TUFTS-CS Technical Report 2003-05

November 2003

Topologically Sweeping the Complete Graph in Optimal
Time and Space

by

Eynat Rafalin
Department of Computer Science
Tufts University
Medford, MA 02155
and
Diane L. Souvaine
Department of Computer Science
Tufts University
Medford, MA 02155

ABSTRACT

Reporting all intersections of line segments and their characteristics is one of the early and
most fundamental problems in computational geometry. We concentrate on the problem of
reporting all intersections in an embedding of a complete graph that may contain degeneracies
such as vertical lines, or multiply intersecting lines. A graph presents some difficulties for a
sweep line algorithm that most of the existing sweep based algorithms do not handle.

We present a novel approach that sweeps a complete graph of N vertices and £ intersection
points in optimal O(k) = O(N*) time and O(N?) space, that is simple and easy to code. The
algorithm sweeps the graph using a topological line, borrowing the concept of horizon trees
from the topological sweep method [8] and using ideas from [13] to deal with degeneracies.
The novelty in our approach is the use of the mowving wall that separates at any time the
graph into two regions: the region of known structure, in front of the moving wall, and the
region that may contain intersections generated by edges that have not yet been registered
in the sweep process, behind the wall. The algorithm has applications in computing the
simplicial depth median for a set of n data points [1]. The paper includes the algorithm, its
analysis and experimental results.

1 Introduction

The problem of reporting all intersections of line segments and their associated character-
istics is one of the early and most fundamental ones in computational geometry: Given an
arrangement of n objects, report all k£ intersection points. We concentrate on the problem of
reporting all intersection points in an embedding of the complete graph on N vertices using
a sweep line method. This problem has application to graph drawing and for depth-based
statistical analysis, for computing the simplicial depth median for a set of N data points [1].

A graph presents several difficulties for a sweep-line algorithm, that are not present in an
arrangement of lines, and that most of the existing sweep techniques do not handle. Clearly,
the structure holding the sweep-line status has to be dynamic, since vertices and edges
are constantly inserted and deleted. In addition, the event points where the status of the
sweep line changes now have two types and include the intersection points (where segments
swap order) and the vertices of the graph (where segments are inserted and removed). Any
sweep algorithm must process both event-point types, but with different steps. Moreover,
since some edges may extend further in the embedding than others, some short edges not
yet encountered by the sweep line may create intersections that should be processed before
intersections created by long edges (see Section 3.5). Processing in the wrong order may
introduce intersections not in the graph or ignore others, causing the sweep to terminate
unsuccessfully.

We present a novel approach that sweeps a complete graph of N vertices and £ intersec-
tions in optimal O(k) = O(N*) time and O(N?) space, that is simple and easy to code. The
sweep uses a topological line, borrowing the concept of the horizon trees from the topologi-
cal sweep method [8], processes each intersection in amortized constant time and keeps the
optimal time and space. Degeneracies are handled using ideas from the enhanced topological
sweep algorithm [13]. The key innovation in our approach is the use of the moving wall that
separates at any time the graph into two regions: the region in front of the moving wall with
known structure, and the region behind the wall that may contain intersections generated
by edges not yet registered in the sweep process.

Section 2 surveys previous work. Section 3 presents an overview of the sweep algorithm
and Section 4 its analysis. Sections 5 and 6 contain experimental results and future work.

2 Previous Work

Plane sweep, first introduced by Bentley and Ottmann [4], which sweeps a vertical line from
left to right, is a popular technique to report all intersection points in an arrangement of
lines, segments or objects. It achieves a time complexity of O((n + k)logn) and requires
O(n + k) space for an arrangement of n segments and k intersections. Brown [5] improved
the space requirement to O(n). For the complete graph with N vertices and k = O(N*)
intersections, the performance of O(N*log N) time and O(N?) space adds a log N factor to
the optimal time complexity.

Nievergelt and Preparata [11] used plane sweep to merge two planar graphs with total of
N vertices and k intersection points. They showed that if the convexity property holds, this
merge takes O(N log N + k) time. Their method uses a line that is not necessarily straight
and is one of the few that directly deals with the vertices of the graph (as event points

-2 -

that require special processing). Later Mairson and Stolfi [10] extended the result for a
subdivision with not necessarily convex regions. These techniques do not handle non-planar
graphs.

Chazelle and Edelsbrunner [6] presented an optimal deterministic algorithm for the in-
tersection reporting problem on an arrangement of n segments in O(nlogn + k) time and
O(n + k) space. The algorithm breaks segments into pieces and uses line sweep techniques
on vertical strips of the arrangement. Balaban [3] proposed an O(nlogn+ k) time and linear
space algorithm that also works on vertical strips, but traverses the strip tree instead of
sweeping the arrangement. On the complete graph with NV vertices, the time complexity of
both algorithms will be dominated by O(k) = O(N*). The problem with both algorithms is
their complexity to implement.

The topological sweep of Edelsbrunner and Guibas [8] sweeps an arrangement of n planar
lines in O(n?) time and O(n) space with a topological line instead of a vertical one. It reports
the intersection points of the lines according to a partial order related to the levels in the
arrangement. Edelsbrunner and Souvaine [9] extended the technique to guided topological
sweep, which forces additional constraints needed by other problems. Useful variants like
topological walk [2] and topological peeling [7], for sweeping only a convex subset of the
arrangement were suggested and implemented. Recently, Rafalin et al. [13] presented a
modification to the algorithm that handles degeneracies, such as parallel lines and multi-
intersection points, creating an output-sensitive algorithm, with time complexity dependent
on the size of the degenerate arrangement. Topological sweep offers a logn improvement
factor over the vertical line sweep on an arrangement of n infinite lines. However, it does
not work for finite line segments.

3 Algorithm Overview

Let G = (V, E) be a complete graph on N vertices, embedded in the plane. Assume the
graph vertices are in general position. The complete graph contains exactly n = w
edges and k is O(N*). The number of edges along the sweep line at any time is O(N?) but
can be ©(N?): a sweep line could have N/2 vertices on each side, with (£)? edges crossing
the line.

We sweep G from left to right to report all intersection points using a topological line
(cut): a monotonic line in y-direction, intersecting each of the n edges at most once (rather
than exactly once, as for an arrangement of infinite lines). Active edges intersecting the
sweep line are exactly the edges that connect a vertex left of the sweep line to a vertex on its
right. This set is dynamic and an edge can be added and removed from it only once. Since
the edges of the graph are finite the cut can intersect an arbitrary number of edges, from 0

to ()2

3.1 Active Segments and the Cut

The cut is specified by the sequence of active segments, one per edge intersected by the
topological line. A segment of an edge is delimited by two adjacent intersection points or
by the rightmost/leftmost intersection point and the vertex of the graph that is right/left
end-point of the edge. An active segment for edge e is defined by extending the segment

-

of e currently crossed by the cut to the right until it intersects another active edge or a
vertex of the graph. The active segment is therefore delimited from left and right by another
intersection point with an active edge or by a vertex of the graph. Since at any position
of the cut there is a one-to-one correspondence between the active segments and the active
edges the terms will be used interchangeably.

A sweep is implemented by starting with the leftmost cut, which intersects no edges
of the graph (for comparison, the leftmost cut of the topological sweep algorithm includes
all semi-infinite edges starting at -oo) and pushing it to the right in a series of elementary
steps until it becomes the rightmost cut. An elementary step consists of the topological line
sweeping past a vertex of the graph all of whose incoming edges are currently intersected by
the cut or past an intersection of two or more edges that are consecutive in the current cut
(a ready intersection), see Lemma 3.

The set of active edges crossed by the sweep line at each step is not static (as in the
original topological sweep algorithm) but dynamic, since edges are constantly added to and
deleted from it. A dynamic data structure, like a linked list, needs to be used to store the
active segments currently crossed by the cut (whereas the original algorithm uses a static
array of edges).

In our data structure, each active segment is defined by the edge that contains it, rep-
resented by its two end-points, and by the segments that form its left and right end-points.
Some active segments may be delimited not by other active segments but by a vertex of the
graph or a segment that is no longer active, complicating the data structure. Pointers to
vertices are implemented by using another array of n degenerate segments, representing the
vertices. If an active segment points to a deleted one, a dummy segment is declared and
then deleted, when the segment itself is deleted.

3.2 Horizon Forests

To achieve optimal time complexity, linear in the size of the arrangement, while maintaining
space complexity that is linear in the maximal size of the cut, we build upon the concept
of horizon trees introduced by Edelsbrunner and Guibas [8]. Our horizon graphs are often
not trees but horizon forests. The upper (respectively lower) horizon forest of the cut is
constructed by extending the cut edges to the right. When two edges intersect, only the one
of higher (respectively lower) slope continues to the right (see Fig. 1). Given the lower and
upper horizon forests, the cut is identified by the intersection of the two right delimiters of
the forests, in constant time per active edge.

The set of edges of the horizon forests corresponds to the set of active edges/segments.
The initial horizon forests are empty, and are updated in each event point (see below).
Keeping an amortized constant update time per event point is the key in achieving the
optimal time complexity.

3.3 Intersection Event Points

Edge Changes: In an intersection event point, the active segments switch position, carrying
with them all the information associated with each active segment. In addition changes are
needed to the horizon forests’ edges. Once the updated horizon forests’ edges are computed,
the new cut can be computed in constant time and new ready intersection points discovered.

— 4 —

To update the upper (resp. lower) horizon forest after processing the intersection point
of segments s;, ... s;1x, we need, for each segments s of the intersection apart from the first
(resp. last) one, to traverse the bay formed by the segments above (below) s, starting from
the segment immediately above (below) s until we encounter the segment that intersects s.
The traversal is done by walking from one segment to the segment that delimits its horizon
forest’s edge to the right, until the intersection with s. If s’s right endpoint precedes the
intersection, the right delimiter of the horizon forest is set to be the right endpoint. If the
forest edge associated with segment [, along the bay of s, terminates in a vertex v;, then if
the intersection of [and s along the bay precedes vy, [is the right delimiter of s. Otherwise,
[terminates before it encounters s and the right delimiter of the horizon forest edge of s is
the vertex that is s’s right end-point (see Figure 1 and [8]).

Degeneracies: Dealing with degeneracies is achieved by borrowing ideas from the en-
hanced topological sweep algorithm of Rafalin at al. [13]. First, an additional modification to
the cut is needed, by representing two right endpoints of each active segment l;, 74, Tdown,i-
If the right endpoint of an active segment is generated by its intersection with a segment from
above (resp. from below), then r,,; (resp. Tauwn,) is pointing to that segment; otherwise
Tupi (T€SP. Tdown,) 18 null. At least one is non-null, but both may be in instances where the
right endpoint of the active segment is the intersection point of three or more edges. Given
the lower and upper horizon forests, these delimiters are computed in constant time.

Discovering Ready Intersections: Define a matching pair as a pair of consecutive
active segments /;, [; in the cut where 7., ; is [; and T4oyn,; is [;. When at most two segments
participate in an intersection, a matching pair implies a ready intersection. For the more
general case, we define a matching sequence of consecutive active segments [;,...,1; in the
cut where every adjacent pair of segments forms a matching pair. A ready intersection is
generated by a complete matching sequence where the bottom segment is /; and the top is /;
and in which 74oun,; and 7,y ; are both null. The set of segments along any cut that contain
the same intersection point as their right endpoint form at most one connected component
(the connected component property), see [13].

After each update to the cut, we test whether two newly adjacent active segments form
a matching pair. If so, this new pair either augments a matching sequence that was already
discovered or initializes a new one. Since a sequence can be discovered a few times, for
each active edge s we hold pointers to the uppermost and lowermost active edges that
currently share the same right endpoint as s, in a pointer called MATCH (s). MATCH (s)
is initialized when s first becomes active, and is reset to itself every time it participates
in an elementary step. M ATCH is updated at the conclusion of each elementary step to
detect new alignment of right endpoints, already represented in M AT CH or initializes a
new one. Updating M ATCH and checking whether the matching sequence is not complete
takes constant time (see Lemma 4 and [13]).

3.4 Vertex Event Points

The sweep processes the vertices according to the order in which they are encountered, from
left to right, requiring presorting at a cost of O(/N log N). A vertex is processed only after all
its incoming segments are active. In the algorithm, one more constraint is added: vertices are
processed only after all ready intersection points are swept and the stack of ready intersection

points is empty.

When a vertex v is encountered, all active edges {uv|u, < v,} are deleted from the set of
active segments and edges {vu|u, > v, } are added to it. This is done in constant time per
active edge, if an initial pointer to the top-most and bottom-most deleted segments is given.

The horizon forests are updated as follows: The deleted edges of the forests are the
in-edges of the event vertex v, and terminate in v. They therefore cannot abut any other
active segment from the right, allowing their safe deletion. The inserted edges are the out-
edges of v. To update the upper (resp. lower) horizon forest they are inserted in decreasing
(increasing) order of slope into the structure. To insert an edge we begin at its endpoint on
the left boundary, which is v. We walk in counterclockwise order around the bay formed by
the previous edges to find the intersection point with an active edge (similar to the update
for an intersection point, see Section 3.3).

The edges emanating from the new vertex to the right, added to the set of active edges,
might cut some of the existing active segments, changing the horizon forests and the cut.
It is crucial that these changes will be recorded by the algorithm, while not changing the
time complexity. For example, the graph in Figure 1 contains 5 vertices. After vertex 0 is
processed both the upper and lower horizon forests contain edges emanating from 0 to the
right. Next vertex 1 is processed, deleting edge 01 and adding edges 12,13, 14. The edges of
the horizon forests that correspond to these 3 new edges can be updated, by traversing the
bay. However, the addition of edge 13 changed the upper horizon forest edges also for edges
02, 04, since they are now cut by 13.

In general all active segments can be affected by this change: the segments below the
new segments can be cut in the upper horizon forest (cut by the bottom-most newly added
segment) and the segments above the newly added segments can be changed in the lower
horizon forest (cut by the top-most newly added segment). Updating the entire horizon
forests costs a constant time per forest edge (or active segment), since only a single test is
needed, checking if the forest edge is cut by the new segment to the right or to the left of its
current right endpoint. After the horizon forests are updated another update is needed to
the cut, again charging a constant time per updated edge, and at most a cost that is linear
in the number of active segments.

3.5 A Moving Wall

The set of active edges does not span the whole arrangement. As a consequence, the sweep
can encounter intersection points created by active edges that should not yet be processed,
since they are located behind hidden edges, not yet encountered by the algorithm.

For example, Figure 2(a) contains a graph of 7 vertices. Assume the sweep line is posi-
tioned on the dotted green line. The bold blue segments are the active segments. Intersection
B of 06 and 25 is ready to be processed, as it is the right endpoint of both active segments
associated with these edges, that are adjacent along the cut. However, B cannot be pro-
cessed yet, as 06 and 25 intersect 34 before point B. In addition, if intersection B will be
processed, 06 and 25 will switch position in the cut, causing 34 to be inserted incorrectly.
Intersection points that are to the right of any edge that is not yet active cannot

& HTU\HTL
2
) 0\ 4
3 }\

4

S
N
Y

the cut the cut M

After processing vertex 0 after processing vertex 1 after processing intersection A

ww)

3

Figure 1: An arrangement of 5 vertices demonstrates the structure of the upper and lower horizon
forests and the cut. (0) The arrangement; (1) Processing vertex 0, no intersection is ready; (2)
Processing vertex 1. Edges 12,13,14 are added, The upper horizon forest segments for 02 and 04
below the bottom-most newly added edge 13 need updating, since they are cut by this edge. Since
13 and 02 are adjacent, intersection A is ready. (3) Processing intersection A. Intersection B is

discovered to be ready.

be ready !

On the other hand, consider intersection A in Figure 2(a). Considering the status of
the cut, both this intersection and vertex 3 are ready to be processed (A is even located to
the right of vertex 3, which means that in a vertical line sweep algorithm vertex 3 would
have definitely been processed prior to A). However, the order of the cut edges currently
places the edge 16 over edge 05. If vertex 3 will be processed at this time, the update of the
horizon forests and the cut will be incorrect. All intersection points that are to the
left of all segments emanating from vertex v must be processed before vertex v
is processed.

Define a moving wall of a position of the sweep line as the semi infinite lines corresponding
with the two extreme edges emanating to the right from the next vertex to be swept v,ezs-
The moving walls for all vertices can be computed as an initialization step in O(Nlog N)
time using the incremental convex hull algorithm [12]. At any time, the sweep line has to
be forced to the current position of the moving wall, as discussed above 2. This is done by
ensuring that no intersection that is inside the moving wall can be ready (constant time per
check) and that ready intersections that affect the moving wall are swept before the next
vertex is processed.

! An intersection i is to the left of edge e if the x-coordinate of i is smaller than or equal to the x-coordinate
of the infinite line defined by e with the horizontal line passing through i. The intersection is to the right
otherwise.

2The idea of aligning the sweep line to the arrangement was mentioned by Edelsbrunner and Souvaine [9],
referring to vertical alignments of pairs of vertices. In their paper the alignment is done using an alignment
graph, a graph whose nodes are the cut edges and whose arcs connect pairs of vertices that need to be aligned.
If the alignment graph is not too big the topological sweep can be performed with no increased cost.

(b)

Figure 2: (a) A graph of 7 vertices with the sweep line positioned on the dotted green line. The
bold blue segments are the set of active segments. The next vertex to be processed is 3. The
associated moving wall is drawn as a bold line. (b) Moving wall and moving chain: A subset of a
graph, with the moving wall (dashed) and moving chain associated with vertex v. For clarity not
all vertices and edges are drawn.

Construct the lower (resp. upper) active chain as follows: start with v, and pick the
lowermost (resp. uppermost) edge emanating from it to the right. As long as the endpoint of
the chain is not the right-most vertex, add the lowermost (uppermost) edge emanating from
the current endpoint of the chain to the right. Define the active chain to be the union of
both upper and lower chains (see Figure 2(b)). There might be intersections that are inside
the moving wall associated with v,,..;, but can still be legally swept, since they are outside
the moving chain (for example intersection B in Figure 2(b)). We could have forced the
sweep line to advance all the way up to the moving chain corresponding to v,e., instead of
only to the moving wall. However, an intersection that is ready relative to the set of active
segments, and that is located to the right of most of the segments in the active chain, will
have to be compared to every one of these segments before we could conclude if it is ready
or not, raising the time complexity of the step. Instead, we choose to force the sweep line
only to the wall created from the two extreme segments emanating to the right from vy,
and their extension to infinity. In this case, intersections that are outside the moving chain
but inside the moving wall will be discarded (see Figure 2(b)). They will be rediscovered
when v,.,; Will be swept, by adding a step of checking every pair of adjacent active segments
in the cut for ready intersections. The cost of this step is linear in the size of the active set,
however, it is performed only a linear number of times in N (once for each vertex), keeping
the total time complexity unaffected.

4 Algorithm Analysis

4.1 Data Structures

The algorithm uses 3 main data structures: V[], holding the vertices of the graph, E repre-
senting the sweep line, and I[], holding the ready intersection event points.

V] is a static array holding the vertices of the graph, represented with their z and y
coordinates and sorted according to their x coordinate. In addition, every vertex holds the
moving wall associated with it (computed at the initialization step).

-8 —

E, the cut, is a linked list of segments, ordered according to their y intercept with the
sweep line, allowing insertions, deletions and swaps to be done in constant update time
3. Each segment is specified by the index of its begin and end vertices (begin_point and
end_point) in V| and includes pointers to the segments above and below it and to the
following data:

Cut_right_up, Cut_right_down, Cut_left - pointers to segments delimiting the cut asso-
ciated with this segment, from the left and right.

HFL right, HFL_left, HFU.right, HFU_left - pointers to the segments delimiting the
edges of the upper and lower horizon forests associated with this segment from the left and
the right.

MATCH_up, MATCH_down - pointers to the uppermost and lowermost active segments that
currently share the same right endpoint as the current segment.

Some of the active segments may be delimited not by an active segments, but instead by
a vertex. Pointers to vertices are implemented by using an array of n degenerate segments,
called point_segments[], where the begin_point and end point are the same index. For
the right endpoints of the cut edges Cut_rights, an additional pointer to an empty or NULL
segment, is used.

When the sweep advances, the left delimiters of some of the active segments might be
deleted from the active list, causing a pointing error. The pointing error is avoided by
creating a dummy segment for any active segment pointing to a deleted one, and is deleted
when the segment itself is deleted. This can be achieved since the algorithm uses only
the immediate information stored by the segment, and not its location in the linked list of
segments.

I[] is a stack (or a linked list) of pairs of pointers to segments that correspond to inter-
section points that are currently ready to be processed. If (s;, s;) is in I then the segments
between s; and s; share a common right endpoint and represent a legal next move for the
topological line. I[] holds only the intersection event points. Vertex event points are stored
in an additional structures as the index to the next vertex to be swept vne. Vertex event
points are processed only after all possible intersection events points (outside the moving
wall) have been processed.

4.2 Analysis

The appendix contains a pseudo code of the detailed algorithm. This section presents its
analysis.

Progress of the Sweep Line: Lemmas 1, 2, 3 explain the progression of the sweep line,
proving that every intersection point will be traversed exactly once. The first two lemmas
are proved (using an example) in Section 3.5.

Lemma 1. Intersections that are to the right of any edge that is not yet active cannot be
ready.

3The topological sweep algorithm uses several static arrays instead of one linked list that stores all the relevant

data. In that implementation the array E[] stores the lines of the arrangement and the order of the edges
along the cut is maintained using an array holding the current sequence of indices from E[] that form the
lines of the cut.

-9 —

Lemma 2. All intersections that are to the left of all segments emanating from vertex v
must be processed before vertex v is processed

Lemma 3. There always exists a ready intersection, unless the sweep line is aligned with
the moving wall or unless we are considering the rightmost cut.

Proof. An intersection is ready if all edges that participate in it have active segments that
are consecutive in the cut, and if it is outside the moving wall associated with the next
vertex to be swept, vz Assume that some position of the sweep line has no consecutive
segments of the cut with a common right endpoint that is outside the moving wall and where
all segments that share the endpoint are active (otherwise we are done). We show that the
next event point, the next vertex to be swept, v,e,s is a legal move. Assume that v,e. is
not a legal move. Then there is an in-edge e of v,.;; Whose active segment does not have
Unegt as its right endpoint. Since all vertices to the left of v,.,; have been swept and since
the graph is complete, e must be cut by the sweep line and contain some active segment s..
Let the right endpoint v, of s, be an intersection with edge f and let f’s active segment be
sy. Let vy be sy’s right endpoint. Since v, was not swept yet, either v; = v, or vy < v,.
Let s, be the segment with the leftmost right endpoint. Such an endpoint exists, because
the cut is not the rightmost, thus vy = v.. By the connected component property either the
intersection v, is ready or there are segments associated with it that are not yet active: a
contradiction, since s, is the leftmost right endpoint. O

Lemma 4. The total cost of comparing adjacent active segments (computing ready inter-
section points) through all steps is O(k) = O(N*).

Proof. Each segment c is first matched with the segments above and below. If a matching
segment m is found, the MATCH (m) will also be tested. By the connected component
property, at most one of the edges that delimits ¢ above or below can have a MATCH, or
more than one connected component would exist. Thus, at most 3 tests will be generated.
No additional tests are needed since if another match exists, it would have been found, when
the segments that form it were investigated. The total number of segments that enter all
the intersections is O(N*) and therefore the total complexity is O(N*). See also [13]. O

Lemma 5. The total cost of updating HFU (HFL) through all steps is O(k) = O(N*).

Proof. After processing the intersection point of segments s;, ... s; ik, for each segment s of
the intersection apart from the first one, the HFU is updated by traversing the bay formed
by the segments above s, starting from the segment immediately above s until we encounter
the segment that intersects s (see Section 3.3). Consider the following charging scheme (see
also [8]): for each segment traversed charge a unit cost to the intersection z corresponding
to the elementary step; if somewhere later an elementary step at intersection z makes the
segment that charges x invisible from z, transfer the unit charge to intersection z. At the
end of the algorithm each intersection is charged at most once. O

Lemma 6. A topological sweep of a complete graph on N vertices and k¥ = O(N*) intersec-
tions can be carried out in O(k) = O(N*) time and O(N?) space.

— 10 —

Running time vs. number of vertices Running time vs. graph complexity (k)

140 140
b | . - 120 +
£ o g il
& 100 /‘, & 100 /‘/
g @ g =
= F = /
g’ L ‘/‘ g’ w /
E . / E ? /
S @ M S wm

0 10 20 0 40 50 60 70 80 0 200000 400000 600000 800000 1000000 1200000 1400000
number of vertices graph complexity (number of intersections)

Figure 3: Experimental Results

Proof. The initialization step costs O(N log N): Sort all vertices and compute the moving
wall for each vertex. The cost of each update step for an intersection point is an amortized
constant, and there are at most O(N*) such intersection points. The cost of processing each
vertex is as follows: When a vertex v is inserted, the segments terminating (resp. beginning)
in v are deleted (resp. inserted) to the set of active segments in O(N) time. Next, the
horizon forests are updated and the cut is modified in constant time per affected segment.
Lastly, the moving wall is updated. A scan is done through all active segments to check
whether ready intersections exist inside the old moving wall but outside the new moving
wall. In total, the cost of each update step for a vertex is linear in the size of the cut at the
time the vertex is inserted and is therefore O(/N?). There are N vertices so the complexity
for vertex events is O(N?) and in total O(N*). O

5 Experimental Results

Our experiments checked the behavior of the code on graphs of sizes 10 to 70 vertices
(hundreds to a over a million edges and intersections), created by generating N random
points. When a vertex is swept all the active segments that terminate in it should be ready.
In addition, at the end of a correct sweep the set of active segments must be empty and
all the vertices must be swept. If a mistake occurs during the sweeping process one of the
conditions above will not hold under the new topology. These conditions are checked to
verify that the sweep advances correctly and that the algorithm works well.

Our code is written in C++, does not use any geometric libraries for computations, but
uses GEOMVIEW for visualization of the output. If display is not needed the computation
can be streamlined further. The code is built modularly and can be easily modified. It is
located at: http://www.cs.tufts.edu/research/geometry/graphsweep. It was tested on
a Sun Enterprise 250 processor, 400 MHz, and was compiled using the GNU C++ compiler.
The results are presented in Fig. 3. It can be clearly seen that the running time is linear in
the complexity of the graph k.

6 Future Research

We are currently working on modifying the topological sweep to work for any graph embed-
ding. For dense graphs, with a large number of intersections, the implementation will achieve

- 11 —

the same time complexity as other efficient algorithms, since the number of intersections &
will be the dominant factor. Another factor affecting the complexity will be the size of the
cut, since the sweep line will be aligned with a moving wall N times, each time requiring
additional tests, with a cost that is linear in the number of active segments. For sparse
graphs, this factor can lower the attractiveness of the algorithm, since the maximal size of a
cut can be large compared to the total number of intersections. However, for some graphs,
the proposed algorithm might be an attractive alternative, where the total size of the cuts,
along the moving wall, is limited.

Acknowledgment The authors wish to thank Prof. Ileana Streinu, Michael A. Burr and Ryan
Coleman.

References

[1] G. Aloupis, S. Langerman, M. Soss, and G. Toussaint. Algorithms for bivariate medians and
a fermat-torricelli problem for lines. Comp. Geom. Theory and Appl., 26(1):69-79, 2003.

[2] T. Asano, L.J. Guibas, and T. Tokuyama. Walking on an arrangement topologically. Internat.
J. Comput. Geom. Appl., 4:123-151, 1994.

[3] I. J. Balaban. An optimal algorithm for finding segment intersections. In Proc. 11th Annu.
ACM Sympos. Comput. Geom., pages 211-219, 1995.

[4] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersec-
tions. IEEE Trans. Comput., C-28(9):643-647, September 1979.

[5] K. Q. Brown. Comments on “Algorithms for reporting and counting geometric intersections”.
IEEE Trans. Comput., C-30:147-148, 1981.

[6] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the
plane. J. ACM, 39(1):1-54, 1992.

[7] D.Z. Chen, S. Luan, and J. Xu. Topological peeling and implementation. In Algorithms and
computation, volume 2223 of Lecture Notes in Comput. Sci., pages 454-466. Springer, Berlin,
2001.

[8] H. Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an arrangement. J. Comput.
Syst. Sci., 38:165-194, 1989. Corrigendum in 42 (1991), 249-251.

[9] H. Edelsbrunner and D. L. Souvaine. Computing median-of-squares regression lines and guided
topological sweep. J. Amer. Statist. Assoc., 85:115-119, 1990.

[10] H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets of line
segments. In R. A. Earnshaw, editor, Theoretical Foundations of Computer Graphics and CAD,
volume 40 of NATO ASI Series F, pages 307-325. Springer-Verlag, Berlin, West Germany,
1988.

[11] J. Nievergelt and F. P. Preparata. Plane-sweep algorithms for intersecting geometric figures.
Commun. ACM, 25:739-747, 1982.

- 12 —

[12] F. P. Preparata. An optimal real-time algorithm for planar convex hulls. Comm. ACM,
22(7):402-405, 1979.

[13] E. Rafalin, D. Souvaine, and I. Streinu. Topological sweep in degenerate cases. In Proc. 4th
Workshop on Algorithm Engineering and Ezperiments (ALENEX), volume 2409 of Lecture
Notes in Comput. Sci., pages 577-588, Berlin, 2002. Springer-Verlag.

- 13 —

7 Appendix - Detailed algorithm

Initialization:

e Sort the vertices and store them in V7).

e Compute the moving wall for each vertex by using the incremental convex hull algorithm.

Sweep

e While there are more vertices to be swept:

. Process the next vertex to be swept vyt

. Delete all edges terminating in v, from the list of active edges E and insert all edges

starting at vpeyr and compute their horizon forests endpoints.

. If needed, update the horizon forest edges for all active segments affected by the newly

added lines, by scanning through the list of active segments and comparing the right
endpoint of the horizon forest to its intersection point with the newly added segment.

. Update the cut, according to the changes in the horizon forests.

5. Update the moving wall and rescan the list of active segments E to detect if there

are any ready intersections after the updates to the horizon forests and the cut or
intersections that were inside the old moving wall and are now outside the new moving
wall.

. While the stack of ready intersections I is not empty:

— Pop the next ready intersection from the stack I

— Update the order of the affected edges (that participate in the intersection) in the
active list F, their horizon forest edges and their cut edges, as described above.

— Compute ready intersections, using the cut. If a ready intersection is inside the
moving wall, discard it (since it is not ready yet).

