
TUFTS-CS Technical Report 2004-5

June 2004

Exact Learning of First-Order Expressions from Queries

by

Marta Arias

Dept. of Computer Science

Tufts University

Medford, Massachusetts 02155

EXACT LEARNING OF

FIRST-ORDER EXPRESSIONS FROM

QUERIES

A thesis

submitted by

Marta Arias

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

TUFTS UNIVERSITY

May, 2004

c©2004, Marta Arias

Adviser: Roni Khardon

Abstract

This thesis studies the complexity of learning logical expressions in the model of

Exact Learning from Membership and Equivalence Queries. The focus is on Horn

expressions in first order logic but results for propositional logic are also derived.

The thesis includes several contributions towards characterizing the complexity of

learning in these contexts.

First, a new algorithm for learning first order Horn expressions is presented

and proved correct. The algorithm improves on previous work in two ways. It

can learn a larger class of expressions than previously known, and its query and

time complexity improve on previous algorithms. In particular the algorithm can

learn both the class of range-restricted expressions, and the class of constrained

expressions, which were previously considered in the literature.

Second, the thesis includes several lower bound results and techniques studying

the optimal complexity of these learning problems, thus trying to identify whether

it is possible to improve over the complexity of our algorithm.

We study the VC Dimension of Horn expressions, a tool that gives lower bounds

on query complexity in our model. Our results characterize exactly the VC Di-

mension of Horn expressions, providing the best lower bound possible using this

technique. This technique leaves a gap to the upper bound provided by our al-

gorithm. Our analysis also highlights problematic aspects of measuring learning

complexity in first order logic that have been ignored in previous work.

We study the Certificate Size, a tool that characterizes the query complexity of

learning in our model. Our results give certificate constructions for several classes

ii

of important propositional expressions, including Horn CNF expressions. We also

show that any certificate for a slight generalization of Horn CNF expressions, the

class of renamable Horn CNF expressions, is of exponential size, thus showing that

this class is not efficiently learnable.

Finally, we study the lattice structure induced by generality relations in first

order logic expressions, and derive some conclusions for learning complexity in more

restricted scenarios.

iii

Acknowledgments

I am grateful to my advisor, Roni Khardon, who has always supported and

guided me. Without his help I would have never been able to write this thesis. He

has been a wonderful mentor, teacher and friend. I also want to thank the other

members of my committee who made very helpful comments about this work: Dana

Angluin, Anselm Blumer, Christoph Börgers and Lenore Cowen. In particular, I

want to thank Lenore Cowen for encouraging me to continue my academic career. I

am grateful to all the members of the Computer Science Department at Tufts who

have created a wonderful environment to work in.

I would like to thank Rocco Servedio, José Luis Balcázar, Rajmohan Rajaraman,

Kofi Laing and Orjeta Taka for stimulating discussions and their collaboration.

I am grateful for the financial support provided by EPSRC Grant GR/M21409

while at Edinburgh, and by NSF Grant IIS-0099446 while at Tufts.

I am grateful to all the wonderful friends I have met along the way: Milena

Maule, Patrick McAvoy, Alastair Borrowman, Siddharth Sarin, Mercedes Balcells,

Jeff Comfort, Ana Rodŕıguez, Marta Cortés, Thomas Würz, Toshimi Yoshida,

Janira Arocho, Santi Pathak, Chun Yu, Marcelo Coca, Eduardo Calvillo, Orjeta

Taka, Arthur Brady, Peter Waltman, Andrew McDonnell, Eynat Rafalin, Julene

Mazpule, Blanca San Miguel, Ana Sala, William Oliver, Ashley Englander, and

many others who I hope can forgive me for not writing their names.

Finally, I would like to thank my family for all the support and love they have

always given me.

iv

Contents

1 Introduction 2

2 Logic Review 10
2.1 Propositional logic . 10

2.1.1 Syntax . 10
2.1.2 Semantics . 11

2.2 First order logic . 12
2.2.1 Syntax . 12
2.2.2 Semantics . 15
2.2.3 Deduction . 17

2.3 The subsumption lattice . 21
2.3.1 Subsumption as a generality relation 21
2.3.2 Least general generalization as least upper bound 22

3 Learning From Queries 25
3.1 Queries . 27
3.2 Computational complexity of queries 27
3.3 Models of learnability . 29

4 Complexity of First Order Expressions 32
4.1 Complexity measures . 32
4.2 Relating complexity measures . 36

4.2.1 Relating StringSize and WSize 37
4.2.2 Relating TreeSize . 38
4.2.3 Relating DAGSize . 40

4.3 Relating complexity measures and learning models 41

5 Learning Closed Horn Expressions 44
5.1 The learning algorithm . 45

5.1.1 Minimizing the counterexample 48
5.1.2 Pairing two meta-clauses . 50

5.2 Proof of correctness . 57
5.2.1 Transforming the target expression 57
5.2.2 Some definitions and notation 61

v

5.2.3 Brief description of the proof of correctness 63
5.2.4 Properties of full meta-clauses 64
5.2.5 Properties of minimized meta-clauses 66
5.2.6 On the number of terms in minimized examples 70
5.2.7 Properties of pairings . 71
5.2.8 Properties of the sequence S 74
5.2.9 Deriving the complexity bounds 83

5.3 Fully inequated closed Horn expressions 86

6 The VC Dimension 90

7 The Certificate Size 100
7.1 Definitions and notation . 101
7.2 Certificates for monotone and unate CNFs 102
7.3 Saturated Horn CNFs . 107
7.4 Certificates for Horn CNF . 111
7.5 Learning from entailment . 114
7.6 Certificate size lower bounds . 115
7.7 An exponential lower bound for renamable Horn 120

8 The Subsumption Lattice and Learnability 125
8.1 On the length of proper chains . 125

8.1.1 Fully inequated clauses have short proper chains 126
8.1.2 Function free clauses have long proper chains 128

8.2 Learning from membership queries only 136
8.3 On the number of pairings . 139

8.3.1 General clauses . 140
8.3.2 Function free clauses . 141
8.3.3 Function free clauses with fixed arity 146

9 Conclusions and Future Work 154

Bibliography 158

vi

EXACT LEARNING OF

FIRST-ORDER EXPRESSIONS FROM

QUERIES

1

Chapter 1

Introduction

This thesis is concerned with the problem of learning concepts expressed in first or-

der logic. First order logic is a highly expressive language that allows us to describe

complicated phenomena concisely. As an example, take the following imaginary

map of cities:

u

u

u

u

u

u³³³³³³³
T
T
T
T
L
L
L
L
L
LL
@
@
@@£
£
£
£
£
£
£
£
½
½
½½
¡
¡¡
HH

H(((((((
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Q
Q
Q
Q
QQ
·
·
·
·PPPPL

L
L
L
L
³³
³³
³³³

Casablanca

Ceuta

Addis Ababa

Abuja

HarareLuanda

u

u

u

u

u

u u

u

u

u

u

u

u

u

u

·
·
·
S
SS.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.¡
¡
¡
¡
¡¡

l
l
l
l
```̀

´
´
´
´́
´
´
´
XXX

XXX
XL

L
L
L
L

l
l
l
¯
¯
¯
¯̄"
"
"
"
"
""

B
B
B
B
B
B
B
B
B
B ¢
¢
¢
¢¢¦¦
¦
¦
¦
¦
¦
¦...........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

¯
¯
¯
¯
¯
¯
¯

%
%
QQ,,

...
...
....
...
...
....
...

T
TT.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.´
´́

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.PPP!!

·
·
·
·
·
··
hhhh

hhhh
"
""l

ll
XXX.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.PP
"
"
"
""

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Z
Z
ZZ©

©©
©©
hhhh

hh......
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.Worcester

Chicago

Juneau

Mexico City

Caracas

Buenos Aires

Brasilia

Ushuaia

Santiago

Norilsk

Rome

Berlin

San Petersburg

Moscow
Madrid

To express the concept “two cities are connected by a major highway” we just

need the following first order rule: “for all cities x, y and z, if x is connected to y

2



and y is connected to z, then x is connected to z” which we formally write in the

language of first order logic as:

∀x∀y∀z connected(x, y) ∧ connected(y, z)→ connected(x, z) (1.1)

From such a rule we can extract all the pairs of cities that are connected, just

by applying it repeatedly and assuming that initially the connected cities are those

adjacent in our map. If we were to use a propositional formalism to describe the

same concept we would have to explicitly list the cities that are connected in our

map, partially represented by the following table that contains 212 = 441 entries

for a map with 21 cities:

City 1 City 2 Connected? City 1 City 2 Connected?

Casablanca Ceuta YES Caracas Casablanca NO

Casablanca Abuja YES Casablanca Harare YES

Harare Abuja YES Harare Caracas NO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Notice also that if we were to change the map, the propositional description

would have to change in order to reflect the changes made. However, the first order

description of the concept remains unchanged since it refers to the transitive nature

of connectedness and hence it applies to every map imaginable.

In this work we study the complexity of learning first order Horn expressions

which are essentially sets of rules such as 1.1. We adopt a supervised learning

scenario that assumes that there is a teacher (or oracle) available that answers

questions (or queries) posed by the learning algorithms. We assume that there is a

set of first order rules known only to the teacher; the task of the learning algorithm

is to discover these rules (or a set of equivalent rules) by asking questions to the

teacher. It is important to distinguish this learning scenario from the more passive

one where algorithms are just presented with a series of labeled examples and no

active questions are allowed.

Interest in learning concepts expressed in logic is not new. In fact, during the

last two decades the machine learning community has produced an impressive list

3



of results related to learning different types of logic formalisms, both theoretical

and empirical. For example, learning algorithms for decision trees or rule systems

have been developed and applied to numerous real-world problems very successfully

(Mitchell, 1997).

Inductive Logic Programming

In the context of learning in first order logic, Plotkin (1970) introduces in his pio-

neering work an algorithm for computing the least general generalization of a pair

of clauses (w.r.t. a generalization relation known as subsumption — see Section 2.3

for details). This algorithm was later incorporated into a whole theory of inductive

learning in first order clausal logic (Plotkin, 1971). The notion of least general gen-

eralization and subsumption is still central to first order learning, and in particular,

central to our learning algorithm in Chapter 5. Another example of early work in

first order logic learning is that of Shapiro (1983), where he formalizes the model

inference problem that is the problem of inferring a first order theory that is capable

of explaining some observed facts. Based on his theory, he develops the model infer-

ence system and applies it to the problem of debugging logic programs. Other early

examples of theoretical studies of the complexity of learning in first order logic are

(Valiant, 1985; Haussler, 1989). Learning first order logic is currently studied under

the name of Inductive Logic Programming (ILP). Work in ILP ranges from appli-

cations, the development of systems and algorithms, to theoretical studies. While

the work presented in this thesis is purely theoretical, it is of interest to follow the

evolution of machine learning systems developed within the ILP community.

ILP systems can be viewed as algorithms that perform a search guided by exam-

ples or queries (or both) over the lattice formed by first order clauses and their sub-

sumption relation — see Section 2.3 for details. Early ILP systems such as CIGOL

(Muggleton and Buntine, 1988) or GOLEM (Muggleton and Feng, 1992) perform a

bottom-up search, i.e. they produce hypotheses that are increasingly more general,

starting with the most specific hypothesis. All these systems suffer from very high

4



computational costs, and top-down systems were developed to improve on their

efficiency. Systems such as FOIL (Quinlan, 1990), PROGOL (Muggleton, 1995)

and ICL (De Raedt and Van Laer, 1995) use a greedy covering method where the

system adds one clause at a time to the hypothesis and each clause is constructed

by a general to specific refinement search. LogAn-H (Khardon, 2000), based on the

algorithm in (Khardon, 1999b), is the first bottom-up system introduced after some

time.

While most of ILP systems are based on examples, some of the early systems

learn from queries: MIS (Shapiro, 1983), MARVIN (Sammut and Banerji, 1986),

CIGOL (Muggleton and Buntine, 1988), CLINT (De Raedt and Bruynooghe, 1992)

and also the more recent LogAn-H (Khardon, 2000). Some of these systems require

the presence of an expert to answer the questions posed by the system. This is

for example the case of MIS (Shapiro, 1983) where the system is integrated in

a programming development and debugging environment. In the case of MIS it

seems natural that the expert (the programmer) is available during the process.

However, this is quite rare and query-based systems usually simulate the answers

to the queries using examples. This is easy in the case of equivalence queries, which

ask whether a given hypothesis is correct or not. Here the hypothesis can be tested

against a set of examples and if a discrepancy is found then the answer to the query

is No whereas if no discrepancy is found the answer should be Yes. It is well known

that if the set of examples is large enough, then good guarantees about the accuracy

of the hypothesis can be obtained (Angluin, 1988). Membership queries are usually

harder to simulate and a more ad-hoc solution has to be found for every system.

This is in fact what LogAn-H (Khardon, 2000) does in its “batch” mode, so that no

interaction from the user is required and the system just runs using a database of

labeled examples. Query-based learning algorithms can also be used within larger

systems that somehow are able to experiment with the hypotheses provided by the

systems. This is the case of the experiments of Reddy and Tadepalli (1999) in the

context of planning. In this system, they can test the hypotheses generated by their

5



learning algorithm (Reddy and Tadepalli, 1997) by simulating the planning process

using the hypothesis output by the learning algorithm. The same idea applies to

the work of Bryant and Muggleton (2000) and also Muggleton et al. (1999), whose

aim is to automate the scientific discovery process by having a machine learning

algorithm proposing hypotheses and a robot testing the hypotheses by performing

some experiments.

Complexity of learning in first order logic

Unfortunately, Cohen (1995) shows that efficient learning algorithms do not exist

even for very simple classes of first order concepts. These negative results apply

to the PAC learning model (Valiant, 1984), where examples are drawn according

to some unknown distribution and algorithms have no control over which exam-

ples they are allowed to see. To overcome this, we relax the problem by allowing

algorithms to actively select examples. More precisely, we consider the stronger

model of exact learning from membership and equivalence queries (Angluin, 1988).

Informally, in an equivalence query, the learning algorithm suggests a hypothesis

and an oracle answers Yes or No depending on whether the hypothesis is (logically)

equivalent to the target concept or not. In a membership query, the learning algo-

rithm presents an example and an oracle returns Yes if it is a member of the target

concept, otherwise it returns No. The model of exact learning from membership and

equivalence queries has been studied extensively, mostly in the context of learning

in propositional logic. Indeed, some problems that are provably hard in the PAC

model1 (or still open) become tractable when queries are allowed. Examples of

this are propositional Horn expressions (Angluin, Frazier, and Pitt, 1992; Frazier

and Pitt, 1993), read once formulas (Angluin, Hellerstein, and Karpinski, 1993),

k-term DNF formulas for fixed k (Angluin, 1987a), regular sets (Angluin, 1987b)

and monotone DNF formulas (Angluin, 1988; Valiant, 1984), among others.

1Hardness results in the PAC model are commonly proved assuming plausible conditions such
as P 6= NP or RP 6= NP or assuming that certain cryptographic problems are hard.

6



As we have mentioned, early studies of learning in relational domains using

queries can be found in Shapiro (1983), Valiant (1985) and Haussler (1989). Re-

cently, algorithms have been developed in the model of exact learning from queries

capable of identifying expressive subsets of first order Horn expressions. Some of

these algorithms use more powerful types of queries that partially reveal some of the

syntactic structure of the target concepts such as subsumption queries (Arimura,

1997; Rao and Sattar, 1998) or derivation order queries (Reddy and Tadepalli,

1998). Other algorithms, including our own in Chapter 5 (Reddy and Tadepalli,

1997; Khardon, 1999a; Khardon, 1999b; Arias and Khardon, 2002) use the stan-

dard membership and equivalence queries only. All of these algorithms resemble

the propositional learning algorithms of Angluin, Frazier, and Pitt (1992) and Fra-

zier and Pitt (1993). In fact, they can all be viewed as a generalization of these

algorithms to the first order setting. Naturally, the operations of the propositional

algorithm need to be lifted to first order logic. This is done by using variants of the

least general generalization or lgg of Plotkin (1970) or by using direct products of

first order interpretations and other appropriate operations.

Results

One of the main contributions of this thesis is in presenting a learning algorithm

for an important class of first order Horn expressions (Chapter 5). This result

improves on earlier work by learning a larger subset of first order Horn expressions

with provably fewer queries. The learning algorithm uses equivalence queries to

test whether its incrementally constructed hypotheses are equivalent to the target

concept, and uses a variant of the least general generalization (Plotkin, 1970) and

membership queries to update incorrect hypotheses.

To quantify the complexity of our learning algorithm, we use parameters that are

based on the syntactic components used to describe the target concept. Important

parameters are the number of clauses, the maximum number of variables in a clause

v (in our example clause 1.1, v = 3 due to variables x, y and z), the maximum

7



number of terms in a clause t (in our example clause 1.1, t = 3 also since the

variables are the only terms), and the maximum number of literals in a clause l (in

our example clause 1.1, l = 3 due to two atoms in the antecedent and one in the

consequent). The use of such syntax-based parameters is common in ILP, however,

there has never been a theoretical justification for this. Chapter 4 introduces a

series of parameters that quantify the complexity of first order expressions. It also

includes two fundamentally different ways of computing the size of an expression:

TreeSize and DAGSize. TreeSize is considered the standard notion of size for first

order expression and counts essentially the number of symbols needed to write

down a first order expression in its usual string form. DAGSize is based on a more

efficient encoding of the expressions that avoids repetitions of multiple occurrences

of identical terms. Chapter 4 provides a framework that characterizes under which

circumstances it is justified to use one set of parameters or another. It relates

DAGSize to the three parameters c, l, t and shows that no combination of parameters

can relate to TreeSize. From this we conclude that it is sufficient to take into

account the three parameters c, l and t if one wants an algorithm that is efficient

w.r.t. DAGSize.

The complexity of our algorithm in Chapter 5 is exponential in the number

of variables. This contrasts with the algorithms of (Arimura, 1997; Reddy and

Tadepalli, 1998; Rao and Sattar, 1998) whose complexity is only polynomial in

this crucial parameter. However, as we mentioned earlier, these algorithms use

very powerful queries. It is thus interesting to investigate whether this exponential

dependence is necessary, or in other words, whether one can find better algorithms

if only membership and equivalence queries are available.

Chapter 6 takes a first step in this direction by studying the VC Dimension of

first order Horn expressions. The VC Dimension of a class is known to give a lower

bound for the number of queries needed to learn the class when using membership

and equivalence queries (Maass and Turán, 1992). In Chapter 6 we show that the

VC Dimension of first order Horn expressions is not exponential in the number of

8



variables (it is polynomial in all the relevant parameters) and hence it leaves a gap

to the exponential upper bound provided by the learning algorithm. The remainder

of this thesis is concerned with closing this gap.

After the introduction of the model of exact learning from queries (Angluin,

1988) there has been great effort put into characterizing learnability when certain

types of queries are available by means of combinatorial quantitative character-

izations of the concept classes to be learnt. A summary of these combinatorial

characterizations can be found in (Angluin, 2001). Particularly relevant to this

work is the notion of certificate size, which is directly related to the number of

queries needed to learn from membership and equivalence queries (Hellerstein et

al., 1996; Hegedus, 1995). Chapter 7 studies the certificate size of various classes of

propositional expressions, including propositional Horn expressions. Constructions

of certificates of polynomial size are given for unate CNF/DNF and Horn CNF;

these can be viewed as alternative proofs of their learnability. Some matching lower

bounds for certificate size are also given. Chapter 7 shows also that renamable

Horn CNF, a slight generalization of propositional Horn CNF, has certificates of

exponential size. This implies that there is no polynomial algorithm that learns

this slightly more general class and solves an open question of Feigelson (1998).

Finally, Chapter 8 studies some properties of the subsumption lattice over first

order clauses. We first show that subsumption chains of exponential length exist;

this fact is then used to show the impossibility of efficiently learning first order

Horn clauses in the restricted model where only membership queries are available.

Then we show that a pair of clauses can have an exponential number of pairings (a

pairing is a variant of the lgg used by our learning algorithm to generalize clauses).

This means that there are cases in which the learning algorithm in Chapter 5 must

make an exponential number of queries, thus showing that our analysis is tight.

In summary, the thesis provides a new algorithm and complexity upper and

lower bounds for the problem of learning first order Horn expressions. Chapter 9

includes further discussion of the results and directions for further work.

9



Chapter 2

Logic Review

In this chapter we review the standard definitions and results of logic and that are

used in this thesis. We do not attempt to give a comprehensive review of logic;

readers unfamiliar with mathematical logic can refer to standard textbooks e.g.

(Lloyd, 1987; Chang and Keisler, 1990).

2.1 Propositional logic

2.1.1 Syntax

Expressions in propositional logic (also called formulas) are built using a non-empty,

finite set of propositional variables V = {v1, . . , vn} with n ∈ N+, the logical con-

nectives ‘¬’ (negation), ‘∧’ (conjunction), ‘∨’ (disjunction), ‘→’ (implication), and
two punctuation symbols ‘(’ and ‘)’ used to resolve ambiguities with the logical

connectives. An example of a well-formed formula is ‘(v1 ∧ ¬v3) ∨ (v2 ∧ v3 → v4)’.

Of particular importance are formulas that are in Disjunctive Normal Form or

DNF which is a disjunction of conjunctions, and its dual the Conjunctive Normal

Form or CNF which is a conjunction of disjunctions. The formula above has as

DNF representation ‘(v1 ∧ ¬v3) ∨ ¬v2 ∨ ¬v3 ∨ v4’ and as CNF representation ‘(v1 ∨
¬v2 ∨ ¬v3 ∨ v4) ∧ (¬v3 ∨ ¬v2 ∨ ¬v3 ∨ v4)’.

10



In propositional logic, a conjunction of literals such as ‘v1∧¬v3’ is called a term.

A disjunction such as ‘¬v3 ∨ ¬v2 ∨ ¬v3 ∨ v4’ is called a clause. A clause which has

at most one positive variable is called a Horn clause. Examples of Horn clauses are

‘¬v3 ∨¬v2 ∨¬v3 ∨ v4’ and also ‘¬v3 ∨¬v2 ∨¬v3’. A Horn clause is usually denoted
by an implication ‘A → a’, where A is a conjunction of positive variables and a is

a positive variable. A is commonly referred to as the antecedent of the clause and

a as its consequent. In the Horn clause ‘A → a’, the variables in A are negative,

and a is the (at most one) positive variable. Both A and a can be empty. As an

example, the Horn clause ‘¬v3 ∨¬v2 ∨ v4’ is written as ‘v3 ∧ v2 → v4’, and the Horn

clause ‘¬v3’ is written as ‘v3 →’. A Horn CNF formula is a conjunction of Horn
clauses.

We note that there are many conventions concerning the priorities of the logical

connectives and the usage of the parentheses that we do not describe here.

We also note that in this section we have written formulas in quotes ‘ ’ to

distinguish them from regular text. From now on we stop doing this, and hope that

notation and context are enough to make this distinction.

2.1.2 Semantics

An assignment assigns a truth value (we use ‘0’ and ‘1’) to each propositional

variable in V = {v1, . . , vn}. It is typically denoted by a string in {0, 1}n. For
example, assuming n = 5, the assignment 00110 assigns v1 to 0, v2 to 0, v3 to 1, v4

to 1, and v5 to 0.

Given an assignment x and a formula f , we can evaluate the truth or falsity of

f under x in the following way: first substitute every occurrence of a variable in f

by its corresponding truth value given by x, and then recursively apply the rules

dictated by the classical truth tables of the logical connectives to obtain its final

value. We say that an assignment x satisfies a formula f , noting this by x |= f , if

the formula f evaluates to 1 under x. Otherwise, we say that x falsifies the formula

f and denote this x 6|= f .

11



Given two formulas f1 and f2, we say that f1 logically implies f2 and denote this

f1 |= f2 iff for every assignment x ∈ {0, 1}n if x |= f1 then x |= f2. Two formulas

f1, f2 are logically equivalent (denoted f1 ≡ f2) iff f1 |= f2 and f2 |= f1.

A boolean function g : {0, 1}n → {0, 1} assigns to every assignment in {0, 1}n

a value from {0, 1}. Notice that each propositional formula f represents a boolean

function g in the natural way: for any assignment x ∈ {0, 1}n: g(x) = 1 if f |= x and

g(x) = 0 if f 6|= x. Different formulas can represent the same boolean function: e.g.

the formulas ‘(v1∧¬v3)∨¬v2∨¬v3∨v4’ and ‘(v1∨¬v2∨¬v3∨v4)∧(¬v3∨¬v2∨¬v3∨v4)’
represent the same boolean function. Clearly, two formulas representing the same

boolean function must be equivalent. We sometimes abuse our notation and identify

formulas with their represented boolean functions. I should be clear from the context

which one we refer to in each case.

2.2 First order logic

2.2.1 Syntax

A signature S consists of a set P of predicate symbols (with associated arities) and
a set F of function symbols (with associated arities). Syntactically, there is not

much difference between function and predicate symbols, with the exception that

predicate symbols cannot be nested; the main distinction between them is given by

their semantics (see Section 2.2.2). Given a signature S and a non-empty set of
variables V we construct first order terms1 as follows:

• a variable in V is a first order term

• if f ∈ F is a function symbol of arity a (denoted by f/a), and t1, . . , ta are

first order terms, then f(t1, . . , ta) is also a first order term; we call these terms

functional terms

1Terms in propositional logic are entirely different from terms in first order logic!

12



Typically, we use x, y, z, . . to denote variables, f, g, h, . . to denote function sym-

bols. Constants (special function symbols that have arity 0) are denoted by a, b, c, . .

and 1, 2, 3, . .

If p ∈ P is a predicate symbol of arity a (denoted by p/a) and t1, . . , ta are first

order terms, then p(t1, . . , ta) is an atom. We also consider a special type of atom:

the inequality (t1 6= t2), where t1, t2 are first order terms.

Atoms can be combined using the logical connectives ‘¬’ (negation), ‘∧’ (con-
junction), ‘∨’ (disjunction), ‘→’ (implication), and the two punctuation symbols ‘(’
and ‘) of propositional logic into first order formulas (equivalently, we refer to first

order formulas by first order expressions). Additionally, first order logic has the

quantifiers for all ‘∀’ and exists ‘∃’ which allow to quantify variables universally or
existentially to form formulas of the sort ‘∀v φ’ or ‘∃v φ’, where v is a variable and φ
is an arbitrary formula. A literal is an atom p(t1, . . , ta) or its negation ¬p(t1, . . , ta).
We have seen how to build complex formulas or expressions given a set of vari-

ables, a signature S, the logical connectives and the quantifiers. The set of first
order expressions built from S is denoted by FOS . When we want to make explicit
that a formula is in FOS , we refer to it as a S-formula or S-expression.
Notice that if a signature S contains predicate symbols of arity 0 only or no

function symbols and variables are allowed, then S-expressions are propositional
formulas. Hence, propositional logic is a special case of first order logic.

In this work we only consider formulas that are in prenex normal form (the

expressions are ‘Q1v1 . . Qnvn φ’ where Qi are quantifiers and the formula φ is

quantifier-free). Moreover, we consider universally quantified expressions which

are expressions that are in prenex normal form and do not contain existential quan-

tifiers.

Given a first order expression E ∈ FOS , we define the following sets

• Vars(E) is the set of variables appearing in E

• Terms(E) is the set of first order terms appearing in E, including subterms.

13



• AtomsP (E) is the set of atoms that can be built from the terms in Terms(E)

and predicate symbols in P .

Example 1 Suppose P = {p/2, q/1} and r is a predicate of arity 1.

• Vars(f(x, g(y))) = {x, y}

• Terms(f(x, g(a))) = {x, a, g(a), f(x, g(a))}

• AtomsP (r(f(1))) = {p(1, 1), p(1, f(1)), p(f(1), 1), p(f(1), f(1)), q(1), q(f(1))}

The definition of Vars , Terms and AtomsP can be extended to sets of expres-

sions by taking the union of the result of each individual expression. For example,

Terms({E1, E2, E3}) = Terms(E1) ∪ Terms(E2) ∪ Terms(E3).

A first order clause is a universally quantified disjunction of literals. For example

the expression ‘∀x∀y∀z ¬add(x, y, z) ∨ add(y, x, z)’ is a clause. Moreover, it is first

order Horn since it contains at most one positive literal. Since all variables are

universally quantified, we do not need to write the quantifiers and usually write

clauses utilizing the ‘→’ notation as ‘add(x, y, z) → add(y, x, z)’. We also use set

notation to denote a clause. In this case, the clause above can be denoted by

{¬add(x, y, z), add(y, x, z)}. Finally, a first order Horn expression is a conjunction
of universally quantified first order Horn clauses.

Definition 1 A first order Horn clause s → b is range restricted if Terms(b) ⊆
Terms(s). A first order Horn clause s → b is constrained if Terms(s) ⊆ Terms(b).

For example, the clause p(x)→ p(f(x)) is constrained but not range restricted.

On the other hand, the clause ¬add(x, 0, succ(x)) is range restricted but not con-
strained.

Definition 2 A Horn clause is non-trivial if it is not a tautology.

Definition 3 Let ineq(s) be the set of all possible inequalities between first order

terms appearing in s. A first order Horn clause s → b is fully inequated if its

14



antecedent contains all the possible inequalities between pairs of first order terms

in it, i.e., if ineq(s ∪ {b}) ⊆ s.

As an example, let s be the set {p(x, y), q(f(y))} containing the first order
terms {x, y, f(y)}. Then ineq(s) = {x 6= y, x 6= f(y), y 6= f(y)} also written as
(x 6= y 6= f(y)) for short.

Definition 4 Ameta-clause is a set of Horn clauses that share the same antecedent.

A meta-clause is denoted by [s, c] where s and c are sets of atoms. Formally,

[s, c]
def
=
∧

b∈c(s → b).

Meta-clauses provide a compact way to represent sets of clauses with the same

antecedent and are extensively used in Chapter 5 of this thesis.

Definition 5 A range restricted first order Horn expression is a conjunction of

range restricted first order Horn clauses. Similarly, constrained Horn expression is

a conjunction of constrained first order Horn clauses. Finally, a fully inequated first

order Horn expression is a conjunction of fully inequated first order Horn clauses.

2.2.2 Semantics

Given a signature S, an S-interpretation (also called S-model or S-structure) is the
first order analogue of the assignment. The elements of an S-interpretation I are:

• a countable set D called domain whose elements are referred to as objects

• for each f/a ∈ F , I defines a function mapping f I : Da → D. Notice

that function mappings assign a domain object to each constant: aI = o.

The function mappings guide how first order terms are evaluated to domain

objects

• for each p/a ∈ P , I includes a subset of {P (o1, . . , oa) | oi ∈ D, 1 ≤ i ≤ a}.
This is called the extension of predicate p and it lists which of the instances

of the predicate P are true in I

15



Now we briefly explain how first order S-formulas are evaluated given an S-
structure. Given an S-structure with domain D and a first order expression E, a

variable assignment (w.r.t. S) is an assignment to each variable in E of an object
in D.

Given an S-structure with domain D, a first order expression E and a variable
assignment V w.r.t. S, a term assignment (w.r.t. S and V ) is defined as:

• Each variable in E is given its assignment according to V .

• Each constant is E given its assignment according to S.

• If t′1, . . , t′a are the term assignments of t1, . . , ta and f ′ is the assignment of
the a-ary function symbol f , then f ′(t′1, . . , t

′
a) ∈ D is the term assignment of

f(t1, . . , ta).

Let I be an S-interpretation with domain D, let V a variable assignment, and
E a first order formula. Then the truth value of E can be given as follows:

• If E is an atom p(t1, . . , ta), then the truth value is 1 iff p(t
′
1, . . , t

′
a) is in I’s

extension for p, where t′1, . . , t
′
a are the term assignments for t1, . . , ta w.r.t. I

and V .

• If E is an inequality t1 6= t2, then its truth value is 1 iff the term assignments

for t1, t2 are the same object t
′ in D.

• If E is of the form ¬E1, E1 ∧ E2, E1 ∨ E2 or E1 → E2, then the truth value

is given by the usual truth table for ¬,∧,∨ and →.

• If E is of the form ∃x E ′, then the truth value is 1 iff there exists an object
d ∈ D such that E ′ has truth value 1 w.r.t. I and V ∪ {x 7→ d}.

• If E is of the form ∀x E ′, then the truth value of the formula is 1 iff for all

d ∈ D, E ′ has truth value 1 w.r.t. I and V ∪ {x 7→ d}.

16



If an interpretation I makes an expression T evaluate to 1, then we say that I

satisfies T and denote this by I |= T . In this case, we also say that I is a model of

T . If T evaluates to 0 under I, then we say that I falsifies T and denote this by

I 6|= T . A first order expression T1 entails or logically implies another expression

T2 (denoted T1 |= T2) if every model of T1 is also a model of T2. Two expressions

T1, T2 are logically equivalent (denoted T1 ≡ T2) iff T1 |= T2 and T2 |= T1.

2.2.3 Deduction

A substitution is a mapping from variables into first order terms. We denote sub-

stitutions as sets of ordered pairs {x1 7→ t1, . . , xn 7→ tn} where xi are variables
and ti are first order terms for all i = 1 . . n. We usually refer to substitutions by

the Greek letter θ and variations of it. Substitutions can be applied to first order

terms, atoms, sets of atoms, and any first order expression in general. The effect

of applying a substitution θ = {x1 7→ t1, . . , xn 7→ tn} to a first order expression
E, denoted as E · θ, is to (simultaneously) replace the free variables xi that appear
in E by the corresponding terms ti. Notice that if E does not contain any of the

variables in the domain of θ, then applying θ to E leaves E unchanged. We say

that E · σ is an instance of the expression E.

Definition 6 A substitution θ is non-unifying w.r.t a first order expressions E if

for every pair of distinct first order terms t, t′ ∈ Terms(E) we have that t · θ 6= t′ · θ.

We can prove the following:

Lemma 1 Let θ (and subscripted variations of it) be substitutions, let S and s be

two sets of atoms, b a single atom, and θN a non-unifying substitution w.r.t. s∪{b}.

Then,

1. If b ∈ s, then b · θ ∈ s · θ.

2. If b 6∈ s, then b · θN 6∈ s · θN .

17



3. If b ∈ S \ s, then b · θ ∈ S · θ \ s · θ unless b · θ ∈ s · θ.

4. If b ∈ S \ s, then b · θN ∈ S · θN \ s · θN .

5. If θ = (θ1 · θ2) and t · θ 6= t′ · θ, then t · θ1 6= t′ · θ1.

6. If T |= s → b, then T |= s · θ → b · θ.

Proof. We prove some of the properties, the rest are immediate. For Property 2,

suppose that b 6∈ s. The substitution θN is non-unifying w.r.t. s ∪ {b}, therefore,
distinct terms in b remain distinct after applying θN . Therefore we can reverse θN ,

and we conclude that if b · θN ∈ s · θN then b ∈ s. Hence, b · θN 6∈ s · θN . Notice that
this is not necessarily true if the substitution involved is unifying. As an example,

let s = {p(a)}, b = p(x), and θ = {x 7→ a}. Then, b · θ = p(a) and s · θ = s since s

does not contain x. Clearly, b 6∈ s but b · θ ∈ s · θ. This is because θ has unified the
terms x, a of s ∪ {b}. Properties 2 and 3 imply Property 4. For Property 5, notice
that if t · θ1 = t′ · θ1, then θ cannot distinguish the terms t and t′. ¥

The properties stated in the previous lemma are repeatedly used throughout the

proof of the algorithm Learn-Closed-Horn in Chapter 5, although this is not

always explicitly stated. Next, we describe a sound and complete deduction rule for

first order Horn expressions.

Definition 7 A derivation of a clause C = A → a from a Horn expression T is a

finite directed acyclic graph G with the following properties. Nodes in G are atoms

possibly containing variables. The node a is the unique node of out-degree zero.

For each node b in G, let Pred(b) be the set of nodes b′ in G with edges from b′ to b.

Then, for every node b in G, either b ∈ A or Pred(b)→ b is an instance of a clause

in T . A derivation G of C from T is minimal if no proper subgraph of G is also a

derivation of C from T .

Definition 8 Let C,D be two arbitrary first order clauses. We say that a clause

C subsumes a clause D and denote this by C ¹ D if there is a substitution θ such

that C · θ ⊆ D.

18



Theorem 2 Let T be any Horn expression and C be a non-trivial Horn clause. If

T |= C, then there is a minimal derivation of C from T .

Proof. First, we show that if we apply a substitution θ to all the nodes in a

derivation graph G′ (re-defining its edges accordingly) of some clause D from T

then the resulting derivation graph which we denote G′ · θ is a derivation graph of
D ·θ from T : consider any node b′ in G′. If Pred(b′)→ b′ is an instance of a clause in

T , then Pred(b′)·θ → b′·θ is too. If b′ ∈ Antecedent(D), then b′·θ ∈ Antecedent(D·θ)
as well. This covers all the nodes b′ · θ in G · θ so we are done.
The Subsumption Theorem for SLD-derivation (Nienhuys-Cheng and De Wolf,

1997) guarantees that there is a SLD-derivation of C from T . Briefly, a SLD-

derivation is a linear derivation R0 → R1 → . . → Rk = C ′ where C ′ is such that

C ′ subsumes C, R0 is a clause in T , and each Ri for 1 ≤ i ≤ k is obtained by

resolving some clause Ci in T with the previous Ri−1 using the consequent of Ci

and a selected atom in the antecedent of Ri−1 as the literals resolved upon.

Now we show how to transform any SLD-derivation of Rk = C ′ from T into a

derivation graph of C ′ from T by induction on the depth of the SLD-derivation k. If

k = 0 then the SLD-derivation consists of just the clause C ′ in T . In this case, our

derivation graph has as nodes all the literals in C ′ and edges (l,Consequent(C ′))

for each literal l ∈ Antecedent(C ′). Clearly this is a derivation graph for C ′ from T .

For the induction step (k > 0), suppose we have a derivation graph Gk−1 of Rk−1

from T . We show how to extend it to a derivation graph Gk of Rk from T . Let Ck be

the clause in T that results in Rk by resolving it with Rk−1; let σ be the substitution

that unifies the consequent of Ck and the selected atom l̂ in the antecedent of

Rk−1. Resolving Consequent(Ck) with l̂ ∈ Antecedent(Rk−1) results in the clause

Rk = (Antecedent(Rk−1) \ {l̂} ∪ Antecedent(Ck)) · σ → Consequent(Rk−1) · σ. To
obtain our desired derivation graph Gk, consider Gk−1 · σ and add the literals in
Antecedent(Ck) ·σ as new nodes. Add the edges (l · σ, l̂ · σ) for each literal l ∈
Antecedent(Ck). Let the resulting graph be our Gk. Now, we claim that Gk is

a derivation graph for Rk from T ; it suffices to guarantee that the new/modified

19



nodes satisfy the conditions of a derivation graph. First, the node l̂ ·σ satisfies that
Pred(l̂ · σ) → l̂ · σ is an instance of a clause in T , in particular it is an instance
of Ck ∈ T since we added edges from all the literals in the antecedent of Ck · σ to
l̂ · σ which is precisely the consequent of Ck · σ. We have added new nodes l · σ
for each l ∈ Antecedent(Ck). Clearly, these nodes appear in the antecedent of Rk

which contains Antecedent(Ck) · σ.
Finally, to obtain the derivation graph of C from T , we just apply the substi-

tution θ, where θ is the substitution s.t. C ′ · θ ⊆ C to the derivation graph of

Rk = C ′ from T . By our remark above this is a valid derivation graph for C ′ · θ
which is also a valid derivation graph for C since C ′ · θ ⊆ C and, more concretely,

Antecedent(C ′) · θ ⊆ Antecedent(C). ¥

Definition 9 Let T be a first order Horn expression. Then T is closed if for any

non-trivial clause C such that T |= C it holds that all minimal derivations of C

from T use first order terms appearing in C only.

Lemma 3 Range restricted Horn expressions and constrained Horn expressions are

closed.

Proof. Range restricted Horn expressions: if b′ appears in any derivation of T |=
s → b, where T is a range restricted Horn expression and s is a set of atoms, then

obviously, T |= s → b′. T is range restricted and therefore b′ is made out of terms

in s only. Thus, b′ ∈ AtomsP (s) ⊆ AtomsP (s → b).

Constrained Horn expressions: consider any minimal derivation of s → b from

a constrained Horn expression T . If b′ appears in the derivation, then, since T

is constrained, b′ must be made out of terms in b only. Thus, b′ ∈ AtomsP (b) ⊆
AtomsP (s → b). ¥

20



2.3 The subsumption lattice

In this section we describe how the subsumption relation induces a lattice over the

set of first order clauses. This establishes a clear notion of generality among clauses

and it is very useful in visualizing the generalization operator that is used in the

learning algorithm of Chapter 5.

2.3.1 Subsumption as a generality relation

We recall the definition of subsumption: we say that a clause C subsumes a clause

D and denote this by C ¹ D if there is a substitution θ such that C · θ ⊆ D.

Moreover, they are subsume-equivalent, denoted C ∼ D, if C ¹ D and D ¹ C. C

strictly or properly subsumes D, denoted C ≺ D, if C ¹ D but D 6¹ C.

Definition 10 A relation ¹ imposes a quasi-order on a set S if ¹ is reflexive and
transitive w.r.t. the elements in S.

Definition 11 A relation ¹ imposes a partial-order on a set S if ¹ is reflexive,

anti-symmetric and transitive w.r.t. the elements in S.

Theorem 4 If C ¹ D then, C |= D.

Proof. The Subsumption Theorem for SLD-derivation in (Nienhuys-Cheng and

De Wolf, 1997) guarantees that there is a SLD-derivation of D from C. By (the

proof of) Theorem 2, we know how to convert the SLD-derivation into a derivation

graph of D from C. Soundness of derivation graphs (directly derived from the

soundness of forward chaining) shows that C |= D. ¥

Because of Theorem 4, we interpret ¹ as a generality relation between clauses.
The relation ¹ is reflexive and transitive, and therefore it imposes a quasi-order on
the set of first order clauses. However, this is not a partial order since ¹ is not

anti-symmetric: there exist clauses C1, C2 that are subsume-equivalent but are not

identical, e.g., C1 = {p(x, y), p(y, x), p(x, x)} and C2 = {p(x, x)}.

21



Clauses that can be obtained by renaming variables are considered identical.

E.g., the clauses C3 = {p(x, y), p(y, z)} and C4 = {p(x1, x), p(x, z3)} are variable
renamings, also called syntactic variants. Notice that in this case the variable

renaming is given by {x ↔ x1, y ↔ x, z ↔ z3}.
The subsumption relation ¹ and the set of first order clauses induce a lattice2.

This is an important concept since generalizing or specializing a clause can be seen

as moving up or down in the subsumption lattice.

2.3.2 Least general generalization as least upper bound

In the subsumption lattice, the least upper bound or lub of a pair of clauses C1, C2

is defined as a clause which is more general than both C1 and C2, and which is the

least general such clause (w.r.t. subsumption). This is precisely computed by the

least general generalization or lgg proposed by Plotkin (1970).

Definition 12 A pair of literals are compatible if they use the same predicate sym-

bol (and hence same arity) and have the same sign. A pair of first order terms are

compatible if they agree on their leftmost function symbol (and hence on their arity

as well).

The algorithm computing the lgg is as follows:

2Strictly speaking, the relation ¹ is a quasi-order and not a partial-order, so that (Clauses ,¹)
does not induce a lattice in the standard set-theoretic sense. However, we relax the definition of
lattice to work for quasi-orders which is enough for our purposes.

22



lgg(C1, C2)

1 if C1, C2 are clauses

2 then S ← ∅
3 for each pair of compatible literals l1 ∈ C1 and l2 ∈ C2

4 do S ← S ∪ lgg(l1, l2)

5 return S

6 if C1, C2 are compatible literals

7 then if C1 = p(t1 . . tn), C2 = p(t′1 . . t
′
n) are compatible positive literals

8 then return p(lgg(t1, t
′
1) . . lgg(tn, t

′
n))

9 else / ∗ C1 = ¬p(t1 . . tn) and C2 = ¬p(t′1 . . t′n) ∗ /
10 return ¬p(lgg(t1, t

′
1) . . lgg(tn, t

′
n))

11 if C1, C2 are first order terms

12 then if C1 = f(t1 . . tn), C2 = f(t′1 . . t
′
n) are compatible terms

13 then return f(lgg(t1, t
′
1) . . lgg(tn, t

′
n))

14 else return a new variable x

This procedure is designed to be initially called with two clauses as arguments;

in the subsequent recursive calls the arguments are either compatible literals of first

order terms.

It is important to note that whenever the lgg returns a new variable (step 14 in

lgg) the algorithm stores the fact that the pair C1, C2 has been mapped to x into

what we call the lgg table. If this pair of terms come up again, they are mapped

to the same variable. More formally, the lgg table produced by the computation of

lgg(C1, C2) is a mapping from Terms(C1) × Terms(C2) into the new set of terms

Terms(lgg(C1, C2)). We denote the lgg tables as sets of ordered triplets of the form

[t1 - t2 => t3], meaning that t1 and t2 are mapped to t3 = lgg(t1, t2).

Example 2 Let C1 = {p(a, f(b)), p(g(a, x), c), q(a)} and C2 = {p(z, f(2)), q(z)}.
Their pairs of compatible literals are

{p(a, f(b))− p(z, f(2)), p(g(a, x), c)− p(z, f(2)), q(a)− q(z)}.

23



Their lgg is lgg(C1, C2) = {p(X, f(Y )), p(Z, V ), q(X)}. The lgg table produced

during the computation of lgg(C1, C2) is

[ a - z => X ] (from p(a, f(b)) with p(z, f(2)))

[ b - 2 => Y ] (from p(a, f(b)) with p(z, f(2)))

[ f(b) - f(2) => f(Y ) ] (from p(a, f(b)) with p(z, f(2)))

[ g(a, x) - z => Z ] (from p(g(a, x), c) with p(z, f(2)))

[ c - f(2) => V ] (from p(g(a, x), c) with p(z, f(2)))

The number of literals in the lgg of two clauses can be as large as the product

of the number of literals in each clause if all the literals involved are compatible. In

Chapter 5 we introduce the notion of a pairing which is a special subset of the lgg

that avoids the explosion in size of the lgg . Pairings are a key aspect of our learning

algorithm of Section 5.1. Notice that a pairing is more general than the lgg since it

is a subset of the lgg ; a pairing is therefore a generalization of the original pair of

clauses, just not the minimal one.

24



Chapter 3

Learning From Queries

In this chapter we formalize our learning model. This involves formally defining the

following: examples, concepts, types of queries available to the learning algorithms,

and criterion of success of a learning algorithm.

Fix a signature S = (P, F ); consider FOS , the set of first order S-expressions.
We distinguish two different learning settings: learning from interpretations and

learning from entailment.

Learning from interpretations. In this setting, examples are first order S-
interpretations. That is, interpretations must define a function mapping of the

correct arity for every function symbol in F , and their extension must contain atoms

built from predicates in P with the correct arity only. The universe of examples

(all S-structures) is noted by IS .
A concept is a subset of IS , i.e., a set of S-interpretations. A concept C ⊆ IS is

represented by a first order expression E if I |= E ⇔ I ∈ C, where I ∈ IS . Notice
that not all possible subsets of IS can be represented by first order expressions.
In this thesis we consider concepts that can be represented by first order Horn

expressions.

25



Learning from entailment. In this setting, examples are first order S-clauses.
The universe of examples is noted by CS .
A concept is a subset of CS , i.e. a set of first order clauses. A concept C ⊆ CS is

represented by a first order expression E if E |= c ⇔ c ∈ C, where c ∈ CS . In this
thesis we consider concepts that can be represented by first order Horn expressions.

Moreover, we restrict the universe of examples to Horn clauses only.

Parameterizing concept classes. In both cases (learning from interpretations

and learning from entailment) we use T to refer to concept classes. In this thesis,

concept classes are defined by restricting the types of first order expressions that

are allowed. When the concept class is restricted to first order Horn expressions,

we denote the concept class by H instead. We note that throughout this thesis we

somehow blur the distinction between a class of concepts and the set of first order

expressions representing the class.

Suppose that the function

Size : FOS −→ N
+

assigns to every first order expression a positive integer. Then, Size(C), where C is

a concept in some concept class T , is defined as

Size(C) = min {Size(R) | R ∈ FOS and R represents C} .

That is, the size of a concept is the size of the minimal first order expression repre-

senting it. Given a positive integer m, we define T Size≤m as the set of concepts rep-

resented by expressions of size at most m, i.e., T Size≤m = {C ∈ T | Size(C) ≤ m}.
When it is clear from the context what size we are referring to, we can write T ≤m.
In Chapter 4 we study various notions of sizes for first order expressions in detail.

26



3.1 Queries

Assume that the target concept has been fixed, and that it is represented by some

first order expression T . The query types we consider were introduced by Angluin

(1988) and are:

Interpretation membership query. Given a first order interpretation I ∈ IS ,
the query MQ(I) returns Yes if I |= T or No otherwise. The input to the query in

this case is I.

Interpretation equivalence query. Given a first order expression H, the query

EQ(H) returns Yes if H ≡ T , otherwise it returns a counterexample I ∈ IS such
that I |= H and I 6|= T or vice versa. That is, in case H 6≡ T , the query returns an

example proving this fact. The input to the query in this case is H.

Entailment membership query. Given a first order clause c ∈ CS , the query
EntMQ(c) returns Yes if T |= c or No otherwise. The input to the query in this

case is c.

Entailment equivalence query. Given a first order expression H, the query

EntEQ(·) returns Yes if H ≡ T , otherwise it returns a counterexample C ∈ CS such
that H |= C and T 6|= C or vice versa. That is, in case H 6≡ T , the query returns

an example proving this fact. The input to the query in this case is H.

3.2 Computational complexity of queries

For completeness we include a partial survey of the computational power that is

required from the oracles responding to the queries made by the algorithms. It is

well known that if we do not restrict the expressions involved, oracles are required to

solve undecidable problems! In our case, however, the use of closed Horn expressions

makes all the queries decidable. Next, we list some of the problems (and their

27



computational complexity) associated with answering membership and equivalence

queries that are of particular relevance to us. We assume that the inputs to our

queries are both the target concept and the input to the query per se1. We assume

that all the inputs to the queries as well as the target concept are finite.

On model checking. Checking whether I |= C where I is a finite interpretation

and C a clause is in general a decidable problem — one can exhaustively apply

the rules of semantic satisfiability for first order expressions (see Section 2.2) and

explore all combinations possible. However, this might be an expensive procedure.

In fact, Vardi (1982) showed that the complexity of this problem is exponential

in the size of C. Papadimitriou and Yannakakis (1997) refined this result and

showed that the exponential dependence is in the number of variables in C rather

than its total size. They show this by reducing Clique to the problem of deciding

I |= C, where C is a range restricted function free Horn clause. Hence, answering

interpretation membership queries, even for extremely simple target expressions, is

at least NP-hard.

On single-clause implication. Schmidt-Schauss (1988) shows that checking

whether C |= D is undecidable if C and D are arbitrary clauses. More concretely,

deciding C |= D is semi-decidable in the sense that if the answer is Yes then we

can always find a proof witnessing this fact. On the other hand, if the answer is

No we might never know. Marcinkowski and Pacholski (1995) strengthen this result

by proving that C |= D remains semi-decidable, even if C and D are Horn. On

the other hand, if C and D are datalog clauses2, the problem becomes decidable; in

particular, Gottlob and Papadimitriou (2003) show that the problem is EXPTIME-

complete. In Section 5.1 we prove Theorem 14 stating that if closed Horn clauses

1This is what in the database theory is called “combined complexity” as opposed to “data
complexity” and “expression complexity” where one assumes that the target concept is fixed, or
that the input to the query is fixed, respectively. These complexities are quantitatively different
as many results in database theory show.

2Datalog expressions are those containing terms that are either constants or variables.

28



are involved, the problem is decidable. Moreover, it is decidable with a polynomial

number of subsumption tests (assuming constant arity).

On subsumption. Unfortunately, subsumption between Horn clauses is NP-

complete (Kietz and Lübbe, 1994). However, Arimura (1997) shows that the sub-

sumption problem if the Horn clauses are constrained is solvable in polynomial time;

this is not hard to see since the only mapping from variables into terms one has

to consider is the one dictated by the consequents of the clauses. It follows then

from Theorem 14 in Section 5.1 that the implication problem for constrained Horn

expressions is solvable in polynomial time as well. Finally, Khardon (1999b) shows

that the implication problem for range restricted Horn clauses is decidable within

exponential time. This result is implied by Theorem 14.

These results suggest that our models are too demanding: where can we find

oracles to answer these rather difficult questions? Despite this, algorithms that

learn from queries have been proved useful in practice in various ways. First, they

give huge insights into the structure of the classes that the algorithms learn, thus

allowing to exploit this structure in perhaps more practical scenarios. Second, some

queries can be simulated easily: for example, equivalence queries can always be

well approximated by using a polynomial-sized set of labeled examples (Angluin,

1988). In fact, equivalence queries can be seen as a useful abstraction of the learning

scenario where labeled examples are available. Usually membership queries are a

little harder to simulate, however, ad-hoc methods can be engineered in many cases

to simulate these. Examples of successful query-based systems are (Shapiro, 1983;

De Raedt and Bruynooghe, 1992; Reddy and Tadepalli, 1999; Khardon, 2000).

3.3 Models of learnability

In this thesis we use the model of exact learning from equivalence and membership

queries. Other models using different types of queries, or models restricting the

29



possible queries to membership queries only or equivalence queries only are also

possible. All these are reviewed in (Angluin, 1988; Angluin, 2001).

The following definitions assume that we have a notion of size for both first order

expressions and examples. In case that examples are interpretations in IS (learning
from interpretations), the size of an interpretation is defined as the number of

elements in its domain. When examples are clauses (learning from entailment),

then we use the same notion of size as for first order expressions (see Chapter 4).

Given some expression T in some concept class T , a learning algorithm for T
is required to output a hypothesis logically equivalent to T after asking a finite

number of membership and equivalence queries. We use two complexity measures

to parameterize the “goodness” of such a learning algorithm: the query complexity

and the standard time complexity.

Definition 13 The query complexity of a learning algorithm A at any stage in a

run is the sum of the sizes of the (i) inputs to equivalence queries, and (ii) inputs

to membership queries made up to that stage. Notice that (i) refers to the size of

first order expressions, and (ii) refers to the size of examples.

Definition 14 The time complexity of a learning algorithm is defined in the stan-

dard way, with queries taking just 1 time step, regardless of the sizes of the inputs

to the queries. Nonetheless, if the algorithm makes an equivalence query with a very

big hypothesis, its size is somehow accounted for in the time spent to construct it.

Finally, we define efficient learnability of a concept class:

Definition 15 A class T is polynomial query-learnable (polynomial time-learnable,

resp.) if there exists a learning algorithm A and a two-variable polynomial p(·, ·)
such that, for any positive integer m, and for any unknown target concept T ∈ T ≤m

all of the following hold:

(i) A uses membership queries and equivalence queries with hypotheses repre-

senting concepts in T

30



(ii) A terminates and outputs an expression h representing the target T

(iii) at any stage, if n is the size of the longest counterexample received so far

in response to an equivalence query, the query complexity (time complexity,

resp.) of A at that stage does not exceed p(n,m).

31



Chapter 4

Complexity of First Order

Expressions

In this chapter we introduce different ways of quantifying the representation or

description complexity of first order expressions (commonly referred to simply as

size). Having a clear idea of what the different possible notions of size are and of how

they interact seems crucial, since the main definitions of query and time complexity

depend on the sizes that one uses, and hence affect the learning model directly. We

relate these different description sizes using the notion of polynomial relation, which

captures precisely those situations for which we can use interchangeably different

sizes without changing the learning model.

4.1 Complexity measures

In this section we introduce all the complexity measures used throughout this doc-

ument. We illustrate them using the following expression E:

(∀X add(zero,X,X)) ∧ (∀X ∀Y ∀Z add(X,Y, Z)→ add(succ(X), Y, succ(Z)))

32



StringSize(·): as its name suggests, StringSize counts the number of syntactic

symbols used to write down the input expression, ignoring spaces. Predicate and

function symbols which use more than one letter contribute just 1. In our example,

StringSize(E) = 44.

WSize(·): similar to StringSize, WSize counts the number of syntactic symbols

in the input expression, however, it does not count commas, parentheses or spaces.

Function symbol occurrences contribute 2 (and hence its name — W comes from

“weighted”) and other symbol occurrences contribute just 1 to the total WSize. In

our example, WSize(E) = 27.

TreeSize(·): this size measure counts the number of nodes in a tree constructed

recursively in the following manner. If the expression is a quantified expression,

then put the quantifier in the root (labeled with the quantifier, FORALL or EXISTS),

the quantified variable as its left child and the rest of the expression as the right

child. If the expression is a conjunct, then add as children to the root (labeled with

AND) all its conjuncts. Disjuncts are treated analogously, having OR as the root and

the disjuncts as children. For implications the root is labeled with IMPLIES and

the left child is the antecedent and the right child the consequent. With a negation

the node is labeled with NOT and the only child is the rest of the expression. For

atomic formulas, the root is labeled with the predicate symbol and the children are

its arguments. If the expression is a variable, then the root is a leaf labeled with

the variable name. For functional terms, the root is the outermost function symbol

and the children are its arguments. In our example, TreeSize(E) = 24, and the

associated tree is:

33



"
""

HHH

#
##

XXXXXX
PPPP

aaa
"

""

"
""

cc

HHHH

,
,

b
bb

Z
ZZ

"" aa

AND

X

FORALLFORALL

FORALL

FORALL

IMPLIES

X Z

add

succ succ

add

ZYX

Y

Z

X

Y

add

Xzero X

DAGSize(·): counts the number of nodes in a DAG constructed by identifying

identical subtrees in the tree constructed as explained above. We assume that

expressions are standardized apart, that is, we avoid re-use of variable names that

belong to scopes of different quantifiers. This converts our expression E into the

equivalent E ′:

(∀X ′ add(zero,X ′, X ′)) ∧ (∀X ∀Y ∀Z add(X, Y, Z)→ add(succ(X), Y, succ(Z)))

In the example, the only repetition of terms are of variables X, Y, Z,X ′ which appear

3 times each. We save 4× (3−1) = 8, hence DAGSize(E ′) = TreeSize(E)−8 = 16.

NTerms(·): if the input expression is a CNF expression, NTerms counts the

maximum number of distinct terms (including sub-terms) appearing in any clause

of the input expression. If the input expression E ′ is not a CNF, then NTerms(E’)

is exactly |Terms(E ′)|. In the example, NTerms(E) = 5, corresponding to term set

in the second clause {X,Y, Z, succ(X), succ(Z)}. Throughout this document, we
denote this parameter by t.

WTerms(·): similar to the previously defined NTerms , with the only difference

that functional terms are given twice as much weight as variables. In our example

WTerms(E) = 7, corresponding to {X,Y, Z, succ(X), succ(Z)}.

34



NVariables(·): if the input expression is a CNF expression, NVariables counts

the maximum number of distinct variables appearing in any clause of the input

expression. If the input expression E ′ is not a CNF, then NVariables(E ′) is exactly

|Vars(E )|. In the example, NVariables(E) = 3, corresponding to variable set in the

second clause {X,Y, Z}. We denote this parameter by v.

Depth(·): the maximum depth of any functional term appearing in the input

expression. In the example, Depth(E) = 2 corresponding to the deepest term

succ(X) (or succ(Z)). We denote this parameter by d.

NLiterals(·): if the input expression is a CNF expression, NLiterals equals the

maximum number of literals in any clause of the input expression. Otherwise,

it just counts the number of literals in the input expression. In the example,

NLiterals(E) = 2 from the second clause. We denote this parameter by l.

NPredicates(·): the number of distinct predicate symbols appearing in the input

expression. In the example, NPredicates(E) = 1 corresponding to {add/3}. We
denote this parameter by p.

NFunctions(·): the number of distinct function symbols appearing in the input

expression. In the example, NFunctions(E) = 2 corresponding to {zero/0, succ/1}.
We denote this parameter by f .

Arity(·): the largest arity of any predicate and function symbols appearing in

the input expression. In the example, Arity(E) = 3 corresponding to the predicate

add/3. We denote this parameter by a.

NClauses(·): only defined for CNF expressions, NClauses equals the number of

clauses in it. In our example, NClauses(E) = 2. We denote this parameter by c.

35



Size of meta-clauses

When quantifying the complexity of a meta-clause, we adopt a different approach:

Definition 16 Let Size be any complexity measure on first order expressions. Then

Size([s, c]) is defined as the pair (Size(s), Size(c)).

Accordingly, we say that the meta-clause [s2, c2] is more complex than the meta-

clause [s1, c1], denoted by Size([s1, c1]) ≤ Size([s2, c2]), if Size(s1) < Size(s2) or

(Size(s1) = Size(s2) and Size(c1) ≤ Size(c2)). Also, Size([s1, c1]) < Size([s2, c2]), if

Size(s1) < Size(s2) or (Size(s1) = Size(s2) and Size(c1) < Size(c2)).

4.2 Relating complexity measures

Definition 17 Let C be a class of first order expressions. Let k and j be positive
integers. Let C = {C1, . . , Ck} be a list of complexity measures on expressions
in C, and let D = {D1, . . , Dj} be an alternative list of complexity measures on
expressions in C. We say that C and D are polynomially related w.r.t. C if there
exist polynomials p1, . . , pk of arity j and polynomials q1, . . , qj of arity k such that

for every E ∈ C:

(i) for all i = 1, . . , k: Ci(E) ≤ pi(D1(E), . . , Dj(E)), and

(ii) for all i = 1, . . , j: Di(E) ≤ qi(C1(E), . . , Ck(E)).

Lemma 5 The polynomial relation between sets of complexity measures is reflexive,

transitive, and symmetric. ¥

In the remainder of this section, we investigate which sets of complexity measures

are polynomially related and which are not. Our main motivation in studying this

problem comes from the discrepancy observed between the complexity measure used

in the formal definitions of learnability (usually denoted by Size, without further

explanation), and the complexity measures actually used by the algorithm develop-

ers in the literature (which use combinations of the following: NTerms , NVariables ,

36



Depth, NLiterals , NPredicates , NFunctions , Arity , and NClauses). Here, we ex-

plore which of TreeSize, DAGSize StringSize and WSize are polynomially related

to the set of alternative measures M = {NTerms , NVariables , Depth, NLiterals ,

NPredicates , NFunctions , Arity , NClauses}.

4.2.1 Relating StringSize and WSize

Lemma 6 StringSize is polynomially related to TreeSize.

Proof. Let E be an arbitrary first order expression. Clearly, TreeSize(E) ≤
StringSize(E) since each node in the tree of E is counted by StringSize. To see

that StringSize(E) ≤ p1(TreeSize(E)) for some polynomial p1, notice that the only

syntactic objects that StringSize counts but TreeSize does not are parentheses and

commas. First we account for the parentheses and commas due to function and

predicate symbol applications. To each of the nodes in the tree of the arbitrary

expression E we can charge a cost of 3 in the following way: if the node represents

an atom or functional term, the root is charged an extra unit for the predicate

symbol and the opening parenthesis, its children are charged with an extra unit

for the commas, and the rightmost child for the ending parenthesis. The total

of 3 comes from the fact that a child might be a functional term itself. Finally,

we account for the parentheses due to expression grouping. To do this, we note

that every time we use parentheses to group a subexpression, we are in fact “using

up” some atom in the expression since otherwise it does not make sense to add

parentheses. There are a maximum of TreeSize(E) atoms, so we can charge 2 extra

units of cost to each atom in the tree (for opening and closing parentheses). Thus,

StringSize(E) ≤ 5TreeSize(E). ¥

Lemma 7 WSize is polynomially related to TreeSize.

Proof. Let E be an arbitrary first order expression. Clearly, TreeSize(E) ≤
WSize(E) since each node in the tree of E is certainly counted by WSize, in

37



some cases even twice. To see that WSize(E) ≤ p1(TreeSize(E)) for some poly-

nomial p1, notice that the only difference between TreeSize and WSize is that in

WSize functional terms contribute 2 each instead of just 1 as in TreeSize. Thus,

WSize(E) ≤ 2TreeSize(E). ¥

Since the relation is symmetric and transitive, everything we say from now on

about TreeSize is valid for StringSize as well as for WSize.

4.2.2 Relating TreeSize

The question now is whether we can find a combination of the alternative parameters

inM that is polynomially related to TreeSize. Suppose that E is a first-order Horn

expression s.t.

NTerms(E) = t NVariables(E) = v Depth(E) = d

NLiterals(E) = l NPredicates(E) = p NFunctions(E) = f

Arity(E) = a NClauses(E) = c

Observe that any term appearing in E has size at most O(ad). Hence, any

atomic formula has size at most 1+O(ad+1) = O(ad+1) (1 for the predicate symbol,

ad+1 for the arguments). Hence, any Horn clause can have size no more than

1+ 2v+ lO(ad+1) = O(v+ lad+1) (1 for the implication symbol in the clause, 2v for

the quantifiers and quantified variables, and O(ad+1) for each atom in the clause).

Finally

TreeSize(E) = O(cv + clad+1).

On the other hand, it is clear that all the parameters above are bounded by

TreeSize(E). The next theorem shows that the converse does not hold:

Theorem 8 TreeSize is not polynomially bounded by any combination of parame-

ters that includes NTerms for classes over signatures with at least one constant and

one function symbol of arity at least 2.

38



Proof. We need to find some expression E such that its TreeSize is exponential in

NTerms . Let E = p(t1), where t1 is a complete tree of degree a with internal nodes

labeled with function symbol f and leaves labeled with constant 1:

p(

d times
︷ ︸︸ ︷

f(. . f(f(f(

a times
︷ ︸︸ ︷

1, . . , 1), . . , f(1, . . , 1)), . . , f(f(1, . . , 1), . . , f(1, . . , 1))) . .))

The following figure represents t1 when a = 2, d = 3:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f f

f

1 1111

f f

1 1 1

f

f

The complexity measures for E are:

NTerms(E) = d NVariables(E) = 0 Depth(E) = d

NLiterals(E) = 1 NPredicates(E) = 1 NFunctions(E) = 2

Arity(E) = a NClauses(E) = 1 TreeSize(E) = Θ(ad)

Hence no polynomial combination of the available complexity measures upper

bounds TreeSize(E). ¥

This is a surprising fact that has not been noticed in previous work working with

these parameters. No polynomial combination of the parameters above can replace

TreeSize.

Lemma 9 If we do not allow function symbols of arity greater than 1, then the set

of parameters {NClauses ,NLiterals ,Depth} is polynomially related to TreeSize.

Proof. Follows from the fact that in this case TreeSize = O(clad). ¥

On the other hand, exponential lower bounds in terms of arity have been derived

when ignoring NLiterals . These essentially reflect the following fact:

39



Lemma 10 If the number of literals is ignored then TreeSize and DAGSize are not

polynomially bounded by Arity

Proof. Let p be a predicate of arity a. Let {1, . . , t} be a set of t distinct terms
built e.g. by one constant and one unary function. Let P be the set of all different

p() atoms built from these terms; |P | = ta. Let p̂ be a particular element in P . Let

E be the expression E = P \ {p̂} → p̂. The complexity of E is given by:

NTerms(E) = t NVariables(E) = 0 Depth(E) = t

NLiterals(E) = ta NPredicates(E) = 1 NFunctions(E) = 2

Arity(E) = a NClauses(E) = 1

TreeSize(E) = Ω(ta) DAGSize(E) = Ω(ta)

Hence, the tree size is exponential in the arity when l is ignored. ¥

4.2.3 Relating DAGSize

As in the case of TreeSize, DAGSize also gives an upper bound for all the alternative

parameters in M. This time the relation in the other direction is also polynomial.

Notice that a DAG encodes terms in a smarter way, since multiple occurrences

of a term are only counted once. Hence, t terms in a clause contribute Θ(t) to

the DAGSize only. An atomic formula contributes only 1 since its arguments are

encoded with the terms already. Hence, every clause has size at most O(v+ t+ l) =

O(t+ l) and

c+ l + t ≤ DAGSize(E) = O(ct+ cl).

Theorem 11 The set of parameters {NTerms ,NLiterals ,NClauses} is polynomi-

ally related to DAGSize w.r.t. the class of first order Horn expressions. ¥

Notice that the theorem is true for any values of the other parameters. The

previous claim shows DAGSize can be exponential in arity but as the theorem

shows in such a case one of c, l, t must be large as well. It is also interesting to note

that several results on learning with queries, including ours in Chapter 5, give upper

40



bounds in terms of ta and other parameters (Arimura, 1997; Reddy and Tadepalli,

1998; Rao and Sattar, 1998). While l ≤ p · ta these bounds do not directly relate to
DAGSize or TreeSize.

4.3 Relating complexity measures and learning

models

In this section we show that the notion of polynomial relation among complexity

measures captures exactly the situations in which one can substitute the related

complexity measures without changing the learning model (Lemma 12). For sim-

plicity we assume that both examples and hypotheses are drawn from the same

class, as it is, for example, in the case of learning from entailment. The result for

the general case follows along similar lines.

Lemma 12 Let C be a class of first-order expressions. Let C1, . . , Ck be a set of

complexity measures that is polynomially related to Size w.r.t. the class C, where

Size is some notion of size for the expressions in C. Let p1(·), . . , pk(·) and q(·, . . , ·)
be the polynomials witnessing their polynomial relation.

Suppose that A is a learning algorithm for C with query complexity (w.r.t. alter-

native complexity measures C1, . . , Ck) bounded by polynomials si(c1, . . , ck, c
′
1, . . , c

′
k)

for i = 1, . . , k, where c1, . . , ck bound the complexity measures C1, . . , Ck for target

concepts and c′1, . . , c
′
k bounds the complexity measures for counterexamples received.

Then, A is a learning algorithm for C.

Proof. Notice that items (i) and (ii) from the definition of learnability hold trivially

since we have assumed that A is a learning algorithm for C working in the same
model. We show that item (iii) holds. Namely, there is a polynomial r(·, ·) s.t. at
any stage, if n is the size of the longest counterexample received so far in response

to an equivalence query, the query complexity of A at that stage does not exceed

r(n,m).

41



In the following, f(args) stands for f1(args), . . , fk(args). We define r(n,m)

as q(s(p(m), p(n))). Observe that all the functions s1, . . , sk, p1, . . , pk and q are

polynomials and hence r is a polynomial, too. It is left to show that r bounds the

query complexity for A.
Notice that c ∈ Cm implies that c ∈ Cp(m) because p1(m), . . , pk(m) bound the

complexity measures in C1, . . , Ck. By hypothesis, the query complexity (for com-

plexity measures C1, . . , Ck) of A is bounded by s(p(m), p(n)). Hence, the query

complexity of A is bounded by q(s(p(m), p(n))). ¥

Remark 1 Note that we require polynomial bounds in both directions to guarantee

learnability. This is needed for learning with queries and for proper PAC learnability

(where hypothesis class is the same as concept class), whereas a one sided bound

suffices for PAC predictability.

It is useful to highlight what can go wrong if this does not hold. In the figure

below we can see three terms: t1 has TreeSize exponential in the depth while its

DAGSize is just linear; t2 has both TreeSize and DAGSize exponential in the depth;

finally t3 has both TreeSize and DAGSize linear in the depth. Now, if one has an

algorithm that learns w.r.t. TreeSize then when learning an expression including t1

the algorithm is allowed to include t2 in a query but this is not possible for learning

w.r.t. DAGSize since t1 is just polynomial in the depth whereas t2 is exponential.

On the other hand, if one has an algorithm that learns w.r.t. DAGSize then when

learning an expression including t3 the algorithm can use t1 in its query. If we try

to use this algorithm to learn w.r.t. TreeSize this query is too large.

42



TreeSize(t1) = Θ(2
d)

DAGSize(t1) = Θ(d)

TreeSize(t2) = Θ(2
d)

DAGSize(t2) = Θ(2
d)

TreeSize(t3) = Θ(d)

DAGSize(t3) = Θ(d)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f f

f

1 1111

f f

1 1 1

f

f

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f f

f

f f

1

f

f

g

g

g

12 3 5 64 7 8

t t t2 31

43



Chapter 5

Learning Closed Horn Expressions

Here we present one of our main results: an algorithm that learns the class of Closed

Horn Expressions. The learning algorithm described in this section generalizes

the learning algorithm for the class of propositional Horn expressions (Frazier and

Pitt, 1993) to first order Horn expressions and it inherits its high-level structure.

Roughly speaking, our algorithm, like theirs, constructs hypotheses bottom-up —

from specific to general — starting with the most specific hypothesis (the empty

one) and further generalizing it by either adding new clauses or generalizing existing

ones.

After every update of the hypothesis, the algorithm checks whether the current

hypothesis is equivalent to the target expression by using the equivalence query

oracle. If the answer is Yes, then the algorithm quits and returns the current

hypothesis which is guaranteed to be correct. Otherwise, the algorithm uses the

counterexample given by the oracle as part of the answer to further generalize the

current hypothesis. This generalization occurs through two important mechanisms

in the algorithm: minimization and pairing.

Minimization. Upon receipt of a counterexample from the equivalence query,

this counterexample, which is a clause, is generalized by substituting complex terms

by fresh variables and/or removing atoms from its antecedent while the clause is

44



still a counterexample — this can be checked with the membership query oracle.

This operation is called minimization because the size of the clause that is being

minimized is reduced.

Pairing. After the counterexample is minimized, the algorithm tries to combine

it with existing clauses in the current hypothesis by constructing a pairing between

them and checking whether the result is implied by the target — again, we use

the membership query oracle to check this. A pairing is an operation based on

the least general generalization or lgg (Plotkin, 1970; Plotkin, 1971); given two

clauses it constructs a third clause which is strictly more general than the original

ones. If the result of pairing a clause in the hypothesis with the counterexample is

correct — i.e. implied by the target — then the clause participating in the pairing

is replaced by the result of the pairing. If there is no successful pairing between

the counterexample and some clause in the hypothesis, then the counterexample is

appended to the current hypothesis.

Finally, the algorithm uses meta-clauses instead of standard clauses. Meta-

clauses provide a compact way of representing sets of clauses that share the same

antecedent. This allows a more efficient manipulation of the hypotheses, thus sav-

ing time and queries. This idea was used already by Angluin, Frazier, and Pitt

(1992) to improve the complexity of their learning algorithm of propositional Horn

Expressions.

5.1 The learning algorithm

Before describing the learning algorithm, we introduce some useful definitions. Sup-

pose that the class C is closed. Suppose that H,T ∈ C. Then we define:

• Cons-Closure(T, [s, c]) = [s, {b ∈ AtomsP (s ∪ c) \ s | T |= s → b}]

• Ant-Closure(H, [s, c]) = [{b ∈ AtomsP (s ∪ c) | H |= s → b} , c]

45



• rhs(T, [s, c]) = {b ∈ c | T |= s → b}

Example 3 Let T = {p(x, y) → q(x), q(x) → r(x)} and H = {p(x, x) → r(x)}.
Then,

• Cons-Closure(T, [{p(a, a)}, {q(b)}]) = [{p(a, a)}, {q(a), r(a)}]

• Ant-Closure(H, [{p(a, a)}, {q(b)}]) = [{p(a, a), r(a)}, {q(b)}]

• rhs(T, [{p(a, a)}, {q(b)}]) = [{p(a, a)}, {}]

The algorithm has to compute Cons-Closure and rhs for the case when T is the

target expression only. Although it does not know what the target expression T

is, it can use the EntMQ oracle to check, for appropriate atoms b, if T |= s → b.

Hence, the following algorithms compute these operations:

Cons-Closure([s, c])

1 CONS ← {b ∈ AtomsP (s ∪ c) \ s | EntMQ(s → b) = Yes}
2 return [s,CONS ]

rhs([s, c])

1 CONS ← {b ∈ c | EntMQ(s → b) = Yes}
2 return CONS

Notice that, in general, the set Ant-Closure(H, [s, c]) is not computable if H is

not closed. However, in our case, we show that we can compute it with a polynomial

number of subsumption tests by simple forward chaining. This is due to the fact that

we only check for atoms in the polynomially bounded set AtomsP (s∪c) as potential
consequents. We incrementally construct the set of atoms in the antecedent (ANT

in the following algorithm), starting with the initial antecedent s.

46



Ant-Closure(H, [s, c])

1 ANT ← s

2 repeat for every atom b in AtomsP (s ∪ c) \ ANT
3 if clause ANT→ b is subsumed by a clause C ∈ H

4 then ANT ← ANT ∪{b}
5 until no more atoms are added to ANT

6 return [ANT , c]

Lemma 13 The algorithms Cons-Closure([s, c]), Ant-Closure(H, [s, c]), and

rhs([s, c]) compute Cons-Closure(T, [s, c]), Ant-Closure(H, [s, c]), and rhs(T, [s, c])

respectively, where EntMQ is a membership entailment oracle for some target ex-

pression T .

Proof. The correctness of the algorithms Cons-Closure and rhs follows triv-

ially from the assumption that the oracle is always correct. For the correctness of

Ant-Closure, take any atom b ∈ Ant-Closure(H, [s, c]). By Theorem 2, there

is a derivation of s → b from H. Moreover, H is closed and so is the derivation.

Algorithm Ant-Closure searches through all possible closed derivations system-

atically, therefore it eventually reaches the node b in the corresponding derivation,

and b is included in the set ANT . Soundness of forward chaining guarantees that

atoms not in Ant-Closure(H, [s, c]) are never added to the set ANT . ¥

As a consequence, we obtain:

Theorem 14 The problem of checking whether T |= C, where T is a closed Horn

expression and C is a closed Horn clause, is decidable. ¥

Since subsumption can be solved in polynomial time for constrained Horn ex-

pressions (Arimura, 1997), we obtain the following:

Theorem 15 The problem of checking whether T |= C, where T is a constrained

Horn expression and C is a constrained Horn clause, is decidable in polynomial

time. ¥

47



The situation with range restricted Horn expressions is different. For this type

of clauses Vardi (1982) and Papadimitriou and Yannakakis (1997) show that the

implication problem is NP-hard:

Theorem 16 The problem of checking whether T |= C, where T is a range re-

stricted Horn expression and C is a range restricted Horn clause, is NP-hard. ¥

We finally present our learning algorithm.

Learn-Closed-Horn

1 S ← [ ];H ← ∅
2 while EntEQ(H) returns (No, A → a)

3 do [sx, cx]← Minimize(H,A → a)

4 Find the first [si, ci] ∈ S s.t. [s, c] ∈ Basic-Pairings([sx, cx], [si, ci])

satisfies (i) rhs([s, c]) 6= ∅ and (ii)WSize([s, c]) < WSize([si, ci])

5 if such an [si, ci] is found

6 then replace it by the meta-clause [s,rhs([s, c])]

7 else append [sx, cx] to S

8 H ← ∧

[s,c]∈S {s → b | b ∈ c}
9 return H

It remains to describe how to compute the operations Minimize(H,A → a) and

Basic-Pairings([sx, cx], [si, ci]).

5.1.1 Minimizing the counterexample

The minimization procedure transforms a counterexample clause A → a as gener-

ated by the equivalence query oracle into a more general meta-clause counterexam-

ple [sx, cx]. The following procedure implements Minimize(H,A → a):

48



Minimize(H,A → a)

1 [sx, cx]← Cons-Closure(Ant-Closure(H, [A, {a}]))
2 for every functional term t in sx ∪ cx, in decreasing order of size

do Let [s′x, c
′
x] be the meta-clause obtained from [sx, cx] after

substituting all occurrences of the term t by a new variable xt

if rhs(s′x, c
′
x) 6= ∅

then [sx, cx]← [s′x,rhs(s′x, c
′
x)]

3 for every term t in sx ∪ cx, in increasing order of size

do Let [s′x, c
′
x] be the meta-clause obtained after removing

from [sx, cx] all those atoms containing t

if rhs(s′x, c
′
x) 6= ∅

then [sx, cx]← [s′x,rhs(s′x, c
′
x)]

4 return [sx, cx]

Example 4 This example illustrates the behavior of the minimization procedure.

Parentheses are omitted; function f is unary. Suppose T consists of the single

clause p(a, fx)→ q(x), and the algorithm has received as counterexample the clause

p(a, f1), q(2), r(1) → q(1). After step 1 of the minimization procedure, the coun-

terexample is transformed into the (equivalent) meta-clause [p(a, f1), q(2), r(1) →
q(1)]. The next table shows the execution of the following loops in lines 2 and 3.

The leftmost column shows the actual counterexample [sx, cx] as it is being general-

ized. The middle column shows the term that is being generalized to a variable or

that is being dropped. The rightmost column shows the resulting clause after the

generalization [s′x, c
′
x], with the implied atoms framed in a box.

49



[sx, cx] After generalizing term

[p(a, f1), q(2), r(1)→ q(1)] f1 7→ X [p(a,X), q(2), r(1)→ q(1)]

[p(a, f1), q(2), r(1)→ q(1)] 1 7→ X [p(a, fX), q(2), r(X)→ q(X) ]

[p(a, fX), q(2), r(X)→ q(X)] 2 7→ Y [p(a, fX), q(Y ), r(X)→ q(X) ]

[p(a, fX), q(Y ), r(X)→ q(X)] a 7→ Z [p(Z, fX), q(Y ), r(X)→ q(X)]

[sx, cx] After dropping term

[p(a, fX), q(Y ), r(X)→ q(X)] X [q(Y )→]
[p(a, fX), q(Y ), r(X)→ q(X)] Y [p(a, fX), r(X)→ q(X) ]

[p(a, fX), r(X)→ q(X)] a [r(X)→ q(X)]

[p(a, fX), r(X)→ q(X)] fX [r(X)→ q(X)]

[p(a, fX), r(X)→ q(X)]

Notice that the minimized counterexample is very similar to the target clause.

In fact, it is the case that every minimized counterexample contains as a subset a

syntactic variant of one of the target clauses (Lemma 28). However, it may still

contain extra atoms that the minimization procedure is unable to get rid of — like

r(X) in Example 4 — these have to disappear in some other way: pairing.

5.1.2 Pairing two meta-clauses

A crucial process in the algorithm is how two counterexamples are combined into

a new one, hopefully yielding a better approximation of some target clause. The

operation proposed here uses pairings of clauses, based on the lgg .

We have two meta-clauses, [sx, cx] and [si, ci] that need to be combined. To do

so, we generate a series of matchings between the terms of sx ∪ cx and si ∪ ci; each
of these matchings produces a candidate to refine the sequence S.

Definition 18 A matching between two sets of terms Tx and Ti is a set σ ⊆ Tx×Ti
that includes all the terms in one of the participating sets, i.e.: |σ| = min(|Tx| , |Ti|).

Definition 19 A matching σ is 1-1 if terms are not re-used. Formally:

50



• For all tx ∈ Tx it holds that |{t′ | (tx, t′) ∈ σ}| ≤ 1, and

• For all ti ∈ Ti it holds that |{t′ | (t′, ti) ∈ σ}| ≤ 1.

Example 5 Let Tx = {a, b} and Ti = {1, 2, f(1)}. Notice that pairs are not de-
noted by the usual notation (a, b) but by a− b. The possible 1-1 matchings are:

σ1 = {a− 1, b− 2} σ3 = {a− 2, b− 1} σ5 = {a− f(1), b− 1}
σ2 = {a− 1, b− f(1)} σ4 = {a− 2, b− f(1)} σ6 = {a− f(1), b− 2}

Definition 20 An extended matching is an ordinary matching with an extra ele-

ment added to every entry of the matching. This extra element contains the lgg of

every pair in the matching. The lggs are simultaneous, that is, they share the same

table.

Definition 21 An extended matching σ is legal if every subterm of some term

appearing as the lgg of some entry, also appears as the lgg of some other entry of

σ. An ordinary matching is legal if its extension is.

Example 6 Parentheses are omitted as functions f and g are unary. Let σ1 be

{a − c, fa − b, ffa − fb, gffa − gffc} and σ2 = {a − c, fa − b, ffa − fb}. The
matching σ1 is not legal, since the term fX is not present in its extension column

and it is a subterm of gffX , which is present. The matching σ2 is legal.

Extended σ1 Extended σ2

[a - c => X] [a - c => X]

[fa - b => Y] [fa - b => Y]

[ffa - fb => fY] [ffa - fb => fY]

[gffa - gffc => gffX]

Our algorithm considers yet a more restricted type of matching.

Definition 22 A basic matching σ is a 1-1, legal matching between two sets Tx

and Ti. This operation is asymmetric and the order in which the arguments is given

51



is relevant. It is only defined if |Tx| ≤ |Ti|, where Tx is the first argument and Ti the
second. It restricts how the functional structure of the terms is matched. Formally,

if entry f(t1, . . , tn)− t ∈ σ, then t = f(r1, . . , rn) and ti − ri ∈ σ for all i = 1, . . , n.

As we show below, a basic matching maps all variables in Tx to terms in Ti and

then adds the remaining entries following the functional structure of the terms in

Tx. Therefore an entry x− f(y) might be included in a basic pairing but an entry

f(y)− x cannot. The following procedure shows how to construct basic matchings

between sets of terms Tx and Ti.

Basic-Matchings(Tx, Ti)

1 Match every variable in Tx to a different term in Ti. Every possibility

potentially yields a basic matching between Tx and Ti

2 Complete all potential basic matchings by adding the functional terms in Tx

to the basic matchings as follows:

for every potential basic matching created in step 1

do Consider all functional terms in Tx in an upwards fashion,

beginning with simpler terms:

for every term f(t1, . . , tn) in Tx such that all

ti − ri (with i = 1, . . , n) appear in the basic matching already

do Add a new entry f(t1, . . , tn)− f(r1, . . , rn)

if f(r1, . . , rn) does not appear in Ti

or the term f(r1, . . , rn) has been used already

then discard the matching

Example 7 Let Tx = {a, x, fx} and Ti = {a, 1, 2, f1}. No parentheses for func-
tions are written. The algorithm starts by matching variables in Tx to terms in

Ti. Then, it matches functional terms in Tx using the constraints described in the

procedure above. This computation is described in the table below.

52



Terms Matching 1 Matching 2 Matching 3 Matching 4

x x− a x− 1 x− 2 x− f1

a NO! a− a a− a a− a a− a

fx DISCARDED fx− f1 NO! fx− f2 NO! fx− ff1

DISCARDED OK DISCARDED DISCARDED

The table is interpreted as follows. In the first column we have the terms in

Tx in the order considered by our algorithm. In the columns thereafter, we have

all potential matchings. The last row indicates which of the matchings has been

discarded. The entries on top of the “OK” matchings contain the matching’s pairs.

Notice that we have only 1 basic matching between the set of terms {a, x, fx}
and {a, 1, 2, f1}. Compare this with the 24 different 1-1 matchings that would be
considered by previous algorithms. This difference grows with the complexity of

the functional structure in the examples.

Lemma 17 BasicMatchings(Tx, Ti) finds all basic matchings.

Proof. First, we show that every matching constructed by the procedure is basic.

It is 1-1 because after step 1 the matchings are 1-1, and the new pairs added in

step 2 are checked not to be included in the matchings already. It is legal because

only terms which have all of its subterms included in the matching are added. It is

basic because functional structure is respected when adding a new pair.

Second, we show that every basic matching is found by the procedure. First

notice that matchings including the combination of a pair (functional term in Tx,

variable in Ti) is not permitted, since subterms of the functional term in Tx have

to be included in the matching and they would not have any possible legal term to

be matched to because a variable has no subterms. Therefore, the only possibility

involving variables is (variable in Tx, term in Ti). All these are found in step 1 of

the procedure and appropriately completed in step 2. ¥

One of the key points of our algorithm lies in reducing the number of matchings

that need to be checked by ruling out some of the candidate matchings that do not

53



satisfy the restrictions imposed. By doing so we avoid testing too many pairings

and hence avoid making unnecessary calls to the oracles. One of the restrictions has

already been mentioned, it consists in considering basic pairings only, as opposed

to considering every possible matching. Let t be an upper bound on the number of

terms in Tx and Ti, and let v be an upper bound on the number of variables in Tx

and Ti. There are t
t possible distinct matchings but only tv distinct basic pairings:

we only combine variables of Tx with terms in Ti. The other restriction on the

candidate matching consists in the fact that every one of its entries must appear in

the original lgg table, as we are going to see shortly.

Given two meta-clauses [sx, cx] and [si, ci], the idea is to first compute the set

of basic matchings as given by Basic-Matchings(Terms(sx ∪ cx),Terms(si ∪ ci)).
Each of these basic matchings computed determines then a distinct pairing between

the meta-clauses [sx, cx] and [si, ci].

Pairing is an operation that takes two meta-clauses and a matching between its

terms and produces another meta-clause. We say that the pairing is induced by

the matching it is fed as input. A legal pairing is a pairing for which the inducing

matching is legal; a basic pairing is one for which the inducing matching is basic.

The antecedent s of the pairing is computed as the lgg of sx and si restricted

to the matching σ inducing it; we denote this by lgg |σ(sx, si). An atom is included

in the pairing only if all of its top-level terms appear as entries in the extended

matching. This restriction is quite strong in the sense that, for example, if an atom

p(f(x)) appears in both sx and si then their lgg p(f(x)) is not included unless the

entry [f(x) - f(x) => f(x)] appears in the matching. In case [x - x => x]

appears but [f(x) - f(x) => f(x)] does not, the atom p(f(x)) is ignored. We

only consider matchings that are subsets of the lgg table.

The consequent c of the pairing is computed as the union of the sets lgg |σ(sx, ci),

lgg |σ(cx, si) and lgg |σ(cx, ci). Note that in the consequent all the possible lggs of pairs

among {sx, cx} and {si, ci} are included except lgg |σ(sx, si), which constitutes the

antecedent.

54



When computing any of the lggs, the same table is used. That is, the same

pair of terms is bound to the same expression in any of the four possible lggs that

are computed in a pairing. The pairing between [sx, cx] and [si, ci] induced by σ is

computed as follows:

Pairing(σ, [sx, cx], [si, ci])

1 s ← lgg |σ(sx, si)

2 c ← lgg |σ(sx, ci) ∪ lgg |σ(cx, si) ∪ lgg |σ(cx, ci)

3 return [s, c]

Finally, we describe the algorithm that computes Basic-Pairings([sx, cx], [si, ci]),

the set of basic pairings between two meta-clauses [sx, cx] and [si, ci]:

Basic-Pairings([sx, cx], [si, ci])

1 PAIRINGS = ∅
2 for each σ ∈ Basic-Matchings(Terms(sx ∪ cx),Terms(si ∪ ci))

3 do if σ ⊆ lgg-table(sx ∪ cx, si ∪ ci)

4 then PAIRINGS ← PAIRINGS ∪{Pairing(σ, [sx, cx], [si, ci])}
5 return PAIRINGS

Example 8 The table below describes two examples. Both examples have the

same terms as in Example 7, so there is only one basic matching. Ex. 8.1 shows

how to compute a pairing. Ex. 8.2 shows that a basic matching may be rejected if

it does not agree with the lgg table (entries [x - 1 => X] and [fx - f1 => fX]

do not appear in the lgg table).

55



Example 8.1 Example 8.2

sx {p(a, fx)} {p(a, fx)}
si {p(a, f1), p(a, 2)} {q(a, f1), p(a, 2)}

lgg(sx, si) {p(a, fX), p(a, Y )} {p(a, Y )}
lgg table [a - a => a] [a - a => a]

[x - 1 => X] [fx - 2 => Y]

[fx - f1 => fX]

[fx - 2 => Y]

basic σ [a-a=>a] [a-a=>a]

[x-1=>X] [x-1=>X]

[fx-f1=>fX] [fx-f1=>fX]

lgg |σ(sx, si) {p(a, fX)} PAIRING REJECTED

As the examples demonstrate, the requirement that the matchings are both

basic and comply with the lgg table is quite strong. The more structure examples

have, the greater the reduction in possible pairings (and hence queries), since that

structure needs to be matched. While it is not possible to quantify this effect without

introducing further parameters, we expect this to be a considerable improvement

in practice.

A note for potential implementations In practice, when trying to construct

basic pairings between sx and si it is better to consider as entries for the matching

those entries appearing in the lgg table only. That is, when combining meta-clauses

[sx, cx] and [si, ci], one would first compute the lgg(sx, si) and record the lgg table.

The next step would be to construct basic pairings using the entries in the lgg

table. Instead of considering any pair between terms of sx and si, the choice would

be restricted to those pairs of terms present in the lgg table. The advantage of

this method is that subsets of the lgg table that constitute a basic matching are

systematically constructed. This implies that there is no need to check whether a

given basic matching agrees with the lgg table and only subsets of the lgg table

56



are generated. This consideration is not reflected in the bounds for the worst case

analysis. However, it should constitute an important speedup in practice.

5.2 Proof of correctness

Before going into the details of the proof of correctness, we describe the transfor-

mation U(T ) performed on a target expression T . It extends the transformation

described by Khardon (1999a) (where expressions were function-free) and it serves

analogous purposes.

5.2.1 Transforming the target expression

This transformation is never computed by the learning algorithm; it is only used in

the analysis. The transformation introduces new clauses and adds some inequalities

to every clause’s antecedent. This avoids unification of terms in the transformed

clauses. Related work by Semeraro et al. (1998) also uses inequalities in clauses,

although the learning algorithm and approach are completely different.

The idea is to create a new set of clauses U(C) from every clause C in T . Every

clause in U(C) corresponds to the original clause C with its terms unified in a

unique way, different from every other clause in U(C). Every possible unification

of terms of C are covered by one of the clauses in U(C). The clauses in U(C) are

only satisfied if the terms are unified in exactly that way.

57



U(T )

1 U ← ∅
2 for every clause C = sc → bc in T

3 do for every partition π = {π1, π2, . . , πl} of Terms(C)

4 do Aπ ← {A(t1, . . , tl) | ti ∈ πi, for all i = 1, . . , l}
5 Let σπ be an mgu of Aπ

6 if no mgu exists or there exist i 6= j s.t. πi · σπ = πj · σπ
7 then discard the partition

8 else Uπ(C)← ineq(C · σ) ∧ sc · σ → bc · σ
9 U ← U ∧ Uπ(C)

10 return U

We construct U(T ) from T by considering every clause separately. For a clause

C in T we generate a set of clauses U(C). To do that, we consider all parti-

tions of the set of terms in Terms(C); each such partition, say π, can generate

a clause of U(C), denoted Uπ(C). Therefore, U(T ) =
∧

C∈T U(C) and U(C) =
∧

π∈ValidPartitions(Terms(C)) Uπ(C). The set ValidPartitions(Terms(C)) captures those

partitions for which a simultaneous unifier of all of its classes exists and whose

representatives are all different. The use of Aπ provides the simultaneous mgu;

uniqueness of representatives is tested on line 6 in the transformation algorithm.

We call a representative of a class πi the only element in πi ·σπ, where σπ is an mgu

for the set Aπ as described in the algorithm above.

Example 9 Let C be p(f(x), f(y), g(z)) → q(x, y, z). The terms appearing in C

are {x, y, z, f(x), f(y), g(z)}. We consider some possible partitions:

• When π = {x, y}, {z}, {f(x), f(y)}, {g(z)}, then

Aπ =







A(x, z, f(x), g(z))

A(x, z, f(y), g(z))

A(y, z, f(x), g(z))

A(y, z, f(y), g(z))

58



An mgu for Aπ is σπ = {y 7→ x}. Therefore,

Uπ(C) = (x 6= z 6= f(x) 6= g(z)), p(f(x), f(x), g(z))→ q(x, x, z).

• When π′ = {x, y, z}, {f(x), g(z)}, {f(y)}, then

Aπ′ =







A(x, f(x), f(y))

A(x, g(z), f(y))

A(y, f(x), f(y))

A(y, g(z), f(y))

A(z, f(x), f(y))

A(z, g(z), f(y))

There is no mgu for the set Aπ′ , therefore this partition does not contribute

to the transformation U(C).

• When π′′ = {x, y}, {z}, {f(x)}, {f(y)}, {g(z)}, then

Aπ′′ =







A(x, z, f(x), f(y), g(z))

A(y, z, f(x), f(y), g(z))

An mgu for Aπ′′ is σπ′′ = {y 7→ x}. However, this partition is discarded
because the representatives for classes π3 and π4 coincide: π3 · σπ = {f(x)} =
π4 · σπ. Notice that the partition π covers the case when the terms f(x) and
f(y) are unified into the same term, so adding this clause would introduce

repeated clauses in the transformation.

We write the fully inequated clause “ineq(st → bt) ∧ st → bt” as “st
6=→ bt”.

The following facts hold for T and its transformation U(T ).

Lemma 18 If an expression T has c clauses, then the number of clauses in its

transformation U(T ) is at most ctv, where t (v, resp.) is the maximum number of

different terms (variables, resp.) in any clause in T .

59



Proof. It suffices to see that any clause C produces at most tv clauses in U(C). We

show that if π and π′ are two partitions that are not discarded by the transformation

algorithm and σπ = σπ′ , then π = π′. Suppose, then, that π and π′ are two

successful partitions such that σπ = σπ′ . Let t and t
′ be two distinct terms of C

in the same class in π. Notice that since σπ is a unifier for Aπ, t and t
′ have the

same representative. Therefore, these two terms have to fall into the same class

in π′ (otherwise π′ would be rejected). Since the same argument also holds in the

opposite direction (i.e. from π′ to π) we conclude that for all terms t, t′ of C, t and t′

are placed in the same class in π if and only they are placed in the same class in π′.

Hence, π = π′. Finally, the bound follows since there are at most tv substitutions

mapping the at most v variables into the at most t terms. ¥

Lemma 19 T |= U(T ).

Proof. Follows from the fact that every clause in U(T ) is subsumed by the clause

in T that originated it. ¥

Corollary 20 If U(T ) |= C, then T |= C. Also, if U(T ) |= [s, c], then T |= [s, c].

However, the inverse implication U(T ) |= T of Lemma 19 does not hold. To see

this, consider the following example.

Example 10 We present an expression T , its transformation U(T ) and an inter-

pretation I such that I |= U(T ) but I 6|= T . The expression T is {p(a, f(a))→ q(a)}
and its transformation U(T ) = {(a 6= f(a)), p(a, f(a))→ q(a)}. The interpretation
I has domain DI = {1}; the only constant a = 1; the only function f(1) = 1 and
the extension ext(I) = {p(1, 1)}.

I 6|= T because p(a, f(a)) evaluates to 1 under I but q(a) evaluates to 0.

I |= U(T ) because inequality (a 6= f(a)) evaluates to 0 and therefore the an-

tecedent of the clause is falsified. Hence, the clause is satisfied.

60



5.2.2 Some definitions and notation

During the analysis, p stands for the cardinality of P , the set of predicate symbols

in the language; a for the maximal arity of the predicates in P ; v for the maximum

number of distinct variables in a clause of T ; t for the maximum number of distinct

terms in a clause of T ; t′ for the maximum number of distinct terms in a counterex-

ample; c for the number of clauses of the target expression T ; c′ for the number of

clauses of the transformation of the target expression U(T ).

Definition 23 A meta-clause [s, c] covers a fully-inequated clause st
6=→ bt if there

exists a mapping θ from variables in st ∪ {bt} into terms in Terms(s ∪ c) such that
the following three conditions are satisfied:

• st · θ ⊆ s

• ineq(st ∪ {bt}) · θ ⊆ ineq(s ∪ c)

• bt · θ ∈ AtomsP (s ∪ c).

The condition ineq(st ∪{bt}) · θ ⊆ ineq(s∪ c) establishes that the substitution θ
is non-unifying, i.e., it does not unify terms in st → bt in the sense that two distinct

terms in st → bt remain distinct after applying the substitution θ.

Definition 24 A meta-clause [s, c] captures a clause st
6=→ bt if [s, c] covers st

6=→ bt

and, in addition, bt · θ ∈ c, for some θ witnessing the fact that [s, c] covers st
6=→ bt.

Definition 25 A meta-clause [s, c] is correct w.r.t. an expression T if T |= [s, c],
i.e. T |= s → b for all b ∈ c.

Definition 26 A meta-clause [s, c] is complete w.r.t. an expression T if b ∈ c for

all atoms b ∈ AtomsP (s ∪ c) \ s s.t. T |= s → b.

Definition 27 A meta-clause [s, c] is full w.r.t. an expression T if it is correct and

complete w.r.t. T .

61



Example 11 Let T = {(x 6= y), p(x, y)→ q(x), q(x)→ r(x)}. Then,

• [p(a, b)→ q(a)] covers (x 6= y), p(x, y)→ q(x) with θ = {x 7→ a, y 7→ b}.

• [p(a, b)→ q(a)] captures (x 6= y), p(x, y)→ q(x) with θ = {x 7→ a, y 7→ b}.

• [p(a, a) → q(a)] does not cover (x 6= y), p(x, y) → q(x) because x and y are

unified and hence x 6= y does not hold.

• [p(a, b) → r(a)] does not cover (x 6= y), p(x, y) → q(x) because there is no θ

such that q(x) · θ appears in the meta-clause.

• [p(a, b), q(a)→ r(a)] covers (x 6= y), p(x, y)→ q(x).

• [p(a, b), q(a)→ r(a)] does not capture (x 6= y), p(x, y)→ q(x) because q(a) is

not in the consequent.

• [p(a, b)→ r(a)] is correct w.r.t. T .

• [p(a, b)→ r(b)] is not correct w.r.t. T .

• [p(a, b)→ r(a)] is not complete w.r.t. T because q(a) is missing.

• [p(a, b), q(a)→ r(a)] is complete w.r.t. T .

• [q(a)→ r(a)] is complete w.r.t. T .

• [p(a, b)→ q(a), r(a)] is complete w.r.t. T .

• [p(a, b)→ q(a), r(a)] is full w.r.t. T .

• [p(a, b)→ r(b)] is not full w.r.t. T because it is not correct w.r.t. T .

• [p(a, b)→ r(a)] is not full w.r.t. T because it is not complete w.r.t. T .

62



5.2.3 Brief description of the proof of correctness

If the algorithm stops, then the returned hypothesis is correct. Therefore we focus

our attention in proving that the algorithm finishes. To do so, a bound is established

on the length of the sequence S, that is, only a finite number of counterexamples

can be added to S. Since every refinement of an existing meta-clause reduces its

size, termination is guaranteed.

To bound the length of the sequence S the following condition is proved. Every

element in S captures some clause of U(T ) but no two distinct elements of S capture

the same clause of U(T ) (Lemma 46). The bound on the length of S is therefore c′,

the number of clauses of the transformation U(T ).

To see that every element in S captures some clause in U(T ), it is shown

that all counterexamples in S are full meta-clauses w.r.t. the target expression

T (Lemma 37) and that any full meta-clause must capture some clause in U(T )

(Lemma 22).

To see that no two distinct elements of S capture the same clause of U(T ), two

important properties are established in the proof. First, Lemma 38 shows that if

a counterexample [sx, cx] captures some clause of U(T ) which is covered by some

[si, ci] then the algorithm replaces [si, ci] with one of their basic pairings. Second,

Lemma 35 shows that a basic pairing cannot capture a clause not captured by either

of the original clauses. These properties are used in Lemma 46 to prove uniqueness

of captured clauses.

Once the bound on S is established, we derive our final theorem by carefully

counting the number of queries made to the oracles in every procedure.

Notation. Throughout the proof, we adopt the following conventions. We use

the letter s and subscripted variants of it (like st, sx, etc.) to denote sets of atoms

constituting antecedent of clauses or meta-clauses. Similarly c and subscripted

variants denote sets of atoms forming the consequents of meta-clauses. The letter

b and its subscripted variants denote a single atom, and are mostly used as in

63



the consequent of a clause, e.g. as in st → bt. T refers to some arbitrary Closed

Horn Expression assumed to be the hidden target concept. Arbitrary clauses in the

target T are noted as st → bt, and st
6=→ bt denotes some fully-inequated variant

of the clause st → bt appearing in U(st → bt). The letter t refers to two things

(hopefully it is clear from the context which one is referred to each time). It is

used to either denote the upper bound on the number of terms in each clause of T ,

or to denote arbitrary terms occurring in clauses and meta-clauses (together with

variants of it). H stands for the hypotheses constructed during the execution of the

learning algorithm Learn-Closed-Horn. The meta-clause [sx, cx] refers to the

result of minimizing a counterexample, although when arguing about the behavior

of Minimize, it also refers to the counterexample in intermediate stages of the

process. The meta-clause [si, ci] denotes any of the meta-clauses that are added

to the sequence S of the algorithm Learn-Closed-Horn. Finally, [s, c] refers to

some basic pairing between the minimized counterexample [sx, cx] and some meta-

clause [si, ci] ∈ S, and it is also used to denote arbitrary meta-clauses. We proceed

with the analysis in detail.

5.2.4 Properties of full meta-clauses

Lemma 21 If C subsumes [s, c], then [s, c] captures some clause in U(C).

Proof. Assume that C = sc → bc subsumes [s, c]. Hence, there is a substitution

θ such that sc · θ ⊆ s and bc · θ ∈ c. To see which clause in U(C) is captured by

[s, c] consider the partition π defined by the way terms in sc ∪ {bc} are unified by
the substitution θ. More precisely, two distinct terms t, t′ in Terms([sc, bc]) fall into

the same class of π if and only if t · θ = t′ · θ. Assume π has l classes. The proof
argues that the clause Uπ(C) appears in U(C) and that [s, c] captures Uπ(C).

We observe that θ is a unifier for Aπ = {A(t1, . . , tl) | t1 ∈ π1 ∧ . . ∧ tl ∈ πl}.
Thus, an mgu σπ exists. Therefore, θ = σπ · θ̂ for some substitution θ̂. The

transformation procedure rejects a partition π when any of the following conditions

64



holds. Either Aπ is not unifiable (however, we have seen it is) or the representatives

of two distinct classes are equal. The second condition does not hold because

πi · σπ = πj · σπ (for i 6= j) implies πi · θ = πj · θ, which is not true by construction.
Finally, we show that [s, c] captures Uπ(C) = (st

6=→ bt) via θ̂. Notice that

sc · σπ = st and bc · σπ = bt. We need to check (1) st · θ̂ ⊆ s, (2) ineq(st ∪ {bt}) · θ̂ ⊆
ineq(s ∪ c) and (3) bt · θ̂ ∈ c. Condition (1) is easy: st · θ̂ = sc · σπ · θ̂ = sc · θ ⊆ s

by hypothesis. For (2), let t, t′ be two different terms in st ∪ {bt}. It is sufficient to
check that t · θ̂, t′ · θ̂ are also different terms (i.e., θ̂ does not unify them). Let tc, t′c
be the two terms in C such that tc · σπ = t and t′c · σπ = t′. Since t 6= t′, it follows

that tc, t
′
c belong to a different class of π (otherwise σπ would have unified them).

Therefore, by construction, tc · θ 6= t′c · θ. Equivalently, tc · σπ · θ̂ 6= t′c · σπ · θ̂ and
hence t · θ̂ 6= t′ · θ̂ as required. Condition (3) is like (1). ¥

Lemma 22 If [s, c] is full w.r.t. some closed target expression T and c 6= ∅, then

some clause of U(T ) must be captured by [s, c].

Proof. Fix any b ∈ c. Clearly, T |= s → b (since we have assumed [s, c] full and

hence correct and complete). Consider any minimal derivation graph G of s → b

from T , which is guaranteed to exist by Theorem 2. Notice that all the participating

atoms in G are in AtomsP (s → b) since T is closed. Hence, they also appear in

either s or c because [s, c] is complete. Let Pred(x) the set of atoms that have an

edge ending at x in G. Let b′ be an atom in G s.t. Pred(b′) ⊆ s and b′ ∈ c. Such

an atom must exist by definition of derivation graph. Hence, Pred(b′) → b′ is an

instance of a clause in T and therefore it also subsumes [s, c]. By Lemma 21, we

conclude that some clause in U(T ) is captured by [s, c]. ¥

Lemma 23 If [s, c] captures some clause of U(T ), then rhs(T, [s, c]) 6= ∅.

Proof. By assumption, there is a clause sc → bc in T and a substitution θ such

that sc · θ ⊆ s and bc · θ ∈ c. Clearly, T |= sc → bc |= sc · θ → bc · θ, therefore
bc · θ ∈ rhs(T, [s, c]), and hence rhs(T, [s, c]) 6= ∅ as required. ¥

65



Corollary 24 If [s, c] is full w.r.t. T and c 6= ∅, then rhs(T, [s, c]) 6= ∅. ¥

5.2.5 Properties of minimized meta-clauses

This section includes properties of minimized meta-clauses as produced by the min-

imization procedure. Throughout the proof, we refer to the minimized meta-clause

as [sx, cx].

Lemma 28 shows that every minimized counterexample contains a syntactic

variant of some clause in U(T ), if we ignore inequalities. This is an important

property and it is responsible for one of the main improvements in the bounds.

Definition 28 A meta-clause [s, c] is a positive counterexample for some target

expression T and some hypothesis H if T |= [s, c], c 6= ∅ and for all atoms b ∈ c,

H 6|= s → b.

Lemma 25 Every minimized [sx, cx] is full w.r.t. the target expression T .

Proof. We proceed by induction on the updates of [sx, cx] during computation of

the minimization procedure. Our base case is the first version of the counterexample

[sx, cx] as produced by step 1 of the algorithm. This meta-clause is full, since it is

the output of Cons-Closure which produces full meta-clauses by definition.

To see that the final meta-clause is correct it suffices to observe that every time

the candidate meta-clause has been updated, the consequent part is computed as

the output of rhs. Therefore, it must be correct.

To see that the final meta-clause is complete, we prove first that after gener-

alizing a term the resulting counterexample remains complete. Let [sx, cx] be the

meta-clause before generalizing t and [s′x, c
′
x] after. Let θt = {xt 7→ t}. Then,

s′x · θt = sx and cx = c′x · θt, because xt is a new variable that does not appear in
[sx, cx]. By way of contradiction, suppose that some atom b ∈ AtomsP (s

′
x ∪ c′x) \ s′x

such that T |= s′x → b is not in c′x. Notice that the substitution θt is non-unifying

w.r.t. s′x ∪ c′x, and therefore using properties 2 and 4 in Lemma 1 we conclude that

66



b · θt ∈ AtomsP (sx ∪ cx) \ sx and b · θt 6∈ cx. Since T |= sx → b · θt, this contradicts
our (implicit) induction hypothesis stating that [sx, cx] is complete, since the atom

b · θt would be missing. Hence, any counterexample [sx, cx] after step 2 is complete.
We show now that after dropping some term t the meta-clause still remains

complete. Again, let [sx, cx] be the meta-clause before removing t and [s
′
x, c
′
x] after

removing it. It is clear that s′x ⊆ sx and c
′
x ⊆ cx since both have been obtained

by only removing atoms. By the induction hypothesis, the only atoms that could

be missing are atoms in cx \ c′x and sx \ s′x. Since for the closure of [s′x, c′x] we only
consider atoms in AtomsP (s

′
x∪c′x) and these atoms do not contain t (all occurrences

have been removed), the removed atoms cannot be missing because they all contain

t. Therefore, after step 3 and as returned by the minimization procedure, the

counterexample [sx, cx] is complete. ¥

Lemma 26 At all times, T |= H and all counterexamples given by the equivalence

query oracle are positive, i.e., it is implied by target T but not by hypothesis H.

Proof. We argue first that all meta-clauses in S in Learn-Closed-Horn are

correct. This is easy to see since every time S grows is either by adding a minimized

counterexample (line 7 in Learn-Closed-Horn), which by Lemma 25 is correct,

or by replacing an existing meta-clause (line 6). Notice that the meta-clause that

replaces the old one has rhs as its consequent, and hence it has to be correct. If

all the meta-clauses in S are correct then, by definition, T |= H.

If T |= H then every counterexample A → a given by the equivalence query

oracle must be such that T |= A → a but H 6|= A → a. ¥

Lemma 27 Every minimized [sx, cx] is a positive counterexample w.r.t. target T

and hypothesis H.

Proof. Let A → a be the original counterexample obtained from the equivalence

oracle. To prove that [sx, cx] is a positive counterexample we need to prove that

67



T |= [sx, cx], cx 6= ∅ and for every b ∈ cx it holds that H 6|= sx → bx. By Lemma 25,

we know that [sx, cx] is full, and hence correct so that T |= [sx, cx]. Moreover, a ∈ cx

after step 1 so that cx 6= ∅, since T |= A → a but H 6|= A → a so that a is not placed

in the antecedent of the clause after executing Ant-Closure but it is placed in

cx by Cons-Closure. The meta-clause is further refined in steps 2 and 3 only if

the consequent is non-empty. It remains to show that H does not imply any of the

clauses in [sx, cx].

The call to the procedure Ant-Closure guarantees that every atom implied

by H is placed into the antecedent sx, leaving no space for any atom implied by

H to be put into the consequent cx by Cons-Closure. Thus, after step 1 of the

minimization procedure, [sx, cx] is still a positive counterexample.

Next, we see that after generalizing some functional term t, the meta-clause still

remains a positive counterexample. Let [sx, cx] be the meta-clause before generaliz-

ing t, and [s′x, c
′
x] after. Assume [sx, cx] is a positive counterexample. Let θt be the

substitution {xt 7→ t}. As in Lemma 25, s′x · θt = sx and c
′
x · θt = cx. Suppose by

way of contradiction that H |= s′x → b′, for some b′ ∈ c′x. Then, H |= s′x ·θt → b′ ·θt,
which contradicts the fact that [sx, cx] was a positive example since b

′ · θt ∈ cx.

Finally, we show that after dropping some term t the meta-clause still remains a

positive counterexample. As before, let [sx, cx] be the meta-clause before removing

some of its atoms, and [s′x, c
′
x] after. Assume [sx, cx] is a positive counterexample,

hence, H 6|= sx → b for all b ∈ cx. Clearly, H 6|= s′x → b for all b ∈ c′x because

s′x ⊆ sx and c
′
x ⊆ cx, and [s

′
x, c
′
x] is positive. ¥

Lemma 28 If a minimized [sx, cx] captures some clause st
6=→ bt of U(T ), then it

must be via some substitution θ such that θ is a variable renaming, i.e., θ maps

distinct variables of st into distinct variables of sx only.

Proof. [sx, cx] captures st
6=→ bt, hence there must exist a substitution θ from

variables in st ∪ {bt} into terms in sx ∪ cx such that st · θ ⊆ sx, ineq(st ∪ {bt}) · θ ⊆
ineq(sx ∪ cx) and bt · θ ∈ cx. We show that θ must be a variable renaming.

68



By way of contradiction, suppose that θ maps some variable v of st∪{bt} into a
functional term t of sx ∪ cx (i.e. v · θ = t). Consider the generalization of the term t

in step 2 of the minimization procedure. We see that the term t should have been

generalized and substituted by the new variable xt.

Suppose, then, that [sx, cx] is the meta-clause just before attempting to gener-

alize t and that [s′x, c
′
x] is the meta-clause obtained after generalizing the term t to

the fresh variable xt. Consider the substitution θ
′ = θ \ {v 7→ t} ∪ {v 7→ xt}. The

substitution θ′ behaves like θ on all terms except for variable v. We see that [s′x, c
′
x]

captures st
6=→ bt via θ

′ and hence rhs(s′x, c
′
x) 6= ∅ (Lemma 23). Therefore t must

be generalized to the variable xt.

To see that [s′x, c
′
x] captures st

6=→ bt via θ
′ we need to show (1) st · θ′ ⊆ s′x,

(2) bt · θ′ ∈ c′x and (3) ineq(st∪{bt}) · θ′ ⊆ ineq(s′x∪ c′x). For (1), consider any atom
b of st. We observe the following: after substitution θ

′: b(. . v . .) ⇒ b(. . xt . .), and

after substitution θ and generalizing t: b(. . v . .) ⇒ b(. . t . .) ⇒ b(. . xt . .). The part

of the “dots” in the previous expressions is identical for both lines, since θ and θ′

behave equally for terms different than v. Moreover, the fact that θ does not unify

terms in st∪{bt} assures that the rest of terms differ from t and xt after applying θ

or θ′. Therefore, we get that b ·θ′ ∈ s′x iff b ·θ ∈ sx and since st ·θ ⊆ sx, Property (1)

follows. Property (2) is identical to Property (1). For (3), let t, t′ be two distinct

terms of st ∪ {bt}. We have to show that t · θ′ and t′ · θ′ are two different terms of
s′x ∪ c′x and therefore their inequality appears in ineq(s′x ∪ c′x). It is easy to see that
they are terms of s′x ∪ c′x since by previous properties (st ∪ {bt}) · θ′ ⊆ (s′x ∪ c′x).

Now, let θt be the substitution {xt → t} and notice that θ = θ′ · θt. Since θ does
not unify terms in st ∪ {bt}, then neither of θ′ and θt do. Therefore, t · θ′ 6= t′ · θ′.

¥

69



5.2.6 On the number of terms in minimized examples

Lemma 29 Let [sx, cx] be a minimized meta-clause. Let st
6=→ bt be a clause of

U(T ) captured by [sx, cx]. Then, |Terms(sx ∪ {cx})| = |Terms(st ∪ {bt})| .

Proof. Let nx and nt be the number of distinct terms appearing in [sx, cx] and

st → bt, respectively. Subterms should also be counted. The meta-clause [sx, cx]

captures st
6=→ bt. Therefore there is a substitution θ satisfying ineq(st ∪ {bt}) · θ ⊆

ineq(sx ∪ cx). Thus, different variables in st → bt are mapped into different terms

of sx ∪ cx by θ. By Lemma 28, we know also that every variable of st, bt is mapped
into a variable of sx, cx. Therefore, θ maps distinct variables of st, bt into distinct

variables of sx, cx. Therefore, the number of terms in st, bt equals the number of

terms in (st∪{bt})·θ, since there has only been a non-unifying renaming of variables.
Also, st · θ ⊆ sx and bt · θ ∈ cx. We have to check that the remaining atoms in

(sx \ st · θ) ∪ (cx \ bt · θ) do not include any term not appearing in (st ∪ {bt}) · θ.
Suppose there is an atom l ∈ (sx \ st · θ) ∪ (cx \ bt · θ) containing some term,

say t, not appearing in (st ∪ {bt}) · θ. Consider when in step 3 of the minimization
procedure the term t was checked as a candidate to be removed. Let [s′x, c

′
x] be

the clause obtained after the removal of the atoms containing t. Then, st · θ ⊆ s′x

and bt · θ ∈ c′x because all the atoms in (st ∪ {bt}) · θ do not contain t. Moreover,
ineq(st ∪ {bt}) · θ ⊆ ineq(s′x ∪ c′x). To see this, take any two terms t 6= t′ from

st → bt. The terms t · θ and t′ · θ appear in s′x ∪ c′x because they contain terms in

(st ∪ bt) · θ only (so they are not removed). Further, since t · θ 6= t′ · θ in sx ∪ cx

and {t · θ, t′ · θ} ⊆ (s′x ∪ c′x) ⊆ (sx ∪ cx) we conclude that t · θ 6= t′ · θ in s′x ∪ c′x.

Thus, [s′x, c
′
x] still captures st

6=→ bt. And therefore, rhs(s′x, c
′
x) 6= ∅ and such a term

t cannot exist. We conclude that nt = nx. ¥

Corollary 30 Let t be an upper bound on the number of distinct terms in any target

clause. Then, the number of terms of a minimized counterexample is at most t. ¥

70



Lemma 31 Let [s, c] be a meta-clause covering a fully inequated clause st
6=→ bt.

Then, |Terms(st ∪ {bt})| ≤ |Terms(s ∪ c)|

Proof. Since [s, c] covers the clause st
6=→ bt, there is a θ s.t. ineq(st ∪ {bt}) · θ ⊆

ineq(s ∪ c). Therefore, any two distinct terms of st ∪ {bt} appear as distinct terms
in s ∪ c. And therefore, [s, c] has at least as many terms as st → bt. ¥

Corollary 32 Let st
6=→ bt be a fully inequated clause in U(T ). Let [sx, cx] be a

minimized counterexample capturing st
6=→ bt, and let [si, ci] be any other meta-

clause covering st
6=→ bt. Then, |Terms(sx ∪ cx)| ≤ |Terms(si ∪ ci)|. ¥

5.2.7 Properties of pairings

Lemma 33 Let [sx, cx] and [si, ci] be two full meta-clauses w.r.t. some closed target

expression T . Let [s, c] ∈ Basic-Pairings([sx, cx], [si, ci]). Then, [s,rhs([s, c])] is full

w.r.t. T .

Proof. To see that [s,rhs([s, c])] is full w.r.t. T , it is sufficient to show that [s, c]

is complete — rhs takes care of the resulting meta-clause being correct. Suppose

T |= s → b for some b ∈ AtomsP (s ∪ c) \ s. Since s = lgg |σ(sx, si) ⊆ lgg(sx, si), we

know that there exist θx and θi such that s · θx ⊆ sx and s · θi ⊆ si. T |= s → b

implies both T |= s · θx → b · θx and T |= s · θi → b · θi. Let bx = b · θx and bi = b · θi
so that T |= sx → bx and T |= si → bi. By assumption, [sx, cx] and [si, ci] are

full, and therefore bx ∈ sx ∪ cx and bi ∈ si ∪ ci because bx ∈ AtomsP (sx ∪ cx) and

bi ∈ AtomsP (si ∪ ci) (remember that b ∈ AtomsP (s ∪ c)). Also, since the same lgg

table is used for all lgg(·, ·) we know that b = lgg(bx, bi). Therefore b must appear in

one of lgg(sx, si), lgg(sx, ci), lgg(cx, si) or lgg(cx, ci). But b 6∈ lgg(sx, si) since b 6∈ s

by assumption.

Note that all terms and subterms in b appear in s∪c, because b ∈ AtomsP (s∪c).
Let σ be the basic matching inducing [s, c]. We know that σ is basic and hence

legal, and therefore it contains all subterms of terms appearing in s ∪ c. Thus, by

71



restricting any of the lgg(·, ·) to lgg |σ(·, ·), we do not get rid of b, since it is built
up from terms that appear in s ∪ c and hence in σ. Therefore, b ∈ lgg |σ(sx, ci) ∪
lgg |σ(cx, si) ∪ lgg |σ(cx, ci) = c as required. ¥

Lemma 34 Let [s, c] ∈ Basic-Pairings([sx, cx], [si, ci]). Then, |s| ≤ min(|si| , |sx|)
and |s ∪ c| ≤ min(|si ∪ ci| , |sx ∪ cx|).

Proof. It is sufficient to observe that in s there is at most one copy of every atom

in si. This is true since the matching used to include atoms in s is 1 to 1 and

therefore a term can only be combined with a unique term and no duplication of

atoms occurs. The same idea applies to sx and the second inequality. ¥

Lemma 35 Let [s1, c1] and [s2, c2] be two full meta-clauses w.r.t. some closed Horn

expression T , let [s, c] be any legal pairing between them, and let st
6=→ bt ∈ U(T ).

The following holds:

1. If [s, c] covers st
6=→ bt, both [s1, c1] and [s2, c2] cover st

6=→ bt.

2. If [s, c] captures st
6=→ bt, at least one of [s1, c1] or [s2, c2] captures st

6=→ bt.

Proof. Condition 1: by assumption, st
6=→ bt is covered by [s, c], i.e., there is a θ

such that st · θ ⊆ s, ineq(st ∪ {bt}) · θ ⊆ ineq(s ∪ c) and bt · θ ∈ AtomsP (s ∪ c).

This implies that if t, t′ are two distinct terms of st ∪ {bt}, then t · θ and t′ · θ
are distinct terms appearing in s ∪ c. Let σ be the 1-1 legal matching inducing

the pairing. The antecedent s is defined to be lgg |σ(s1, s2), and therefore there

exist substitutions θ1 and θ2 such that s · θ1 ⊆ s1 and s · θ2 ⊆ s2. We claim that

[s1, c1] and [s2, c2] cover st
6=→ bt via θ · θ1 and θ · θ2, respectively. We prove this for

[s1, c1] only, the proof for [s2, c2] is identical. Notice that st · θ ⊆ s, and therefore

st · θ · θ1 ⊆ s · θ1. Since s · θ1 ⊆ s1, we obtain st · θ · θ1 ⊆ s1. We show now that

ineq(st ∪ {bt}) · θ · θ1 ⊆ ineq(s1 ∪ c1). Observe that all top-level terms appearing in
s ∪ c also appear as one entry of the matching σ, because otherwise they could not
have survived the restriction imposed by σ. Further, since σ is legal, all subterms of

72



terms of s∪ c also appear as an entry in σ. Let t, t′ be two distinct terms appearing
in st ∪ {bt}. Since (st ∪ {bt}) · θ ⊆ s∪ c and σ includes all terms appearing in s∪ c,
the distinct terms t · θ and t′ · θ appear as the lgg of distinct entries in σ. These

entries have the form [t · θ · θ1 - t · θ · θ2 => t · θ], since lgg(t · θ · θ1, t · θ · θ2) = t · θ.
Since σ is 1-1, we know that t · θ · θ1 6= t′ · θ · θ1. Finally, we need to show that
bt · θ · θ1 ∈ AtomsP (s1 ∪ c1). Notice that s · θ1 ⊆ s1 and c · θ1 ⊆ (s1 ∪ c1). Therefore,
st ∪ {bt} · θ ⊆ s ∪ c implies st ∪ {bt} · θ · θ1 ⊆ (s ∪ c) · θ1 ⊆ s1 ∪ c1. Thus,

bt · θ · θ1 ∈ AtomsP (s1 ∪ c1) as required.

Condition 2: by hypothesis, bt · θ ∈ c and c is defined to be lgg |σ(s1, c2) ∪
lgg |σ(c1, s2) ∪ lgg |σ(c1, c2). Observe that all these lggs share the same table, so the

same pairs of terms are mapped into the same expressions. Observe also that the

substitutions θ1 and θ2 are defined according to this table, so that if any atom

l ∈ lgg |σ(c1, ·), then l · θ1 ∈ c1. Equivalently, if l ∈ lgg |σ(·, c2), then l · θ2 ∈ c2.

Therefore we get that if bt ·θ ∈ lgg |σ(c1, ·), then bt ·θ ·θ1 ∈ c1 and if bt ·θ ∈ lgg |σ(·, c2),
then bt · θ · θ2 ∈ c2. Now, observe that in any of the three possibilities for c, one

of c1 or c2 is included in the lgg |σ . Thus it is the case that either bt · θ · θ1 ∈ c1 or

bt · θ · θ2 ∈ c2. Since both [s1, c1] and [s2, c2] cover st
6=→ bt, one of [s1, c1] or [s2, c2]

captures st
6=→ bt. ¥

It is crucial for Lemma 35 that the pairing involved is legal. It is indeed possible

for a non-legal pairing to capture some clause that is not even covered by some of

its originating meta-clauses, as the next example illustrates.

Example 12 In this example we present two meta-clauses [s1, c1] and [s2, c2], a

non-legal matching σ and a clause st
6=→ bt such that the non-legal pairing induced

by σ captures st
6=→ bt but none of [s1, c1] and [s2, c2] do.

• [s1, c1] = [p(ffa, gffa)→ q(fa)] with terms {a, fa, ffa, gffa}
ineq(s1) = (a 6= fa 6= ffa 6= gffa).

• [s2, c2] = [p(fb, gffc)→ q(b)] with terms {b, c, fb, fc, ffc, gffc}.

73



• The matching σ is [a - c => X]

[fa - b => Y]

[ffa - fb => fY]

[gffa - gffc => gffX]

• [s, c] = [p(fY, gffX)→ q(Y )].

• (x 6= fx 6= ffx 6= gffx 6= y 6= fy)
︸ ︷︷ ︸

ineq(st)

, p(fy, gffx)
︸ ︷︷ ︸

st

→ q(y)
︸︷︷︸

bt

.

• θ = {x 7→ X, y 7→ Y }.

• θ1 = {X 7→ a, Y 7→ fa}.

• θ · θ1 = {x 7→ a, y 7→ fa}.

The meta-clause [s, c] captures st
6=→ bt via θ = {x 7→ X, y 7→ Y }. But [s1, c1]

does not cover st
6=→ bt because the condition ineq(st) · θ · θ1 ⊆ ineq(s1) fails to hold

(the terms that violate inequalities are highlighted by the boxes below, e.g., fx and

y are both mapped to fa by θ · θ1):

(a 6= fa 6= ffa 6= gffa 6= fa 6= ffa )
︸ ︷︷ ︸

(x 6=fx 6=ffx 6=gffx 6=y 6=fy)·θ·θ1

6⊆ (a 6= fa 6= ffa 6= gffa)
︸ ︷︷ ︸

ineq(s1)

Corollary 36 Let [s1, c1], [s2, c2], [s3, c3], . . , [sk, ck], . . be a sequence of full meta-

clauses such that every meta-clause [si+1, ci+1] is a legal pairing between the previous

meta-clause [si, ci] in the sequence and some other full meta-clause [s′i, c
′
i], for i ≥ 1.

Suppose some [sk, ck] in the sequence covers a clause st
6=→ bt. Then, all previous

[si, ci] in the sequence (where i < k), must cover the clause st
6=→ bt, too. ¥

5.2.8 Properties of the sequence S

Corollary 37 Every meta-clause [si, ci] appearing in the sequence S is full w.r.t.

the target expression T .

74



Proof. The sequence S is constructed by appending minimized counterexamples

or by refining existing elements with a pairing with another minimized counterex-

ample. Lemma 25 guarantees that all minimized counterexamples are full and, by

Lemma 33, any basic pairing between full meta-clauses is also full. ¥

Lemma 38 Let S be the sequence [[s1, c1], [s2, c2], . . , [sk, ck]]. If a minimized coun-

terexample [sx, cx] is produced such that it captures some clause st
6=→ bt in U(T )

covered by some [si, ci] of S, then some meta-clause [sj, cj] is replaced by a basic

pairing of [sx, cx] and [sj, cj], where j ≤ i.

Proof. We show that if no element [sj, cj] where j < i is replaced, then [si, ci]

itself must be replaced. We have to prove that there exists a basic pairing [s, c] in

Basic-Pairings([sx, cx], [si, ci]) satisfying the replacement conditions: rhs([s, c]) 6= ∅
and WSize([s, c]) < WSize([si, ci]).

We have assumed that there is some clause st
6=→ bt ∈ U(T ) captured by [sx, cx]

and covered by [si, ci]. Let θ
′
x be the substitution showing that st

6=→ bt is captured

by [sx, cx] and θ
′
i the substitution showing that st

6=→ bt is covered by [si, ci]. Thus:

• st · θ′x ⊆ sx

• ineq(st ∪ {bt}) · θ′x ⊆ ineq(sx ∪ cx)

• bt · θ′x ∈ cx

• bt · θ′x ∈ AtomsP (sx ∪ cx)

• st · θ′i ⊆ si

• ineq(st ∪ {bt}) · θ′i ⊆ ineq(si ∪ ci)

• bt · θ′i ∈ AtomsP (si ∪ ci)

We construct a matching σ that includes all entries

[t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)]

75



such that t is a term appearing in st ∪ {bt} (one entry for every distinct term).

Example 13 Consider the following:

• st = {p(g(c), x, f(y), z)}.
With terms c, g(c), x, y, f(y) and z.

• sx = {p(g(c), x′, f(y′), z), p(g(c), g(c), f(y′), c)}.
With terms c, g(c), x′, y′, f(y′) and z.

• si = {p(g(c), f(1), f(f(2)), z)}.
With terms c, g(c), 1, f(1), 2, f(2), f(f(2)) and z.

• The substitution θ′x = {x 7→ x′, y 7→ y′, z 7→ z}, which is a variable renaming.

• The substitution θ′i = {x 7→ f(1), y 7→ f(2), z 7→ z}.

• The lgg(sx, si) is {p(g(c), X, f(Y ), z), p(g(c), Z, f(Y ), V )} and it produces the
following lgg table.

[c - c => c] [g(c) - g(c) => g(c)]

[x’ - f(1) => X] [y’ - f(2) => Y]

[f(y’) - f(f(2)) => f(Y)] [z - z => z]

[g(c) - f(1) => Z] [c - z => V]

• The extended matching σ is

c ⇒ [c - c => c]

g(c) ⇒ [g(c) - g(c) => g(c)])

x ⇒ [x’ - f(1) => X]

y ⇒ [y’ - f(2) => Y]

f(y) ⇒ [f(y’) - f(f(2)) => f(Y)]

z ⇒ [z - z => z]

• The pairing induced by σ is lgg |σ(sx, si) = {p(g(c), X, f(Y ), z)}.

76



Claim 39 The matching σ as described above is 1-1 and the number of entries

equals the minimum of the number of distinct terms in sx ∪ cx and si ∪ ci.

Proof. All the entries of σ have the form [t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)]. For σ
to be 1-1 it is sufficient to see that there are no two terms t, t′ of st∪{bt} generating
the following entries in σ

[t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)]
[t′ · θ′x - t′ · θ′i => lgg(t′ · θ′x, t · θ′i)]

such that t · θ′x = t′ · θ′x or t · θ′i = t′ · θ′i. But this is clear since [sx, cx] and [si, ci]
are covering st

6=→ bt via θ
′
x and θ

′
i, respectively. Therefore ineq(st ∪ {bt}) · θ′x ⊆

ineq(sx ∪ cx) and ineq(st ∪ {bt}) · θ′i ⊆ ineq(si ∪ ci). And therefore t · θ′x and t′ · θ′x
appear as different terms in sx ∪ cx. Also, t · θ′i and t′ · θ′i appear as different terms
in si ∪ ci. Thus σ is 1-1.

By construction, the number of entries equals the number of distinct terms in

st ∪ {bt}, that by Lemma 29 is the number of distinct terms in sx ∪ cx. And by

Lemma 31, [si, ci] contains at least as many terms as st ∪ {bt}. Therefore, the
number of entries in σ coincides with the minimum of the number of distinct terms

in sx ∪ cx and si ∪ ci. ¥

Claim 40 The matching σ is legal.

Proof. A matching is legal if the subterms of any term appearing as the lgg of

the matching also appear in some other entries of the matching. We prove it by

induction on the structure of the terms. We prove that if t is a term in st ∪ {bt},
then the term lgg(t · θ′x, t · θ′i) and all its subterms appear in σ’s extension.
Base case. When t = a, with a being some constant. The entry in σ for it is [a

- a => a], since a ·θ = a, for any substitution θ if a is a constant and lgg(a, a) = a.

Trivially, all of a’s subterms appear in σ.

Base case. When t = v, where v is any variable in st ∪ {bt}. The entry for it
in σ is [v · θ′x - v · θ′i => lgg(v · θ′x, v · θ′i)]. Since [sx, cx] is minimized, Lemma 28

77



guarantees that v · θ′x is a variable. Therefore, lgg(v · θ′x, v · θ′i) must be a variable,
regardless of what v · θ′i is. Trivially, all of its subterms appear in σ.
Step case. When t = f(t1, . . , tl), where f is a function symbol of arity l and

t1, . . , tl its arguments. The entry for it in σ is

[f(t1, . . , tl) · θ′x - f(t1, . . , tl) · θ′i => lgg(f(t1, . . , tl) · θ′x, f(t1, . . , tl) · θ′x)
︸ ︷︷ ︸

f(lgg(t1·θ′x,t1·θ′i),..,lgg(tl·θ′x,tl·θ′i))

]

The entries [tj · θ′x - tj · θ′i => lgg(tj · θ′x, tj · θ′x)], with 1 ≤ j ≤ l, are also

included in σ, since all tj are terms of st∪{bt}. By the induction hypothesis, all the
subterms of every lgg(tj ·θ′x, tj ·θ′x) are included in σ, and therefore, all the subterms
of lgg(f(t1, . . , tl) · θ′x, f(t1, . . , tl) · θ′x) are also included in σ. ¥

Claim 41 The matching σ is basic.

Proof. A basic matching is defined only for two meta-clauses [sx, cx] and [si, ci]

such that the number of terms in sx∪cx is less or equal than the number of terms in
si ∪ ci. Corollary 32 shows that this is indeed the case. The previous claims prove

that σ is 1-1 and legal. It is only left to see that it is basic: if entry f(t1, . . , tn)− t

is in σ, then t = f(r1, . . , rn) and tl − rl ∈ σ for all l = 1, . . , n.

Suppose, then, that f(t1, . . , tn)− t is in σ. By construction of σ all entries are

of the form

[t̂ · θ′x − t̂ · θ′i],

where t̂ is a term in st ∪ {bt}. Thus, assume t̂ · θ′x = f(t1, . . , tn) and t̂ · θ′i = t. We

also know that θ′x is a variable renaming, therefore, the term t̂ · θ′x is a variant of t̂.
Therefore, the terms f(t1, . . , tn) and t̂ are variants. That is, t̂ itself has the form

f(t′1, . . , t
′
n), where every t

′
j is a variant of tj and t

′
j · θ′x = tj, where j = 1, . . , n.

Therefore, t = t̂ · θ′i = f(r1 = t′1 · θ′i, . . , rn = t′n · θ′i) as required. We have seen that
tj = t′j · θ′x and rj = t′j · θ′i. By construction, σ includes the entries tj − rj, for any

j = 1, . . , n and our claim holds. ¥

The claims above show that the matching σ is a good matching in the sense

that it is one of the matchings constructed by the algorithm. The next claim shows

78



that [s, c] = pairing(σ, [sx, cx], [si, ci]) is considered as a candidate for replacement

in the learning algorithm Learn-Closed-Horn.

Claim 42 pairing(σ, [sx, cx], [si, ci]) ∈ Basic-Pairings([sx, cx], [si, ci]).

Proof. It is sufficient to observe that σ has been constructed precisely using the

lgg of terms in sx∪cx and si∪ci, and it therefore agrees with the lgg table produced

by the computation lgg(sx ∪ cx, si ∪ ci). ¥

It is left to show that both conditions for replacement in the algorithm hold.

The following two claims show that this is indeed the case.

Claim 43 rhs([s, c]) 6= ∅.

Proof. Let θx and θi be defined as follows. An entry in σ [t · θ′x - t · θ′i =>

lgg(t · θ′x, t · θ′i)] such that lgg(t · θ′x, t · θ′i) is a variable generates the mapping
lgg(t · θ′x, t · θ′i) 7→ t · θ′x in θx and lgg(t · θ′x, t · θ′i) 7→ t · θ′i in θi. That is, θx =

{lgg(t · θ′x, t · θ′i) 7→ t · θ′x} and θi = {lgg(t · θ′x, t · θ′i) 7→ t · θ′i}, whenever lgg(t · θ′x, t · θ′i)
is a variable and t is a term in st ∪ {bt}.
In our example, θx = {X 7→ x′, Y 7→ y′, z 7→ z} and θi = {X 7→ f(1), Y 7→

f(2), z 7→ z}. Next, we show that s · θx ⊆ sx and s · θi ⊆ si:

• s · θx ⊆ sx. Let l be an atom in s, l has been obtained by taking the lgg

of two atoms lx and li in sx and si, respectively. That is, l = lgg(lx, li).

Moreover, l only contains terms in the extension of σ, otherwise it would

have been removed when restricting the lgg . The substitution θx is such that

l ·θx = lx ∈ sx because it “undoes” what the lgg does for the atoms with terms

in σ.

• s · θi ⊆ si. Similar to previous.

Let θ be the substitution that maps all variables in st∪{bt} to their corresponding
expression assigned in the extension of σ. That is, θ maps any variable v of st∪{bt}
to the term lgg(v · θ′x, v · θ′i). In our example, θ = {x 7→ X, y 7→ Y, z 7→ z}.

79



The strategy for the remainder of the proof consists in showing that st
6=→ bt is

captured by [s, c] via θ. Applying Lemma 23 we then conclude that rhs([s, c]) 6= ∅.
Finally, the following properties show that st

6=→ bt is captured by [s, c] via θ:

– θ · θx = θ′x: Let v be a variable in st ∪ {bt}. The substitution θ maps v into
lgg(v · θ′x, v · θ′i). This is a variable, say V , since we know θ′x is a variable renaming.

The substitution θx contains the mapping

lgg(v · θ′x, v · θ′i)
︸ ︷︷ ︸

V

7→ v · θ′x.

And v is mapped into v · θ′x by θ · θx.
In our example: θ′x = {x 7→ x′, y 7→ y′, z 7→ z}, and

θ · θx = {x 7→ X, y 7→ Y, z 7→ z} · {X 7→ x′, Y 7→ y′, z 7→ z}.

– θ · θi = θ′i: As in previous property.

– st ·θ ⊆ s = lgg |σ(sx, si): Let l be an atom in st. We show that l ·θ is in lgg(sx, si)

and that it is not removed by the restriction to σ. Let t be a term appearing in l.

The matching σ contains the entry

[t · θ′x - t · θ′i => lgg(t · θ′x, t · θ′i)],

since t appears in st. The substitution θ contains {v 7→ lgg(v · θ′x, v · θ′i)} for
every variable v appearing in st ∪ {bt} (and thus for every variable in st), therefore
t · θ = lgg(t · θ′x, t · θ′i). Indeed, lgg(t · θ′x, t · θ′i) appears in σ. The atom l · θ appears
in lgg(st · θ′x, st · θ′i) and therefore in lgg(sx, si) since st · θ′x ⊆ sx, st · θ′i ⊆ si and

θ = {v 7→ lgg(v · θ′x, v · θ′i) | v is a variable of st}. Also, l · θ appears in lgg |σ(sx, si)

since we have seen that any term in l · θ appears in σ.
In our example the only l ∈ st · θ is p(g(c), x, f(y), z) · θ = p(g(c), X, f(Y ), z).

And lgg |σ(sx, sy) is precisely {p(g(c), X, f(Y ), z)}.

80



– ineq(st∪{bt}) · θ ⊆ ineq(s∪ c): We have to show that for any two distinct terms

t, t′ of st∪{bt}, the terms t ·θ and t′ ·θ are also different terms in s∪c, and therefore
the inequality t ·θ 6= t′ ·θ appears in ineq(s∪ c). By hypothesis, ineq(st∪{bt}) ·θ′x ⊆
ineq(sx ∪ cx). Since θ′x = θ · θx, we get ineq(st ∪ {bt}) · θ · θx ⊆ ineq(sx ∪ cx) and so
t · θ · θx and t′ · θ · θx are different terms of sx ∪ cx. From Property 5 in Lemma 1 it
follows that t · θ 6= t′ · θ ∈ ineq(s ∪ c).

– bt · θ ∈ c: By hypothesis, bt · θ′x ∈ cx. Also, bt · θ′i ∈ AtomsP (si ∪ ci) implies

(because [si, ci] is full), that bt · θ′i ∈ si ∪ ci. Notice that bt · θ = lgg |σ(bt · θ′x, bt · θ′i)
by construction. Therefore bt · θ ∈ c = lgg |σ(sx, ci) ∪ lgg |σ(cx, si) ∪ lgg |σ(cx, ci). ¥

Claim 44 WSize([s, c]) < WSize([si, ci]).

Proof. By definition, we need to show that WSize(s) < WSize(si) or (WSize(s) =

WSize(si) and WSize(c) < WSize(ci)). By Lemma 34, we know that |s| ≤ |si|,
therefore WSize(s) ≤ WSize(si) — the lgg never substitutes a term by one of

greater weight: either functional terms are substituted by variables or they remain

the same. According to our definition ofWSize, variables weigh less than functional

terms.

If WSize(s) < WSize(si), then the condition stated in this lemma is true. Oth-

erwise, WSize(s) = WSize(si). Lemma 34 shows that |s ∪ c| ≤ |si ∪ ci|. Since
|s| = |si|, we conclude that |c| ≤ |ci|, and hence WSize(c) ≤ WSize(ci) by the same

argument as above. Thus, s · θi = si and si · θ−1i = s. Again, we split the proof

into two cases. If WSize(c) < WSize(ci) then the lemma is satisfied. Otherwise

WSize(c) = WSize(ci), and [s, c], [si, ci] are syntactic variants. The following rea-

soning arrives to a contradiction, disproving this case. Since [s, c] and [si, ci] are

variable renamings, c · θi = ci and ci · θ−1i = c. By the previous claim, it holds that

bt · θ ∈ c and therefore there exists a bi s.t. bi = bt · θ · θi ∈ ci. The substitutions

θi and θ
′
x are variable renamings, and (by previous claim) θ

′
x = θ · θx, therefore the

substitution θ̂ = θ−1i · θx is well defined and is a variable renaming. It follows that

81



si · θ̂ ⊆ sx and bi · θ̂ = bt · θ · θi
︸ ︷︷ ︸

bi

· θ−1i · θx
︸ ︷︷ ︸

θ̂

= bt · θ · θx = bt · θ′x ∈ cx (by assumption).

Therefore, H |= si → bi |= si · θ̂ → bi · θ̂ |= sx → bx (where bx = bt · θ′x ∈ cx)

contradicting the fact that [sx, cx] is a counterexample. ¥

This finally completes the proof of Lemma 38. ¥

Corollary 45 If a counterexample [sx, cx] is appended to S, it is because there is

no element in S capturing a clause in U(T ) that is also captured by [sx, cx]. ¥

Lemma 46 Every time the algorithm is about to make an equivalence query, it is

the case that every meta-clause in S captures at least one of the clauses of U(T )

and every clause of U(T ) is captured by at most one meta-clause in S.

Proof. All meta-clauses included in S are full by Corollary 37. By construction,

their consequents are non-empty so that we can apply Lemma 22, and conclude

that all counterexamples in S capture some clause of U(T ).

An induction on the number of iterations of the main loop in line 2 of Learn-

Horn-Closed shows that no two different meta-clauses in S capture the same

clause of U(T ). In the first loop the lemma holds trivially (there are no elements

in S). By the induction hypothesis we assume that the lemma holds before a new

iteration of the loop. We see that after completion of that iteration of the loop the

lemma must also hold. Two cases arise.

The minimized counterexample [sx, cx] is appended to S. By Corollary 45, we

know that [sx, cx] does not capture any clause in U(T ) also captured by some element

[si, ci] in S. This, together with the induction hypothesis, assures that the lemma

is satisfied in this case.

Some [si, ci] is replaced in S. We denote the updated sequence by S
′ and the

updated element in S ′ by [s′i, c
′
i]. The induction hypothesis claims that the lemma

holds for S. We have to prove that it also holds for S ′ as updated by the algorithm.

Assume it does not. The only possibility is that the new element [s′i, c
′
i] captures

82



some clause of U(T ), say st
6=→ bt also captured by some other element [sj, cj] of

S ′, with j 6= i. The meta-clause [s′i, c
′
i] is a basic pairing of [sx, cx] and [si, ci], and

hence it is also legal. Applying Lemma 35 we conclude that one of [sx, cx] or [si, ci]

captures st
6=→ bt.

Suppose [si, ci] captures st
6=→ bt. This contradicts the induction hypothesis,

since both [si, ci] and [sj, cj] appear in S and capture st
6=→ bt in U(T ).

Suppose [sx, cx] captures st
6=→ bt. If j < i, then [sx, cx] would have refined

[sj, cj] instead of [si, ci] (Lemma 38). Therefore, j > i. But then we are in a

situation where [sj, cj] captures a clause also covered by [si, ci]. By Corollary 36,

all meta-clauses in position i cover st
6=→ bt during the history of S. Consider the

iteration in which [sj, cj] first captured st
6=→ bt. This could have happened by

appending the counterexample [sj, cj], which contradicts Lemma 38 since [si, ci] or

an ancestor of it was covering st
6=→ bt but was not replaced. Or it could have

happened by refining [sj, cj] with a pairing of a counterexample capturing st
6=→ bt.

But then, by Lemma 38 again, the element in position i should have been refined,

instead of refining [sj, cj]. ¥

5.2.9 Deriving the complexity bounds

Recall that c′ stands for the number of clauses in the transformation U(T ) and that

by Lemma 18, c′ ≤ ctv, where t and v are upper bounds on the number of terms

and variables in each clause in T and c is the number of clauses in T . By Lemma 46

the number of clauses in U(T ) bounds the number of elements in S, and therefore:

Corollary 47 |S| ≤ c′. ¥

What follows is a detailed account of the number of queries made in every pro-

cedure. Remember that we use the following parameters controlling the complexity

of the target expression T :

• p: number of predicate symbols in the signature.

83



• a: upper bound on the arity of predicate and function symbols.

• v: upper bound on the number of distinct variables per clause.

• t: upper bound on the number of distinct terms per clause.

• c: number of clauses.

The complexity of the algorithm also depends on the complexity of the counterex-

amples received. To account for this, we use the parameter t̂ to denote an upper

bound on the number of distinct terms present in a clause returned by the equiva-

lence query oracle as counterexample.

Lemma 48 If [sx, cx] is a minimized counterexample, then, |sx ∪ cx| ≤ pta.

Proof. By Corollary 30, there are a maximum of t terms in a minimized coun-

terexample. There are a maximum of pta different atoms built up from t terms if

p is the number of predicate symbols in the signature and a is an upper bound on

their arity. ¥

Lemma 49 The algorithm makes O(c′pta) equivalence queries.

Proof. Notice that any set of atoms containing t distinct terms can be generalized

at most t times. This is because after generalizing a term into a variable, it cannot

be further generalized. The sequence S has at most c′ elements. The following

actions can happen after refining a meta-clause in S (possibly combined): either

(1) one atom is dropped from the antecedent, or (2) an atom moves from antecedent

to consequent, or (3) an atom is dropped from the consequent, or (4) some term is

generalized. This can happen c′pta times for (1), c′pta times for (2), c′pta times for

(3), and c′t times for (4), that is c′(t+ 3pta) in total. We need c′ extra calls to add

all the counterexamples to S. In total c′(1 + t+ 3pta) = O(c′pta). ¥

Lemma 50 The algorithm makes O(pt̂a+1) membership queries during the mini-

mization procedure.

84



Proof. Let B → b be the clause input to Minimize. To compute the first version

of the full meta-clause we need to test the pt̂a possible atoms built up from t̂

distinct terms appearing in B → b. Therefore, we make pt̂a initial calls. Notice

that Minimize never introduces new terms, and hence t̂ remains an upper bound

on the number of terms of the clause under construction for the duration of the

process. Next, we note that the first version of cx has at most pt̂
a atoms. The

first loop (generalization of terms) is executed at most t̂ times, one for every term

appearing in the first version of [sx, cx]. In every execution, at most |cx| ≤ pt̂a

membership calls are made. In this loop there are a total of pt̂a+1 calls. The

second loop of the minimization procedure is also executed at most t̂ times, one for

every term in [sx, cx]. Again, since at most pt̂
a calls are made in the body on this

second loop, the total number of calls is bounded by pt̂a+1. This makes a total of

pt̂a + 2pt̂a+1 = O(pt̂a+1). ¥

Lemma 51 The algorithm makes at most pta membership queries to check the va-

lidity of a basic pairing in line 4 of Learn-Closed-Horn.

Proof. Let [s, c] ∈ Basic-Pairings([sx, cx], [si, ci]) be any basic pairing to be

validated as a successful replacement in line 4 of Learn-Closed-Horn. By Lem-

mas 34 and 48, we conclude that |c| ≤ |sx ∪ cx| ≤ pta. ¥

Lemma 52 The algorithm makes O(c′s2tat̂a+1 + c′2s2t2a+k) membership queries.

Proof. The main loop is executed as many times as equivalence queries are made.

In every loop, the minimization procedure is executed once and for every element

in S, a maximum of tv basic pairings are checked.

This is:

pc′ta
︸︷︷︸

#iterations

×{pt̂a+1

︸ ︷︷ ︸

minim.

+ c′
︸︷︷︸

|S|

· tv
︸︷︷︸

#pairings

· pta
︸︷︷︸

pairing

} = O(c′p2tat̂a+1 + c′
2
p2t2a+v).

¥

85



We arrive at our main theorem:

Theorem 53 Learn-Closed-Horn exactly identifies every closed Horn expres-

sion making O(c′pta) equivalence queries and O(c′p2tat̂a+1+ c′2p2t2a+v) membership

queries. Furthermore, the running time is polynomial in c′ + p+ tv + ta + t̂a. ¥

Since c′ ≤ ctv, we obtain:

Corollary 54 Learn-Closed-Horn exactly identifies every closed Horn expres-

sion making O(cpta+v) equivalence queries and O(cp2ta+v t̂a+1+ c2p2t2a+3v) member-

ship queries. Furthermore, the running time is polynomial in c+ p+ tv + ta+ t̂a. ¥

Corollary 55 Assume the parameters p, a identifying the signature are constant.

Assume that the number of distinct terms in any given counterexample is upper

bounded by t. Then, Learn-Closed-Horn exactly identifies every closed Horn

expression making O(cta+v) equivalence queries and O(c2t2a+3v) membership queries.

Furthermore, the running time is polynomial in c+ tv + ta. ¥

5.3 Fully inequated closed Horn expressions

In this section we study the learnability of the class of fully inequated closed Horn

expressions. Clauses in expressions in this class are fully inequated, that is, the

antecedent of every clause contains all possible combinations of the atom t 6= t′, for

each term t and t′ appearing in the clause. As a consequence, the antecedent of a

fully inequated clause is only satisfied by a given interpretation I, if every term in

the clause is mapped to a different object of I’s domain. As an example, take the

clause human(father(x))∧human(mother(x))→ human(x). Its intended meaning

is clearly that x 6= father(x) 6= mother(x), and hence this clause can be assumed

to be fully inequated. As expected, we say that a meta-clause is fully inequated

if its antecedent contains all possible inequalities between terms appearing in the

meta-clause.

86



For any given expression T , the transformation U(T ) described in Section 5.2.1 is

fully inequated by construction. We used U(·) as a trick in the proof of correctness to
help quantify how long it takes the algorithm Learn-Closed-Horn to terminate.

If the target expression T is fully inequated itself, then U(T ) = T and this trick

is not necessary. Moreover, the complexity bounds derived are better since the

blow-up in the number of clauses from T to U(T ) does not occur.

In the remaining of this chapter, we describe the (slight) changes that we need to

make to Learn-Closed-Horn in order to learn the more restricted class of fully

inequated closed Horn expressions with better bounds. The proof of correctness

is omitted as it is very similar to the one presented for Learn-Closed-Horn.

Complete details and proof for the case of learning range restricted Horn expressions

can be found in (Arias and Khardon, 2000). The only modifications needed are in

the procedures Minimize and Pairing.

Minimization. The purpose of the minimization procedure is to produce a meta-

clause containing as few terms as possible while maintaining the property that it

is still a counterexample. In addition, now we want the counterexample to be fully

inequated. The changes proposed here are to guarantee that the counterexample

[sx, cx] as it is being minimized is fully inequated during all stages of the process.

Assume that the counterexample A → a given by the equivalence query oracle is

fully inequated. The first version of the minimized meta-clause [sx, cx] after line 1

of Minimize is fully inequated — simply because A → a is — so no change there

is needed. However, this is not true for subsequent updates of [sx, cx]. The effect

of generalizing and dropping terms (lines 2 and 3 of Minimize) is that of removing

atoms. The result of removing atoms from a fully inequated meta-clause need not

be fully inequated. More precisely, we might end up with terms in inequalities

that do not appear anywhere else in the resulting meta-clause. As an example,

suppose [sx, cx] = [{(a 6= b), (b 6= c), (a 6= c), p(a, b), q(c)}, {r(b), r(c)}]. If we drop
the constant b, then the resulting [s′x, c

′
x] = [{(a 6= c), q(c)}, {r(c)}]. Notice that

87



term a is still among s′x inequalities but it does not appear anywhere else. To avoid

this, we artificially need to fix the inequalities of the resulting [s′x, c
′
x] to guarantee

that it is fully inequated, done by the following procedure:

Fully-Inequated-Fix([s, c])

1 s′ ← s ∩ AtomsP (s ∪ c)

2 return [ineq(s′ ∪ c) ∪ s′, c]

The resulting minimization procedure is:

Fully-Inequated-Minimize(H,A → a)

1 [sx, cx]← Cons-Closure(Ant-Closure(H, [A, {a}]))
2 for every functional term t in sx ∪ cx, in decreasing order of size

do Let [s′x, c
′
x] be the meta-clause obtained from [sx, cx] after

substituting all occurrences of the term t by a new variable xt

[s′x, c
′
x]← Fully-Inequated-Fix([s′x, c

′
x])

if rhs(s′x, c
′
x) 6= ∅

then [sx, cx]← [s′x,rhs(s′x, c
′
x)]

3 for every term t in sx ∪ cx, in increasing order of size

do Let [s′x, c
′
x] be the meta-clause obtained after removing

from [sx, cx] all those atoms containing t

[s′x, c
′
x]← Fully-Inequated-Fix([s′x, c

′
x])

if rhs(s′x, c
′
x) 6= ∅

then [sx, cx]← [s′x,rhs(s′x, c
′
x)]

4 return [sx, cx]

Note that the only difference w.r.t. Minimize is the one line that fixes the

meta-clause [s′x, c
′
x] both after generalizing and dropping terms.

Pairing. Given a matching σ and two meta-clauses [sx, cx] and [si, ci], its pairing

[s, c] is computed in the new algorithm as:

88



Fully-Inequated-Pairing(σ, [sx, cx], [si, ci])

1 s′x ← sx ∩ AtomsP(sx)

2 s′i ← si ∩ AtomsP(si)

3 [s, c]← Pairing(σ, [s′x, cx], [s
′
i, ci])

4 return Fully-Inequated-Fix([s, c])

That is, we ignore the inequalities, compute the “normal” pairing, and then we

add all the inequalities needed at the end. Finally our learnability result is:

Theorem 56 The modified algorithm learns the class of fully inequated closed Horn

expressions making O(cta) calls to the equivalence oracle and O(c2t2a+v) to the mem-

bership oracle. Furthermore, the running time is polynomial in c+ tv.

It is important to observe the reduction in the number of queries made by the

modified algorithm. This is particularly significant for the number of equivalence

queries. This number is reduced to a polynomial if a is considered constant. The

number of membership queries is also reduced, although the exponential dependen-

cies remain unchanged.

89



Chapter 6

The VC Dimension

The remainder of this thesis is concerned with finding lower bounds on the problem

of exactly learning first order closed Horn expressions from membership and equiv-

alence queries. In fact, the lower bounds developed here hold even for first order

Horn expressions which are both range restricted and constrained.

This chapter characterizes the Vapnik-Chervonenkis dimension (VCDim) of first

order Horn expressions. It is known that the VC Dimension provides tight bounds

on the number of examples for PAC learning (Ehrenfeucht et al., 1989) as well as

a lower bound for the number of equivalence and membership queries for exact

learning (Maass and Turán, 1992). We parameterize the class of first order Horn

expressions with the parameters c, t, and l that stand respectively for number of

clauses, maximum number of (distinct) terms per clause, and maximum number of

literals per clause.

It is well known that for a finite class T , we have VCDim(T ) ≤ log |T |. In
Section 4.2.3 we show that DAGSize(E) = O(ct + cl) for every first order Horn

expression E. Hence, if H≤c,t,l is the class of first order Horn expressions with at
most c clauses, at most t terms per clause, and at most l literals per clause, then
∣
∣H≤c,t,l

∣
∣ ≤ 2Õ(ct+cl), where Õ(·) is used to hide logarithmic factors. From this we

can conclude that VCDim(H≤c,t,l) = Õ(ct+ cl). The rest of this chapter shows that

VCDim(H≤c,t,l) = Ω(cl + ct).

90



We start with the necessary definitions (Blumer et al., 1989).

Definition 29 Let I be a set, H ⊆ 2I , and S ⊆ I. Then ΠH(S) = {h ∩ S | h ∈ H}
is the set of subsets of S that can be obtained by intersection with elements of H.
If |ΠH(S)| = 2|S|, then we say that H shatters S. Finally, VCDim(H) is the size of
the largest set shattered by H (or ∞ if arbitrary large sets are shattered).

In our case I is a set of interpretations, and H is some class of first order

Horn expressions interpreted under |=. We identify every h ∈ H with the set

of interpretations that satisfy h. Hence, the lower bounds that follow from our

constructions apply to the setting of learning from interpretations only.

In Theorems 57 through 61 we construct sets of interpretations of appropriate

cardinality, and show how to shatter them by giving families of first order Horn

expressions separating each possible dichotomy of the interpretation sets. In our

constructions we make extensive use of the function mappings in the interpretations

to ensure that terms evaluate to appropriate values in the interpretations so that

separation is guaranteed.

Theorem 57 There exists a set of c interpretations that can be shattered using first

order Horn expressions bounded by NClauses ≤ c, NTerms ≤ log c+3, NLits = 2,
NV ars = 0, Depth = log c, Arity = 2, NFuncs = 4 and NPreds = 2.

Proof. We construct a set of c different terms using a function f of arity 2 and three

constants 1, 2 and 3 and by forming ground terms of depth log c in the following

manner:

T̂ = {f(a1, f(a2, f(a3, f(...f(alog c, 3)...)) | ai ∈ {1, 2} for all 1 ≤ i ≤ log c}

Notice that there are exactly 2log c = c such terms. Moreover, every term in T̂ is of
size 2 log c+ 1 and contains at most log c+ 3 distinct subterms.

Each interpretation It̂ in the set of interpretations I to be shattered contains in
its extension a single atom P (t̂) where t̂ ∈ T̂ . Hence, |I| = ˆ|T | = c. In addition, the

91



domain of the interpretation It̂, consists of the Θ(log c) objects corresponding to the

subterms appearing in t̂ (including itself) and a distinguished object ∗. The function
mapping for f is defined to follow the functional structure of the distinguished term

t̂, undefined entries are mapped to ∗. Notice that any term t′ ∈ T̂ s.t. t̂ 6= t′ is

mapped to the special object ∗ under the interpretation It̂.
Now, we define the Horn expression HS using predicate symbols P/1 and F/0

that separates any arbitrary subset S ⊆ I as

HS =
{
P (t̂)→ F ()

∣
∣ It̂ ∈ S

}
.

Any interpretation in S falsifies one of the clauses in HS , and hence falsifies the
whole Horn expression; any interpretation not in S falsifies every clause’s antecedent
in HS since the term present in the clause is mapped to the special object ∗ which
does not appear in any of the interpretations’ extension. ¥

A VC Dimension construction of (Khardon, 1999a) uses a signature that grows

with NTerms. The following theorem modifies this construction to use a fixed

signature.

Theorem 58 For l ≤ ta, there exists a set of l interpretations that can be shattered

using first order Horn expressions bounded by NTerms = 2t, Nvars ≤ t, Depth =

log t, NLits ≤ l, NPreds = 3, NFuncs = 1, Arity ≤ a and NClauses = 1.

Proof. We construct a set of interpretations I that is shattered using first order
Horn expressions with parameters as stated. Fix a and t. The expressions use a

0-ary predicate F (), a unary predicate L and a predicate symbol Q of arity logt l.

Let

Qall =
{
Q(i1, . . . , ilogt l)

∣
∣ ij ∈ {1, .., t} for all j = 1, . . . , logt l

}
.

Notice that |Qall| = tlogt l = l.

Let f be a binary function, and let t̂ be the term represented by a binary

balanced tree of depth log t whose leaves are labeled by the objects 1 . . . t (in order)

92



and whose internal nodes are labeled by the function symbol f . Such a term contains

2t subterms. The domain for all the interpretations in I includes objects {1, .., t},
an object for each subterm of t̂, and a special object ∗. The function mappings
for f follow the functional structure of t̂ with undefined entries completed by the

special domain object ∗. Interpretations include in their extension the atom L(t̂)

and all the atoms in Qall except one. Hence, there are l interpretations in I.
The expression that separates an arbitrary S ⊆ I is HS = CS → F (), where

F () is a nullary predicate symbol and CS is the intersection of the Q() atoms in

the extensions of all the interpretations in S plus the atom L(t̂) after substituting

every domain object j ∈ {1, .., t} by a corresponding variable xj.
Suppose I ∈ S. Take the substitution {xj 7→ j}. Then I falsifies HS because its

antecedent CS is satisfied (it is a subset of the extension of I) and its consequent

F () is falsified. Suppose on the other hand that I 6∈ S. Substitutions other than
{xj 7→ j} falsify the antecedent of HS because of the atom L(t̂). The clause HS is
satisfied under the substitution xj 7→ j because the “omitted Q” in I’s extension is

present in CS . ¥

Theorem 59 For l ≤ ta, there exists a set of cl interpretations that can be shattered

using first order Horn expressions bounded by NClauses ≤ c, NTerms = Θ(log c+

t), NLits ≤ l, NV ars ≤ t, Depth = Θ(log c + log t), Arity ≤ a, NFuncs = 5 and

NPreds = 3.

Proof. Let I be the set shattered in Theorem 58. We create a new set of inter-
pretations I+ of cardinality cl in the following way. We have an additional set of c

terms constructed in the same way as in Theorem 57, let us denote this set T̂c. As
in Theorem 57, T̂c contains c distinct terms of depth log c each.
We augment the interpretations in the construction of Theorem 58 by associating

I ∈ I with a new term in T̂c (and hence we create c new interpretations in I+

for each old interpretation in I), adding log c new objects and the corresponding
functional mappings following the terms’ structure, completing undefined entries

93



with the special object ∗. Additionally, we include the atom F (∗) in each of the
interpretations’ extensions (notice that a term c′ evaluates to ∗ in the interpretations
which do not have c′ as their distinguished term). Hence |I+| = cl.

The new expression separating an arbitrary subset S ⊆ I+ is HS :

{

CSĉ → F (ĉ)
∣
∣
∣ ĉ ∈ T̂c

}

,

where Sĉ is the subset of interpretations in S with distinguished term ĉ and CSĉ is

constructed as in Theorem 58.

We finally prove that I falsifies HS iff I ∈ S. Suppose that ĉ is the distinguished
term in T̂c associated to I. Terms c′ 6= ĉ evaluate to ∗ under I, and every clause
with consequent other than F (ĉ) in HS is hence satisfied. The clause containing

F (ĉ) is falsified iff I ∈ Sĉ by the same reasoning as in Theorem 58. ¥

The next result shows that by varying the number of terms we can shatter

arbitrarily large sets with a fixed signature.

Theorem 60 There exists a set of t interpretations that can be shattered using Horn

expressions bounded by NClauses = 1, NTerms ≤ 4t, NLits = 2, NV ars = 0,

Depth = 2 log t+ 2, Arity = 2, NFuncs ≤ 9 and NPreds = 2.

Proof. Let t = k log k for some k ∈ N . Using the same signature as in Theo-

rem 57 we generate a set T̂ of k terms of depth log k each. We associate to every

interpretation a term in T̂ and an index i ∈ {1, .., log k} and we denote by It̂,i

the interpretation associated to (t̂, i) ∈ T̂ × {1, .., log k}. Thus, we have a set of
interpretations I s.t. |I| = ˆ|T | |{1, .., log k}| = k log k = t.

Given a subset S ⊆ I, we construct a big term TREES which intuitively as-

sociates to every possible term t̂ in T̂ a set of indices lt̂ where lt̂ =
{
i
∣
∣ It̂,i ∈ S

}
.

We then appropriately define the function mappings in each interpretation It̂,i so

that the term TREES evaluates to a special domain object y iff index i appears in

the set of indices for term t̂ encoded in TREES. Each interpretation includes in its

94



extension the atom M(y) so that the clause

HS =M(TREES)→ F ()

is falsified by interpretation I iff the term TREES evaluates to y under I.

We first describe the structure of the term TREES . Let St̂ be the subset of
S consisting of interpretations It̂,i in S and let lt̂ =

{
i
∣
∣ It̂,i ∈ St̂

}
. We encode the

set lt̂ with the term fi1(fi2(· · · filog k
(a)) · · ·) where ij = 0 if j 6∈ lt̂ and ij = 1

otherwise. Denote this term by tlt̂ . As an example, assume log k = 6 and let the

set lt̂ = {1, 4, 5}. Then, tlt̂ = f1(f0(f0(f1(f1(f0(a)))))). Notice that we are using

two unary functions f0 and f1 and a constant a. Next we use a binary function g to

encode the association between terms t̂ and their sets of indices lt̂ as g(t̂, tlt̂). Finally,

TREES is constructed as a balanced tree (using binary function h) whose leaves

are terms of the form g(t̂, tlt̂), for every t̂ ∈ T̂ . As an example, suppose k = 4. Then
T̂ = {t̂1, t̂2, t̂3, t̂4}, where t̂1 = f(1, f(1, 3)), t̂2 = f(1, f(2, 3)), t̂3 = f(2, f(1, 3)) and

t̂4 = f(2, f(2, 3)). Suppose S = {(t̂1, 1), (t̂2, 2), (t̂3, 1), (t̂3, 2)}. Then:

• lt̂1 = {1}, lt̂2 = {2}, lt̂3 = {1, 2} and lt̂4 = {}.

• tlt̂1
= f1(f0(a)), tlt̂2

= f0(f1(a)), tlt̂3
= f1(f1(a)) and tlt̂4

= f0(f0(a)).

• TREES =

h h

h

gg g g

f1

f0

a a a a

f1

f0 f1

f1

f0

f0

f

f

3

f

f

3

f

f

3

f

f

3

1

1

1

2

2

1

2

2

95



Let us now describe in detail the domain and function mappings for interpreta-

tion It̂,i. The domain objects are:

• Three special objects ∗, y, n.

• Up to log k+3 distinct objects that represent all terms and subterms present
in the distinguished term t̂.

• Up to 2k + 1 objects representing all the possible terms and subterms of
the vector indices fi1(fi2(· · · filog k

(a)) · · ·) for all possible ij ∈ {0, 1} where
1 ≤ j ≤ log k.

The function mappings are defined as follows:

• The constants 1, 2, 3 potentially appearing in t̂ are mapped to objects 1, 2, 3.
The mapping for binary function f follows functional structure of t̂, with

undefined entries mapped to the special object ∗.

• The constant a is mapped to object a. Unary functions f0 and f1 also mimic
the functional structure of terms and subterms of fi1(fi2(· · · filog k

(a)) · · ·) for
all possible ij ∈ {0, 1} where 1 ≤ j ≤ log k.

• The binary function g(t1, t2) is mapped to special object y iff t1 = t̂ and the

unary function used at depth i in term t2 is f1. Otherwise it is set to the

special object n.

• Finally, the binary function h(a1, a2) is mapped to domain object y iff either
a1 = y or a2 = y, otherwise it is mapped to object n.

Finally, the only atom true in each interpretation is M(y).

We prove that It̂,i falsifies HS iff It̂,i ∈ S. Notice that It̂,i falsifies HS iff It̂,i

satisfies the atomM(TREES) iff the term TREES is mapped to the domain object

y under It̂,i iff some term g(t1, t2) is mapped to y iff term g(t̂, t2) is mapped to y

(other terms g(t1, t2) where t1 6= t̂ are mapped to n by construction) iff the unary

function used at depth i in term t2 is f1 iff It̂,i ∈ S.

96



We finally quantify the complexity of the parameters used in HS : it has 1 clause,

2 literals, no variables, uses one single term of depth Θ(log k) (that is O(log t)) which

contains Θ(k log k) subterms (that is Θ(t) subterms) that are built from 4 constants,

5 function symbols whose maximal arity is 2. ¥

Theorem 61 There exists a set of ct interpretations that can be shattered using

Horn expressions bounded by NClauses ≤ c, NTerms = Θ(t + log c), NLits = 2,

NV ars = 0, Depth = O(log t+ log c), Arity = 2, NFuncs ≤ 9 and NPreds = 3.

Proof. We extend the previous construction. Let I be the set shattered in Theo-
rem 60. We create a new set of interpretations I+ of cardinality ct in the following

way. We have an additional set of c terms constructed in the same way as in The-

orem 57 but using as constants 1,2,3 and as binary function g; let us denote this

set T̂c. As in Theorem 57, T̂c contains c distinct terms of depth log c each. Notice
that we can safely re-use the constants 1,2,3 and the function g since these are not

combined in the previous construction.

As before, we augment the interpretations in the construction of Theorem 60 by

associating I ∈ I with a new term in T̂c (and hence we create c new interpretations in
I+ for each old interpretation in I), adding log c new objects and the corresponding
functional mappings following the term’s structure. Hence |I+| = ct. In addition

we modify the predicate M which now has arity 2. The only atom true in I is

M(ĉ, y) where ĉ is the distinguished term in T̂c associated with I.
The new expression separating an arbitrary subset S ⊆ I+ is:

HS =
{

M(ĉ, TREESĉ)→ F ()
∣
∣
∣ ĉ ∈ T̂c

}

,

where Sĉ is the subset of interpretations in S with distinguished term ĉ.

We finally prove that I falsifies HS iff I ∈ S. Suppose that ĉ is the distinguished
term in T̂c associated to I. I contains the atom M(ĉ, y) in its extension, and every

clause M(c′, TREESc′ ) → F () in HS s.t. ĉ 6= c′ is satisfied since term c′ does not

97



evaluate to domain object ĉ under I. The clause M(ĉ, TREESĉ)→ F () is falsified

iff I ∈ Sĉ by the same reasoning as in Theorem 60. ¥

It is not hard to see that the constructions given above can be modified by adding

dummy arguments in the antecedent and consequent so that the expressions used

to shatter the given sets are both range restricted and constrained. For example,

in the construction of the proof of Theorem 61, we can use as separating first order

Horn expression (now range restricted and constrained):

HS =
{

M(ĉ, TREESĉ)→ F (ĉ, TREESĉ)
∣
∣
∣ ĉ ∈ T̂c

}

,

and regardless to what the terms ĉ and TREESĉ evaluate, they are always false

since no atom with predicate symbol F is present in any of the interpretations’

extensions. Similar observations hold for the other constructions. Thus we get:

Corollary 62 Let S be a signature with at least 9 function symbols, 3 predicates and

arity at least 2. The VC Dimension of the class of range restricted and constrained

first order Horn expressions over S with at most c clauses, each using up to l literals

and t+ log c terms is Ω(cl + ct).

We note that the fact that we get an (almost) asymptotically tight bound of

Θ̃(cl + ct) for the VC Dimension supports our result from Chapter 4 stating that

the parameters c, l, t are the right ones to capture the complexity of first order Horn

expressions.

From the results in (Maass and Turán, 1992) and in this chapter we conclude

that any algorithm that exactly learns the class of closed Horn expressions must

make Ω̃(cl + ct) membership and equivalence queries. Notice that this is the best

possible lower bound that the VC Dimension can provide. This still leaves a gap

to our upper bound derived from the learning algorithm in Chapter 5 which is

polynomial in c+ tv. The main discrepancy is in the exponential dependence in v.

In the next chapter we study the Certificate Size which is a powerful technique that

98



also gives lower bounds for the query complexity of learning in our model.

99



Chapter 7

The Certificate Size

This chapter is a first step towards finding the certificate size of first order Horn

expressions. Here, we explore the certificate size of various classes of boolean expres-

sions. We give constructions of polynomial certificates for monotone CNF, unate

CNF and Horn CNF. The construction of certificates for the Horn case is based

on an analysis of a standardized representation for Horn expressions which we call

saturation, and that might be useful in other settings.

Query complexity can be characterized using the combinatorial notion of certifi-

cate size (Hellerstein et al., 1996; Hegedus, 1995) — see also (Balcázar, Castro, and

Guijarro, 1999; Angluin, 2001). In particular, Hellerstein et al. (1996) and Hegedus

(1995) show that a class T is efficiently learnable from equivalence and membership
queries if and only if the class T has polynomial certificates. Informally, T has

polynomial certificates if for every concept not in T there is a small set of instances
in the domain that distinguishes it from all the concepts in T (we give formal defi-
nitions later). Note that only query complexity is considered here and running time

is not measured, so this notion is weaker than polynomial time learning with equiv-

alence and membership queries. However, since finding polynomial certificates may

be easier than finding efficient algorithms for a particular concept class, certificates

make an attractive choice for exploring the learnability question.

The learnability results that follow from our certificate constructions for mono-

100



tone, unate and Horn CNF are weaker than the learning algorithms for these classes

(Valiant, 1984; Angluin, 1988; Bshouty, 1995; Angluin, Frazier, and Pitt, 1992; Fra-

zier and Pitt, 1993) since we obtain query complexity results and the results cited

are for time complexity. However, the certificate constructions which we give are

different from those implied by these earlier algorithms, and may be useful in sug-

gesting new learning algorithms. We also give new lower bounds on certificate size

for each of these concept classes. For some parameter settings, our lower bounds

imply that our new certificate constructions are exactly optimal.

Finally, we also consider a natural generalization of these classes, namely the

class of renamable Horn CNF expressions. While unate CNF and Horn CNF each

have polynomial certificates, we give an exponential lower bound on certificate size

for renamable Horn CNF. This answers an open question of Feigelson (1998) and

proves that renamable Horn CNF is not efficiently learnable in polynomial time

from membership and equivalence queries.

7.1 Definitions and notation

Here we introduce some of the notation and definitions that we use in this chapter.

Definition 30 Let x, y ∈ {0, 1}n be two assignments. Their intersection x ∩ y is

the assignment that sets to 1 only those variables that are 1 in both x and y.

Definition 31 The DNF size of a boolean function f ⊆ {0, 1}n, denoted |f |DNF ,

is the minimum number of terms in a DNF representation of f . The CNF size of

f , |f |CNF , is defined analogously. In general, let R be a representation class for

boolean formulas. Then |f |R is the size of a minimal representation for f in R. If
f 6∈ R, we assign |f |R =∞.

Definition 32 Let B be a boolean class, i.e. B ⊆ 2{0,1}n . Then B≤m denotes the
subclass of B of concepts of size at most m.

101



Definition 33 Let R be a class of propositional expressions defining a boolean

concept class B. The class R has polynomial certificates if there exist two polyno-

mials p(·, ·) and q(·, ·) such that for every n,m > 0 and for every boolean function

f ⊆ {0, 1}n s.t. |f |R > p(m,n), there is a set of assignments Q ⊆ {0, 1}n satisfying
the following:

1. |Q| ≤ q(m,n) and

2. for every g ∈ B≤m there is some x ∈ Q s.t. g(x) 6= f(x)

In other words, (2) states that no function in B≤m is consistent with f over Q.

7.2 Certificates for monotone and unate CNFs

In this section we construct polynomial certificates for anti-monotone CNFs and

then we generalize the construction to unate DNFs. This is to facilitate the pre-

sentation of certificates for Horn CNF. A certificate for unate DNF was given by

Feigelson (1998) (formal definition of unate DNF can be found below):

Theorem 63 (Feigelson (1998)) The classes of monotone and unate functions

under DNF have polynomial size certificates with p(m,n) = m and q(m,n) =

O(mn). ¥

Feigelson’s construction is based on the fact that to show that a unate DNF

function has more than m terms, it is sufficient to prove that it has m+1 minterms,

which can be done by including in the certificate m + 1 positive assignments cor-

responding to the minterms and O(mn) negative assignments corresponding to the

assignments one level below the positive ones. A term t is a minterm for a boolean

function f if t |= f but t′ 6|= f for every other term t′ ⊂ t.

We next show a construction that achieves a certificate of size O(m2) which

improves Feigelson’s construction when m < n.

102



An anti-monotone CNF expression is a CNF where all variables appear negated.

In this case we have that anti-monotone CNFs satisfy:

∀x, y ∈ {0, 1}n : if x < y then f(x) ≥ f(y),

where < between assignments denotes the standard bit-wise relational operator.

Notice that an anti-monotone CNF expression can be seen as a Horn CNF

whose clauses have empty consequents. As an example, the anti-monotone CNF

(ā ∨ b̄) ∧ (b̄ ∨ c̄) is equivalent to the Horn CNF (ab → false) ∧ (bc → false).

Theorem 64 The class of anti-monotone CNF has polynomial size certificates with

p(m,n) = m and q(m,n) =
(
m+1
2

)
+m+ 1.

Proof. Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |anti−monCNF > p(m,n) = m. We

proceed by cases.

Case 1. f is not anti-monotone. In this case, there must exist two assignments

x, y ∈ {0, 1}n s.t. x < y but f(x) < f(y) (otherwise f would be anti-monotone).

Let Q = {x, y}. Notice that by definition no anti-monotone CNF can be consistent
with Q. Moreover, |Q| = 2 ≤ q(m,n).

Case 2. f is anti-monotone. Let c1 ∧ c2 ∧ . . ∧ cm ∧ . . ∧ ck be a minimal

representation for f . Notice that k ≥ m + 1 since |f |anti-monCNF > p(m,n) = m.

Define assignment x[ci] as the assignment that sets to 1 exactly those variables that

appear in ci’s antecedent. For example, if n = 5 and ci = v3v5 → false then

x[ci] = 00101.

Remark 2 Notice that every x[ci] falsifies ci (antecedent is satisfied but consequent

is false) but satisfies every other clause in f . If this were not so, then we would

have that some other clause cj in f is falsified by x
[ci], that is, the antecedent of

cj is true and therefore all variables in cj appear in ci as well (i.e. cj ⊆ ci). This

is a contradiction since ci would be redundant and we are looking at a minimal

representation of f .

103



Now, define the set Q = Q+ ∪Q− where

Q− =
{
x[ci]

∣
∣ 1 ≤ i ≤ m+ 1

}
and Q+ =

{
x[ci] ∩ x[cj ]

∣
∣ 1 ≤ i < j ≤ m+ 1

}
.

Notice that |Q| ≤
(
m+1
2

)
+m+1 = q(m,n). The assignments in Q− are negative

for f , since x[ci] clearly falsifies clause ci (and hence it falsifies f). The assignments

in Q+ are positive for f . To see this, suppose some x[ci] ∩ x[cj ] ∈ Q+ is negative.

Then there is some clause c in f that is falsified by x[ci] ∩ x[cj ] ∈ Q+. That is, all

variables in c are set to 1 by x[ci] ∩ x[cj ] ∈ Q+. Therefore, all variables in c are set

to 1 by x[ci] and x[cj ] and they falsify the same clause which is a contradiction by

the remark above. Hence, all assignments in Q+ are positive for f .

It is left to show that no anti-monotone CNF g s.t. |g|anti-monCNF ≤ m is

consistent with f over Q. Fix any g = c′1 ∧ . . ∧ c′l with l ≤ m. If g is consistent

with Q−, then there is a c′ ∈ g falsified by two different x[ci], x[cj ] ∈ Q− — we have

m + 1 assignments in Q− but strictly fewer clauses in g. Since they falsify c′, all

variables in c′ are set to 1 in both x[ci] and x[cj ]. Therefore, all variables in c′ are set

to 1 in their intersection x[ci] ∩ x[cj ]. Hence, clause c′ (and therefore g) is falsified

by x[ci] ∩ x[cj ]. Thus, x[ci] ∩ x[cj ] ∈ Q+ is negative for g and g and f cannot be

consistent. ¥

By duality of the boolean operators and DNF/CNF representations we get that

monotone CNF, monotone DNF and anti-monotone DNF have polynomial certifi-

cates of size O(min(mn,m2)).

Now, we generalize the previous construction to unate DNF. First we need some

useful definitions.

Definition 34 Let a, x, y ∈ {0, 1}n be three assignments. The inequality between
assignments x ≤a y is defined as x ⊕ a ≤ y ⊕ a, where ≤ is the bit-wise standard
relational operator and ⊕ is the bit-wise exclusive OR. Also, we note x <a y iff

x ≤a y but y 6≤a x.

104



Definition 35 A boolean DNF function f (of arity n) is unate if there exists some

assignment a such that ∀x, y ∈ {0, 1}n : (x <a y =⇒ f(x) ≤ f(y)). Equivalently,

a variable cannot appear both negated and unnegated in any minimal DNF repre-

sentation of f . Variables are either monotone or anti-monotone.

Definition 36 Let a, x, y ∈ {0, 1}n be three assignments. Let a[i] be the i-th value
of assignment a. The unate intersection x ∩a y is defined as:

(x ∩a y)[i] =







x[i] ∧ y[i] if a[i] = 0

x[i] ∨ y[i] otherwise

The following is a generalization of Theorem 64; its proof follows along the same

lines:

Theorem 65 Unate DNFs have polynomial size certificates with p(m,n) = m and

q(m,n) =
(
m+1
2

)
+m+ 1.

Proof. Let p(m,n) = m and q(m,n) =
(
m+1
2

)
+ m + 1. Fix m,n > 0. Fix any

f ⊆ {0, 1}n s.t. |f |unateDNF > p(m,n) = m. Now we proceed by cases.

Case 1. f is not unate. In this case, there must exist four assignments x, y, z, w ∈
{0, 1}n and a position i (1 ≤ i ≤ n) such that:

• x[j] = y[j] for all 1 ≤ j ≤ n, j 6= i and x[i] < y[i]

• z[j] = w[j] for all 1 ≤ j ≤ n, j 6= i and z[i] > w[i]

• f(x) > f(y) and f(z) > f(w)

Let Q = {x, y, z, w}. Notice that |Q| ≤ q(m,n). To see that no unate DNF can

be consistent with f over Q, take any unate DNF g and suppose it is. Let a be the

assignment mentioned in Definition 35 for g. If a[i] = 0 (i-th value given by a) then

we have that x ≤a y but g(x) > g(y). If a[i] = 1 then z ≤a w but g(z) > g(w).

Therefore there can not be any unate function consistent with f over Q.

105



Case 2. f is unate. Let a be the assignment witnessing f being unate. Suppose

w.l.o.g. (just rename variables accordingly) that a = 0r1n−r where r is the number of

monotone variables in f . Suppose that the variables in f are {v1, ..., vn}. Therefore,
variables {v1, ..., vr} appear always positive in f and variables {vr+1, ..., vn} appear
always negative. Let t1 ∨ t2 ∨ ... ∨ tm ∨ ... ∨ tk be a minimal DNF representation

of f . Notice that k ≥ m + 1 since |f |unateDNF > p(m,n) = m. Define j-th value of

assignment x[ti] as (for 1 ≤ j ≤ n):

x[ti][j] =







1 if j ≤ r and vj appears in ti

0 if j ≤ r and vj does not appear in ti

0 if j > r and v̄j appears in ti

1 if j > r and v̄j does not appear in ti

Now, define the sets

Q+ =
{
x[ti]

∣
∣ 1 ≤ i ≤ m+ 1

}

Q− =
{
x[ti] ∩a x[tj ]

∣
∣ 1 ≤ i < j ≤ m+ 1

}

Q = Q+ ∪Q−.

Notice that |Q| ≤ |Q−| + |Q+| ≤
(
m+1
2

)
+ m + 1 = q(m,n). The assignments

in Q+ are positive for f , since x[ti] clearly satisfies term ti. The assignments in Q
−

are negative for f . To see this, suppose some x[ti] ∩a x[tj ] is positive. Let t ∈ f be a

term that is satisfied by x[ti] ∩a x[tj ]. That means that variables among {v1, ..., vr}
appearing in t are set to 1 by x[ti]∩ax[tj ] (therefore in x[ti] and x[tj ], too) and variables
among {vr+1, ..., vn} appearing in t are set to 0 by x[ti] ∩a x[tj ] (therefore in x[ti] and
x[tj ], too). That is, t ⊆ ti and t ⊆ tj which is a contradiction because some term

in f would be redundant and we have assumed some minimal representation of f .

Hence, all assignments in Q− are negative for f .

It is left to show that no unate DNF g s.t. |g|unateDNF ≤ m is consistent with

f over Q. Fix any g = t′1 ∨ ... ∨ t′l with l ≤ m. If g is consistent with Q+, then

106



there is a t′ ∈ g satisfied by two different x[ti], x[tj ] ∈ Q+ (because we have m + 1

assignments in Q+ but less than m + 1 terms in g). So we have that x[ti] |= t′ and

x[tj ] |= t′. Hence, all variables appearing in t′ have the same value in x[ti] and x[tj ],

and therefore they have the same value in x[ti]∩ax[tj ] so that x[ti]∩ax[tj ] |= t′. Then,

x[ti] ∩a x[tj ] ∈ Q− is positive for g and g is not consistent with f over Q. ¥

Corollary 66 Unate CNF/DNF have certificates of size O(min(mn,m2)).

Proof. By duality of the DNF/CNF representations. ¥

7.3 Saturated Horn CNFs

This section develops a “standardized” representation for propositional Horn ex-

pressions which can be obtained by an operation we call saturation. We establish

properties of saturated expressions that make it possible to construct a set of cer-

tificates in a similar way to the case of anti-monotone CNF.

Definition 37 Let f be a Horn CNF. We define Saturation(f) as the Horn expres-

sion returned by the following procedure:

Saturation(f)

1 Sat ← f

2 repeat

3 if there exist si → bi, sj → bj in Sat s.t. bi 6= bj, sj ⊆ si, bj 6∈ si

4 then s′i ← si ∪ {bj}
5 replace si → bi with s

′
i → bi in Sat.

6 until no changes are made to Sat

7 return Sat

This procedure must terminate within O(mn) time steps, wherem is the number

of clauses in the initial expression, and n is the number of variables: we can add up

107



to mn variables to the antecedents of the clauses in f , and after every execution of

the loop at least one variable is added.

By a saturation of f we mean any of the possible outcomes of the procedure

Saturation(f).

Example 14 Notice that an expression can have many possible saturations. As

an example, take f = {a → b, a → c}; this expression has two possible saturations:
Sat1 = {ac → b, a → c} and Sat2 = {a → b, ab → c}. Clearly, the result depends
on the order in which we saturate clauses.

Lemma 67 Every Horn expression is logically equivalent to its saturation.

Proof. We show inductively that after every iteration of the main loop in the

procedure above the logical value of the expression being computed does not change.

Suppose, then, that we are about to change the expression Sat. Let Sat be the

expression before the change and Sat′ after. Let si → bi ∈ Sat be the clause

updated to s′i → bi ∈ Sat′. We have to show that Sat ≡ Sat′. The direction

Sat |= Sat′ is easy. To show this, notice that si → bi |= s′i → bi since s
′
i has just one

more variable than si. For the other direction Sat
′ |= Sat fix an arbitrary x such

that x |= Sat′. We show that x |= Sat, too. It holds that x |= C ′ for all clauses

C ′ ∈ Sat′. Trivially, x |= C for all C ∈ Sat other than si → bi. It is left to show

that x |= si → bi also. The two following cases arise: (1) the extra variable in s
′
i

(w.r.t. si) is set to 1 by x, or (2) it is set to 0. If (1) holds, then it is easy to see

that x |= si → bi iff x |= s′i → bi and we conclude x |= si → bi. If (2) holds, then let

sj → bj be the clause that was used to add the extra variable (bj) to s
′
i. We have

seen that x |= sj → bj and that bj is set to 0, therefore sj must be falsified by x

(that is some variable in sj is set to 0 by x). Notice, too, that sj ⊆ si. Hence, some

variable in si must be set to 0 by x, too. Thus x |= si → bi as required. ¥

Notice that we use the notion of a “sequential” saturation in the sense that we

use the updated expression to continue the process of saturation. There is a notion

108



of “simultaneous” saturation that uses the original expression to saturate all the

clauses. Lemma 67 does not hold for simultaneous saturation. An easy example

illustrates this. Let f = {a → b, a → c}. Clearly, SimSat(f) = {ac → b, ab → c} is
not logically equivalent to f (notice f |= a → b but SimSat(f) 6|= a → b).

Definition 38 An expression f is saturated iff f = Saturation(f).

Definition 39 A clause C in a Horn expression f is redundant if f \ {C} ≡ f . An

expression f is redundant if it contains a redundant clause.

Lemma 68 If a Horn expression f is non-redundant, then all of its saturations are

non-redundant, too.

Proof. We show that if any fixed but arbitrary saturation of f is redundant (call

it Sat′), then f has to be redundant, too. Assume that Sat′ is redundant. We

argue inductively on the number of changes made to the expression f during the

saturation process.

Base case: f is saturated (i.e. f = Sat′). Clearly f is redundant if Sat′ is.

Step case: f is not saturated (i.e. f 6= Sat′). Consider the last change made

by the saturation procedure before obtaining Sat′. Let Sat be the expression just

before obtaining Sat′; let si → bi ∈ Sat be the clause replaced by s′i → bi ∈ Sat′

using sj → bj ∈ Sat. Notice that s′i = si ∪ {bj} and that Sat and Sat′ coincide in
clauses other than si → bi and s

′
i → bi. Since Sat

′ is redundant, there is a clause

C ′ ∈ Sat′ that can be deduced from the other clauses of Sat′. Therefore, there

is a minimal derivation graph G′ of Sat′ \ C ′ ` C ′. Denote C ∈ Sat the clause

corresponding to C ′ in Sat′. Now we proceed by cases. In every case we transform

G′ proving redundancy of the clause C in Sat.

Case 1a. If s′i → bi does not appear in the derivation graph and C
′ 6= s′i → bi,

then no modification is needed to show that C = C ′ is redundant in Sat.

Case 1b(i). If C ′ = s′i → bi and the added bj does not appear in G
′, then no

modification is needed and G′ shows that C = si → bi is redundant in Sat.

109



Case 1b(ii). If C ′ = s′i → bi and the added bj appears in G
′, then we just add

edges b → bj for every b ∈ sj (first add nodes b ∈ sj not in G
′ already!). Notice

that this is a valid derivation graph for the redundant C = si → bi from Sat.

Case 2. Now suppose that the updated clause appears in the proof. Notice that

the variable bj has to be different from the consequent of the redundant clause. If

this were not so, we would have a smaller derivation graph, contradicting the fact

that we assume a minimal one. Therefore, the clause sj → bj used to saturate

cannot be C ′ itself. We modify G′ in the following way. If the variable bj has only

one edge going to bi, we simply remove bj, the edge bj → bi, all edges ∗ → bj

reaching bj and any unconnected parts remaining in the derivation graph. If bj has

more edges pointing at variables other than bi, we remove the edge bj → bi but add

edges b → bj for every b ∈ sj (first adding any b ∈ sj not in G
′ already).

In either case, we obtain that C ∈ Sat is redundant. Applying the induction

hypothesis, we conclude that (the possibly unsaturated version of) C is redundant

in the initial f . ¥

The converse of the previous lemma does not hold. That is, there are redun-

dant expressions f with non-redundant saturations. As an example: f = {ab →
c, c → d, ab → d} is clearly redundant since the third clause ab → d can be de-

duced from the first two. If we saturate the first clause with the third, we obtain:

Saturation(f) = {abd → c, c → d, ab → d} which is not redundant! However,
if we saturate the third clause with the first, we obtain a redundant saturation

Saturation′(f) = {ab → c, c → d, abc → d}.

Lemma 69 Let f be a non-redundant Horn expression. Let si → b and sj → b be

any two distinct clauses in f with the same consequent. Then, si 6⊆ sj.

Proof. If si ⊆ sj, then si → b subsumes sj → b and f is redundant. ¥

Lemma 70 Let f be a non-redundant, saturated Horn expression. Let c be any

clause in f . Let x[c] be the assignment that sets to one exactly those variables in the

110



antecedent of c. Then, x[c] falsifies c but satisfies every other clause c′ in f .

Proof. Let c = s → b. Clearly, x[c] falsifies c: its antecedent is satisfied but its

consequent is not. It also satisfies every other clause c′ = s′ → b′ in f . To see this,

we look at the following two cases: if s′ 6⊆ s, there is a variable in s′ not in s. Hence

x[c] 6|= s′ and x[c] |= c′. Otherwise, s′ ⊆ s and Lemma 69 guarantees that b 6= b′

(otherwise there would be a redundant clause in f). Furthermore, b′ ∈ s (otherwise

f would not be saturated). Thus, x[c] |= b′ and x[c] |= c′. ¥

7.4 Certificates for Horn CNF

The following characterization is due to McKinsey (1943), although it was stated

in a different context and in more general terms. It was further explored by Horn

(1956). Finally, a proof adapted to our setting can be found e.g. in (Khardon and

Roth, 1996). Horn CNF expressions are characterized by

∀x, y ∈ {0, 1}n : if x |= f and y |= f, then x ∩ y |= f (7.1)

Theorem 71 Horn CNFs have polynomial size certificates with p(m,n) = m(n+1)

and q(m,n) =
(
m+1
2

)
+m+ 1.

Proof. Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |hornCNF > p(m,n) = m(n + 1).

Again, we proceed by cases.

Case 1. f is not Horn. In this case, there must exist two assignments x, y ∈
{0, 1}n s.t. x |= f and y |= f but x ∩ y 6|= f (otherwise f would be Horn). Let

Q = {x, y, x ∩ y}. Notice that by (7.1) no Horn CNF can be consistent with Q.
Moreover, |Q| = 3 ≤ q(m,n).

Case 2. f is Horn. Let c1 ∧ c2 ∧ . .∧ ck′ be a minimal, saturated representation
of f . Notice that k′ ≥ m(n + 1) + 1 since |f |hornCNF > p(m,n) = m(n + 1) and

saturation does not produce redundant clauses when starting from a non-redundant

representation (see Lemma 68). Since there are more than m(n+ 1) clauses, there

111



must be at leastm+1 clauses sharing a single consequent in f (there are at most n+1

different consequents among the clauses in f — including the constant false). Let

these clauses be c1 = s1 → b, . . , ck = sk → b, with k ≥ m + 1. Define assignment

x[ci] as the assignment that sets to 1 exactly those variables that appear in ci’s

antecedent. For example, if n = 5 and ci = v3v5 → v2 then x
[ci] = 00101. Define

the set Q = Q+ ∪Q− where

Q− =
{
x[ci]

∣
∣ 1 ≤ i ≤ m+ 1

}
and Q+ =

{
x[ci] ∩ x[cj ]

∣
∣ 1 ≤ i < j ≤ m+ 1

}
.

Notice that |Q| = |Q+|+|Q−| ≤
(
m+1
2

)
+m+1 = q(m,n). The assignments in Q−

are negative for f , since x[ci] clearly falsifies clause ci (and hence it falsifies f). The

assignments in Q+ are positive for f . To see this, we show that every assignment

in Q+ satisfies every clause in f . Take any assignment x[ci]∩x[cj ] ∈ Q+. For clauses

c with a different consequent than ci (thus c 6= ci, c 6= cj), Lemma 70 shows that

x[ci] |= c and x[cj ] |= c. Since c is Horn, x[ci] ∩ x[cj ] |= c. For clauses with the same

consequent as ci (and cj), we have two cases. Either c 6= ci or c 6= cj. If c 6= ci,

then Lemma 69 guarantees that s 6⊆ si, where s is c’s antecedent. Therefore some

variable in s is set to 0 by x[ci] and hence by x[ci] ∩ x[cj ], too. Thus, x[ci] ∩ x[cj ] |= c.

The other case is analogous. Hence, all assignments in Q+ are positive for f .

It is left to show that no Horn CNF g s.t. |g|hornCNF ≤ m is consistent with f

over Q. Fix any g = c′1 ∧. .∧c′l with l ≤ m. If g is consistent with Q−, then there is a

c′ ∈ g falsified by two different x[ci], x[cj ] ∈ Q− (because we have m+ 1 assignments

in Q− but strictly fewer clauses in g). Since they falsify c′, all variables in the

antecedent of c′ are set to 1 in both x[ci] and x[cj ]. Also, in both assignments the

consequent of c′ is set to 0. Therefore, the assignment x[ci] ∩ x[cj ] sets all variables

in the antecedent of c′ to 1 and the consequent to 0, too. Hence, clause c′ (and

therefore g) is falsified by x[ci] ∩ x[cj ]. Thus, x[ci] ∩ x[cj ] ∈ Q+ is negative for g and

g cannot be consistent with f over Q. ¥

112



Next, we include an alternative construction of polynomial certificates for Horn

CNF expressions. The reason for this is that this alternative construction, although

having worse query complexity bounds, seems better suited to be generalized to

first order Horn expressions. We need the following fact.

Fact 72 Let (S,¹) be a quasi-order (see page 21). Let r be the length of the
longest strict chain s1 ≺ s2 ≺ .. ≺ sr−1 ≺ sr. Then, any subset of S of cardinality

at least r + 1 must contain two elements s, s′ such that s 6¹ s′ and s′ 6¹ s. ¥

Theorem 73 Horn CNFs have polynomial size certificates with p(m,n) = m(n+1)

and q(m,n) =
(
m(n+1)+1

2

)
+m(n+ 1) + 1.

Proof. Fix m,n > 0. Fix any f ⊆ {0, 1}n s.t. |f |hornCNF > p(m,n) = m(n+ 1).

Case 1. f is not Horn. Exactly as Case 1 in the proof of Theorem 71.

Case 2. f is Horn. Let c1 ∧ c2 ∧ . . ∧ ck′ be a minimal, saturated repre-

sentation of f . Notice that k′ ≥ m(n + 1) + 1 since |f |hornCNF > p(m,n) =

m(n + 1). Define the set Q = Q′ ∪ Q− where Q− =
{
x[ci]

∣
∣ 1 ≤ i ≤ m(n+ 1) + 1

}

and Q′ =
{
x[ci] ∩ x[cj ]

∣
∣ 1 ≤ i < j ≤ m(n+ 1) + 1

}
. Notice that |Q| = |Q′|+ |Q−| ≤

(
m(n+1)+1

2

)
+m(n+1)+1 = q(m,n). In contrast to the proof of Theorem 71, the set

Q′ may now contain negative and positive assignments: suppose n = 4 and f con-

tains three clauses v1v2 → v3, v4 → v3 and v1 → v2. Then, Q
− ⊇ {1100, 0001, 1000}

and Q′ ⊇ {1000, 0000}. Clearly, 1000 is negative and 0000 is positive.
Fix an arbitrary Horn CNF g = c′1 ∧ . . ∧ c′l with l ≤ m. Suppose g is consistent

with f over Q. Suppose that each clause in g is falsified only by n+ 1 assignments

in Q−. Then only m(n + 1) assignments in Q− are negative for g, and hence g

and f cannot be consistent over Q−. Hence, there exists a clause c′ in g that is

falsified by at least n + 2 assignments in Q−. Let n + 2 of these assignments be

A = {x[c∗1], . . , x[c∗n+2]}, and each c∗l = s∗l → b∗l for all 1 ≤ l ≤ n+2. Now we consider

chains s∗l1 ⊂ . . ⊂ s∗lp , where 1 ≤ lj ≤ n+2 for all 1 ≤ j ≤ p (i.e. we consider proper

chains under set inclusion among the antecedents of the clauses corresponding to

the assignments in A). Clearly, any such chain is of length at most n + 1 because

113



there are n variables and s∗l1 might be empty. We apply Fact 72 and conclude that

there are two assignments x[c
∗
i ], x[c

∗
j ] in A ⊆ Q− such that s∗i 6⊆ s∗j and s

∗
j 6⊆ s∗i .

It holds that x[c
∗
i ] 6|= c′ and x[c

∗
j ] 6|= c′, and we conclude that x[c

∗
i ] ∩ x[c∗j ] 6|= c′ and

hence x[c
∗
i ]∩x[c∗j ] 6|= g (following the same argument as in the proof of Theorem 71).

Now we show that x[c
∗
i ] ∩ x[c

∗
j ] |= c for every clause c ∈ f . For clauses c other

than c∗i and c
∗
j , Lemma 70 guarantees that x

[c∗i ] |= c and x[c
∗
j ] |= c. Since c is Horn,

x[c
∗
i ] ∩ x[c

∗
j ] |= c. For c = c∗i , it holds that x

[c∗i ] ∩ x[c
∗
j ] |= c∗i because s

∗
i 6⊆ s∗j implies

that x[c
∗
i ] ∩ x[c

∗
j ] 6|= s∗i so that x

[c∗i ] ∩ x[c
∗
j ] |= c∗i . Similarly, x

[c∗i ] ∩ x[c
∗
j ] |= c∗j . We

conclude that x[c
∗
i ] ∩ x[c

∗
j ] |= f since x[c

∗
i ] ∩ x[c

∗
j ] satisfies every clause in f . Thus, f

and g disagree on x[c
∗
i ] ∩ x[c

∗
j ] ∈ Q′, which is a contradiction. ¥

7.5 Learning from entailment

In the model of learning from interpretations, a certificate is a set of interpreta-

tions (or assignments in the case of propositional logic). So far we have showed

how to construct interpretation certificates, since our constructions were based on

assignments. These constructions provide bounds for the complexity of learning

classes in the model of learning from interpretations. In the model of learning from

entailment, a certificate is a set of clauses. We present a general transformation

that allows us to obtain an entailment certificate from an interpretation certificate.

Similar observations have been made before in different context e.g. (Khardon and

Roth, 1999; De Raedt, 1997) where one transforms efficient algorithms instead of

just certificates. Note however, that for computational efficiency we must be able to

solve the implication problem for the language of hypotheses used by the algorithm.

Definition 40 Let x be an interpretation. Then ones(x) is the set of variables that

are set in x.

Lemma 74 Let f be a boolean expression and x an interpretation. Then,

x |= f if and only if f 6|= ones(x)→ ∨

b 6∈ones(x) b.

114



Proof. Suppose x |= f . By construction, x 6|= ones(x)→ ∨

b 6∈ones(x) b. Suppose by

way of contradiction that f |= ones(x) → ∨

b 6∈ones(x) b. But since x 6|= ones(x) →
∨

b 6∈ones(x) b we conclude that x 6|= f , which contradicts our initial assumption. Now,

suppose x 6|= f . Hence, there is a clause s → ∨

i bi in f falsified by x. This can

happen only if s ⊆ ones(x) and bi 6∈ ones(x) for all i. Clearly, s → ∨

i bi |=
ones(x)→ ∨

b 6∈ones(x) b. Therefore f |= ones(x)→ ∨

b 6∈ones(x) b. ¥

Theorem 75 Let S be an interpretation certificate for a boolean expression f w.r.t.

a class B of boolean expressions. Then, the set {ones(x)→ ∨

b 6∈ones(x) b | x ∈ S} is

an entailment certificate for f w.r.t. B.

Proof. If S is an interpretation certificate for f w.r.t. some class B of propositional
expressions, then for all g ∈ B there is some assignment x ∈ S such that x |= f

and x 6|= g or vice versa. Therefore, by Lemma 74, it follows that f 6|= ones(x) →
∨

b 6∈ones(x) b and g |= ones(x)→ ∨

b 6∈ones(x) b or vice versa. Given the arbitrary nature

of g the theorem follows. Moreover, both sets have the same cardinality. ¥

7.6 Certificate size lower bounds

The certificate results above imply that unate and Horn CNF are learnable with a

polynomial number of queries but as mentioned above this was already known. It

is therefore useful to review the relationship between the certificate size of a class

and its query complexity. From (Hegedus, 1995; Hellerstein et al., 1996) we know

that if CS(B) is the certificate size of a certain class B, then its query complexity
(denoted QC(B)) satisfies:

CS(B) ≤ QC(B) ≤ CS(B) log(|B|)

For the class of monotone DNF there is an algorithm that achieves query com-

plexity O(mn) (Valiant, 1984; Angluin, 1988). Since log(
∣
∣monotoneDNF≤m

∣
∣) =

115



Θ(mn), a certificate result is not likely to improve the known learning complexity. In

the case of Horn CNF, there is an algorithm that achieves query complexity O(m2n)

(Angluin, Frazier, and Pitt, 1992). Since again log(
∣
∣hornCNF≤m

∣
∣) = Θ(mn) im-

proving on known complexity would require a certificate for Horn of size o(m). The

results in this section show that this is not possible and in fact that our certificate

constructions are optimal. We do this by giving lower bounds on certificate size.

Naturally, these also imply lower bounds for the learning complexity.

In particular, for every m,n with m < n we construct an n-variable monotone

DNF f of size greater than m and show that any certificate that f has more than

m terms must have cardinality at least q(m,n) = m+1+
(
m+1
2

)
. We also show that

if m > n then there is a monotone DNF of size greater than m that requires a cer-

tificate of size Ω(mn). These results also apply to both unate and Horn CNF/DNF

as described below. We first give the result for m < n:

Theorem 76 Any certificate construction for monotone DNF for m < n with

p(m,n) = m has size q(m,n) ≥ m+ 1 +
(
m+1
2

)
.

Proof. Let Xn = {x1, . . , xn} be the set of n variables and let m < n. Let

f = t1 ∨ · · · ∨ tm+1 where ti is the term containing all variables (unnegated) except

xi. Such a representation is minimal and hence f has size exactly m+ 1. We show

that any set with fewer than m + 1 +
(
m+1
2

)
assignments cannot certify that f has

more thanm terms. That is, for any set Q of size less thanm+1+
(
m+1
2

)
assignments,

we show that there is a monotone DNF with at most m terms consistent with f

over Q.

If Q contains at most m positive assignments of weight n − 1 then it easy to
see that the function with minterms corresponding to these positive assignments is

consistent with f over Q. Hence we may assume that Q contains at least m + 1

positive assignments of weight n− 1. Since f only has m+ 2 positive assignments,
one of which is 1n, Q must include all m + 1 positive assignments corresponding

to the minterms of f. Thus if |Q| < m + 1 +
(
m+1
2

)
then Q must contain strictly

116



less than
(
m+1
2

)
negative assignments. Notice that all the intersections between

pairs of positive assignments of weight n− 1 are different and there are
(
m+1
2

)
such

intersections. It follows that Q must be missing some intersection between some

pair of positive assignments in Q. But then there is an m-term monotone DNF

consistent with Q which uses one term for the missing intersection and m−1 terms
for the other m− 1 positive assignments. ¥

We can strengthen the previous theorem so that for every n a fixed function

f serves for all m < n. The motivation behind this is that the lower bound in

Theorem 76 implies a lower bound on the query complexity of any strongly proper

learning algorithm (Hellerstein and Raghavan, 2002; Pillaipakkamnatt and Ragha-

van, 1996). Such algorithms are only allowed to output hypotheses that are of size

at most that of the target expression; this is in contrast with the usual scenario in

which learning algorithms are allowed to present hypotheses of size polynomial in

the size of the target. In the following certificate lower bound we use a function f

of DNF size n, so the resulting lower bound for learning algorithms applies to algo-

rithms which may use hypotheses of size at most n− 1 (even if the target function
is much smaller).

Theorem 77 Any certificate construction for monotone DNF for m < n with

p(m,n) < n has size q(m,n) ≥ m+ 1 +
(
m+1
2

)
.

Proof. Let q(m,n) = m + 1 +
(
m+1
2

)
and let f be defined as f =

∨

i∈{1,..,n} ti

where ti is the term containing all variables (unnegated) except xi. Clearly, all ti

are minterms, f has size exactly n and f is monotone. We show that for any m < n

and any set of assignments Q of cardinality strictly less than q(m,n), there is a

monotone function g of at most m terms consistent with f over Q.

We first claim that w.l.o.g. we can assume that all the assignments in the

potential certificate Q have exactly one bit set to zero (positive assignments) or two

bits set to zero (negative assignments). We prove that if Q contains the positive

assignment 1n, or a negative assignment with more than 2 bits set to zero, then we

117



can replace these by appropriate assignments with exactly 1 or 2 zeros so that any

monotone function g consistent with the latter set of assignments (call it Q′) is also

consistent with Q. Suppose first that we have a function g consistent with f over

Q′ where the positive assignment b ∈ Q with all its bits set to 1 has been changed

to b′ with just one bit set to 0 (choose it arbitrarily). Since g is monotone, g is

consistent with f over Q′, b′ ≤ b, and g(b′) = 1, it follows that g(b) = 1 and hence

g is also consistent with f over the initial Q. Now suppose that we have a function

g consistent with the set Q where one negative assignment a with more than two

bits set to zero has been (arbitrarily) changed so that some of the extra zero bits

are set to one (call the new assignment a′). Since g is consistent with Q′, g(a′) = 0,

and since g is also monotone and a ≤ a′ it follows that g(a) = 0, too. Hence, g is

consistent with Q in this second case. By induction, our assumption results in no

loss of generality.

We may assume, then, that Q is a set of fewer than q(m,n) assignments each of

which has either 1 or 2 zeros. We model the problem of finding a suitable monotone

function as a graph coloring problem. We map Q into a graph GQ = (V,E) where

V = {p ∈ Q | f(p) = 1} and E = {(p1, p2) | {p1, p2, p1 ∩ p2} ⊆ Q}. Let |V | = v and

|E| = e.

First we show that if GQ is m-colorable then there is a monotone function g

of DNF size at most m that is consistent with f over Q. It is sufficient that for

each color we find a single term tc that (1) is satisfied by the positive assignments

in Q that have been assigned some color c, with the additional condition that (2)

tc is not satisfied by any of the negative assignments in Q. We define tc as the

minterm corresponding to the intersection of all the assignments colored c by the

m-coloring. Property (1) is clearly satisfied, since no variable set to zero in any

of the assignments is present in tc. To see that (2) holds it suffices to notice that

the assignments colored c form an independent set in GQ and therefore none of

their pair-wise intersections is in Q. By the assumption no negative point below

the intersections is in Q either. The resulting consistent function g contains all

118



minterms tc. Since the graph is m-colorable, g has at most m terms.

It remains to show that GQ ism-colorable. Note that the condition |Q| < q(m,n)

translates into v + e < q(m,n) in GQ. If v ≤ m then there is a trivial m-coloring.

For v ≥ m+ 1, it suffices to prove the following: any v-node graph with v ≥ m+ 1

with at most
(
m+1
2

)
+m− v edges is m colorable. We prove this by induction on v.

The base case is v = m + 1; in this case since the graph has at most
(
m+1
2

)
− 1

edges it can be colored with only m colors (reuse one color for the missing edge).

For the inductive step, note that any v-node graph which has at most
(
m+1
2

)
+m−v

edges must have some node with fewer than m neighbors (otherwise there would

be at least vm/2 nodes in the graph, and this is more than
(
m+1
2

)
+ m − v since

v is at least m + 2 in the inductive step). By the induction hypothesis there is an

m-coloring of the (v − 1)-node graph obtained by removing this node of minimum
degree and its incident edges. But since the degree of this node was less than m in

G, we can color G using at most m colors. ¥

Finally, we give an Ω(mn) lower bound on certificate size for monotone DNF

for the case m > n. Like Theorem 76 this result gives a lower bound on query

complexity for any strongly proper learning algorithm.

Theorem 78 Any certificate construction for monotone DNF for m > n with

p(m,n) = m has size q(m,n) = Ω(mn).

Proof. Fix any constant k. We show that for all n and for all m =
(
n
k

)
− 1, there

is a function f of monotone DNF size m+ 1 such that any certificate showing that

f has more than m terms must contain Ω(nm) assignments.

Fix n, fix k. We define f as the function whose satisfying assignments have at

least n − k bits set to 1. Notice that the size of f is exactly
(
n
k

)
= m + 1. Let

P be the set of assignments corresponding to the minterms of f , i.e. P consists

of all assignments that have exactly n − k bits set to 1. Let N be the set of

assignments that have exactly n − (k + 1) bits set to 1. Notice that f is positive
for the assignments in P but negative for those in N . Clearly, assignments in P

119



are minimal weight positive assignments and assignments in N are maximal weight

negative assignments. As in the previous proof, we may assume w.l.o.g. that any

certificate Q contains assignments in P ∪ N only. Notice, too, that |P | =
(
n
k

)
and

|N | = (m+1)(n−k)
k+1

=
(

n
k+1

)
= Ω(mn) for constant k. Moreover, any assignment in N

is the intersection of two assignments in P .

Let Q ⊆ P ∪ N . If Q has at most m positive assignments then it is easy to

construct a function consistent with Q regardless of how negative examples are

placed. Otherwise, Q contains all the m+1 positive assignments in P and the rest

are assignments in N . If Q misses any assignment in N then we build a consistent

function as follows: use the minterm corresponding to the missing intersection to

“cover” two of the positive assignments with just one term. The remaining m − 1
positive assignments in P are covered by one minterm each. Hence, any certificate

Q must contain P ∪N and thus is of size Ω(nm). ¥

We close by observing that all of the lower bounds above apply to unate or Horn

CNF/DNF as well. This follows from the fact that monotone CNF/DNF is a special

case of unate or Horn CNF/DNF and that the function f is outside the class (has

size more than m in all cases).

7.7 An exponential lower bound for renamable

Horn

In this section we show that renamable Horn CNF expressions do not have poly-

nomial certificates. This answers an open question posed in (Feigelson, 1998) and

implies that the class of renamable Horn CNF is not exactly learnable using a

polynomial number of membership and equivalence queries.

Definition 41 A boolean CNF function f (of arity n) is renamable Horn if there

exists some assignment c such that fc is Horn, where fc(x) = f(x ⊕ c) for all

120



x ∈ {0, 1}n. In other words, the function obtained by renaming the variables
according to c is Horn. We call such an assignment c an orientation for f .

To show non-existence of certificates, we need to prove the negation of the

property in Definition 33, namely: for all two-variable polynomials p(·, ·) and q(·, ·)
there exist n,m > 0 and a boolean function f̂ ⊆ {0, 1}n s.t.

∣
∣
∣f̂
∣
∣
∣
renH

> p(m,n)

such that for every Q ⊆ {0, 1}n it holds (1) |Q| > q(m,n) or (2) some g ∈ B≤m is
consistent with f over Q.

In particular, we define an f̂ that is not renamable Horn, so that
∣
∣
∣f̂
∣
∣
∣
renH

=∞ >

p(m,n) holds for any function p(m,n).

Hence, we need to show: for every polynomial q(·, ·), there exist n,m > 0 and

a non-renamable Horn f̂ ⊆ {0, 1}n s.t. if no g ∈ B≤m is consistent with f̂ over

some set of assignments Q, then |Q| > q(m,n). We say that a set Q such that no

g ∈ B≤m is consistent with f̂ over Q is a certificate that f̂ is not small renamable

Horn.

What we actually show is: for each n which is a multiple of 3, there exists

a non-renamable Horn f̂ ⊆ {0, 1}n s.t. if no g ∈ Bn6 is consistent with f̂ over

some set of assignments Q, then |Q| ≥ 1
3
22n/3. Equivalently, for every such n every

certificate Q that f̂ is not a renamable Horn CNF function of size n6 has to be of

super-polynomial (in fact exponential) size. This is clearly sufficient to prove the

non-existence of polynomial certificates for renamable Horn boolean functions.

The following lemma due to Feigelson is useful:

Lemma 79 (Feigelson (1998)) Let f be a renamable Horn function. Then there

is an orientation c for f such that c |= f .

Proof. The proof which we include for completeness is due to Feigelson (1998).

Let c′ an orientation of f such that c′ 6|= f . Let c be the positive assignment of

f which is minimal with respect to the partial order <c′ . Such an assignment is

unique: if a and b are both positive assignments unrelated in the partial order, then

c′′ = a ∩c′ b is positive and c′′ <c′ a, b.

121



We claim that c is a orientation for f . It suffices to show a ∩c′ b = a ∩c b for
all positive assignments a and b. We show that (a ∩c′ b)[i] = (a ∩c b)[i] for all i s.t.
1 ≤ i ≤ n. If i is such that c[i] = c′[i] then clearly (a ∩c′ b)[i] = (a ∩c b)[i]. Let i
be such that c[i] 6= c′[i]. Then every positive assignment sets the bit i like c[i]: if

a[i] 6= c[i] then (a ∩c′ c)[i] = c′[i] and thus (a ∩c′ c) <c′ c (strictly), contradicting

the minimality of c. Thus a[i] = b[i] = c[i] and (a ∧ b)[i] = (a ∨ b)[i], and therefore

(a ∩c b)[i] = (a ∩c′ b)[i]. ¥

Definition 42 The function f̂ which we use is as follows: Let n = 3k for some

k ≥ 1. We define f̂ : {0, 1}n → {0, 1} to be the function whose only satisfying
assignments are 0k1k1k, 1k0k1k, and 1k1k0k.

Lemma 80 The function f̂ defined above is not renamable Horn.

Proof. To see that a function f is not renamable Horn with orientation c it suffices

to find a triple (p1, p2, q) such that p1 |= f , p2 |= f but q 6|= f where q = p1 ∩c p2.
By Lemma 79 it is sufficient to check that the three positive assignments are not

valid orientations for f :

The triple (1k1k0k, 1k0k1k, 1k1k1k) rejects c = 0k1k1k.

The triple (0k1k1k, 1k1k0k, 1k1k1k) rejects c = 1k0k1k.

The triple (0k1k1k, 1k0k1k, 1k1k1k) rejects c = 1k1k0k. ¥

The following lemma is an extension of Lemma 57 from (Feigelson, 1998). We

say that a triple (p1, p2, q) such that p1 |= f , p2 |= f but q 6|= f is suitable for c if

q ≤c p1 ∩c p2.

Lemma 81 If Q is a certificate that f̂ is not small renamable Horn with orientation

c, then Q includes a suitable triple (p1, p2, q) for c.

Proof. Suppose that a certificate Q that f̂ is not small renamable Horn with

orientation c does not include a suitable triple (p1, p2, q) for c. That is, p1 |= f̂ ,

122



p2 |= f̂ but q 6|= f̂ where q ≤c p1 ∩c p2. Feigelson (1998) defines a function g that is
consistent with f̂ on Q as follows:

g(x) =







1 if x ∈ Q and x |= f̂

1 if x ≤c (s1 ∩c s2) for any s1, s2 ∈ Q s.t. s1 |= f̂ and s2 |= f̂

0 otherwise.

The function g is consistent with Q since by assumption no negative example is

covered by the second condition. Feigelson (1998) shows that:

Claim 82 The function g is renamable Horn with orientation c.

Proof. This proof is due to Feigelson (1998); we include it here for completeness.

Consider any assignments p1, p2 that are positive for g, i.e., p1 |= g and p2 |= g, and

let t = p1 ∩c p2. If p1, p2 are included in Q, then clearly t |= g by the definition of

g. If p1 6∈ Q then p1 ≤c (s1 ∩c s2) for some positive s1, s2 ∈ Q (second condition in

the definition of g). Since t ≤c p1 ≤c (s1 ∩c s2), then by the definition of g, t |= g

as well. The same reasoning applies for the remaining case p2 6∈ Q. Hence, g is

renamable Horn with orientation c. ¥

Now, we show that g is also small. We use the fact that our particular f̂ is

designed to have very few positive assignments. First notice that g only depends

on the positive assignments in Q. Moreover, these must be positive assignments for

f̂ . Suppose that Q contains any l ≤ 3 of these positive assignments. Let these be
x1, . . , xl. A DNF representation for g is:

g =
∨

1≤i≤l
ti ∨

∨

1≤i<j≤l
ti,j

where ti is the term that is true for the assignment xi only and ti,j is the term that

is true for the assignment xi ∩c xj and all assignments below it (w.r.t. c). Notice
that we can represent this with just one term by removing literals that correspond

to maximal values (w.r.t. c).

123



Since l ≤ 3, g has at most 3+
(
3
2

)
= 6 terms. Hence, g has CNF size at most n6

(multiply out all terms to get the clauses). Now we use the fact that if there is a

CNF formula representing g of size at most n6, then there must be a (syntactically)

renamable Horn representation g̃ for g which is also of size at most n6: it is well

known that if a function h is Horn and g is a non-Horn CNF representation for h,

then every clause in g can be replaced with a Horn clause which uses a subset of its

literals; see e.g. (McKinsey, 1943) or Claim 6.3 in (Khardon and Roth, 1996). We

arrive at a contradiction: Q is not a certificate that f̂ is not small renamable Horn

with orientation c since g̃ is not rejected. ¥

Theorem 83 For all n = 3k, there is a function f̂ : {0, 1}n → {0, 1} which is not

renamable Horn such that any certificate Q showing that the renamable Horn size

of f̂ is more than n6 must have |Q| ≥ 1
3
22n/3.

Proof. The Hamming distance between any two positive assignments for f̂ is

2n/3. Since (as observed by Feigelson) the intersection of two different bits equals

the minimum of the two bits, any triple can be suitable for at most 2n/3 orientations.

A negative example in Q can appear in at most 3 triples (only 3 choices for p1, p2),

and hence any negative example in Q contributes to at most 3 · 2n/3 orientations.
The theorem follows since we need to reject all orientations. ¥

Corollary 84 Renamable Horn CNFs do not have polynomial size certificates.

We conclude by summarizing all the results obtained in the following table:

Class LowerBound UpperBound

unate DNF/CNF m < n
(
m+1
2

)
+m+ 1 (Th. 77)

(
m+1
2

)
+m+ 1 (Th. 65)

unate DNF/CNF m ≥ n Ω(mn)∗ (Th. 78) O(mn) (Feigelson, 1998)

Horn CNF m < n
(
m+1
2

)
+m+ 1 (Th. 77)

(
m+1
2

)
+m+ 1 (Th. 71)

Horn CNF m ≥ n Ω(mn)∗ (Th. 78)
(
m+1
2

)
+m+ 1 (Th. 71)

renamable Horn CNF 1
32

2n/3 (Th. 83)

∗ Strong certificate size only.

124



Chapter 8

The Subsumption Lattice and

Learnability

This chapter is a result of an attempt to generalize the constructions of the certifi-

cates for propositional Horn expressions to first order logic. In particular, we have

tried to generalize Theorem 73 which uses the fact that propositional clauses have

short proper subsumption chains. We show in Section 8.1 that this is not the case

in first order logic, which, to the best of our knowledge, was unknown. As proved in

Section 8.2, this implies that learning first order Horn clauses is hard if only mem-

bership queries are available. Finally, Section 8.3 studies the number of distinct

pairings that two clauses can have, showing that it can indeed be exponential in the

number of variables used by the clauses. This implies that our learning algorithm

of Chapter 5 can make an exponential number of queries in the worst case.

8.1 On the length of proper chains

In this section we study the length of proper subsumption chains of clauses

c1 ≺ c2 ≺ . . ≺ cn

125



We show that in the case of fully inequated clauses, the length of any proper chain is

polynomial in the number of literals and the number of terms in the clauses involved.

On the other hand, if clauses are not fully inequated, then chains of exponential

length exist, even if clauses are function free. This implies that simple algorithmic

approaches that rely on repeated minimal size subsumption step refinements may

require a long time to converge (Nienhuys-Cheng and De Wolf, 1997).

8.1.1 Fully inequated clauses have short proper chains

For reasons that will become clear in the proof of Lemma 88, we use the biased

function WTerms (see Chapter 4) which counts the number of terms in an expres-

sion, with functional terms contributing twice as much as variables. As an example,

WTerms(p(x, f(x), a)) = 5 whereas NTerms(p(x, f(x), a)) = 3.

Lemma 85 Let c1, c2 be two non-trivial, fully inequated clauses. If c1 ¹ c2, then it

must be via a non-unifying substitution (w.r.t. c1).

Proof. Let θ be the witnessing substitution for the fact that c1 ¹ c2. Suppose

that θ is unifying w.r.t. c1. That is, there exist two distinct terms t, t
′ in c1 that

have been unified and therefore t · θ = t′ · θ = t̂. Since c1 is fully inequated, the

inequality (t 6= t′) ∈ c1. But then (t 6= t′) · θ is precisely (t̂ 6= t̂) and hence it cannot

be included in any non-trivial clause, contradicting the fact that c1 · θ ⊆ c2. ¥

Lemma 86 Let c1, c2 be two fully inequated clauses. If c1 ¹ c2, then

NTerms(c1) ≤ NTerms(c2).

Proof. All distinct terms in c1 remain distinct in c1 · θ because θ is non-unifying
by Lemma 85. Hence, c2 has at least as many terms as c1 since it contains c1θ.

Moreover, θ might replace (light) variables by (heavier) functional terms, and the

lemma follows. ¥

126



Lemma 87 Let c1, c2 be two fully inequated clauses s.t. c1 ¹ c2. Then,

NLiterals(c1) ≤ NLiterals(c2).

Proof. If NLiterals(c1) > NLiterals(c2), then at least two literals in c1, and hence

two terms in c1, must be unified in c1, contradicting Lemma 85. ¥

Lemma 88 Let c1, c2 be fully inequated clauses such that c1 ≺ c2. Then, either

NLiterals(c1) < NLiterals(c2) or WTerms(c1) < WTerms(c2).

Proof. By assumption, c1 and c2 are such that c1 ¹ c2 but c2 6¹ c1. Lem-

mas 86 and 87 guarantee that NLiterals(c1) ≤ NLiterals(c2) and WTerms(c1) ≤
WTerms(c2). We disprove the possibility that both NLiterals(c1) = NLiterals(c2)

and WTerms(c1) = WTerms(c2). Suppose so, and let θ be the substitution such

that c1θ ⊆ c2. By Lemma 85, θ is non-unifying w.r.t. c1. It must be a variable

renaming also, since otherwise we would have that WTerms(c1) < WTerms(c2). If

θ is a variable renaming and NLiterals(c1) = NLiterals(c2), then c1 and c2 must be

syntactic variants, contradicting the assumption that c2 6¹ c1. ¥

Lemma 89 The longest proper subsumption chain of fully inequated clauses with

at most t terms and l literals is of length at most 2t+ l.

Proof. Let c1 ≺ c2 ≺ . . ≺ cn be a chain of maximal length. By Lemma 88, after

each step in the chain (from left to right), either we increase the number of literals,

or the quantity WTerms increases. By Lemmas 86 and 87, these quantities never

decrease. The bound t on the number of terms implies thatWTerms can never grow

beyond 2t (in the case that all the terms are functional). Since NLiterals cannot

surpass l, the number of total clauses in our chain is at most 2t+ l. ¥

127



8.1.2 Function free clauses have long proper chains

In this section we demonstrate that function free first order clauses can produce

chains of exponential length. We first show that if the maximal arity of a predicate

symbol is a, we can produce chains of length Ω(al) with clauses using a distinct

variables and at most l literals, where l ≤ a/2. We then strengthen this result and

show that even if we restrict the signature to contain predicate symbols of arity at

most 3, chains of exponential length still exist.

Let p be a predicate symbol of arity a. The chain d1 Â d2 Â . . Â dn is defined

inductively. The first clause is d1 = p(z, . . , z), and given clause di = p1, p2, . . , pk,

we define the next clause di+1 as follows:

1. if p1 contains two occurrences of the variable z, then di+1 = p2, . . , pk, or else

2. if p1 contains c ≥ 3 occurrences of the variable z, replace the atom p1 by a

new set of atoms p′1, . . , p
′
k′ such that k

′ = min(c, l − k + 1), and every new

atom p′j for 1 ≤ j ≤ k′ is a copy of p1 in which the j’th occurrence of the

variable z has been replaced by a new fresh variable not appearing in di (the

same variable for all copies).

Example 15 Suppose p has arity 4 and that l = 3. The construction described

above produces the following chain of length 11:

p(z, z, z, z)

Â p(x1, z, z, z), p(z, x1, z, z), p(z, z, x1, z)

Â p(x1, x2, z, z), p(z, x1, z, z), p(z, z, x1, z)

Â p(z, x1, z, z), p(z, z, x1, z)

Â p(x2, x1, z, z), p(z, x1, x2, z), p(z, z, x1, z)

Â p(z, x1, x2, z), p(z, z, x1, z)

Â p(z, z, x1, z)

Â p(x2, z, x1, z), p(z, x2, x1, z), p(z, z, x1, x2)

128



Â p(z, x2, x1, z), p(z, z, x1, x2)

Â p(z, z, x1, x2)

Â ∅

To see that this process always terminates, it is sufficient to observe that we

drop atoms that contain a small number of occurrences of the variable z, and every

time we replace an existing atom by new ones, the new ones have strictly fewer

occurrences of the variable z. Hence, this process terminates in a finite number of

steps and the last clause is cn = ∅.
Let N(c, s) be the number of subsumption generalizations that can be produced

by this method when starting with a singleton clause which is allowed to expand on

s literals (i.e., l = s+1) and whose only atom has c ≥ 2 occurrences of the variable
z. Then, the following relations hold:

N(2, s) = 1, for all s ≥ 0

When there are only 2 occurrences of the variable z, the only possible step is to

remove the atom, thus obtaining the empty clause. After this, no more generaliza-

tions are possible.

N(c, 0) = c− 1, for all c ≥ 2

This is derived by observing that when we have c ≥ 2 occurrences of the distin-
guished variable z and no expansion on the number of literals is possible, we can

apply c − 2 steps that replace occurrences of z by new variables, and a final step
that drops the literal. After this, no more generalizations are possible.

N(c, s) = 1 +
s∑

i=max(0,s−c+1)

N(c− 1, i), for all c > 2, s > 0

129



This recurrence is obtained by observing that the initial clause containing our

single atom can be replaced by max(0, s − c + 1) “copies” in a first generalization

step. After this, each of these copies which contain c− 1 occurrences of the distin-
guished variable z, go through the series of generalizations: the left-most atom has

0 “positions” to use for its expansion and is generalized N(c− 1, 0) times until it is
finally dropped; the next atom has 1 “position” to expand since the left-most atom

has been dropped, and hence it produces N(c− 1, 1) generalization steps until it is
finally dropped, and so on.

Lemma 90 N(c, s) ≥
(

c
s+1

)
− 1 for c ≥ 2.

Proof. Recall that in case that n < k,
(
n
k

)
= 0. The proof is by induction on c, s.

The base cases are when s = 0 or c = 2:

• N(c, 0) = c− 1 ≥
(
c
1

)
− 1 = c− 1 for all c ≥ 2.

• N(2, s) = 1 ≥
(

2
s+1

)
− 1 for all s ≥ 0.

For the step case, assume that N(c′, s′) ≥
(

c′

s′+1

)
for values c′ < c or s′ < s. Then,

if c ≥ 3 and s ≥ 1 we have that:

N(c, s) = 1 +
s∑

i=max(0,s−c+1)

N(c− 1, i) (8.1)

≥ 1 +N(c− 1, s) +N(c− 1, s− 1) (8.2)

≥ 1 +

(
c− 1
s+ 1

)

− 1 +
(
c− 1
s

)

− 1 (8.3)

=

(
c

s+ 1

)

− 1 (8.4)

For (8.2), notice that c ≥ 3 and s ≥ 1 imply that 0 ≤ s− 1 and s− c + 1 ≤ s− 1,
hence max{0, s − c + 1} ≤ s − 1. For (8.3) we apply the hypothesis of induction,
and for (8.4) we use the basic identity

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
which also holds for n, k

such that k > n. ¥

130



It remains to show that this is a proper chain. First, we investigate key structural

properties of the clauses participating in our chain.

Lemma 91 Let Vars(p) be the variables occurring in the atom p. For all di =

p1, . . , pk the following properties hold:

• Every atom pj ∈ di contains no repeated occurrences of variables, with the

exception of z, which appears at least twice in each atom.

• Vars(pj) ⊇ Vars(pj+1) for all j = 1, . . , k − 1.

Proof. Proved by induction on the updates of di. ¥

From the properties stated in the previous lemma, it follows that we can view

any clause di as a sequence of blocks of atoms B1, B2, . . , Bm such that all the atoms

in a single block contain exactly the same variables, and variables appearing in

neighboring blocks are such that Vars(Bj) ⊃ Vars(Bj+1).

Lemma 92 Fix some clause di, and let p be an atom in any block B. If p · θ ∈ B,

then θ does not change variables in p.

Proof. By induction on the updates of di. The claim is trivially true for d1

since it contains a single atom. For the step case, assume the lemma is true for

di = p1, . . , pk.

If di+1 = p2, . . , pk (left-most atom was dropped), then the induction hypoth-

esis guarantees the result. Otherwise, di+1 = p′1, . . , p
′
k′ , p2, . . , pk (left-most atom

replaced by new set containing one more variable in different places). We only have

to check that the claim is true for the new block B = p′1, . . , p
′
k′ since the hypothesis

of induction guarantees that the lemma holds in the rest of the blocks. If k′ = 1 then

B contains a single atom and the lemma is trivially true. Otherwise, B contains

at least two atoms. Notice that the way the atoms p′1, . . , p
′
k′ have been created is

by replacing the variable z in p1 by a new variable x, but in different positions in

each new atom p(t′j). Hence, it holds that for every pair p1, p2 ∈ B, they agree on

131



all positions except in two where one has the variable z and the other one has the

new variable x (and vice versa for the other position). If p1 · θ = p2, θ would have

to map the variable z into the newly introduced variable x. But this would result

in an atom with at least two occurrences of x, and such atoms do not appear in

the clauses we create. Hence, the new variable must be left untouched by θ and

therefore there is no θ such that p1 · θ = p2. Since p1, p2 are arbitrary atoms we

conclude that p · θ 6∈ B unless p · θ = p and therefore θ does not change the value

of variables in p. ¥

Lemma 93 Let di be any clause and let B1, . . , Bm be its blocks. Then, for any pair

of blocks Bi1 and Bi2 s.t. i1 < i2, there exists some variable in Vars(Bi2) \ {z} that

is in the same position j in all the atoms in Bi1 but in all the atoms in Bi2 appears

in different positions, always different from the one in Bi1. Moreover, all the atoms

in Bi2 contain the variable z at position j.

Proof. By induction on the updates of di. The claim is trivially true for d1 since

it contains a single atom and hence a single block. For the step case, assume the

lemma is true for di = p1, . . , pk.

If di+1 = p2, . . , pk (left-most atom was dropped), then the induction hypothesis

guarantees the result. If di+1 = p′1, . . , p
′
k′ , p2, . . , pk, then the property is guaranteed

by the hypothesis of induction for pairs of blocks in p2, . . , pk. It remains to check

that the lemma is true when Bi1 = p′1, . . , p
′
k′ and Bi2 is any other block in di+1.

If the replaced atom p1 ∈ di appeared in a different block in di as the atoms in

Bi2 , then the hypothesis of induction applies and we conclude that some variable

in Bi2 satisfies the property stated in the lemma. If p1 appeared in the same block

as the atoms in Bi2 , then the variable that was introduced by the creation of that

block has to be in different positions in all the atoms in Bi2 . Since all the atoms in

p′1, . . , p
′
k′ inherit this variable from p1, the lemma follows. ¥

132



Lemma 94 Fix some clause di = p1, . . , pk with at least 2 atoms (i.e., k ≥ 2).

Then p2 · θ, . . , pk · θ ∈ di only if θ does not change variables in p2.

Proof. Let di = B1, . . , Bm. Let p be any atom in any block Bj. Notice that

p · θ 6∈ B1, . . , Bj−1 since atoms in blocks B1, . . , Bj−1 contain strictly more variables

than p · θ. Hence p · θ ∈ Bj, . . , Bm. We next argue inductively over the blocks’

indices starting with m. Consider any atom p in the last block Bm. The fact that

p · θ ∈ di implies by our previous argument that p · θ ∈ Bm. But since p ∈ Bm,

Lemma 92 shows that θ cannot change variables in Bm. Now, fix some block Bj

where j < m and assume that variables in blocks Bj+1, . . , Bm are not changed by

θ. Let p be any atom in Bj, and fix some other block Bj′ s.t. j < j ′. Lemma 93

guarantees that there exists some variable x ∈ Vars(Bj′) that appears in a position

in p in which atoms in Bj′ contain the variable z. Since x is not changed by θ,

it cannot be that p · θ ∈ Bj′ . Bj′ is arbitrary among Bj+1, . . , Bm and therefore

p · θ 6∈ Bj+1, . . , Bm. The only possibility then is that p · θ ∈ Bj in which case

Lemma 92 guarantees that the variables in Bj are not changed by θ. This induction

shows that θ cannot change variables that appear in the leftmost block of p2, . . , pk,

and hence in p2 as required. ¥

Finally, we prove:

Lemma 95 For all i = 1, . . , n− 1 we have that di Â di+1.

Proof. Suppose that di = p1, . . , pk. We have the following possible transitions

from di to di+1:

Case 1. di+1 = p2, . . , pk. Clearly, di ⊃ di+1, and hence di º di+1 via the empty

substitution. Suppose by way of contradiction that di ¹ di+1, so there must be a

substitution θ s.t. di · θ ⊆ di+1. Clearly, i + 1 6= n since otherwise we could not

satisfy ∅ 6= di · θ ⊆ ∅ = di+1. Therefore, di+1 6= ∅ and di contains at least 2 atoms.
di · θ ⊆ di+1 implies that p2 · θ, . . , pk · θ ⊆ di, and by Lemma 94, θ must not change

variables in p2. If p1 and p2 are in the same block, then p1 · θ = p1 6∈ di+1. If p1

and p2 are in different blocks, then Lemma 93 guarantees that for every atom in

133



p2, . . , pk there is a variable not changed by θ that appears in a different location in

p1. Hence, p1 · θ 6∈ di+1, contradicting our assumption that di ¹ di+1.

Case 2. di+1 = p′1, . . , p
′
k′ , p2, . . , pk. Let x be the newly introduced variable.

Then, di+1 · {x 7→ z} ⊆ di and hence di º di+1. To see that di 6¹ di+1, suppose that

this is not the case. Hence, there must be a substitution θ such that di · θ ⊆ di+1.

If di = p1, (i.e., di contains one atom only), then p1 · θ ⊆ p′1, . . , p
′
k′ . In this case, θ

must map z into the new variable x but this results in multiple occurrences of x,

and hence p1 · θ 6⊆ p′1, . . , p
′
k′ . Hence, di must contain at least two atoms and the

substitution θ must satisfy that p1 ·θ, . . , pk ·θ ∈ p′1, . . , p
′
k′ , p2, . . , pk. The new atoms

p′1, . . , p
′
k′ contain more variables than p1, . . , pk, therefore p1 · θ, . . , pk · θ ∈ p2, . . , pk,

and hence p1 · θ, . . , pk · θ ∈ di. By the same reasoning as in the previous case, we

conclude that di Â di+1. ¥

Theorem 96 Let p be a predicate symbol of arity a ≥ 1. There exists a proper

subsumption chain of length aΩ(l) of function free clauses using at most a variables

and l literals if l ≤ a/2.

Proof. Lemma 90 guarantees that the chain produced is of length at least N(a, l−
1) ≥

(
a
l

)
− 1 = aΩ(l) if l ≤ a/2. ¥

In the remainder of this section, we strengthen the result of Theorem 96 achiev-

ing the same exponential bound using predicates of arity at most 3.

Definition 43 Let d be any clause. Let Trans(d) be the clause obtained by re-

placing each literal p(t1, . . , ta) with a new set {p(yi, yi+1, ti) | 1 ≤ i ≤ a} , where all
y1, . . , ya+1 are new variables not appearing in d. The new variables y1, . . , ya+1

should be different for each atom in d.

Example 16 The clause p(z, x1, x2, z), p(z, z, x1, z) is transformed into the clause

p(y1, y2, z), p(y2, y3, x1), p(y3, y4, x2), p(y4, y5, z),

p(y′1, y
′
2, z), p(y

′
2, y
′
3, z), p(y

′
3, y
′
4, x1), p(y

′
4, y
′
5, z).

134



Lemma 97 Let d be a function free clause with predicate symbols of arity at most

a, containing at most v variables and l literals. Then, Trans(d) uses predicates of

arity 3, has l(a+ 1) + v variables and uses at most al literals. ¥

Lemma 98 Let d1, d2 be clauses. Then, d1 ¹ d2 iff Trans(d1) ¹ Trans(d2).

Proof. Assume first that d1 ¹ d2, i.e., there is a substitution θ from variables in d1

into terms of d2 such that d1 ·θ ⊆ d2. Obviously, θ does not alter the value of the new

variables added to Trans(d1), and hence Trans(d1) · θ = Trans(d1 · θ) ⊆ Trans(d2),

so that Trans(d1) ¹ Trans(d2).

For the other direction, assume that there exists a substitution θ such that

Trans(d1) · θ ⊆ Trans(d2). Let d1 = l11 ∨ l21 ∨ . . ∨ lk1
1 and let {yj1, . . , yjarity(lj1)+1

}
be the variables used in the transformation for literal lj1 in d1, for 1 ≤ j ≤ k1.

Similarly, let d2 = l12 ∨ l22 ∨ . . ∨ lk2
2 and let {y′j1, . . , y′jarity(lj2)+1

} be the variables
used in the transformation for literal lj2 in d2, for 1 ≤ j ≤ k2. First we see that θ

must map blocks of auxiliary variables in Trans(d1), {yj1, . . , yjarity(lj1)+1
} into blocks

of auxiliary variables in Trans(d2), {y′j
′

1 , . . , y
′j′

arity(lj
′

2 )+1
} so that the predicate sym-

bol of lj1 coincides with the predicate symbol of l
j′

2 . Moreover, the “order” of the

variables is preserved, i.e., θ maps each yji 7→ y′j
′

i , for all 1 ≤ i ≤ arity(lj
′

2 ). By

way of contradiction, suppose that there exists a pair of variables in Trans(d1),

yji and y
j
i+1, that have been mapped into y

′a
∗ and y

′b
∗, respectively, where a 6= b.

Then, p(yji , y
j
i+1, ∗) · θ = p(y′a∗, y

′b
∗, ∗) ∈ Trans(d2). This contradicts the fact that,

by construction, all literals in Trans(d2) are such that the superscripts of the first

two auxiliary variables coincide.

Suppose now that some yji has been mapped into y
′j′
i′ where i 6= i′ and i is the

smallest such index. Assume also that the predicate symbol corresponding to literal

lj1 is p. If i > 1, then p(y
j
i−1, y

j
i , ∗) · θ = p(y′j

′

i−1, y
′j′
i′ , ∗) ∈ Trans(d2). But this is a

contradiction since all literals in Trans(d2) are such that its two initial arguments

have the form p(y′∗h, y
′∗
h+1, ∗) but in this case i− 1 + 1 6= i′. If i = 1, then either we

135



find variables

{yji+h 7→ y′
j′

i′+h, y
j
i+h+1 67→ y′

j′

i′+h+1} ∈ θ

for some h s.t. i + h ≤ arity(p) in which case we arrive to the same contradiction

as in the previous case. Otherwise, there is no such pair and hence

p(yjarity(p), y
j
arity(p)+1, ∗) · θ = p(y′

j′

arity(p)+i′ , y
′j′
arity(p)+1+i′ , ∗) 6∈ Trans(d2)

because the variable y′j
′

arity(p)+1+i′ does not exist in Trans(d2).

Now, the fact that each yji 7→ y′j
′

i implies that θ maps arguments of literals in

d1 into arguments in the same position of literals in d2. Moreover, since blocks of

variables are not mixed, all arguments from a literal in d1 are mapped into all the

arguments of a fixed literal in d2, so we conclude that d1 · θ ⊆ d2 and d1 ¹ d2 as

required. ¥

Corollary 99 If there is a predicate symbol of arity at least 3, then there exist

proper subsumption chains of length vΩ(
√
v) of function free clauses using at most v

variables and v
2

literals, where v ≥ 9.

Proof. Theorem 96 shows that there exists a chain of length
√
v
Ω(
√
v)
= vΩ(

√
v) if we

use predicate symbols of arity
√
v,

√
v variables and

√
v
2
atoms per clause. Consider

the chain Trans(d1) Â Trans(d2) Â . . Â Trans(dn). Lemma 98 guarantees that this

is also a proper chain. Obviously, it is of the same length as the initial one, and by

Lemma 97 it uses clauses with
√
v
2
(
√
v + 1) +

√
v = v

2
+ 3

√
v

2
≤ v variables (here we

use v ≥ 9) and √
v
√
v
2
= v

2
literals. ¥

8.2 Learning from membership queries only

In this section we show how a result on some aspect of the structure of first order

clauses can be exploited to prove a negative learnability result. In this case, we

136



show that there can be no polynomial algorithm that learns the class of monotone

function free clauses from membership queries only.

We use a combinatorial notion, the teaching dimension (Angluin, 2001; Goldman

and Kearns, 1995) that is a lower bound for the complexity of exact learning from

membership queries only.

Definition 44 The teaching dimension of a class T is the minimum integer d such
that for each expression f ∈ T there is a set T of at most d examples (the teaching

set) with the property that any expression g ∈ T different from f is not consistent

with f over the examples in T .

We show that the teaching dimension of the class of monotone first order clauses

is of exponential size, thus eliminating the possibility of existence of a polynomial

learning algorithm that has access to membership queries only.

Let k be such that log2 k is an integer. Then 〈t1, .., tk〉 denotes the term repre-
sented by a complete binary tree of applications of a binary function symbol f of

depth log k with leaves t1, .., tk. For example, 〈1, 2, 3, 4, 5, 6, 7, 8〉 represents the term
f(f(f(1, 2), f(3, 4)), f(f(5, 6), f(7, 8))). Notice that the number of distinct terms in

〈t1, .., tk〉 is at most k+
∑k

i=1 NTerms(ti). In particular, if each ti is either a variable

or a constant, then NTerms(〈t1, .., tk〉) ≤ 2k.
Let p be a unary predicate symbol. We consider all the possible minimal gen-

eralizations1 of the clause p(〈a, .., a〉), where the constant a occurs k times. Among
them we find the clauses

C0 = p(〈x, .., x〉)

C1 = p(〈a, x, .., x〉) ∨ p(〈x, a, x, .., x〉) ∨ .. ∨ p(〈x, .., x, a〉)

C2 = p(〈a, a, x, .., x〉) ∨ p(〈a, x, a, x.., x〉) ∨ .. ∨ p(〈x, .., x, a, a〉)
...

1That is, clauses C that are strict generalizations of p(〈a, .., a〉) for which no other clause C ′ is
such that p(〈a, .., a〉) Â C ′ Â C.

137



Ck/2 = p(〈a, .., a, x, .., x〉) ∨ .. ∨ p(〈x, .., x, a, .., a〉)
...

Ck−1 = p(〈a, .., a, x〉) ∨ p(〈a, .., a, x, a〉) ∨ .. ∨ p(〈x, a, .., a〉)

Clearly, |Ci| =
(
k
i

)
. In particular,

∣
∣Ck/2

∣
∣ =

(
k
k/2

)
> 2k/2 > k

√
k.

We next define the learning problem for which we find an exponential lower

bound. The signature S consists of the function symbols {f/2, a/0, b/0} and a
single predicate symbol {p/1}. Fix l to be some integer. Let the (representation)
concept class be

C = {first order monotone S-clauses with at most l atoms}

Let the set of examples be

E = {first order ground monotone S-clauses with at most l atoms}

We identify the representation concept class C with its denotations in the fol-
lowing way. The concept represented by C ∈ C is {E ∈ E | C |= E} which in this
case coincides with {E ∈ E | C ¹ E}. Thus, this problem is cast in the framework
of learning from entailment.

Suppose that the target concept is f = p(〈a, .., a〉) and that l ≤ ( k
k/2)
2
.

We want to find a (minimal) teaching set T for f . The cardinality of a minimal

teaching set for f is clearly a lower bound on the teaching dimension of C. By
definition, the examples in T have to eliminate every other expression in C. In
other words, for every expression g in C other than f , T must include an example
E such that f ¹ E and g 6¹ E or vice versa.

We first observe that the clause Ck/2 is not included in our concept class C
because it contains too many literals: l ≤ ( k

k/2)
2
=

|Ck/2|
2

<
∣
∣Ck/2

∣
∣. However, subsets

138



of Ck/2 with exactly l atoms are included in C because they are monotone S-clauses
of at most l literals. There are exactly K =

(( k
k/2)
l

)
> (k

√
k

l
)l > k(

√
k−1)l = kΩ(l

√
k)

such subsets, let these be C1
k/2, .., C

K
k/2. By definition, the teaching set T has to

reject each one of these K clauses.

Notice that Cj
k/2 ¹ f = p(〈a, .., a〉) for each j = 1, . . , K (consider the witnessing

substitution {x 7→ a}). Now, to reject an arbitrary Cj
k/2, T has to include some

example E ∈ E s.t. Cj
k/2 ¹ E but p(〈a, .., a〉) 6¹ E. Hence, for each Cj

k/2 the example

Ej must be included in T . Hence, T must contain each E1, . . , EK and the teaching

dimension for this class is at least K = kΩ(l
√
k).

Theorem 100 Let C be the class of monotone clauses built from a signature con-

taining 2 constants, a binary function symbol and a unary predicate symbol with at

most l ≤
√
t
2

literals and t terms per clause. Then, the teaching dimension of C is

at least tΩ(l
4√t).

Proof. Just set k =
√
t and notice that clauses have at most l ≤

√
t
2
atoms and each

atom contains at most 2k terms, hence a clause contains at most 2kl ≤ 2
√
t
√
t
2
= t

terms. ¥

Therefore we can conclude:

Corollary 101 Let C be the class of monotone clauses built from a signature con-

taining 2 constants, a binary function symbol and a unary predicate symbol with at

most l ≤
√
t
2

literals and t terms per clause. Then, there is no polynomial algorithm

that learns C from membership queries only. ¥

8.3 On the number of pairings

Next, we give a exponential lower bound on the number of pairings between two

arbitrary clauses. In Chapter 5 we prove an (asymptotically) matching upper bound.

We use the following basic fact:

139



Fact 102 Let v ∈ N. Let π and π′ be two distinct permutations of {0, . . , v − 1}.
Then, there exists an index l ∈ {0, . . , v − 2} such that for no other index l′ ∈
{0, . . , v − 2} it holds that π(l) = π(l′) and π(l + 1) = π(l′ + 1). In other words,

when writing the permutations π, π′ as an array of numbers (π(0), . . , π(v − 1))
and (π′(0), . . , π′(v − 1)), there must exist two consecutive terms π(l), π(l + 1) in
(π(0), . . , π(v−1)) that can not be found one after the other in (π′(0), . . , π′(v−1)). ¥

8.3.1 General clauses

In this section we show that general first order Horn clauses can have an exponential

number of pairings.

Fix v ∈ N such that log2 v is an integer. Let ti,j be a ground term that is

unique for every pair of integers 0 ≤ i, j ≤ v − 1. For example, ti,j could use two
unary function symbols f0 and f1 and a constant a and we define ti,j as a string

of applications of f0 or f1 of length 2 log v, finalized with the constant a such that

the first log v function symbols encode the binary representation of i and the last

log v function symbols encode j. For example, if v = 8, then the term t5,3 can be

encoded as f1(f0(f1
︸ ︷︷ ︸

5

(f0(f1(f1
︸ ︷︷ ︸

3

(a)))))). The size of such a term (in terms of symbol

occurrences) is exactly 2 log v + 1. Let x0, . . , xv−1 and y0, . . , yv−1 be variables. We

define

C1 =
∨

0≤i,j <v

0≤l<v−1

p(ti,j, xl, xl+1)

and

C2 =
∨

0≤i,j<v
p(ti,j, yi, yj).

Notice that |C1| = v2(v − 1) and |C2| = v2, and they use a single predicate

symbol of arity 3.

Any 1-1 matching between the variables in C1 and C2 can be represented by a

permutation π of {0, . . , v− 1}: each variable xi in C1 is matched to yπ(i) in C2. We

implicitly assume that all the matchings considered in this section map the common

140



ground terms of C1 and C2 to one another, i.e., the extended matchings also contain

all entries [t - t => t], where t is any ground term appearing in both C1 and C2.

Let the extended matching induced by permutation π be

{
xi − yπ(i) ⇒ Xπ(i)

∣
∣ 0 ≤ i ≤ v − 1

}
∪ {t− t ⇒ t | t ∈ Terms(C1) ∩ Terms(C2)} .

First we study lggπ(C1, C2), the pairing induced by the 1-1 matching represented

by π. A literal p(ti,j, Xa, Xb) is included in lggπ(C1, C2) iff a = π(l) and b = π(l+1)

for some l ∈ {0, . . , v − 2} (this is the condition imposed by C1), and i = a, j = b

(this is the condition imposed by C2). Therefore,

lggπ(C1, C2) =
∨

0≤l<v−1
p(tπ(l),π(l+1), Xπ(l), Xπ(l+1)).

Finally we see that different permutations yield pairings that are indeed sub-

sumption inequivalent, i.e., lggπ(C1, C2) 6¹ lggπ′(C1, C2) for any π 6= π′. It is

sufficient to observe that since π and π′ are distinct, there must exist some term

tπ(l),π(l+1) in lggπ(C1, C2) that is not present in lggπ′(C1, C2) — see Fact 102. Since

the terms t∗,∗ are ground, subsumption is not possible.

There are v! distinct permutations of {0, . . , v−1} so we conclude that there are
v! different pairings of C1 and C2. Hence:

Theorem 103 Let S be a signature containing a predicate symbol of arity at least 3,

two unary function symbols and a constant. The number of distinct pairings between

a pair of S-clauses using v variables, O(v3) literals and terms of size O(log v) can

be Ω(v!). ¥

8.3.2 Function free clauses

Can we do the same trick without using function symbols? Our first attempt is to

try to mimic the behavior of pairing ground terms in the previous section by using

2 additional variables, z0 and z1, that encode the integers i and j in a similar way

141



that the terms ti,j did. By looking at matchings π that match the variables z0 and

z1 to themselves, we guarantee that the resulting lggπ contains the correct encoding

of the variables in the last and previous-to-last positions of the atoms. Let

C1 =
∨

(i1,..,ilog v)∈{0,1}log v

(j1,..,jlog v)∈{0,1}log v

0≤l<v−1

p(zi1 , . . , zilog v
, zj1 , . . , zjlog v

, xl, xl+1)

and

C2 =
∨

(i1,..,ilog v) = binary(i)

(j1,..,jlog v) = binary(j)

0≤i,j<v

p(zi1 , . . , zilog v
, zj1 , . . , zjlog v

, yi, yj).

Notice that |C1| = v2(v − 1) and |C2| = v2, they use a single predicate symbol

of arity 2 log v + 2, and both clauses use exactly v + 2 variables.

Again, any 1-1 matching between the variables x0, . . , xv−1 in C1 and y0, . . , yv−1

in C2 can be represented by a permutation π of {0, . . , v − 1}: each variable xi in
C1 is matched to yπ(i) in C2. Let the matching induced by permutation π be

{
xi − yπ(i) ⇒ Xπ(i)

∣
∣ 0 ≤ i < v

}
.

First we study lggπ∪{z0−z0,z1−z1}(C1, C2), the pairing induced by the 1-1 match-

ing represented by π augmented with z0 and z1 matched to themselves. A lit-

eral p(zi1 , . . , zilog v
, zj1 , . . , zjlog v

, Xa, Xb) is included in lggπ(C1, C2) iff a = π(l) and

b = π(l + 1) for some l ∈ {0, . . , v − 2} (this is the condition imposed by C1), and

(i1, . . , ilog v) = binary(a), (j1, . . , jlog v) = binary(b) (this is the condition imposed

by C2). Therefore,

lggπ∪{z0−z0,z1−z1}(C1, C2) =
∨

0≤l<v−1
p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)),

where we abuse notation and use binary(n) to denote the tuple zn1 , . . , znlog v
encod-

ing the integer n in its binary representation using z0, z1. For example, assuming

142



v = 8, binary(6) = z1, z1, z0.

Example 17 Let v = 4 and let π = (3201). Hence, in this example we use a

predicate symbol p/6. For clarity, we omit the predicate symbol throughout the

example and denote atom p(t1, . . , t6) by just the argument tuple (t1, . . , t6). Also,

we omit the disjunction operator ∨.
Then, clause C1 is

(z0, z0, z0, z0, x0, x1) (z0, z0, z0, z1, x0, x1) (z0, z0, z1, z0, x0, x1) (z0, z0, z1, z1, x0, x1)

(z0, z1, z0, z0, x0, x1) (z0, z1, z0, z1, x0, x1) (z0, z1, z1, z0, x0, x1) (z0, z1, z1, z1, x0, x1)

(z1, z0, z0, z0, x0, x1) (z1, z0, z0, z1, x0, x1) (z1, z0, z1, z0, x0, x1) (z1, z0, z1, z1, x0, x1)

(z1, z1, z0, z0, x0, x1) (z1, z1, z0, z1, x0, x1) (z1, z1, z1, z0, x0, x1) (z1, z1, z1, z1, x0, x1)

(z0, z0, z0, z0, x1, x2) (z0, z0, z0, z1, x1, x2) (z0, z0, z1, z0, x1, x2) (z0, z0, z1, z1, x1, x2)

(z0, z1, z0, z0, x1, x2) (z0, z1, z0, z1, x1, x2) (z0, z1, z1, z0, x1, x2) (z0, z1, z1, z1, x1, x2)

(z1, z0, z0, z0, x1, x2) (z1, z0, z0, z1, x1, x2) (z1, z0, z1, z0, x1, x2) (z1, z0, z1, z1, x1, x2)

(z1, z1, z0, z0, x1, x2) (z1, z1, z0, z1, x1, x2) (z1, z1, z1, z0, x1, x2) (z1, z1, z1, z1, x1, x2)

(z0, z0, z0, z0, x2, x3) (z0, z0, z0, z1, x2, x3) (z0, z0, z1, z0, x2, x3) (z0, z0, z1, z1, x2, x3)

(z0, z1, z0, z0, x2, x3) (z0, z1, z0, z1, x2, x3) (z0, z1, z1, z0, x2, x3) (z0, z1, z1, z1, x2, x3)

(z1, z0, z0, z0, x2, x3) (z1, z0, z0, z1, x2, x3) (z1, z0, z1, z0, x2, x3) (z1, z0, z1, z1, x2, x3)

(z1, z1, z0, z0, x2, x3) (z1, z1, z0, z1, x2, x3) (z1, z1, z1, z0, x2, x3) (z1, z1, z1, z1, x2, x3)

Clause C2 is

(z0, z0, z0, z0, y0, y0) (z0, z0, z0, z1, y0, y1) (z0, z0, z1, z0, y0, y2) (z0, z0, z1, z1, y0, y3)

(z0, z1, z0, z0, y1, y0) (z0, z1, z0, z1, y1, y1) (z0, z1, z1, z0, y1, y2) (z0, z1, z1, z1, y1, y3)

143



(z1, z0, z0, z0, y2, y0) (z1, z0, z0, z1, y2, y1) (z1, z0, z1, z0, y2, y2) (z1, z0, z1, z1, y2, y3)

(z1, z1, z0, z0, y3, y0) (z1, z1, z0, z1, y3, y1) (z1, z1, z1, z0, y3, y2) (z1, z1, z1, z1, y3, y3)

The matching induced by π = (3201) is

{x0 − y3 ⇒ X3, x1 − y2 ⇒ X2, x2 − y0 ⇒ X0, x3 − y1 ⇒ X1}.

And lggπ∪{z0−z0,z1−z1}(C1, C2) is (notice that we have marked literals of C1 and

C2 which participate in this lgg)

(z1, z1, z1, z0, X3, X2) (z1, z0, z0, z0, X2, X0) (z0, z0, z0, z1, X0, X1)

Finally, we want to check whether different permutations yield pairings that are

indeed subsumption inequivalent, i.e., if for any π 6= π′

lggπ∪{z0−z0,z1−z1}(C1, C2) 6¹ lggπ′∪{z0−z0,z1−z1}(C1, C2).

To this end, we investigate which substitutions θ satisfy

lggπ∪{z0−z0,z1−z1}(C1, C2) · θ ⊆ lggπ′∪{z0−z0,z1−z1}(C1, C2).

If θ does not change the values of z0, z1, then Fact 102 guarantees that some atom

p(binary(π(l)), binary(π(l + 1)), ∗, ∗) · θ = p(binary(π(l)), binary(π(l + 1)), ∗, ∗)

in lggπ∪{z0−z0,z1−z1}(C1, C2) ·θ does not occur in lggπ′∪{z0−z0,z1−z1}(C1, C2). If θ maps

both variables z0, z1 to the same value (either z1 or z0), then inclusion cannot happen

since lggπ′∪{z0−z0,z1−z1}(C1, C2) contains no atoms of the form p(z0, . . , z0, ∗, ∗) or
p(z1, . . , z1, ∗, ∗). Obviously, if z0 or z1 are mapped into any other variable X∗, then
the inclusion is not possible either. Hence, θ must exchange the values of z0, z1,

144



and:

p(binary(π(l)), binary(π(l + 1)), ∗, ∗) · θ = p(binary(π(l)), binary(π(l + 1)), ∗, ∗)

where binary(n) is the “complement” of binary(n). For example, assuming v = 8,

binary(6) = z0, z0, z1. More precisely, binary(n) = binary(v − 1− n). Thus:

lggπ′∪{z0−z0,z1−z1}(C1, C2)

=
∨

0≤l<v−1
p(binary(π′(l)), binary(π′(l + 1)), Xπ′(l), Xπ′(l+1))

=
∨

0≤l<v−1
p(binary(π(l)), binary(π(l + 1)), Xπ′(l), Xπ′(l+1))

=
∨

0≤l<v−1
p(binary(v − 1− π(l)), binary(v − 1− π(l + 1)), Xπ′(l), Xπ′(l+1))

=
∨

0≤l<v−1
p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)),

where π(l)=v − 1 − π(l), for all 1 ≤ l < v. We have seen that there is only one

permutation π′ = π for which there exists some θ s.t.

lggπ∪{z0−z0,z1−z1}(C1, C2) · θ ⊆ lggπ′∪{z0−z0,z1−z1}(C1, C2).

Moreover, θ is exactly {z0 7→ z1, z1 7→ z0} ∪ {Xl 7→ Xv−1−l | 0 ≤ l < v}.
There are v! distinct permutations of {0, . . , v−1} so we conclude that there are

v!
2
different pairings of C1 and C2. Hence:

Theorem 104 Let S be a signature containing a predicate symbol of arity at least

2 log v+2. The number of distinct pairings between a pair of function free S-clauses

using v + 2 variables, O(v3) literals can be Ω(v!). ¥

145



8.3.3 Function free clauses with fixed arity

We strengthen the result in the previous section by finding a similar construction

in which the arity is a fixed constant not dependent on v. We use Lemma 98, which

gives us precisely a way to convert clauses with variable arity into fixed arity while

preserving their subsumption properties.

Using the same clauses C1 and C2 from the previous construction, we establish

that for some appropriate 1-1 matching Mπ it holds:

lggMπ(Trans(C1),Trans(C2)) ≈ Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)), (8.5)

where ≈ stands for the “variable renaming” relation.
In the previous section we established that there are v!

2
distinct pairings between

C1, C2. Lemma 98 guarantees that the transformation on clauses Trans(·) preserves
subsumption, hence there must be also v!

2
distinct clauses corresponding to the

right hand side of Equation 8.5. Equation 8.5 therefore establishes that there are

also v!
2
different pairings between Trans(C1) and Trans(C2). Moreover, the clauses

Trans(C1) and Trans(C2) use resources within bounds, namely, they use a polyno-

mial number of atoms (in v), a polynomial number of variables (in v), but fixed

arity 3.

To fix notation, let us unfold the transformation:

Trans(C1) =
∨

i=(i1,..,ilog v)∈{0,1}log v

j=(j1,..,jlog v)∈{0,1}log v

0≤l<v−1

Pl,i,j,xl,xl+1

Trans(C2) =
∨

(i1,..,ilog v) = binary(i)

(j1,..,jlog v) = binary(j)

0≤i,j<v

Pi,j,yi,yj

where

146



Pl,i,j,A,B = p(ul,i,j1 , ul,i,j2 , zi1) ∨ . . ∨ p(ul,i,jlog v, u
l,i,j
log v+1, zilog v

) ∨

p(ul,i,jlog v+1, u
l,i,j
log v+2, zj1) ∨ . . ∨ p(ul,i,j2 log v, u

l,i,j
2 log v+1, zjlog v

) ∨

p(ul,i,j2 log v+1, u
l,i,j
2 log v+2, A) ∨ p(ul,i,j2 log v+2, u

l,i,j
2 log v+3, B),

Pi,j,A,B = p(wi,j
1 , w

i,j
2 , zi1) ∨ . . ∨ p(wi,j

log v, w
i,j
log v+1, zilog v

) ∨

p(wi,j
log v+1, w

i,j
log v+2, zj1) ∨ . . ∨ p(wi,j

2 log v, w
i,j
2 log v+1, zjlog v

) ∨

p(wi,j
2 log v+1, w

i,j
2 log v+2, A) ∨ p(wi,j

2 log v+2, w
i,j
2 log v+3, B),

Intuitively, the clause Pl,i,j,xl,xl+1
uses the additional variables {ul,i,jk }1≤k≤2 log v+3

to “encode” the atom p(binary(i), binary(j), xl, xl+1) in C1, i.e.

Pl,i,j,xl,xl+1
= Trans(p(binary(i), binary(j), xl, xl+1)).

Similarly, the clause Pi,j,yi,yj uses the set of auxiliary variables {wi,j
k }1≤k≤2 log v+3 to

“encode” the atom p(binary(i), binary(j), yi, yj) in C2, i.e.,

Pi,j,yi,yj = Trans(p(binary(i), binary(j), yi, yj)).

Notice that Trans(C1) uses Θ(v
3 log v) literals and variables, and Trans(C2) uses

Θ(v2 log v) literals and variables. Both use a single predicate of arity 3.

Example 18 Following Example 17, let p(z1, z0, z1, z1, x1, x2) be an atom in C1 and

p(z0, z1, z1, z0, y1, y2) be an atom in C2. Then,

P1,2,3,x1,x2 = Trans(p(z1, z0, z1, z1, x1, x2))

= p(u1,2,31 , u1,2,32 , z1) ∨ p(u1,2,32 , u1,2,33 , z0)

∨ p(u1,2,33 , u1,2,34 , z1) ∨ p(u1,2,34 , u1,2,35 , z1)

147



∨ p(u1,2,35 , u1,2,36 , x1) ∨ p(u1,2,36 , u1,2,37 , x2)

P1,2,y1,y2 = Trans(p(z0, z1, z1, z0, y1, y2))

= p(w1,2
1 , w1,2

2 , z0) ∨ p(w1,2
2 , w1,2

3 , z1)

∨ p(w1,2
3 , w1,2

4 , z1) ∨ p(w1,2
4 , w1,2

5 , z1)

∨ p(w1,2
5 , w1,2

6 , y1) ∨ p(w1,2
6 , w1,2

7 , y2)

Then Trans(C1) =

(u0,0,0
1 ,u0,0,0

2 ,z0) (u0,0,0
2 ,u0,0,0

3 ,z0) (u0,0,0
3 ,u0,0,0

4 ,z0) (u0,0,0
4 ,u0,0,0

5 ,z0) (u0,0,0
5 ,u0,0,0

6 ,x0) (u0,0,0
6 ,u0,0,0

7 ,x1)

(u0,0,1
1 ,u0,0,1

2 ,z0) (u0,0,1
2 ,u0,0,1

3 ,z0) (u0,0,1
3 ,u0,0,1

4 ,z0) (u0,0,1
4 ,u0,0,1

5 ,z1) (u0,0,1
5 ,u0,0,1

6 ,x0) (u0,0,1
6 ,u0,0,1

7 ,x1)

...

(u0,3,2
1 ,u0,3,2

2 ,z1) (u0,3,2
2 ,u0,3,2

3 ,z1) (u0,3,3
3 ,u0,3,3

4 ,z1) (u0,3,2
4 ,u0,3,2

5 ,z0) (u0,3,2
5 ,u0,3,2

6 ,x0) (u0,3,2
6 ,u0,3,2

7 ,x1)

(u0,3,3
1 ,u0,3,3

2 ,z1) (u0,3,3
2 ,u0,3,3

3 ,z1) (u0,3,3
3 ,u0,3,3

4 ,z1) (u0,3,3
4 ,u0,3,3

5 ,z1) (u0,3,3
5 ,u0,3,3

6 ,x0) (u0,3,3
6 ,u0,3,3

7 ,x1)

(u1,0,0
1 ,u1,0,0

2 ,z0) (u1,0,0
2 ,u1,0,0

3 ,z0) (u1,0,0
3 ,u1,0,0

4 ,z0) (u1,0,0
4 ,u1,0,0

5 ,z0) (u1,0,0
5 ,u1,0,0

6 ,x1) (u1,0,0
6 ,u1,0,0

7 ,x2)

(u1,0,1
1 ,u1,0,1

2 ,z0) (u1,0,1
2 ,u1,0,1

3 ,z0) (u1,0,1
3 ,u1,0,1

4 ,z0) (u1,0,1
4 ,u1,0,1

5 ,z1) (u1,0,1
5 ,u1,0,1

6 ,x1) (u1,0,1
6 ,u1,0,1

7 ,x2)

...

(u1,2,0
1 ,u1,2,0

2 ,z1) (u1,2,0
2 ,u1,2,0

3 ,z0) (u1,2,0
3 ,u1,2,0

4 ,z0) (u1,2,0
4 ,u1,2,0

5 ,z0) (u1,2,0
5 ,u1,2,0

6 ,x1) (u1,3,3
6 ,u1,2,0

7 ,x2)

...

(u1,3,3
1 ,u1,3,3

2 ,z1) (u1,3,3
2 ,u1,3,3

3 ,z1) (u1,3,3
3 ,u1,3,3

4 ,z1) (u1,3,3
4 ,u1,3,3

5 ,z1) (u1,3,3
5 ,u1,3,3

6 ,x1) (u1,3,3
6 ,u1,3,3

7 ,x2)

(u2,0,0
1 ,u2,0,0

2 ,z0) (u2,0,0
2 ,u2,0,0

3 ,z0) (u2,0,0
3 ,u2,0,0

4 ,z0) (u2,0,0
4 ,u2,0,0

5 ,z0) (u2,0,0
5 ,u2,0,0

6 ,x2) (u2,0,0
6 ,u2,0,0

7 ,x3)

(u2,0,1
1 ,u2,0,1

2 ,z0) (u2,0,1
2 ,u2,0,1

3 ,z0) (u2,0,1
3 ,u2,0,1

4 ,z0) (u2,0,1
4 ,u2,0,1

5 ,z1) (u2,0,1
5 ,u2,0,1

6 ,x2) (u2,0,1
6 ,u2,0,1

7 ,x3)

148



...

(u2,3,3
1 ,u2,3,3

2 ,z1) (u2,3,3
2 ,u2,3,3

3 ,z1) (u2,3,3
3 ,u2,3,3

4 ,z1) (u2,3,3
4 ,u2,3,3

5 ,z1) (u2,3,3
5 ,u2,3,3

6 ,x2) (u2,3,3
6 ,u2,3,3

7 ,x3)

Trans(C2) =

(w0,0
1 ,w0,0

2 ,z0) (w0,0
2 ,w0,0

3 ,z0) (w0,0
3 ,w0,0

4 ,z0) (w0,0
4 ,w0,0

5 ,z0) (w0,0
5 ,w0,0

6 ,y0) (w0,0
6 ,w0,0

7 ,y0)

(w0,1
1 ,w0,1

2 ,z0) (w0,1
2 ,w0,1

3 ,z0) (w0,1
3 ,w0,1

4 ,z0) (w0,1
4 ,w0,1

5 ,z1) (w0,1
5 ,w0,1

6 ,y0) (w0,1
6 ,w0,1

7 ,y1)

(w0,2
1 ,w0,2

2 ,z0) (w0,2
2 ,w0,2

3 ,z0) (w0,2
3 ,w0,2

4 ,z1) (w0,2
4 ,w0,2

5 ,z0) (w0,2
5 ,w0,2

6 ,y0) (w0,2
6 ,w0,2

7 ,y2)

(w0,3
1 ,w0,3

2 ,z0) (w0,3
2 ,w0,3

3 ,z0) (w0,3
3 ,w0,3

4 ,z1) (w0,3
4 ,w0,3

5 ,z1) (w0,3
5 ,w0,3

6 ,y0) (w0,3
6 ,w0,3

7 ,y3)

(w1,0
1 ,w1,0

2 ,z0) (w1,0
2 ,w1,0

3 ,z1) (w1,0
3 ,w1,0

4 ,z0) (w1,0
4 ,w1,0

5 ,z0) (w1,0
5 ,w1,0

6 ,y1) (w1,0
6 ,w1,0

7 ,y0)

(w1,1
1 ,w1,1

2 ,z0) (w1,1
2 ,w1,1

3 ,z1) (w1,1
3 ,w1,1

4 ,z0) (w1,1
4 ,w1,1

5 ,z1) (w1,1
5 ,w1,1

6 ,y1) (w1,1
6 ,w1,1

7 ,y1)

(w1,2
1 ,w1,2

2 ,z0) (w1,2
2 ,w1,2

3 ,z1) (w1,2
3 ,w1,2

4 ,z1) (w1,2
4 ,w1,2

5 ,z0) (w1,2
5 ,w1,2

6 ,y1) (w1,2
6 ,w1,2

7 ,y2)

(w1,3
1 ,w1,3

2 ,z0) (w1,3
2 ,w1,3

3 ,z1) (w1,3
3 ,w1,3

4 ,z1) (w1,3
4 ,w1,3

5 ,z1) (w1,3
5 ,w1,3

6 ,y1) (w1,3
6 ,w1,3

7 ,y3)

(w2,0
1 ,w2,0

2 ,z1) (w2,0
2 ,w2,0

3 ,z0) (w2,0
3 ,w2,0

4 ,z0) (w2,0
4 ,w2,0

5 ,z0) (w2,0
5 ,w2,0

6 ,y2) (w2,0
6 ,w2,0

7 ,y0)

(w2,1
1 ,w2,1

2 ,z1) (w2,1
2 ,w2,1

3 ,z0) (w2,1
3 ,w2,1

4 ,z0) (w2,1
4 ,w2,1

5 ,z1) (w2,1
5 ,w2,1

6 ,y2) (w2,1
6 ,w2,1

7 ,y1)

(w2,2
1 ,w2,2

2 ,z1) (w2,2
2 ,w2,2

3 ,z0) (w2,2
3 ,w2,2

4 ,z1) (w2,2
4 ,w2,2

5 ,z0) (w2,2
5 ,w2,2

6 ,y2) (w2,2
6 ,w2,2

7 ,y2)

(w2,3
1 ,w2,3

2 ,z1) (w2,3
2 ,w2,3

3 ,z0) (w2,3
3 ,w2,3

4 ,z1) (w2,3
4 ,w2,3

5 ,z1) (w2,3
5 ,w2,3

6 ,y2) (w2,3
6 ,w2,3

7 ,y3)

(w3,0
1 ,w3,0

2 ,z1) (w3,0
2 ,w3,0

3 ,z1) (w3,0
3 ,w3,0

4 ,z0) (w3,0
4 ,w3,0

5 ,z0) (w3,0
5 ,w3,0

6 ,y3) (w3,0
6 ,w3,0

7 ,y0)

(w3,1
1 ,w3,1

2 ,z1) (w3,1
2 ,w3,1

3 ,z1) (w3,1
3 ,w3,1

4 ,z0) (w3,1
4 ,w3,1

5 ,z1) (w3,1
5 ,w3,1

6 ,y3) (w3,1
6 ,w3,1

7 ,y1)

(w3,2
1 ,w3,2

2 ,z1) (w3,2
2 ,w3,2

3 ,z1) (w3,2
3 ,w3,2

4 ,z1) (w3,2
4 ,w3,2

5 ,z0) (w3,2
5 ,w3,2

6 ,y3) (w3,2
6 ,w3,2

7 ,y2)

(w3,3
1 ,w3,3

2 ,z1) (w3,3
2 ,w3,3

3 ,z1) (w3,3
3 ,w3,3

4 ,z1) (w3,3
4 ,w3,3

5 ,z1) (w3,3
5 ,w3,3

6 ,y3) (w3,3
6 ,w3,3

7 ,y3)

Let [v]
def
= {0, . . , v−1}. We define the 1-1 matching Mπ between Trans(C1) and

149



Trans(C2) as follows:

{xi − yπ(i) ⇒ Xπ(i)}0≤i<v ∪ {z0 − z0, z1 − z1} ∪ (8.6)

{ul,π(l),π(l+1)
k − w

π(l),π(l+1)
k ⇒ W l

k}1≤k≤2 log v+3 and 0≤l<v−1 ∪ (8.7)

{u0,i,jk − wi,j
2 log v+4−k}1≤k≤2 log v+3 and (i,j)∈[v]2\{(π(l),π(l+1)) |0≤l<v−1} (8.8)

First we note that this is indeed a 1-1 matching since no variable in Trans(C1)

or Trans(C2) is used twice in Mπ, and all variables in Trans(C2) are present in it

(the clause Trans(C2) has fewer variables than Trans(C1)).

Parts (8.7) and (8.8) determine the matchings between auxiliary variables (those

coming from the transformation Trans); part (8.6) matches original variables. As

we see next, (8.7) and (8.8) are designed so that atoms in lggπ∪{z0−z0,z1−z1}(C1, C2)

survive2 — this is done by (8.7) — and everything else disappears (8.8).

We carefully study lggMπ(Trans(C1),Trans(C2)). We observe that Mπ matches

auxiliary variables u∗,i,j∗ −wi,j
∗ . This has the effect that in the resulting pairing, only

atoms coming from clauses P∗,i,j,∗,∗ ∈ Trans(C1) and Pi,j,∗∗ ∈ Trans(C2) survive.

Hence, it suffices to study the effect of the matching on clauses P∗,i,j,∗,∗×Pi,j,∗∗ only.

In the case that i = π(l) and j = π(l+1) for some l ∈ {0, . . , v−2}, we observe that
the auxiliary variables are matched following their order in the chain {ul,π(l),π(l+1)

k −
w
π(l),π(l+1)
k ⇒ W l

k}1≤k≤2 log v+3 (8.7), and hence clauses Pl,π(l),π(l+1),xl,xl+1
∈ C1 and

Pπ(l),π(l+1),yπ(l),yπ(l+1)
∈ C2 survive in the pairing precisely as

Pπ(l),π(l+1),Xπ(l),Xπ(l+1)
≈ Trans(p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

where the auxiliary variables used in the transformation are W l
1, . . ,W

l
2 log v+3. To

see that atoms in the product P∗,i,j,∗,∗ × Pi,j,∗∗ do not survive when (i, j) 6∈ [v]2 \
{(π(l), π(l + 1)) | 0 ≤ l < v − 1}, it is sufficient to observe that the auxiliary vari-

2By a “surviving literal” we mean a literal that is the product of literals in the respective
clauses included in the pairing because their arguments are matched according to the 1-1 matching
inducing the pairing.

150



ables are matched in reversed order {u0,i,jk − wi,j
2 log v+4−k}k (8.8), so that in order to

survive it is required that an atom p(wi,j
k+1, w

i,j
k , ∗) exists in Trans(C2) which is not

possible by construction. Therefore:

lggMπ(Trans(C1),Trans(C2))

≈
∨

0≤l<v−1
Pπ(l),π(l+1),Xπ(l),Xπ(l+1)

≈
∨

0≤l<v−1
Trans(p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

≈ Trans(
∨

0≤l<v−1
p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

≈ Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)).

Example 19 Following Example 18, the matching M(3201) is as follows. Corre-

sponding to 8.6:

{x0 − y3 ⇒ X3, x1 − y2 ⇒ X2, x2 − y0 ⇒ X0, x3 − y1 ⇒ X1} ∪ {z0 − z0, z1 − z1}

Corresponding to 8.7:

{u0,3,21 − w3,2
1 ⇒ W 0

1 , u
0,3,2
2 − w3,2

2 ⇒ W 0
2 , . . , u

0,3,2
7 − w3,2

7 ⇒ W 0
7 } ∪

{u1,2,01 − w2,0
1 ⇒ W 1

1 , u
1,2,0
2 − w2,0

2 ⇒ W 1
2 , . . , u

1,2,0
7 − w2,0

7 ⇒ W 1
7 } ∪

{u2,0,11 − w0,1
1 ⇒ W 2

1 , u
2,0,1
2 − w0,1

2 ⇒ W 2
2 , . . , u

2,0,1
7 − w0,1

7 ⇒ W 2
7 }

Corresponding to 8.8:

{u0,0,01 −w0,0
7 , u0,0,02 −w0,0

6 , . . , u0,0,07 −w0,0
1 } ∪{u0,0,21 −w0,2

7 , u0,0,22 −w0,2
6 , . . , u0,0,27 −w0,2

1 } ∪

{u0,0,31 − w0,3
7 , u0,0,32 − w0,3

6 , . . , u0,0,37 − w0,3
1 } ∪

{u0,1,01 −w1,0
7 , u0,1,02 −w1,0

6 , . . , u0,1,07 −w1,0
1 } ∪{u0,1,11 −w1,1

7 , u0,1,12 −w1,1
6 , . . , u0,1,17 −w1,1

1 } ∪

151



{u0,1,21 −w1,2
7 , u0,1,22 −w1,2

6 , . . , u0,1,27 −w1,2
1 } ∪{u0,1,31 −w1,3

7 , u0,1,32 −w1,3
6 , . . , u0,1,37 −w1,3

1 } ∪

{u0,2,11 −w2,1
7 , u0,2,12 −w2,1

6 , . . , u0,2,17 −w2,1
1 } ∪{u0,2,21 −w2,2

7 , u0,2,22 −w2,2
6 , . . , u0,2,27 −w2,2

1 } ∪

{u0,2,31 − w2,3
7 , u0,2,32 − w2,3

6 , . . , u0,2,37 − w2,3
1 } ∪

{u0,3,01 −w3,0
7 , u0,3,02 −w3,0

6 , . . , u0,3,07 −w3,0
1 } ∪{u0,3,11 −w3,1

7 , u0,3,12 −w3,1
6 , . . , u0,3,17 −w3,1

1 } ∪

{u0,3,31 − w3,3
7 , u0,3,32 − w3,3

6 , . . , u0,3,37 − w3,3
1 } ∪

Notice that the portion of the matching

{u0,3,21 − w3,2
1 ⇒ W 0

1 , u
0,3,2
2 − w3,2

2 ⇒ W 0
2 , . . , u

0,3,2
7 − w3,2

7 ⇒ W 0
7 }

makes sure that the atoms P0,3,2,x0,x1 in Trans(C1)

(u0,3,2
1 ,u0,3,2

2 ,z1) (u0,3,2
2 ,u0,3,2

3 ,z1) (u0,3,3
3 ,u0,3,3

4 ,z1) (u0,3,2
4 ,u0,3,2

5 ,z0) (u0,3,2
5 ,u0,3,2

6 ,x0) (u0,3,2
6 ,u0,3,2

7 ,x1)

and the atoms P3,2,y3,y2 in Trans(C2)

(w3,2
1 ,w3,2

2 ,z1) (w3,2
2 ,w3,2

3 ,z1) (w3,2
3 ,w3,2

4 ,z1) (w3,2
4 ,w3,2

5 ,z0) (w3,2
5 ,w3,2

6 ,y3) (w3,2
6 ,w3,2

7 ,y2)

appear in the pairing lggM(3201)
(Trans(C1),Trans(C2)) as

(W 0
1 ,W

0
2 ,z1) (W 0

2 ,W
0
3 ,z1) (W 0

3 ,W
0
4 ,z1) (W 0

4 ,W
0
5 ,z0) (W 0

5 ,W
0
6 ,X3) (W 0

6 ,W
0
7 ,X2).

Finally, lggM(3201)
(Trans(C1),Trans(C2)) =

(W 0
1 ,W

0
2 ,z1) (W 0

2 ,W
0
3 ,z1) (W 0

3 ,W
0
4 ,z1) (W 0

4 ,W
0
5 ,z0) (W 0

5 ,W
0
6 ,X3) (W 0

6 ,W
0
7 ,X2)

(W 1
1 ,W

1
2 ,z1) (W 1

2 ,W
1
3 ,z0) (W 1

3 ,W
1
4 ,z0) (W 1

4 ,W
1
5 ,z0) (W 1

5 ,W
1
6 ,X2) (W 1

6 ,W
1
7 ,X0)

(W 2
1 ,W

2
2 ,z0) (W 2

2 ,W
2
3 ,z0) (W 2

3 ,W
2
4 ,z0) (W 2

4 ,W
2
5 ,z1) (W 2

5 ,W
2
6 ,X0) (W 2

6 ,W
2
7 ,X1)

152



Recall lggπ∪{z0−z0,z1−z1}(C1, C2) is

(z1, z1, z1, z0, X3, X2) (z1, z0, z0, z0, X2, X0) (z0, z0, z0, z1, X0, X1)

and hence Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)) is

(Y 1
1 ,Y

1
2 ,z1) (Y 1

2 ,Y
1
3 ,z1) (Y 1

3 ,Y
1
4 ,z1) (Y 1

4 ,Y
1
5 ,z0) (Y 1

5 ,Y
1
6 ,X3) (Y 1

6 ,Y
1
7 ,X2)

(Y 2
1 ,Y

2
2 ,z1) (Y 2

2 ,Y
2
3 ,z1) (Y 2

3 ,Y
2
4 ,z1) (Y 2

4 ,Y
2
5 ,z0) (Y 2

5 ,Y
2
6 ,X2) (Y 2

6 ,Y
2
7 ,X0)

(Y 3
1 ,Y

3
2 ,z1) (Y 3

2 ,Y
3
3 ,z1) (Y 3

3 ,Y
3
4 ,z1) (Y 3

4 ,Y
3
5 ,z0) (Y 3

5 ,Y
3
6 ,X0) (Y 3

6 ,Y
3
7 ,X1)

the reader can check that

lggM(3201)
(Trans(C1),Trans(C2)) ≈ Trans(lgg(3201)∪{z0−z0,z1−z1}(C1, C2))

via the variable renaming {Y 1
k ↔ W 0

k , Y
2
k ↔ W 1

k , Y
3
k ↔ W 2

k | 1 ≤ k ≤ 7} .

Theorem 105 Let S be a signature containing a predicate symbol of arity at least

3. The number of distinct pairings between a pair of function free S-clauses using

O(v3 log v) variables, O(v3 log v) literals can be Ω(v!). ¥

Corollary 106 Let S be a signature containing a predicate symbol of arity at least

3. The number of distinct pairings between a pair of function free S-clauses using

at most v variables and v literals can be Ω(2v/4) for sufficiently large v. ¥

153



Chapter 9

Conclusions and Future Work

In this thesis we have studied the complexity of learning first order and proposi-

tional classes in the model of exact learning from queries. An upper bound for

the first order problem has been obtained by constructing the algorithm Learn-

Closed-Horn in Chapter 5 that learns an interesting subclass of first order Horn

expressions. Its complexity is exponential in two parameters: a (the maximal arity

of the predicates used) and v (the bound on the number of variables permitted in

any clause). The natural question after presenting this algorithm is whether it is

optimal in the sense that this exponential dependence is necessary or whether better

(polynomial) learning algorithms exist. Chapter 6 tries to answer this question by

characterizing the VC Dimension of the class of first order Horn expressions which is

known to give a lower bound for the complexity of learning in our model. However

the VC Dimension is Θ̃(cl+ ct) so that it gives a lower bound of Ω̃(cl+ ct). Hence,

the VC Dimension cannot settle our question.

While studying the VC Dimension of first order Horn expressions, we realized

that there was a disparity between how the complexity of the expressions was mea-

sured in the learning algorithms found in the literature (that used first order syn-

tactic properties such as the number of variables or number of clauses, etc.) and

how the formal definitions were presented (where the notion of size is used without

explaining how to measure it). At that point it was not clear what the best way to

154



measure this complexity was. Chapter 4 clarifies this question, with the conclusion

that two fundamentally different ways of measuring the complexity exist: what we

call TreeSize and what we call DAGSize. TreeSize is considered more standard and

it is closely related to the number of symbols needed to write a first order expression

in its usual form; DAGSize encodes the term in a smarter way by allowing shared

terms to be represented just once. In Chapter 4 we show that three parameters, the

number of clauses (c), number of terms per clause (t), and number of literals per

clause (l), capture the notion of DAGSize. However, in the case of TreeSize, none

of the parameters usually considered can capture it. From this last observation we

conclude that none of the existing results on learnability of first order expressions

are valid if one considers TreeSize as the way of measuring the complexity of first

order expressions. Surprisingly, this fact had never been noticed before.

Returning to the question of whether our learning algorithm of Chapter 5 is

optimal, we have seen that the VC Dimension does not give a complete answer.

Hence, a more powerful tool, the certificate size, needs to be considered. As a first

step towards characterizing the certificate size of first order Horn expressions, we

compute in Chapter 7 the certificate size of various propositional classes. In some

cases we are even able to give exact characterizations: for example, Theorem 77

and Theorem 65 show that the certificate size of unate DNF formulas is exactly

m + 1 +
(
m+1
2

)
if m < n. However, if m ≥ n, the result obtained is weaker: the

upper bound is O(mn) (Theorem 63) but the lower bound of Ω(nm) applies to

the strong certificate size only, which is a weaker version of the certificate size.

To obtain a complete characterization of the certificate size in the case m ≥ n,

we need to obtain a strong version of our Theorem 78 (similar to the stronger

Theorem 77 version of Theorem 76). When quantifying the certificate size of Horn

CNF expressions where m ≥ n, we have not only that the lower bound of Ω(mn)

applies to the strong certificate size only, but there exists a gap to the upper bound

which is O(m2). Here, the question of whether we can prove a higher lower bound

or else if we can create certificates of smaller size to match the lower bound is still

155



open. Our final result involving certificates answers an open question by Feigelson

(1998): a slight generalization of Horn CNF, renamable Horn CNF, does not have

polynomial certificates and is therefore not learnable in the model of exact learning

from membership and equivalence queries.

Clearly, the question of whether our algorithm Learn-Closed-Horn is opti-

mal remains open. It is possible that our learning algorithm is optimal but our

analysis is not tight. Towards this we compute in Section 8.3 lower bounds for

the number of pairings between two clauses, which is the main reason for the algo-

rithm’s exponential dependence on v. Our construction shows that there are classes

for which the number of pairings is indeed exponential in v, thus showing that the

complexity analysis is tight.

A way of answering the question of the algorithm’s optimality is by computing

the certificate size of first order Horn expressions. This is important not only

because of its applications to learnability, but also from the point of view of a

logician as it would provide great insight into the structure of the very important

class of first order Horn expressions. A first attempt of generalizing the construction

in Theorem 73 of Chapter 7 led us to the study of the length of proper chains of

first order clauses w.r.t. the subsumption relation which appears in Chapter 8.

Our initial generalization attempt failed due to technical subtleties, however, we

could still prove a weaker result: no polynomial learning algorithm can exist if just

membership queries are allowed (Section 8.2).

We conclude by mentioning broader challenges for the future. The first is con-

cerned with establishing the theoretical boundaries of what is considered efficiently

learnable. For example, in our particular learning setting and problem, we have two

possible scenarios. If it turns out that our algorithm is optimal, then no polynomial

algorithm can exist for our class. Hence, we should identify which restrictions of the

class of closed Horn expressions are learnable with polynomial complexity. On the

other hand, if our algorithm is not optimal and polynomial learning is possible, then

we should identify more general classes for which efficient learning is still possible.

156



The second general challenge is concerned with how to apply query-learning

algorithms in practice. In the introduction we have mentioned how some existing

systems do this: by simulating the queries using a database of examples, by per-

forming actual experiments or simulations, or by seeking human help. Here the

challenge is to identify new domains where this is possible and beneficial.

157



Bibliography

Angluin, D. 1987a. Learning k-term DNF formulas using queries and coun-
terexamples. Technical Report YALEU/DCS/RR-559, Department of Computer
Science, Yale University, August.

Angluin, D. 1987b. Learning regular sets from queries and counterexamples.
Inform. Comput., 75(2):87–106, November.

Angluin, D. 1988. Queries and concept learning. Machine Learning, 2(4):319–342,
April.

Angluin, D., M. Frazier, and L. Pitt. 1992. Learning conjunctions of Horn clauses.
Machine Learning, 9:147–164.

Angluin, Dana. 2001. Queries revisited. In Proceedings of the International Con-
ference on Algorithmic Learning Theory, volume 2225 of Lecture Notes in Com-
puter Science, pages 12–31, Washington, DC, USA, November 25-28. Springer.

Angluin, Dana, Lisa Hellerstein, and Marek Karpinski. 1993. Learning read-once
formulas with queries. Journal of the ACM, 40(1):185–210, January.

Arias, M. and R. Khardon. 2000. Learning Inequated Range Restricted Horn
Expressions. Technical Report EDI-INF-RR-0011, Division of Informatics, Uni-
versity of Edinburgh, March.

Arias, M. and R. Khardon. 2002. Learning closed horn expressions. Information
and Computation, 178:214–240.

Arimura, Hiroki. 1997. Learning acyclic first-order Horn sentences from entail-
ment. In Proceedings of the International Conference on Algorithmic Learning
Theory, Sendai, Japan. Springer-Verlag. LNAI 1316.

Balcázar, José L., Jorge Castro, and David Guijarro. 1999. The consistency
dimension and distribution-dependent learning from queries. In Proceedings of
the International Conference on Algorithmic Learning Theory, Tokyo, Japan,
December 6-8. Springer. LNAI 1702.

158



Blumer, Anselm, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. 1989. Learnability and the Vapnik-Chervonenkis dimension. Journal of
the ACM, 36(4):929–965, October.

Bryant, C. and S. Muggleton. 2000. Closed loop machine learning. Technical
Report YCS 330, University of York, Department of Computer Science, York,
U.K.

Bshouty, Nader H. 1995. Simple learning algorithms using divide and conquer.
In Proceedings of the Conference on Computational Learning Theory.

Chang, C. and J. Keisler. 1990. Model Theory. Elsevier, Amsterdam, Holland.

Cohen, W. 1995. PAC-learning recursive logic programs: Negative results. Jour-
nal of Artificial Intelligence Research, 2:541–573.

De Raedt, L. 1997. Logical settings for concept learning. Artificial Intelligence,
95(1):187–201. See also relevant Errata (forthcoming).

De Raedt, L. and M. Bruynooghe. 1992. An overview of the interactive concept-
learner and theory revisor CLINT. In S. Muggleton, editor, Inductive Logic
Programming. Academic Press, pages 163–192.

De Raedt, L. and W. Van Laer. 1995. Inductive constraint logic. In Proceedings of
the 6th Conference on Algorithmic Learning Theory, volume 997. Springer-Verlag.

Ehrenfeucht, Andrzej, David Haussler, Michael Kearns, and Leslie Valiant. 1989.
A general lower bound on the number of examples needed for learning. Informa-
tion and Computation, 82(3):247–251, September.

Feigelson, Aaron. 1998. On Boolean Functions and their Orientations: Learn-
ing, monotone dimension and certificates. Ph.D. thesis, Northwestern University,
Evanston, IL, USA, June.

Frazier, M. and L. Pitt. 1993. Learning from entailment: An application to
propositional Horn sentences. In Proceedings of the International Conference on
Machine Learning, pages 120–127, Amherst, MA. Morgan Kaufmann.

Goldman, Sally A. and Michael Kearns. 1995. On the complexity of teaching.
Journal of Computer and System Sciences, 50:20–31.

Gottlob, Georg and Christos Papadimitriou. 2003. On the complexity of single-
rule datalog queries. Inf. Comput., 183(1):104–122.

Haussler, D. 1989. Learning conjunctive concepts in structural domains. Machine
Learning, 4(1):7–40.

159



Hegedus, T. 1995. On generalized teaching dimensions and the query complexity
of learning. In Proceedings of the Conference on Computational Learning Theory,
pages 108–117, New York, NY, USA, July. ACM Press.

Hellerstein, L., K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. 1996. How
many queries are needed to learn? Journal of the ACM, 43(5):840–862, Septem-
ber.

Hellerstein, Lisa and Vijay Raghavan. 2002. Exact learning of DNF formulas
using DNF hypotheses. In Proceedings of the 34th Annual ACM Symposium on
Theory of Computing (STOC-02), pages 465–473, New York, May 19–21. ACM
Press.

Horn, A. 1956. On sentences which are true of direct unions of algebras. Journal
of Symbolic Logic, 16:14–21.

Khardon, R. 1999a. Learning function free Horn expressions. Machine Learning,
37:241–275.

Khardon, R. 1999b. Learning range restricted Horn expressions. In Proceedings
of the Fourth European Conference on Computational Learning Theory, pages
111–125, Nordkirchen, Germany. Springer-verlag. LNAI 1572.

Khardon, R. and D. Roth. 1999. Learning to reason with a restricted view.
Machine Learning, 35(2):95–117.

Khardon, Roni. 2000. Learning horn expressions with LogAn-H. In Proceedings
of the International Conference on Machine Learning, pages 471–478. Morgan
Kaufmann.

Khardon, Roni and Dan Roth. 1996. Reasoning with models. Artificial Intelli-
gence, 87(1–2):187–213.

Kietz, J-U. and M. Lübbe. 1994. An efficient subsumption algorithm for in-
ductive logic programming. In S. Wrobel, editor, Proceedings of the 4th Inter-
national Workshop on Inductive Logic Programming, volume 237, pages 97–106.
Gesellschaft für Mathematik und Datenverarbeitung MBH.

Lloyd, J. W. 1987. Foundations of logic programming; (2nd extended ed.).
Springer-Verlag New York, Inc.

Maass, Wolfgang and György Turán. 1992. Lower bound methods and separation
results for online learning models. Machine Learning, 9:107–145, October.

Marcinkowski, J. and L. Pacholski. 1995. Undecidability of the horn clause
implication problem. In Proceedings of the 33rd Annual IEEE Symposium on
Foundations of Computer Science, pages 354–362, Pittsburgh, PA, USA.

160



McKinsey, J. C. C. 1943. The decision problem for some classes of sentences
without quantifiers. J. Symbolic Logic, 8:61–76.

Mitchell, T. 1997. Machine Learning. McGraw-Hill.

Muggleton, S. 1995. Inverse entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):245–286.

Muggleton, S., C. Bryant, C. Page, and M. Sternberg. 1999. Combining active
learning with inductive logic programming to close the loop in machine learning.
In Proceedings of the AISB’99 Symposium on AI and Scientic Creativity.

Muggleton, S. and W. Buntine. 1988. Machine invention of first order predicates
by inverting resolution. In Proceedings of the 5th International Workshop on
Machine Learning, pages 339–351. Morgan Kaufmann.

Muggleton, S. and C. Feng. 1992. Efficient induction of logic programs. In
S. Muggleton, editor, Inductive Logic Programming. Academic Press, pages 281–
298.

Nienhuys-Cheng, S. and R. De Wolf. 1997. Foundations of Inductive Logic Pro-
gramming. Springer-verlag. LNAI 1228.

Papadimitriou, Christos H. and Mihalis Yannakakis. 1997. On the complexity of
database queries (extended abstract). In Proceedings of the 16th Annual ACM
Symposium on Principles of Database Systems, pages 12–19. ACM Press.

Pillaipakkamnatt, Krishnan and Vijay Raghavan. 1996. On the limits of proper
learnability of subclasses of DNF formulas. Machine Learning, 25:237.

Plotkin, G. D. 1970. A note on inductive generalization. Machine Intelligence,
5:153–163.

Plotkin, G. D. 1971. A further note on inductive generalization. Machine Intel-
ligence, 6:101–124.

Quinlan, J. R. 1990. Learning logical definitions from relations. Machine Learn-
ing, 5:239–266.

Rao, K. and A. Sattar. 1998. Learning from entailment of logic programs with
local variables. In Proceedings of the International Conference on Algorithmic
Learning Theory, Otzenhausen, Germany. Springer-verlag. LNAI 1501.

Reddy, C. and P. Tadepalli. 1997. Learning Horn definitions with equivalence and
membership queries. In International Workshop on Inductive Logic Programming,
pages 243–255, Prague, Czech Republic. Springer. LNAI 1297.

161



Reddy, C. and P. Tadepalli. 1998. Learning first order acyclic Horn programs
from entailment. In International Conference on Inductive Logic Programming,
pages 23–37, Madison, WI. Springer. LNAI 1446.

Reddy, C. and P. Tadepalli. 1999. Learning Horn definitions: Theory and an
application to planning. New Generation Computing, 17:77–98.

Sammut, C. and R. Banerji. 1986. Learning concepts by asking questions. In
R. Michalski, J. Carbonnel, , and T. Mitchell, editors, Machine Learning: An
Articial Intelligence Approach. Morgan Kaufmann, pages 167–192.

Schmidt-Schauss, M. 1988. Implication of clauses is undecidable. Theoretical
Computer Science, 59:287–296.

Semeraro, G., F. Esposito, D. Malerba, and N. Fanizzi. 1998. A logic framework
for the incremental inductive synthesis of datalog theories. In Proceedings of
the International Conference on Logic Program Synthesis and Transformation
(LOPSTR’97). Springer-Verlag. LNAI 1463.

Shapiro, E. Y. 1983. Algorithmic Program Debugging. MIT Press, Cambridge,
MA.

Valiant, L. G. 1985. Learning disjunctions and conjunctions. In Proceedings of the
International Joint Conference in Artificial Intelligence, pages 560–566. Morgan
Kaufmann.

Valiant, Leslie G. 1984. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November.

Vardi, M. Y. 1982. The complexity of relational query languages. In Proceedings
of the 14th Annual ACM Symposium on Theory of Computing (STOC-82), pages
137–146, New York. ACM Press.

162


