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Abstract

Data depth is a statistical analysis method that
is based on the shape of the data. Depth contours
are nested contours that enclose regions with in-
creasing depth. They provide powerful tools to
visualize and compare data sets. Several con-
tradicting definitions for depth contours exist in
the statistical community. We provide a frame-
work to analyze the competing notions which we
term cover and rank. The important contribu-
tion of this paper is in analyzing inconsistencies
and highlighting the open computational ques-
tions raised by the two approaches.

1 Introduction

A data depth measures how deep (or central)
a given point z € R? is relative to F, a prob-
ability distribution in R? or relative to a given
data cloud. Data-depth provides center-outward
orderings of points in Euclidean space of any di-
mension. It provides an alternative to classi-
cal statistics because no assumption about the
underlying distribution is needed: data is an-
alyzed according to the relative position of the
data points (the ‘shape’) and deals with outliers.
Some examples of data depth functions are half-
space depth [6, 13] and simplicial depth [7]. The
concept has attracted much recent attention in
the computational geometry community.
Depth contours are nested contours that en-
close regions with increasing depth. They were
first introduced by Tukey as a data visualization
tool for a two dimensional data [13] (half-space
depth contours). Since then their use have been
expanded for visualizing data sets (e.g. [11]) and
quantifying and comparing data sets (e.g. [8]).
The statistical literature contains several con-
tradicting definitions for computing depth con-
tours. We term the two main approaches cover
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The cover approach received far
greater attention from the computational geom-
etry community but the rank method may prove
to be more computationally effective.

Most depth functions are defined in re-
spect to a probability distribution F, treating
{X1,..,X,} random observations from F (we
term this the continuous case). The finite
sample version of the depth function results
from replacing F' by F),, the empirical distribu-
tion of the sample {X1,.., X, }. There is no de-
bate regarding the definition of depth contours
under the continuous case. However, translating
to the finite sample case leads to different inter-
pretation and the competing definitions of depth
contours. We provide a framework to analyze the
competing notions and highlight the discrepan-
cies and open computational questions.

Section 2 provide the necessary background,
including the definitions for the continuous and
finite sample cases, under the framework we de-
vised. Section 3 highlights the main differences
between the two approaches and Section 4 con-
tains important computational question raised
by the competing definitions.

and rank.

2 Depth Contours Background

Classical statistics most often focuses on the con-
tinuous case and depth contours were initially
defined for this case. The discrepancy and com-
peting definitions are caused because of different
translations from the continuous case to the fi-
nite sample case.

2.1 The Continuous case

Let Dr(z), z € R%, be the value of a given depth
function for point x with respect to a probability
distribution F'

The set {x € R? : Dp(z) = t} is called the
contour of depth ¢. We usually refer to the
region enclosed by the contour of depth ¢, the set
Rp(t) = {z € R : Dp(z) > t}.



The a central region, C, (0 < a < 1) is
the smallest region enclosed by depth contours
with probability . Under reasonable condi-
tions 0C, = {z € R? : Dp(z) = t,}, where
P{z € R? : Dp(z) < ta} = a. Under addi-
tional restrictions, C, = Rp(ty), meaning that
the contour of depth « is the #,th central region.

Desirable requirements for depth contours [4]
are that for samples from certain classes of dis-
tributions, such as the elliptic ones, the depth
contours should track the contours of the under-
lying model and that the contours should not
be greatly influenced by outliers in the data set.
Both approaches adhere to these requirements
(for half-space depth see [3]).

2.2 The Finite Sample Case
Given X = {Xi,--- X}, let Dy(z) = D(z) be
the depth of z € R% with respect to the data set
X. We wish to define the sample versions of the
contour of depth t and the ath central region.
Several interpretations were suggested and de-
bated by statisticians. We categorize the two
main methods as the cover approach, most fre-
quently studied by computational geometers,
and the rank approach, which may produce con-
tours more efficiently. Although lacking some
valuable characteristics of the contours produced
under the cover methods, the rank-method depth
contours provide a reasonable, and perhaps less
expensive, approximation.

2.2.1

The approach based on the notion of cover was
first introduced by Tukey [13] for describing two
dimensional half-space depth contours and has
been discussed in [12, 11, 3, 4]. This approach
defines the sample version of the contour of
depth t as the boundary of the set of points in
R? with depth > ¢. This approach constructs a
contour of depth ¢ around all points (not nec-
essarily from the original data set), that are of
depth k. To compute the percentage of points of
the original data set that are inside the contour
one has to count the points of the data set that
are inside the contour and compare to the total
size of the data set.

Cover contours

There are two approaches to construct the
sample version of the a central region:

e It can be built by enclosing all points that
are of depth Do(X[[an]]), Which is the depth
of the [an] deepest sample point [3, 4].
The contour is constructed by sorting all
points of the original set according to their
depth (called the order statistics), break-
ing ties at random. A contour that en-
closes, for example, 75% of the points is
created by taking the [.75n] deepest data
point X|[.75,7), and constructing the con-
tour of depth D(Xj[75,7))- According to
this approach the depth contour can be a
d dimensional region in R¢; we look for a
d — 1 dimensional contour. This inconsis-
tency is solved by taking the outer boundary
of this region as the contour. The contours
converge to contours of the continuous case
when n — oo [3].

e Rousseeuw [12, 11, 10] considers the two
adjacent contours D, and Dy 1 where
D(X[an) = k (D encloses < a of the
points, and Dy 1 > «). The ath contour
will be constructed not by extending the
inner contour until it encloses [an] of the
points (as above), but rather by interpolat-
ing between the coverage of the two con-
tours, according to the percentage of points
inside each, using the deepest point as the
center. This will create a contour that may
have no common point with the data set.

In terms of computational complexity both ap-
proaches are similar, since to compute the « cen-
tral hull, one has to compute a single D(X{faz1))
contour or the two adjacent D(X[[qn))) and
D(X[fan]-1]) contours and interpolate.
Rousseeuw et al. advocate for this model
based on the assumption that the points are ran-
dom samples from a probability distribution and
that the contours should represent the behavior
of the distribution and not the specific points.

2.2.2 Rank Contours

A different approach, advocated for in [8], is
based on rank. It defines the sample ath cen-
tral region as the convex hull containing the
most central fraction of o sample points. The
contour is constructed by sorting all points of the
original set according to their depth. A contour
that encloses, for example, 75% of the points is



created by taking the convex hull around data
pOiIltS X[l]a tee X[|_75n]]

3 Comparing the Definitions

Under reasonable condition the depth contours
for the continuous version are equivalent for
cover and rank [8]. However, the contours for
the sample version differ significantly. While the
rank approach maintains the rank order of the
sample points the cover approach mimics the
continuous quantiles. A few differences:

e Rank contours can be constructed accord-
ing to any depth function that calculates
the depth of a data point, while contours
according to cover require one to compute
the depth of any other point z € R%.

e Both approaches create depth contours that
are nested. However, the cover method may
produce contours that are not connected (if
the depth function is not connected, e.g.
simplicial depth in [1]). In addition, rank
contours will always be convex, while the
cover contours may not be. For the half-
space function the cover contours are always
convex [3].

e The main visual difference between the two
approaches are the vertices of the contours.
Every data point will be a vertex of (at least
one) depth contour. However, the vertices
of the rank contours will only be data points
while the vertices of the cover contours can
be any point from the data set. A vertex will
be common to more then one rank contour
while only degenerate data sets will create
common vertices for cover contours.

e Degenerate data sets lead to contours with
peculiar properties: If several points have
the same depth values, under the rank ap-
proach they may appear on different depth
contours, and thus the random order of
equal depth points can create different sets
of contours. To remedy this [8] require that
equal depth points belong to the same sam-
ple pth level contour for some p. However in
degenerate cases such as when all the points
are on the convex hull of the set, this con-
structs only one valid contour.

Take for example the contour that contains
50% of the data points, but assume a de-
generate set that contains more then 50%
of the data points on its convex hull. Dif-
ferent depth ordering of the data points of
minimal depth (points on the convex hull)
will create varying contours according to the
cover approach (depending on which of the
points on the convex hull is chosen to be in
the 50% inner points). According to Donoho
and Gasko’s cover approach the 50% con-
tour will be identical to the 100% contour
since the depth of the X|f, /o) point is iden-
tical to the depth of any point on the convex
hull. Only Roussuew’s cover approach will
create different, non overlapping, contours
for every percentile, since it interpolates be-
tween the < 50% contour and the > 50%
contour which is the outer convex hull.

4 Computational questions For
Half-space Depth Contours

In analyzing the open computational questions
we concentrate on the half-space depth contours.
However, most questions are valid (and open)
under any other depth function.

Half-space depth! of a point z relative to a
set of points § = {Xi,..., X,,} is the minimum
number of points of S lying in any closed half-
space determined by a line through z [6, 13] The
half-space depth is robust, affine invariant and
does not rely on distance.

4.1 Computation of All Contours

An O(n?) time implementation computes all the
cover depth contours, the depth of all the data
points [10] using duality and topological sweep.
Since the size of the contours can be quadratic
(e.g. if all data points are on the convex hull
and every vertex of the contours set is unique),
in non degenerate cases, this is the best we can
hope for.

As for rank contours, the cost of storing the
set of all depth contours can be quadratic (for
example, if all data points are on the convex hull
and hence adjacent contours differ by only one
point). However, if we can order the data points

In the literature this is sometimes called location
depth or Tukey depth.



by their depth, we can use O(nlogn) storage in
order to construct the contours incrementally [5].
The construction will be output sensitive in the
size of the set and the k/nth contour will be be
constructed in O(klogn) time.

4.2 A Subset of the Depth contours

Instead of computing all contours is O(n?) (see
Section 4.1), we would like to compute a contour
set of constant size ¢ (e.g. the ones that con-
tain a1%, as%, -+ - a.% of the data, or the single
Bag) more efficiently (e.g. sub-quadratic). One
approach to compute cover depth contours is to
locate the ain---a.n deepest points and then
compute their depth (in O(nlogn) time). Next,
using Matousek’s ideas [9] construct every one
of the the contours in O(nlog* n) time?. To the
best of our knowledge finding the a;n deepest
point can be done in no better then O(n?) time
(since the point has to be from the data set, and
not in R? other solutions will not apply), domi-
nating the complexity of the algorithm. A differ-
ent approach is based on binary search, first con-
structing a contour of depth k (O(nlog*n) [9],
as above), counting the number of data points
enclosed by it, and binary searching to find the
contour enclosing ¢;n of the data points. This
adds a log factor to the cost of computing a single
contour, but avoids finding the ¢;n deepest point.
The above two approaches are theoretically cor-
rect, however, in practice only a quadratic time
algorithm exists (for example [10]).

For rank based contours, once we sort the
points according to their half-space depth, com-
puting the contours can be done in O(nlogn)
using the incremental approach. However, to
the best of our knowledge no sorting proce-
dure exists. Similarly, if we identify the ¢;n
deepest point and could partition based on its
depth in sub-quadratic time, we would be able
to construct the convex hull of the deepest set
in O(nlogn). To the best of our knowledge, no
such efficient partitioning method exist.

To summarize, existing algorithms produce
O(n?) time solutions. For improved time we
need an efficient predicate that compares two
data points and reports which one is deeper.

®Chan [2] claims this can be improved using his tech-
nique to O(nlog®n) expected time.
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