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Abstract

Recent work has introduced Boolean kernels with which one can learn linear thresh-
old functions over a feature space containing all conjunctions of length up to k (for any
1 ≤ k ≤ n) over the original n Boolean features in the input space. This motivates
the question of whether maximum margin algorithms such as Support Vector Machines
can learn Disjunctive Normal Form expressions in the Probably Approximately Correct
(PAC) learning model using this kernel. We study this question, as well as a variant
in which structural risk minimization (SRM) is performed where the class hierarchy is
taken over the length of conjunctions.

We show that such maximum margin algorithms do not PAC learn t(n)-term DNF
for any t(n) = ω(1), even when used with such a SRM scheme. We also consider PAC
learning under the uniform distribution and show that if the kernel uses conjunctions of
length ω̃(

√
n) then the maximummargin hypothesis will fail on the uniform distribution

as well. Our results concretely illustrate that margin based algorithms may overfit when
learning simple target functions with natural kernels.

Keywords: Computational Learning Theory, Kernel Methods, PAC Learning, Boolean
Functions, Hardness Results.

1 Introduction

1.1 Background

Maximum margin algorithms, notably Support Vector Machines (SVM) [4], have received
considerable attention in recent years (see e.g. [27] for an introduction). In their basic form,
SVM learn linear threshold hypotheses and combine two powerful ideas. The first idea is to
learn using the linear separator which achieves the maximum margin on the training data
rather than an arbitrary consistent linear threshold hypothesis. The second idea is to use
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Postdoctoral Research Fellowship at Harvard University.
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an implicit feature expansion by a kernel function. The kernel K : X ×X → R, where X is
the original space of examples, computes the inner product in the expanded feature space.
Given a kernel K which corresponds to some expanded feature space, the SVM hypothesis
h is (an implicit representation of) the maximum margin linear threshold hypothesis over
this expanded feature space rather than the original feature space. SVM theory (see e.g.
[27]) implies that if the kernel K is efficiently computable then it is possible to efficiently
construct this maximum margin hypothesis h and that h itself is efficiently computable.
Several on-line algorithms have also been proposed which iteratively construct large margin
hypotheses in the feature space, see e.g. [7, 8].
Both theoretical and experimental studies suggest that such algorithms may be able to

take advantage of properties of the distribution and data to converge faster than what would
be required by uniform convergence bounds. In particular, convergence bounds based on the
maximum margin of the classifier on the observed data have been obtained [26, 27]. The
bounds are independent of the dimension of the expanded space but they depend on the L2
norm of examples in this space. The learning problems analyzed in this paper include cases
where both the dimension and the L2 norm are large so that the known bounds do not imply
rapid convergence. Indeed, we show that overfitting can occur in such cases.

1.2 Can SVMs learn DNF?

Another major focus of research in learning theory is the question of whether various classes
of Boolean functions can be learned by computationally efficient algorithms. The canonical
open question in this area is whether there exist efficient algorithms in Valiant’s Prob-
ably Approximately Correct (PAC) learning model [29] for learning Boolean formulas in
Disjunctive Normal Form, or DNF. This question has been open since the introduction
of the PAC model [29], and has been intensively studied by many researchers (see e.g.
[2, 3, 5, 9, 10, 12, 14, 16, 18, 23, 28, 30, 31]).
In this paper we analyze the performance of maximum margin algorithms when used

with Boolean kernels to learn DNF formulas. Several authors [13, 22, 32, 15] have recently
proposed a family of kernel functions Kk : {0, 1}n × {0, 1}n → N, where 1 ≤ k ≤ n, such
that Kk(x, y) computes the number of (monotone or unrestricted) conjunctions of length
(exactly or up to) k which are true in both x and y. This is equivalent to expanding the
original feature space of n Boolean features to include all such conjunctions.1 Since linear
threshold elements can represent disjunctions, one can naturally view any DNF formula as a
linear threshold function over this expanded feature space. It is thus natural to ask whether
the Kk kernel maximum margin learning algorithms are good algorithms for learning DNF.
Additional motivation for studying DNF learnability with the Kk kernels comes from

recent progress on the DNF learning problem. The fastest known algorithm for PAC learning
DNF is due to Klivans and Servedio [14]; it works by explicitly expanding each example
into a feature space of monotone conjunctions and explicitly learning a consistent linear

1This Boolean kernel is similar to the well known polynomial kernel in that all monomials of length up
to k are represented. The main difference is that the polynomial kernel assigns weights to monomials which
depend on certain binomial coefficients; thus the weights of different monomials can differ by an exponential
factor. In the Boolean kernel all monomials have the same weight.
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threshold function over this expanded feature space. Since theKk kernel enables us to do such
expansions implicitly in a computationally efficient way, it is natural to investigate whether
the Kk-kernel maximum margin algorithm yields a computationally efficient algorithm for
PAC learning DNF.
As mentioned above standard convergence bounds on large margin classifiers do not

imply that the Kk kernel maximum margin algorithm is an efficient algorithm for PAC
learning DNF. Indeed, the bound given by, e.g., Theorem 4.18 of [27] only implies nontrivial
generalization error for the Kk kernel algorithm if a sample of size n

Ω(k) is used, and with
such a large sample the computational advantage of using the Kk kernel is lost. However,
such upper bounds do not imply that the Kk kernel maximum margin algorithm must have
poor generalization error if run with a smaller sample. The situation is analogous to that of
[24] where the generalization error of the Perceptron and Winnow algorithms were studied.
For both Perceptron and Winnow the standard bounds gave only an exponential upper
bound on the number of examples required to learn various classes, but a detailed algorithm-
specific analysis gave positive PAC learning results for Perceptron and negative PAC results
for Winnow for the problems considered. Analogously, in this paper we perform detailed
algorithm-specific analysis for the Kk kernel maximum margin algorithms.

1.3 Previous work

Khardon et al. constructed a simple Boolean function and an example sequence for the
online mistake-bound learning model, and showed that this sequence causes the Kn kernel
Perceptron algorithm (i.e. the Perceptron algorithm run over a feature space of all 2n

monotone conjunctions) to make 2Ω(n) many mistakes [13]. The current paper differs in
several ways from this earlier work: we study the maximum margin algorithm rather than
Perceptron, we consider PAC learning from a random sample rather than online learning,
and we analyze the Kk kernels for all 1 ≤ k ≤ n. We note here that maximum margin linear
threshold learning algorithms are generally viewed as being more powerful than the simple
Perceptron algorithm, and that PAC learning is generally viewed as being easier than online
mistake bound learning (it is well known that any concept class which is efficiently learnable
in the mistake bound model is efficiently PAC learnable, but the converse is not true [1]).
Thus, the results of this work represent a substantial strengthening and generalization of
[13].

1.4 Our results

Throughout this paper we study the kernels corresponding to all monotone monomials of
length up to k, which we denote by Kk. In addition to unaugmented maximum margin
algorithms we also consider a natural scheme of structural risk minimization (SRM) that
can be used with maximum margin algorithms over this family of Boolean kernels. In SRM,
given a hierarchy of classes C1 ⊆ C2 ⊆ . . ., one learns with each class separately and uses a
cost function combining the complexity of the class with its observed accuracy to choose the
final hypothesis. The cost function typically balances various criteria such as the observed
error and the (bound on) generalization error. A natural scheme here is to use SRM over
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the classes formed by Kk with k = 1, . . . , n.
2

We prove several negative results which establish strong limitations on the ability of
maximum margin algorithms to PAC learn DNF formulas (or other simple Boolean classes)
using the monomial kernels. Variants of these results are shown to hold for the standard
polynomial kernel as well. Our first result says essentially that for any t(n) = ω(1), for all
k = 1, . . . , n the Kk kernel maximum margin algorithm cannot PAC learn t(n)-term DNF.
More precisely, we prove

Result 1: Let t(n) = ω(1) and let ε = 1
4·2t(n) . There is a O(t(n)

1/3)-term monotone DNF
over t(n) relevant variables, and a distribution D over {0, 1}n such that for all k ∈ {1, . . . , n}
the Kk maximum margin hypothesis has error larger than ε (with overwhelmingly high
probability over the choice of a polynomial size random sample from D).
Note that this result implies that the Kk maximum margin algorithms fail even when

combined with SRM regardless of the cost function. This is simply because the maximum
margin hypothesis has error > ε for all k, and hence the final SRM hypothesis must also
have error > ε.
While our accuracy bound in the above result is small (it is o(1) since t(n) = ω(1)), a

simple variant of the construction used for Result 1 also proves:

Result 2: Let f(x) = x1 be the target function. There is a distribution D over {0, 1}n such
that for any k = ω(1) the Kk maximum margin hypothesis has error at least

1
2
− 2−nΩ(1)

(with overwhelmingly high probability over the choice of a polynomial size random sample
from D).
Thus any attempt to learn using monomials of non-constant size can provably lead to

overfitting. Note that for any k = Θ(1), standard bounds on maximum margin algorithms
show that the Kk kernel algorithm can learn f(x) = x1 from a polynomial size sample.
Given these strong negative results for PAC learning under arbitrary distributions, we

next consider the problem of PAC learning monotone DNF under the uniform distribution.
This is one of the few frameworks in which some positive results have been obtained for
learning DNF from random examples only (see e.g. [6, 25]). In this scenario a simple variant
of the construction for Result 1 shows that learning must fail if k is too small:

Result 3: Let t(n) = ω(1) and ε = 1
4·2t(n) . There is a O(t(n))-term monotone DNF over

t(n) relevant variables such that for all k < t(n) the Kk maximum margin hypothesis has
error at least ε (with probability 1 over the choice of a random sample from the uniform
distribution).

This result is representation based; we show that no possible hypothesis output by the Kk

algorithm can have error less than ε. On the other hand, we also show that the Kk algorithm
fails under the uniform distribution for large k:

Result 4: Let f(x) = x1 be the target function. For any k = ω̃(
√
n), the Kk maximum

margin hypothesis will have error 1
2
− 2−Ω(n) with probability at least 0.028 over the choice

of a polynomial size random sample from the uniform distribution.

2This is standard practice in experimental work with the polynomial kernel, where typically small values
of k are tried (e.g. 1 to 5) and the best is chosen.
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Note that there is a substantial gap between the “low” values of k (for which learning is
guaranteed to fail) and the “high” values of k (for which we show that learning fails with
constant probability). It is of significant interest to characterize the performance of the Kk

maximum margin algorithm under the uniform distribution for these intermediate values of
k; a discussion of this point is given in Section 5.

2 Preliminaries

We consider learning Boolean functions over the Boolean cube {0, 1}n so that f : {0, 1}n →
{0, 1}. It is convenient to consider instead the range {−1, 1} with 0 mapped to −1 and 1
mapped to 1. This is easily achieved by the transformation f ′(x) = 1− 2f(x) and since we
deal with linear function representations this can be done without affecting the results. For
the rest of the paper we assume this representation.
For x, y ∈ R

n we write x · y to denote the standard inner product ∑n
i=1 xiyi. Note

that for x, y ∈ {0, 1}n, x · y calculates the number of bits which are 1 in both x and y. Our
arguments will refer to L1 and L2 norms of vectors for which we use the notation |x| =

∑

|xi|
and ‖x‖ =

√

∑

x2i .

Definition 1 Let h : R
N → {−1, 1} be a linear threshold function h(x) = sign(W · x − θ)

for some W ∈ R
N , θ ∈ R. The margin of h on 〈z, b〉 ∈ R

N × {−1, 1} is

mh(z, b) =
b(W · z − θ)

‖W‖ .

Note that |mh(z, b)| is the Euclidean distance from z to the hyperplane W · x = θ.

Definition 2 Let S = {〈xi, bi〉}i=1,...,m be a set of labeled examples where each xi ∈ R
N and

each bi ∈ {−1, 1}. Let h(x) = sign(W · x− θ) be a linear threshold function. The margin of
h on S is

mh(S) = min
〈x,b〉∈S

mh(x, b).

The maximum margin classifier for S is the linear threshold function h(x) = sign(W · x− θ)
such that

mh(S) = max
W ′∈RN ,θ′∈R

min
〈x,b〉∈S

b(W ′ · x− θ′)

‖W ′‖ . (1)

The quantity (1) is called the margin of S and is denoted mS.

Note that mS > 0 iff S is consistent with some linear threshold function. If mS > 0 then
the maximum margin classifier for S is unique [27].
Let φ be a transformation which maps {0, 1}n to R

N and let K : {0, 1}n × {0, 1}n → R

be the corresponding kernel function K(x, y) = φ(x) · φ(y). Given a set of labeled examples
S = {〈xi, bi〉}i=1,...,m where each xi belongs to {0, 1}n we write φ(S) to denote the set of
transformed examples {〈φ(xi), bi〉}i=1,...,m.
We refer to the following learning algorithm as the K-maximum margin learner:
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• The algorithm first draws a sample S = {〈xi, f(xi)〉}i=1,...,m of m = poly(n) (i.e. m =
nΘ(1)) many labeled examples from some fixed probability distribution D over {0, 1}n;
here f : {0, 1}n → {−1, 1} is the unknown function to be learned. Note that we assume
both a lower and upper bound on the number of examples. The upper bound as usual
limits the resources the algorithm uses. The lower bound is simply used to rule out
degenerate cases from the analysis.

• The algorithm’s hypothesis is h : {0, 1}n → {−1, 1}, h(x) = sign(W · φ(x) − θ) where
sign(W · x− θ) is the maximum margin classifier for φ(S). Without loss of generality
we assume that W is normalized, that is ‖W‖ = 1. We also assume that S contains
both positive and negative examples since otherwise the maximum margin classifier is
not defined.

SVM theory tells us that if K(x, y) can be computed in poly(n) time then the K-maximum
margin learning algorithm runs in poly(n,m) =poly(n) time and the output hypothesis h(x)
can be evaluated in poly(n,m) =poly(n) time [27].
Our goal is to analyze the PAC learning ability of various kernel maximum margin learn-

ing algorithms. Recall (see e.g. [11]) that a PAC learning algorithm for a class C of functions
over {0, 1}n is an algorithm which runs in time polynomial in n and 1

δ
, 1
ε
where δ is a confi-

dence parameter and ε is an accuracy parameter. We assume here, as is the case throughout
the paper, that each function in C has a description of size poly(n). Given access to ran-
dom labeled examples 〈x, f(x)〉 for any f ∈ C and any distribution D over {0, 1}n, with
probability at least 1 − δ a PAC learning algorithm must output an efficiently computable
hypothesis h such that Prx∈D[h(x) 6= f(x)] ≤ ε. If an algorithm only satisfies this criterion
for a particular distribution such as the uniform distribution on {0, 1}n, we say that it is a
uniform distribution PAC learning algorithm.

Let ρk(n) =
∑i=k

i=1

(

n
i

)

. Note that the number of nonempty monotone conjunctions (i.e.
monomials) of size at most k on n variables is ρk(n). For x ∈ {0, 1}n we write φk(x) to denote
the ρk(n)-dimensional vector (xT )T⊆{1,...,n},1≤|T |≤k where xT =

∏

i∈T xi, i.e. the components
of φk(x) are all monotone conjunctions of the desired size. We note that for an example
x ∈ {0, 1}n, the L1 norm of the expanded example φk(x) is |φk(x)| = ρk(|x|).

Definition 3 We write Kk(x, y) to denote φk(x) ·φk(y). We refer to Kk as the k-monomials
kernel.

The following theorem shows that the k-monomial kernels are easy to compute:

Theorem 4 ([13]) For all 1 ≤ k ≤ n we have Kk(x, y) =
∑k

i=1

(

x·y
i

)

.

We will frequently use the following observation which is a direct consequence of the
Cauchy-Schwarz inequality:

Observation 5 If U ∈ R
N1 with ‖U‖ = L and I ⊆ {1, . . . , N1}, |I| = N2, then

∑

i∈I |Ui| ≤
L ·
√
N2.
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As a consequence of Observation 5 we have that if ρk(n) = N1 is the number of features in
the expanded feature space and |φk(x)| = ρk(|x|) = N2, then U · φk(x) ≤ L ·

√
N2.

Finally we also use the following well-known tail bound on sums of independent random
variables (see e.g. Section 9.3 of [11]):

Fact 6 (Chernoff Bounds) Let X1, . . . , Xm be a sequence of m independent 0/1-valued
random variables, each of which has E[Xi] = p. Let X denote

∑m
i=1Xi, so E[X] = pm.

Then for 0 ≤ γ ≤ 1, we have

Pr[X > (1 + γ)pm] ≤ e−mpγ2/3 and Pr[X < (1− γ)pm] ≤ e−mpγ2/2.

3 Distribution-Free Non-Learnability

We give a DNF and a distribution which are such that the maximum margin algorithm using
the k-monomials kernel fails to learn, for all 1 ≤ k ≤ n. The DNF we consider is a read
once monotone DNF over t(n) variables where t(n) = ω(1) and t(n) = O(log n). In fact
our results hold for any t(n) = ω(1) but for concreteness we use t(n) = log n as a running
example. We have

f(x) = (x1 · · · x4`2) ∨ (x4`2+1 · · · x8`2) ∨ · · · ∨ (x4`3−4`2+1 · · · x4`3) (2)

where 4`3 = t(n) = log n so that the number of terms ` equals Θ(t(n)1/3) = Θ((log n)1/3).
For the rest of this section f(x) will refer to the function defined in Equation (2) and ` to
its size parameter.
A polynomial threshold function is defined by a multivariate polynomial p(x1, . . . , xn) with

real coefficients. The output of the polynomial threshold function is 1 if p(x1, . . . , xn) ≥ 0
and is −1 otherwise. The degree of the function is the degree of the polynomial p. A simple
but useful observation is that any hypothesis output by the Kk kernel maximum margin
algorithm must be a polynomial threshold function of degree at most k. Minsky and Papert
[21] (see also [14]) gave the following lower bound on polynomial threshold function degree
for DNF:

Theorem 7 Any polynomial threshold function for f(x) in Equation (2) must have degree
at least `.

The distribution D on {0, 1}n we consider is the following:

• With probability 1
2
the distribution outputs 0n.

• With probability 1
2
the distribution outputs a string x ∈ {0, 1}n drawn from the fol-

lowing product distribution D′: the first t(n) bits are drawn uniformly, and the last
n− t(n) bits are drawn from the product distribution which assigns 1 to each bit with
probability 1

n1/3
.

For small values of k the result is representation based and does not depend on the sample
drawn:
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Lemma 8 If the maximum margin algorithm uses the kernel Kk for k < ` when learning
f(x) under D then its hypothesis has error greater than ε = 1

4·2t(n) =
1
4n
.

Proof: If hypothesis h has error at most ε = 1
4·2t(n) under D then clearly it must have error at

most 1
2·2t(n) under D′. Since we are using the kernel Kk, the hypothesis h is some polynomial

threshold function of degree at most k which has error τ ≤ 1
2·2t(n) under D′. So there must be

some setting of the last n− t(n) variables which causes h to have error at most τ under the
uniform distribution on the first t(n) bits. Under this setting of variables the hypothesis is a
degree-k polynomial threshold function on the first t(n) variables. By Minsky and Papert’s
theorem, this polynomial threshold function cannot compute the target function exactly, so
it must be wrong on at least one setting of the first t(n) variables. But under the uniform
distribution, every setting of those variables has probability at least 1

2t(n) . This contradicts
τ ≤ 1

2·2t(n) .

For larger values of k (in fact for all k = ω(1)) we show that with high probability
the maximum margin hypothesis will overfit the sample. The following definition captures
typical properties of a sample from distribution D:

Definition 9 A sample S is a D-typical sample if

• The sample includes the example 0n.

• Any nonzero example x in the sample has 0.99n2/3 ≤ |x| ≤ 1.01n2/3.

• Every pair of positive and negative examples xi, xj in S satisfies xi · xj ≤ 1.01n1/3.

We can apply Chernoff bounds to analyze the second and third conditions in the definition
(with p = 1

n1/3
and p = 1

n2/3
respectively) over the last n − t(n) > n/2 bits, and absorb the

first t(n) bits in the multiplicative (1±0.01) divergence from the expected value in each case
(recall that t(n) is only O(log n)). We thus have that the second and third conditions each

fail with probability at most 2−n
Ω(1)
. The first condition holds with probability 1 − 2−m;

since the maximum margin algorithm uses m =poly(n) = nΩ(1) many examples (see Section

2), the first condition fails with probability at most 2−n
Ω(1)

as well. A union bound thus
gives:

Lemma 10 For m = poly(n), with probability 1−2−nΩ(1) a random i.i.d. sample of m draws
from D is a D-typical sample.

Definition 11 Let S be a sample. The set Z(S) consists of all positive examples z ∈ {0, 1}n
(i.e. f(z) = 1) which have the property that every example x in S satisfies x · z ≤ 1.01n1/3.

As above, we can apply Chernoff bounds with p = 1
n2/3

and use the union bound over
all examples x ∈ S to show that the probability that a random example z drawn from D
will have x · z > 1.01n1/3 for any x ∈ S is at most 2−n

Ω(1)
. Now since Pr[f(z) = 1] ≥ 1/n,

conditioning on z being a positive example we still have:

Lemma 12 Let S be a D-typical sample of size m = poly(n) examples. Then PrD[z ∈
Z(S)|f(z) = 1] = 1− 2−nΩ(1).
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We now show that for a D-typical sample one can achieve a very large margin:

Lemma 13 Let S be a D-typical sample. Then the maximum margin mS satisfies

mS ≥Mh′ ≡
1

2
· ρk(.99n

2/3)−mρk(1.01n
1/3)

√

mρk(1.01n2/3)

Proof: We exhibit an explicit linear threshold function h′ which has margin at least Mh′ on
the data set. Let h′(x) = sign(W ′ · φ(x)− θ′) be defined as follows:

• W ′
T = 1 if T is active in some positive example;

• W ′
T = 0 if T is not active in any positive example.

• θ′ is the value that gives the maximum margin on φk(S) for this W
′, i.e. θ′ is the

average of the smallest value of W ′ · φk(xi,+) and the largest value of W ′ · φk(xj,−).

Since each positive example x+ in S has at least .99n2/3 ones, we have W ′ · φ(x+) ≥
ρk(.99n

2/3). Since each positive example has at most 1.01n2/3 ones, each positive exam-
ple in the sample contributes at most ρk(1.01n

2/3) ones to W ′, so ‖W ′‖ ≤
√

mρk(1.01n2/3).
Finally, for any negative example x− in the sample a term T contributes to W ′ · φ(x−) only
if T is true in x− and in some positive example. Now since x− shares at most 1.01n1/3 ones
with any positive example in the sample, the number of such terms is at most mρk(1.01n

1/3).
We therefore get W ′ ·φ(x−) ≤ mρk(1.01n

1/3). Putting these conditions together, we get that
the margin of h′ on the sample is at least

1

2
· ρk(.99n

2/3)−mρk(1.01n
1/3)

√

mρk(1.01n2/3)

as desired.

Lemma 14 If S is a D-typical sample, then the threshold θ in the maximum margin classifier
for S is at least Mh′ .

Proof: Let h(x) = sign(W · φ(x)− θ) be the maximum margin hypothesis. Since ‖W‖ = 1
we have

θ =
θ

‖W‖ = mh(φk(0
n),−1) ≥ mh′(S) ≥Mh′

where the second equality holds becauseW ·φ(0n) = 0 and the last inequality is by Lemma 13.

Lemma 15 If the maximum margin algorithm uses the kernel Kk for k = ω(1) when learning

f(x) under D then with probability 1−2−nΩ(1) its hypothesis has error greater than ε = 1
4·2t(n) =

1
4n
.
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Proof: Let S be the sample used for learning and let h(x) = sign(W · φk(x) − θ) be the
maximum margin hypothesis. It is well known (see e.g. Proposition 6.5 of [27]) that the
maximum margin weight vector W is a linear combination of the support vectors, i.e. of
certain examples φk(x) in the sample φk(S). Hence the only coordinates WT of W that can
be nonzero are those corresponding to features (conjunctions) T such that xT = 1 for some
example x in S.
By Lemma 10 we have that with probability 1 − 2−nΩ(1) the sample S is D-typical.

Consider any z ∈ Z(S). It follows from the above observations on W that W ·φk(z) is a sum
of at most mρk(1.01n

1/3) nonzero numbers, and moreover the sum of the squares of these
numbers is at most 1. Thus by Observation 5 we have that W · φk(z) ≤

√

mρk(1.01n1/3).
The positive example z is erroneously classified as negative by h if θ > W ·φk(z); by Lemma
14 this inequality holds if

1

2
· ρk(.99n

2/3)−mρk(1.01n
1/3)

√

mρk(1.01n2/3)
>
√

mρk(1.01n1/3),

i.e. if

ρk(.99n
2/3) > 2m

√

ρk(1.01n1/3)ρk(1.01n2/3) +mρk(1.01n
1/3). (3)

We prove in Appendix A that this holds for any k = ω(1).
Finally, observe that positive examples have probability at least 1

2t(n) =
1
n
. The above

argument shows that any z ∈ Z(S) is misclassified, and Lemma 12 guarantees that the

relative weight of Z(S) in positive examples is 1 − 2−nΩ(1) . Thus the overall error rate of h
under D is at least (1− 2−nΩ(1)) 1

2t(n) >
1

4·2t(n) =
1
4n
as claimed.

Together, Lemma 8 and Lemma 15 imply Result 1:

Theorem 16 For any value of k, if the maximum margin algorithm uses the kernel Kk

when learning f(x) under D then with probability 1− 2−nΩ(1) its hypothesis has error greater
than ε = 1

4·2t(n) =
1
4n
.

With a small modification we can also obtain Result 2. In particular, since we do not
need to deal with small k we can use a simple function f = x1 and modify D as follows.
With probability 1

4
the assignment 0n is drawn. With probability 3

4
we draw from D′ where

x1 = 1 with probability
2
3
and as before the other bits are 1 with probability 1

n1/3
. Note that

for the modified distribution the probability that f(x) = 1 is 0.5. It is easy to see the that
previous arguments go through for this case and we get:

Theorem 17 For k = ω(1), if the maximum margin algorithm uses the kernel Kk when

learning f(x) = x1 under D then with probability 1− 2−nΩ(1) its hypothesis has error at least
ε = 1

2
− 2−nΩ(1).

Remark 18 The proofs above can be adapted to show the same non-learnability results for
the polynomial kernel Kk(x, y) = (x · y)k which is commonly being used with SVM systems.
The low degree argument in Lemma 8 holds directly. We briefly sketch the ideas for the high
degree case. First note that Lemmas 10 and 12 hold without modification. The argument
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in Lemma 13 does not go through if we use the same value of W ′ (since W ′ is defined in the
expanded feature space and φ(x) is not a zero-one vector, it is not as easy to argue about
the value of W ′ · φ(x)). However, we can use a simple modification to get a similar result.
First note that for any x ∈ {0, 1}n, all features in φ(x) take only non-negative values. Now
define W ′ to be W ′ =

∑

xi,+∈S φ(x
i,+). As in Lemma 13 we have:

• W ′ · φ(x+) =
∑

xj,+∈S φ(x
j,+) · φ(x+) ≥ φ(x+) · φ(x+) ≥ (0.99n2/3)k where the first

inequality uses the fact that all features in the expanded space have a positive value
and therefore all inner products in the sum are positive.

• W ′ · φ(x−) =∑xj,+∈S φ(x
j,+) · φ(x−) ≤ m(1.01n1/3)k.

• ‖W ′‖ =
√

(
∑

xj,+∈S φ(x
j,+)) · (∑xi,+∈S φ(x

i,+)) ≤
√

m2(1.01n2/3)k

So the maximum margin is at least

1

2
· (.99n

2/3)k −m(1.01n1/3)k

m
√

(1.01n2/3)k
. (4)

Now the proof of Lemma 14 shows that (4) is a lower bound on the threshold of the maximum
margin classifier.
The argument in Lemma 15 needs to be changed since we need a bound on W · φ(z).

This can be derived as follows. Let U be s.t. Ui ≥ 0 and Ui = |Wi| so weights in U and W
have the same magnitude but the weights in U are forced to be non-negative. Then we have
that ‖U‖ = ‖W‖ = 1. For an example z ∈ Z(S) we now have

W · φ(z) ≤ U · φ(z)
≤

∑

xi∈S
U · φ(z ∩ xi)

≤ m(1.01n1/3)k/2.

The first inequality holds since all entries in φ(z) are non-negative. The second inequality is
true since both vectors do not have negative weights and a monomial contributes to W ·φ(z)
only if it is true both in z and in at least one example in the sample (recall that, as in the
proof of Lemma 15, the vectorW is a linear combination of vectors φ(x) ∈ φ(S)). Therefore,
each weight in φ(z) is represented by a weight in one of the intersections, and the value of the
weight depends only on the monomial so it is the same in φ(z) and φ(z ∩xi). Summing over
all xi in S gives an upper bound on the total contribution to W · φ(z). The last inequality
follows from the Cauchy-Schwarz inequality.
As a result of this upper bound on W · φ(z), we have that z is misclassified if

1

2
· (.99n

2/3)k −m(1.01n1/3)k

m
√

(1.01n2/3)k
> m

√

(1.01n1/3)k.

This can be shown to hold for all k = ω(1).
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4 Uniform Distribution

While Theorem 16 tells us that the Kk-maximum margin learner is not a PAC learning
algorithm for monotone DNF in the distribution-free PAC model, it does not rule out the
possibility that the Kk-maximum margin learner might succeed for particular probability
distributions such as the uniform distribution on {0, 1}n. In this section we investigate the
uniform distribution.
It is easy to observe that the proof of Lemma 8 goes through for the uniform distribution

as well (we actually gain a factor of 2). This therefore proves Result 3: if the algorithm uses
too low a degree k then its hypothesis cannot possibly be a sufficiently accurate approxima-
tion of the target. In contrast, the next result will show that if a rather large k is used then
the algorithm is likely to overfit.
The case of large k is more complex. In Section 3 we took advantage of the fact that 0n

occurred with high weight under the distribution D. This provided a lower bound (of 0) on
the value of W · φk(x) for some negative example in the sample, and we then could argue
that the value of θ in the maximum margin classifier must be at least as large as mS. For
the uniform distribution, though, this lower bound no longer holds, so we must use a more
subtle analysis.
For the next result, we consider the target function f(x) = x1. Let S = S+ ∪ S− be a

data set drawn from the uniform distribution U and labeled according to the function f(x)
where S+ = {〈xi,+, 1〉}i=1,...,m+ are the positive examples and S− = {〈xj,−,−1〉}j=1,...,m− are
the negative examples. Let ui denote |xi,+| the weight of the i-th positive example, and let
the positive examples be ordered so that u1 ≤ u2 ≤ · · · ≤ um+ . Similarly let vj denote |xj,−|
the weight of the j-th negative example with v1 ≤ v2 ≤ · · · ≤ vm− .

4.1 Positive-Skewed Samples

We first establish a technical condition that will allow us to give a bound on θ. It turns out
that the relative sizes of u1 and v1, the weights of the lightest positive and negative examples
in S, play an important role.

Definition 19 A sample S of size m is positive-skewed if u1 ≥ v1 + B, i.e. the lightest
positive example in S weighs at least B more than the lightest negative example, where

B = 1
66

√

n
logm

.

The following theorem shows that a random sample is positive skewed with constant prob-
ability:

Theorem 20 Let S be a sample of size m = poly(n) drawn from the uniform distribution.
Then S is positive-skewed with probability at least 0.029.

Proof: Our first step is to reduce to a situation in which the positive examples and negative
examples are independent from each other.3

3Note that this is not the case in S because the total number of examples is m. So, for example, if we
condition on the lightest positive example weighing much more than n/2, then this biases m+ (the number
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Let M−,M+ be any two positive integers. Consider the following new probabilistic ex-
periment which we call EM−,M+ : first M− draws are made from a binomial distribution
B(n − 1, 1

2
) to obtain (sorted) values v1 ≤ · · · ≤ vM− , and then M+ draws are made from

1 + B(n − 1, 1
2
) to obtain (sorted) values u1 ≤ · · · ≤ uM+. The values v1, . . . , vM− are thus

distributed identically to the weights of the negative examples in the scenario of Theorem 20
conditioned on m− = M−, and likewise for the u1, . . . , uM+ and the positive examples. We
define the following event:

• Event AM−,M+: u1 ≥ v1 +B.

For succinctness let us write Am for the event (in our original scenario of a size-m sample
S drawn from U) that S is positive-skewed. We then have

Pr[Am] ≥ Pr[.49m < m−,m+ < .51m] · Pr[Am | .49m < m−,m+ < .51m]

≥ (1− 2Ω(m)) Pr[Am | .49m < m−,m+ < .51m]

≥ (1− 2Ω(m)) min
.49m<M−,M+<.51m

Pr[Am | m− =M− and m+ =M+]

= (1− 2Ω(m)) min
.49m<M−,M+<.51m

Pr[AM−,M+ ].

where the second inequality holds by Chernoff bound.
It thus suffices to show that for any valuesM−,M+ in (.49m, .51m) we have Pr[AM−,M+ ] ≥

0.0291. Fix any M−,M+ in this range; we will henceforth only consider the experiment
EM−,M+ in which any event involving only the ui’s is independent from any event involving
only vi’s.

Let n′ denote n − 1. The idea of the next part of the proof is to show that with some
probability v1 falls into a relatively small left tail of the distribution while u1 is bounded
away from this tail. This gives us a gap between u1 and v1 as desired.
We consider u1 first. For 1 ≤ i ≤ n′ let ψ(i) denote

∑i−1
j=0

(

n′

j

)

2−n
′
. Note that ψ(i) is

precisely the weight in the “left tail up to i” of the distribution 1+B(n′, 1
2
). LetX be the event

that ψ(u1) ≥ 1
2m
and u1 ≤ n′/2. In order to have ψ(u1) <

1
2m
, at least one of theM+ < .51m

draws from 1+B(n′, 1
2
) must land in the “left tail” of weight less than 1

2m
; by a union bound

the probability that this occurs is less than 0.51
2
and hence Pr[ψ(u1) ≥ 1

2m
] ≥ 1− 0.51

2
> 0.745.

The probability that u1 ≥ n′/2 is 2−Ω(m) and thus Pr[X] > 0.745− 2−Ω(m) > 0.74.
Next consider v1. For 1 ≤ i ≤ n′ let ϕ(i) denote

∑i
j=0

(

n′

j

)

2−n
′
; similar to ψ(i) we have

that ϕ(i) captures the weight in the left tail of B(n′, 1
2
). Let Y be the event that ϕn(v1) ≤ 1

4m
.

This event fails to occur only if each of the M− draws from B(n′, 1
2
) misses the left tail of

weight at most 1
4m
. We need to be slightly careful; note that ϕ(·) takes discrete values, so

this tail may actually weigh less than 1
4m
(e.g. conceivably ϕ(22) = 1

m2
and ϕ(23) = 1

m
.) To

take care of this we will now show that this tail cannot weigh much less than 1
4m
.

For c ≥ 1 let σ(c) denote the largest integer such that ϕ(σ(c)) ≤ 1
cm
.

Lemma 21 For any constant c ≥ 1 we have ϕ(σ(c)) ≥ 1
3cm

.

of positive examples) down, hence biases m− up, and thus biases the weight of the lightest negative example
down.
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Proof: Suppose not; then we have ϕ(σ(c)) < 1
3cm

and ϕ(σ(c) + 1) > 1
cm
. This implies that

(

n′

σ(c)+1

)

> 2
∑σ(c)

j=0

(

n′

j

)

so in particular
(

n′

σ(c)+1

)

> 2
(

n′

σ(c)

)

. This implies that n′−σ(c) > 2σ(c)+2
which implies σ(c) < (n′ − 2)/3. But then Chernoff bound implies that for such values of
σ(c), ϕ(σ(c) + 1) = 2−Ω(n

′) which contradicts the inequality ϕ(σ(c) + 1) > 1
cm
since c is

constant and m is polynomial in n. (proof of Lemma 21)

The lemma implies that the left tail of weight at most 1
4m
must have weight at least 1

12m
.

Hence the probability that each of the M− > .49m draws from B(n′, 1
2
) misses this left tail

is at most (1− 1
12m
).49m. This is at most 0.96 and hence Pr[Y ] ≥ 0.04.

We next show that if events X and Y both occur then event AM−,M+ occurs. This will
complete the proof of the theorem since the events X and Y are independent and we have
that Pr[AM−,M+ ] ≥ Pr[X] Pr[Y ] ≥ 0.0296.
Suppose, for the sake of contradiction, that events X and Y both occur but u1 ≤ v1 +

(B − 1). Since X occurs we have ψ(u1) ≥ 1
2m
, i.e.

ψ(u1) =

u1−1
∑

j=0

(

n′

j

)

2−n
′ ≥ 1

2m
.

On the other hand since Y occurs we have ϕ(v1) ≤ 1
4m
, so

v1
∑

j=0

(

n′

j

)

2−n
′ ≤ 1

4m
. (5)

These two inequalities together clearly imply u1 > v1. In fact they imply

u1−1
∑

j=v1+1

(

n′

j

)

2−n
′ ≥ 1

4m
. (6)

Thus we see that the weights between v1 + 1 and u1 − 1 have a substantial size. We next
show that this implies that the weights below v1 also have a substantial size, contradicting
Equation (5). The following lemma is useful:

Lemma 22 For all j such that u1 − 3B ≤ j ≤ u1 − 1 we have
(

n′

j

)

≥ 1
2

(

n′

u1−1
)

.

Proof: Clearly it suffices to prove that 2
(

n′

u1−3B
)

≥
(

n′

u1−1
)

. By event X we know that

ψ(u1) ≥ 1
2m
. But the left tail Chernoff bound implies that unless

u1 − 1 ≥
n′

2
− 2

√

n′ logm (7)

we have ψ(u1) <
1
m4

< 1
2m
so (7) must hold. Let c = n′

2
− (u1 − 1) so 0 < c ≤ 2

√
n′ logm.

Now observe that for any b such that b < 0.1n′ we have

(

n′

n′/2−b
)

(

n′

n′/2−b−1
) =

n′/2 + b+ 1

n′/2− b
= 1 +

2b+ 1

n′/2− b
< 1 +

2b+ 1

0.4n′
= 1 +

5b+ 2.5

n′

14



We thus have
(

n′

u1−1
)

(

n′

u1−3B
) =

(

n′

u1−1
)

(

n′

u1−2
) ·
(

n′

u1−2
)

(

n′

u1−3
) · · · · ·

(

n′

u1−3B+1
)

(

n′

u1−3B
)

=

(

n′
n′
2
−c
)

(

n′
n′
2
−c−1

) ·
(

n′
n′
2
−c−1

)

(

n′
n′
2
−c−2

) · · · · ·
(

n′
n′
2
−(c+3B−2)

)

(

n′
n′
2
−(c+3B−3)

)

<

(

1 +
5c+ 2.5

n′

)(

1 +
5(c+ 1) + 2.5

n′

)

· · ·
(

1 +
5(c+ 3B − 2) + 2.5

n′

)

<

(

1 +
5(c+ 3B) + 2.5

n′

)3B

≤ e
5(c+3B)+2.5

n′
3B

where we have used the inequality 1+x ≤ ex. The last quantity is at most
√
e < 2 provided

that

3B <
n′

10(c+ 3B) + 5
. (8)

Now since c ≤ 2
√
n′ logm and we can bound 5 <

√
n′ logm and 30B < 0.5

√
n′ logm this

holds if

3B =
1

22

√

n

logm
<

n′

21.5
√
n′ logm

=
1

21.5

√

n′

logm

which is clearly true. (proof of Lemma 22)

Recalling that u1 ≤ v1+(B−1), we have that the sum in Equation (6) has at most B−2
terms. Now since u1 <

n′

2
the largest of these terms is

(

n′

u1−1
)

2−n
′
. By Equation (6) we thus

have that
(

n′

u1 − 1

)

2−n
′ ≥ 1

4(B − 2)m. (9)

Now Lemma 22 together with Equation (9), implies that we have

v1−1
∑

j=u1−3B

(

n′

j

)

2−n
′
>

u1−B−1
∑

j=u1−3B

(

n′

j

)

2−n
′ ≥

u1−B−1
∑

j=u1−3B

1

2

(

n′

u1 − 1

)

2−n
′ ≥ 2B

2

1

4(B − 2)m >
1

4m

but this contradicts Equation (5).

4.2 Lower Bound for Large k

Using the fact that the sample is likely to be positive-skewed we can prove the lower bound
along the same lines as before.

Definition 23 A sample S is a U -typical sample if
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• Every example x ∈ S satisfies 0.49n ≤ |x| ≤ 0.51n.

• Every pair of positive and negative examples xi,+, xj,− in S satisfy xi,+ · xj,− ≤ 0.26n.

As above we can apply Chernoff bounds to derive the next two lemmas:

Lemma 24 For m = poly(n), with probability 1− 2−Ω(n) a random i.i.d. sample of m draws
from U is a U-typical sample.

Definition 25 Let S be a sample. The set Z(S) includes all positive examples z such that
every example x in S satisfies x · z ≤ 0.26n.

Lemma 26 Let S be a U-typical sample of size m = poly(n) examples. Then PrU [z ∈
Z(S)|f(z) = 1] = 1− 2−Ω(n).

The following lemma is analogous to Lemma 13:

Lemma 27 Let S be a U-typical sample of size m. Then the maximum margin mS satisfies

mS ≥
1

2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

.

Proof: We exhibit an explicit linear threshold function h′ which has this margin. Let
h′(x) = sign(W ′ · φk(x)− θ′) be defined as follows:

• For each positive example xi,+ in S, pick a set of ρk(u1) features (monomials) which
take value 1 on xi,+. This can be done since each positive example xi,+ has at least u1
bits which are 1. For each feature T in each of these sets, assign W ′

T = 1.

• For all remaining features T set W ′
T = 0.

• Set θ′ to be the value that gives the maximum margin on φk(S) for this W ′, i.e. θ′ is
the average of the smallest value of W ′ · φk(xi,+) and the largest value of W ′ · φk(xj,−).

Note that since each positive example contributes at most ρk(u1) nonzero coefficients to W
′,

the number of 1’s in W ′ is at most mρk(u1), and hence ‖W ′‖ ≤
√

mρk(u1). By construction
we also have that each positive example xi,+ satisfies W ′ · φk(xi,+) ≥ ρk(u1).
Since S is a U -typical sample, each negative example xj,− in S shares at most .26n

ones with any positive example in S. Hence the value of W ′ · φk(xj,−) is a sum of at most
mρk(.26n) numbers whose squares sum to at most mρk(u1). By Observation 5 we have that
W ′ · φk(xj,−) ≤

√

mρk(.26n)
√

mρk(u1).
The lemma follows by combining the above bounds on ‖W ′‖, W ′·φk(xi,+) andW ′·φk(xj,−).

Now we can give a lower bound on the threshold θ for the maximum margin classifier.

Lemma 28 Let S be a labeled sample of size m which is U-typical and positive skewed, and
let h(x) = sign(W · φk(x)− θ) be the maximum margin hypothesis for S. Then

θ ≥ 1
2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1 −B).
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Proof: Since S is positive-skewed we know that W ·φk(x1,−) is a sum of at most ρk(u1−B)
weights WT , and since W is normalized the sum of the squares of these weights is at most 1.
By Observation 5 we thus have W ·φk(x1,−) ≥ −

√

ρk(u1 −B). Now since θ ≥ W ·φk(x1,−)+
mS, Lemma 27 implies the result.

Putting all of the pieces together, we have:

Theorem 29 If the maximum margin algorithm uses the kernel Kk for k = ω(
√
n log

3
2 n)

when learning f(x) = x1 under the uniform distribution then with probability at least 0.028
its hypothesis has error ε = 1

2
− 2−Ω(n).

Proof: By Lemma 24 and Theorem 20, the sample S used for learning is both U -typical and
positive skewed with probability at least 0.029 − 1/2−Ω(n) > 0.028. Consider any z ∈ Z(S).
Using the reasoning from Lemma 15, W ·φ(z) is a sum of at most mρk(.26n) numbers whose
squares sum to at most 1, soW ·φ(z) ≤

√

mρk(.26n). The example z is erroneously classified
as negative by h if

1

2

(

1√
m

√

ρk(u1)−
√

mρk(.26n)

)

−
√

ρk(u1 −B) >
√

mρk(.26n).

so it suffices to show that
√

ρk(u1) > 3m
(

√

ρk(.26n) +
√

ρk(u1 −B)
)

. (10)

Recall that ρk(x) =
∑k

j=0

(

x
j

)

. Note that for k = n (all-monomials kernel) the above inequal-

ity becomes 2u1/2 > 3m
(

2.13n + 2(u1−B)/2
)

which is clearly true. In Appendix B we show

that Equation (10) holds for all k = ω(
√
n log

3
2
n) as required.

The above argument shows that any z ∈ Z(S) is misclassified, and Lemma 26 guarantees
that the relative weight of Z(S) in positive examples is 1 − 2−Ω(n). Since Prx∈U [f(x) = 1]
is 1/2, we have that with probability at least 0.028 the hypothesis h has error rate at least
ε = 1

2
− 2−Ω(n), and we are done.

Remark 30 Here again we can adapt the proofs to show non-learnability results for the
polynomial kernel Kk(x, y) = (x · y)k. We modify the definition of W ′ in Lemma 27 as
follows. For every positive example xi,+ in the sample let x̂i,+ be the example obtained by
picking an arbitrary subset of size u1 of the original true bits and setting all other bits to 0.
Now let W ′ =

∑

xi,+∈S φ(x̂
i,+). Arguing as in Remark 18 we get that the maximum margin

is at least
1

2
· u

k
1 −m(0.26n)k

m
√

uk1
.

Now in Lemma 28 we get that W ′ · φ(x1,−) ≥ −(u1 − B)k/2 which again implies a lower
bound on the threshold.
Finally, following Theorem 29 and the argument in Remark 18 one can show that for an

example z ∈ Z(S) we have W · φ(z) ≤ m
√

(0.26n)k so that z is misclassified if

uk1 −m(0.26n)k − 2m
√

uk1
√

(u1 −B)k ≥ 2m2
√

uk1(0.26n)
k
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which is true if
u
k/2
1 > 5m2(u1 −B)k/2.

Using the reasoning in Case 1 of Appendix B, one can show that this holds for k =

ω(
√
n log

3
2 n).

5 Conclusions and Future Work

Boolean kernels offer an interesting new algorithmic approach to one of the major open
problems in computational learning theory, namely learnability of DNF expressions. We
have studied the performance of the maximum margin algorithm with the Boolean kernels,
giving negative results for several settings of the problem. Our results indicate that the
maximum margin algorithm can overfit even when learning simple target functions and using
natural and expressive kernels for such functions, and even when combined with structural
risk minimization. Our results consider cases where the L2 norm of examples in the expanded
feature space is large. This seems necessary for learning DNF; note that while one can use
an exponential function to define a kernel with weighted monomials where the weight decays
exponentially depending on the degree k, this implies that the margin for functions of high
degree is exponentially small.
While our results are negative there are several interesting avenues suggested by this

work which may succeed; we discuss these briefly below. One direction is to modify the
basic learning algorithm. Many interesting variants of the basic maximum margin algorithm
have been used in recent years, such as soft margin criteria and kernel regularization. It may
be possible to prove positive results for some DNF learning problems using these approaches.
A starting point would be to test their performance on the counterexamples (functions and
distributions) which we have constructed.
A more immediate goal is to close the gap between small and large k in our results for

the uniform distribution. It is well known [30] that when learning polynomial size DNF
under the uniform distribution, conjunctions of length ω(log n) can be ignored with little
effect. Hence the most interesting setting of k for the uniform distribution learning problem
is k = Θ(log n). Learning under the uniform distribution with a k = Θ(log n) kernel is
qualitatively quite different from learning with the large values of k which we were able to
analyze. For example, for k = Θ(log n) if a sufficiently large polynomial size sample is taken,
then with very high probability all features (monomials of size at most k) are active in the
sample.
As a first concrete problem in this scenario, one might consider the question of whether a

k = Θ(log n) kernel maximum margin algorithm can efficiently PAC learn the target function
f(x) = x1. For this problem it is easy to show that that the naive hypothesis h

′ constructed
in our proofs achieves both a large margin and high accuracy. Moreover, it is possible to show
that with high probability the maximum margin hypothesis has a margin which is within a
multiplicative factor of (1 + o(1)) of the margin achieved by h′. Though these preliminary
results do not answer the above question they suggest that the answer may be positive. A
positive answer, in our view, would be strong motivation to analyze the general case.
Finally, the kernel we have used is natural in terms of capturing all monomials of a
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certain length but there are other ways to capture natural kernels for Boolean problems.
An interesting possibility is using a kernel of parity functions and such a construction can
indeed be given. The resulting representation is closely related to learning via the Fourier
transform, e.g. as done in [19, 17, 20] but the algorithmic ideas are very different to the ones
used by maximum margin algorithms.

Appendix

A Proof of Equation (3)

To show that

ρk(.99n
2/3) > 2m

√

ρk(1.01n1/3)ρk(1.01n2/3) +mρk(1.01n
1/3)

it suffices to show that

ρk(.99n
2/3) > 3m

√

ρk(1.01n1/3)ρk(1.01n2/3). (11)

The proof uses several cases depending on the value of k relative to n.

Case 1: k ≤ 0.505n1/3. Since ρk(`) =
∑k

i=1

(

`
i

)

, for k ≤ `/2 we have that ρk(`) ≤ k
(

`
k

)

.

For all k we have ρk(`) ≥
(

`
k

)

so it suffices to show that

(

.99n2/3

k

)

> 3mk

√

(

1.01n1/3

k

)(

1.01n2/3

k

)

which is equivalent (clearing denominators from the binomial coefficients) to

k−1
∏

i=0

(.99n2/3 − i) > 3mk

√

√

√

√

k−1
∏

i=0

(1.01n1/3 − i)(1.01n2/3 − i).

We now use the fact that for i ≥ 0 we have (A − i)(B − i) ≤ (
√
AB − i)2 provided that

2
√
AB < A + B; it is easy to see that this latter condition holds for A = 1.01n1/3, B =

1.01n2/3. It thus suffices to show that

k−1
∏

i=0

(.99n2/3 − i) > 3mk
k−1
∏

i=0

(1.01n1/2 − i)

which in turn is implied by
(

.99n2/3

1.01n1/2

)k

> 3mn

(we used the fact that k ≤ n to obtain the right-hand side above). This holds as long

as k > log(3mn)

log 0.98+ 1
6
logn

= Θ(1) for any m = poly(n). Therefore the condition holds for any

k = ω(1).
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Case 2: 0.505n1/3 ≤ k ≤ 0.25 · 0.99n2/3. In this case we use the bounds ( `
k
)k ≤

ρk(`) =
∑k

i=1

(

`
i

)

≤ ( e`
k
)k for the first and third occurrences of ρk in equation (11) and we

use ρk(`) ≤ 2` for the second occurrence. It thus suffices to show that
(

.99n2/3

k

)k

> 3m

√

(

e · 1.01n2/3
k

)k

· 21.01n1/3

Since 1.01n1/3 ≤ 2k it suffices to show that
(

.99n2/3

k

)k

> 3m

(

e · 1.01n2/3
k

)k/2

· 2k

which holds (taking k-th roots and rearranging) if and only if

1

2
· .99n

2/3

k
·

√
k

n1/3
√
1.01 · e

=
1

2

(

.99√
1.01 · e

)

n1/3√
k
> (3m)1/k.

Using our upper bound on k on the left side, the previous inequality holds if

.99√
1.01 · e

· 2√
.99

> (3m)1/k

and since the left side is greater than 1.2 the inequality holds if k > log 3m
log 1.2

= Θ(log n) for

m = poly(n). This obviously holds since k = Ω(n1/3).

Case 3: 0.25 · 0.99n2/3 ≤ k ≤ 0.5 · 0.99n2/3. We use the following bound (proved later)
which holds for 0 < α < 1 :

αq
∑

i=1

(

q

i

)

≥ 1√
2πq

2H(α)q (12)

where H(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function. Applying this
bound to the left side of (11) with q = .99n2/3 and α = k/q, we have .25 ≤ α ≤ .5 so
H(α) > .81. Since ρk(`) is always at most 2

` it suffices to show that

1√
2π · .99n1/3

20.81·0.99n
2/3

> 3m
√

21.01n2/3+1.01n1/3 .

This is easily seen to hold for any m = poly(n).

To prove the bound (12) we use Stirling’s approximation
√
2πn(n

e
)n ≤ n! ≤

√
2πn(n

e
)n
√

1 + 1
2n
;

in fact we use a weaker form with
√
2 instead of

√

1 + 1
2n
in the upper bound. We thus have

αq
∑

i=1

(

q

i

)

≥
(

q

αq

)

=
q!

(αq)!((1− α)q)!
≥

√
2πq

2
√
2παq

√

2π(1− α)q

(q

e

)q
(

e

αq

)αq (
e

(1− α)q

)(1−α)q

=
1

2
√

2πα(1− α)q
α−αq(1− α)−(1−α)q =

1

2
√

2πα(1− α)q
2qH(α).
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Equation (12) follows since α(1− α) ≤ 1/4.
Note that by using

∑αq
i=0

(

q
i

)

≤ αq
(

q
αq

)

one can also obtain
∑αq

i=0

(

q
i

)

≤
√
αq√

π(1−α)
2H(α)q.

Case 4: k ≥ 0.5 · 0.99n2/3. In this case we have ρk(.99n
2/3) =

∑k
i=1

(

.99n2/3

i

)

≥ 1
2
2.99n

2/3
.

Thus it suffices to show that

1

2
· 20.99n2/3 > 3m

√

21.01n2/3+1.01n1/3

which is easily seen to hold for any m = poly(n). Thus Equation (11) holds for all k = ω(1).

B Proof of Equation (10)

We must show that
√

ρk(u1) > 3m
(

√

ρk(.26n) +
√

ρk(u1 −B)
)

. Since we are assuming

that the sample S is U -typical, we have u1 ≥ .49n so u1−B > 0.26n. It thus suffices to show
that ρk(u1) > 36m

2ρk(u1 −B).

Case 1: k ≤ 1

2
(u1 − B). Since ρk(`) =

∑k
i=1

(

`
i

)

, for k ≤ `/2 we have ρk(`) ≤ k
(

`
k

)

. Also

for all k, ρk(`) ≥
(

`
k

)

so it suffices to show that

(

u1
k

)

> 36m2k

(

u1 −B

k

)

.

This inequality is true if
(

u1
u1 −B

)k

> 36m2k.

Recall that B = 1
66

√

n
logm

. Now using the fact that

u1
u1 −B

= 1 +
B

u1 −B
> 1 +

B

n
= 1 +

1

66
√
n logm

it suffices to show that
(

1 +
1

66
√
n logm

)k

> 36m2k.

Using the fact that 1 + x ≥ ex/2 for 0 < x < 1, we can see that this inequality holds if

k > 132
√

n log(m) ln(36m2n). Since m = poly(n), this is the case for k = ω(
√
n log

3
2 n).

Case 2: 1

2
(u1 −B) < k. Since ρk(u1 −B) ≤ 2u1−B, it suffices to show that

u1
2
−B
2

∑

i=1

(

u1
i

)

> 36m2 · 2u1−B.
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Since
√
u1 >

√
.049n > 92

132

√
n > 92B

2
it suffices to show that

u1
2
−
√

u1
92

∑

i=1

(

u1
i

)

> 36m2 · 2u1−B.

Using Stirling approximation it is easy to check that
(

q
q/2

)

<
√

2
π

1√
q
2q and this implies that

u1
2
−
√

u1
92

∑

i=1

(

u1
i

)

>
1

2
2u1 −

√
u1
92

√

2

π

1√
u1
2u1 > 0.49 · 2u1

so the condition above holds if
0.49 · 2B > 36m2.

This is clearly true since m = poly(n) and B = 1
66

√

n
logm

.
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