
Name-Independent Compact Routing in Trees

Kofi A. Laing∗

Abstract
Given an undirected graph with positive edge weights, define Nq(v) for each node v to be the set of q

nodes closest to v (including v itself and breaking ties by node ID). It is shown that the nodes of any tree
can be colored with one color per node drawn from a set of q colors, so that, for each node v, each color
appears exactly once in Nq(v) (but for arbitrary graphs, verifying whether they can be similarly colored
for constant q is NP-Complete). As an application of the first result, we present a generalized tradeoff
scheme that, for any fixed constant k and any 2 ≤ b ≤ O(n1/k), uses space O(n1/k logb n log n),
headers of length O(logb n logn), makes intermediate routing decisions in O(log b) time, and achieves
stretch 2k − 1. For fixed k, this realizes O(log n) sized headers when we choose b = n1/k. A single-
source compact routing tradeoff scheme achieves the a stretch of 2k− 1 with the same space and header
constraints. Our schemes use underlying optimal name-dependent tree routing algorithms from from
Thorup and Zwick, and from Fraigniaud and Gavoille.

1 Introduction

We begin by introducing the compact routing problem after which we formulate a related graph multicol-
oring problem which may be used in solving the compact routing problem. An instance of the compact
routing problem is an undirected graph G = (V,E) with edge weights. The problem is to specify routing
tables Tablev[] at each node v of the graph, and an algorithm for routing between pairs of nodes with the
help of these tables. Typically one attaches either a constant or writable header to a packet, and the rout-
ing algorithm determines the next edge on the route path, and possibly the next value of the header when
headers are writable, as a function of the incoming header and the routing table in the current node.

One measure of the quality of the routing tables and algorithm is the stretch obtained, which is defined
as the maximum over all pairs of source and destination, of the ratio of the route path length to the length
of the shortest path. We seek to get a good tradeoff between the stretch obtained and the amount of space
available in each node for storing the routing tables, as a function of the network size.

The name-independent model assumes that each node comes labeled in the input graph, and that the
node names may not be reassigned by the routing algorithm designer to assist the algorithm. A packet arrives
in the network with only the original given name for its destination. Any topology-dependent information
required for routing to this destination must be looked up within the network itself. In contrast, the name-
dependent model allows the routing algorithm designer to reassign names (let us call these routing labels)
to the nodes to encode a limited amount of topological information about the graph, and thus improve the
routing algorithm. In this case a packet arrives in the network with the routing label for its destination node,
and how the source node knows this label is not specified.

The fixed-port model assumes that each node v in the graph has distinct names {1, . . . , deg(v)} for the
edges incident on v, and that there is no relationship between the two names assigned to an edge by the two
nodes at its ends. In contrast the designer-port model [6] assumes that the routing algorithm designer may
relabel the ports based on the topology of the graph, and specify the routing algorithm in terms of the new
port names.

∗Computer Science Department, Tufts University, Medford, MA 02155. laing@eecs.tufts.edu

1

In the name-independent fixed-port model, Awerbuch et al.[2] obtained a compact routing scheme with
stretch O(k23k) for arbitrary graphs using space Õ(n2/k) and O(log n) headers. This was subsequently
improved to O(2k) for arbitrary graphs using Õ(n2/k log D) space where D is the diameter of the network,
and headers of size O(log n) by Peleg[9]. Another scheme by Awerbuch and Peleg [3] obtained a stretch of
O(k2) in networks using Õ(n2/k log D) space, and headers of size O(log n).

Recent work has mostly been in the name-dependent model, which does not address the problem of how
a source node finds out the name-dependent label of a destination node. This includes a stretch 3 scheme
by Cowen which requires Õ(n2/3) space and uses O(log n) headers[4], and a stretch 5 scheme by Eilam et
al.[5] which uses Õ(n1/2) space. Tradeoff schemes for name-dependent routing were established by Thorup
and Zwick[10] with stretch 2k − 1 and space Õ(kn1/k) provided we perform handshaking – which refers
to the exchange of information between two nodes prior to computing a bit string to be included in a packet
header. Without handshaking, the stretch they obtain is 4k − 5.

A recent paper by Arias, Cowen, Laing, Rajaraman and Taka addressed the name-independent version
of the compact routing problem in arbitrary graphs with significant improvements [1] – a stretch 3 scheme
is obtained for single-source routing with Õ(n1/2). A stretch of 5 is obtained for routing from any source in
arbitrary graphs with Õ(n1/2) space and O(log2 n) headers. They show how to improve the header size to
O(log n) at the expense of either increasing the stretch to 7 or increasing the space to Õ(n2/3). They also
present a tradeoff scheme that achieves a stretch of 1 + (k − 1)(2k/2 − 2) for space Õ(n2/k), and another
with stretch 16k2 + 4k which improves on the result of Awerbuch and Peleg [3] with space Õ(n2/k log D),
with the former being of practical interest for small values of k (k ≤ 8) [1]. Both of these tradeoff schemes
use o(log2 n) sized headers.

Central to these compact routing algorithms of [1] are variants of the following coloring problem: Given
an undirected n-vertex graph G = (V,E) with positive edge weights, and with a multicoloring of the nodes
from the color set {1, . . . , q}, let Cv ⊂ [q] denote a subset of colors assigned to node v. Denote by Nq(u)
the set of q nodes closest to u (including u and breaking ties by node id). We say Nq(u) is fully-colored if
for every color τ ∈ [q], there exists a node v ∈ Nq(u) such that τ ∈ Cv . Define Γ(G, q) to be the minimum
c such that there exists a multicoloring satisfying for all v ∈ G: (1) Nq(v) is fully-colored and (2) |Cv | < c.
A result for the general version of this coloring problem (see Lemma 3.1 in [1]) implies that, for general
graphs G, Γ(G,

√
n) = O(log n). In this paper we show the perhaps surprising result that for any tree,

Γ(G, q) = 1. The proof is purely graph-theoretic, and constructive. We also show a result that is interesting
in its own right – that for any constant q, deciding whether or not Γ(G, q) = 1 for an arbitrary graph is
NP-Complete.

As an application of the first result, we obtain improved compact routing tradeoff schemes for trees
under the name-independent fixed-port model. Section 2 presents the result that Γ(G, q) = 1, which en-
tails a new coloring algorithm for the implementation of distributed dictionaries of lookup information for
translating name-independent (given) names to topology-dependent (routing) labels in trees. In Section 3
we show that that the problem of deciding whether Γ(G, q) = 1 for any constant q is NP-Complete (even
when the edge weights are O(1)). Section 4 presents two compact routing schemes: a tree-based all-pairs
scheme which uses Õ(n1/k) space and O(log n) headers for fixed constant k, and obtains a stretch bound
of 2k − 1, as well as another single-source scheme which achives a stretch of 2k − 1. Compared with
naively applying the more general exponential-stretch algorithm of Arias et al.[1] to trees, the first scheme
yields an O(log n) factor improvement in the space requirement by avoiding the probabilistic randomized
distribution of O(log n) layers of colors (and this could be significant for small memory and/or embedded
devices), an O(log n) factor improvement in header size, and a O(k) factor improvement in stretch.

2 Tree Neighborhood Coloring Result

We now prove that for every weighted tree T on n nodes and any q ≤ n, Γ(T, q) = 1. That is,

2

Theorem 2.1 Let q ≥ 1 be a constant integer, and let T = (V,E) be a tree with n ≥ q nodes and edge
weights w : E −→ R+. There exists a mapping c : V −→ [q] such that for every node v ∈ V , Nq(v) is
distinctly colored.

First, the following informal discussion puts this result in context: it is trivial to see that linear arrays
can be colored in such a way that all connected subgraphs of size q are distinctly colored (not just the
neighborhoods based on distance and breaking ties lexicographically by node ids). This is by applying the
colors cyclically from one end to the other, as shown in figure 1.

R G B R G B R G B

Figure 1: In this 9 node path three colors can be applied cyclically in the order R, G, B, R, . . . along the path, so that
all connected subgraphs of size 3 are distinctly colored.

On the other hand, there is no way to color an n node tree such that all connected subsets of size q are
distinctly colored (not unless q = n when n ≥ 3). This is easily seen by considering the star graph with
n− 1 leaves.

It is therefore pleasantly surprising to find that by only considering neighborhoods defined in terms of
distances and breaking ties based on node id, we can color a tree with one layer (one coloring function)
using q colors such that every neighborhood of size q is distinctly colored – this is illustrated in figure 2.

a

b

c

d

e

f

g

j

m

n

l

h
i

2 1

1
1

5 42

2 2

3

1

3
2

1

p

1

R

G B

Y
Y

G

Y

R

G

B
Y

G

B

Y

G

k
o

B

Figure 2: In the 16 node tree on the left, the node names (shown alphabetically) and edge weights are shown, with
the resulting neighborhoods. The same tree is shown on the right, with the four colors {R, G, B, Y } assigned so that
every neighborhood contains the four distinct colors.

A final observation is that cycles whose length is a multiple of q can be colored (in the stronger sense
of coloring all connected subgraphs of size q). However, as would be expected, not all planar graphs can
be colored using a single color layer, as can be seen by considering odd-length cycles whose length is not
a multiple of q, where q is odd, and where all edges have unit weights. Our proof of Theorem 2.1 uses the
following lemma:

Lemma 2.2 (Awerbuch et al.[2]) Let G = (V,E) be a graph with positive edge weights, and let q ≥ 1 be
a constant integer. If t ∈ Nq(u) and v is a node on a shortest path from u to t, then t ∈ Nq(v).

Proof of Theorem 2.1: By construction: Algorithm 2.3 below correctly computes a coloring such that each
node v has a neighborhood Nq(v) that is fully colored. The proof consists of three subclaims.

Algorithm 2.3 ColorTree(WeightedTree T , Num q):
1: B ← {r}, where r is an arbitrary node in T

2: color the nodes of Nq(r) distinctly.
3: while(B 6= V)
4: choose an edge {u, v} where (u, v) ∈ B ×B

3

5: color Nq(v) \Nq(u) with colors in Nq(u) \Nq(v)
6: B ← B

⋃{v}

Claim A: Every time the test in line 3 is evaluated, the induced graph T [B] is connected.
This is clear from lines 1, 4 and 6.

Claim B: Just before line 5, none of the nodes in Nq(v) \Nq(u) is colored.
A sufficient condition is for all the colored nodes in Nq(v) to be in Nq(u). To show this, consider cases

on the position of a colored node s ∈ Nq(v). When u is on the shortest path from v to s, and Lemma 2.2
easily implies s ∈ Nq(u). Otherwise, u is not on the shortest path from v to s, and there exists a node
u′ ∈ B such that s ∈ Nq(u

′), because the only way a node can be colored is by being in the neighborhood
of a node in B. Now observe that if we deleted the edge {u, v}, u′ would be in the same component as
u, since T [B] is connected (by claim A), and v 6∈ B. Also s would be in the other component because a
shortest path from v to s does not go through u. It follows that the path from u ′ to s goes through the edge
{u, v}. Therefore u is on the shortest path from u′ to s and again, Lemma 2.2 implies that s ∈ Nq(u).
Claim C: Every time the test in line 3 is evaluated, Nq(v) is fully-colored for every v in B.

By induction. This is clearly true the first time line 3 is evaluated, because B = {r} and Nq(r) is
fully-colored. Now suppose the claim holds after the first t evaluations (when |B| = t). Let {u, v} be the
tth edge chosen in line 4. By the inductive hypothesis, Nq(u) is fully-colored. Therefore none of the colors
in Nq(u) \ Nq(v) is in Nq(u)

⋂
Nq(v). Moreover |Nq(u) \ Nq(v)| = |Nq(v) \ Nq(u)|, so after executing

line 5, Nq(v) will be fully-colored, since none of the nodes in Nq(v) \Nq(u) were colored (by Claim B).
Theorem 2.1 follows immediately from Claim C when Algorithm 2.3 terminates with B = V . 2

3 Neighborhood Coloring is NP-Complete for Constant q

In this section we prove the following theorem:

Theorem 3.1 Let q ≥ 3 be a constant integer. and let G = (V,E) be an n-node graph with positive edge
weights. The problem of deciding whether Γ(G, q) = 1 is NP-Complete (even when edge weights are O(1)).

Proof: The problem is in NP because given a coloring of the nodes with one color per node, we can compute
all the neighborhoods and then check whether every neighborhood of size q contains an instance of every
color, all in polynomial time.

We say an edge-coloring of a connected graph G′ using colors drawn from a total order is unique-
minimum if at every node, there is a unique edge with minimum weight. An algorithm to find a unique-
minimum coloring is to compute a maximal matching, and assign all the edges in the matching a weight of
w1. Now every edge is incident on a node that is matched, or else the matching was not maximal. Consider
any singleton nodes that are not yet matched, and arbitrarily associate each one to an incident edge, and label
that edge w2 > w1. Finally label all remaining edges w3 > w2. This algorithm creates a unique-minimum
edge-coloring using three colors in an arbitrary graph, and runs in polynomial time.

We show NP-hardness as follows. Let G′ = (V ′, E′) be a connected instance of the problem q-
COLORABILITY OF GRAPHS, which is well-known to be NP-Complete [7]. Determine a unique-
minimum edge-coloring of G′ using the preceding algorithm, using the weights {w1, w2, w3} = {q1, q2, q3}.

Construct G from G′ by independently replacing every edge {u, v} in G′ of color qi by the new extra
nodes xuv

1 , . . . , xuv
q−2 and edges {u, xuv

1 }, {xuv
q−2, v}, both of weight qi, and edges {{xuv

j , xuv
j+1} | 1 ≤ j <

q − 2}, all of weight 1, forming a path (u, xuv
1 , xuv

2 , . . . , xuv
q−2, v) in G. No other edges contain the nodes

xuv
i .

We claim that for any 1 ≤ j ≤ q− 2, Nq(x
uv
j) = {u, xuv

1 , . . . , xuv
q−2, v}, because d(xuv

j , u) = qi +(j−
1) < qi + q and d(xuv

j , v) = qi + (q − j − 2) < qi + q. The distance from xuv
j) to any other node on the

4

chain is also less than qi + q because they are closer to xuv
j) than u and v, and the distance from xuv

j to any
other node not on the chain is at least qi + q. The chain (u, xuv

1 , xuv
2 , . . . , xuv

q−2, v) is of size q, and accounts
exactly for the desired neighborhood size, thus proving the claim.

Secondly we claim that for every node u, Nq(u) is of the form (u, xuv
1 , xuv

2 , . . . , xuv
q−2, v), where

{u, v} ∈ G′ has the minimum edge weight among the edges incident on u. This is because for every
xuv

i on the chain, d(u, xuv
i) < qi + q and d(u, v) < 2qi + q. Moreover, by choice of v, the distance from u

to any adjacent node other than xuv
1 is at least qi+1 > 2qi + q by the unique minimum property.

Thus, all distinct neighborhoods of size q in G are of the form {u, xuv
1 , xuv

2 , . . . , xuv
q−2, v}, where

{u, v} ∈ G′ has the minimum edge weight among the edges incident on u. The distinct neighborhoods
therefore correspond one-to-one to the edges in G′. Note that this reduction is planarity-preserving, can be
performed in polynomial time and results in edge weights that are O(1).

Finally we claim that a q-coloring of G′ exists if and only if Γ(G, q) = 1. First, given a q-coloring
c′ : V ′ −→ [q] of G′, we color each node u in G with its color c′(u) in G′. For each edge {u, v} in G′ we
also color the nodes xuv

i in G arbitrarily with the colors in [q] \ {c′(u), c′(v)}. Clearly the neighbhorhood
Nq(u) is fully-colored. Since this is independently true for each edge, every neighborhood in G is fully-
colored and Γ(G, q) = 1. Conversely given a q-coloring c : V −→ [q] of G such that every neighborhood
in G is fully-colored, we color each node u in G′ with its color c(u) in G. Now consider any edge {u, v}
in G′. Since {u, v} ⊂ Nq(x

uv
1) and Nq(x

uv
1) is fully-colored, we know that c(u) 6= c(v), so the resulting

coloring is a good q-coloring on G′. 2

Corollary 3.2 Given a planar graph G = (V,E) with positive edge weights, the problem of deciding
whether Γ(G, 3) = 1 is NP-Complete.

Proof: In this case we apply the same reduction from an instance of 3-COLORABILITY OF PLANAR
GRAPHS WITH MAXIMUM DEGREE 6, (which is implicitly shown to be NP-complete — pages 85–89;
[7]).

4 A Compact Routing Tradeoff Scheme for Trees

In this section we present two compact routing schemes for trees – an all-pairs scheme and also a single-
source scheme. These schemes combine some ideas from [1] with our new coloring schemes. First we
establish a common basis of notation and then develop the two schemes. We use the following result of
Thorup and Zwick[10]. A similar result was obtained independently by Fraigniaud and Gavoille[6]:

Lemma 4.1 ([10, 6]) Given a tree T with edge weights there exists a shortest-path name-dependent com-
pact routing algorithm using O(b log n) space per node and O(logb n log n) headers.

Let Label(v) be the routing label assigned by the Algorithm of Lemma 4.1 to the node v in a tree
T , and let Tablev.ND[] denote the name-dependent routing table it stores at node v. We will define a
distributed dictionary Tablev.DD[] and the complete routing table Tablev[] will consist of both these
tables Tablev.ND[] and Tablev.DD[].

The routing algorithm is similar to that in [1] but is based on a much smaller distributed dictionary data
structure, so there are differences in the details. For simplicity we assume that n is a k th power and define
the alphabet Σ = {0, . . . , n1/k − 1}. We also define the ith neighborhood N i(v) of a node v as the set of
ni/k nodes closest to v, breaking ties lexicographically by node name. Finally we define σi(u) to mean the
length i prefix of (u written in number base n1/k, and padded on the left with zeros till it is of length k).

5

4.1 All Pairs Tradeoff Scheme

For each i ∈ {0, . . . , k − 1} we color T with a coloring function ci : V (T) −→ Σi so that for every
node v, every neighborhood N i(v) contains every word in Σi. We also define ck : V [T] −→ Σk by
ck(u) = 〈u〉n1/k , where 〈u〉n1/k denotes writing u in number base n1/k and padding it on the left with zeros
so that it is of length k. Note that for all nodes u, c0(u) = ε.

Algorithm 4.2 SetUpRoutingTableAt(node u):
1: Store Tableu.ND[] for name-dependent routing.
2: for every 0 ≤ i < k

3: α← ci(u) ∈ Σi; β ← σi(u) ∈ Σi

4: for every pair (λ, τ) ∈ {α, β} × Σ
5: v′ ← closest node to u in {v | ci+1(v) = λτ or σi+1(v) = λτ}
6: Tableu.DD[λτ]← (v′, Label(v′))

Storage Analysis: Tableu.ND[] requires O(b log n) space[10, 6]. In Tableu.DD[], there are k values of
i, and for each we provide extensions of two strings α and β. Each of these is extended by n1/k values of τ ,
and for each such extension we store a label Label(v ′) of length O(logb n log n). This comes to a total of
O(b + kn1/k logb n) words per node. The complete routing table Tableu[] therefore requires only Õ(n1/k)
space when 2 ≤ b ≤ n1/k, for constant k. 2

Algorithm 4.3 Route(source s, destination t):
1: v0 ← s

2: for (i = 0; i < k; i + +):
3: (vi+1, Label(vi+1))← Tablevi .DD[σi+1(t)]
4: if (vi 6= vi+1):
5: route optimally to vi+1 using Label(vi+1) and Tableq.ND[] for intermediate nodes q

Lemma 4.4 For each 0 ≤ i < k, d(vi, vi+1) ≤ 2id(s, t), and delivery to vi+1 is guaranteed.

Proof: Proof is by induction. For basis case i = 0, d(s, v1) ≤ 20d(s, t) holds, because v1 is chosen to
be the closest node to s from the set

{u ∈ N1(s) | c1(u) = σ1(t)}
⋃
{u ∈ V [T] | σ1(u) = σ1(t)}

The (unique) member of the first subset is in N 1(s), and t itself satisfies the second condition. So
whether t ∈ N 1(s) or not, we have d(s, v1) ≤ d(s, t), by definition of N 1(s). We have stored Label(v1) at
s, and the underlying optimal tree routing algorithm guarantees delivery to v1 using the tables Tableq.ND[]
for intermediate nodes q.

Let us assume that the claim is true for 0 ≤ i ≤ r − 1 < k − 1, and bound d(vr, vr+1) as follows: let
v∗r+1 be the closest node to s, such that cr+1(u) = σr+1(t) or σr+1(u) = σr+1(t)

Since vr+1 and v∗r+1 both satisfy the condition cr+1(u) = σr+1(t) or σr+1(u) = σr+1(t), we have
d(vr, vr+1) ≤ d(vr, v

∗

r+1) ≤ d(vr, s) + d(s, v∗r+1). Now note that d(s, v∗r+1) ≤ d(s, t), and we also have
d(vr, s) = d(s, vr) ≤

∑r−1

i=0
d(vi, vi+1) since d(s, vr) is a shortest distance, and

∑r−1

i=0
d(vi, vi+1) sums up

the distance of a walk between the endpoints s and vr. So d(vr, vr+1) ≤ d(s, t) +
∑r−1

i=0 2id(s, t) by the
inductive hypothesis, and therefore d(vr, vr+1) ≤ 2rd(s, t).

We know that delivery to vr+1 is assured because delivery to vr is guaranteed by the inductive hypoth-
esis, and the underlying name-dependent algorithm delivers a packet reliably from vr to vr+1. 2

6

Theorem 4.5 Algorithm 4.3 uses space Õ(n1/k), uses O(logb n log n) headers, makes intermediate routing
decisions in time O(log b) and has stretch 2k − 1.

Proof: This follows immediately from Lemma 4.4, since the length p(s, t) of the route obtained from s to
t satisfies p(s, t) ≤ d(s, t)

∑k−1

i=0
2i = (2k − 1)d(s, t), and delivery is guaranteed to t. The stretch of the

algorithm is therefore (2k − 1). 2

As recommended by [10], we could set b = 2 in Theorem 4.3 to optimize the speed of routing decisions.
Alternatively we could exploit the Õ(n1/k) space available and set b = n1/k, to obtain O(k log n) headers
in the fixed port model. This would worsen the space requirements of previous name-dependent tree routing
algorithms which use asymptotically less space than Õ(n1/k).

4.2 Single Source Scheme

In this section we present a compact routing scheme which obtains stretch 2k − 1 for single source routing,
given Õ(n1/k) space and O(log n) headers for fixed constant k.

For each i ∈ {0, . . . , k − 1} we color the nodes N i(r) with an arbitrary bijective coloring function
ci : N i(r) −→ Σi. This ensures that the neighborhood N i(r) contains every word in Σi, with one word per
node. We also define ck : Nk(r) −→ Σk by ck(u) = 〈u〉n1/k , where 〈u〉n1/k denotes writing u in number
base n1/k and padding it on the left with zeros so that it is of length k. Recall that N k(r) = V [T].

Note that c0(r) = ε (here ε denotes the empty string). In the following algorithm the condition involving
ci+1 should be considered to be false when i = k − 1, since ck is undefined.

Algorithm 4.6 SetUpRoutingTableAt(node u):
1: Store Tableu.ND[] for name-dependent routing.
2: Let t be the the smallest i such that u ∈ N i(r).
3: for every t ≤ i < k

4: α← ci(r) ∈ Σi; β ← σi(r) ∈ Σi

5: for every pair (λ, τ) ∈ {α, β} × Σ
6: v′ ← closest node to r in {v | ci+1(v) = λτ or σi+1(v) = λτ}
7: Tableu.DD[λτ]← (v′, Label(v′))

Storage Analysis: Tableu.ND[] requires O(b log n) space[10, 6]. In Tableu.DD[], there are at most k

values of i, and for each we provide extensions of two strings α and β. Each of these is extended by n1/k

values of τ , and for each such extension we store a label (v ′, Label(v′)) of length O(logb n log n). This
comes to a total of O(b + kn1/k logb n) words per node. The complete routing table Tableu[] therefore
requires only Õ(n1/k) space when 2 ≤ b ≤ n1/k, for constant k. 2

Algorithm 4.7 RouteFromRootTo(destination t):
1: v0 ← r

2: for (i = 0; i < k; i + +):
3: (vi+1, Label(vi+1))← Tablevi .DD[σi+1(t)]
4: if (vi 6= vi+1):
5: route optimally to vi+1 using Label(vi+1) and Tableq.ND[] for intermediate nodes q

Lemma 4.8 The distance d(r, v1) ≤ d(r, t), and for each 1 ≤ i < k, d(vi, vi+1) ≤ 2d(r, t), and for each
0 ≤ i < k, delivery to vi+1 is guaranteed.

7

Proof: First we show that for all 0 ≤ i ≤ k, d(r, vi) ≤ d(r, t). This is because vi is the closest node to
r in

{u ∈ N i(r) | ci(u) = σi(t)}
⋃
{u ∈ V (T) | σi(u) = σi(t)},

and the (unique) member of the first subset is in N i(r), and t itself satisfies the second condition. So
whether t ∈ N i(r) or not, we have d(r, vi) ≤ d(r, t), by definition of N i(r).

For every 1 ≤ i < k, d(vi, vi+1) ≤ 2d(r, t) clearly holds, because d(vi, vi+1) ≤ d(vi, r) + d(r, vi+1)
by the triangle inequality and d(vi, r) = d(r, vi) in undirected trees.

The algorithm has the property that each vi (except when i = k) stores Label(vi+1), and the underlying
optimal tree routing algorithm guarantees delivery to vi+1 using the tables Tableq.ND[] for intermediate
nodes q. 2

Theorem 4.9 Algorithm 4.7 uses space Õ(n1/k), uses O(logb n log n) headers, makes intermediate routing
decisions in time O(log b) and has stretch 2k − 1.

Proof: This follows immediately from Lemma 4.8, since the length p(r, t) of the route obtained from the
root r to t satisfies p(r, t) ≤ (1 +

∑k−1

i=1
2)d(r, t) = (2k − 1)d(r, t), and delivery is guaranteed to t. The

stretch of the algorithm is therefore (2k − 1). 2

Again as recommended by [10], we have the option of setting b = 2 in Theorem 4.7 to optimize the
speed of routing decisions, or using all of the Õ(n1/k) space available by setting b = n1/k, to obtain
O(k log n) headers in the fixed port model.

5 Conclusions and Open Problems

Gavoille and Gengler have shown a lower bound of 3 for general graphs in the name-dependent model
[8], which also applies to the name-independent model. Considering the n node star shows that this lower
bound also applies to trees in the name-independent fixed-port model. In order to route optimally the hub
(or center) node of the star needs to be able to encode all n! permutations on n integers in its routing table.
This requires at least log (n!) bits, which is easily shown to be ω(

√
n log n), by Stirling’s formula. Since

suboptimal routing from the hub is necessary, any example of a suboptimal route results in a stretch of at
least 3.

Since for any n we can choose k large enough so that n1/k becomes as small as a constant q, the result
of section 3 indicates the hardness of applying the ideas of the compact routing scheme in subsection 4.1
in an arbitrary graph G using tight space requirements (assuming this general coloring approach, and us-
ing exactly Γ(G,n1/k) blocks per node). Approximation algorithms are therefore required for finding the
number of “layers of color” needed for a given graph and neighborhood size. A first solution would be the
randomized coloring algorithm of [1] which easily gives a O(log n) approximation.

It would be interesting to know the best possible stretch attainable with Õ(n1/k) space on trees (and also
in general graphs) under the name-independent fixed-port model. Finally it would be great to characterize
families of graphs with different values of Γ(G, q).

References

[1] M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka. Compact routing with name independence.
In Proc. 15th ACM Symposium on Parallel Algorithms and Architectures, pages 184–192, 2003.

[2] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact distributed data structures for adaptive
network routing. In Proc. 21st ACM Symp. on Theory of Computing, pages 479–489, May 1989.

8

[3] B. Awerbuch and D. Peleg. Routing with polynomial communication - space trade-off. SIAM J. Disc.
Math, 5(2):151–162, 1992.

[4] L. Cowen. Compact routing with minimum stretch. J. of Algorithms, 38:170–183, 2001.

[5] T. Eilam, C. Gavoille, and D. Peleg. Compact routing schemes with low stretch factor. Technical
Memo RR-1195-98, Laboratoire Bordelais de Recherche en Informatique, Jan. 1998. To appear in
PODC98.

[6] P. Fraigniaud and C. Gavoille. Routing in trees. In 28th Int’l. Colloquium on Automata, Languages
and Programming (ICALP), volume 2076 of LNCS, pages 757–772. Springer, 2001.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York, NY, 1979.

[8] C. Gavoille and M. Gengler. Space-efficiency of routing schemes of stretch factor three. Journal of
Parallel and Distributed Computing, 61:679–687, 2001.

[9] D. Peleg. Distance-dependent distributed directories. Information and Computation, 103(2):270–298,
1993.

[10] M. Thorup and U. Zwick. Compact routing schemes. In Proc. 13th ACM Symposium on Parallel
Algorithms and Architectures, pages 1–10. ACM, July 2001.

9

