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Abstract. The LogAn-H system is a bottom up ILP system for learn-
ing multi-clause and multi-predicate function free Horn expressions in
the framework of learning from interpretations. The paper introduces a
new implementation of the same base algorithm which gives several or-
ders of magnitude speedup as well as extending the capabilities of the
system. New tools include several fast engines for subsumption tests,
handling real valued features, and pruning. We also discuss using data
from the standard ILP setting in our framework, which in some cases
allows for further speedup. The efficacy of the system is demonstrated
on several ILP datasets.

1 Introduction

Inductive Logic Programming (ILP) has established a core set of methods and
systems that proved useful in a variety of applications [20, 4]. Early work in the
Golem system [21] (see also [19]) used Plotkin’s [24] least general generalization
(LGG) within a bottom up search to find a hypothesis consistent with the data.
On the other hand, much of the research following this (e.g. [25, 18, 7, 3]) has used
top down search methods to find useful hypotheses. However, several exceptions
exist. STILL [26] uses a disjunctive version space approach which means that it
has clauses based on examples but it does not generalize them explicitly. The
system of [1] uses bottom up search with some ad hoc heuristics to solve the
challenge problems of [11]. The LogAn-H system [13] is based on an algorithm
developed in the setting of learning with queries [12] but uses heuristics to avoid
asking queries and instead uses a dataset as input. This system uses a bottom up
search, based on inner products of examples which are closely related to LGG.
Another important feature of LogAn-H is that it does a refinement search but,
unlike other approaches, it takes large refinement steps instead of minimal ones.

In previous work [13] LogAn-H was shown to be useful in a few small do-
mains. However, it was hard to use the system in larger applications mainly due
to high run time. One of the major factors in this is the cost of subsumption. Like
other bottom up approaches, LogAn-H may use very long clauses early on in
the search and the cost of subsumption tests for these is high. This is in contrast
to top down approaches that start with short clauses for which subsumption is
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easy. A related difficulty observed in Golem [21] is that LGG can lead to very
large hypotheses. In LogAn-H this is avoided by using 1-1 object mappings.
This helps reduce the size of the hypothesis but gives an increase in complexity
in terms of the size of the search.

The current paper explores a few new heuristics and extensions to LogAn-H
that make it more widely applicable both in terms of speed and range of applica-
tions. The paper describes a new implementation that includes several improved
subsumption tests. In particular, for LogAn-H we need a subsumption proce-
dure that finds all substitutions between a given clause and an example. This
suggests a memory based approach that collects all substitutions simultaneously
instead of using backtracking search. Our system includes such a procedure which
is based on viewing partial substitutions as tables and performing “joins” of such
tables to grow complete substitutions. A similar table-based method was devel-
oped in [8]. This approach can be slow or even run out of memory if there are
too many partial substitutions in any intermediate step. Our system implements
heuristics to tackle this, including lookahead search and randomized heuristics.
The latter uses informed sampling from partial substitution tables if memory
requirements are too large. In addition, for some applications it is sufficient to
test for existence of substitutions between a given clause and an example (i.e.
we do not need all substitutions). In these applications we are able to use the
fast subsumption test engine Django [16] in our system. The paper shows that
different engines can give better performance in different applications, and gives
some paradigmatic cases where such differences occur.

In addition the system includes new heuristics and facilities including dis-
cretization of real valued arguments and pruning of rules. Both introduce inter-
esting issues for bottom up learning which do not exist for top down systems.
These are explored experimentally and discussed in the body of the paper.

The performance of the system is demonstrated in three domains: the Bon-
gard domain [7, 13], the KRK-illegal domain [25], and the Mutagenesis domain
[29]. All these have been used before with other ILP systems. The results show
that our system is competitive with previous approaches while applying a com-
pletely different algorithmic approach. This suggests that bottom up approaches
can indeed be used in large applications. The results and directions for future
work are further discussed in the concluding section of the paper.

2 Learning from Interpretations

We briefly recall the setup in Learning from interpretations [6] and introduce
a running example which will help explain the algorithm. The task is to learn
a universally quantified function-free Horn expression, that is, a conjunction of
Horn clauses. The learning problem involves a finite set of predicates whose
signature, i.e. names and arities, are fixed in advance. In the examples that
follow we assume two predicates p() and q() both of arity 2. For example, c1 =
∀x1, ∀x2, ∀x3, [p(x1, x2) ∧ p(x2, x3) → p(x1, x3)] is a clause in the language. An
example is an interpretation listing a domain of elements and the extension of



predicates over them. The example e1=([1, 2, 3], [[p(1, 2), p(2, 3), p(3, 1), q(1, 3)]])
describes an interpretation with domain [1, 2, 3] and where the four atoms listed
are true in the interpretation and other atoms are false. The size of an example
is the number of atoms true in it, so that size(e1)=4. The example e1 falsifies
the clause above (substitute {1/x1, 2/x2, 3/x3}), so it is a negative example. On
the other hand e2=([a, b, c, d], [[p(a, b), p(b, c), p(a, c), p(a, d), q(a, c)]]) is a positive
example. We use standard notation e1 6|= c1 and e2 |= c1 for these facts. Our
system (the batch algorithm of [13]) performs the standard supervised learning
task: given a set of positive and negative examples it produces a Horn expression
as its output.

3 The Base System

We first review the basic features of the algorithm and system as described
in [13]. The algorithm works by constructing an intermediate hypothesis and
repeatedly refining it until the hypothesis is consistent with the data. The algo-
rithm’s starting point is the most specific clause set that “covers” a particular
negative example. A clause set is a set of Horn clauses that have the same an-
tecedent but different conclusions. In this paper, we use [s, c] and variations of
it to denote a clause set, where s is a set of atoms (the antecedent) and c is a
set of atoms (each being a consequent of a clause in the clause set). Once the
system has some such clauses it searches the dataset for a misclassified example.
Upon finding one (it is guaranteed to be a negative example) the system tries
to refine one of its clause sets using a generalization operation which we call
pairing. Pairing is an operation akin to LGG [24] but it controls the size of the
hypothesis by using a restriction imposed by a one to one object correspondence.
If pairing succeeds, that is, the refinement is found to be good, the algorithm
restarts the search for misclassified examples. If pairing did not produce a good
clause, the system adds a new most specific clause set to the hypothesis. This
process of refinements continues until no more examples are misclassified.

To perform the above the system needs to refer to the dataset in order to
evaluate whether the result of refinements, a proposed clause set, is useful or not.
This is performed by an operation we call one-pass . In addition the algorithm
uses an initial “minimization” stage where candidate clause sets are reduced in
size. The high level structure of the algorithm is given in Figure 3. We proceed
with details of the various operations as required by the algorithm.

Candidate clauses: For an interpretation I, rel-ant(I) is a conjunction of
positive literals obtained by listing all atoms true in I and replacing each object
in I with a distinct variable. So rel-ant(e1) = p(x1, x2) ∧ p(x2, x3) ∧ p(x3, x1) ∧
q(x1, x3). Let X be the set of variables corresponding to the domain of I in this
transformation. The set of candidate clauses rel-cands(I) includes clauses of the
form (rel-ant(I) → p(Y )), where p is a predicate, Y is a tuple of variables from X
of the appropriate arity and p(Y ) is not in rel-ant(I). For example, rel-cands(e1)
includes among others the clauses [p(x1, x2)∧ p(x2, x3)∧ p(x3, x1)∧ q(x1, x3) →



1. Initialize S to be the empty sequence.
2. Repeat until H is correct on all examples in E.

(a) Let H = variabilize(S).
(b) If H misclassifies I (I is negative but I |= H):

i. [s, c] = one-pass(rel-cands(I)).
ii. [s, c] = minimize-objects([s, c]).
iii. For i = 1 to m (where S = ([s1, c1], . . . , [sm, cm]))

For every pairing J of si and s
If J ’s size is smaller than si’s size then

let [s, c] = one-pass([J, ci ∪ (si \ J)]).
If c is not empty then

A. Replace [si, ci] with [s, c].
B. Quit loop (Go to Step 2a)

iv. If no si was replaced then add [s, c] as the last element of S.

Fig. 1. The Learning Algorithm (Input: example set E)

p(x2, x2)], and [p(x1, x2) ∧ p(x2, x3) ∧ p(x3, x1) ∧ q(x1, x3) → q(x3, x1)], where
all variables are universally quantified. Note that there is a 1-1 correspondence
between a ground clause set [s, c] and its variabilized versions. We refer to the
variabilization using variabilize(·). In the following we just use [s, c] with the
implicit understanding that the appropriate version is used.

As described above, any predicate in the signature can be used as a conse-
quent by the system. However, in specific domains the user often knows which
predicates should appear as consequents. To match this, the system allows the
user to specify which predicates are allowed as consequents of clauses. Natu-
rally, this improves run time by avoiding the generation, validation and deletion
of useless clauses.

The one-pass procedure: Given a clause set [s, c] one-pass tests clauses in
[s, c] against all positive examples in E. The basic observation is that if a positive
example can be matched to the antecedent but one of the consequents is false
in the example under this matching then this consequent is wrong. For each
example e, the procedure one-pass removes all wrong consequents identified by
e from c. If c is empty at any point then the process stops and [s, ∅] is returned.
At the end of one-pass , each consequent is correct w.r.t. the dataset.

This operation is at the heart of the algorithm since the hypothesis and
candidate clause sets are repeatedly evaluated against the dataset. Two points
are worth noting here. First, once we match the antecedent we can test all the
consequents simultaneously so it is better to keep clause sets together rather
than split them into individual clauses. Second, notice that since we must verify
that consequents are correct, it is not enough to find just one substitution from
an example to the antecedent. Rather we must check all such substitutions before
declaring that some consequents are not contradicted. This is an issue that affects
the implementation and will be discussed further below.



Minimization: Minimization takes a clause set [s, c] and reduces its size so
that it includes as few objects as possible while still having at least one cor-
rect consequent. This is done by “dropping objects”. For example, for [s, c] =
[[p(1, 2), p(2, 3), p(3, 1), q(1, 3)], [p(2, 2), q(3, 1)]], we can drop object 1 and all
atoms using it to get [s, c] = [[p(2, 3)], [p(2, 2)]]. The system iteratively tries
to drop each domain element. In each iteration it drops an object to get [s′, c′],
runs one-pass on [s′, c′] to get [s′′, c′′]. If c′′ is not empty it continues with it to
the next iteration (assigning [s, c] ← [s′′, c′′]); otherwise it continues with [s, c].

Pairing: The pairing operation combines two clause sets [sa, ca] and [sb, cb] to
create a new clause set [sp, cp]. When pairing we utilize an injective mapping from
the smaller domain to the larger one. The system first pairs the antecedents by
taking the intersection under the injective mapping (using names from [sa, ca])
to produce a new antecedent J . The resulting clause set is [sp, cp] = [J, (ca ∩
cb) ∪ (sa \ J)]. To illustrate this, the following example shows the two original
clauses, a mapping and the resulting values of J and [sp, cp].

– [sa, ca] = [[p(1, 2), p(2, 3), p(3, 1), q(1, 3)], [p(2, 2), q(3, 1)]]
– [sb, cb] = [[p(a, b), p(b, c), p(a, c), p(a, d), q(a, c)], [q(c, a)]]
– The mapping {1/a, 2/b, 3/c}
– J = [p(1, 2), p(2, 3), q(1, 3)]
– [sp, cp] = [[p(1, 2), p(2, 3), q(1, 3)], [q(3, 1), p(3, 1)]

The clause set [sp, cp] obtained by the pairing can be more general than the
original clause sets [sa, ca] and [sb, cb] since sp is contained in both sa and sb

(under the injective mapping). Hence, the pairing operation can be intuitively
viewed as a generalization of both participating clause sets. However since we
modify the consequent, by dropping some atoms and adding other atoms (from
sa \ J), this is not a pure generalization operation.

Clearly, any two examples have many possible pairings, one for each injective
mapping of domain elements. The system reduces the number of pairings that
are tested without compromising correctness as follows. We say that a mapping
is live if every paired object appears in the extension of at least one atom in
J . For example, the pairing given above is live but the mapping {1/c, 2/b, 3/a}
results in J = [p(3, 1)] so object 2 does not appear in J and the pairing is not
live. The system only tests live mappings and generates these from the clause
sets so that non-live pairings are not enumerated. As pointed out in [13] if the
target expression is range restricted (i.e. all variables in the consequent appear
in the antecedent) then testing live mappings is sufficient. The new system is
restricted to this case.

Caching: The operation of the algorithm may produce repeated calls to one-pass
with the same antecedent since pairings of one clause set with several others may
result in the same clause set. Thus it makes sense to cache the results of one-pass
. Notice that there is a tradeoff in the choice of what to cache. If we try to cache
a universally quantified expression then matching it requires a subsumption test
which is expensive. We therefore opted to cache a ground syntactic version of



the clause. In fact, the system caches interpretations rather than clauses or
clause sets (i.e only the si part of [s, c]). For our purpose we only need to cache
positive interpretations - if a clause set [s, ∅] was returned by one pass then s
is a positive interpretation (it does not imply any of the possible consequents).
Thus any new call to one pass with s can be skipped. To achieve fast caching
while increasing the chances of cache hits, the system caches and compares a
normalized representation of the interpretation by sorting predicate and atom
names. This is matched with the fact that pairing keeps object names of existing
clause sets in the hypothesis. Thus the same object names and ordering of these
are likely to cause cash hits. Caching can reduce or increase run time of the
system, depending on the dataset, the cost for subsumption for examples in the
dataset, and the rate of cache hits.

Implementation: [13] used an implementation of these ideas in Prolog. Our
new system includes all the above, implemented in C with in an attempt to
improve the representation and run time. In addition the system includes new
features including several subsumption engines, discretization, and pruning that
make it applicable in larger problems.

4 Performance Issues and Applicability

While the results reported in [13] were encouraging several aspects precluded
immediate application to real world data sets.

The Subsumption Test: Perhaps the most important issue is run time which
is dominated by the cost of subsumption tests and the one-pass procedure. It
is well known that testing subsumption is NP-Hard [14] and therefore we do
not expect a solution in the general case. However it is useful to look at the
crucial parameters. In general subsumption scales exponentially in the number
of variables in the clauses but polynomially with the number of predicates [23].
The problem is made worse in our system because of the bottom-up nature of the
learning process1. When we generate the most specific clause for an example,
the number of variables in the clause is the same as the number of objects
in the example and this can be quite large in some domains. In some sense
the minimization process tries to overcome this problem by removing as many
objects as possible (this fact is used in [12] to prove good complexity bounds).
However the minimization process itself runs one-pass and therefore forms a
bottleneck. In addition, for one-pass it is important to find all substitutions
between a clause and an example. Therefore, a normal subsumption test that
checks for the existence of a substitution is not sufficient. For problems with
highly redundant structure the number of substitutions can grow exponentially
with the number of predicates so this can be prohibitively expensive. Thus an
efficient solution for one-pass is crucial in applications with large examples.

1 The same is true for other bottom up systems; see for example discussion in [26].



Suitability of Datasets and Overfitting: The system starts with the most
specific clauses and then removes parts of them in the process of generaliza-
tion. In this process, a subset of an interpretation that was a negative example
becomes the s in the input to one-pass . If examples matching s exist in the
dataset then we may get a correct answer from one-pass . In fact if a dataset
is “downward closed”, that is all such subsets exist as examples in the dataset,
the system will find the correct expression. Note that we only need such subsets
which are positive examples to exist in the dataset and that it is also sufficient to
have isomorphic embeddings of such subsets in other positive examples as long
as wrong consequents are missing. Under these conditions all calls to one-pass
correctly identify all consequents of the clause. Of course, this is a pretty strong
requirement but as demonstrated by experiments in [13] having a sample from
interpretations of different sizes can work very well.

If this is not the case, e.g. in the challenge problems of [11] where there is a
small number of large examples, then we are not likely to find positive examples
matching subsets of the negative ones (at least in the initial stages of minimiza-
tion) and this can lead to overfitting. This has been observed systematically in
experiments in this domain.

Using Examples from Normal ILP setting: In the normal ILP setting [20]
one is given a database as background knowledge and examples are simple atoms.
We transform these into a set of interpretations as follows (see also [5, 12]). The
background knowledge in the normal ILP setting can be typically partitioned
into different subsets such that each subset affects a single example only. A
similar effect is achieved for intensional background knowledge in the Progol
system [18] by using mode declarations to limit antecedent structure. Given
example b, we will denote BK(b) as the set of atoms in the background knowledge
that is relevant to b. In the normal ILP setting we have to find a theory T
s.t. BK(b) ∪ T |= b if b is a positive example, and BK(b) ∪ T 6|= b if b is
negative. Equivalently, T must be such that T |= BK(b) → b if b is positive and
T 6|= BK(b) → b if b is negative.

If b is a positive example in the standard ILP setting then we can construct
an interpretation I = ([V ], [BK(b)]) where V is the set of objects appearing
in BK(b), and label I as negative. When LogAn-H finds the negative inter-
pretation I, it constructs the set rel-ant(I) → p(Y ) from it (notice that b is
among the p(Y ) considered in this set), and then runs one-pass to figure out
which consequents among the candidates are actually correct. Adding another
interpretation I ′ = ([V ], [BG(b)∪{b}]) labeled positive guarantees that all other
consequents are dropped. Notice that in order for this to be consistent with the
target concept, we have to assume that the antecedent BG(b) only implies b.

If b is a negative example in the standard ILP setting, we construct an in-
terpretation I = ([V ], [BG(b)]), where V is the set of variables appearing in
BG(b), and label it positive. Notice that if the system ever considers the clause
BG(b) → b as a candidate, one-pass will find the positive interpretation I and
will drop b, as desired. This again assumes that no consequent can be implied
by BG(b).



Several ILP domains are formalized using a consequent of arity 1 where the
argument is an object that identifies the example in the background knowl-
edge. In this case, since we separate the examples into interpretations we get
a consequent of arity 0. For learning with a single possible consequent of ar-
ity 0 our transformation can be simplified in that the extra positive exam-
ple I ′ = ([V ], [BG(b) ∪ {b}]) is not needed since there are no other potential
consequents. Thus we translate every positive example into a negative inter-
pretation example and vice versa. As an example, suppose that in the nor-
mal ILP setting, the clause p(a, b) ∧ p(b, c) → q() is labeled positive and the
clause p(a, b) → q() is labeled negative. Then, the transformed dataset contains:
([a, b, c], [p(a, b), p(b, c)])− and ([a, b], [p(a, b)])+. Notice that in this case the as-
sumptions made regarding other consequents in the general transformation are
not needed.

In the case of zero arity consequents, the check whether a given clause C
is satisfied by some interpretation I can be considerably simplified. Instead of
checking all substitutions it suffices to check for existence of some substitution,
since any such substitution will remove the single nullary consequent. This has
important implications for the implementation. In addition, note that the pairing
operation never moves new atoms into the consequent and is therefore a pure
generalization operation in this case.

5 Further Improvements

5.1 The Subsumption Test

Table Based Subsumption: While backtracking search (as done in Prolog)
can find all substitutions without substantial space overhead, the time overhead
can be large. Our system implements an alternative approach that constructs all
substitutions simultaneously and stores them in memory. The system maintains a
table of instantiations for each predicate in the examples. To compute all substi-
tutions between an example and a clause the system repeatedly performs joins of
these tables (in the database sense) to get a table of all substitutions. We first ini-
tialize to an empty table of substitutions. Then for each predicate in the clause we
pull the appropriate table from the example, and perform a join which matches
the variables already instantiated in our intermediate table. Thus if the predicate
in the clause does not introduce new variables the table size cannot grow. Other-
wise the table can grow and repeated joins can lead to large tables. To illustrate
this consider evaluating the clause p(x1, x2), p(x2, x1), p(x1, x3), p(x3, x4) on an
example with extension [p(a, b), p(a, c), p(a, d), p(b, a), p(d, c)]. Then applying the
join from left to right we get partial substitution tables (from left to right):

x1 x2 x3 x4

a b

a c

a d

b a

d c

x1 x2 x3 x4

a b

b a

x1 x2 x3 x4

a b b

a b c

a b d

b a a

x1 x2 x3 x4

a b b a

a b d c

b a a b

b a a c

b a a d



Notice how the first application simply copies the table from the extension of
the predicate in the example. The first join reduces the size of the intermediate
table. The next join expands both lines. The last join drops the row with a b c
but expands other rows so that overall the table expands.

One can easily construct examples where the table in intermediate steps is
larger than the memory capacity of the computer, sometimes even if the final
table is small. In this case the matching procedure will fail. If it does not fail,
however, the procedure can be fast since we have no backtracking overhead and
we consider many constraints simultaneously.

Nonetheless this is not something we can ignore. We have observed such
large table sizes in the mutagenesis domain [29] as well as the artificial challenge
problems of [11]. Note that a backtracking search will not crash in this case
but on the other hand it may just take too long computationally so it is not
necessarily a good approach (this was observed in the implementation of [13]).

Lookahead: As in the case of database queries one can try to order the joins in
order to optimize the computation time and space requirements. Our system can
perform a form of one step lookahead by estimating the size of the table when
using a join with each of the atoms on the clause and choosing the minimal
one. This introduces a tradeoff in run time. On one hand the resulting tables in
intermediate steps tend to be smaller and therefore there is less information to
process and the test is quicker. On the other hand the cost of one step lookahead
is not negligible so it can slow down the program. The behavior depends on the
dataset in question. In general however it can allow us to solve problems which
are otherwise unsolvable with the basic approach.

Randomized Table Based Subsumption: If the greedy solution is still not
sufficient or too slow we can resort to randomized subsumption tests. Instead
of finding all substitutions we try to sample from the set of legal substitutions.
This is done in the following manner: if the size of the intermediate table grows
beyond a threshold parameter ‘TH’ (controlled by the user), then we throw
away a random subset of the rows before continuing with the join operations.
The maximum size of intermediate tables is TH×16. In this way we are not
performing a completely random choice over possible substitutions. Instead we
are informing the choice by our intermediate table. In addition the system uses
random restarts to improve confidence as well as allowing more substitutions to
be found, this can be controlled by the user through a parameter ‘R’.

Using Django: The system Django [16] uses ideas from constraint satisfaction
to solve the subsumption problem. Django only solves the existence question
and does not give all substitutions, but as discussed above this is sufficient for
certain applications coming from the standard ILP setting. We have integrated
the Django code, generously provided by Jérome Maloberti, as a module in our
system.



5.2 Discretization

The system includes a capability for handling numerical data by means of dis-
cretization. Several approaches to discretization have been proposed in the lit-
erature [10, 9, 2]. We have implemented the simple “equal frequency” approach
that generates a given number of bins (specified by the user) and assigns the
boundaries by giving each bin the same number of occurrences of values.

To do this for relational data we first divide the numerical attributes into
“logical groups”. For example the rows of a chess board will belong to the
same group regardless of the predicate and argument in which they appear.
This generalizes the basic setup where each argument of each predicate is dis-
cretized separately. The dataset is annotated to reflect this grouping and the
preferred number of thresholds is specified by the user. The system then de-
termines the threshold values, allocates the same name to all objects in each
range, and adds predicates reflecting the relation of the value to the thresholds.
For example, discretizing the logp attribute in the mutagenesis domain with 4
thresholds (5 ranges), a value between threshold 1 and threshold 2 will yield:
[logp(logp val.02), logp val>00(logp val.02), logp val>01(logp val.02),

logp val<02(logp val.02), logp val<03(logp val.02), ...].
Notice that we are using both ≥ and ≤ predicates so that the hypothesis can

encode intervals of values.
An interesting aspect arises when using discretization which highlights the

way our system works. Recall that the system starts with an example and es-
sentially turns objects into variables in the maximally specific clause set. It then
evaluates this clause on other examples. Since we do not expect examples to
be identical or very close, the above relies on the universal quantification to al-
low matching one structure into another. However, the effect of discretization
is to ground the value of the discretized object. For example, if we discretized
the logp attribute from above and variabilize we get logp(X) logp val>00(X)

logp val>01(X) logp val<02(X) logp val<03(X). Thus unless we drop some of the
boundary constraints this limits matching examples to have a value in the same
bin. We are therefore losing the power of universal quantification. As a result
less positive examples will match in the early stages of the minimization pro-
cess, less consequents will be removed, and the system may be led to overfitting
by dropping the wrong objects. This is discussed further in the experimental
section.

5.3 Pruning

The system performs bottom-up search and may stop with relatively long rules
if the data is not sufficiently rich (i.e. we do not have enough negative examples)
to warrant further refinement of the rules. Pruning allows us to drop additional
parts of rules. The system can perform a greedy reduced error pruning [17]
using a validation dataset. For each atom in the rule (in some order) the system
evaluates whether the removal of the atom increases the error on the validation
set. If not the atom can be removed. While it is natural to allow an increase in



error using a tradeoff against the length of the hypothesis in an MDL fashion,
we have not yet experimented with this possibility.

Notice that unlike top down systems we can perform this pruning on the
training set and do not necessarily need a separate validation set. In a top down
system one grows the rules until they are consistent with the data. Thus, any
pruning will lead to an increase in training set error. On the other hand in a
bottom up system, pruning acts like the main stage of the algorithm in that it
further generalizes the rules. In some sense, pruning on the training set allows
us to move from a most specific hypothesis to a most general hypothesis that
matches the data. Both training set pruning and validation set pruning are
possible with our system.

5.4 Consistency Checks

If the input dataset is inconsistent, step (i) of the algorithm may produce an
initial version of the most specific clauses set with an empty list of consequents.
Similar problems may arise with the randomized subsumption tests. The sys-
tem includes simple mechanisms for ignoring such examples once a problem is
detected.

6 Experiments

The LogAn-H system of [13] implements the algorithm in Section 3 using Prolog
and its backtracking search engine. Our new system includes a C implementation
of the ideas described above.

6.1 Bongard Problems

To illustrate the improvement in efficiency of the new system w.r.t. the previous
implementation, we re-ran experiments done with artificial data akin to Bongard
problems [13]. This domain was introduced previously in the ICL system [7]. In
this domain an example is a “picture” composed of objects of various shapes
(triangle, circle or square), triangles have a configuration (up or down) and each
object has a color (black or white). Each picture has several objects (the number
is not fixed) and some objects are inside other objects. For these experiments we
generated random examples, where each parameter in each example was chosen
uniformly at random. In particular we used between 2 and 6 objects, the shape
color and configuration were chosen randomly, and each object is inside some
other object with probability 0.5 where the target was chosen randomly among
“previous” objects to avoid cycles. Note that since we use a “flattened” function
free representation the domain size in examples is larger than the number of
objects (to include: up, down, black, white). We generated (by hand) a target
Horn expression of 10 clauses, with 9 atoms and 6 variables each. We used this
Horn expression to label the examples. For example, one of the clauses generated
in the target expression is



Table 1. Accuracy in the Bongard domain (reproduced from [13])

System 200 500 1000 2000 3000 bl

LogAn-H 85.9 92.8 96.8 98.4 98.9 84.7

ICL 85.2 88.6 89.1 90.2 90.9 84.7

circle(X) in(X, Y ) in(Y,Z) colour(Y, B)
colour(Z, W ) black(B) white(W ) in(Z,U) → triangle(Y )

We ran LogAn-H on several sample sizes. Table 1 summarizes the accuracy
of learned expressions as a function of the size of the training set (200 to 3000)
when tested on classifying an independent set of 3000 examples. The last column
in the table gives the majority class percentage (marked bl for baseline). Each
entry is an average of 10 independent runs where a new set of random examples
is used in each run. We give accuracy results for both LogAn-H and ICL taken
from [13]. The new system obtains exactly the same accuracy as before2 and the
speedup observed is between one and three orders of magnitude over the Prolog
system in compiled Sicstus Prolog (which is a fast implementation) when run on
the same hardware.

6.2 Illegal Positions in Chess

Our next experiment is in the domain of the chess endgame White King and
Rook versus Black King. The task is to predict whether a given board configu-
ration represented by the 6 coordinates of the three chess pieces is illegal or not.
This learning problem has been studied by several authors [22, 25]. The dataset
includes a training set of 10000 examples and a test set of the same size.

We use the predicate position(a,b,c,d,e,f) to denote that the White
King is in position (a, b) on the chess board, the White Rook is in position
(c, d), and the Black King in position (e, f). Additionally, the predicates “less-
than” lt(x,y) and “adjacent” adj(x,y) denote the relative positions of rows
and columns on the board. Note that there is an interesting question as how best
to capture examples in interpretations. In “all background mode” we include all
lt and adj predicates in the interpretation. In the “relevant background mode”
we only include those atoms directly relating objects appearing in the head.

We illustrate the difference with the following example. Consider the config-
uration “White King is in position (7,6), White Rook is in position (5,0), Black
King is in position (4,1)” which is illegal. In “all background mode” we use the
following interpretation:
[position(7, 6, 5, 0, 4, 1),
lt(0,1), lt(0,2), .. ,lt(0,7),
lt(1,2), lt(1,3), .. ,lt(1,7),
...

2 Note that the hypothesis may depend on the order of pairings produced so in prin-
ciple the results are not guaranteed to be identical.



Table 2. Performance summary for KRK-illegal dataset

25 50 75 100 200 500 1000 2000 3000

w/o disc., rel. back. mode:
LogAn-H before pruning 75.49 88.43 93.01 94.08 97.18 99.54 99.79 99.92 99.96
LogAn-H after pruning 86.52 90.92 94.19 95.52 98.41 99.65 99.79 99.87 99.96

w/o disc., all back. mode:
LogAn-H before pruning 67.18 71.08 75.71 78.94 85.56 94.06 98.10 99.38 99.56
LogAn-H after pruning 79.01 81.65 83.17 82.82 86.02 93.67 96.24 98.10 98.66

with disc., rel. back. mode:
LogAn-H before pruning 43.32 43.70 45.05 44.60 52.39 72.26 84.80 90.30 92.17
LogAn-H after pruning 38.93 42.77 46.46 47.51 56.59 74.29 85.02 90.73 92.59

with disc., all back. mode:
LogAn-H before pruning 67.27 72.69 75.15 78.00 82.68 88.60 91.03 91.81 92.01
LogAn-H after pruning 80.62 86.14 87.42 89.10 90.67 92.25 92.62 92.66 92.74

FOIL [25] 92.50 99.40

lt(5,6),lt(5,7),
lt(6,7),
adj(0,1),adj(1,2), .. ,adj(6,7),
adj(7,6),adj(6,5), .. ,adj(1,0)]-

When considering the “relevant background mode”, we include in the exam-
ples instantiations of lt and adj whose arguments appear in the position atom
directly:
[position(7, 6, 5, 0, 4, 1),
lt(4,5),lt(4,7),lt(5,7),adj(4,5),adj(5,4),
lt(0,1),lt(0,6),lt(1,6),adj(0,1),adj(1,0)]-

Table 2 includes results of running our system in both modes. We trained
LogAn-H on samples with various sizes chosen randomly among the 10000
available. We report accuracies that result from averaging among 10 runs over
an independent test set of 10000 examples. Results are reported before and
after pruning where pruning is done using the training set. Several facts can
be observed in the table. First, we get good learning curves with accuracies
improving with training set size. Second, the results obtained are competitive
with results reported for FOIL [25]. Third, relevant background knowledge seems
to make the task easier. Fourth, pruning considerably improves performance on
this dataset especially for small training sets.

Our second set of experiments in this domain illustrates the effect of dis-
cretization. We have run the same experiments as above but this time with
the discretization option turned on. Concretely, given an example’s predicate
position(x1,x2,y1,y2,z1,z2), we consider the three values corresponding to
columns (x1,y1,z1) as the same logical attribute and therefore we discretize
them together. Similarly, we discretize the values of (x2,y2,z2) together. Ver-
sions of adj() for both column and row values are used. We do not include lt()
predicates since these are essentially now represented by the threshold predi-
cates produced by the discretization. As can be seen in Table 2 good accuracy is



Table 3. Runtime comparison for subsumption tests on KRK-illegal dataset

Subsumption Engine runtime in s. accuracy actual table size

Django 431.6 98.11%
Tables 19.2 98.11% 130928
Lookahead 25.4 98.11% 33530
No cache 49.4 98.11%

Rand. TH=1 741.7 33.61% 16
Rand. TH=10 30.7 33.61% 160
Rand. TH=100 12.4 72.05% 1600
Rand. TH=1000 20.3 98.11% 16000

maintained with discretization. However, an interesting point is that now “rele-
vant background mode” performs much worse than “all background mode”. In
hindsight one can see that this is a result of the grounding effect of discretizing
as discussed above. With “relevant background mode” the discretization thresh-
old predicates and the adjacent predicates are different in every example. Since,
as explained above, the examples are essentially ground we expect less matches
between different examples and thus the system is likely to overfit. With “all
background mode” these predicates do not constrain the matching of examples.

This domain is also a good case to illustrate the various subsumption tests
in our system. Note that since we put the position predicate in the antecedent
the consequent is nullary. Therefore we can use Django as well as the table
based subsumption and randomized tables. The comparison is given for the
non-discretized “all background mode” with 1000 training examples. Table 3
gives accuracy and run time (on Linux running with Pentium IV 2.80 GHz) for
various subsumption settings averaged over 10 independent runs. For randomized
runs TH is the threshold of table size after which sampling is used. As can be
seen, the table based method is faster than Django (both are deterministic
and thus give identical hypotheses and accuracy results). The lookahead table
method incurs some overhead and results in slower execution on this domain,
however it saves space considerably (see third column of Table 3). Caching gives
a reduction of about 60% in run time. Running the randomized test with very
small tables (TH=1) clearly leads to overfitting, and in this case increases run
time considerably mainly due do the large number of rules induced. On the other
hand with small tables sizes (TH=1000) the randomized method does very well
and reproduces the deterministic results.

6.3 Mutagenesis

The Mutagenesis dataset is a structure-activity prediction task for molecules
introduced by [29]. The dataset consists of 188 compounds, labeled as active or
inactive depending on their level of mutagenic activity. The task is to predict
whether a given molecule is active or not based on the first-order description of
the molecule. This dataset has been partitioned into 10 subsets for 10-fold cross
validation estimates and has been used in this form in many studies (e.g. [29, 26,



Table 4. Runtime comparison for subsumption tests on mutagenesis dataset

Subsumption Engine runtime in s. accuracy

Django 1162 87.96%

Rand. TH=1 3 85.52%
Rand. TH=10 15 86.46%
Rand. TH=100 19 89.47%

7]). We therefore use the same partitions as well. Each example is represented as
a set of first-order atoms that reflect the atom-bond relation of the compounds
as well as some interesting global chemical properties. Concretely, we use all the
information corresponding to the background level B3 of [28]. Notice that the
original data is given in the normal ILP setting and hence we transformed it as
described above using a single nullary consequent. In addition, since constants
are meaningful in this dataset (for example whether an atom is a carbon or
oxygen) we use a flattened version of the data where we add a predicate for each
such constant.

This example representation uses continuous attributes (atom-charge, lumo
and logp in particular), hence discretization is needed. Although the discretiza-
tion process is fully automated it requires the number of discrete categories to
be specified by the user. Here, we use a method that allows us to determine
this number automatically and without any use of the test set: for each par-
tition of the cross validation, we split the training data into two random sets,
one which we call disc-train and consists of 80% of the training data, and
another called disc-test which consists of the remaining training data. Then,
for each of the possible values (atom-charge= 5, 15, 25, 35, 45; lumo= 4, 6, 8, 10;
logp= 4, 6, 8, 10) we train and test over the sets disc-train and disc-test.
This procedure is repeated 5 times and we choose the discretization values that
obtain the best average accuracy on this partition. Note that these values might
be different for different partitions of the global cross validation and indeed we
did not get a stable choice. Once a set of values is chosen for a particular par-
tition of the data, the learning process is performed over the entire training set
and then it is tested on the corresponding independent test set.

For this domain deterministic table-based subsumption was not possible,
not even with the lookahead heuristic since the table size grew beyond memory
capacity of our computer. However, here the Django subsumption engine yields
good run times. The average training time per fold, after the discretization sizes
have been determined, is 14 min. (on Linux running with Pentium IV 2.80 GHz).
Prediction accuracies obtained for each partition in this fashion are (in order
from 1 to 10): 73.68%, 89.47%, 78.95%, 84.21%, 84.21%, 89.47%, 89.47%, 73.68%,
73.68%, 88.24%, which results in a final average of 82.5%. Additionally, we ran
a regular 10-fold cross-validation for each combination of discretization values.
The values atom-charge= 45, lumo= 10 and logp= 4 obtained the best average
accuracy of 87.96%. Our result compares well to other ILP systems: PROGOL
[29] reports a total accuracy of 83% with B3 and 88% with B4; STILL [26]



Table 5. Subsumption run time in linear chain family

Django Tables Lookahead TH=1 TH=10 TH=100

100.0% 100.0% 100.0%
296s 242s 318s

(14161) (118)

R=1 6.9% 18.6% 100.0%
13s 49s 240s

R=10 32.2% 66.6% 100.0%
60s 181s 243s

R=100 96.9% 100.0% 100.0%
185s 280s 241s

reports results in the range 85%–88% on B3 depending on the values of various
tuning parameters, ICL [7] reports an accuracy of 84% and finally [15] report
that FOIL [25] achieves an accuracy of 83%.

Here again we ran further experiments with the randomized subsumption
tests. We used the discretization values atom-charge= 45, lumo= 10 and logp=
4. Table 4 gives run time (on Linux running with Pentium IV 2.80 GHz) per
fold and the 10 fold cross validation accuracy with various parameters. One can
observe that even with small parameters the randomized methods do very well.
An inspection of the hypothesis to the deterministic runs with Django shows
that they are very similar.

6.4 Evaluating Randomized Subsumption Tests

The experiments above already show that there are cases where the table based
method is fast and faster than Django even though it searches for all substi-
tutions compared to just one in Django. On the other hand the table based
method can be slow in other cases and even run out of memory and fail. The
following experiments give simple synthetic examples where we compare the sub-
sumption tests on their own, without reference to the learning system, showing
similar behavior. In each case we generate a family of problems parametrized
by size, each having a single example and single clause. We run the subsump-
tion test 1000 times to observe run time differences as well as accuracies for the
randomized methods.

For the first family both example and clause are chains of length n built
using a binary predicate as in p(x1, x2), p(x2, x3), . . . , p(xn−1, xn). Thus there is
exactly one matching substitution. Results for n = 120 are given in Table 5. As
can be seen, in this case tables are faster than Django, randomized tables work
well with small parameters, and both table size (marked with TH in Table 5) and
repeats (marked with R in Table 5) are effective in increasing the performance
of the randomized tests. This behavior was observed consistently for different
values of n. The numbers in parentheses are the actual table sizes needed by the
table-based methods; the lookahead heuristic saves considerable space.



Table 6. Subsumption run time in subgraph isomorphism family

Django TH=1 TH=10 TH=100 TH=1000

100.00%
7.1s

R=1 0.01% 3.21% 31.71% 85.46%
0.8s 1.7s 8.9s 52.4s

R=10 0.03% 15.29% 78.95% 95.12%
2.6s 7.0s 26.8s 76.1s

R=100 0.22% 67.88% 99.92% 99.97%
23.6s 38.9s 39.1s 103.1s

The second family is motivated by the mutagenesis domain and essentially
checks for subgraph isomorphism. The clause is a randomly generated graph
with n nodes and 3n edges, and the example is the same set plus 3n extra edges.
The results for n = 10 are given in Table 6. Deterministic tables fail for values
of n larger than 8 and are omitted. As can be seen Django works very well
in this case and randomized tables work well even with small parameters, and
both table size and repeats (marked with TH and R in Table 6, resp.) are effec-
tive in increasing the performance of the randomized tests. Similar results were
obtained for different values of n where randomized tables sometimes achieve
high accuracy with lower run times than Django though in general Django is
faster.

7 Discussion

The paper presents a new implementation of the LogAn-H system including
new subsumption engines, discretization and pruning. Interesting aspects of dis-
cretization and pruning which are specific to bottom up search are discussed in
the paper. The system is sufficiently strong to handle large ILP datasets and
is shown to be competitive with other approaches while using a completely dif-
ferent algorithmic approach. The paper also demonstrates the merits of having
several subsumption engines at hand to fit properties of particular domains, and
gives paradigmatic cases where different engines do better than others.

As illustrated in [13] using the Bongard domain, LogAn-H is particularly
suited to domains where substructures of examples in the dataset are likely to
be in the dataset as well. On the other hand, for problems with a small number
of examples where each example has a large number of objects and dramatically
different structure our system is likely to overfit since there is little evidence for
useful minimization steps. Indeed we found this to be the case for the the artificial
challenge problems of [11] where our system outputs a large number of rules and
gets low accuracy. Interestingly, a similar effect can result from discretization
since it results in a form of grounding of the initial clauses and thus counteracts
the fact that they are universally quantified and thus likely to be contradicted by
the dataset if wrong. This suggests that skipping the minimization step may lead



to improved performance in such cases if pairings reduce clause size considerably.
Initial experiments with this are as yet inconclusive.

Our experiments demonstrated the utility of informed randomized subsump-
tion tests. Another interesting possibility is to follow ideas from the successful
randomized propositional satisfiability tester WalkSat [27]. Here one can aban-
don the table structure completely and search for a single substitution using a
random walk over substitutions where in each step we modify an unsuccessful
substitution to satisfy at least one more atom. Repeating the above can improve
performance as well as find multiple substitutions when needed. Initial experi-
ments suggest that this indeed can be useful albeit our current implementation
is slow. It would be interesting to explore this further in LogAn-H and other
systems.

Our system also demonstrates that using large refinement steps with a bot-
tom up search can be an effective inference method. As discussed above, bottom
up search suffers from two aspects: subsumption tests are more costly than in
top down approaches, and overfitting may occur in small datasets with large ex-
amples. On the other hand, it is not clear how large refinement steps or insights
gained by using LGG can be used in a top down system. One interesting idea
in this direction is given in the system of [1]. Here repeated pairing-like opera-
tions are performed without evaluating the accuracy until a syntactic condition
is met (this is specialized for the challenge problems of [11]) to produce a short
clause. This clause is then used as a seed for a small step refinement search that
evaluates clauses as usual. Finding similar ideas that work without using special
properties of the domain is an interesting direction for future work.
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[14] J-U. Kietz and M. Lübbe. An efficient subsumption algorithm for inductive logic
programming. In S. Wrobel, editor, Proceedings of the 4th International Work-
shop on Inductive Logic Programming, volume 237, pages 97–106. Gesellschaft für
Mathematik und Datenverarbeitung MBH, 1994.

[15] W. Van Laer, H. Blockeel, and L. De Raedt. Inductive constraint logic and the
mutagenesis problem. In Proceedings of the Eighth Dutch Conference on Artificial
Intelligence, pages 265–276, November 1996.

[16] J. Maloberti and Sebag M. Theta-subsumption in a constraint satisfaction per-
spective. In Proceedings of the 11th International Conference on Inductive Logic
Programming, pages 164–178. Springer Verlag LNAI 2157, 2001.

[17] T. Mitchell. Machine Learning. McGraw-Hill, 1997.
[18] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3-4):245–286, 1995.
[19] S. Muggleton and W. Buntine. Machine invention of first order predicates by

inverting resolution. In S. Muggleton, editor, Inductive Logic Programming. Aca-
demic Press, 1992.

[20] S. Muggleton and L. DeRaedt. Inductive logic programming: Theory and methods.
The Journal of Logic Programming, 19 & 20:629–680, May 1994.

[21] S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,
editor, Inductive Logic Programming, pages 281–298. Academic Press, 1992.

[22] S. H. Muggleton, M. Bain, J. Hayes-Michie, and D. Michie. An experimental com-
parison of human and machine learning formalisms. In Proc. Sixth International
Workshop on Machine Learning, pages 113–118, San Mateo, CA, 1989. Morgan
Kaufmann.



[23] Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of
database queries (extended abstract). In Proceedings of the 16th Annual ACM
Symposium on Principles of Database Systems, pages 12–19. ACM Press, 1997.

[24] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–
163, 1970.

[25] J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

[26] Michele Sebag and Celine Rouveirol. Resource-bounded relational reasoning: In-
duction and deduction through stochastic matching. Machine Learning, 38:41–62,
2000.

[27] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfia-
bility testing. In David S. Johnson and Michael A. Trick, editors, Cliques, Color-
ing, and Satisfiability: the Second DIMACS Implementation Challenge. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, volume 26,
pages 521–532. American Mathematical Society, 1996.

[28] A. Srinivasan, S. Muggleton, and R.D. King. Comparing the use of background
knowledge by inductive logic programming systems. In L. De Raedt, editor,
Proceedings of the 5th International Workshop on Inductive Logic Programming,
pages 199–230, 1995.

[29] A. Srinivasan, S. H. Muggleton, R. D. King, and M. J. E. Sternberg. Mutage-
nesis: ILP experiments in a non-determinate biological domain. In S. Wrobel,
editor, Proc. 4th Int. Workshop on Inductive Logic Programming, pages 217–232,
September 1994.


