the Master and the Slaves is the same. In a scenario

where two Coordinators exist, where one is the Master and the other is the Slave,

both Coordinators control the single Virtual hand. This is because all systems

participating in the multi-user environment, Workers and Coordinators, know about

a single cursor object. Both Coordinators try to modify the position of the cursor’s

position since they are both attached to a Polhemus sensor. The Worker(s) see a

SetE operation for the polhemus Variable. Clearly we need two cursor objects. One

for the Master and one for the Slave Coordinator since both users need a Virtual

hand in the Virtual World.

We also need to add some additional Links and Variables and wire them such that

both cursors/users can grab the sub-arms of Arm2. A diagram with the additional

cursor and the additional wiring is shown below:

Leonidas Deligiannidis

Page 143

Two-user interface in the ‘arms’ program

First the new cursor, cursor B above, must be created. Then all the Links that are

using cursor A as input must be duplicated so cursor B can be attached to these

new Links as shown below highlighted:

Only one user controlling an Arm2 object

cursor A tip1

tip2 cursor B

pivot1Var

dir1Var

linkc1 linktip1

rot1

scr2var

tip1

curPos A

linkc1_b

curPos B

Leonidas Deligiannidis

Page 144

Link ‘linkc1’ uses cursor A for input and so it must be duplicated. The duplicated

Link is ‘linkc1_b’. When creating ‘linkc1_b’ the cursor B has to be passed instead of

cursor A. The rest stays the same. The important point here is to note that the

output Variable of the duplicated Link is the same. This indicates that both cursor

can modify the position of the sub-arms. The same procedure needs to be done for

any other object in a program that gets transformed from a single-user to multi-user

program.

The second part of the modification is the state machine. The sub-arms can be

moved only when the user intersects his/her hand with a sub-arm and presses the

mouse button, which in turn enables the ‘linkc1’/’linkc1_b’ Link. The discrete time

machine sends events for every mouse event it catches. When the mouse button

gets pressed, the discrete time machine will send an event indicating that the mouse

button was pressed to all objects in the system. And thus, both Links ‘linkc1’ and

‘linkc1_b’ will get the event and they will both get enabled, eventhough only one user

pressed the mouse button. For this reason the discrete time machine also re-writes

the label of the event appending the application identification number at the end of

each event, which is taken from the configuration file. The programmer needs to

modify the code where the event gets caught in the Links. Each Coordinator needs

to compare its application identification number with the received event to

determine whether it needs to enable its Link or not. They both need to compare

the events against the application id because they both run the same executable

and the only way to figure out who is who, is by checking their ids. In this

environment having one Coordinator with id equal to 3 and the other equal to 4 the

state diagram looks like the following figure:

Leonidas Deligiannidis

Page 145

State transition diagram of the Event Handle of an Arm1 object and the code that is
executed based on the state transition

The code that gets executed is shown the boxes. The Coordinators need to test if the

event gets generated locally so they can perform the correct operation on the correct

Link. The Workers do not execute the code in the boxes. The Coordinators only

execute it. The Coordinators generate the events and then based on the event they

perform an operation, in this case Enable and Disable operations. Then these

Enable/Disable operations are sent to the Workers over the network as requests to

modify the graph accordingly.

With the above state diagram, both users can grab the sub-arm at the same time.

And both ‘linkc1’ and ‘linkc1_b’ Links can be enabled at the same time. Because

both Links store their output in the same Variable ‘rot1’, half of the time one user

Hand – object, intersect Right mouse button Pressed

Right mouse button Released

Start

Intersect

Follow Hand

if event(R_MouseButtonDown_3) && (myID == 3) then
 linkc1ÅEnable()
else if event(R_MouseButtonDown_4) && (myID == 4) then
 linkc1_bÅEnable()
fi

Hand – object, do not intersect

if event(R_MouseButtonUp_3) && (myID == 3) then
 linkc1ÅDisable()
else if event(R_MouseButtonUp_4) && (myID == 4) then
 linkc1_bÅDisable()
fi

Leonidas Deligiannidis

Page 146

controls the arm and half the other. To work around such problems more

conditional code needs to be inserted between the ‘if’ statements above to ensure

that the first user who grabs the sub-arm controls it until the user releases the

mouse button.

The ‘switch’ mechanism’

Transforming a program from single-user to multi-user involves modification of

existing code. Adding functionality however involves adding new code. In multi-

user environments it makes sense to give different roles to different users. For

example, in a virtual operating room there is one instructor that is teaching new

graduates how an operation is performed, and the graduate students that are

watching and learning. Or in our example of the double-jointed arm and the

ArmSlave arms, one user is allowed to grab only the first sub-arm and the other the

second sub-arm. This can be specified with the diagram above. However, how can

the roles be switched at run time. Let us say that user A is allowed to grab the first

sub-arm and user B the second. Then by pressing the character ‘t’ the roles get

swapped. Or by pressing the character ‘T’ both users are allowed to grab both sub-

arms. The difficulty of the problem is that both users can type in the character ‘t’ or

‘T’. How would one user know that the other user typed the character ‘t’? If we

have a single Variable ‘V’ that both Coordinators can query we might drop the

message that includes a GetE operation on Variable ‘V’. Multi-messaging

mechanism without blocking for replies tries not to overflow the network by

dropping messages. Querying Variable ‘V’ in every loop in the main program is not a

solution because events are happening in discrete not in continuous time.

Leonidas Deligiannidis

Page 147

If we have two users, user A and user B, where user A initially is allowed to grab

arm A and user B arm B and then user A presses the ‘t’, both users might end up

grabbing arm B at the same time. When user B finally sees the change, he/she will

switch roles but it may be too late and user A will be confused because of the wrong

behavior of the application. In the following figure the action of the users is shown

and also the value of the Variable ‘V’ as seen by each Coordinator and assuming just

one Worker. When the Variable ‘V’ is set to 0 then user A can grab the first sub-arm

and the user B the second. When the Variable ‘V’ is set to 1 the roles are reversed.

Inconsistency issue in a multi-user VE

Initially (a) user A is allowed to grab arm A and user B arm B. All see ‘V’ as set to 0.

Then user A types in the character ‘t’ (b) to switch roles with user B, and sets ‘V’

equal to 1. User A sends a message to the Worker and both Coordinator A and the

Worker see ‘V’ as equal to 1. However, Coordinator B does not see the change. This

is because Coordinator B dropped the message that included a GetE request on

Variable ‘V’. To guaranty that this SetE operation arrives at the Worker we also

User A User B Worker

Grab A 0 Grab B 0 0 (a)

Press ‘t’ 1 Grab B 0 1 (b)

Grab B 1 Grab B 0 1 (c)

Grab B 1 Grab B 0 1 (d)

Grab B 1 Grab B 0 1 (e)

Grab B 1 Grab A 1 1 (f)

Leonidas Deligiannidis

Page 148

have to send the message as a high priority message so it does not get dropped.

This can be implemented by Enabling a fake Link; Enable and Disable operations

are of high priority. In (c) and (d) both users can grab arm B. The same happens in

(e) as well, but now the Coordinator actually sends the message to the Worker with a

GetE request on Variable ‘V’. Finally in (f) the Worker replies back to Coordinator B

and all machines see the same Value on Variable ‘V’. It is more confusing when the

Coordinator B still thinks that Variable ‘V’ is set to 0 and types in ‘t’. This mess is

due to the fact that we are using the continuous time subsystem to implement

something that is discrete. The Coordinators are querying a continuous Variable

that it changes based on discrete events. That is why we need a message that can

travel from a Coordinator to all other Coordinators. But since there is no direct

connection between the Coordinators, this can be done via a Worker. Using the

“Backward Notification of Events”, a Coordinator can request a Worker to notify all

other Coordinators. This way the Coordinators do not have to query in every loop

that special Variable ‘V’. When one Coordinator wants to set such a special Variable

it uses the SetE_Broadcast() operation which is also of high priority message. The

Worker sets the value on the requested Variable and then it sends a message to all

other Coordinators to notify them about the change. This message looks like a GetE

reply from the Worker to the Coordinators. The Coordinators do not care if they

requested that Variable or not. This way a change on one Coordinator is visible by

all other Coordinators in the multi-user environment.

Leonidas Deligiannidis

Page 149

Chapter 11: An Eye Tracking

Application

Overview

DLoVe is designed to adapt to the evolving needs of non-WIMP user interfaces.

DLoVe supports the mechanisms for new input and output devices without

requiring modifications to the UIDL. In this chapter I present an application that

reads input from an X window, a Polhemus 3D tracker for the location and the

orientation of the head and hands, and from an eye-tracking device.

In this application, 2Zoom, there is a virtual world with virtual objects away from

the reach of the user. When the user looks at a virtual object for over 5 seconds,

the object becomes selected and highlighted. The user can operate on the selected

object using his/her hands. To deselect an object, the user has to look away from

the selected object. All the virtual objects are semi-transparent. The more the user

Leonidas Deligiannidis

Page 150

looks at an object, the more solid it becomes up to the point when the object

becomes selected. The left hand of the user simulates the origin of the operation,

and the right hand operates on the object. The right hand, depending on the

location of the left hand, can move and rotate the remote virtual object in space.

When the right hand comes close (within an inch) with the left hand, the object

stops moving.

Hand Movement for Object Manipulation

The user using both of his/her hands can move and rotate selected objects from a

distance. When the object is near his/her reach, he/she can reach out and grab the

object and manipulate it. In contrast, when an object is far away the user has to

bring the object near him/her to examine it or build more complex objects out of

more primitive objects. The left hand serves as a base or origin that the right hand

uses as reference. The right hand can move around the left hand to indicate in

which direction the selected object should move. There are three perimeters around

the left hand, which represent the speed of the remote object. For example, when

the right hand moves on top of the left hand, the remote object keeps moving

upward. When the right hand moves about 15 inches on top of the left hand, the

remote virtual object still keeps moving upward but with a higher speed. To slow

down the object the user has to move his right hand closer to the left. When the

right hand comes to an inch away from the left, the object stops moving. The

following figure illustrates the movement of the hands to manipulate a remote

virtual object:

Leonidas Deligiannidis

Page 151

Hand movement for eye-selected object manipulation

Designing the Application

Each object can be selected by looking at it for over 5 seconds and then

manipulated, or if it is close enough to the user, it can be grabbed and then

manipulated. The following figure shows the Links and Variables that describe each

object this application:

3rd speed

2nd speed

1st speed

Left Hand

Right Hand

Z plane

3D sensor

X-Y plane

Leonidas Deligiannidis

Page 152

Two hand positions controlling the position of an eye-selected object

Each object is encapsulated with in a ‘TargetSelect’ class. Each object, if it is

close to the user, can be grabbed with one hand in which case Link ‘Identity’

becomes enabled and Link ‘Zoom’ becomes disabled. In this scenario, the object

follows the position of ‘cursor1’, which is the user’s right hand. If the object is

selected, (e.g. by looking at it for over 5 seconds) it can be manipulated using both

hands.

There is also one Link in the application that controls the brightness and the

selection of the objects. The ‘Select’ Link uses the ‘eyePosition’ and ‘eyeTag’

Variables that indicate in which direction the user is looking. The ‘Select’ Link

keeps a histogram of the ‘brightness’ value of each object. If the user looks at an

object for over 5 seconds, the Link initiates a token to that object’s event handler

that indicates that a specific object is selected.

cursor1ÅGetMat()

cursor2ÅGetMat()

Identity

Zoom

position

Leonidas Deligiannidis

Page 153

Brightness and eye-selection of objects

When an object becomes selected, the Link initiates an EYESELECT token to the

selected object’s event handler. And when the object transitions from being selected

to not being selected, an EYEDESELECT token is initiated.

The event handler of each object consists of four states. Initially all objects are in

the ‘start’ state by default. In the following figure, the tokens that cause the state

transition are shown on top of the arrows and the lines with the ♦ indicate the

action that takes place during the transition; which is enabling or disabling Links.

The ‘Z’ pointer refers to the ‘Zoom’ Link and the ‘I’ refers to the ‘Identity’ Link.

Some state transitions involve a test condition to figure out whether or not the

user’s hand intersects with an object (e.g. from ‘start’ to ‘drag’, and from

‘selected’ to ‘drag_select’).

Sends the following tokens
• EYESELECT
• EYEDESELECT

when appropriate

eyePosition

eyeTag

Select

brightness of obj (1)

brightness of obj (2)

brightness of obj (3)

brightness of obj (N)

N number of
eye-selectable objects

Leonidas Deligiannidis

Page 154

State transition diagram of the 2Zoom application

For example, if the user looks at an object for over 5 seconds, the ‘Select’ initiates

an EYESELECT token, the object’s event handler enables Link ‘Zoom’ and then it

transitions to the ‘selected’ state; where the object can now be manipulated using

both hands. If the user moves the object near his/her reach and grabs it (by

intersecting his/her hand with the object and pressing the middle mouse button),

DLoVe initiates a MIDDLEDN token. The event handler sees the token, checks to see

if the user actually touches the object, and if it does it disables Link ‘Zoom’, enables

‘Identity’, and transitions to state ‘drag_select’. At this point the object follows

the user’s hand position and orientation.

A snapshot of the application at run time is shown below:

♦ ZÅDisable()

drag_select

selected

start

drag

EYESELECT

EYEDESELECT

MIDDLEUP

EYESELECT

MIDDLEDN

MIDDLEUP

EYEDESELECT

MIDDLEDN && cursor1->GetHit()

&& cursor1->GetHit()

♦ ZÅEnable()

♦ IÅEnable()

♦ IÅDisable()

♦ ZÅDisable()

♦ ZÅEnable()

♦ IÅDisable()

♦ IÅEnable()

♦ IÅEnable()

♦ IÅEnable()

Leonidas Deligiannidis

Page 155

Snapshot of the 2Zoom application

The two hands of the user are visible as well as several objects that can be selected

and manipulated.

Left hand Right hand

Leonidas Deligiannidis

Page 156

Chapter 12: The DLoVe Virtual Park

Introduction

The programming examples given in Chapters 10 and 11 were each designed to test

a limited subset of the DLoVe system’s purported features and capabilities. These

small applications echo the themes that large-scale non-WIMP interfaces encounter.

However, these examples did not require facing challenges encountered in full scale

Virtual Environment application development. Developing a large application using

DLoVe’s paradigm can claim its programming suitability for Virtual Environments.

The application developed in this chapter was done on a Silicon Graphics

workstation, using Performer as the graphics-rendering library.

Three variations on the basic design were implemented. The first is a desktop

application that allows the user to explore and interact with the world; using

keyboard and mouse controls. The second is a head mounted display version that

employed Polhemus trackers to sense the user’s position, orientation, perspective,

Leonidas Deligiannidis

Page 157

and activities within the virtual environment. The third is a multi-user

implementation where one user uses the keyboard and mouse, and the other the

Polhemus and an HMD to interact.

The Actors

The application consists mainly of a Virtual Park with trees, computer simulated

entities called Humanoids, and several plane-like objects that are flying over the

park. The main actors in the park are the Humanoids. The Humanoids are entities

that walk and interact with each other and with a virtual ball, or just wonder in the

park. In their spare time they play with a virtual ball. They also have a constraint

that makes them always stay in the playground and not go on the green. Both, the

users, and the Humanoids, can hit the ball and change its velocity and trajectory. A

Humanoid is shown below:

A Humanoid and its parts

Legs

Hands

Eyes

Upper Lip

Lower Lip

Nose

Leonidas Deligiannidis

Page 158

The Humanoids have eyes and ears, and so they can hear and see the ball and each

other. For example, if they are walking straight and the ball drops just behind

them, they rotate so that they face the ball and eventually hit it. Their heads, when

the ball is close enough, follow the trajectory of the ball. The Humanoids do not

always follow the ball. If they are very close to the ball, they rotate their body to

walk towards the ball. If the ball passes by them, then they only look at it and they

keep walking the same direction they were. But even in this case, they cannot

rotate their heads over 45 degrees. When they can reach the ball, they lift their

hands and hit the ball at which point the ball starts traveling upward, up to a point

where gravity will bring it back down to the park. The following figure shows the

actions taken by a Humanoid depending on where the ball is:

Actions of a Humanoid based on the Virtual ball’s position

The following snapshot shows a Humanoid looking at the traveling ball in the virtual

park:

Turn head to look at the ball.
Turn body and walk towards the ball.

Hit the ball.

Turn head to look at the ball, but
keep walking straight.

Humanoid Do not look at the ball,
keep walking straight.

Leonidas Deligiannidis

Page 159

A snapshot of a Humanoid that its head follows the trajectory of the ball

The following snapshot shows a Humanoid at the time when he hits the ball. The

Humanoid has just lifted his hand to change the velocity and trajectory of the ball.

A Humanoid at the point of hitting the ball

Leonidas Deligiannidis

Page 160

The Humanoids can be picked up and moved by the user(s). They do not like the

experience, however, and they go into a panicking mode where they move their

heads left and right, their hands and legs back and forth, and their lower lip up and

down.

There are also other objects in the park such as sliders and arms. The user(s) can

manipulate the sliders to modify the speed of the flying objects, and the arms to

modify the position of the lower lip of the Humanoids. All Humanoids know where

all other Humanoids are in the park and they try to avoid them by not colliding into

them. The arms objects were explained in chapter 10 and the sliders with the

rotating objects will be explained below.

When this application is executed in a two-user environment, each user has a

different roll, and they can also see each other. For example, one of the users is

allowed to only grab the first arm of the 2-handle arm, and the other user the

second. However, the users can reverse the roles by pressing the character ‘s’ on

the keyboard. When the ‘b’ character is pressed, then both users can grab both of

the arms of the two-handle arm. Both users can type the characters ‘s’ and ‘b’ to

reverse their roles.

Sliders and Orbiting objects

The sliders are simple objects that have a handle bar that can be moved up and

down to change a value of a Variable. The orbiting objects depend on time and

Leonidas Deligiannidis

Page 161

speed. By modifying the value of the slider we can control the speed of the orbiting

objects. The following diagram shows the Links and Variables that make up an

orbiting object:

An orbiting object

An orbiting object uses the output Variable ‘rot’, which is a performer matrix, to

draw itself based on time and speed. The user can modify the speed of an orbiting

object using the slider. The Links and Variables diagram that make up the slider

object is shown below:

The Slider object

The ‘lowVar’ and ‘highVar’ Variables indicate the minimum and maximum values of

the slider. The Variable ‘valueArg’ indicates the value of the Slider, and the

‘handle’ Variable indicates the position of the handle of the slider. The user’s hand

position is the Variable ‘cursorÅGetPos()’. When the user grabs the handle of the

time

speed

rot
linkrot

scsVar

highVar

handle
ztoval valtoz

lowVar

cursorÅGetPos()

valueArg

Leonidas Deligiannidis

Page 162

slider, Link ‘ztoval’ becomes enabled and the user can modify the position of the

handle and as a result the value of the slider (Variable ‘valueArg’). A slider object

that controls the speed of an orbiting object is shown below:

Snapshot of a Slider controlling an orbiting object

Variable ‘valueArg’ is used as input to the orbiting object to modify its speed. The

following diagram shows the wiring of a slider and an orbiting object where the

slider can modify the speed of an orbiting object:

Handle of slider

A slider object

An orbiting airplane whose speed is
determined by the value of the slider.

Leonidas Deligiannidis

Page 163

Slider modifies speed of an orbiting object

As with the ‘arms’ program, when the slider object is used in a two-user

environment, Link ‘ztoval’ needs to be duplicated since it is using a Variable that is

attached to the user’s hand (in this case cursorÅGetPos()). For example, in a

two-user environment, the above diagram looks like the following figure:

time

rot
linkrot

scsVar

highVar

handle
ztoval valtoz

lowVar

cursorÅGetPos()

valueArg

Leonidas Deligiannidis

Page 164

Slider wiring in a two-user environment

In the figure above, each user’s hand is attached to the Variables

‘cursorÅGetPos()’ and ‘cursor2ÅGetPos()’ respectively. The first user’s hand is

attached to Link ‘ztoval’ and the second user’s hand to ‘ztoval2’. Each user can

only enable the corresponding Link, and as a result, each user can control the

corresponding Link independently from each other.

Collision Prevention

Each Humanoid has a unique id and based on this id and the force, explained

below, the Humanoids prevent collision with each other. Each Humanoid knows the

position of all the other Humanoids. All Humanoids act as magnets with the same

time

rot
linkrot

scsVar

highVar

handle
valtoz

lowVar

cursorÅGetPos()

valueArg

ztoval

ztoval2

cursor2ÅGetPos()

Becomes enabled when
user2 controls the slider.

Becomes enabled when
user1 controls the slider.

Leonidas Deligiannidis

Page 165

polarity that makes them push each other away based on a force that is calculated

as follows:

1 CalculateForce()

2 force = 0;

3 MyPos = thisHumanoidÅGetPosition();

4

5 for(i = 0; i < TotalHumanoids; i++) {

6 for(k = 0; k < TotalHumanoids; k++) {

7 foreach Humanoid man do

8 other = manÅGetPosition();

9 if(InRadius(MyPos, other, 25)) {

10 if (k > 2*i || i > 3*j) {

11 force += (i + k);

Not all Humanoids affect each other. Only the ones that are near (within a radius of

25 –line 9–) to the Humanoid in question are in consideretion. Out of these

Humanoids in consideration, only the ones that actually satisfy the condition in line

10 above affect the Humanoid in question.

When a Humanoid with a low id is going to collide with a Humanoid with higher id,

it gets pushed back based on the force calculated as shown above, and then it stops

moving for a few seconds. The other Humanoid, the humanoid with a higher id, also

gets pushed back based on the force but it first changes its rotation and then keeps

moving.

Implementation Issues

Implementing the collision prevention algorithm for a single/non-distributed

environment was straightforward. However, several issues were encountered when

an attempt was made to execute the same program in the distributed mode. In the

Leonidas Deligiannidis

Page 166

non-distributed mode, each Humanoid before updating its position, it is doing a

collision check to prevent collision with the other Humanoids. However, in a

distributed environment where each Humanoid is simulated by a different Worker,

the current design does not work. This is because each Worker only knows about

the position of the Humanoid it is simulating and no one else’s. To prevent

collisions, a Worker needs to simulate all Humanoids. However, there is an

application design strategy that can be implemented, where a Worker knows the

position of all other Humanoids that are being simulated by other Workers, even

though each Humanoid is simulating a subset of the total number of Humanoids.

This can be implemented using ‘synthetic Variables’.

Synthetic Variables are regular Variables in DLoVe that they get updated by the

application and not by DLoVe’s constraint engine. The Coordinator collects all the

Humanoid positions from all the Workers. Then it updates all the Workers with all

the Humanoid positions so they can run their algorithm for collision prevention. A

detailed explanation of this implementation is given below.

Designing the Virtual Park

The Humanoids are the main actors in the Virtual Park. Their behavior is primarily

determined by the virtual ball and by the position of most of the other Humanoids.

As explained previously, the Humanoids try to find where the ball is so they can hit

it. However, if they collide with other Humanoids they get pushed back and maybe

away from the ball.

Leonidas Deligiannidis

Page 167

The Virtual Ball

The ball is an object that can be hit by the Humanoids and travel over the park.

Gravitational forces bring it down to the park. The user(s) can also grab the ball

and toss it in the park. The Links and Variables with which the ball is made up, is

shown below:

The virtual ball

The Links ‘Identity’ and ‘lsavelast’ become enabled when the user grabs and

moves the ball. Otherwise, Link ‘toss’ uses the last position of itself, the time, and

the velocity, to determine its position at a given time.

The Humanoids

The Humanoids are computer-generated entities that walk and wander around the

virtual park. They can be picked up by the user and manipulated. Their main

timer

cursor->GetPos()

initPos

initTime

velocity

Identity

toss

lsavelast

posn

last1Pos

last2Pos

last1Time

last2Time

Leonidas Deligiannidis

Page 168

interest is to find the virtual ball and hit it. The following diagram shows the Links

and Variables and their connections that make up a Humanoid object.

A Humanoid object

Each Humanoid knows where the ball is located, so it can take the appropriate

action depending on its position. Link ‘Simulate’ also runs a collision prevention

algorithm that prevents Humanoids colliding with each other. When the Virtual

Park application is executed in a single non-distributed environment, each

Humanoid can figure out where all other Humanoids are by executing the following

code:

foreach Humanoid i; do
i->GetE();

done

However, in a distributed environment collision prevention will not work with the

current design because the Workers simulating one Humanoid cannot determine the

position of the other Humanoids that are being simulated by the other Workers.

They would have to simulate all Humanoids, and so, there would not be a need for

timer

cursor->GetPos()

prevR

prevP

prevS

Identity

Simulate

prevW

posn

Rotation

Speed

walkState

ball->GetPos()

Leonidas Deligiannidis

Page 169

multiple Workers. Synthetic Variables will play a key design strategy in solving this

problem, and the implementation is shown later.

Partition Issues

With the current design of the Humanoids, DLoVe would partition the constraint

graph very inefficiently. The partition algorithm, as explained in chapter 7, assigns

Variables to Workers based upon the number of Links that a Variable depends. In

the following figure where 3 Workers are available, the partition algorithm may

assign ‘posn’ and ‘walkState’ to Worker 1, ‘Rotation’ to Worker 2, and ‘Speed’ to

Worker 3.

Issues in partitioning a Humanoid’s graph

This above assignment is done as shown above because each of the four output

Variables depends upon the same number of Links. Even though the algorithm

correctly assigns the output Variables to different Workers, it makes sense to have a

single Worker updating all four Variables of the same Humanoid; all four Variables

timer

cursor->GetPos()

prevR

prevP

prevS

Identity

Simulate

prevW

posn

Rotation

Speed

walkState

ball->GetPos()

Worker 1

Worker 1

Worker 3

Worker 2

Leonidas Deligiannidis

Page 170

become updated by a single evaluation of the Link ‘Simulate’ or ‘Identity’. In

addition, Workers 2 and 3 would also spend time evaluating the Links involved to

bring these Variables up-to-date, ending up with redundant evaluations. A single

evaluation of the Link ‘Simulate’ brings all four output Variables up to date.

To fix this inefficiency, I attached all four output Variables to an auxiliary Link ‘aux’

that is using an auxiliary Variable ‘auxVar’ as output, as shown below

Correcting the partition inefficiency

The Link ‘aux’ and the Variable ‘auxVar’ are never used by the application at run

time. They are only there to give a hint to the partition algorithm to assign all four

output Variables of each Humanoid to a single Worker.

timer

cursor->GetPos()

prevR

prevP

prevS

Identity

Simulate

prevW

posn

Rotation

Speed

walkState

aux

auxVar

ball->GetPos()

Leonidas Deligiannidis

Page 171

Collision Prevention and ball simulation issues in a

Distributed Environment

In a non-distributed environment each Humanoid can determine the position of all

other Humanoids very easily as explained previously. In a distributed environment

however, where each Humanoid is simulated by a different Worker, there is no way

for a Humanoid to know the position of the other Humanoids. This is because, by

design, there is no direct communication between the Workers. The following figure

illustrates how three Humanoids are attached to the ball and how they are

partitioned so that, they are simulated by a different Worker.

Three Humanoids assigned to be simulated by three different Workers

In addition to this problem, in the figure above each Humanoid also simulates the

position of the ball. Since each Humanoid only knows about its position, it will not

Worker 1

Worker 2

Worker 3

Leonidas Deligiannidis

Page 172

know when some other Humanoid hit the ball. As a result, each Humanoid will

think that the ball is at a different position.

Synthetic Variable for ball position

To fix the problem that each Humanoid simulates its own version of the ball, the

Humanoids are not wired to the ball (so they do not update its position) but still

have to know the position of the ball. To solve this problem I use a synthetic

Variable. Each Worker has a synthetic Variable as input, which indicates the

position of the ball. The Coordinator, which simulates the trajectory of the ball,

informs all Workers about the position of the ball. This way all Humanoids have a

consistent value of the position of the ball and they can act accordingly. The

Coordinator, which simulates the ball, and also knows the position of each

Humanoid, changes the trajectory of the ball and eventually informs all Workers.

The partition algorithm cuts the graph horizontally, where with the use of synthetic

Variables the designer cuts the graph vertically; something that is left for future

work to be automated. The following figure shows the use of synthetic Variables for

the position of the ball:

Leonidas Deligiannidis

Page 173

Synthetic Variables for the position of the ball

In the figure above, each Humanoid is simulated by a different Worker. The

Coordinator simulates the position of the ball. The Humanoids are not directly

attached to the position of the ball. However, they know the position of the ball via

a synthetic Variable. The Coordinator that updates the position of the ball, informs

all the Workers about the position of the ball, which is stored in a synthetic variable.

The Coordinator executes the following code in every loop:

 forever do;
 bpos = ballÅGetE();
 for every Humanoid i; do
 iÅGetBallSyntheticVar()->SetE(bpos);
 done;
 done;

Worker 2

Worker 3

Worker 1

Evaluation on the
Coordinator

Vertical cut of
the graph

Synthetic Variable

Leonidas Deligiannidis

Page 174

This way all Humanoids know the consistent position of the ball and they act

accordingly.

This is a solution to this problem that the designer needs to make. DLoVe partitions

the graph based on a horizontal cut where each Variable is assigned to a Worker

based upon the number of Links it depends. The use of synthetic Variables requires

the designer to cut the graph vertically, at the design level, and insert code in the

application that updates all the synthetic Variables in the system.

Synthetic Variables for Collision Prevention

The Humanoids needs to know about all other Humanoids’ position to prevent

collision with each other. But, all Humanoids are simulated on different Workers.

To solve this problem I used synthetic Variables, as I did for the ball’s position. The

Coordinator, which queries all Workers, knows all the information about all the

Humanoids so it can draw them on the screen. The Coordinator queries every single

Worker about the position of the Humanoids and then informs all the Workers about

all the other Humanoids. The following diagram shows the use of synthetic

Variables for every Humanoid to know the position of every other Humanoid:

Leonidas Deligiannidis

Page 175

Use of Synthetic Variable for Collision Detection

The Coordinator executes the following code to update the ball’s position and also

the position of every Humanoid:

Vertical cut of
the graph

Worker 1

Evaluation on the
Coordinator

Ball Synthetic Variable

Humanoid Synthetic Variable

Worker 3

Worker 2

Vertical cut of
the graph

Leonidas Deligiannidis

Page 176

1 foreach iteration;
2 bpos = ballÅGetE(); // get the ball’s position
3
4 //
5 // get position of each Humanoid
6 //
7 for every Humanoid i; do
8 i ÅGetPos()->GetE(); //
9 done;
10
11 //
12 // update synthetic Variable of balls position
13 // and Humanoid’s position
14 //
15 for every Humanoid i; do
16 i ÅGetBallSyntheticVar()->SetE(bpos);
17
18 //
19 // inform every Humanoid about every other Humanoid
20 //
21 for every Humanoid h; do
22 if(i != h) then // do not inform itself about its position
23 h ÅGetPos() ÅSetE(i ÅGetPos() ÅGetI());
24 endif
25 done;
26 done;
27 done;

Coordinator updates all Synthetic Variables on Workers

In every iteration of the main loop, the Coordinator gets the up-to-date position of

the ball (line 2). Then it queries all Workers for every Humanoid’s position (lines 7 –

9). In the loop (lines 15- 26) the Coordinator updates all the synthetic Variables.

First it updates the position of the ball (line 16) and then the position of every

Humanoid (lines 21 – 24). The ‘if’ statement, (line 22), is to avoid updating the

position of the current Humanoid.

When multiple users participate in the virtual park, and thus multiple Coordinators,

only the Master Coordinator updates the synthetic Variables. In this case the code

in lines 15 – 26 is executed by the Master Coordinator only. This avoids the

problem of updating the same Variables from multiple machines that could result in

inconsistent values of the synthetic Variables.

Leonidas Deligiannidis

Page 177

A snapshot of the Virtual Park simulating 8 Humanoids (only seven are shown) in a

non-distributed environment is shown below:

The DLoVe Virtual Park

A snapshot of the same application in a two-user environment is shown below. One

user is using an HMD and the Polhemus to interact, and the second user is using

the mouse to manipulate the camera (position and orientation of the head) and also

the virtual hand.

Leonidas Deligiannidis

Page 178

Master Coordinator using an HMD and the Polhemus to interact

Three Humanoids are visible here and the trees in the background. The Humanoid

on the right has just hit the ball and is looking at it as it is traveling over the trees.

While this user is looking into the virtual park from this angle, the second user is

trying to manipulate the controls. The following snapshot was taken at the same

time I took the above one.

Leonidas Deligiannidis

Page 179

Slave Coordinator using the mouse to interact

In the above snapshot all the controls are visible at the front. The three sliders on

the right that both users can manipulate to change the speed of the three orbiting

objects are visible. In this snapshot only one of the orbiting objects is visible (the

airplane top left). There are also three ArmSlave arms similar to the arms in the

‘arms’ program that follow the direction of the Arm2 arm. The Arm2 arm is the same

as described in the ‘arms’ program in chapter 10 where one user can grab the first

sub-arm and the other the second. And by pressing the ‘s’ character the role is

reversed and the first user can grab the second sub-arm and the second user the

first.

This user’s virtual hand

The other user’s virtual hand

Leonidas Deligiannidis

Page 180

Summary

The Virtual Park is a complete virtual world with a non-trivial level of complexity.

The code examples presented here are the entire specification of the application for

the desktop, the head-mounted display and the other variations on the application.

Also, the modules needed to interface to external devices such as the Polhemus

sensors and Performer rendering engine were presented.

It took me about 100 hours to develop the non-distributed version of the application

where 30 hours were only for the 3 dimensional objects using external applications

such as Showcase and i3dm. It then took me another 60 hours to develop the

distributed and the multi-user versions of the application.

The goal of this programming exercise was to demonstrate that the DLoVe’s claim,

explored and supported by small test cases in chapters 10 and 11 continued to be

valid when faced with a large scale, non-trivial, VR applications. According to the

results of this exercise I think that this goal has been achieved.

Leonidas Deligiannidis

Page 181

Chapter 13: Performance Analysis

Overview

Two factors greatly influence the goodness of a graph partition. A given graph

should be partitioned into concurrent modules to obtain the shortest possible

program execution time. Secondly, one must choose the best size for each

concurrent module that will result in fastest execution, while using a minimal

number of processors. The grain-packing problem is related to optimal scheduling

where an “optimal” scheduler executes in minimum time, well known to be NP

complete in general.

DLoVe’s partition algorithm may be compared against load balancing and

scheduling, but in reality it is someplace in between. Load Balancing, and more

precisely Dynamic Load Balancing, tries to keep all processors equally busy, but

does not try to reduce overall execution time. Only when the calculations are more

expensive than the communication, the applications may run faster [Hesham 94].

Leonidas Deligiannidis

Page 182

Dynamic Load Balancing handles process migration and reacts to conditions that

vary in the network. DLoVe’s partition algorithm determines at compile time how to

partition the constraint graph. DLoVe does not modify the partition of a given graph

dynamically to efficiently implement Dynamic Load Balancing. It tries to partition

the graph assuming that all Links are equally computationally expensive.

DLoVe assigns tasks to Workers in a manner similar to a scheduler. A single task in

a scheduler corresponds to a single Link where in DLoVe a task corresponds of a set

of interconnected Links as described in chapter 7. DLoVe uses the constraint graph

itself to give extra information, making determining task allocation easier. Though a

real scheduler allows tasks to have any cost, DLoVe assumes that all Links

comprising a task have the same cost. This may cause DLoVe to create unbalanced

task schedules but seems to work fine for many constraint graphs used in Virtual

Reality.

DLoVe uses a greedy round-robin scheduling algorithm, which is not optimal in

general. For example, assume there are 5 tasks with costs 3, 2, 2, 1, 1, and

suppose there are two Workers available. Using greedy round-robin assignment,

Worker 1 will be assigned tasks with costs 3+2+1=6 while Worker 2 will be assigned

tasks with costs 2+1=3. An optimal scheduler might assign tasks of cost 3+1+1=5

to Worker 1 and tasks of cost 2+2=4 to Worker 2, with imbalance of 1 time unit.

Leonidas Deligiannidis

Page 183

Strategy for analysis

Two sets of experiments were conducted to measure the performance of DLoVe. The

first set tested the performance of the Virtual Park while simulating 32 Humanoids.

I measured the results of the non-distributed and the distributed versions using up

to three Workers. To assess performance, I counted the number of evaluations of the

‘SimulateLink’ Link of each Humanoid routine for each Humanoid, as described in

chapter 12. I also measured the resulting frame rate at which the Coordinator was

able to render the graphics on the display. I purposely implemented a

computationally expensive collision prevention algorithm for the Humanoids in order

to overcome the network bandwidth bottleneck. This experiment employed a

traditional approach for measuring performance: the overall computational

throughput for the system.

The second set of experiments uses a new approach for measuring the performance

of VR systems, by quantifying the accuracy of each frame rendered on the display. I

defined the accuracy of a frame as the difference between the wall clock time and the

minimum time since all output Variables (used for rendering the display) were last

updated. Unlike the previous experiment, this one was conducted within a

homogeneous environment. For this set of experiments I used a very simple

simulation executed on Sun ultra 5 workstations running Solaris 2.7. I measured

the latency of each network message as well as the number of requests initiated, the

number of replies, and the number of messages that were discarded. This allowed

me to compute the accuracy of each frame rendered. Results of this experiment

show that traditional techniques for performance analysis do not accurately describe

VR performance.

Leonidas Deligiannidis

Page 184

Performance with the Humanoids

As described in chapter 12, ‘SimulateLink’ simulates a Humanoid by advancing its

position and running the collision prevention algorithm making a Humanoid look at

the ball and wander in the park. Each ‘SimulateLink’ Link is executed at most

once in every loop. To measure performance, I counted the total number of

evaluations of this type of Link. Then I compared the results of the non-distributed

version against the distributed version, utilizing between one and three Workers in

the latter. For the distributed version only, I measured results for different values of

the ‘drop’ threshold variable (discussed in chapter 7) to tune the ‘Network Optimizer’

module (discussed in chapter 8) of the Coordinator. I also compared frame rates

with which the Coordinator was rendering the display in each case.

Collision Prevention Internals

The most computationally expensive Link in the Virtual Park application is the

‘SimulateLink’ Link. This Link takes care of the actions of a Humanoid as well as

collision prevention. A Humanoid first tests to see if it is positionally close to any

other Humanoids and then acts depending upon its identity and the identities of the

other Humanoids close to it (as discussed in chapter 12).

Computer Network used for the Experiment

This experiment was conducted on Silicon Graphics workstations using SGI

Performer as the graphics-rendering library. The four machines used had differing

Leonidas Deligiannidis

Page 185

hardware architectures. Thus the scheduler’s task assumption that all Workers

possess the same throughput is false, so that scheduling is less optimal than it

would be in a homogeneous environment. The four machines, as well as the

Polhemus (with the sensors and the transmitter) and the Eye tracking PC were

connected as follows:

The SGI Experiment

The machine used for the graphics, for the distributed and non-distributed version,

was ‘mondrian’. All the others were used as Workers when running the simulation

in the distributed environment. The PC above in the figure is the eye tracking

hardware. For this experiment, even though I did not use the eye tracking

hardware, I used the PC to read the Polhemus input though it.

The characteristics of the four machines are shown below, where the processor type,

memory size, and cache differ between all four machines.

Intel 486 PC

10MB Ethernet

mondrian

jumpa pantha monet

Polhemus

Transmitter

HMD

sensor2

sensor1

Leonidas Deligiannidis

Page 186

mondrian
1 250 MHZ IP22 Processor
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0
CPU: MIPS R4400 Processor Chip Revision: 6.0
Data cache size: 16 Kbytes
Instruction cache size: 16 Kbytes
Secondary unified instruction/data cache size: 2 Mbytes on Processor 0
Main memory size: 64 Mbytes
Graphics board: High Impact

jumpa
1 195 MHZ IP28 Processor
CPU: MIPS R10000 Processor Chip Revision: 2.5
FPU: MIPS R10010 Floating Point Chip Revision: 0.0
Data cache size: 32 Kbytes
Instruction cache size: 32 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte
Main memory size: 128 Mbytes
Graphics board: High Impact

pantha
1 250 MHZ IP22 Processor
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0
CPU: MIPS R4400 Processor Chip Revision: 6.0
Data cache size: 16 Kbytes
Instruction cache size: 16 Kbytes
Secondary unified instruction/data cache size: 2 Mbytes on Processor 0
Main memory size: 128 Mbytes
Graphics board: High Impact

monet
1 200 MHZ IP22 Processor
FPU: MIPS R4000 Floating Point Coprocessor Revision: 0.0
CPU: MIPS R4400 Processor Chip Revision: 6.0
Data cache size: 16 Kbytes
Instruction cache size: 16 Kbytes
Secondary unified instruction/data cache size: 1 Mbyte on Processor 0
Main memory size: 64 Mbytes
Graphics board: GU1-Extreme

‘Jumpa’ and ‘Pantha’ mounted the Performer run time libraries of ‘mondrian’, via the

Network File System (NFS), adding even more overhead to the network and to

‘mondrian’, ‘monet’ has its own copy of the libraries:

Mounting Performer run time libraries

10MB Ethernet

mondrian

jumpa pantha monet

Performer run
time Libraries

Mount Performer
libraries

Mount Performer
libraries

Leonidas Deligiannidis

Page 187

Analyzing the Results

Two variables were varied during measurement of distributed version: the number of

Workers participating, and the ‘drop’ threshold variable. As it was discussed in

chapter 9, the Coordinator needs to disregard messages that it builds when there

are many pending requests on the network. As a result, for this experiment I first

ran the non-distributed version, counting the number of the ‘SimulateLink’ Link

evaluations and measuring the frame rate. Then I ran the distributed version with

one, two, and three Workers. Finally I repeated the distributed version experiment

with a new value for the ‘drop’ threshold.

Recall that the ‘drop’ threshold is used to limit the number of requests sent from

the Coordinator to Workers and thus avoid overloading the network. If this

threshold is too small, then Workers will not receive enough tasks to keep them

busy. If the threshold is too large then two conditions may arise. The Coordinator

may overload the network with Worker requests, and eventually crash, or it may

spend most of its time trying to send requests to Workers, thus spending less time

rendering the display, reading replies from the Workers, and reading input devices.

On the other hand, the Workers may be so busy serving the Coordinator’s requests

that all replies come back to the Coordinator too late to be useful. In Virtual Reality,

when most of the replies come back to the Coordinator too late there is no real-time

interaction and the result cannot be called Virtual Reality anymore, even if the

frame rate stays high. In this case frame rate alone does not accurately describe the

efficiency of a rendering system.

Leonidas Deligiannidis

Page 188

For this set of experiments I utilized one, two, and three Workers. ‘Jumpa’ was

always the first Worker selected, then ‘pantha’, and finally ‘monet’ in this order. For

example, when two Workers were used for the simulation, ‘jumpa’ was the first

Worker to connect to the Coordinator and ‘pantha’ was the second one. This way

the first, third, fifth, etc Humanoids were simulated by ‘jumpa’ and the second,

fourth, sixth, etc Humanoids were simulated by ‘pantha’.

Since there are 32 Humanoids, when 3 Workers are utilized for the simulation

‘jumpa’ and ‘patha’ simulate 11 Humanoids where ‘monet’ simulates only 10. Recall

that the most powerful machine is ‘jumpa’ and the least powerful one is ‘monet’. If

the same experiment is conducted starting ‘monet’ first or second the results might

be different.

The following graphs show the results of running the application in non-distributed

mode and in distributed mode using one, two, and three Workers. The horizontal

axis shows the value of the ‘drop’ threshold, while the vertical axis shows the

number of evaluations of the Link ‘SimulateLink’. One must note the difference in

the Y-axis scale when reading the following two graphs:

Leonidas Deligiannidis

Page 189

Comparing the number of evaluations of the non-distributed and the distributed
version of the Virtual Park application using computational expensive evaluations.

‘SimulateLink’ is O(n3) where n is the number of Humanoids (32).

‘SimulateLink’ is O(n4) where n is the number of Humanoids (32).

In this experiment, by increasing the number of Workers, we increase the number of

evaluations and thus seem to observe better performance. This is because in the

3 30 300 1,000 2,000 3,000 10,000 30,000
‘drop’

threshold

of ‘SimulateLink’
Evaluations x 103

non-distributed

1 Worker

2 Workers

3 Workers

3 30 300 1,000 2,000 3,000 10,000 30,000 ‘drop’
threshold

of ‘SimulateLink’
Evaluations

non-distributed

1 Worker

2 Workers

3 Workers

Leonidas Deligiannidis

Page 190

non-distributed version, a single machine is trying to simulate all 32 Humanoids,

where in the distributed version the workload is given to multiple machines

simulating the Humanoids “in parallel”. The distributed version with one Worker

outperforms the non-distributed version because the Worker simulates the

Humanoids while the Coordinator handles all user’s requests and the drawing of the

scene. Also in the distributed version I always used the most powerful Worker for

the most complex tasks, then the next powerful one, and so on.

We can also see the effect of the ‘drop’ threshold variable. To tune this threshold,

the designer needs to run several simulations to figure out the best value for the

specific application and the specific network. From this experiment we can see that

the most evaluations are taking place when we use three Workers and we set the

‘drop’ threshold around 1000.

However, the more Workers we utilize, the fewer frames per second we get:

Number of frames when the running time of ‘SimulateLink’ is O(n3), where n is the
number of Humanoids

3 30 300 1,000 2,000 3,000 10,000 30,000 ‘drop’
threshold

Frames per second

non-distributed

1 Worker

2 Workers

3 Workers

Leonidas Deligiannidis

Page 191

Number of frames when the running time of ‘SimulateLink’ is O(n4), where n is the
number of Humanoids

When we use more Workers, we get fewer frames per second because the

Coordinator saturates the network faster due to sending the same messages to

multiple Workers. The Coordinator sends the same messages to all Workers

because DLoVe is build on top of TCP/IP simulating multicasting. For example,

when there are three Workers the Coordinator has to send the same message three

times, once for each Worker. This adds a lot of overhead to the Coordinator and as a

result it spends less time updating the display. The greatest decrease in frame rate

is when the ‘drop’ threshold is over 2000. This is because the Coordinator is trying

to write too many messages on the network, and the network becomes saturated

and network resources become temporarily unavailable. The Coordinator keeps

trying until it successfully writes the messages on the network, losing critical time

on updating the display. Several times the application crashed when I was using

one Worker with a ‘drop’ threshold of over 2000.

3 30 300 1,000 2,000 3,000 10,000 30,000 ‘drop’
threshold

Frames per second

non-distributed

1 Worker

2 Workers

3 Workers

Leonidas Deligiannidis

Page 192

The distributed version outperformed the non-distributed version in frame rate,

because in the non-distributed version one machine is trying to simulate all 32

Humanoids, leaving it no time to update the display. In fact, the non-distributed

version was so slow (2 frames per second) that it would disorient any person using

it. The frame rate on the distributed version could be improved if a different

technique was used, for network communication, such as multicasting instead of

unicasting. If DLoVe outperforms the non-distributed version using TCP/IP for

point-to-point communication, it promises even greater performance if it is re-

implemented using multicasting.

The above experiment demonstrates that by using more Workers we get more

evaluations, but fewer frames per second. Because the ‘SimulateLink’ evaluation

is computationally very expensive (more precisely the ‘CalculateForce()’ function

described in chapter 12) the application computation load is the critical bottleneck

rather than the network. This means that the time needed to simulate the

Humanoids is much greater than the cost of sending the requests over the network.

To study what would happen if ‘SimulateLink’ was inexpensive, I re-ran the same

experiment without the ‘CalculateForce()’ function, allowing the Humanoids to

collide with each other. In this case the non-distributed version of the application

outperformed the distributed versions. Also the more Workers I used, the fewer

evaluations I received:

Leonidas Deligiannidis

Page 193

Comparing number of evaluations of the non-distributed and the distributed version of
the Virtual Park application using computational inexpensive – O(n) – evaluations.

This is because sending a request over the network is more computationally

expensive than doing the evaluation locally. Thus the more Workers I used, the

more time the Coordinator lost in sending requests to each Worker.

In addition, the more Workers the Coordinator used, the fewer frames it rendered,

because it was spending most of its time trying to send/receive requests on the

network:

3 30 300 1,000 2,000 3,000 10,000 30,000
‘drop’

threshold

of ‘SimulateLink’
Evaluations x 103

non-distributed

1 Worker

2 Workers

3 Workers

Leonidas Deligiannidis

Page 194

Comparing the frame rate of the non-distributed and the distributed version of the
Virtual Park application using computational inexpensive – O(n) – evaluations

Another issue I encountered in both experiments when the ‘drop’ threshold was

somewhere over 3000 is that replies from the Workers exhibited large latencies.

Even though the number of evaluations increases, as the ‘drop’ threshold increases,

all replies became older. In Virtual Reality, this means that when the user moves

his hand, the system responds after many milliseconds, giving the impression that

the user’s hand is not really attached to the virtual hand. Or the user may turn his

head and after some considerable wait, the system draws the correct perspective of

the view.

The actual latency of replies was not measured by this experiment, although it led

us to suspect that latencies were abnormally large.

I tried to run the same experiment with two users but encountered two problems.

The second machine I had available was not attached to a Polhemus tracker. This

problem was resolved by simulating a second Polhemus with a mouse (this is

3 30 300 1,000 2,000 3,000 10,000 30,000
‘drop’

threshold

Frames per second

non-distributed

1 Worker

2 Workers

3 Workers

Leonidas Deligiannidis

Page 195

something that DLoVe supports in its framework). The second problem was that

this second machine was a very slow Silicon Graphics workstation where the

rendering was done in software; whereas ‘mondrian’ uses hardware for rendering.

This second machine was so slow that even without using the ‘CalculateForce()‘

function, I was only getting 40% of the evaluations of the same application using

‘CalculateForce()’ on ‘mondrian’.

Performance with the ‘Perf’ program

The analysis of the Virtual Park, even though it illustrated some of the positive and

negative aspects of DLoVe was conducted within a heterogeneous environment. The

outcome of the experiment might have been different if all machines were exactly of

the same architecture and all possessed a local copy of the Performer run-time

libraries. Clearly I needed a more carefully conducted procedure for conducting the

experiment to get more conclusive and more accurate results.

To address this, I implemented a very simple “Perf” application that was executed in

a homogeneous environment, and made accurate measurements of its performance.

I was able to measure latency of individual messages sent by the Coordinator, and

the number of messages that were built and discarded by the Coordinator due to the

setting of the ‘drop’ threshold.

The ‘Perf’ benchmark program consists of 4 Links and 5 Variables. It was designed

so that DLoVe can partition it into at most 3 Workers. The following figure shows

the Links and Variables within this application:

Leonidas Deligiannidis

Page 196

DLoVe graph of the ‘perf’ application

The ‘main’ loop of the application first sets the Variable ‘input’ and then requests the

values of the three output Variables (out2, out3, and out4). When this program is

executed using three Workers, each Worker is assigned one output Variable as

shown below, and thus the Coordinator can request these three output Variables in

parallel from the three Workers:

Partition of the DLoVe graph of the ‘perf’ application

State machine of the run time system

The Coordinator can be thought of as possessing five independent states. The

Coordinator builds a message consisting of several requests and sends it out to the

Worker(s). Initially, the Coordinator is in a ‘start’ state. When it sees a need to

request set or get a Variable’s value or to enable or disable a Link, it transitions to

common

branch1

branch2

branch3

input middle

out2

out3

out4

common

branch1

branch2

branch3

input middle

out2

out3

out4

Worker 1

Worker 2

Worker 3

Leonidas Deligiannidis

Page 197

the ‘build’ state within which it builds the message that it may send to the

Workers. This message consists of requests such as SetE, GetE, Enable, and

Disable. At the end of the main loop, just before sending the message, it checks its

internal counters, which indicate the number of pending requests on the network to

each Worker. If a counter is below a chosen threshold, it transitions to ‘send’ state,

sends the message, and returns to the ‘start’ state. Else, it discards the message

and returns to the ‘start’ state.

While in the ‘start’ state, it checks to see if any replies came back from the

Workers. If replies have arrived, it transitions to the ‘get’ state and processes all

the replies. When all replies are processed, it transitions back to the ‘start’ state

where is starts building messages all over again. The ‘start’ state is a state

indicating idle time and it is used as a starting point in describing the functionality

of the Coordinator. The fifth state is the ‘render’ state in which the Coordinator

transitions to render the display. The following figure shows the five states and the

transitions between them:

Leonidas Deligiannidis

Page 198

Internal state machine of DLoVe when executed in the distributed mode

What is Measured

The experiments were run for 60 seconds, where DLoVe collected two kinds of

performance statistics every second. Statistics included the number of requests

initiated by the Coordinator, the number of messages that were discarded, and the

number of replies that came back to the Coordinator. Additional performance data

included latency of each request. Every request was timestamped with the time of

initiation before being sent to the Worker(s). The Worker that responded to the

requests preserved the timestamp in its reply. The Workers also marked a GetE

reply with the amount of time it took the Worker to update the requested Variable.

When the Coordinator received the reply, it calculated the elapsed time of the

request and subtracted the amount of time the Worker needed to update the

requested Variable. I implemented utilities that utilize the xgraph program to plot

the network latency for every request, as well as the computational time a Worker

took to update the requested Variable.

build send

start

get render

Prepare message

Message ready
to be sent

Message is sent

Message is discarded

Read replies

Done reading Render display

Done rendering display

Leonidas Deligiannidis

Page 199

The following figure shows the state transitions where I measure how many

messages the Coordinator sends, how many it drops, and how many it receives

every second:

Measurement of DLoVe

Performance in time required measuring the elapsed time between pairs of state

transitions as shown in the following figure. tbuild is the time it takes the

Coordinator to build a message before sending it to the Workers or discarding it,

which is the difference between tbuild_end and tbuild_start , or between tbuild_start and

tbuild_discard representing the time at which the build ended and when it started. tsend

is the time it takes the Coordinator to put the message on the network, which is the

difference between tsend_end and tsend_start indicating the time the Coordinator completed

the transmition of the message and the time it started transmitting. tget is the time

it takes the Coordinator to process the replies from the Workers, which is the

build send

start

get render

Prepare message

Message ready
to be sent

Message is sent

Message is discarded

Read replies

Done reading Render display

Done rendering display

of sends

of drops

of gets

Leonidas Deligiannidis

Page 200

difference between tget_start and tget_end indicating the time it started reading replies

and the time it read all replies from all Workers. tcycle indicates the time it takes a

request to come back as a reply, which is the difference between tbuild_end and tget_end.

This is the latency of each message and this is what in which I am the most

interested. That the Coordinator receives many replies from the Workers is a goal I

would like to achieve. However, if the messages are all too old, then user interaction

is minimized and this is not what I want since DLoVe is designed for real-time

applications such as Virtual Reality.

Measuring latency in the internal state machine

build send

start

get render

tbuild_start
tbuild_end tbuild_discard tsend_start

tsend_end

tget_start

tget_end

tsend

tbuild tbuild

tget

tcycle

tbuild = tbuild_end – t build_start
t build = t build_discard – t build_start
t send = t send_end – t send_start
t get = t get_end – t get_start
t cycle = t get_end – t build_end
t build_end = t send_start

Leonidas Deligiannidis

Page 201

Analyzing the Results

As in the previous experiment in the Virtual Park, the following graph shows that

increases in Workers provide increases in throughput.

Throughput of DLoVe with different ‘drop’ and APE

30 300 3,000 ‘drop’ threshold

Leonidas Deligiannidis

Page 202

However, throughput of a Virtual Reality system does not describe how well it

performs. A more critical factor in VR is how high a frame rate it can achieve, and

how accurately each frame represents the virtual world.

Accuracy of rendition is difficult to measure. In DLoVe, the Coordinator issues GetE

requests to update certain Variables to render the display. These requests are sent

to the Workers that update the requested Variables, which then send the results

back to the Coordinator. These replies are not instantaneous, but arrive with some

latency that depends on performance upon the network. So, one measure of

accuracy is message latency. Another is how up-to-date the frames are when

rendered, relative to user input and the real state of the virtual world.

The following 12 graphs show the latency of each request sent to each Worker.

Each request is time-stamped before it is sent. Workers also time-stamp each

request with the amount of time taken to bring a requested Variable up-to-date.

When the Coordinator receives the requested Variable from a Worker, it calculates

the elapsed time of the request minus the amount of time a Worker needed to bring

the requested Variable up-to-date. This yields to the amount of time a request

spends on the network. For this experiment I utilized 3 Workers and tuned two

variables: ‘drop’ threshold and expensiveness of the ‘branch’ Link. I simulated

expensiveness of the ‘branch’ Links by performing multiple floating-point additions.

I call this variable “Additions Per Evaluation” (APE). The APE of each ‘branch’ Link

took the following values: 100, 1,000, 10,000, and 100,000. For each of these

values, I used a ‘drop’ threshold of 30, 300, and 3,000, yielding a total of 12

experiments. These experimental measurements showed abrupt changes in average

latency over time, which at first puzzled me. Note also the different scales for all

these graphs.

Leonidas Deligiannidis

Page 203

GraphID(001L) drop=30, APE=100

Leonidas Deligiannidis

Page 204

GraphID(002L) drop=300, APE=100

Leonidas Deligiannidis

Page 205

GraphID(003L) drop=3000, APE=100

Leonidas Deligiannidis

Page 206

GraphID(004L) drop=30, APE=1000

Leonidas Deligiannidis

Page 207

GraphID(005L) drop=300, APE=1000

Leonidas Deligiannidis

Page 208

GraphID(006L) drop=3000, APE=1000

Leonidas Deligiannidis

Page 209

GraphID(007L) drop=30, APE=10000

Leonidas Deligiannidis

Page 210

GraphID(008L) drop=300, APE=10000

Leonidas Deligiannidis

Page 211

GraphID(009L) drop=3000, APE=10000

Leonidas Deligiannidis

Page 212

GraphID(010L) drop=30, APE=100000

Leonidas Deligiannidis

Page 213

GraphID(011L) drop=300, APE=100000

The above graph as well as the following graph puzzled me the most the first time I

studied them. These graphs show the message latency is 6.5 seconds for some time

and then 3.5 seconds repeating over time. These graphs proved that there was a

critical issue in DLoVes performance, which challenged me to modify the Worker’s

algorithm to fix this problem as it is shown further in this chapter.

Leonidas Deligiannidis

Page 214

GraphID(012L) drop=3000, APE=100000

These latency graphs show inefficient behavior, because the Coordinator sends

many requests to the Workers, overloading the sockets. Thus the Workers have a

difficult time sending replies. A new modified algorithm, shown later, resolves this

problem.

I hypothesized that the latency of Workers increases due to evaluating older and

older requests. The Coordinator continues sending requests to the Workers,

Leonidas Deligiannidis

Page 215

swamping them with requests. The Workers buffer the requests and reply back to

the Coordinator in the order in which they receive the requests. After a few seconds,

however, Workers start processing older and older requests, and as a result, sockets

become congested. The Coordinator may use a high frame rate, but the frames

become more and more out-of-date.

Workers drifting in responding back to Coordinator

The Coordinator sends requests to all three Workers so that replies come from all

three Workers, adding much network traffic. We seem to observe a step increase in

latency every time there is an increase in congestion. The higher the latency, the

older the requests the Workers are processing.

frames

Coordinator
sends message

Worker
processes
message

Coordinator receives
reply from Worker

Message propagating
from Coordinator to
Worker

Message propagating
from Worker to
Coordinator

Leonidas Deligiannidis

Page 216

Frame Validity and Statistical Skew

Latency shows how long a message spends on the network to get to the Workers and

then come back to Coordinator (time required by a Worker to evaluate a Link is not

counted). However, this does not show how accurate the frame rendering is. To

visualize how valid the frames are, I used a statistical clock skew as show below:

skew = (wall clock) - min(time of request of all Variables)

For every frame, the minimum time of request of all output Variables is subtracted

from the current time (wall clock). This skew describes the worst difference between

what is shown and what the user is doing. I plotted graphs that show this skew

over time. The following 12 graphs show how out-of-date each frame is. Let us call

the set of Variables that the Coordinator uses to render the display “render”. Every

time a request comes back from a Worker it is time-stamped with the current time

indicating the time the Variable is lastly updated. When the Coordinator is about to

render the display it gets the system’s clock and subtracts from it the minimum

time of the Variables in the set “render”.

Leonidas Deligiannidis

Page 217

GraphID(001F) drop=30, APE=100

Leonidas Deligiannidis

Page 218

GraphID(002F) drop=300, APE=100

Leonidas Deligiannidis

Page 219

GraphID(003F) drop=3000, APE=100

Leonidas Deligiannidis

Page 220

GraphID(004F) drop=30, APE=1000

Leonidas Deligiannidis

Page 221

GraphID(005F) drop=300, APE=1000

Leonidas Deligiannidis

Page 222

GraphID(006F) drop=3000, APE=1000

Leonidas Deligiannidis

Page 223

GraphID(007F) drop=30, APE=10000

Leonidas Deligiannidis

Page 224

GraphID(008F) drop=300, APE=10000

Leonidas Deligiannidis

Page 225

GraphID(009F) drop=3000, APE=10000

Leonidas Deligiannidis

Page 226

GraphID(010F) drop=30, APE=100000

Leonidas Deligiannidis

Page 227

GraphID(011F) drop=300, APE=100000

The above graph shows that in the best case the Coordinator renders the display

with information that is 3.5 seconds old. This is expected when we study the

message latency graph of this experiment (GraphID(001L)). Because all messages

are either 3.5 seconds old or 6.5 seconds old, the Coordinator uses Variables that

were requested so many seconds ago, thus frame accuracy graphs follow message

latency graphs patterns.

Leonidas Deligiannidis

Page 228

GraphID(012F) drop=3000, APE=100000

Modified Algorithm for the Workers

To overcome the problem of the stepwise increase in both latency and frame

accuracy graphs, I modified the algorithm of the Workers to throw away any old

Leonidas Deligiannidis

Page 229

requests in the queue and only evaluate the most recent ones. The following graphs

show latency using this modified version of the Workers’ algorithm.

GraphID(101L) drop=30, APE=100

Leonidas Deligiannidis

Page 230

GraphID(102L) drop=300, APE=100

Leonidas Deligiannidis

Page 231

GraphID(103L) drop=3000, APE=100

Leonidas Deligiannidis

Page 232

GraphID(104L) drop=30, APE=1000

Leonidas Deligiannidis

Page 233

GraphID(105L) drop=300, APE=1000

Leonidas Deligiannidis

Page 234

GraphID(106L) drop=3000, APE=1000

Leonidas Deligiannidis

Page 235

GraphID(107L) drop=30, APE=10000

Leonidas Deligiannidis

Page 236

GraphID(108L) drop=300, APE=10000

Leonidas Deligiannidis

Page 237

GraphID(109L) drop=3000, APE=10000

Leonidas Deligiannidis

Page 238

GraphID(110L) drop=30, APE=100000

Latency

Evaluation time

Leonidas Deligiannidis

Page 239

GraphID(111L) drop=300, APE=100000

Latency

Evaluation time

Leonidas Deligiannidis

Page 240

GraphID(112L) drop=3000, APE=100000

This new modified algorithm has a dramatic effect on the accuracy of the frames.

The accuracy stays the same throughout the experiment. This algorithm allows the

Coordinator to use the most up-to-date Variables for rendering because messages

are sent back and fourth very quickly as a result of a decrease in network

congestion.

Latency

Evaluation time

Leonidas Deligiannidis

Page 241

In the above 12 graphs, the abrupt increase in the latency disappeared. This is

because the Workers only process the most recent requests, disregarding any older

requests (and this is okay since the transactions are performed in a streaming

manner as it was shown earlier). Using the modified version of the Workers’

algorithm, we remove the congestion from the sockets allowing the Workers to send

replies to Coordinator more quickly, with data of greatest accuracy. I conclude that

my hypothesis about performance problem is correct!

The following graphs show the accuracy of the frames using the modified algorithm:

Leonidas Deligiannidis

Page 242

GraphID(101F) drop=30, APE=100

Leonidas Deligiannidis

Page 243

GraphID(102F) drop=300, APE=100

Leonidas Deligiannidis

Page 244

GraphID(103F) drop=3000, APE=100

Leonidas Deligiannidis

Page 245

GraphID(104F) drop=30, APE=1000

Leonidas Deligiannidis

Page 246

GraphID(105F) drop=300, APE=1000

Leonidas Deligiannidis

Page 247

GraphID(106F) drop=3000, APE=1000

Leonidas Deligiannidis

Page 248

GraphID(107F) drop=30, APE=10000

Leonidas Deligiannidis

Page 249

GraphID(108F) drop=300, APE=10000

Leonidas Deligiannidis

Page 250

GraphID(109F) drop=3000, APE=10000

Leonidas Deligiannidis

Page 251

GraphID(110F) drop=30, APE=100000

The above and the following two graphs show that frame accuracy varies between 25

and 48 msecs. This is due to the high value of the APE variable. The statistical

skew uses the difference between the oldest request of all output Variables and the

wall clock. Since these requests are computationally expensive (APE = 100000) they

will come back to the Coordinator as replies with great latency.

Leonidas Deligiannidis

Page 252

GraphID(111F) drop=300, APE=100000

Leonidas Deligiannidis

Page 253

GraphID(112F) drop=3000, APE=100000

Throughput in DLoVe

The modified algorithm of the Workers not only fixed the stepwise increase in the

message latency, but also improved dramatically the accuracy of the frames with

very little throughput penalty.

Leonidas Deligiannidis

Page 254

The following graph shows the number of evaluations achieved by the modified

algorithm of the Workers.

Throughput of DLoVe utilizing the new algorithm on the Workers

The following graph shows the number of evaluations achieved by both the original

and the modified algorithm.

30 300 3,000 ‘drop’ threshold

Leonidas Deligiannidis

Page 255

Comparing throughput between the original and the new algorithm

The penalty in throughput using the modified algorithm is only 12% in return for

much more accurate frames. Also the number of frames should be observed that

increases dramatically when evaluations are computationally expensive

(APE=100,000). Comparing the graphs with GraphID 010, 011, 012 against 110,

111, and 112 the increase in frame rate can be visualized. Using the old algorithm

Orig. Alg. APE=100,000

Modified Alg. APE=100,000

30 300 3,000 ‘drop’ threshold

Leonidas Deligiannidis

Page 256

the Coordinator achieves 56 frames/second (3400/60) where using the modified

algorithm the Coordinator achieves 416 frames/second (25000/60). Note that the

‘Perf’ program does not render the display. Throughout these experiments, I assume

that when a frame is rendered it takes zero time.

The number of evaluations in the non-distributed version is not plotted due to its

wide range of numbers, where plotting the data would not be very useful. The

following table shows that when evaluations are computationally inexpensive (APE <

10,000), which means that it is better performing the calculations locally than

sending requests over the network the non-distributed version outperforms the

distributed version. However, when the calculations are computationally expensive,

the distributed version outperforms the non-distributed version by a factor of 2.9

(APE = 100,000).

drop threshold 30 300 3,000 30 300 3,000

non-distributed 582,008 582,008 582,008 201,686 201,686 201,686

dist. New 50,606 50,677 50,535 50,070 49,962 49,542

APE

drop threshold 30 300 3,000 30 300 3,000

non-distributed 26,066 26,066 26,066 3,036 3,036 3,036

dist. New 50,827 50,721 50,833 8,809 8,813 8,816

APE

100 1,000

10,000 100,000

Comparing throughput between non-distributed and distributed version of ‘Perf’

When calculations are computationally expensive, using the modified version of the

algorithm we achieve more frames per second; that enables the Coordinator update

the display more frequently. Updating the display more frequently does not yield

anything additional if the data is old or the same as the 10 previous frames, because

messages did not come back from the Workers. However, the camera and hand

Leonidas Deligiannidis

Page 257

position and orientation in DLoVe are calculated locally since these are critical

factors in any virtual environment. Even though the simulated objects may be

displayed the same for the past 10 frames for example, navigation and immersion of

the user in the virtual environment is achieved because of the larger number of

frames per second.

Asynchronous Frame Rate in DLoVe

It does not make sense to measure frame rate in DLoVe because the frame rate is

asynchronous and even if we measure it, we cannot tell how fresh the data is that

the Coordinator uses to render the display. The following graph shows why the

frame rate in DLoVe is asynchronous:

Leonidas Deligiannidis

Page 258

Asynchronous rendering in DLoVe

The Coordinator renders the display as soon as it sends the data to Workers. If the

network is congested, the Coordinator spends more time trying to send the requests

to Workers. Also, depending on how loaded the network is the propagation time

from the Coordinator to Workers and visa versa varies. As a result, the frame rate is

not constant because it depends on the time the Coordinator spends sending

requests to Workers.

Worker 1

Worker 2

Worker 3

C
o
o
r
d
i
n
a
t
o
r

time

Worker 1

Worker 2

Worker 3

C
o
o
r
d
i
n
a
t
o
r

time

frames

Leonidas Deligiannidis

Page 259

Summary of Results

The experiments demonstrated that DLoVe not only describes specification of Virtual

Reality programs well, but also improves overall performance of applications

designed in its framework by dramatically increasing the validity of the rendered

frames. In addition, DLoVe supports mechanics for implementing or transforming

single user programs into multi-user programs.

Chapters 10, 11, 12 demonstrated that DLoVe can be used to implement large scale

Virtual Reality applications, and when speed in required, DLoVe’s framework is able

to provide the additional CPU cycles needed by real time application by utilizing

multiple machines. The modified algorithm on the Workers proved to be successful

in eliminating the network congestion and providing more valid frames with a small

throughput penalty of about 12 percent.

This chapter showed the need for a different method of measuring performance that

describes DLoVe accurately, where traditional methods fail by providing seemingly

acceptable performance measures that in actuality reflected poor performance.

Throughput is not enough to describe performance, but throughput in conjunction

with statistical skew do accurately describe DLoVe’s performance.

More experiments need to be conducted to understand how DLoVe behaves in high-

speed networks and how multiple Coordinators influence the performance of DLoVe.

However, because appropriate equipment was unavailable, these experiments must

be deferred for future investigation as described in the next chapter.

Leonidas Deligiannidis

Page 260

Chapter 14: Evaluation

Overview

Chapter 13 measures and evaluates the distributed and parallel aspect of DLoVe. It

discusses problems and resolutions of measuring the distributed and parallel

version of DLoVe. Chapter 13 demonstrates that DLoVe performs well by measuring

both overall throughput and frame latency. This chapter evaluates DLoVe by

looking at it primarily as a paradigm for designing VR applications for a single user

and a single machine.

DLoVe is designed to provide a framework to programmers for defining and

implementing both serial and distributed VR applications for single or multiple

users. Its architecture includes features and techniques that explicitly address

issues encountered when developing applications such as virtual environments and

multi-user VR interfaces. Test applications were developed and implemented using

these features, and were discussed in chapters ten, eleven, and twelve.

Leonidas Deligiannidis

Page 261

Conceptual Applicability

While in the real world processes exhibit continuous changes in state, any computer

model of these changes consists instead of a discrete change of measurement

events. This, however, should not influence the programmer’s understanding of

how these events interrelate. It is this conceptual understanding that should be

captured in the design, not the mechanics of its implementation.

DLoVe supports specification mechanisms that allow interaction object behavior and

manipulation to be described in both continuous and discrete terms. It supports

mechanics to allow the designer to combine continuous and discrete domains to

express his/her conceptual model being designed. The responsibility of running a

program in distributed mode falls upon DLoVe itself.

Scalability Issues

Virtual Park demonstrates that DLoVe is capable of creating large-scale applications

employing non-WIMP interactions. The park demonstrates that DLoVe’s

programming paradigm results in a specification that is relatively quick and easy to

implement. The specification modules themselves e.g. ball, arm1, arm2, etc, retain

Leonidas Deligiannidis

Page 262

the ability to perform low-level manipulation where needed, and combined produce a

higher level of abstraction in the program without higher levels of complexity.

Even though the number of Workers (when a DLoVe application is executed in a

distributed environment) can be increased by modifying a single line in the

configuration file, the number of Workers that can practically participate is limited.

The bottleneck preventing parallelism is the bandwidth of the physical network

connecting the Workers and the Coordinators.

DLoVe applications would execute much faster in a shared memory machine. But

even in this case the number of processes could not exceed twenty, because of the

lack of scalability in the shared memory environment itself. Even if twenty Workers

run on a single shared machine, networking would still be necessary when

designing multi-user applications. Applications designed using DLoVe’s paradigm

exhibit larger speedup when evaluations are computationally expensive, but the

distributed version offers no benefit, when evaluations are inexpensive. However,

even in the case where DLoVe does not exhibit any speedup, due to lack of

constraint complexity, it still supports multi-user application development.

Modifying a single line in the configuration file allows one to increase the number of

Coordinators participating in a distributed environment. However, one must also

modify code to inform all the modules of new input and output devices.

Leonidas Deligiannidis

Page 263

Extensibility Issues

DLoVe is designed to adapt to the evolving needs of non-WIMP user interfaces. To

remain viable DLoVe must handle new input and output devices and the

introduction of new interaction objects. Encapsulated Links and Variables within

device drivers allow external devices to be introduced to the system without

requiring any modification to the UIDL. For example, DLoVe does not care if the

user reads from the Polhemus 3D tracker, an eye tracker device, or inputs from an

X window. The mechanics of reading from any of these devices are hidden from the

designer. The sample applications presented in Chapters 10, 11, and 12 include an

interface to X Windows, an interface to the Performer graphics engine, a device

driver for Polhemus 3D tracker, and in chapter 11 a device driver for the eye

tracker.

In a multi-user environment, different users can utilize different input/output

devices to interact with each other and with the same virtual world. When the

‘arms’ program (chapter 10), the eye tracking program (chapter 11), and the Virtual

Park (chapter 12) are executed in a two-user environment, one user operates the

head and hand position, and orientation with the mouse, while the other uses the

Polhemus 3D tracker. One user uses the monitor as an output device and the other

an HMD.

Leonidas Deligiannidis

Page 264

Preserving Intellectual Investments

New tools, programming languages, and any kind of software, that takes longer to

apply to any given problem than to solve the problem manually will eventually be

abandoned by users. In an effort to avoid this, DLoVe seeks to capitalize on existing

notations, concepts, and standards wherever the opportunity presents itself.

Feedback from students using DLoVe for their programming assignments suggests

that embedding new concepts within familiar programming methods provides a

stable launching point for exploring and experimenting with the new paradigm. The

ability to call C++ procedures protects the substantial investment of academia and

industry in this language.

Leonidas Deligiannidis

Page 265

Chapter 15: Open Problems and

Further Study

Overview

DLoVe has proven that it is an applicable paradigm for designing and implementing

non-distributed and distributed Virtual Reality applications. It performs relatively

well in a networked environment. It supports mechanics for transforming serial

programs into distributed programs by following a simple pattern. It also supports

mechanics needed for multi-user applications. Several open problems with DLoVe

should be addressed. DLoVe’s paradigm can also be enhanced by further work.

Leonidas Deligiannidis

Page 266

Enhancing and Improving DLoVe’s Paradigm

DLoVe assumes that all objects in a virtual environment are created before the

application begins reading input devices. If the Coordinator creates any new objects

after the Link::InitSystem() call, DLoVe’s protocol cannot notify the Workers of those

changes. When a DLoVe application is executed in non-distributed mode, however,

there is a workaround allowing dynamic creation of objects. DLoVe’s protocol must

be extended in order to allow Workers to adapt to dynamic changes. This is needed,

for example, when a user selects car parts to design a futuristic car model. Each

created part becomes a new object in the constraint space.

Many enhancements are possible in how DLoVe automatically handles code

changes, needed to support multi-user interfaces. To change a single-user interface

to multi-user, all input Variables (and the Links to which these input Variables are

attached) need to be duplicated and the network re-wired – for the duplications.

Since this process is well understood, it is possible to automate it and remove this

burden from the programmer. Chapters 10 and 12 describe, using examples, the

process of changing a single-user interface into a multi-user interface.

In DLoVe’s current paradigm, the programmer must manually introduce artificial

auxiliary Variables to combine multiple output Variables from a single Link so that

those output Variables will not automatically be assigned to different Workers, thus

causing redundant computations. This situation is easily detectable automatically

by BFT of the constraint graph, so we could automate this process and save manual

effort. An illustration of artificial auxiliary Variables is given in the Virtual Part

application where each Humanoid is simulated entirely by a Worker.

Leonidas Deligiannidis

Page 267

DLoVe’s partition algorithm partitions the constraint graph assuming that all Links

take comparable computation time, so that DLoVe’s task assignment does not

balance loads for structures for which Links vary greatly in expense. To achieve

load balancing, the programmer must assume that all Links are roughly equivalent

in cost and that Workers are equal in performance. To alleviate this responsibility,

we could improve DLoVe’s partition algorithm to account for task expense and

machine speed. Currently, partitions are determined at compile time but should be

determined dynamically based upon the structure of the graph and machine

performance. It is unclear whether dynamic load balancing would improve many

programs, due to the overhead involved in rebalancing.

In the current implementation of DLoVe’s protocol, programmers have to deal with

cyclic graphs by cutting the constraint graph vertically and introducing synthetic

Variables. Without synthetic Variables, programs with cyclic dependencies cannot

be executed in a multi-Worker environment, as illustrated in Chapter 12. Synthetic

Variables are used for inter-dependencies among simulated objects such as the

Humanoids in the Virtual Park. DLoVe’s partition algorithm could be extended to

automatically insert synthetic Variables where needed, by using a BFT algorithm,

and also to insert code that will update all the synthetic Variables.

Hierarchies of Workers could increase the performance of DLoVe when synthetic

Variables are introduced in a program. DLoVe’s partition algorithm partitions the

constraint graph by cutting it horizontally. Use of synthetic Variables requires a

vertical cut of a cyclic constraint graph in order to execute a program in parallel.

Sub-graphs of the constraint graph that contain synthetic Variables can be assigned

to a special set of Workers to handle updates in parallel. There can be a ‘root’

Leonidas Deligiannidis

Page 268

Worker that will use other regular Workers to update synthetic Variables. The ‘root’

Worker with its Workers can exist on a different network to avoid network

congestion. The following diagram describes this environment:

‘root’ Worker incorporated in DLoVe to handle synthetic Variables in cyclic constraint
graphs

Workers 3, 4, and 5 are connected to the ‘root’ Worker that communicates Variable

updates to Coordinator. These machines communicate with each other as shown

below:

Coordinator

Worker 1 Worker 2

Worker 4 Worker 3 Worker 5

‘root’ Worker

Network B

Network A

Leonidas Deligiannidis

Page 269

Node connection with the ‘root’ Worker

The ‘root’ Worker can be a similar process to a regular Worker. The difference is

that the ‘root’ Worker synchronizes data delivery of synthetic Variables to

Coordinator. This separates the network traffic into two types of messages. Request

messages directly from the Coordinator, and synthetic Variable updates.

My research suggests that by re-implementing DLoVe using UDP instead of TCP, its

performance will greatly be increased [Singhal 99]. TCP is a reliable protocol but it

does not best characterize DLoVe’s transactions. If some requests, such as SetE

and GetE, are lost, they do not impact programs using DLoVe’s paradigm due to the

frequency of requests. In cases of Enable and Disable requests (that re-wire the

constraint graph), requests can be initiated with an acknowledgment requirement.

The Coordinator will keep a vector of which Workers need to be updated on such

requests and the acknowledgments it received from the Workers. If such messages

are lost, the Coordinator will retransmit the state of the constraint graph. This

technique will improve the performance of DLoVe due to using a less reliable but

significantly faster protocol (UDP) than TCP.

Coordinator

Worker 4 Worker 3 Worker 5

‘root’ Worker

Worker 2 Worker 1

Leonidas Deligiannidis

Page 270

My research suggests that multicasting may be more efficient in distributed

environments as an alternative to unicasting over TCP or UDP. Currently, the

Coordinator must send each message to each Worker individually. This means that

communication is proportional to the number of Workers. Multicasting would

enable the Coordinator to deliver a message to multiple Workers with a single send

operation. However, the Coordinator still must poll each Worker individually for any

replies they might have. But this will decrease the time needed to send a request

out to the Workers.

Failures on Workers can be detected by the Coordinators, which can then redirect

network traffic to still functioning machines. All systems in DLoVe’s distributed

environment have an exact copy of the constraint graph. All machines are capable

of bringing Variables up to date and replying to Coordinators’ requests. In the

current implementation when a failure is detected all processes terminate. DLoVe’s

protocol can be very easily extended and automatically redirect traffic to still

functioning machines when failures occur. This may require the Coordinators to re-

execute the partition algorithm to achieve the best performance possible.

In a multi-user environment, a crash or a disconnect of one Coordinator should not

result in the termination of the entire simulation. The current implementation

terminates the simulation if any of the Workers or the Coordinators terminate.

DLoVe’s protocol should be more flexible to allow Coordinators to connect and

disconnect while the simulation is executing.

To make DLoVe a software package that can be used even more easily by

programmers, it must also contain a GUI interface where designers and

programmers can define Links, Variables, EventHandlers, and their relationships, in

Leonidas Deligiannidis

Page 271

a visual fashion. This GUI should also be able to generate C++ code, or read C++

code and display the visual representation of the constraint graph.

To understand even more how the type and speed of a network, and the speed of the

machines (such as Sun ultra 250 servers) influence the performance of DLoVe more

experiments need to be conducted on different types of networks such as a 100MB

or Gigabit switched Ethernet. The state-of-the-art Ethernet is the Gigabit Ethernet

with two major advantages over regular Ethernet. First, it preserves Ethernet’s

simplicity while enabling a smooth migration to Gigabit-per-second (Gbps) speeds.

Second, it delivers a very high bandwidth to aggregate multiple Fast Ethernet

segments to support high-speed server connections, switched backbones, and high-

speed workgroup networks [Buyya 99a].

Moreover, more experiments need to be conducted to understand how much

multiple Coordinators influence the performance of DLoVe. Multiple Coordinators

imply increase in the number of requests sent to Workers, thus increasing workload

on the Workers as well as on the network. The following figure shows a the

connections of multiple Coordinators on a high speed switched network, such as

100MB or Gigabit switched Ethernet:

Leonidas Deligiannidis

Page 272

Performance Measurement of a 100MB switched network using multiple Coordinators

Worker 1 Worker 4 Worker 3 Worker 2

Coordinator 1 Coordinator 2

100MB Ethernet

Switch Port 5/2 Switch Port 5/3 Switch Port 5/4 Switch Port 5/5

Switch Port 6/4 Switch Port 6/5

Leonidas Deligiannidis

Page 273

Chapter 16: Conclusion

DLoVe was designed to provide a specification paradigm and a framework to assist

in defining and implementing non-WIMP interfaces. It allows programs to be

executed in a distributed or non-distributed environment where speed is a

requirement without major code modifications. It allows programmers to design and

implement VR applications in a high level of abstraction where their code can be

modular and re-useable. It allows easy specification of functionality for multi-user

interfaces, following a simple pattern. Its run-time engine is responsible for

performance optimization and network control; problems faced by distributed non-

WIMP user interfaces. It hides all the networking aspects of message passing among

the machines participating in a distributed environment. As a result, the DLoVe

programmer does not need to understand distributed and parallel systems to employ

DLoVe. The programmer need only be familiar with C++ one of the most common

languages for application development.

DLoVe was tested against each of these claims and found to be successful and

robust. Utilities are provided by DLoVe to allow fine performance tuning of

applications designed within its framework. My own as well as others’ experiments

Leonidas Deligiannidis

Page 274

of solving problems and implementing applications suggest that DLoVe is successful

in achieving its goals and meeting the needs of non-WIMP user interface designers.

DLoVe is a new specification paradigm for designing and implementing VR

applications. Applications designed to be executed in a single machine can also be

executed in a distributed environment involving multiple workstations, with minor

code modifications to achieve greater throughput.

Chapter 13 demonstrates how well DLoVe performs when calculations are

computationally expensive. Chapter 13 also shows the need for a different method

of measuring performance that describes VR systems accurately, where traditional

methods fail by providing seemingly acceptable performance measures that in

actuality reflect poor performance. Throughput is not enough to describe

performance, but throughput in conjunction with statistical skew do accurately

describe DLoVe’s, and in general VR systems’, performance. Multi-user applications

can also be designed or translated from single-user into multi-user with little

programming effort following a simple pattern. Chapter 10 illustrates how a

program designed for a single user can be translated into a multi-user one.

Leonidas Deligiannidis

Page 275

Appendix A

The directory hierarchy of the entire DLoVe software is shown below. The top level

directory of the hierarchy is the directory ‘implem’ that contains several

subdirectories that as shown below:

• basic

• data

• opt

• solve

• eye

• net

• scripts

• state

• use.x

• use.pf

• use.eye

• use.perf

• use.pf.Humanoids

• use.pf.arms

• use.pf.2Zoom

Leonidas Deligiannidis

Page 276

Directory: basic

In this directory reside the files that describe the part of the UIMS. It contains code

for reading input devices and uses it to operate plugboard Variables and events.

Directory: data

Any 3D models the user wants to use with his program are going in this directory.

Directory: opt

This directory contains optional utility features that are built on top of the files in

‘basic’. These are utilities that a programmer can use, or build equivalent ones to fit

new environments. The following modules are included in the ‘opt’ directory:

• Links

A collection of pre-defined Links for some common arithmetic

operations.

• Quitter

Leonidas Deligiannidis

Page 277

A simple EventHandler object that accepts an ESCAPE key on the

keyboard and exits the program.

• PfWindow

This is a convenience class for use with the Performer graphics

engine. It initializes Performer, creates the window, and creates the

corresponding DeviceXWindow, which is used for reading input.

• XWindow

This is a convenience class for use with X (not Performer). It

initializes X, creates one window, and creates the corresponding

DeviceXWindow.

Directory: solve

This directory contains DLoVe’s source code of the constraint solver. It also

contains the code with which the programmer can operate on the Variables such as

SetE(), SetI(), GetI(), and GetE() functions.

New constraint solvers can be written by replacing these files with code of a new

constraint solver. Currently, besides DLoVe’s constraint solver, there is another

simple-minded and inefficient constraint solver, which was designed about 4 years

ago (this was by Prof. Jacob, and it was the starting point of this dissertation). New

constraint solvers can be written simply as subclasses of VariableBase and

LinkBase, modules residing in ‘basic’ directory.

Leonidas Deligiannidis

Page 278

Directory: eye

The ‘eye’ directory contains code for reading and processing data received on serial

port from ISCAN eye tracker (kept in separate directory, because most sites will not

have this device). The Polhemus data is read via the eye tracker and not directly

from Polhemus.

Directory: net

This directory contains the code needed in making distributed and multi-user

interfaces. All necessary network programming is contained in the files in this

directory and no additional user network programming and learning is required.

Directory: scripts

Scripts for performance analysis reside in this directory. These scripts manipulate

data coming directly out of DLoVe to measure frame validity, message latency, and

other things.

Leonidas Deligiannidis

Page 279

Directory: state

This state diagram translator resides in this directory, which is part of an earlier

system for processing and executing state diagrams (designed by Prof. Jacob). This

state diagram translator has many features not required for the present usage. If

for any reason dealing with the state diagram translator proves troublesome, one

can still write his/her IhIo() routines in plain C++ with "if" statements rather than

using the state diagram notation, and remove the "translate5" lines from the

makefiles.

Multiple directories: use.*/*

These directories all contain code that demonstrates the use of the UIMS, including

Links and Variables, defined for each particular user interface one wants to build.

• use.x

This directory contains example and skeleton programs without

Performer (using X or using no graphics)

• use.pf

This directory contains example programs using Performer graphics.

• use.eye

This directory contains example programs using the eye tracker and

Performer.

• use.perf

Leonidas Deligiannidis

Page 280

This directory contains the code for the ‘Perf’ program that was used

for the performance analysis of DLoVe (chapter 13).

• use.pf.Humanoids

This directory contains the code for DLoVe’s Virtual Park application

described in chapter 12.

• use.pf.arms

This directory contains the code of the ‘arms’ application described in

chapter 10.

• use.pf.2Zoom

This directory contains the code for the ‘2Zoom’ application described in

chapter 11.

Leonidas Deligiannidis

Page 281

Appendix B

This appendix describes a complete configuration file needed along with every

applications designed in DLoVe’s framework. The configuration file is called

config.txt and contains ‘:’ delimited fields. Comments can be specified in the

configuration file. The ‘#’ symbol indicates comment in the configuration file.

PORT NUMBER: 6326
Alarm Time: 1
Number of Alarms: 60

Drop Line: 3000
MODE: MULTI_MESSAGING
GETE MODE: NB_GETE
Workers Drop: YES

Master Coordinator: u5.eecs.tufts.edu
Slave Coordinators: 1
Workers: 3

ID: u6.eecs.tufts.edu=1
ID: c15=2
ID: u8=3
ID: c13=4

Leonidas Deligiannidis

Page 282

PORT NUMBER This field indicated the port number the Master Coordinator

binds and listens on for connections. All machines

participating in a DLoVe distributed application need to know

this port number.

Alarm Time This field is only used when a DLoVe program is compiled

with the LVSTATS flag as described later. It indicates the

frequency of alarms DLoVe will receive to dump internal data

to standard output. When it is set to 2 for example, DLoVe

will set the timer to receive an alarm every 2 seconds and will

then print out various measurements described in chapter 13.

If this variable is set to 0, then DLoVe will not receive any

alarms at all even if it is compiled with the LVSTATS flag.

Number of Alarms In this field the programmer specifies the number of alarms

DLoVe will receive before terminating. If it is set to 30, then

after 30 alarms the application will terminate. This field is

used together with conjunction with the Alarm Time field,

which specifies the frequency of the alarms. This is used to

make sure that all experiments execute the same amount

time. If this field is set to 9999, then the application executes

forever and it can receive alarms based upon the Alarm Time

field.

Drop Line This field defines the ‘drop’ threshold variable. The number

assigned to this variable determines how many pending

Leonidas Deligiannidis

Page 283

requests the Coordinator can tolerate before starting

disregarding messages.

MODE This field describes upon which protocol DLoVe will operate.

Chapter 9 describes the 3 variations upon which DLoVe can

operate. DLoVe can operate in single-messaging mode

(SINGLE-MESSAGING) where each individual message such

as SetE, GetE, Enable, and Disable are sent to the Workers

from the Coordinator as single messages. Multi-messaging

(MULTI-MESSAGING) allows DLoVe to send multiple messages

to Workers. It is strongly recommended that this field is

always set to MULTI-MESSAGING. SINGLE-MESSAGING has

not been tested for a couple of years and it is not know if it

still works. This field is used with conjunction with the next

field described below.

GETE MODE When DLoVe operates in multi-messaging, GetE requests can

be defined to block or not to block for replies to come back

from the Workers. When this field is set to NB_GETE, GetE

requests are non-blocking, else they are, as described in

chapter 9. It is strongly recommended that this field be

always set to NB_GETE, because it is the optimum operation

mode for DLoVe.

Workers Drop If this field is set to YES, then the Workers also drop messages

to implement the new modified algorithm described in chapter

Leonidas Deligiannidis

Page 284

13. It is strongly recommended that this field be always set to

YES.

Master Coordinator This field must be set to the IP address or the DNS name

where the Master Coordinator is executed.

Slave Coordinators This field indicates the number of Slave Coordinators

participating in a multi-user Virtual Environment.

Workers This field indicates the number of Workers participating in a

Virtual Environment.

ID This field may exist multiple times in the configuration file. It

indicates the application layer ids of all Coordinators. For

example, in a multi-user VR application with 3 Coordinators

(one being the Master Coordinator) we could have:

ID: mondrian.eecs.tufts.edu=1
ID: monet=2
ID: 130.64.23.184=3

The IP address or the DNS name of the machines can be

specified. Immediately after the IP address or the DNS name

follows a ‘=’ symbol and then the application layer id of that

specific machine. DLoVe utilizes these application layer id

number to associate devices with workstations, as described

in chapters 8, 10, and 12.

Leonidas Deligiannidis

Page 285

Appendix C

The following code is a complete Virtual Reality program in DLoVe. A user uses an

HMD to view the virtual world, and a Polhemus for a virtual hand with which

he/she can grab and manipulate the 3D objects (program needs to be compiled with

the source code defines HEAD and POLHEMUSCURSOR as shown in the code below. If

this program is complied with MOUSECURSOR and MOUSECOUPLER instead, the user

can manipulate the camera and the virtual hand using the mouse.

// Choose (BOTH MOUSE...) OR POLHEMUSCURSOR
#define MOUSECURSOR 1
#define MOUSECOUPLER 1
// #define POLHEMUSCURSOR 1

// Choose this or not
// #define HEAD 1

#include "../pmiw.h"
#include "../opt/PfWindow.h"
#include "../basic/DeviceTimer.h"
#include "../eye/DeviceEye.h"

#include "../opt/HeadCoupler.h"
#include "../opt/MouseCoupler.h"
#include "../opt/PolhemusCursor.h"
#include "../opt/MouseCursor.h"
#include "../opt/Quitter.h"

#include <Performer/pf.h>

Leonidas Deligiannidis

Page 286

#include <Performer/pf/pfGroup.h>
#include <Performer/pf/pfScene.h>
#include <Performer/pf/pfGeode.h>
#include <Performer/pr/pfGeoSet.h>
#include <Performer/pf/pfChannel.h>
#include <Performer/pr/pfLight.h>
#include <Performer/pr/pfMaterial.h>
#include <Performer/pf/pfDCS.h>
#include <Performer/pfdu.h>
#include <Performer/pf/pfEarthSky.h>

#include "Grab4.h"

static PfWindow *pfwindow;
static DeviceTimer *deviceTimer;

pfLight *light;

CursorBase *cursor = NULL;
DeviceEye *deviceeye = NULL;
HeadCoupler *headcoupler = NULL;

static void makeGreen (pfGroup *parent) {

const float ROOMSIZE = 1000000.f; // Width and depth
const float ROOMBOT = -2.0;

pfGeoSet *gset = new pfGeoSet;
gset->setPrimType(PFGS_QUADS);
gset->setNumPrims(1);

int i = 0;
pfVec3 *scoords = (pfVec3*) new (4*sizeof(pfVec3)) pfMemory;
scoords[i++].set (-ROOMSIZE/2., -ROOMSIZE, ROOMBOT); // Front left
scoords[i++].set (ROOMSIZE/2., -ROOMSIZE, ROOMBOT); // Front right
scoords[i++].set (ROOMSIZE/2., ROOMSIZE, ROOMBOT); // back right
scoords[i++].set (-ROOMSIZE/2., ROOMSIZE, ROOMBOT); // back left

gset->setAttr(PFGS_COORD3, PFGS_PER_VERTEX, scoords, NULL);

pfVec3 *snorms = (pfVec3*) new (1*sizeof(pfVec3)) pfMemory;
snorms[0].set(0.0f, 0.0f, 1.0f);

gset->setAttr(PFGS_NORMAL3, PFGS_PER_PRIM, snorms, NULL);

pfVec4 *scolors = (pfVec4*) new (sizeof(pfVec4)) pfMemory;
scolors[0].set (0.1, 0.7, 0.2, 1.);
gset->setAttr(PFGS_COLOR4, PFGS_OVERALL, scolors, NULL);

pfGeoState *gstate = new pfGeoState;
gset->setGState (gstate);

pfGeode *geode = new pfGeode;
geode->addGSet (gset);
parent->addChild (geode);

}

void InitializeHook() {

pfGroup *root = new pfGroup;
pfGroup *rootPickable = new pfGroup;
root->addChild (rootPickable);

#if POLHEMUSCURSOR || HEAD

deviceeye = new DeviceEye ();
#endif

#ifdef HEAD

headcoupler = new HeadCoupler (pfwindow);
#endif

#ifdef POLHEMUSCURSOR

extern Variable<Pos6> *polhemus2;

Leonidas Deligiannidis

Page 287

cursor = new PolhemusCursor (root, rootPickable, polhemus2);
#endif

#ifdef MOUSECOUPLER

(void) new MouseCoupler (pfwindow);
#endif

#ifdef MOUSECURSOR

cursor = new MouseCursor (root, rootPickable, pfwindow);
#endif

//
// Make ground green (imagine you are in a park :)
//
makeGreen(root);

//
// Create 10 random objects that the user can grab and manipulate
//
const int NOBJS = 10;
Grab4 *g4[NOBJS];
int j;
for(j=0; j < NOBJS; j++) {
g4[j] = new Grab4(rootPickable, pfVec3 (RAND(100)-50 , RAND(50),

RAND(10)), (int) RAND(4),
pfVec4 (0.4+RAND(0.6), 0.4+RAND(0.6), 0.4+RAND(0.6), 1.0));

}

//
// Create the EarthSky (Performer fun)
//
pfEarthSky *esky = new pfEarthSky();
esky->setMode(PFES_BUFFER_CLEAR, PFES_SKY);
pfwindow->GetChan()->setESky(esky);

pfScene *scene = new pfScene;
scene->addChild (root);
pfwindow->GetChan()->setScene(scene);
pfNodePickSetup (scene);

//
// ESC will terminate application
//
(void) new Quitter (pfExit);

}

/***
 Window system initialization

***/
static void InitializeWin () {

pfwindow = new PfWindow(true, Link::GetHostId());
deviceTimer = new DeviceTimer;

pfEnable (PFEN_LIGHTING);

light = new pfLight;
light->setPos (0, -1., 1, 0.); // Tweak light position

(new pfMaterial)->apply();
pfLightModel *lmodel = new pfLightModel;
lmodel->setAmbient(0.4, 0.4, 0.4);// Tweak light model (add more ambient)
lmodel->apply();

}

/***

Leonidas Deligiannidis

Page 288

***/
main(int argc, char **argv) {

Link::InitCommunication((argv[1]) ? atoi(argv[1]) : 1);
InitializeWin ();
InitializeHook ();
Link::InitSystem ();

while (true) {

Link::START();

pfSync();
if (headcoupler) headcoupler->UpdateManual();
pfFrame();

light->on();

pfwindow->GetDeviceXWindow()->Read();
if (deviceeye) deviceeye->Read ();
deviceTimer->Read();

pfwindow->GetDeviceXWindow()->Dispatch(&LinkStep::Step);

if (deviceeye) deviceeye->Dispatch(&LinkStep::Step);
deviceTimer->Dispatch();

cursor->DoHit();

LinkStep::Step();
IO::UpdateAll ();

Link::FSTOP();
}

}

When the same program is compiled first using the COORDINATOR and then the

WORKER flag, two executables will be generated, one for the Coordinator and the

other for the Worker(s), where the program can be now executed in a distributed

environment.

The following picture is a snapshot of the program in execution. The various 3D

objects are visible as well as the virtual hand of the user.

Leonidas Deligiannidis

Page 289

A simple VR program created using the DLoVe’s paradigm

User’s virtual hand

Leonidas Deligiannidis

Page 290

Appendix D

Installation instructions

DLoVe is located in the implem top directory. All sub-directories named use.*

contain sample programs, and the other sub-directories contain the code for the

UIMS, which one must compile together with his/her code.

All makefiles use the environment variable HOSTTYPE, which is set by the user’s

shell at login. If a system does not set it automatically, it has to be set by the user

manually. I use "iris4d" when compiling on SGIs, and "sun4" when compiling on

Suns.

Compatibility

The modules that do not use SGI Performer graphics compile using GNU g++ (ver.

2.7.2) on a Sun (Solaris ver. 5.5.1) or GNU g++ (ver. 2.7.2) or SGI CC (IRIX ver. 6.2)

Leonidas Deligiannidis

Page 291

on a Silicon Graphics (IRIX 6.2). The Performer code compiles only on SGI using the

CC compiler, because the Performer libraries are generated with that compiler’s

name mangling conventions and cannot be linked under g++.

The basic UIMS only handles input, not output. It can read input from several

sources, including an X window (a regular X window or an SGI mixed-mode

Performer/GLX window), a Polhemus tracker, and an ISCAN eye tracker. One can

add other devices by sub-classing DeviceBase with a new class that follows the same

interface conventions, and then including calls to Read() and Dispatch() his device in

the main loop.

Because we separate input event handling from graphics, the basic UIMS is

compatible with any graphics system. We have used it with X and with SGI

Performer. In addition, we provide optional classes and examples for use with X and

Performer. If one is using one of those systems, these will be useful. If not, one

must treat the UIMS as an input handling system, and provide his own connection

to the graphics system.

Leonidas Deligiannidis

Page 292

Appendix E

Compile instructions

The makefiles in use.*/makefile perform all the necessary steps, but if one wants to

modify it for his/her own applications or if he/she is not fluent in "makefiles", a

description of the modules that need to be compiled is given below. The standard

files one needs to compile to get the basic UIMS (these are defined as "OBJECTS" in

the makefile) are shown below:

• basic/IO.cc

• basic/LinkBase.cc

• solve/Link.cc

• opt/Links.cc

• basic/VariableBase.cc

• solve/Variable.cc

• solve/Variables.cc

• basic/Condition.cc

• basic/EventHandler.cc

• basic/Pos.cc

Leonidas Deligiannidis

Page 293

• basic/utility.cc

• basic/DeviceXWindow.cc

• basic/DeviceTimer.cc

In addition, one would compile his/her main program (like use.x/examplex.cc) and

his/her interaction objects (like use.x/XSlider.cc)

Building an X Windows application, one also wants to compile ("XOBJECTS" in the

makefile):

• opt/XWindow.cc

If building a Performer application (that one can only do on an SGI), one generally

wants to compile the following (which are "PFOBJECTS" in the makefile), in addition

to the "OBJECTS" listed above:

• opt/PfVariables.cc

• opt/CursorBase.cc

• opt/MouseCursor.cc

• opt/PolhemusCursor.cc

• eye/DeviceEye.cc

• opt/HeadCoupler.cc

• opt/Quitter.cc

• opt/PfWindow.cc

Also, for Performer, the following libraries need to be included at the end of the CC

command line (listed as "PFLIBS" in makefile):

-lpf -lpfutil -lmpc -limage -lGL -lXirisw -lfpe -lXmu -lX11 -lm -lmalloc -lC

Leonidas Deligiannidis

Page 294

If one writes state diagrams, he/she will need to run his/her .cc files through

state/{sun4,iris4d}/translate5 before compiling. MouseCursor.cc and

XSlider.cc are examples of files that require this treatment (the makefile does this by

creating MouseCursor.cxx first and then compiling the resulting .cxx files instead of

the .cc)

Creating an application that will be executed in a distributed environment using

Coordinator(s) and Worker(s), one must also compile the files in the net directory

using the COORDINATOR and WORKER defines at the compiler’s line. These files are

listed in all makefiles as DLOVE_OBJECTS. These files are listed below:

• net/BasicComm.cc

• net/Stats.cc

• net/Config.cc

• net/Top.cc

• net/Connect.cc

• net/Coordinator.cc

The Stats.cc file contains modules responsible for printing out raw data when

measuring performance. The files BasicComm.cc, and Top.cc are the super-classes

of the Coordinator and the Worker. The Coordinator.cc contains all the code for

making the Coordinator accept and connections from Workers, and when multiple

users are involved, this module also directs Workers to connect to the other

Coordinators (Slave Coordinators). The Config.cc is a module used for reading and

parsing the configuration file.

Leonidas Deligiannidis

Page 295

Compiler flags

Compiling on Suns using the Gnu g++ compiler the following flags must be at the

g++ command line:

-I/usr/openwin/include -fno-implicit-templates

Compiling on SGIs using the CC compiler the following flag must be in the CC

command line:

-no_auto_include

The makefiles look for the HOSTTYPE environment variable to find the executable for

translate5 and to include a host-specific makefile such as

basic/makefile.$HOSTTYPE. If normal login does not set this environment

variable, one must set it manually. We use "iris4d" when compiling on SGIs, and

"sun4" when compiling on Suns. The makefile for sun4 also looks for the

environment variable OPENWINHOME and one can change or delete this to suit

his/her compilation.

Compilation for distributed environments

All DLoVe’s source files need to be recompiled using the following two flags in order

to for the user to obtain two executables, one for the Coordinator(s) and one for the

Worker(s).

• COORDINATOR

• WORKER

Leonidas Deligiannidis

Page 296

Other flags with which DLoVe can be compiled are:

• LVSTATS

• INFO

• MULTIUSER

The LVSTATS flag is used for DLoVe to generate raw data that can be analyzed to

measure its performance. Programs that can be used to measure its performance

are supplied in the scripts directory. The INFO flag is used for debugging

purposes. DLoVe prints out the data structure of all Links and Variables, types of

messages exchanged between the Coordinator(s) and the Worker(s), and the output

of the partition algorithm. The MULTIUSER flag is used when compiling multi-user

programs. When using this flag, either the COORDINATOR or the WORKER flag must

also be specified on the compiler’s command line.

Leonidas Deligiannidis

Page 297

Bibliography

[Adam 93] John A. Adam. “Virtual Reality is for Real”, IEEE Spectrum Oct. 1993

[Akl 97] Akl, Selim G. “Parallel Computation Models and Methods”. New Jersey:

Prentice Hall PTR, 1997.

[Alias] Alias Research Inc., “ALIAS User’s Guide” 110 Richmond Street East, Toronto

Ontario, Canada M5C 1P1

[Amdahl 67] Amdahl, G.M. Validity of the single-processor approach to achieving

large scale computing capabilities. In AFIPS Conference Proceedings vol. 30 (Atlantic

City, N.J., Apr. 18-20). AFIPS Press, Reston, Va., 1967, pp. 483-485.

[Anderson 95] David B. Anderson, John W. Barrus, John H. Howard, Charles Rich,

Chia Shen, Richard C. Waters. “Building Multi-User Interactive Multimedia

Environments at MERL”, IEEE MultiMedia, 2(4):77-82, Winter 1995.

Leonidas Deligiannidis

Page 298

[Aukstakalnis 92] Steve Aukstakalnis, David Blatner, “Silicon Mirage: the art and

science of virtual reality”, Peachpit Press, 1992

[Bach 86] Bach, Maurice J. “The Design of the UNIX Operating System”. New

Jersey: Prentice Hall PTR, 1986.

[Barbosa 96] Barbosa, Valmir C. “An Introduction to Distributed Algorithms”.

Massachusetts Institute of Technology, 1996.

[Barfield 95] Barfield, Woodrow and Claudia Hendrix. “Factors Affecting Presence

and Performance in Virtual Environments.” In Interactive Technology and the New

Paradigm for Healthcare. Washington, DC: IOS Press. 1995 p21-28

[Berson 96] Berson, Alex. “Client/Server Architecture”. Second Edition. McGraw-

Hill Companies, 1996.

[Bharat 94] Krishna Bharat, and Marc H. Brown., “Building Distributed Multi-User

Applications by Direct Manipulation”, UIST ‘94, November 2-4 1994 pages 71-81

[Bharat 97] Kurani, Bharat. “Applied UNIX Programming vol 2”. New Jersey:

Prentice Hall PTR, 1997.

[Bier 86] Bier, E., and M. Stone, “Snap-Dragging,” SIGGRAPH 86, 233-240

[Borning 81] Borning A. 1981. The programming language Aspects of ThingLab; a

constraint-oriented simulation laboratory. ACM Trans. Programming. Lang. Syst.

3,4 (Oct) p353-387

Leonidas Deligiannidis

Page 299

[Borning 86] Alan Borning and Robert Duisberg, Constraint-Based Tools for

Building User Interfaces. ACM Transactions on Graphics, Vol. 5, No. 4, October

1986, pages 345-374

[Bowman 95] Bowman, Duane K. “International Survey: Virtual-Environment

Research”. IEEE Computer, (June) 1995, p56-65

[Bran 94] Selic, Bran and Gullekson, Garth and Ward, Paul T. “Real Time Object

Oriented Modeling”. John Wiley & Sons, Inc., 1994.

[Bräunl 89] T. Bräunl, “Structured SIMD Programming in Parallaxis, Structured

Programming”, vol. 10, no. 3, July 1989, pp. 121-132 (12)

[Bräunl 91] T. Bräunl, “Designing Massively Parallel Algorithms with Parallaxis”,

Proceedings of the 15th Annual International Computer Software & Applications

Conference, compsac91, Sep. 1991, pp. 612-617 (6)

[Burdea 94] Grigore Burdea, and Philippe Coiffet, “Virtual Reality Technology”,

Wiley-Interscience Publication 1994

[Buyya 99a] Rajkuma Buyya, “High Performance Cluster Computing” Vol. 1

(Architectures and Systems), Prentice Hall PTR, New Jersey 1999

[Buyya 99b] Rajkuma Buyya, “High Performance Cluster Computing” Vol. 2

(Programming and Applications), Prentice Hall PTR, New Jersey 1999

Leonidas Deligiannidis

Page 300

[Carlsson 93] Carlsson, Christer, and Olaf Hafsand, “DIVE: A Multi-User Virtual

Reality System”. Proceedings of the IEEE Virtual Reality Annual International

Symposium, Sep. 18-22, 1993, p394-401

[Carlsson 93] Carlsson, C., and O. Hagsand. “DIVE – A platform for multi-user

virtual environments”. Computers and Graphics 17(6): 663-669, 1993

[Casner 94] Casner Steve, Henning Schulzrinne, and David M. Kristol “Frequently

Asked Questions (FAQ) on the Multicast Backbone (MBONE)”, 1994,

ftp://venera.isi.edu/mbone/faq.txt

[Clark 90] Clark D. D. and D. L. Tennenhouse , “Architectural considerations for a

new generation protocols”, SIGCOMM 1990, Sep. 1990, Computer Communication

Review, 20(4), 200-208

[Cormen 90] Cormen, Thomas H. and Leiserson, Charles E. and Rivest, Ronald L.

“Introduction to Algorithms”. Massachusetts Instritution of Technology, 1990.

[Coulouris 95] Coulouris, George and Dollimore, Jean and Kindberg, Tim.

“Distributed Systems Concepts and Desing second edition”. Addition-Wesley

Publishers Ltd., 1995.

[Crowcroft 95] Jon Crowcroft, “Open Distributed Systems”, Artech House, Inc., MA

1995.

Leonidas Deligiannidis

Page 301

[Culler 99] Culler, David E. and Singh, Jaswinder Pal. “Parallel Computer

Architecture A Hardware Software Approach”. Morgan Kaufmann Publishers, Inc.,

1999.

[Curry 96] Curry, David A. “UNIX Systems Programming for SVR4”. O’Reilly &

Associates, Inc., 1996.

[Deering 92] Michael Deering, “High Resolution Virtual Reality” Computer Graphics,

26,2. July 1992.

[DIVE] DIVE Web site: http://www.sics.se/dce/dive/dive.html

[Dowd 98] Kevin Dowd & Charles R. Severance, “High Performance Computing”

(Second Edition) RISC Architectures, Optimization & Benchmarks. O’Reilly &

Associates, Inc, July 1998

[Doyle 95] Doyle, Werner K. Interactive “Image-Directed Epilepsy Surgery:

Rudimentary Virtual Reality in Neurosurgery”. In Interactive Technology and the

New Paradigm for Healthcare. Washington, DC: IOS Press, 1995 p. 91-100

[Elliott 94] C. Elliott, G. Schechter, R. Yeung and S. Abi-Ezzi. “TBAG: A High Level

Framework for Interactive, Animated 3D Graphics Applications”, In Proc. ACM

SIGGRAPH ‘94, pages 421-434, August, 1994.

[Flynn 66] M. J. Flynn, “Very high speed computing systems”, Proc. IEEE 54 pp

1901-9 (1966).

Leonidas Deligiannidis

Page 302

[Foley 87] J.D. Foley, “Interfaces for Advanced Computing”, Scientific American,

v257, n4 p127-135, October 1987.

[Fountains 94] T. J. Fountains, “Parallel Computing principles and practice”, Press

Syndicate of the University of Cambridge 1994.

[Freeman-Benson 90] Bjorn N. Freeman-Benson, John Maloney, and Alan Borning.

An Incremental Constraint Solver. Communications of the ACM, Vol. 33 Number 1,

Jan. 1990 p54-63.

[GL 91] Silicon Graphics Inc. Graphics Library Programming Guide, 1991.

[Gleicher 93] Michael Gleicher. “A Graphical Toolkit Based on Differential

Constraints”. UIST '93 November 1993, pages 109-120.

[Gobbetti 93] Enrico Gobbetti and Jean-Francis Balaguer. “VB2: An Architecture

for Interaction in Synthetic Worlds”. In Proceedings of the ACM SIGGRAPH

Symposium on User Interface Software and Technology, pages 167-178, Atlanta,

Georgia, November 1993.

[Gray 97] Gray, John Shapley. “Interprocess Communications in UNIX The Nooks

and Crannies”. New Jersey: Prentice Hall PTR, 1997.

[Green 91] M. Green, and R.J.K. Jacob, “Software Architectures and Metaphors for

Non-WIMP User Interfaces”, Computer Graphics, v25, n3 p229-235, July 1991.

Leonidas Deligiannidis

Page 303

[Greenhalgh 95a] Greenhalgh, C., and Benford, S., “MASSIVE: a Distributed

Virtual Reality System Incorporating Spatial Trading,” in Proc. IEEE 15th

International Conference on Distributed Computing Systems (DCS’95), Vancouver,

Canada, May 30 – June 2, 1995, IEEE Computer Society.

[Greenhalgh 95b] Greenhalgh, C., and Benford, S., “MASSIVE: A Virtual Reality

System for Tele-conferencing”, ACM Transactions on Computer Human Interfaces

(TOCHI), 2 (3), pp. 239-261, ISSN 1073-0516, ACM Press, Sep. 1995.

[Gross 98] Gross, Thomas and O’Hallaron, David R. “iWarp Anatomy of a Parallel

Computing System”. Massachusetts Institute of Technology, 1998.

[Gupta 93] A. Gupta, A. Grama, and V. Kumar. “Isoefficiency: Measuring the

Scalability of Parallel Algorithms and Architectures”. IEEE Parallel and Distributed

Technology, p12-20, August 1993.

[Gustafson 88a] John L. Gustafson, Gary R. Montry, and Robert E. Benner.

Development of Parallel Methods for 1024-Processor Hypercube. SIAM Journal on

Scientific and Statistical Computing, 9(4), July 1988.

[Gustafson 88b] J. L. Gustafson, “Reevaluating Amdahl’s Law” chapter book,

Supercomputers and Artificial Intelligence, Edited by Kai Hwang, 1988.

[Gustafson 90] J. L. Gustafson, “Fixed Time, Tiered Memory, and Superlinear

Speedup”, Proceedings of the Fifth Distributed Memory Computing Conference

(DMCC5), October 1990.

Leonidas Deligiannidis

Page 304

[Hagsand 96] Hagsand, O. “Interactive multiuser VEs in the DIVE system”. IEEE

Multimedia 3(1): 30-39, 1996.

[Halabi 97] Bassam Halabi, “Internet Routing Architectures, The definite resource

for internetworking design alternatives”, New Riders Publishing 1997.

[Halliday 94] Sean Halliday, and Mark Green. “A Geometric Modeling and

Animation System for Virtual Reality”. Virtual Reality Software & Technology,

Proceedings of the VRST ‘94 Conference, 23-26 August 1994, Singapore pages 71 -

84. Published by World Scientific Publishing Co. Pte. Ltd.

[Hesham 94] Hesham El-Rewini, Theodore G. Lewis, and Hesham H. Ali. “Task

Scheduling in Parallel and Distributed Systems”. PTR Prentice Hall, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey 1994.

[Hill 92] Raph D. Hill, “The Abstaction-Link-View paradigm: Using constraints to

connect user interfaces to applications”. CHI ‘92, May 3-7, 1992 pages 335-342.

[Hill 93] Hill, R. D. 1993. “The Rendezvous constraint maintenance system”. In

ACM SIGGRAPH Symposium on User Interface Software and Technology,

Proceedings UIST’93. ACM, New York, p225-234.

[Hill 94] Ralph D. Hill, Tom Brinck, Steven L. Rohall, John F. Patterson, and Wayne

Wilner, “The Rendezvous Architecture and Language for Constructing Multiuser

Applications”. Transactions on Computer-Human Interaction v1,n2 Jun 1994 p81-

125.

Leonidas Deligiannidis

Page 305

[Hodges 95] Hodges, Larry F., Rob Kooper, Thomas C. Meyer, Barbara O.

Rothbaum, Dan Opdyke, Johannes J. de Graaff, James S. Willford, and Max M.

North. “Virtual Environments for Treating the Fear of Heights.” IEEE Computer 28,7

(July) 1995 p27-34.

[Holbrook 95] Hugh W. Holbrook, Sandeep K. Singhal, and David R. Cheriton, “Log-

Based Receiver-Reliable Multicast for Distributed Interactive Simulation”, In

Proceedings of ACM SIGCOMM Aug. 1995 p328-341. Published as Computer

Communications Review, Vol 25, No. 4 October 1995.

[Hoover 87] Hoover R. “Incremental graph evaluation”. Ph.D. thesis, Dept. Of

Computer Science, Cornell U., Ithaca, NY 1987.

[Horn 92a] Bruce Horn. “Constrained patterns as a basis for object-oriented

constraint programming”. In Proceedings of the 1992 ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications, pages 218-233,

Vancouver, British Columbia, October 1992.

[Horn 92b] Bruce Horn. “Properties of user interface systems and the Siri

programming language”. In Brad Myers, editor, Languages for Developing User

Interfaces, pages 211-236. Jones and Bartlett, Boston, 1992.

[Hudson 91] Hudson, A., “Incremental Attribute Evaluation: A Flexible Algorithm

for Lazy Update”, ACM Transactions on Programming Languages and Systems, v13,

n3, July 1991, pp. 315-341.

Leonidas Deligiannidis

Page 306

[Hwang 98] Hwang, Kai and Xu, Zhiwei. “Scalable Parallel Computing”. McGraw-

Hill, 1998.

[Jamieson 87] Jamieson, Leah H. and Gannon, Dennis B. and Douglass, Robert J.

“The Characteristics of Parallel Algorithms”. Massachusetts Institute of Technology,

1987.

[Jeffrey 96] Jeffrey J. P. Tsai, Yaodong Bi, Steve J. H. Yang, and Ross A. W. Smith,

“Distributed Real-Time Systems”, John Wiley & Sons, Inc. 1996.

[Johnston 92] R.S. Johnston, "The SimNet Visual System," Proc. 9th

Interservice/Industry Training Equipment Conf., Defense Technical Information

Center, Washington. DC. Nov. 1992.

[Kelsick 98] Kelsick, Jason and Vance, Judy M., “The VR Factory: Discrete Event

Simulation Implemented in Virtual Environment”, ASME Design for Manufacturing

Conference Proceedings, Atlanta, GA, Sep 1998.

[Kemelmakher 98] M. Kemelmakher and O. Kremien. “Scalable and Adaptive

Resource Sharing in PVM. Recent Advances in Parallel Virtual Machine and Message

Passing Interface”. LNCS, Vol 1479, p196-205, Springer-Verlag 1998.

[Kenneth 97] Berman, Kenneth A. and Paul, Jerome L. “Fundamentals of

Sequential and Parallel Algorithms”. PWS Publishing Company, 1997.

[Kernigham 84] Kernigham, Brian W. and Pike, Rob. “The UNIX Programming

Environment”. New Jersey: Bell Telephone Laboratories, 1984.

Leonidas Deligiannidis

Page 307

[Krueger 94] Wolfgang Krueger and Bernd Froehlich, “The Responsive Workbench”,

IEEE Computer Graphics and Applications, May 1994.

[Lakshmivarahan 90] Lakshmivarahan, S. and Dhall, Sudarshan K. “Analysis and

Design of Parallel Algorithms. Arithmetic and Matrix Problems”. McGraw-Hill,

1990.

[Langreth 95] Langreth, Robert. “Virtual Reality: Breakthrough Hand Controller”

Popular Science 246, January 1995 p 45.

[Larson 92] James A. Larson, “Interactive Software: Tools for Building Interactive

User Interfaces”. Yourdon Press, by Prentice-Hall 1992, Englewood Cliffs, New

Jersey 07632.

[Lewis 98] Chris Lewis, “Cisco TCP/IP Routing Professional Reference (second

edition)”, McGraw-Hill Companies, Inc. 1998.

[Lopez 94a] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning, “Kaleidoscope:

A Constraint Imperative Programming Language”, In Constraint Programming, B.

Mayoh, E. Tougu, J. Penjam (Eds.), NATO Advance Science Institute Series, Series

F: Computer and System Sciences, Vol. 131, Springer-Verlag, 1994, pages 313-329.

[Lopez 94b] Gus Lopez, Bjorn Freeman-Benson, and Alan Borning, “Implementing

Constraint Imperative Programming Languages: the Kaleidoscope’93 Virtual

Machine”, System, Languages, and Applications, Portland, Oregon, October 1994,

pages 259-271.

Leonidas Deligiannidis

Page 308

[Lynch 96] Lynch, Nancy A. “Distributed Algorithms”. Morgan Kaufmann

Publishers, Inc., 1996.

[Macedonia 95a] Macedonia, Michael, R. Michael J. Zyda, David R. Pratt, and Paul

T. Barham, “Exploiting Reality with Multicast Groups: A Network Architecture for

Large Scale Virtual Environments”, Proceedings of IEEE Virtual Reality Annual

International Symposium, 2-10, 1995.

[Macedonia 95b] Macedonia, Michael R., Zyda, Michael J., Pratt, David R.,

Brutzman, Donald P. and Barham, Paul T., “Exploiting Reality with Multicast

Groups”, IEEE Computer Graphics & Applications Sep. 1995 p38-45.

[Macedonia 95c] Macedonia, Michael R., Brutzman, Donald P., Zyda, Michael J.,

Pratt, David R., Barham, Paul T., Falby, John and Locke, John, “NPSNET: A Multi-

Player 3D Virtual Environment Over the Internet” in the Proceedings of the 1995

Symposium on Interactive 3D Graphics, 9-12 April 1995, Monterey, CA.

[Macedonia 97] Macedonia, Michael and Zyda, Michael, “A Taxonomy for Networked

Virtual Environments”, IEEE Multimedia, v4, n1, January-March 1997, p48-56.

[MacIntyre 98] Brair MacIntyre and Steven Feiner. “A Distributed 3D Graphics

Library”. Proc. ACM SIGGRAPH ‘98 Conference, Addison-Wesley/ACM Press, 1998.

[MPI 94] MPI Message Passing Interface Forum. “MPI: A Message-Passing Interface

Standard”. International Journal of Supercomputer Applications and High

Performance Computing, 8(3/4), 1994.

Leonidas Deligiannidis

Page 309

[Mullender 93] Mullender, Sape. “Distributed Systems second edition”. ACM Press

Frontier Series, 1993.

[Myers 90a] B. A. Myers, D. A. Giuse, R. B. Dannenberg, B. V. Zanden, D. S.

Kosbie, E. Pervin, A. Mickish, and P. Marchal. “Garnet: Comprehensive Support for

Graphical, Highly Interactive User Interfaces.”, IEEE Computer Vol. 23, No11,

November 1990, p 71-85.

[Myers 90b] B.A. Myers et al., “The Garnet Toolkit Reference Manuals: Support for

highly Interactive, Graphical User Interfaces in Lisp.” Tech. Report CMU-CS-90-

117, Carnegie Mellon University, Computer Science Department, Mar. 1990.

[Myers 92a] Myers, B. A., and Zanden, B. Vander 1992. “An environment for rapid

creation of interactive design tools”. Vis. Comput. Int. Comput. Graph. 8, 3, 94-116.

[Myers 92b] Myers, B. A., Giuse, D. A., and Vander Zanden, B. 1992. “Declarative

programming in a prototype-instance system: Object-oriented programming without

writing methods”. Sigplan Not. 27, 10 (Oct.), pages 184-200.

[Pacheco 97a] Peter S. Pacheco, Parallel “Programming with MPI”, Morgan Kaufman

Publishers, Inc. 1997.

[Pacheco 97b] Pacheco, Peter S. “Parallel Programming with MPI”. Morgan

Kaufmann Publishers, Inc., 1997.

Leonidas Deligiannidis

Page 310

[Pankaj 94] Jalote, Pankaj. “Fault Tolerance in Distributed Systems”. PTR Prentice

Hall, 1994.

[PARADISE] PARADISE Project Web site: http://www.dsg.stanford.edu/paradice.html

[Pate 96] Pate, Steve D. “UNIX Internals. A Practice Approach”. Addison Wesley

Longman, 1996.

[PHIGS 88] PHIGS+ Committe. Phigs+ functional description, revision 3.0.

Computer Graphics.22(3):125-125, 1988.

[Pimentel 94] Ken Pimentel, and Brian Blau, "Teaching Your System To Share",

IEEE Computer Graphics & Applications, Jan 1994, pages 60-65.

[Prat 95] Pratt, David R., Michael Zyda, and Kristen Kelleher. “Virtual Reality: In the

Mind of the Beholder.” IEEE Computer 28,7 (July) 1995 p17-19.

[Rago 93] Rago, Stephen A. “UNIX System V Network Programming”. Addison –

Wesley Publishing Company, Inc., 1993.

[Reason 78] Reason JT, “Motion sickness adaptation: a neural mismatch model”.

Journal of the Royal Society of Medicine, 71, p819-829, 1978.

[Rewini 98] Hesham El-Rewini & Ted G. Lewis, “Distributed and Parallel

Computing”. Mannining Publications Co. 1998.

Leonidas Deligiannidis

Page 311

[Robbins 96] Robbins, Kay A. and Robbins, Steven. “Practical UNIX Programming.

A Guide to Concurrency, Communication, and Multithreading”. New Jersey: Prentice

Hall PTR, 1996.

[Rochkind 95] Rochkind, Marc J. “Advanced UNIX Programming”. New Jersey:

Prentice Hall PTR, 1995.

[Rohlf 94] J. Rohlf and J. Helman, IRIS Performer: A High Performance

Multiprocessing Toolkit for Real-Time (3D) Graphics, In Proc. ACM SIGGRAPH ‘94,

pages 381-394, 1994.

[Sannella 92] Sannella, M. And Borning, A. 1992. “Multi-Garnet: Integrating multi-

way constraints with Garnet”. Tech Rep. 92-70-01, Dept. Of Computer Science and

Engineering, Univ. Of Washington, Seatle, Wash.

[Sannella 94] Michael Sannella. “SkyBlue: A Multi-Way Local Propagation

Constraint Solver for User Interface Construction”. UIST ‘94 November 2-4, 1994,

pages 137-146.

[Satava 93] Satava, Richard M. “Virtual Reality Surgical Simulator: The First Steps”

Surgical Endoscopy 7, 1993 p203-05 and in VR93: Proceedings of the Third Annual

Conference on Virtual Reality, London, April 1993. London: Meckler Ltd. pp103-05.

[Schroder 94] Schroder-Preikschat, Wolfgang. “The Logical Design of Parallel

Operating Systems”. New Jersey: Prentice Hall PTR, 1994.

Leonidas Deligiannidis

Page 312

[Shaw 93] Shaw, Chris, and Mark Green, “The MR Toolkit Peers Package and

Experiment”. Proceedings of the IEEE Virtual Reality Annual International

Symposium, 1993, p463-469.

[Shneiderman 92] B. Shneiderman, “Designing the User Interface: Strategies for

Effective Human-Computer Interaction”, Second Edition, Addison-Wesley, Reading,

MA, 1992.

[Shoch 82] Shoch, J. F. and J. A. Hupp, “The Worm programs – early experience

with a distributed computation”, Communications of the ACM 25(3) 1982.

[Singhal 94] Sandeep K. Singhal, and David R. Cheriton, “Using a Position History-

Based Protocol for Distributed Object”, Technical Report STAN-CS-TR-94-1505, Dep.

Of Computer Science, Stanford University, Feb. 1994.

[Singhal 95] Sandeep K. Singhal, and David R. Cheriton, “Exploiting position

history for efficient remote rendering in networked virtual reality”, Presence:

Teleoperators and Virtual Environments, 4(2) p169-193, Spring 1995.

[Singhal 96] Singhal, S. K., and D. R. Cheriton. “Using projection aggregations to

support scalability in distributed simulation”. In Proceedings of the 16th

International Conference on Distributed Systems (ICDCS), 196-206. IEEE

Computer Society, May 1996.

[Singhal 99] Sandeep Singhal and Michael Zyda, “Networked Virtual Environments”

Design and Implementation, Addison-Wesley, ACM Press, New York NY 1999.

Leonidas Deligiannidis

Page 313

[Slattery 99] Terry Slattery, Bill Burton, “Advanced IP Routing in Cisco Networks”,

McGraw-Hill Companies, Inc. 1999.

[Sowizral 98] H. Sowizral, K. Rushforth, and M. Deering. The Java 3D API

Specification, Addison-Wesley, Reading, MA, 1998.

[Spurgeon 96] Spurgeon, Charles. “Ethernet Configuration Guidelines: A Quick

Reference Guide to the Official Ethernet (IEEE 802.3) Configuration Rules”.

Includes 100Base-T Fast Ethernet. Charles Spurgeon, 1996.

[Stephen 94] Ellis, Stephen R. “What Are Virtual Environments?” IEEE Computer

Graphics and Application v14 no1 January 1994.

[Stevens 90] Stevens, Richard W. “UNIX Network Programming”. New Jersey: PTR

Prentice Hall, 1990.

[Stevens 92] Stevens, Richard W. “Advanced Programming in the UNIX

Environment”. Addison Wesley Publishing Company, 1992.

[Stevens 98] Stevens, Richard W. “UNIX Network Programming”. Networking APIs:

Sockets and XTI. Vol 1 second edition. New Jersey: Prentice Hall PTR, 1998.

[Strauss 92a] Paul S. Strauss and Rikk Carey. An object-oriented 3d graphics

toolkit. Computer Graphics, 26(2):341-349, July 1992. Proceedings SIGGRAPH '92.

[Strauss 92b] P.S. Strauss and R. Carey, An Object-Oriented 3D Graphics Toolkit,

In Computer Graphics (Proc. ACM SIGGRAPH ‘92), pages 341-349 Aug, 1992.

Leonidas Deligiannidis

Page 314

[Sturman 92] D.J. Sturman, “Whole-Hand Input”, doctoral dissertation, Media Lab,

Massachusetts Institute of Technology, Cambridge, MA., Feb. 1992.

[Sunderam 90] V. S. Sunderam, PVM: A Framework for Parallel Distributed

Computing, Concurrency: Practice and Experience, 2, 4, pp 315--339, December,

1990. Also at http: //www.netlib.org/ncwn/pvmsystem.ps

[Sutherland 63] Ivan Sutherland. “Sketchpad: A Man Machine Graphical

Communication System”. Ph.D thesis, Massachusetts Institute of Technology,

January 1963.

[Szekely 88] Pedro A. Szekely and Brad A. Myers. A user interface toolkit based on

graphical objects and constraints. In OOP-SLA '88 Proceedings, pages 36-45,

September 1989. Also as Sigplan Not. 23, 11 (Nov) 1988 p36-45.

[Tagg 97] Roger Tagg and Chris Freyberg, “Designing Distributed and Cooperative

Information Systems”, International Thomson Computer Press, MA 1997.

[Tanenbaum 92] Tanenbaum, Andrew S. “Modern Operating Systems”. New Jersey:

Prentice Hall PTR, 1992.

[Tanenbaum 95] Tanenbaum, Andrew S. “Distributed Operating Systems”. New

Jersey: Prentice Hall PTR, 1995.

[Tanenbaum 96] Andrew S. Tanenbaum, “Computer Networks” (third edition),

Prantice Hall PTR, New Jersey 1996.

Leonidas Deligiannidis

Page 315

[Terrence 97] Chan, Terrence. “UNIX System Programming Using C++”. New

Jersey: Prentice Hall PTR, 1997.

[Utpal 88] Banerjee, Utpal. “Dependence Analysis for Supercomputing”. Kluwer

Academic Publishers, 1988.

[Vahalia 96] Vahalia, Uresh. “UNIX Internals The New Frontiers”. New Jersey:

Prentice Hall PTR, 1996.

[Vince 95] John Vince, “Virtual Reality Systems”, Addison-Wesley Publishing

Company 1995.

[Waters 96] Richard C. Waters, David B. Anderson, John W. Barrus, David C.

Brogan, Michael A. Casey, Stephan G. McKeown, Tohei Nitta, Ilene B. Sterns,

William S. Yerazunis, “Diamond Park and Spline: A Social Virtual Reality System

with 3D Animation”, Spoken Interactions, and Runtime Modifiability. Presence:

Teleoperators and Virtual Environments, Nov 1996.

[Wilson 95] Wilson, Gregory V. “Practical Parallel Programming”. Massachusetts

Institute of Technology, 1995.

[Wilson 96] Wilson, Gregory V. and Lu, Paul. “Parallel Programming Using C++”,

Massachusetts Institution of Technology, 1996.

Leonidas Deligiannidis

Page 316

[Zanden 94] Brad Vander Zanden, Brad A. Myers, Dario A. Guise, Pedro Szekely.,

“Integrating Pointer Variables into One-Way Constraint Models”. ACM Transactions

on Computer-Human Interaction, v1, n2 June 1994 p161-213.

[Zimmerman 87] T. G. Zimmerman et al., “A Hand Gesture Interface Device.” Proc.

Human Factors in Computing Systems and Graphics Interface, ACM Press, New

York, April 1987, pp. 189-192.

[Zyda 93] Zyda, Michael J., Pratt, David R., John S. Falby, Chuck Lombardo,

Kelleher, Kristen M. “The Software Required for the Computer Generation of Virtual

Environments”. In Presence. 2,2 (Spring 1993). p130-140.

