
TUFTS-CS Technical Report 2004-2

June 2004

Container-Managed Exception Handling for the
Predictable Assembly of Component-Based Applications

(Master

by

Kevin B. Simons
Dept. of Computer Science

Tufts University
Medford, Massachusetts 02155

ABSTRACT

Component-based technologies have shown great potential for increasing developer produc-
tivity and reducing time to market for software systems. However, current component tech-
nologies fail to meet the quality attribute demands of the software industry [4], such as
reliability and security. System developers are unable to properly predict the behavior of a
system assembled from commercial off-the-shelf (COTS) components, and the source code
for such components is often not available for modification. Component containers have
great potential to more accurately ensure certain quality attributes of COTS-based systems.
Containers provide a set of services to the components that execute in them. For example,
containers have been used to facilitate security policies and transaction management. This
research suggests augmenting component containers in order to allow for exceptions to be
handled independently of the components. This modification to the component framework
yields a better separation of concerns and more robust assembly of commercial components.
Before quality attributes of component assemblies can be determined, the execution of the
system must be made more robust by properly handling exceptions.

Container-Managed Exception
Handling for the Predictable

Assembly of Component-Based
Applications

A thesis submitted by

Kevin B. Simons

In partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Science

Tufts University

Date

May 2004

Adviser

Judith Stafford

Abstract

Component-based technologies have shown great potential for increasing de-

veloper productivity and reducing time to market for software systems. How-

ever, current component technologies fail to meet the quality attribute de-

mands of the software industry [4], such as reliability and security. System

developers are unable to properly predict the behavior of a system assembled

from commercial off-the-shelf (COTS) components, and the source code for

such components is often not available for modification. Component contain-

ers have great potential to more accurately ensure certain quality attributes

of COTS-based systems. Containers provide a set of services to the com-

ponents that execute in them. For example, containers have been used to

facilitate security policies and transaction management. This research sug-

gests augmenting component containers in order to allow for exceptions to

be handled independently of the components. This modification to the com-

ponent framework yields a better separation of concerns and more robust

assembly of commercial components. Before quality attributes of component

assemblies can be determined, the execution of the system must be made

more robust by properly handling exceptions.

ii

Acknowledgments

I would like to thank Dr. George T. Heineman at the Worcester Polytechnic

Institute for his comments and guidance during the course of this research

work. The work done on component containers at the MITRE Corporation

by Gary Vecellio was very influential on this work. I’d also like to thank

Alexander Ran, Robert Katta and Mitri Abou-Rizk at the Nokia Research

Center, Boston for their help with this work and Nokia, Inc. for allowing me

to use a project there as a test application for this thesis. Last but not least

I would like to thank my adviser, Dr. Judith Stafford, for all of her guidance

and support while I was conducting this research.

iii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Exception Handling . 2

1.2 Component-Based Software Engineering 6

1.2.1 An Introduction to Component-Based Development . . 6

1.2.2 The Problem of Predictable Assembly 10

1.2.3 An Overview of Component Containers 16

1.3 Current Enterprise Java Exception Handling Best Practices . . 17

1.4 Summary . 20

2 Technology Overview 22

2.1 Platform . 22

2.2 Platform . 22

2.3 The JBoss Java Application Server 23

2.3.1 Hot-Deployment of Components 23

2.3.2 The JBoss Interceptor Stack 24

2.3.3 Service MBeans . 26

iv

CONTENTS v

2.3.4 Java Messaging Service 28

2.4 XDoclet Code-Generation Engine 30

3 Container-Managed Exception Handling 33

3.1 Problem Space . 33

3.2 The CMEH Framework . 35

3.3 Event Model Container Implementation 40

3.3.1 Event Handler Implementation and Deployment 48

3.3.2 CMEH Event Dispatching and Receiving Mechanism . 53

3.3.3 Asynchronous Support 55

3.3.4 Event Handling Automation 59

3.4 Augmentations to XDoclet . 60

4 Benchmarking Tests 62

5 An Example Application 68

5.1 Application Architecture . 68

5.2 Correcting the Exceptional Behavior 71

5.3 Experimental Results . 77

6 Related Work 81

7 Conclusions and Future Work 89

Bibliography 95

List of Tables

3.1 New XDoclet tags for automatically generating CMEH XML

configuration code . 61

4.1 Latency times for various CMEH event handler configurations 65

4.2 Memory usage in various JBoss configurations 67

5.1 LOC count in the CMEH mini-cooper version vs. glue code

in an example use case . 77

5.2 Processing times for all approaches in an example use case . . 78

5.3 Generated errors in the CMEH version vs. base application in

an example use case . 79

vi

List of Figures

1.1 A simple example of Exception handling in Java 3

1.2 Illustrating the throws clause in Java exception handling . . . 5

1.3 The Java 2 Enterprise Edition (J2EE) EJB Component Con-

tainer . 18

2.1 The JBoss Interceptor interface 25

2.2 An example XML configuration for the JBoss interceptor stack 26

2.3 JBoss XML configuration for deploying new MBean services . 27

2.4 Using JNDI to look up MBean services in JBoss 28

2.5 Example of setting up a publisher and subscriber in Java Mes-

saging Service (JMS) . 29

2.6 JBoss XML configuration for creating new Java Messaging

Service(JMS) Topics . 30

2.7 A simple example of using XDoclet to generate XML deploy-

ment descriptors . 32

3.1 Current exception handling techniques in Enterprise JavaBeans 34

3.2 An abstract look at the CMEH Framework event model 36

3.3 Translating exceptions using the CMEH Framework 38

3.4 The public API for the ExceptionEvent 41

vii

LIST OF FIGURES viii

3.5 The public API for the ExceptionEventContext 42

3.6 The ExceptionEventContext subclasses 44

3.7 One of the additional JMS Topics created as a part of the

CMEH framework . 45

3.8 The public API for the ExceptionHandlerService MBean . . . 46

3.9 The JMS-based CMEH Framework event model 47

3.10 The ExceptionEventHandler subclasses 51

3.11 CMEH XML configuration for deploying standard method-

called, method-returned and method-exception events 52

3.12 CMEH XML configuration for deploying test-component-state

and recover-component-state mini-components 53

3.13 Asynchronous event handlers in the CMEH Framework 56

3.14 CMEH XML configuration for deploying asynchronous mini-

components . 57

3.15 The Asynchronous ExceptionEventHandler subclasses 58

3.16 CMEH XML configuration for automatically creating and de-

ploying an exception translating method-exception handler . . 59

3.17 CMEH XML configuration for automatically creating and de-

ploying a default value returning method-exception handler . . 60

5.1 An example use case leveraging the CMEH Framework 70

5.2 CMEH method-called mini-component for verifying URL re-

quests . 72

5.3 CMEH XML configuration for method-called mini-component

for checking URLs and method-return mini-component for re-

solving relative URLs . 73

LIST OF FIGURES ix

5.4 CMEH method-return mini-component for resolving relative

URLs . 73

5.5 CMEH method-called mini-component for translating special

ASCII characters to HTML 74

5.6 CMEH XML configuration for method-called mini-component

for translating ASCII characters to HTML 75

5.7 CMEH method-exception mini-component for generating de-

fault return value error pages 76

5.8 CMEH XML configuration for method-exception mini-component

responsible for generating default return values 76

7.1 CMEH remotely deployed recover-component-state handler . . 93

Chapter 1

Introduction

This thesis introduces a framework for handling exceptions properly in

component-based applications. Specifically, exception handling services were

added to the Java 2 Enterprise Edition (J2EETM) framework. These aug-

mentations address the deficiencies present in current exception handling

techniques, as well as the problems that arise from assembling systems from

commercial components.

The thesis will cover in detail the Container-Managed Exception Handling

(CMEH) Framework, which allows system developers to handle exceptions in

a more modular, application-specific context. The quality of the framework

is validated by a series of benchmarking examples, as well as an example ap-

plication. The exceptional behavior of the application is corrected using the

CMEH framework, and the corrected version of the application is compared

to the same application corrected with simple glue code wrappers.

1

CHAPTER 1. INTRODUCTION 2

1.1 Exception Handling

An exception is an event that occurs during the execution of an application

due to anticipated erroneous behavior. This event interrupts the normal flow

of the application’s instructions and automatically transfers the flow of the

program to special exception handling code. Numerous conditions during

application execution can cause the raising of an exception; a few exam-

ples include out-of-memory errors, security policy violations, divide-by-zero-

errors and general misuse of an object-oriented class Application Program-

ming Interface (API). When such a fault occurs, an exception is dispatched

(or “thrown”) and control is transferred to a block of code set aside to handle

(or “catch”) the exception. In this case, an error is a mistake in the logic of

a program, and a fault is a manifestation of that error.

Exception handling concepts have been around nearly as long as modern

programming languages, with their introduction being sometime in the mid-

seventies with the advent of the PL/1 and Ada programming languages.

Similar constructs were later introduced in ANSI C, but not until C++,

Ada 95 and Java did the exception handling constructs become ubiquitous

in major applications. Today, it’s nearly impossible to write a large scale

application without including a significant amount of exception handling code

due to the increased complexity of modern software systems.

There are two main classes of exceptions in modern programming lan-

guages: system exceptions and application exceptions. System exceptions

are thrown by the system, generally due to resource issues, such as a database

connection error. These exceptions are, for the most part, non-recoverable.

While it may be possible to automatically reconnect to the database or bring

up a backup server, it is very difficult to know what state the application is

CHAPTER 1. INTRODUCTION 3

left in as a result of the exceptional behavior. Application exceptions occur

due to some violation of business-logic rules in the application itself. For

example, an exception may occur when a developer attempts to set the size

of a window on the screen to a negative value.

Most modern object-oriented programming languages (such as Java, C++

and Microsofts C# .NET) provide exception handling in the form of a try

and catch block 1. A try block is a construct that wraps around a piece

of code that may raise an exception. If any instructions within a try block

throw an exception, the flow of control is automatically transferred to the

catch block that corresponds with the current try block.

1 try {

2 java.io.FileReader reader =

3 new java.io.FileReader("test.txt");

4 String encoding = reader.getEncoding();

5 // code clipped

6 } catch (java.io.IOException ex) {

7 ex.printStackTrace();

8 }

Figure 1.1: A simple example of Exception handling in Java

In Figure 1.1, the creation of a new FileReader object may throw an

exception if the specified file does not actually exist. If the constructor does

in fact throw an exception, control is automatically transferred to the cor-

responding catch block without executing any subsequent line. In general,

control is transferred to the inner-most catch block that can handle the ap-

propriate type of exception. In this case, the catch block simply dumps the

1Since the focus of this thesis is on Java, Java will be used for all examples of exception

handling constructs, although the constructs are very similar in C++ or C#.

CHAPTER 1. INTRODUCTION 4

execution stack of the application. In Java, catch blocks specify a particular

class of exception to be caught. It is very common for a single try block to

have several corresponding catch blocks, each catching a different class of

exception. This sort of construction leads to much more useful handling of

exceptions, since often the course of action for handling one type of exception

will be different from other types. All exceptions in Java inherit from the

class java.lang.Exception. Using polymorphism, it is possible to simple

catch exceptions of class Exception. While this would allow all try blocks

to only have a single corresponding catch block, it would not lead to useful

handling of exception, since very little information is available to developers

using the Exception base class. In Java, system exceptions all inherit from

the class java.lang.RuntimeException. Exceptions that are subclasses of

this class are considered unchecked exceptions and are generally only caught

by low-level code, generally in the Java Virtual Machine (JVM) itself. Some

Java resources also specify a third type of exception known as a JVM ex-

ception, which generally includes the OutOfMemoryException, however any

attempt to detect or recover from these exceptions is outside the scope of

this thesis. Application exceptions are any exceptions that do not inherit

from RuntimeException in Java.

Now that the try-catch mechanism is well understood, it’s important to

understand where exceptions arise from in the first place. In Java, exception

events are fired using the throw construct. Any method that may throw

an exception must be identified using the throws modifier in the method

prototype (see Figure 1.2).

Method prototypes may either specify that they throw the generic

Exception class, or they may list several specific exception in a comma-

separated fashion. The second is more descriptive to developers calling

CHAPTER 1. INTRODUCTION 5

1 public double divide(int num , int den) throws Exception {

2 if(den == 0) {

3 throw new DivideByZeroException();

4 }

5 return num / den;

6 }

Figure 1.2: Illustrating the throws clause in Java exception handling

the method, but both constructions work. However, if only the generic

Exception class is specified in the method signature, the code responsible for

catching exceptions from this method may only catch the generic exception.

Compilation will fail if specific classes of exceptions are specified in catch

blocks if the same exception classes are not specified in the throws portion of

the method signature. Only application exceptions are specified in a throws

clause, since system exceptions are unchecked. An attempt to specify an

unchecked exception in the throws clause of a method signature will result

in compiler errors. When a method is invoked, the context of that invocation

is placed onto the virtual machine’s call stack. If that method calls another

method, another context is added to the call stack. When a throw instruc-

tion is executed, control moves back up the call stack to the innermost try

block that has a corresponding catch block prepared to handle the class or

a superclass of the exception. It is not required to have a throw clause in a

method in order to have the throws modifier in the prototype. If a method

is calling another method that may throw an exception, it is perfectly ac-

ceptable for the outer method to also throw the same type of exception and

omit the try-catch clause all together. However, if a method calls another

method that may throw an exception, the calling method is required to either

provide a catch block for that type of exception or to specify that it may

CHAPTER 1. INTRODUCTION 6

also re-throw the exception. All of these constructs are enforced by the Java

compiler at compile time.

1.2 Component-Based Software Engineering

1.2.1 An Introduction to Component-Based Develop-

ment

The field of Component-Based Software Engineering or CBSE is concerned

with assembly of software systems from pre-existing software components.

There is certainly no unanimous agreement as to what constitutes a software

component, but for the purpose of this thesis, components will be defined as

“binary units of independent production, acquisition and deployment that

interact to form a functional software system” [24]. Simply stated, a com-

ponent is a deployable, compiled unit of some functionality. Components

are a unit of software reuse. Reusable components are assembled by system

developers, rather than developing a large software application from scratch,

line by line. A component is specified by the interface it provides; that is

to say components are black boxes. An interface specifies the methods that

may be invoked on a component. Developers need only be concerned with

the functionality that components provide, not the implementation of that

functionality.

There are a number of significant advantages to leveraging CBSE when

developing software systems. First, in order to create components, software

requirements must be well modularized. This means that requirements en-

gineers and architects will have to break the system down into a modular,

componentized architecture, rather than the large, monolithic style archi-

CHAPTER 1. INTRODUCTION 7

tectures of the past. The benefits to having a modularized architecture are

well-known and will not be discussed in depth here, but briefly, modularized

architectures make software systems 1) more adaptable, 2) more scalable and

3) more maintainable.

Secondly, developing reusable software components has the ability to dra-

matically cut the cost of software development. While it does in fact incur a

cost of up to 250% to initially develop software components so that they can

be reused [24](meaning adding certain generality to make them application

non-specific, as well as proper documentation and packaging), there is a clear

benefit to be able to reuse the proprietary software. Often a company will

require similar functionality in several system and being able to develop a

component only once and then reuse it several times is of great benefit when

compared to attempting to extract a portion of code from an existing system

and adapting it to fit the needs of a new system. This type of extraction

generally requires the application of a great deal of code wrappers and “glue

code” and rarely produces a stable and satisfactory system in practice. Fur-

thermore, even successful systems created using this technique will be far less

adaptable and maintainable than component-based systems.

Perhaps the most compelling argument for the use of component-based

development is the possibility of the establishing of a software component

market [24]. Rather than developing proprietary components, a software

development organization will be able to browse a selection of commercial-

off-the-shelf (COTS) components and purchase a component that fits their

needs. With such a market in place, there will be several benefits for system

developers. First, the cost of development will be dramatically cut, since

the cost of purchasing a component will often be dramatically less than pay-

ing a developer to code similar functionality. Second, development time will

CHAPTER 1. INTRODUCTION 8

obviously be cut since purchasing a component is less time intensive than

developing the functionality in house. Finally, the quality of software com-

ponents should dramatically increase both because of large scale use as well

as the competition within the market environment. The aforementioned rea-

sons make CBSE an attractive means of creating software and ensure (more

or less) that CBSE is not just another software fad and that it has actual

applications to future software development.

Component Models

A component model essentially defines what it means to be a component.

It is a contract between component developers and the system that hosts

the components, describing how the components should be developed and

deployed. In most cases, this involves specifying a set of interfaces that

a component must implement in order to be deployed into a component

framework. There are several very popular component models in existence

today, such as CORBA, Microsofts COM and .NET and Enterprise Java

Beans, part of the Java 2 Enterprise Edition (J2EE) framework. Again,

since this thesis focuses on Java, EJB will serve as an example of component

models.

In the EJB model, a component must implement several life-cycle man-

agement methods before it can be deployed into the component framework.

The EJB component is a server-side component model (unlike classic Jav-

aBeans), specifying a contract for distributed components. There are es-

sentially two key interfaces in the EJB model: the home and remote inter-

faces. The home interface specifies life-cycle management operations and

is primarily made up of a create() method and a findByPrimaryKey()

CHAPTER 1. INTRODUCTION 9

method2. The remote interface specifies the set of business-logic methods

that the component provides to client components. In EJB 2.0, there are

two new interfaces called the local-home and local-remote interfaces which

present optimized implementations of the home and remote interfaces for

components residing on the same physical machine.

The EJB 2.0 model provides interfaces for the creation of three types

of components, known as Session, Entity and Message-driven Beans; These

three types provide component developers with support for stateless, stateful,

and asynchronous components, respectively.

Component Frameworks

By meeting the necessary standards of the component model contract, a de-

veloper compiles and packages a binary unit that is ready to be deployed

into a component framework. A component framework is a component de-

ployment environment, which provides a set of important deployment-time

and runtime services to components. Examples of services include compo-

nent life-cycle management, security policy enforcement, transaction man-

agement, and persistence. Most frameworks, including J2EE application

servers, provide these services in a dynamic and transparent fashion to the

running components. In the J2EE framework, these services are configurable

by the system developer using a set of XML files, called the EJB “deploy-

ment descriptors”, and can be used or not used depending on the particular

needs of the system.

2While these are the main methods of the home interface (for stateful EJBs), developers

are free to develop other create and find methods in their remote interface.

CHAPTER 1. INTRODUCTION 10

1.2.2 The Problem of Predictable Assembly

Unfortunately, most of the aforementioned benefits of component-based soft-

ware engineering can only presently be realized through in-house proprietary

components. This is because the black-box nature of commercial components

makes it very difficult to predict their behavior when they are assembled into

a large software system. It is nearly impossible to predict the extra-functional

properties (or quality attributes) of COTS components that are a part of a

larger system. In CBSE, this is known as the problem of predictable assem-

bly. Often, component vendors will provide some empirical data relating to

the performance or reliability of their components in the documentation of

the component, but there are no assurances as to how this component will

behave while interacting with other components. Not being able to predict

these features make the use of COTS components extremely costly both in

terms of money and time, since a software developer must essentially pur-

chase a component first and then test its extra-functional properties in the

context of the system. This may lead the developer to discard a component

after its been purchased due to its failure to meet certain quality attributes

[15]. Of course, most software vendors will not be willing to incur these

additional costs. These points will be further illustrated later in this thesis

(see Section 5) during the discussion of an example web application. This

application uses several COTS components to process HTML from web sites,

however, the black-box nature of the COTS components made the correct-

ness are reliability of the assembly very difficult to predict. While current

component frameworks attempt to alleviate this problem by enforcing cer-

tain quality attributes at runtime (e.g. security and latency via watchdog

timers), these approaches are more a bandage on the wound rather than

a solution. Until the problem of predictable assembly can be solved, and

CHAPTER 1. INTRODUCTION 11

quality attributes of components can be accurately determined and properly

certified, the advantages of CBSE cannot be fully realized.

Since the implications of this problem are very clear, a great deal of the

research in the field of CBSE presently focuses on predictable assembly. Some

of this work involves augmenting the components themselves in order to make

the assembly more predictable. One such example involves analyzing the

component architecture for potential areas of deadlock (a situation where all

processes are waiting and thus none can proceed) and livelock (a situation

where a change in one process cause a reaction in another, which in turn

causes a reaction in the first, infinitely) [10]. Once these danger zones are

located, new components are automatically generated and inserted into the

system. These new components are capable of breaking the lock situations

and can gracefully restore or restart the system.

A change to component models to allow for runtime assertion checking is

the focus of ongoing research at Worcester Polytechnic Institute [9]. These

assertions do not address the problem of determining quality attributes at

design time, but they do allow properties of components to be asserted in

a running system. In this proposed change, “hooks” are inserted into the

components in the “before-phase” (before a component performs any steps

toward fulfilling a request) and the “after-phase” (after the component has

completed all execution steps for a request). These hooks allow contracts to

be compiled into the code that enforce certain property requirements. These

contracts aid in building trust between component users and component ven-

dors, since guaranteed quality attributes can now be closely monitored. A

Runtime Interface Specification Checker (RISC) compiler has been developed

to automatically compile specified contracts into the code [9]. It also allows

vendors to create two versions of their components; one with the aforemen-

CHAPTER 1. INTRODUCTION 12

tioned hooks and one without any additional overhead. Research is currently

being done in applying these proposed model change to actual use cases.

Work being done at Microsoft Research focuses on the specification as-

pect of the problem of predictable assembly [3]. One of the main goals to be

achieved in solving the problem of predictable assembly is to include promises

about the quality attributes of components directly in to their specification.

The researchers at Microsoft created a specification language called AsmL

[3], which is an executable language that runs in the .NET runtime. Using

this language, component developers can specify highly detailed interfaces for

their components, leveraging features of AsmL, including non-determinism

and atomic transactions. Since the AsmL language is executable, compo-

nent developers specify their component interfaces with the AsmL languages

and then enrich their specifications with attribute fields and method bod-

ies. This is a major advantage over traditional programming language (C#,

C++, Java) interface declarations. These method bodies ensure certain prop-

erties about the component method via pre- and post-conditions, declarative

specifications and model programs. Rather than attempting to determine

quality attributes about a component statically from these specifications,

the AsmL specifications themselves are executed concurrently with the com-

ponent code, and the results of the component operations are compared with

the specification to ensure that the specified conditions have been met.

A great deal of research has been done in empirical studies of component

performance [15, 19]. Before components can be certifiable, there must be

a way to accurately describe and test their quality attributes. Certain at-

tributes (e.g. latency) require empirical tests in order to determine the level

at which a component meets them. These empirical studies are simple enough

to do with freestanding components, but become difficult to predict in large

CHAPTER 1. INTRODUCTION 13

scale systems. A solution to this problem is being researched at the Soft-

ware Engineering Institute. A general model for creating prediction-enabled

component technologies (PECTs) is being created as part of the PACC (Pre-

dictable Assembly from Certifiable Components) project [12, 22]. The first

generation of this model has been developed and it allows a component sys-

tem to be developed in an environment that is capable of predicting latencies

of the components in the system. This technology has been named ComTek-

λ. Work on a second generation model that allows for the prediction of

reliability is currently underway. This technology will also yield tremendous

benefits to product lines. Since new products are constantly being created

with new components, it is very important to maintain the same quality at-

tributes in the products [12]. Also, if it is necessary to add a restriction on

a quality attribute after the system has been created, a system created with

PECT components should be able to handle this very well. A new method

can be added to the components requiring this new quality attribute, and

the system should be able to determine whether or not the current system

meets its requirements.

Component performance is also the focus of the Component-Based Soft-

ware Performance Engineering (CB-SPE) project [6]. This research, done at

two universities in Italy, attempts to combine software performance engineer-

ing (a systematic, quantitative approach to construct software systems that

meet performance objectives) and Real-Time UML (RT-UML, a set of UML

domain profiles for schedulability, performance and time) into a single mod-

eling language. By following this compositional approach, the researchers

believe models that more accurately reflect the performance of component-

based systems can be developed. This ongoing research is currently focusing

on automating this modeling process.

CHAPTER 1. INTRODUCTION 14

A process for accurately making empirical measurements of component

reliability has also been the focus of some recent research [15]. The CORE

(COmponent REliability) measurement method, promotes a process for de-

composing the specification into logical pieces about which it is possible to

reason. The theory is that if it can be determined what role a component

plays in a specific protocol (a sequence of service invocations between a set

of components), then certain clues about a reliability measure to base the

reliability of the assembly can be ascertained. The CORE method provides

a seven step process for decomposing the specification into logical units, de-

veloping and applying a reliability test suite, and for analyzing the results to

determine the reliability of the assembly.

Another proposed solution to the predictable assembly problem is to use a

formal method to develop components [13]. Rather than attempting to spec-

ify the quality attributes of a component after it has been constructed, this

approach proposes a development of a component based on quality attribute

specifications. This a priori logical method uses formal transformations to

develop components that are guaranteed to meet certain quality attribute

goals.

However, these formal approaches tend not to scale well, so current re-

search at NASA is focusing on using a technique as Design for Verification

(D4V) in order to compose large systems from components that are indepen-

dently verifiable [16]. This approach supports the component design process

at two levels: first, it provides a set of domain specific design pattern styles.

These pattern rules are sufficiently formal to allow for automated check-

ing. The approach also provides an aspect-oriented implementation that

supports CheckPoints (to ensure consistent program states), ControlPoints

(to describe the process model of the system that are relevant for testing and

CHAPTER 1. INTRODUCTION 15

model checking), and ExtensionPoints (to denote potential extensions of the

system).

Component Certification

Predictable assembly is further complicated by the idea of component certi-

fication [11, 13]. Currently, there is not a standard to label and document

components. While a company can produce a component and claim that it

meets certain quality attributes, their specifications of the component and

they way in which the non-functional properties were determined is often

poorly documented. The specification of the functional properties is often

not the problem at all. There needs to be a universal standard in order

to make the problem of component selection more manageable. If certifiable

components are labeled, specified and documented with a universal standard,

system developers will have a much easier time selecting components based

on their non-functional requirements. This standard is currently the focus

of a great deal of research. A component documentation scheme, proposed

by Kallio and Neimel [11], consists of the components function and interface

specifications, along with the constraints of the component, its performance

measure, the security of the component, and a thorough description of the

acceptance tests used in developing and testing the component. A standard

similar to this would provide developers with a much more thorough basis

on which to choose components.

Another proposed solution to the predictable assembly problem is third

party certification of components [7, 23]. Whereas a developer may not be

inclined to trust the component creators assessment of a components non-

functional properties, they may trust the same component if it has been

certified by a third party, based on UL 1998, 2nd ed., UL Standard for

CHAPTER 1. INTRODUCTION 16

Safety for Software in Programmable Components [7]. Third party certifica-

tion is just a means to creating standardized documentation of components.

However, many researchers feel that the task of establishing component cer-

tification and trust should be a distributed task and need not include third

part certifiers [23].

1.2.3 An Overview of Component Containers

One of the most important pieces of the component framework, and the part

responsible for providing a deployment environment for the components, is

the component container. The container is a logical receptacle into which

components are deployed. In the J2EE framework, it is the container that is

responsible for providing services to the components that run in them. With

all of the services implemented in the container, the components themselves

need only contain business logic, and the service development can be left up

to the container experts. Often there is a one to one ratio of containers to

application servers and each container contains many components. However,

this is not necessarily the case. It is possible to have many containers within

a single application server (like in most J2EE application servers, where there

is a different container for each component type), and it is also possible to

only have a single component in a container. Often in J2EE, the terms

container and application server are used interchangeably.

The J2EE container provides a variety of services to the components that

are executing in it, including life-cycle management, data persistence, re-

source pooling, security policy application, transaction management and con-

text management, among others. All interactions with component clients are

performed by the component container. The container receives the request

from a client, marshals the request to a component running in it, receives

CHAPTER 1. INTRODUCTION 17

the components response and marshals the response back to the client, as in

Figure 1.3. This allows the container to provide services, such as security and

transaction management. Component containers are virtually a large scale

application of the adapter design pattern. The EJB container also performs

all the life-cycle management by publishing its own remote interfaces to the

clients, rather than allowing them to see the components actual interfaces.

This allows the container to instantiate instances of EJBs only when they are

needed in order to conserve resources. Furthermore, the container enforces

reentrancy policies for non thread-safe components. Through Container-

managed Persistence (CMP), the container automatically performs database

persistence operations, allowing developers to write stateful components con-

taining absolutely no Java Database Connection (JDBC) code simply by

correctly configuring the aforementioned XML deployment descriptor.

Recently, the J2EE EJB container has shown a great deal of potential

for aiding in the problem of predictable assembly [28]. Since the container

is intercepting all of the calls to a components interface, it is an excellent

means of applying a set of policies and contracts. Containers may prove to

be highly influential in solving the problem of predictable assembly and they

play a key role in this thesis research.

1.3 Current Enterprise Java Exception Han-

dling Best Practices

The current focus in the field of EJB exception handling is recovering from

component errors quickly with the goal of maintaining the end-user experi-

ence without dropping any user requests [18]. In order to improve efficiency,

CHAPTER 1. INTRODUCTION 18

Figure 1.3: The Java 2 Enterprise Edition (J2EE) EJB Component Container

CHAPTER 1. INTRODUCTION 19

the old exception mainstay of simply printing out the execution stack trace

is unacceptable in enterprise systems. Instead, appropriate logging and re-

covery technologies are leveraged.

When exceptions are currently caught in the EJB container, means are

taken to try to ensure no data is lost and that the system remains in a

working state. For example, when unchecked exceptions are caught, trans-

actions are rolled back and the exception is wrapped up as some form of

javax.ejb.RemoteException and is passed back to the client for proper

handling.

Three basic techniques are used by developers of components who are

calling methods of other components that may throw exceptions. Typically

1) the exception is rethrown with an error message, 2) the error is logged

and the exception is rethrown or 3) the exception is wrapped in a different

class of exception in order to preserve data across remote interfaces.

In general, clients rarely interact directly with Entity (stateful) EJBs.

Instead, there is generally an intermediary Session (stateless) EJB that the

client interacts with in order to prevent database corruption, etc. As a result,

the Session bean can handle all of the exceptions from the Entity beans and

produce some sort of error message or error recovery plan to the client.

While all of these techniques provide quite a good example for developing

a system with proprietary components, they have several shortcomings. First

of all, even simple applications suffer from a tremendous amount of code

tangle when handling exceptions [14]. This is only complicated when remote

components are involved, so handling all of the exceptions in a Session bean

will be an overly complex and inelegant approach.

However, the real problem with current approaches is that they fail to

meet the needs of systems dealing with COTS components. When a com-

CHAPTER 1. INTRODUCTION 20

ponent developer is creating a component, they do not know what other

software their component will be interacting with. Therefore, they cannot

possibly know what exceptions may be raised by the components that they

rely on. In a true CBSE environment, commercial components may be di-

rectly “wired” together purely based on the interfaces they provide and re-

quire without any need for glue code [5]. When using EJBs, this can be

done using EJB metadata. This means that the techniques mentioned above

for dealing with proprietary components are completed irrelevant for this

approach.

Furthermore, with COTS components, situations will arise when data

being passed between components is allowed by the components, but may

be considered exceptional in the context of the application by the system

developer. An example of this is a method that takes a numeric argument,

but there is a semantic mismatch of units between the calling and receiving

components. Current CBSE exception handling constructions and techniques

do not provide any means for dealing with this type of situation without using

glue code. Wrapping components in this sort of glue code only serves to make

the system less modular, less maintainable and less robust.

1.4 Summary

The field of component-based development offers a great deal of promise for

reducing both time and cost of developing large-scale applications. Through

component reuse, software development organizations will be able to pur-

chase third-party components and assemble software systems rather than

developing the systems entirely in-house.

However, currently there is a major problem facing the field of CBSE.

CHAPTER 1. INTRODUCTION 21

There is currently no means of accurately predicting the way in which a com-

ponent will behave in the context of an application. The quality attributes

of these components cannot be accurately determined. Without being to

accurately predict these extra-functional properties, software organizations

will not undergo the potentially expensive endeavor of developing software

from pre-existing components.

While modern programming languages have well established exception

handling mechanisms, these techniques for handling erroneous behavior do

not map well to component-based systems. Particularly, when dealing with

COTS components, the current EJB best practices are entirely insufficient.

The aim of this research is to correct this problem by providing component-

based system developers a highly modularized framework for handling excep-

tions in an application-specific context. This framework specifically addresses

three aforementioned deficiencies in current exception handling best prac-

tices: exception type mismatch, semantic mismatches in method arguments

and return values, and the detection and recovery from invalid component

states.

Chapter 2

Technology Overview

2.1 Platform

Before the details of the framework developed as part of this research can

be discussed in detail, it is first important to understand some of the major

technologies that the framework depends on. A brief description of the plat-

form used to run the framework will be described, followed by an in depth

look at the J2EE technologies.

2.2 Platform

The research for this thesis was conducted on a machine running Redhat

Linux 8 (Kernel 2.4.20-30.9). The Sun Java Runtime Environment (JRE)

1.4.1 was used to run all of the Java applications. All of the code was built

using Apache Ant 1.5.4 using the Sun Standard Development Kit (SDK)

1.4.1.

22

CHAPTER 2. TECHNOLOGY OVERVIEW 23

2.3 The JBoss Java Application Server

The central piece of technology used in this research is the JBoss Java appli-

cation server (version 3.2.2)1. JBoss is a freely available open-source project

and is representative of the application servers currently available on the

market. The JBoss server provides a fully open-source implementation of the

J2EE framework and container, as well as the EJB 2.0 component model.

The server is fully configurable via a set of XML configuration files and has

an extensive set of available services and upgrades. The server also comes

bundled with the Apache Tomcat HTTP web server and Servlet/JSP Engine

(version 4.1.29)2, which allows the JBoss server to host Java web components

or “Servlets” as well as Java ServerPages (JSP). Integration of the Tomcat

server allows system developers to create web applications easily that lever-

age both web and EJB components.

2.3.1 Hot-Deployment of Components

In the JBoss application server, EJBs can be dynamically deployed and un-

deployed when the server is already up and running. When a system de-

veloper has written Java code for an EJB and created the necessary XML

deployment descriptor and configuration files, all of the files are bundled

together into a Java Archive (.JAR) file. The XML files reside within the

META-INF directory inside the archive file. In order to deploy an EJB to the

application server, the system developer need only copy the file to the appli-

cation servers deploy directory (jboss-3.2.2/server/default/deploy by

default). When an archive is copied to this directory, the JBoss server au-

1www.jboss.org
2jakarta.apache.org/tomcat

CHAPTER 2. TECHNOLOGY OVERVIEW 24

tomatically unpacks the archive and examines the XML configuration files,

using them to appropriately deploy the EJB. It uses the configuration files to

determine if the server can provide all of the services the component requires

at this time.

EJB components can likewise be un-deployed in a similarly simple and

dynamic fashion. By deleting the archive from the deployment directory,

the JBoss server automatically un-deploys the EJB component. If any other

components are dependent on the EJB, these conflicts are found by the EJB

server at this point and appropriate exceptions and errors are fired.

Web applications can be similarly hot deployed in the form of Web Archive

(.WAR) files. The JBoss server automatically passes the appropriate classes

and configuration files off to the integrated Tomcat web server.

2.3.2 The JBoss Interceptor Stack

The research conducted as part of this thesis is dependent on a framework

in JBoss known as the interceptor stack. In the JBoss framework, services

(such as transaction and security) are wrapped around a client’s call via

the interceptor stack. The interceptor stack is an ordered chain of stateless

components that implement the Interceptor interface (see Figure 2.1). This

interface has a single important method, invoke, that is passed a wrapped

method call. From this object (of class jboss.invocation.Invocation), an

interceptor can gather information about the current context of the method’s

execution. The task of a single interceptor in the stack is to receive the

invocation from the previous interceptor, perform any necessary processing,

and then either pass the invocation on to the next interceptor, or throw an

exception, effectively canceling the client’s method call.

The interceptor stack is contained within the component container. The

CHAPTER 2. TECHNOLOGY OVERVIEW 25

final interceptor in the chain is the container interceptor, which makes the

actual call to the EJB method itself. The return value of the component

method is then passed back up the interceptor stack, where once again the

interceptors have the opportunity to perform operation on the invocation,

pass the invocation further up the stack, or throw an exception back to the

client.

1 package org.jboss.ejb;

2

3 public interface Interceptor extends ContainerPlugin {

4 public void setNext(Interceptor interceptor);

5 public Interceptor getNext();

6 public Object invokeHome(Invocation mi)

7 throws Exception;

8 public Object invoke(Invocation mi)

9 throws Exception;

10 }

Figure 2.1: The JBoss Interceptor interface

By intercepting the call in the component container in this fashion, ser-

vices can be easily applied. For example, when a method call is intercepted

by the org.jboss.proxy.SecurityInterceptor, it is able to check the con-

text of the invocation to ensure that the client making the method call has

the proper credentials to make the invocation. If the credentials are accept-

able, the interceptor will pass the Invocation on to the next interceptor in

the chain, otherwise an exception will be raised and propagated back to the

client. Other interceptors include interceptors for transaction services and

for retrieving JDBC relationship data.

New interceptors can be added to the interceptor stack in two ways in

JBoss. They can either by added to the default interceptor stack, or they

CHAPTER 2. TECHNOLOGY OVERVIEW 26

can be added to the interceptor stack for a particular EJB. The interceptor

stack is configured with a simple XML configuration file, as in other parts of

the JBoss application server (see Figure 2.2). Similarly to components in the

application, the interceptor stack may be dynamically reconfigured during

application execution.

1 <container -configurations>

2 <container -configuration>

3 <container -name >

4 Standard CMP 2.x EntityBean

5 </container -name >

6 <call -logging >false </call -logging>

7 <invoker -proxy -binding -name>

8 entity-rmi -invoker

9 </invoker -proxy -binding-name >

10 <!-- XML omitted -->

11 <container -interceptors >

12 <interceptor

13 org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor

14 </interceptor >

15 <interceptor >

16 org.jboss.ejb.plugins.LogInterceptor

17 </interceptor >

18 <!-- XML omitted -->

19 </container -interceptors >

20 </container -configuration>

21 </container -configurations>

Figure 2.2: An example XML configuration for the JBoss interceptor stack

2.3.3 Service MBeans

In JBoss, services on the server are implemented as Managed Beans or

MBeans that plug into a framework called the Java Management Extensions

(JMX). Each MBean implements a standard interface that allows them to be

CHAPTER 2. TECHNOLOGY OVERVIEW 27

instantiated by the server. There are four interfaces that an MBean may im-

plement. They include Standard MBeans, Dynamic MBeans, Open MBeans

and Model MBeans. The two most commonly used MBean types used in

JBoss services are Standard MBeans and Dynamic MBeans. The interfaces

of Standard MBeans (and thus the services they support) are statically de-

fined, whereas the Dynamic MBeans publish the services they provide only

when a component is ready to use them, adding a degree of flexibility. Ex-

amples of existing MBeans in JBoss include JBossManagedConnectionPool

and TransactionManagerService.

New MBean services can be added to JBoss in a fairly straightforward

manner. Base classes are provided to service developers that handle most of

the boiler-plate that goes into creating a service. By extending these classes,

the system developer need only implement a few simple methods for han-

dling the life-cycle of a service (e.g. startService() and stopService()).

After deploying the classes that make up a new MBean, a service developer

just needs to configure the service with a simple XML configuration file, as

illustrated in Figure 2.3.

1 <mbean code="myService" name=":service=MyService">

2 <depends>

3 jboss.mq.destination:service=Topic ,name=aTopic

4 </depends >

5 <depends>

6 jboss.mq:service=DestinationManager

7 </depends >

8 <depends>

9 jboss.mq:service=InvocationLayer,type=JVM

10 </depends >

11 </mbean >

Figure 2.3: JBoss XML configuration for deploying new MBean services

CHAPTER 2. TECHNOLOGY OVERVIEW 28

After creating a new service, the Java code and XML configuration files

are bundled into a Service Archive (.SAR) file. This file may then be copied

to the servers deploy directory in order to deploy the service. The services

can be dynamically deployed and un-deployed much in the same was as J2EE

applications.

In order to leverage the services that are provided by MBeans, clients can

look up the MBeans using the Java Naming and Directory Interface (JNDI),

as in Figure 2.4. By using this directory service, components can look up

services by name and then leverage the methods they provide.

1 InitialContext ctx = new InitialContext();

2 MyService aService = (MyService)ctx.lookup("java:/myService");

Figure 2.4: Using JNDI to look up MBean services in JBoss

2.3.4 Java Messaging Service

The JBoss application server provides a service for system developers known

as the Java Messaging Service (JMS). This service gives the JBoss server

the capabilities to support asynchronous messaging. JMS is an example

of a Message-Oriented Middleware (MOM), and the JBoss implementation

of JMS is referred to as JBossMQ. JBossMQ is a JMS 1.0.2b compliant

implementation of JMS. This messaging service provides via a set of channels

or “topics”. Senders and receivers register themselves with the JMS topic and

messages are sent asynchronously through the topic (see Figure 2.5). Any

number of receivers may be registered with the topic and any registered client

may send messages on the topic. The sender does not need to worry if there

are one or more receivers waiting on the topic and the receivers need not be

CHAPTER 2. TECHNOLOGY OVERVIEW 29

concerned with the status of the sender. JMS topics may be configured to be

one-to-one or one-to-many. They may also be declared “durable”, meaning

that if a receiver drops its connection at any point, it may reconnect and

retrieve all messages that were sent during its absence. JMS messages can

be simple text messages, or they can carry an object payload, as long as the

object implements the java.io.Serializable interface.

1 TopicConnectionFactory tcf =

2 (TopicConnectionFactory)c.lookup("java:/ConnectionFactory");

3

4 TopicConnection topicConn = tcf.createTopicConnection();

5

6 Topic topic = (Topic) ctx.lookup("topic/myTopic");

7

8 TopicSession topicSession =

9 topicConn.createTopicSession(false ,

10 TopicSession.AUTO_ACKNOWLEDGE);

11 topicConn.start();

12

13 TopicSubscriber subscriber =

14 topicSession.createSubscriber(topic);

15

16 subscriber.setMessageListener(new MyMessageListener());

Figure 2.5: Example of setting up a publisher and subscriber in Java Mes-

saging Service (JMS)

JMS was primarily introduced to J2EE in order to support a new addi-

tion to the EJB model known as Message-Driven Beans. These beans, intro-

duced in EJB 2.0, are interacted with via asynchronous messages provided by

JMS. MDBs are full-fledged EJBs (meaning the component container pro-

vides them with all the typical services), but they don’t publish a remote

interface. Instead, they are only reachable via JMS messages. Unlike typical

JMS receivers, MDBs can receive and process JMS messages concurrently.

CHAPTER 2. TECHNOLOGY OVERVIEW 30

There are several default topics that are automatically created at startup

time by the JBoss server (e.g. securedTopic), and new topics may be added

by the server administrator, as illustrated in Figure 2.6. The default topics

are mainly leveraged in implementing Message-Driven EJBs.

1 <mbean code="org.jboss.mq.server.jmx.Topic"

2 name="jboss.mq.destination:service=Topic ,name=exceptionTopic"

3 <depends

4 optional -attribute -name="DestinationManager">

5 jboss.mq:service=DestinationManager

6 </depends >

7 <depends optional -attribute -name="SecurityManager">

8 jboss.mq:service=SecurityManager

9 </depends >

10 </mbean >

Figure 2.6: JBoss XML configuration for creating new Java Messaging Ser-

vice(JMS) Topics

2.4 XDoclet Code-Generation Engine

When developing EJB components, there is a tremendous amount of boiler-

plate code and XML to write. There is generally a single file that con-

tains the bulk of the implementation for the EJB (the class that implements

javax.ejb.EntityBean or javax.ejb.SessionBean), and several files for

the remote and home interfaces (possibly local home and local remote inter-

faces) and an XML deployment descriptor (as well as possibly JBoss-specific

XML configuration files). Most of the XML, as well as the home and remote

interfaces, can be directly discerned from the main implementation class with

the help of some attribute-oriented programming. Attribute-oriented pro-

CHAPTER 2. TECHNOLOGY OVERVIEW 31

gramming is the idea that significance can be added to the code by adding

meta-data. In the case of XDoclet3, the meta-data that is added comes in

the form of Javadoc tags. By adding a series of Javadoc tags (illustrated in

Figure 2.7) and then running the code through the XDoclet preprocessor, all

of the boiler plate code and XML configuration files are automatically gen-

erated. The XDoclet processor is a complete rewrite of the Javadoc parser,

and has been highly optimized. It provides mechanisms for creating XML

from specified schema, as well as Java code generation.

The XDoclet code generation engine was used in this research both for

the creation of example EJB application and was extended to incorporate

the new features of the research itself.

3xdoclet.sourceforge.net

CHAPTER 2. TECHNOLOGY OVERVIEW 32

1 /**

2 *

3 * @ejb.bean

4 * class="MyBean"

5 * cmp -vresions="2.x"

6 * jndi -name="MyBeanHomeRemote"

7 * name="MyBeanEJB"

8 * primkey -field="id"

9 * reentrant="false"

10 * schema="MyBean"

11 * type="CMP"

12 *

13 * @ejb.home

14 * remote-class="MyBeanHomeRemote"

15 *

16 * @ejb.interface

17 * remote-class="MyBeanRemote"

18 *

19 * ... code snipped

20 *

21 */

22 public abstract class MyBean

23 implements javax.ejb.EntityBean {

24

25 /**

26 * @ejb.interface -method

27 */

28 public abstract void method1();

29

30 // code snipped

31 }

Figure 2.7: A simple example of using XDoclet to generate XML deployment

descriptors

Chapter 3

Container-Managed Exception

Handling

3.1 Problem Space

As stated in Section 1.3, there are currently a number of deficiencies with

current exception handling practices in component-based development, par-

ticularly in developing with COTS components. Since COTS component

developers are not aware of what components their software will be plugged

together with, they cannot predict the exceptional behavior of those compo-

nents. This generally leads to a lack of useful exception handling in compo-

nent method calls. A typical scenario in an EJB component is illustrated in

Figure 3.1.

These exception handling constructs are handling only generic exceptions,

not exceptions specific to the component being called. This generally means

that the exception handling code in the catch construct will mainly just

print error messages or stack traces, rather than handling the exceptions in

33

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 34

1 try {

2 int i = component1.method1();

3 } catch (javax.rmi.RemoteException remoteException) {

4 // exception handling code

5 } catch(Exception exception) {

6 // exception handling code

7 }

Figure 3.1: Current exception handling techniques in Enterprise JavaBeans

a meaningful way.

Furthermore, if the calling component does try to handle a wider variety

of exceptions in a more meaningful way, the result is generally a large amount

of code tangle [14]. There will be a significant number of catch clauses, each

with very complicated code, resulting in a code base that is both difficult to

read and to reason about.

Another important drawback with current exception handling structures

is the inability to handle exceptions in an application specific way and also

to handle behavior that is considered exceptional in the context of the ap-

plication that may not actually raise an exception. Because the exception

handling code is hard-coded into the calling COTS component, it cannot

be reconfigured on an application by application basis. Furthermore, legal

values returned by a called component may be considered exceptional by the

calling component even if the called component doesn’t raise an exception.

Likewise, arguments passed to a called component may be considered excep-

tional even if the called component method will accept the values. This is a

subset of the partial matching problem in CBSE, in which two components

are nearly compatible, but there is a semantic misunderstanding in method

arguments and return values [29].

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 35

3.2 The CMEH Framework

The Container-Managed Exception Handling (CMEH) Framework was cre-

ated as a solution to the aforementioned problems. The purpose of this frame-

work is to provide component-based system developers with proper support

for appropriately handling exceptions in a simple, highly modularized way.

By using this framework, system developers should be able to quickly and

easily develop exception handling code that deals with exceptions in their

system in an application-specific context. This exception handling code will

be logically modularized, as well as easily deployable and maintainable.

At the heart of the CMEH framework is the exception event model (see

Figure 3.2). This model allows the developer to deploy exception handling

code in the listener pattern, where their code is listening for specific exception

events. These events are dispatched at a variety of times during the execution

of a component method, giving the system developer several opportunities to

correctly deal with the exceptional behavior of the system in an application-

specific way. This model provides substantial cross-cutting support, yielding

a proper separation of concerns in component-based systems.

The events in this model are divided into three distinct categories or

phases: 1) exception prevention and analysis, 2) exception handling, 3) com-

ponent state recovery. The first phase takes place during method calls and

method returns. When a component method is called, the invocation of the

method is interrupted and a method-called event is dispatched. By han-

dling this event, system developers may properly examine the method invo-

cation in order to check the method arguments being passed to the called

component. If the arguments being passed to the component are not valid

in the context of the application, the system developer’s event handling code

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 36

Figure 3.2: An abstract look at the CMEH Framework event model

can either correct the invalid arguments (if possible) or throw an exception

that will propagate back to the calling component, effectively canceling the

method invocation altogether. Since the exception event handling code is

able to validate the arguments before they reach the called component, sys-

tem developers can potentially drastically reduce the number of exceptions

thrown by the called component method. Furthermore, they can also repair

arguments that are invalid in the context of the application that may not ever

raise an exception. Handling both of these situations will lead to a more pre-

dictable execution of the system, correcting any semantic partial-matching

issues that may exist.

The second half of the exception prevention and analysis phase occurs

when a component method returns from a call. Similar to a method call,

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 37

when a component method returns, the return value is stopped before it

reaches the calling component and a method-returned event is fired. This

event gives the exception-event handling code an opportunity to validate

the return value before it reaches the calling component. Much like the

method-called event, this event is useful for two reasons. First, it allows

the system developer to correct any properties of the return value that may

cause an exception when the return value reaches the calling component.

Once the calling component receives this return value, it may perform fur-

ther operations on the object, and the system developer would want to en-

sure that those operations are exception-free in an application-specific way.

Furthermore, the properties of the return value may be exceptional in the

context of the application, even though they would not necessarily raise an

exception in the calling component. Therefore, it may be the responsibility

for the CMEH event handling code to raise the exception. These semantic

mismatches may also be corrected during this phase, yielding a more robust,

predictable assembly of components.

The second phase of the CMEH event model is the exception handling

phase. This is without a doubt the single most important phase in the

event model, as it involves handling exceptions that could potentially render

the system unusable. When a component method raises an exception, the

propagation of that exception is intercepted before it reaches the calling com-

ponent, and a method-exception event is raised. Exception event handling

code listening for this event may perform several useful operations on the

exception. One of the more useful operations is exception translation [28]

or wrapping (see Section 1.3). As previously stated, the developers of the

calling component did not know what component their component would be

calling, they also were not able to predict what exceptions that component

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 38

would throw. Therefore it is very likely that the intercepted exception would

not be handled in a useful way by the calling component. However, there un-

doubtedly exists a set of exceptions that the calling component does handle

in a useful and robust way. Therefore, when handling the method-exception

event, a possible option is to translate the exception that was thrown by the

called component method into a type that the calling component knows how

to handle properly. Of course, knowing what exceptions the calling compo-

nent can handle properly is a difficult task without source code unless the

component is extremely well document. However, a great deal can be dis-

covered through use and exception classes native to the calling component’s

Application Programming Interface (API) are usually a good place to start

[5].

Figure 3.3: Translating exceptions using the CMEH Framework

Handling the method-exception event also provides an excellent means

of instilling default values. Based on the type of exception thrown, compo-

nent developers may intercept the exception and stop the propagation back

to the calling component altogether. Instead, they may substitute a default

return value to send back to the calling method. By using this technique,

fewer exceptions are propagated back to components that would most likely

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 39

handle them incorrectly or generically in the first place. Returning simple

default values of the correct type provides a much more appealing alternative.

The final phase of the CMEH event model deals with recovering compo-

nents with invalid states. When a component method of a stateful component

throws an exception, there is a reasonable probability that the called compo-

nent is left in an invalid state. However, it is nearly impossible to code state

recovery into the component itself, since the invalidity of the state must be

determined in an application-specific way. Furthermore, a component moving

into an invalid state will most likely cause a ripple-effect, where the compo-

nents connected to the invalid component may have also been compromised.

For that reason, the CMEH framework provides a means for detecting and

recovering from invalid states. Whenever a component method throws an

exception, the component may be left in an invalid state. Therefore, when-

ever this occurs, the CMEH framework fires a test-component-state event

after the method execution has completed, but before control is returned to

the calling component, regardless of whether an exception is propagated back

the caller or a default value is instead substituted by a method-exception

handler. Handling this event gives system developers an opportunity to test

the validity of the called components state within the context of the appli-

cation. If the test-component-state handler determines that the com-

ponent is in fact in an invalid state, then the CMEH framework fires a

recover-component-state event. Handling this event allows system de-

velopers to attempt to recover the invalid state of the called components,

as well as any components that may have been affected by the exception.

While this task is still very difficult due to dependencies among components,

the framework does provide a means to handle the easily automated cases.

Often handling this event will involve unloading and reloading a component

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 40

in order to recover its state. If an event handler cannot properly recover

the state of a component, a new exception may be raised and returned to

the caller, replacing any exception or return value that was currently being

propagated back.

In order to handle the aforementioned events, system developers must

create a set of event handling mini-components. These mini-components are

highly modularized deployable pieces of code that allow the events to be han-

dled within the context of the application. A mini-component is deployed

on a specific event for a single component method. For example, a mini-

component could be deployed for the method-exception event on Method1

of Component2. The developer may deploy as many mini-components per

method as is needed, allowing the handling of different exceptions, argument,

and return values to be separated allowing for greater modularization and a

better separation of concerns. On the other hand, a single class of event

handling mini-component may be deployed on several different methods,

across different components if necessary. Mini-components are deployable

and highly maintainable, allowing them to adapt to the ever-changing needs

of a component-based system. Just as most component frameworks provide

a means to hot-swap components, the event handling mini-components may

also be swapped out when the system is up and running, allowing the system

developers to make updates to the exception handling code should the need

arise.

3.3 Event Model Container Implementation

The CMEH framework is implemented as an augmentation of the J2EE con-

tainer in the JBoss application server. In particular, the framework relies

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 41

heavily on the JBoss interceptor stack (Section 2.3.2) and service MBeans

(Section 2.3.3), as well as the Java Messaging Service (JMS) (Section 2.3.4).

While the interceptor stack and MBeans are specific to JBoss, a port to an-

other Java application server would require a minimal effort, since most new

servers support similar features. Furthermore, JBoss has become the de facto

standard for freely available application servers.

Before examining the event model, it’s important to understand the

events themselves. The ExceptionEvent class provides a simple API (see

Figure 3.4). In general, the ExceptionEvent provides the information that

the CMEH framework needs to direct it to the appropriate event handlers and

generally not information needed by developers creating their own CMEH

event handlers. However, in certain cases (see Section 3.3.1) developers may

need to query the ExceptionEvent to determine exactly what method invo-

cation has triggered the ExceptionEvent.

1 public class ExceptionEvent

2 implements java.io.Serializable {

3 public ExceptionEvent(String eventType ,

4 String interfaceName,

5 String methodName ,

6 Integer eventID);

7

8 public ExceptionEventContext getContext(

9 boolean async);

10

11 public String getEventType();

12 public String getInterfaceName();

13 public String getMethodName();

14 public Integer getEventID();

15 }

Figure 3.4: The public API for the ExceptionEvent

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 42

The ExceptionEvent also provides a means to acquire an

ExceptionEventContext object associated with the event. The

ExceptionEventContext object contains most of the information useful to

the event handler mini-components (see Figure 3.5). These objects are re-

lated one-to-one with ExceptionEvents and provide and API similar to that

of a hash table. Some of the data provided by the context is mainly useful

to the CMEH framework itself rather than the developers of event handlers,

but it does provide a means to retrieve the jboss.invocation.Invocation

object associated with the current method invocation. The get() and put()

methods provide a means for several event handling mini-components de-

ployed on the same component method to share data, as they share the

exact same ExceptionEventContext object.

1 public abstract class ExceptionEventContext {

2 public ExceptionEventContext(HashMap hash);

3 public synchronized void put(Object key ,

4 Object value);

5 public synchronized Object get(Object key);

6

7 public synchronized Semaphore getAsyncSemaphore();

8 public synchronized Invocation getInvocation();

9 public synchronized void setInvocation(

10 Invocation invocation);

11 }

Figure 3.5: The public API for the ExceptionEventContext

The exception event handler objects do not actually receive an instance

of the ExceptionEventContext base class, but rather one of five subclasses

that are specific to the type of CMEH event being handled (see Figure

3.6). Each of the subclasses are specific to a type of event and provide

access to data relevant for that event. The MethodCalledEventContext ob-

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 43

ject, delivered to handlers deployed for method-called events, provides a

getArguments() method that retrieves the method arguments for the cur-

rent invocation. Likewise, the MethodReturnedEventContext provides a

getReturnValue() to retrieve the object returned by the current invocation.

Similarly, the ExceptionEventContext objects for the method-exception,

test-component-state and recover-component-state all provide a

getException() method to retrieve the exception thrown by the current

method invocation.

Now that the events themselves have been discussed, it’s important to

understand how the events are delivered to the handlers. When the server

is started up, the CMEH framework creates five new JMS topics for the

purpose of receiving event dispatches (see Figure 3.7). Four other topics are

created with the names returnedTopic, exceptionTopic, testStateTopic,

recoverStateTopic. Each of the five topics is used as a communication

channel for their related event types. While all events could easily be de-

ployed on the same channel, using separate channels both cuts down on

congestion in large systems and simplifies the code for receiving these events,

since the event type will not need to be tested.

With the JMS Topics properly configured, the channels through which

to dispatch the CMEH events are in place. At the heart of the framework

is the CMEHService MBean. This service is responsible for the dispatching

of exception events to the event handling mini-components, as well as the

deployment and registering of the mini-components themselves. To this end,

the MBean provides the public API illustrated in Figure 3.8.

The createEventListener() and deleteEventListener() methods are

responsible for introducing new event handlers into the CMEH framework.

These functions will be discussed in more detail in Section 3.3.1.

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 44

1 public class MethodCalledEventContext

2 extends ExceptionEventContext {

3 public MethodCalledEventContext(HashMap hash);

4 public Object [] getArguments();

5 }

6

7 public class MethodReturnedEventContext

8 extends ExceptionEventContext {

9 public MethodReturnedEventContext(HashMap hash);

10 public Object getReturnValue();

11 }

12

13 public class MethodExceptionEventContext

14 extends ExceptionEventContext {

15 public MethodExceptionEventContext(HashMap hash);

16 public Exception getException();

17 }

18

19 public class TestStateEventContext

20 extends ExceptionEventContext {

21 public TestStateEventContext(HashMap hash);

22 public Exception getException();

23 }

24

25 public class RecoverStateEventContext

26 extends ExceptionEventContext {

27 public RecoverStateEventContext(HashMap hash);

28 public Exception getException();

29 }

Figure 3.6: The ExceptionEventContext subclasses

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 45

1 <mbean code="org.jboss.mq.server.jmx.Topic"

2 name="jboss.mq.destination:service=Topic ,name=calledTopic">

3 <depends

4 optional -attribute -name="DestinationManager">

5 jboss.mq:service=DestinationManager

6 </depends >

7 <depends optional -attribute -name="SecurityManager"

8 jboss.mq:service=SecurityManager

9 </depends >

10 <attribute name="SecurityConf">

11 <security >

12 <role name="guest" read="true"

13 write="true"/>

14 <role name="publisher" read="true"

15 write="true" create="false"/>

16 <role name="durpublisher" read="true"

17 write="true" create="true"/>

18 </security >

19 </attribute >

20 </mbean >

Figure 3.7: One of the additional JMS Topics created as a part of the CMEH

framework

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 46

1 public interface CMEHServiceMBean

2 extends org.jboss.system.ServiceMBean {

3

4 public void createEventListener(

5 String handlerClass ,

6 String eventName ,

7 String interfaceName,

8 String methodName ,

9 boolean async);

10

11 public void deleteEventListener(

12 String handlerClass ,

13 String eventName ,

14 String interfaceName,

15 String methodName ,

16 boolean async);

17

18 public void dispatchMethodCalledEvent(

19 Invocation mi)

20 throws Exception;

21

22 public Object dispatchMethodExceptionEvent(

23 Invocation mi,

24 Object [] args)

25 throws Exception;

26

27 public Object dispatchMethodReturnedEvent(

28 Invocation mi,

29 Object [] args)

30 throws Exception;

31

32 public boolean dispatchTestComponentStateEvent (

33 Invocation mi,

34 Object [] args)

35 throws Exception;

36

37 public void dispatchRecoverComponentStateEvent (

38 Invocation mi,

39 Object [] args)

40 throws Exception;

41

42 public ExceptionEventContext getEventContextByID(

43 Integer id,

44 String eventType ,

45 boolean async)

46 throws ExceptionEventUndefinedException ,

47 ExceptionEventIDUndefinedException ;

48 }

Figure 3.8: The public API for the ExceptionHandlerService MBean

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 47

The MBean is responsible for dispatching all of the events to the mini-

components using the JMS topics as communication channels. The creation

and dispatching of events takes place in the dispatch*Event methods. When

one of these methods is called, it is passed the jboss.invocation.Invocation

object for the current method invocation. This object, along with a few

other arguments provided to the method, is used to properly create the

ExceptionEvent and associated ExceptionEventContext objects to be dis-

patched. After creating these events, the ExceptionEvent is published to

the appropriate JMS topic and any handlers subscribed on that topic will

receive the event.

Figure 3.9: The JMS-based CMEH Framework event model

In order to provide the necessary cross-cutting and method invocation

intercepting support, a new interceptor is added to the JBoss interceptor

stack (see Figure 3.9). It’s location in interceptor stack is significant, as it is

located after all security policy and transaction enforcement. This eliminates

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 48

potential security concerns. This new interceptor is responsible for notifying

the CMEHService MBean whenever a component method is being called, is

returning, or is throwing an interception. At this point, the MBean can

dispatch the appropriate event to the proper JMS topic. The interceptor’s

job is minimal, with the creation and dispatching of events actually taking

place in the MBean.

The MBean and interceptor are packaged together in a SAR (Service

ARchive) file. All of the XML configuration data for the MBean and the

JMS Topics are contained in an XML file within the SAR archive called

jboss-service.xml. Much like other deployment units in JBoss, the MBean

service can be deployed and started simply by copying this archive to the

deployment directory of the application server.

3.3.1 Event Handler Implementation and Deployment

Before examining the deployment and configuration of the CMEH excep-

tion event handlers, it is important to understand the details of the han-

dlers themselves. The creation of the event handling mini-components is a

very simple task. In order to create a new event handler, the system devel-

oper need only implement one of the interfaces in Figure 3.10 depending on

which event they intend to handle. Each of these interfaces only require a

single method that is called when it is required for the handler objects to

handle CMEH events. The developer must also provide a default construc-

tor for their handler classes. In general, each of the handler interfaces are

quite similar, however they do have some differences. First of all, each of

the handle* methods receive the same arguments with the exception of the

ExceptionEventContext objects. Each of the handling methods receive the

proper subclass of ExceptionEventContext relating to the type of CMEH

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 49

event to be handled.

The important detail is that each of the methods have different return val-

ues. For the handleMethodCalled() method of the

MethodCalledEventHandler class, the expected return value is of the type

Object[]. This array of objects corresponds to the arguments that will be

used in the current method invocation. Therefore in order to modify the ar-

guments, a MethodCalledEventHandler simply has to return a new array of

objects, and that array will be used as the method arguments of the pending

method invocation, rather than the original arguments. If any of the argu-

ment types to the called method are primitive types (i.e. int), they should

be wrapped in their corresponding object types (Integer). The method can

also throw an exception, effectively canceling the method invocation.

The handleMethodReturnedEvent() method of the

MethodReturnedEventHandler class functions similarly, except the return

value of this method is of type Object. This object represents the return

value of the current method invocation, therefore to modify the return value,

the handler object need only return a new object of the correct type.

The way in which the MethodExceptionEventHandler works is slightly

different. Since this handler is used for handling method-exception events,

the “typical” behavior of this handler is to throw an exception. In order to

continue the propagation of the current exception, the

handleMethodExceptionEvent() need only rethrow the Exception object

acquired by the getException() method of the

MethodExceptionEventContext argument. To translate an exception, the

handler can simply throw an exception of a different type. However, if the

handler instead returns an object of the correct type for the return value

of the current method invocation, the propagation of the exception will be

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 50

canceled and the return value will instead be propagated back to the caller.

The handlerTestStateEvent() method of the TestStateEventHandler

class return an object of type Boolean. This return value determines whether

or not the component is in an invalid state. If the handler determines

that the component involved in the current method invocation is in an

invalid state, it can return a new Boolean with the value true. If the

handler returns true, the CMEH framework will dispatch an event of type

recover-component-state to the handleRecoverStateEvent() methods of

the appropriate RecoverComponentStateHandler object. This method has

no return value and is only used to modify the involved components.

After implementing one of these interfaces, the developer must spec-

ify how their new class is to be deployed via the XML deployment de-

scriptor for the EJB whose events they wish to monitor (see Figure 3.11).

Within the <exception-handler> tag, the <method> tag specifies the name

of the component interface and component method to be monitored. The

name of the interface is either the home or remote interface of the EJB.

It then allows the developer to specify a series of CMEH event handler

classes that should monitor specific events on the specific component meth-

ods via the <method-called>, <method-returned>, <method-exception>,

<test-component-state> and <recover-component-state> XML tags.

The XML deployment code should specify the fully qualified package name of

the event handler classes. The <exception-handler> tags appear within the

<assembly-descriptor> portion of the ejb-jar.xml deployment descriptor

file. This section of the configuration file contains other application-wide con-

figurations, such as security and transaction policies.

Typically, the classes for the CMEH event handlers are packaged together

with the EJB they are associated with, though this is not a requirement.

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 51

1 public interface MethodCalledEventHandler

2 extends ExceptionEventHandler {

3 public Object [] handleMethodCalledEvent(

4 Invocation invocation ,

5 ExceptionEvent event ,

6 MethodCalledEventContext c)

7 throws Exception;

8 }

9

10 public interface MethodReturnedEventHandler

11 extends ExceptionEventHandler {

12 public Object handleMethodReturnedEvent(

13 Invocation invocation ,

14 ExceptionEvent event ,

15 MethodReturnedEventContext c)

16 throws Exception;

17 }

18

19 public interface MethodExceptionEventHandler

20 extends ExceptionEventHandler {

21 public Object handleMethodExceptionEvent(

22 Invocation invocation ,

23 ExceptionEvent event ,

24 MethodExceptionEventContext c)

25 throws Exception;

26 }

27

28 public interface TestStateEventHandler

29 extends ExceptionEventHandler {

30 public Boolean handleTestStateEvent(

31 Invocation invocation ,

32 ExceptionEvent event ,

33 MethodTestStateContext c)

34 throws Exception;

35 }

36

37 public interface RecoverStateEventHandler

38 extends ExceptionEventHandler {

39 public void handleRecoverStateEvent(

40 Invocation invocation ,

41 ExceptionEvent event ,

42 MethodRecoverStateContext c)

43 throws Exception;

44 }

Figure 3.10: The ExceptionEventHandler subclasses

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 52

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.tufts.cmeh.testsuite.TestSessionRemote

5 </interface -name >

6 <method-name >method1 </method-name >

7 </method>

8 <method-called

9 class="com.tufts.cmeh.testsuite.CalledHandler1"/>

10 <method-return

11 class="com.tufts.cmeh.testsuite.ReturnedHandler1"/>

12 </exception -handler >

Figure 3.11: CMEH XML configuration for deploying standard method-

called, method-returned and method-exception events

When the archive file is copied to the application server’s deployment direc-

tory, it is unpacked and appropriately deployed.

Invalid Component State Checking and Recovery

The deployment of the test-component-state and

recover-component-state events is very similar to the other three events,

but with a few subtle differences. First of all, handlers for these events are

generally not deployed on a specific component method, just a component

interface. This is because testing the validity of a component state and re-

covering from an invalid state will rarely be dependent on which component

method rendered the state invalid. If it is important to know which method

caused the exception, the method name can be retrieved from the event.

Because of this slight change in deployment, the deployment descriptor for

handlers of these two events generally is modified as illustrated in Figure ??.

The special method-name value * is a way of specifying all of the methods

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 53

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.tufts.cmeh.testsuite.TestSessionRemote

5 </interface -name >

6 <method-name >*</method-name>

7 </method>

8 <test-component -state

9 class="com.tufts.cmeh.testsuite.TestStateHandler1"/>

10 <recover-component -state

11 class="com.tufts.cmeh.testsuite.RecoverStateHandler1"/>

12 </exception -handler >

Figure 3.12: CMEH XML configuration for deploying test-component-state

and recover-component-state mini-components

in particular interface. While it is generally used with the

test-component-state and recover-component-state events, it is valid to

use it with other exception events as well. It is also valid to specify a specific

method for the test-component-state and

recover-component-state, but this is generally less useful.

3.3.2 CMEH Event Dispatching and Receiving Mech-

anism

When a new exception-handling mini-component is deployed into the sys-

tem, it is automatically registered with the CMEHService MBean via the

createEventListener() method. This method actually creates an instance

of the ExceptionEventListener class, which is responsible for receiving

CMEH events from the CMEHService MBean and marshaling the events to

the appropriate handler. Each listener is associated with exactly one user

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 54

defined handler object.

When the createEventListener() method is called, a new

ExceptionEventListener object is created and registered with the appropri-

ate JMS Topic. Within this listener, a new instance of the appropriate event

handler is created via the java.lang.reflect package. The system devel-

oper does not ever need to create or instantiate a ExceptionEventListener

or an event handler object. This is always taken care of by the framework.

The createEventListener() method is automatically called during deploy-

ment, however it is also valid for the developer to call the method progra-

matically.

When an event is dispatched to a JMS Topic, each of the listeners regis-

tered on that topic receives the event. The properties of the event are tested

to see if they handler associated with this listener should handle the event. If

so, the listener passes the event off to the handler. If not, the event is ignored.

It is this intermediary step of sending the event first to a listener and then to

a handler that requires the differentiation between the ExceptionEvent and

the ExceptionEventContext classes. JMS messages require that the object

being sent implement the java.io.Serializable interface. Since the con-

text provides hash table like functionality, there is no way to guarantee that

the objects in the context are serializable. Therefore, the ExceptionEvent

object serves as a simple handle, used to identify its associated context ob-

ject. The event is serializable and can be sent to the listeners via JMS. The

listener can then retrieve the context from the CMEH service and pass it off

to its associated handler. All of this is transparent to the CMEH framework

user, with both the ExceptionEvent and ExceptionEventContext objects

being passed to the event handler objects.

Each of the event handlers registered for a particular event on a com-

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 55

ponent method execute in the order they are specified in the XML deploy-

ment descriptor. The CMEH framework accomplishes this by assigning each

ExceptionEventListener object a unique ID. When an event is dispatched

on a JMS channel, the CMEH MBean blocks until it receives notification that

all of the listeners’ event handlers have completed their processing. Each of

the listener objects blocks until its turn comes (based on its ID), then mar-

shals the event to its associated handler.

A timeout mechanism is required because of this blocking. If an event

handler object contains an infinite loop, its associated listener will never

notify the CMEH service that processing of the event is complete. For that

reason, the service only waits a limited time before issuing a notification that

the next listener in line should pass the exception event off to its associated

event handler.

3.3.3 Asynchronous Support

Since the CMEH framework is built on top of an asynchronous communi-

cations layer (JMS), a logical extension of the framework is to provide sup-

port for asynchronous exception handling. By providing asynchronous han-

dling of exception events, developers may concurrently execute several mini-

components for exception handling tasks that are inherently parallelizable.

The event model for the CMEH framework is slightly modified when asyn-

chronous components are in use. Rather than dispatching the appropriate

JMS event and then blocking until all of the event handling mini-components

have returned, the CMEH framework simply dispatches the event and then

continues the component invocation, allowing all asynchronous handlers lis-

tening for events on the component method to execute concurrently.

In order to make an exception event handler asynchronous, the developer

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 56

Figure 3.13: Asynchronous event handlers in the CMEH Framework

must modify the XML deployment descriptor configuration for the CMEH

event handler components as illustrated in figure 3.14.

The exception handling mini-components themselves must also imple-

ment new asynchronous versions of the interfaces illustrated in Figure 3.15.

The reason these new interfaces is needed is quite simple: since these new

event handlers are asynchronous, they cannot return a value back to the caller

as with the synchronous components. Asynchronous event handlers receive

the same class of ExceptionEventContext as their synchronous counter-

parts. While these context objects do provide some synchronization, it’s

important for the developers of asynchronous event handlers to use caution

when adding and changing values in the context, as it is possible for one

asynchronous mini-component to clobber another’s data in the context.

Using only asynchronous event handlers to handle exceptions on a com-

ponent method does not provide any useful functionality. This is because

the CMEH framework would dispatch the appropriate JMS events and then

continue the invocation. By the time the asynchronous event handlers had

finished their processing, the method invocation would be in an indetermi-

nate state. Instead, a mix of asynchronous and synchronous event handlers

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 57

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.tufts.cmeh.testsuite.TestSessionRemote

5 </interface -name >

6 <method-name >*</method-name>

7 </method>

8 <test-component -state

9 class="com.tufts.cmeh.testsuite.TestStateHandler1"/>

10 <recover-component -state

11 class="com.tufts.cmeh.testsuite.RecoverStateHandler1"

12 async="true"/>

13 <recover-component -state

14 class="com.tufts.cmeh.testsuite.RecoverStateHandler2"

15 async="true"/>

16 </exception -handler >

Figure 3.14: CMEH XML configuration for deploying asynchronous mini-

components

should be used. This way, a single synchronous event handler can be included

and it can block until all of the asynchronous components have completed,

then return. By leveraging the event handlers in this way, the CMEH frame-

work will block the invocation until the synchronous event handler returns,

allowing the asynchronous event handlers to perform the required processing

while the invocation is in a consistent state. The CMEH framework provides

a simple synchronization system to facilitate this sort of construction (see

Figure 3.13). The ExceptionEventContext hash contains a method named

getAsyncSemaphore(), which return a semaphore used for event handler

synchronization. This member is a semaphore whose value is automatically

initialized to the number of asynchronous event handlers registered on the

component method. Using this member, a synchronous handler can block

trying to get the semaphore, while the asynchronous handlers each decrement

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 58

1 public interface AsyncMethodCalledEventHandler

2 extends ExceptionEventHandler {

3 public void handleMethodCalledEvent(

4 Invocation invocation ,

5 ExceptionEvent event ,

6 MethodCalledEventContext c);

7 }

8

9 public interface AsyncMethodReturnedEventHandler

10 extends ExceptionEventHandler {

11 public void handleMethodReturnedEvent(

12 Invocation invocation ,

13 ExceptionEvent event ,

14 MethodReturnedEventContext c);

15 }

16

17 public interface AsyncMethodExceptionEventHandler

18 extends ExceptionEventHandler {

19 public void handleMethodExceptionEvent(

20 Invocation invocation ,

21 ExceptionEvent event ,

22 MethodExceptionEventContext c);

23 }

24

25 public interface AsyncTestStateEventHandler

26 extends ExceptionEventHandler {

27 public void handleTestStateEvent(

28 Invocation invocation ,

29 ExceptionEvent event ,

30 MethodTestStateContext c);

31 }

32

33 public interface AsyncRecoverStateEventHandler

34 extends ExceptionEventHandler {

35 public void handleRecoverStateEvent(

36 Invocation invocation ,

37 ExceptionEvent event ,

38 MethodRecoverStateContext c);

39 }

Figure 3.15: The Asynchronous ExceptionEventHandler subclasses

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 59

the semaphore one by one as they complete their processing. Developers are

also free to manually synchronize the event handlers by any necessary means,

using the ExceptionEventContexts put() and get() methods.

3.3.4 Event Handling Automation

Several event handling techniques are common and useful enough in the

CMEH framework that they have been automated. This is done to save

developers the time of coding simple event handlers. It also aids in main-

tainability since the developer does not actually have to write any code to

deploy these handlers.

The most important of these automations is exception translation. By

simply augmenting their component deployment descriptor, system develop-

ers can automatically add a method-exception event handler that translates

an exception into a type that can be more usefully handled by the calling

component (Figure 3.16).

1 <method-exception class="com.tufts.cmeh.Translator">

2 <translate from="java.io.IOException"

3 to="MyException"/>

4 </method-exception >

Figure 3.16: CMEH XML configuration for automatically creating and de-

ploying an exception translating method-exception handler

Using reflection, this automatically generated event handler attempts to

recover as much state from the original exception as possible and transfer it

to an instance of the translated exception. However, exception states rarely

align well, so in general the state transference involves copying the exception

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 60

message.

Another important automation provided by the CMEH framework is

the returning of default values in response to method-exception events.

Presently, the framework only supports the returning of String and Integer

values in response to exceptions. If the system developer wishes to deploy a

default value generator for the method-exception event on an EJB, the code

illustrated in Figure 3.17 is added to the XML deployment descriptor.

1 <method-exception

2 class="com.tufts.cmeh.DefaultValueReturner">

3 <exception class="IOException"

4 return="0"

5 type="Integer"/>

6 <exception class="ParseException"

7 return="1"

8 type="Integer"/>

9 </method-exception >

Figure 3.17: CMEH XML configuration for automatically creating and de-

ploying a default value returning method-exception handler

A default value may be returned for all exceptions for a particular method

by specifying the class="*".

3.4 Augmentations to XDoclet

As with other EJB deployment code, configuring and deploying CMEH mini-

components can be quite cumbersome. By adding a series of new tags to the

XDoclet code-generating engine, this problem has been alleviated somewhat.

The method-level XDoclet tag illustrated in Figure 3.1 can be added to the

CHAPTER 3. CONTAINER-MANAGED EXCEPTION HANDLING 61

Javadoc comments of the component methods in the main EJB implemen-

tation class that will leverage the CMEH framework.

cmeh.exception-handler (0..*)

Parameter Type Description

event-name String Which event should this

handler listen for.

class-name String The CMEH event handler class.

async Bool Whether or not the handler is

asynchronous.

generate-stub Bool Whether or not stub handler

classes should be generated.

Table 3.1: New XDoclet tags for automatically generating CMEH XML con-

figuration code

Adding this new Javadoc tag to the component methods that require

CMEH and running the code through the XDoclet processor has several

effects. First, The XML deployment descriptor of the EJB is automati-

cally updated to include the necessary configurations for the CMEH mini-

components. Furthermore, if the developer chooses, stub implementations of

the event handler classes can automatically be generated, implementing the

appropriate synchronous or asynchronous exception event handler interfaces.

Chapter 4

Benchmarking Tests

With the addition of any crosscutting facilities, particularly an event-driven

framework, a certain amount of overhead is going to be added to the applica-

tions running in the framework. An overarching goal of this research was to

enhance the J2EE framework to allow for a more useful and robust handling

of exceptions, without compromising the performance of the system. There

will of course still be overhead added, but the payoff in terms of useful hand-

ing of exceptions, proper separation of concerns, and more robust assemblies

should far outweigh any costs.

In order to determine the amount of overhead added to the J2EE frame-

work by the CMEH enhancements, we performed a series of baseline bench-

marking tests (see Figure 4.1). The most important factor to maintain was

that a minimal amount of overhead should be added in the case where the

system developer is not using any CMEH framework features. Ideally, the

CMEH framework would not add any overhead at all when its features were

not in use.

The benchmarking tests were performed with a variety of mini-component

62

CHAPTER 4. BENCHMARKING TESTS 63

configurations on a simple, two component system with dummy component

methods. In this system, the component methods themselves will add no

overhead to the application execution, so accurate tests can be performed

to determine the exact overhead added by the CMEH framework. The tests

were also performed on a clean JBoss install without any CMEH facilities

installed to use as a baseline. Three component methods were tested: the

first was an empty void method that was used to test method call times,

the second returned an Integer to test method return times and the third

threw an exception on every invocation in order to test method exception

propagation times. The reported times represent only the time to invoke

the method, not the time required to execute the method body. The time

to execute component method bodies is variable and not dependent on any

overhead added by the CMEH framework. Each of the tests were run twenty

times. The time to propagate exceptions is not reported for the cases where

only method-called or method-returned events were being used, since the

overhead of the framework would not be any more than when no handlers

were deployed in these cases.

Note that the asynchronous handler tests require at least one synchronous

handler or else the system will not block at all. Also, the

recover-component-state handlers require at least one

test-component-state handler that returns a value of true, or the

recover-component-state method will never be dispatched, which explains

their fairly large invocation times.

Clearly, the CMEH frameworks exhibits a small amount of overhead over

a standard JBoss install, even when no event handlers are deployed. This is

of course logical, due to the added interceptor in the invocation stack. Par-

ticularly, there is more overhead added to method calls when method-called

CHAPTER 4. BENCHMARKING TESTS 64

Server Configurations Call Time Return Time Exception Time

Standard Jboss 2.4 ms 0.8 ms 1.4 ms

CMEH, No handlers 5.2 ms 1.2 ms 1.2 ms

(a) No deployed handlers

Server Configurations Call Time Return Time Exception Time

1 Sync handler 132.4 ms 0.8 ms N/A

2 Sync handlers 37.0 ms 0.8 ms N/A

3 Sync handlers 234.2 ms 0.6 ms N/A

1 Async handler 37.0 ms 1.8 ms N/A

2 Async handlers 53.8 ms 0.6 ms N/A

3 Async handlers 76.2 ms 0.4 ms N/A

(b) method-called handlers

Server Configurations Call Time Return Time Exception Time

1 Sync handler 1.6 ms 36.6 ms N/A

2 Sync handlers 2.0 ms 63.4 ms N/A

3 Sync handlers 1.4 ms 141.4 ms N/A

1 Async handler 2.2 ms 29.2 ms N/A

2 Async handlers 2.2 ms 35.4 ms N/A

3 Async handlers 1.8 ms 87.4 ms N/A

(c) method-returned handlers

CHAPTER 4. BENCHMARKING TESTS 65

Server Configurations Call Time Return Time Exception Time

1 Sync handler 1.8 ms N/A 42.8 ms

2 Sync handlers 13.2 ms N/A 60.4 ms

3 Sync handlers 1.8 ms N/A 51.8 ms

1 Async handler 4.0 ms N/A 33.8 ms

2 Async handlers 2.2 ms N/A 53.4 ms

3 Async handlers 2.0 ms N/A 69.0 ms

(d) method-exception handlers

Server Configurations Call Time Return Time Exception Time

1 Sync handler 1.6 ms N/A 33.6 ms

2 Sync handlers 1.6 ms N/A 33.2 ms

3 Sync handlers 1.4 ms N/A 76.4 ms

1 Async handler 1.6 ms N/A 25.6 ms

2 Async handlers 10.0 ms N/A 33.4 ms

3 Async handlers 1.4 ms N/A 57.0 ms

(e) test-component-state handlers

Server Configurations Call Time Return Time Exception Time

1 Sync handler 10.6 ms N/A 83.2 ms

2 Sync handlers 1.4 ms N/A 197.2 ms

3 Sync handlers 1.4 ms N/A 286.2 ms

1 Async handler 2 ms N/A 75.6 ms

2 Async handlers 1.6 ms N/A 121.4 ms

3 Async handlers 1.4 ms N/A 163.2 ms

(f) recover-component-state handlers

Table 4.1: Latency times for various CMEH event handler configurations

CHAPTER 4. BENCHMARKING TESTS 66

event handlers are deployed. This is logical due to the fact that JBoss inter-

ceptor stack contains more interceptors processing method calls, compared

to method returns and exception propagation. The added overhead for the

recover-component-state event handlers is an acceptable cost due to the fact

that these events occur irregularly, only when the component is left in an

invalid state.

Although these overheads are significant, these factors are quite minimal

when compared to the actual execution time of a method. The time to

simply call and return from the method is insignificant when compared to

the execution time of a substantial method body.

The latency for the asynchronous handlers is minimal, but the synchronous

handlers have a fairly significant overhead. In this test it is partly due to the

fact that the asynchronous handlers are not performing any processing, so

they don’t interfere with one another and therefore the synchronous handler

blocking on them does not have to block very long before the asynchronous

components have completed their processing. This aside, the performance

overhead of the synchronous listeners is significant and should probably be re-

duced. Currently all of the handlers are implemented using JMS which adds

a fair amount of overhead to the synchronous handlers to ensure that they

block and that they execute in sequence. JMS could most likely be replaced

in the synchronous event handlers by a simpler Java Event-based system,

which would reduce the overhead, although it would reduce the symmetry of

the implementation.

Another important overhead to examine in the application server with

CMEH facilities is memory usage (Figure 4.2). The memory usage of the

CMEH-enabled application server was compared to that of a standard JBoss

install.

CHAPTER 4. BENCHMARKING TESTS 67

Configuration RAM Usage (K)

Standard JBoss Memory Usage 270,044

CMEH-enabled Jboss Memory Usage 274,564

Table 4.2: Memory usage in various JBoss configurations

While there is a four megabyte memory usage increase, this is less than

a 2% increase.

Chapter 5

An Example Application

5.1 Application Architecture

A COTS-based application was developed by the Software Performance Ar-

chitecture group at the Nokia Research Center in Burlington, MA. This ap-

plication was a prototype for demonstrating a new HTML processing method

being developed at NRC. The prototype was made up of a variety of com-

ponents, both COTS and proprietary, as well as components from elsewhere

in the Nokia organization for which source code was either not available or

not well understood by the developers of the prototype application. The

architecture of the prototype was modified slightly for this research in order

to fit it into the EJB model (see Figure 5.1), however the code of the compo-

nents themselves was unchanged, and all components were treated as COTS

components.

The prototype has a web browser as a client front-end. Via the browser,

users connect to a HTTPServlet running on a J2EE application server. The

users input a URL for a website, which sets the application in motion. The

68

CHAPTER 5. AN EXAMPLE APPLICATION 69

application fetches the website from the given URL, performs the necessary

processing and returns the modified HTML back to the users browser, which

in turn displays the page.

The servlet forwards the request in the form of a URL string to the

HTMLTransformer component, which is the main component of this system.

The exact details of this component are currently under patent review and

can therefore not be disclosed. The component then forwards the URL string

to the HTML parsing and rendering component, a commercial component

called ICEBrowserTM by ICESoft Technologies. This Java-based component

can be used as either a front-end or server-side solution. It is capable of

parsing and rendering HTML and can be used as a base for a substantial

web browser. In the case of this system, the component was not used as a

widget, so the rendering was only a layout process, where the results were

not actually rendered to any display. The ICEBrowser component connects

to the Internet via an HTMLConnector component. This component receives

the string URL and performs an HTTP-GET to retrieve the HTML data at the

given URL. In then returns the stream of HTML to the ICEBrowser com-

ponent. This component then parses and renders the HTML and creates an

augmented Document Object Model (DOM) tree. This tree is a hierarchical

representation of an XML (or HTML) file, where the first tag of the file is

the root of the tree, and the branches and leaves are filled out accordingly.

The DOM tree is used by the ICESoft browser for rendering purposes. It tra-

verses the tree and renders each element based on the HTML specification.

The ICESoft component augments this DOM tree with additional layout in-

formation for its rendering purposes, and that information is crucial to the

HTMLProcessor component.

Once the HTMLProcessor component gets the augmented DOM tree, it

CHAPTER 5. AN EXAMPLE APPLICATION 70

Figure 5.1: An example use case leveraging the CMEH Framework

performs its necessary processing to transform the HTML. The component

then needs to convert the tree back into HTML to send to the client’s browser.

This is accomplished by passing the DOM tree to the DOMSerializer compo-

nent, a proprietary component created elsewhere in the Nokia organization.

This component traverses the DOM tree and converts it back into browser-

readable HTML. The HTML is sent to the user’s browser via the servlet.

However, when these components are assembled as is, there are several

major problems with the system and it doesn’t function in a robust fash-

ion. In fact, it is very difficult to find a URL that the system can success-

fully process. One such problem involves sending the URL string to the

HTTPConnector component. If this string is not properly formatted with the

http:// prefix, the URL lookup will fail. The next problem also involves

the HTTPConnector and the ICEBrowser component. In certain situations,

the ICEBrowser will be parsing an HTML stream from the HTTPConnector

and it will receive certain JavaScript commands (such as onLoad()), that

will cause it to make another request to the HTTPConnector. If these re-

CHAPTER 5. AN EXAMPLE APPLICATION 71

quests come too rapidly, the HTTPConnector will throw an exception and the

request will fail.

Another problem occurs once the parsing component has created a DOM

tree. Since the HTML data being sent back to the browser is not coming

directly from the web server at the original URL, the addresses for resources,

such as images, cannot be resolved by the browser. As a result, the resource

URLs in the DOM tree must be converted into absolute addresses. A final

problem occurs when the DOM is sent to the DOMSerializer component.

When the ICESoft parser creates the DOM tree, it automatically converts

HTML special characters into the ASCII values. This creates a problem when

the DOM is converted back into HTML because the ASCII characters do not

display properly in most conventional browsers. Without addressing all of

the aforementioned concerns, this system does not function at an acceptable

level of correctness or reliability.

5.2 Correcting the Exceptional Behavior

In order to perform an accurate evaluation of the CMEH framework, these

errors were first corrected using “glue code” wrapper components and then

using CMEH mini-components. The two solutions were compared on a num-

ber of criteria: number of lines of Java written, amount of XML written,

performance, and correctness. The CMEH version was also compared for

performance and correctness to the base application without any correction

code.

To correct the shortcomings of this application using the CMEH frame-

work, four CMEH mini-components were created. The first was a

method-called event handler that is responsible for ensuring the proper for-

CHAPTER 5. AN EXAMPLE APPLICATION 72

matting of URLs. The URLs require a protocol prefix for both the ICESoft

parser and the HTMLConnector components. The code and XML deployment

configuration for the method-called event handler can be seen in Figure 5.2

and Figure 5.3.

1 public class MethodCalledURLChecker

2 implements MethodCalledEventHandler {

3

4 public Object [] handleMethodCalledEvent(

5 Invocation arg0 ,

6 ExceptionEvent arg1 ,

7 MethodCalledEventContext arg2)

8 throws Exception {

9

10 Object [] args = arg2.getArguments();

11 String url = (String)args[0];

12

13 if(url.indexOf(’:’) == -1) {

14 url = "http://" + url;

15 }

16 return new Object [] {url , args[1], args[2]};

17 }

18 }

Figure 5.2: CMEH method-called mini-component for verifying URL re-

quests

The second mini-component is a method-returned event handler that

translates all of the URLs returned as part of the DOM from the HTML

parser component into absolute addresses (Figure 5.4).

Another mini-component was created to monitor the method-called

event of the serializeDOM() method of the DOMSerializer component (see

Figure 5.5 and Figure 5.6). This mini-component’s task is to translate any

special ASCII characters into their corresponding HTML characters.

The final CMEH mini-component was created in order to handle method

CHAPTER 5. AN EXAMPLE APPLICATION 73

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.nokia.minicooper.HTMLParserRemote

5 </interface -name >

6 <method-name >parseHTML </method-name >

7 </method>

8 <method-called

9 class="com.nokia.minicooper.MethodCalledURLChecker"/>

10 <method-returned

11 class="com.nokia.minicooper.MethodReturnedAbsoluteURLs"/>

12 </exception -handler >

Figure 5.3: CMEH XML configuration for method-called mini-component

for checking URLs and method-return mini-component for resolving relative

URLs

1 public class MethodReturnedAbsoluteURLs

2 implements MethodReturnedEventHandler {

3

4 public Object handleMethodReturnedEvent(

5 Invocation arg0 ,

6 ExceptionEvent arg1 ,

7 MethodReturnedEventContext arg2)

8 throws Exception {

9

10 DDocument doc =

11 (DDocument)arg2.getReturnValue();

12

13 // resolveRelativeURLs is a private method to

14 // iterate the DOM and resolve the URLs

15 this.resolveRelativeURLs(doc);

16 return doc;

17 }

18 }

Figure 5.4: CMEH method-return mini-component for resolving relative

URLs

CHAPTER 5. AN EXAMPLE APPLICATION 74

1 public class MethodCalledHTMLTranslator

2 implements MethodCalledEventHandler {

3

4 public Object [] handleMethodCalledEvent(

5 Invocation arg0 ,

6 ExceptionEvent arg1 ,

7 MethodCalledEventContext arg2)

8 throws Exception {

9

10 Document doc =

11 ((Document)arg2.getArguments()[0]);

12

13 // translate the necessary html

14 NodeList all = doc.getElementsByTagName("*");

15

16 for(int i = 0; i < all.getLength(); i++) {

17

18 Element e = (Element)all.item(i);

19 Node n = e.getFirstChild();

20

21 while(n != null) {

22

23 if(n.getNodeType() ==

24 Node.TEXT_NODE &&

25 !isInHeadOrScript(n)) {

26

27 // encode is a method in

28 // org.htmlbrowser.translate.Translate

29 n.setNodeValue(Translate.encode(((Text)n).getData());

30

31 }

32 n = n.getNextSibling();

33 }

34 }

35 return new Object []{ doc };

36 }

37 }

Figure 5.5: CMEH method-called mini-component for translating special

ASCII characters to HTML

CHAPTER 5. AN EXAMPLE APPLICATION 75

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.nokia.minicooper.DOMSerializerRemote

5 </interface -name >

6 <method-name >serializeDocument </method-name>

7 </method>

8 <method-called

9 class="com.nokia.minicooper.MethodCalledHTMLTranslator"/>

10 </exception -handler >

Figure 5.6: CMEH XML configuration for method-called mini-component

for translating ASCII characters to HTML

exceptions from the openURL() method of the HTMLConnector component

(Figure 5.7 and Figure 5.8). When this component method throws excep-

tions, it is generally due to either a network connection problem, or the

aforementioned JavaScript thrashing problem. Rather than simply propa-

gate an exception back to the client, an error HTML page is generated by

the CMEH method-exception handler, and is sent back to the client. With

this approach, the error HTML page may be passed to the other components

in much the same way as the requested HTML content would have been.

In order to create the glue code version of the application, three new

EJBs were created in order to wrap the existing html parser, connector and

serializer EJB. The reason these glue code wrappers needed to be full EJBs

was due to the fact that the existing components were being treated as COTS

components. In order to allow the glue code component to be transparently

inserted into the application, the glue code components needed to implement

the same interfaces as the original components. Then, the JNDI names of

the original components were modified and the glue code components claimed

CHAPTER 5. AN EXAMPLE APPLICATION 76

1 public class MethodExceptionErrorPageGenerator

2 implements MethodExceptionEventHandler {

3

4 public Object handleMethodExceptionEvent(

5 Invocation arg0 ,

6 ExceptionEvent arg1 ,

7 MethodExceptionEventContext arg2)

8 throws Exception {

9

10 // return a "default error page"

11 String errorPage = "<HTML >";

12 // code clipped

13 errorPage += "</HTML>";

14 return new ByteArrayInputStream(

15 errorPage.getBytes());

16 }

17 }

Figure 5.7: CMEH method-exception mini-component for generating default

return value error pages

1 <exception -handler >

2 <method>

3 <interface -name >

4 com.nokia.minicooper.HTMLConnectorRemote

5 </interface -name >

6 <method-name >openURL </method-name >

7 </method>

8 <method-exception class="com.nokia.minicooper.MethodExceptionErrorPageGen"/>

9 </exception -handler >

Figure 5.8: CMEH XML configuration for method-exception mini-

component responsible for generating default return values

CHAPTER 5. AN EXAMPLE APPLICATION 77

the original JNDI names of the components. This way, when a component

attempted to look up the original components, they would instead receive

a reference to the glue code correction component. Then the correction

components could perform any necessary modifications and then relay the

method call to the original components.

5.3 Experimental Results

The number of additional lines of code (LOC) and lines of XML required to

implement the two versions were counted (Figure 5.1).

Line Glue Code Version CMEH Version

Lines of Code (LOC) 165 115

Lines of XML 81 22

Table 5.1: LOC count in the CMEH mini-cooper version vs. glue code in an

example use case

Clearly, the glue code version requires substantially more Java code and

XML to implement, even with a relatively simple system like this. It can be

expected that this fact would be exacerbated in a larger system.

Another interesting statistic for this test case was the amount of time

required to develop the glue code EJBs and the CMEH mini-components.

To correct the systems behavior with the glue code took a programming

effort of 59 minutes. The CMEH version took only 45 minutes. Although

this is quite a small and specific use case, the differences in development

time is still notable. Furthermore, due to the modularity of the CMEH mini-

components, there is an opportunity for reuse that is not present in the glue

version.

CHAPTER 5. AN EXAMPLE APPLICATION 78

Several tests were performed on the various configurations of the system

based on a list compiled at Nokia of the most frequently visited website on

the Internet. Each of the three configurations (the base application, the

correction EJB version and the CMEH version) were repeatedly tested for

performance on the top four websites from the list. Since this application

utilizes data accessed across the Internet, there is a large amount of possible

variations in performance costs due to network latency. The performance

tests were run in order to determine if the CMEH version of the system

could run in approximately the same latency as the glue code version, taking

into a account the fact that a great deal of the latency is actually due to

network latency. The performance statistics are present in Table 5.2.

Website Standard JBoss Glue Code CMEH

www.yahoo.com 340.0 ms 812.4 ms 1055.2 ms

www.msn.com 873.8 ms 1128.7 ms 1842.9 ms

www.alexa.com 877.9 ms 890.4 ms 897.7 ms

www.passport.net 934.4 ms 954.4 ms 1038.9 ms

Table 5.2: Processing times for all approaches in an example use case

In all but one case the CMEH version suffered from the worst perfor-

mance. However, the values were on average only 18% slower than the glue

code version and 61% slower than the base application. While this should be

improved, it is an acceptable cost for the added benefits of the framework.

Another set of data was gathered based on how correctly each version of

the application loaded each of the top sites. The three different systems were

used to load each of the sites, and the correctness was based on whether or

not the loaded pages contained rendering, hyperlink, image, and scripting

errors, illustrated in Figure 5.3.

CHAPTER 5. AN EXAMPLE APPLICATION 79

Error Description Base Application CMEH Version

Pages Loaded Correctly 9 40

Rendering Errors 41 7

Scripting Errors 7 9

Image Errors 14 0

Hyperlink Errors 14 0

Complete Failures 34 32

Total Errors 110 48

Table 5.3: Generated errors in the CMEH version vs. base application in an

example use case

The CMEH version and the glue code methodologies produced the same

results because their methods for correcting the erroneous behavior of the

system were identical, although the architectures were of course drastically

different. While all of the systems suffered from reasonably high rates of fail-

ure, this is not the important statistic to notice. Some of failures were due

to the sites being down and failures of the COTS HTML parser component,

which could not be handled in the system. Furthermore the serialization

of the DOM back into HTML is not a trivial task and the DOMSerializer

component is not always able to create HTML that can be rendered on all

browsers. However, what should be taken from these results is how dra-

matically a few simple CMEH components can improve the behavior of the

system. The two additional scripting errors that occurred in the CMEH ver-

sion of the application were due to the fact that those pages failed entirely

in the base application.

This use case provided a relatively conclusive set of results for the CMEH

framework. The performance overhead for the CMEH version of the appli-

CHAPTER 5. AN EXAMPLE APPLICATION 80

cation was very minor when compared to the glue code version. The CMEH

version created a more robust and correct system with a relatively small

amount of code and XML configuration, when compared to the glue code

version. Furthermore, the CMEH version provides a much greater separation

of concerns. The CMEH mini-components are much more loosely coupled

with the EJB components than the glue code EJBs are. If one of the original

EJBs was upgraded or modified, it could potentially require a major rework-

ing of the glue code components, whereas the CMEH mini-components could

be updated in a simple fashion. Furthermore, the CMEH version allows the

mini-component to be dynamically swapped out, whereas removing the glue

code components would require a full redeployment of the system, which

would of course involve first taking the system down entirely.

Chapter 6

Related Work

The use of containers as a means of crosscutting is directly related to work

being done in the field of Aspect-Oriented Programming (AOP). AOP is a

means of extending a programming language with the ability to separate

concerns by cutting across the standards units of modularity. A great deal of

research has gone into using AOP as an effective means of handling exceptions

in software systems [14]. In fact, the initial architecture for the container-

managed exception handling model involved using AspectJTM rather than

the container interceptor method. However, using AspectJ proved to be

insufficient due to several limitations of the language. First, the AspectJ

language requires that any class that is to be crosscut be compiled in con-

junction with the aspect code by the AspectJ compiler. This is an unreason-

able requirement when working with COTS components, as the source code

is often not available for recompilation. A second drawback is that AspectJ

advice cannot throw a subclass of the class Exception that is not thrown

by the method it is monitoring, making exception translation difficult and

cumbersome. However, much like this interceptor approach, AOP for excep-

81

CHAPTER 6. RELATED WORK 82

tion handling stresses the detangling of exceptional code, as well as support

for multiple configurations, incremental development and dynamic reconfig-

uration [14]. The way in which interceptors are leveraged in the container-

managed exception handling system is quite similar to way in which around

advice is used in AspectJ. It gives the developer the ability to crosscut in

order to execute before and after the method invocation, as well as the ability

to decide whether the method should proceed at all.

The focus on the separation of concerns in the container-managed excep-

tion handling model is also influenced by research being done in the field of

multi-dimensional separation of concerns [26]. The hyperslicing mechanism

that is a part of the Hyper/JTM tool ([25]) is a large scale abstraction of the

type of crosscutting mechanism used in this component container research.

Hyper/J uses these hyperslices to separate multiple simultaneous concerns in

several dimensions, allowing for incremental development and composition.

The asynchronous portion of this research and its relation to proper sep-

aration of concerns is related to the Actor model of parallel and distributed

components [1]. The Actor model provides an asynchronous, non-blocking,

parallel model for distributed component-based systems. In this model, there

is no notion of a caller of a component method being responsible for han-

dling the exceptions thrown by the method that its calling. This is because

in the Actor model, calling method involves sending a message to a remote

component and that message is stored in a queue. The component services

the request when it has an opportunity, and the caller of that method does

not block. Therefore, by the time the called component finally services the

request, the caller has moved into a state where its no longer capable of han-

dling an exception. As a result, the exceptional behavior must be handled

by a third component that knows how to correctly handle the exceptional

CHAPTER 6. RELATED WORK 83

behavior. This is of course directly related to the CMEH framework.

Research in augmenting JBoss containers was done at the MITRE Corpo-

ration by Gary Vecellio et al. [28]. Assertion capabilities (including watchdog

timers and software firewalls) were added to the EJB containers in order to

better predict the behavior of component-based systems. With these asser-

tions, the developers of a system will be able to enforce their assumptions

about the quality attributes of the system. If it is essential that a particular

component return its output within a certain time constraint, an assertion is

added to the container of that component. If the component does not return

a value in the given time, the assertion fires, alerting the operator that the

quality attribute is not being met. The system developer can then modify or

replace the component in order to meet the necessary quality attributes of

the system. These features are configurable by the system developer at de-

ploy time via the EJB XML deployment descriptor. This research has been

highly influential in this container-managed exception handling model. More

recently, additional work was done in the domain of policy enforcement in

component containers [27]. A policy is a constraint on a system-wide prop-

erty. It is fairly easy to write policy enforcement in a non-component-based

application, however the problem becomes significantly more difficult in a

component-based systems, since the services and components are developed

separately from one another. Furthermore, it is important to be able to dy-

namically change the policies for the system without disrupting the system

itself. This is particularly important for systems that require robust certifi-

cation. The proposed scheme for policy enforcement involves separating the

policy from the business logic by providing policy enforcement in the JBoss

interceptor stack. In this way, interceptors can enforce policies based on the

states of the components and can be dynamically shuffled in and out until

CHAPTER 6. RELATED WORK 84

an appropriate policy is found.

Research in dynamically generating containers is being conducted at the

Ohio State University by Jason Hallstrom and Nigamanth Sridhar [21]. They

state that traditional encapsulation techniques fail with component-based

systems since a system developer cannot simply place each concern into its

own component. This is because of the fact the boundaries dictated by one

concern may overlap with the boundaries of other concerns. In order to

deal with these issues, there are a number of aforementioned solutions like

AOP and N-Degree separation of concerns. However, this research focuses

on the component container. Rather than using the distributed EJB con-

tainer, these researchers created a new container model based on the Service

Facility or Serf pattern. In this pattern, components interact with all ser-

vices and data objects through the Serf. The component requests a service

from the Serf and the Serf provides the components with the necessary data

objects it needs. The researchers view the Serf container as a parameterized

component; one where some, but not all of the services are fixed and can be

dynamically plugged and parameterized. Thinking of the container as a pa-

rameterized component allows for standard reasoning and proof techniques

to be applied to containers, something that is a major detriment to current

containers. A Service Facility Adapter Tool (SFAT) was created to dynami-

cally generate Serf containers to encapsulate services provided by Microsoft

C# libraries.

A recent research project summarized the current exception handling

practices and issues regarding them in the EJB framework [20]. The re-

searchers classified all of the components in J2EE into three classes: CS

components (contract-based interactions with synchronous communications),

CA components (contract-based interactions with asynchronous communica-

CHAPTER 6. RELATED WORK 85

tions) and E components (event-based interactions with synchronous commu-

nications). Typical EJB session and entity beans fall into the first category,

while message-driven beans are CA components. Regular JavaBeans are an

example of E components. The main concern of this research was that the

exception handling abilities for CA components are extremely limited, as

the synchronous components can rely on typical Java try/catch constructs.

With MDBs, the sender of a JMS message can be notified of an error, but

no exception is propagated back. The authors of this research specify four

conditions that they feel are necessary for properly handling exceptions in

asynchronous components. They are 1) the place where exceptions are most

usefully handled are at the caller, so a mechanism for getting the exception

back to the caller is necessary, 2) while asynchronous components are not

supposed to synchronized, mechanisms need to be in place to synchronize

the component during exception handling situations, 3) a means to collect

concurrent exceptions is needed, and 4) an exception mechanism is needed

for broadcast requests. This research is still in a fledgling state and does not

suggest augmentations to the J2EE framework to support these necessities.

Recently several other research projects have begun focusing on exception

handling in component-based systems. One such project is being conducted

at the Instituto de Computao at the Universidade Estadual de Campinas,

Brazil by Ricardo de Mendona et al [8]. This research relies on a concept

known as compositional contracts, based on the Coordinated Atomic Action

(CA Action) scheme. A CA action is an atomic action made up of several

component participants. This means that methods from the interfaces of

several components are combined into a single atomic action. Using com-

positional contracts based on these CA actions, exceptions in component

systems can be detected and potentially recovered from. All the participants

CHAPTER 6. RELATED WORK 86

in the coordinated action are communicated with via an asynchronous frame-

work. If a single participant raises and exception, the framework receives the

exception and attempts to recover in one of two ways. The first way, known

as rolling forward involves attempting to create a degraded return response

rather than propagating the exception itself. This is similar to intercepting

an exception in the CMEH framework and returning a default value rather

than propagating the exception. If rolling forward fails, the framework at-

tempts to roll back the atomic action, as specified by the contract. If this

succeeds, an abort exception is propagated back to the caller. If the rolling

back fails, a failure exception is propagated. If more than one participant in a

CA action throw exceptions, the framework attempts to combine the two ex-

ceptions into a single exception and then recovery can proceed as usual. This

work is extremely interesting and relevant to the CMEH framework research,

however it is not immediately clear what sort of assumptions the authors are

making about the involved components. It is a complicated problem to roll

back the components in to legal states, and it’s not immediately obvious

that current COTS components would be capable of being recovered simply

be contract specification. Furthermore, not all COTS components can be

treated as thread-safe asynchronous components. A great deal of care must

be taken to make components suited for parallelism. However, in terms of

designing proprietary components for use in this particular framework, the

benefits seem quite clear and excellent.

Similar CBSE exception handling research is also being conducted by

Alexander Romanovsky at the University of Newcastle upon Tyne, United

Kingdom [17]. Dr. Romanovsky’s framework involves the application of a

three-tiered architecture. First, components are wrapped in a wrapper that is

used to handle local errors and exceptions. This wrapper catches all returned

CHAPTER 6. RELATED WORK 87

error codes and exceptions, as well as testing a set of predicates in order to

determine if a component operation has resulted in an error. Recovery is then

attempted at the local level. The approach for this is very similar to compo-

nent state recovery in the CMEH framework; however the author implies that

this can easily automated with COTS components. This is not made entirely

clear by the proposed solution. The second tier of the framework is similar

to the CA action approach. All of the actions of the system are grouped

into atomic dynamic actions. This is done in order to facilitate and contain

erroneous situations. The final tier involves applying an exception handling

layer to the atomic actions. If the error cannot be handled at a local level, it

is attempted to be handled at an action level. Here the author concedes to

the fact that state recovery can be increasingly difficult with todays complex

software systems, and there is a need for recovery of the application at a sys-

tem level. For the most part, this research seems to be assuming an ideal set

of COTS components which can be grouped easily into useful atomic actions

and that provide their own means for recovery. This framework has not been

fully implemented, so perhaps some of these assumptions will change once

the proposed CORBA implementation has been created. More recently, a

use case based on a simplified version of this framework (only the component

wrappers) has been created with Simulink (part of the MATLAB product)

[2]. This use case is a simulation of a COTS Proportional, Integral and

Derivative (PID) controller for a steam boiler system. The researchers cre-

ated a protective wrapper around the PID components in an effort to test

forward recovery techniques. Some assumptions were made to simplify the

scenario, such as the instantaneous availability of variable values. The pro-

tective wrapper tested the values of several component properties and also

caught all exceptions thrown by the component. The error recovery strategy

CHAPTER 6. RELATED WORK 88

was encapsulated in three error handlers. The first handler’s technique was

essentially to notice an erroneous value in the component and do nothing

about it in the hopes that after a brief amount of time, the value would be

corrected. If this was unsuccessful, then the second handler would attempt

to take the value from the controller and adjust it to a legal value, while

notifying the operators of the discrepancy. If an exception arose that could

not be handled by either of these two methods, the third handler shutdown

the system and notified the operators. While a fairly simple example, this

research does provide some useful results and insights. First, the component

being used is a real COTS component, giving the results more viability than

if a proprietary component were used. Secondly, an important result of this

work pertained to the complexity of the wrapper itself. That result was that,

in most cases, simpler is better and that the wrappers and framework that

the component is running in should not contribute to an increase in failure

in the entire system.

Chapter 7

Conclusions and Future Work

Component-based software engineering (CBSE) has shown great promise

in recent years for greatly reducing both the cost and the time-to-market

for software systems. Building systems from commercial components al-

lows system developers to shop for prefabricated binary implementations of

desired functionality, rather than paying a developer to create similar soft-

ware, greatly reducing development time and saving considerable money.

Component-based systems also promote more robust software systems, since

components will, in theory, be more highly distributed and tested.

However, to this point, component-based development has not lived up

to the expectations of the software industry. One of the main reasons for this

is that the behavior of systems assembled from components cannot be accu-

rately predicted. When developing software systems, certain extra-functional

properties of the system need to be ensured. However, this has proven to

be a very difficult task when dealing with COTS components, due to their

black-box nature.

Component containers have emerged as a step in the right direction to-

89

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 90

wards solving the problem of predictable assembly. By applying a set of ser-

vices in the container (i.e. security policy enforcement, transaction manage-

ment), certain quality attributes can be better ensured. Implementing these

services in the container allows component developers to concentrate on busi-

ness logic, providing a good separation of concerns. However, there are still

countless concerns regarding predictable assembly that have not been prop-

erly addressed. One such concern pertains to the handling of exceptions in

component-based systems. Because component developers cannot be aware

of the other components their software will interact with, they cannot possi-

bly predict the exceptional behavior of those components. Furthermore, with

current standards, exceptions cannot be handled in an application-specific

way. Because of the deficiencies with current exception handling techniques,

code for handling exceptions in component-based systems is either generic

(and therefore mainly useless), or a mess of code tangle generated by a se-

ries of try-catch constructions. Before component-based systems are made

more robust, predicting the quality attributes of components in the system

cannot be done accurately.

This research suggests augmenting the component container in order to

allow exceptions to be handled in a modular, application-specific way. The

Container-Managed Exception Handling (CMEH) framework allows system

developers to create exception handling mini-components that handle ex-

ception behavior in the system. These mini-components handle exceptional

behavior in three phases. First it allows component method call arguments

and return values in order to prevent exception in the system. This serves as a

solution to the partial semantic matching problem. The second phase allows

the system developer to intercept exceptions thrown by component before

they propagate to the calling component. By intercepting the exceptions,

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 91

system developers can translate the exceptions to useful types of exceptions

that the calling component can handle or stop the propagation of exceptions

and instead return useful default values. The third phase of the framework

provides the event handling mini-components with an attempt to test the

state of components after exceptions occur in the system. If the states of

components are invalid, the CMEH framework has an opportunity to recover

the state of the components with developer-deployed mini-components. This

crosscutting framework provides an excellent separation of concerns since

the exception handling code is well removed from the business logic of the

components. The CMEH framework leads to robust system functionality,

reducing the number of errors in the execution of the system, and thus the

mean-time-to-failure(MTTF). Reducing the variations in the MTTF and re-

liability of the system allows for a more meaningful and accurate prediction of

other quality attributes. Attempting to accurately predict the performance

or availability of a non-robust system is much less possible and valuable than

predicting the extra-functional properties of a system that has a more robust

functionality. By properly handling the exceptional behavior of the system,

it is possible to more accurately predict other extra-functional properties of

the system.

Benchmarking tests on the performance of the framework show that the

amount of overhead added to the framework is nearly minimal, suggesting

that the benefits of framework outweigh any performance overhead. These

claims are further reinforced by a real use case developed at the Nokia Re-

search Center in Burlington, MA. This prototype application involved pro-

cessing HTML via several COTS components. Using the CMEH framework,

several deficiencies in the application were corrected, creating a more robust

system. The problems in the application were also corrected using a more

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 92

conventional “glue code” wrapper approach. The tests concluded that the

CMEH version produced a simpler, more modular, and more robust sys-

tem. Furthermore, the CMEH version was drastically more maintainable

and updateable, whereas the glue code version was highly coupled to the

components.

Despite the positive results of the CMEH results, there are still a number

of improvements that should be made to the framework. First of all, the

overhead for adding a synchronous mini-component is too large at this point.

Since it is based on the same JMS Event model as the asynchronous handlers,

the overhead is similar. However, it would more than likely suffice to base

the synchronous handlers on a simple architecture based on the Java event

model. Since synchronous handlers will no doubt be the more frequently

used, it is important to minimize their overhead.

Furthermore, while the current asynchronous model provides a nice multi-

threaded approach, it would be beneficial to distribute and parallelize the

exception event handlers. Currently, it would be possible to deploy the mini-

components on separate machines and then manually connect the handlers

on one machine to an application on another via JNDI, this would be a

bit cumbersome. By augmenting the deployment options in the XML de-

ployment descriptor, remote deployment could be specified and automated

(Figure 7.1). For small exception handling tasks, this would no doubt be

overkill since the network latency would far outweigh the benefit of the par-

allel execution, but for large tasks, such as recovering component states, this

may prove to be a very powerful option.

There are also several tasks in the CMEH framework that could be further

automated in order to minimize the amount of code a system developer has

to write for the mini-components. Simple test-component-state facilities that

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 93

1 <exception -handler >

2 <method>

3 <interface -name >MyEJBRemote </interface -name>

4 <method-name >method1 </method-name >

5 </method>

6 <test-component -state class="com.tufts.cmeh.ts1"/>

7 <recover-component -state

8 class="com.tufts.cmeh.rs"

9 remote="true">

10 <remote-server ip-addr="192.168.1.2"

11 proto="ssh">

12 <user -name >ksimons </user -name>

13 <password >abc123 </password >

14 <dir >

15 ~/jboss/server/default/deploy

16 </dir >

17 </remote-server>

18 </recover -component -state >

19 </exception -handler >

Figure 7.1: CMEH remotely deployed recover-component-state handler

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 94

check public properties via “get” methods and compare the results to values

provided in the XML deployment descriptor could be added, making the test

for invalid states far simpler.

Perhaps the most compelling research direction this project produced is

that of recovering component states after an exception. A great deal of work

is currently being done to make component methods atomic in order to au-

tomatically recover systems after faults [8, 17]. However, while it is fairly

easily to recover a single component after an exception, it is increasingly

difficult to handle situations where a “ripple effect” causes other component

to also be in invalid states. This becomes a reconfiguration problem, where

one or more components must be swapped out or reloaded in order to bring

the system back into working order. Current transaction techniques are in-

sufficient for solving this problem. First of all, the current J2EE transaction

model is not hierarchical. This means that if a component calls another

component and the second component’s method completes successfully, the

component’s state will be committed to the database regardless of whether

or not the method of the calling component completes successfully. Further-

more, hierarchical transaction systems introduce an unacceptable amount of

overhead to the system.

Analyzing a running system to determine what interdependencies exist

between components is a very difficult research problem. Further research

will be done at Tufts University by the author in order to develop an Archi-

tecture Dependency Language that allows for the specification of component

dependencies, as well policies for exception recovery. Static and dynamic

control and data dependence analysis will be run over the component-based

systems in order to properly determine component dependencies for use in

error recovery.

Bibliography

[1] G. Agha and W. Kim. Actors: a Unifying Model for Parallel and Dis-

tributed computing. Journal of Systems Architecture, 1999.

[2] T. Anderson, M. Feng, S. Riddle, and A. Romanovksy. Error Recov-

ery for a Boiler System with OTS PID Controller. Proceedings of the

Exception Handling in Object-Oriented Systems: Towards Emerging Ap-

plication Areas and new Programming Paradigms workshop, Darmstadt,

Germany, 2003.

[3] M. Barnett, W. Grieskamp, C. Kerer, W. Schulte, C. Szyperski, N. Till-

man, and A. Watson. Serious Specification for Composing Components.

Proceedings of the Sixth ICSE Workshop on Component-Based Software

Engineering, 2003.

[4] L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Sea-

cord, and K. Wallnau. Volume I: Market Assessment of Component-

based Software Engineering. Technical Report CMU/SEI-2001-TN-007,

Software Engineering Institute, 2000.

[5] L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R. Seacord,

and K. Wallnau. Volume II: Technical Concepts of Component-Based

95

BIBLIOGRAPHY 96

Software Engineering, 2nd Edition. Technical Report CMU/SEI-2000-

TR-008. Software Engineering Institute, 2000.

[6] A. Bertolino and R. Mirandola. Towards Component-Based Software

Performance Engineering. Proceedings of the Sixth ICSE Workshop on

Component-Based Software Engineering, 2003.

[7] B. Councill. Third-Party Certification and Its Required Elements. Pro-

ceedings of the Fourth ICSE Workshop on Component-Based Software

Engineering: Component Certification and System Prediction (CBSE4),

Toronto, Canada, 2001.

[8] R. De Medona da Silva, P. Asterio de C. Guerra, and C. Rubira.

Component Integration using Compositional Contracts with Exception

Handling. Proceedings of the Exception Handling in Object-Oriented

Systems: Towards Emerging Application Areas and new Programming

Paradigms workshop, Darmstadt, Germany, 2003.

[9] G. Heineman. Integrating Interface Assertion Checkers into Component

Models. Proceedings of the Sixth ICSE Workshop on Component-Based

Software Engineering, 2003.

[10] P. Inverardi and M. Tivoli. Correct and automatic assembly of COTS

components: an architectural approach. Proceedings of the Fifth ICSE

Workshop on Component-Based Software Engineering: Benchmarks for

Predictable Assembly (CBSE5), Orlando, Florida, 2002.

[11] P. Kallio and Eila Niemel. Documented Quality of COTS and OCM

Components. Proceedings of the Fourth ICSE Workshop on Component-

Based Software Engineering: Component Certification and System Pre-

diction (CBSE4), Toronto, Canada, 2001.

BIBLIOGRAPHY 97

[12] M. Larsson, A. Wall, C. Norstrom, and I. Crnkovic. Using Prediction-

Enabled Technologies for Embedded Product Line Architectures. Pro-

ceedings of the Fifth ICSE Workshop on Component-Based Software

Engineering: Benchmarks for Predictable Assembly (CBSE5), Orlando,

Florida, 2002.

[13] K. Lau. Component Certification and System Prediction: Is there a

Role for Formality? Proceedings of the Fourth ICSE Workshop on

Component-Based Software Engineering: Component Certification and

System Prediction (CBSE4), Toronto, Canada, 2001.

[14] C. Lopes, J. Hugunin, M. Kersten, M. Lippert, E. Hilsdale, and

G. Kiczales. Using AspectJ for Programming the Detection and Han-

dling of Exceptions. Proceedings of the ECOOP Exception Handling in

Object Oriented Systems Workshop, 2000.

[15] J. McGregor, J. Stafford, and I. Cho. Measuring Component Reliability.

Proceedings of the Sixth ICSE Workshop on Component-Based Software

Engineering, 2003.

[16] P. Mehlitz and J. Penix. Design for Verification: Using Design Patterns

to Build Reliable Systems. Proceedings of the Sixth ICSE Workshop on

Component-Based Software Engineering, 2003.

[17] A. Romanovsky. Exception Handling in Component-Based System De-

velopment. Proceedings of the 25th International Computer Software

and Application Conference (COMPSAC 2001), Illinois, 2001.

[18] S. Shenoy. Best practices in EJB exception handling. http://www-

106.ibm.com/developerworks/java/library/j-ejbexcept.html, 2002.

BIBLIOGRAPHY 98

[19] M. Sitaraman. Compositional Performance Reasoning. Proceedings of

the Fourth ICSE Workshop on Component-Based Software Engineer-

ing: Component Certification and System Prediction (CBSE4), Toronto,

Canada, 2001.

[20] F. Souchon, C. Urtado, S. Vauttier, and C. Dony. Exception handling

in component-based systems: a first study. Proceedings of the Excep-

tion Handling in Object-Oriented Systems: Towards Emerging Appli-

cation Areas and new Programming Paradigms workshop, Darmstadt,

Germany, 2003.

[21] N. Sridhar and J. Hallstrom. Generating Configurable Containers for

Component-Based Software. Proceedings of the Sixth ICSE Workshop

on Component-Based Software Engineering, 2003.

[22] J. Stafford and J. McGregor. Issues in Predicting the Reliability of

Composed Components. Proceedings of the Fifth ICSE Workshop on

Component-Based Software Engineering: Benchmarks for Predictable

Assembly (CBSE5), Orlando, Florida, 2002.

[23] J. Stafford and K. Wallnau. Predicting Feature Interactions in

Component-Based systems. Proceedings of the ECOOP Workshop on

Feature Interaction of Composed Systems, 2001.

[24] C. Szyperski. Component Software: Beyond Object-Oriented Program-

ming: Second Edition. ACM Press: New York, 2002.

[25] P. Tarr and H. Ossher. Hyper/J: Multi-Dimensional Separation of Con-

cerns for Java. Proceedings of the 22nd International Conference on

Software Engineering, 2000.

BIBLIOGRAPHY 99

[26] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degrees of Sepa-

ration: Multi-Dimensional Separation of Concerns. Proceedings of the

21st International Conference on Software Engineering, 1999.

[27] G. Vecellio and W. Thomas. Infrastructure Support for Predictable

Policy Enforcement. Proceedings of the Sixth ICSE Workshop on

Component-Based Software Engineering, 2003.

[28] G. Vecellio, W. Thomas, and R. Sanders. Containers for Predictable

Behavior of Component-based Software. Proceedings of the Fifth ICSE

Workshop on Component-Based Software Engineering, 2002.

[29] A. Zaremski and J. Wing. Specification Matching of Software Compo-

nents. ACM Transactions on Software Engineering and Methodology,

pages 333–369, 1997.

