
TUFTS-CS Technical Report 2004-6

July 2004

Complexity Parameters for First Order Classes

by

Marta Arias

Dept. of Computer Science

Tufts University

Medford, Massachusetts 02155

Roni Khardon

Dept. of Computer Science

Tufts University

Medford, Massachusetts 02155

Complexity Parameters for First Order Classes?

Marta Arias and Roni Khardon

Department of Computer Science
Tufts University
161 College Ave.

Medford, MA 02155, USA
{marias,roni}@cs.tufts.edu

Abstract. We study several complexity parameters for first order for-
mulas and their suitability for first order learning models. We show that
the standard notion of size is not captured by sets of parameters that
are used in the literature and thus they cannot give a complete charac-
terization in terms of learnability with polynomial resources. We then
identify an alternative notion of size and a simple set of parameters that
are useful in this sense. Matching lower bounds derived using the Vapnik
Chervonenkis dimension complete the picture showing that these param-
eters are indeed crucial.

1 Introduction

Since the introduction of Inductive Logic Programming (ILP), several theoreti-
cal investigations have contributed to characterizing the complexity of learning
classes of expressions in first order logic (FOL). While learnability is usually de-
fined using the size of the target concept as complexity measure, the complexity
of algorithms and related lower bounds in the literature are usually quantified
with other complexity measures. It is therefore not clear what these imply for
the standard notions of polynomial learnability.

A comparison to propositional logic can highlight the difficulty. Work on
learnability in propositional logic typically uses the number of propositions n
and the size m of the target formula as complexity parameters; see (Kearns
and Vazirani, 1994) for an overview. This is reasonable as it allows a learning
algorithm to use more time and other resources when examples (length n) or
the formula being learned (length m) are larger. The situation in FOL differs
from the propositional case since we do not have a fixed instance size n and
it has proved difficult to get upper bounds directly in terms of the target size
m. Moreover several parameters are inter-related so the value of one affects the
other and a bound in terms of one implicitly depends on the other. It is therefore
harder to interpret complexity results in this context.

This paper clarifies the situation by studying explicitly the relations between
various notions of size used in the literature. We show that there is a discrepancy

? This work has been partly supported by NSF Grant IIS-0099446

between parameters which are often used and the standard notion of size, and
give a setting and set of parameters which are in some sense the right ones for
first order learnability.

Previous work has provided both lower bounds and upper bounds on the
resources required for learnability. Upper bounds are typically obtained by an-
alyzing concrete algorithms. In doing so several authors have used standard
parameters from first order logic, such as the number of clauses, the number
of literals per clause etc. Others introduce special syntactic parameters such as
depth and determinacy or restrict the structure of clauses or background knowl-
edge in their analysis (Muggleton and Feng, 1992; Džeroski, Muggleton, and
Russell, 1992; Kietz and Dzeroski, 1994; Cohen, 1995; Arimura, 1997; Reddy
and Tadepalli, 1997; Horváth and Turán, 2001; Arias and Khardon, 2002).

Lower bounds were derived using the notion of Vapnik-Chervonenkis (VC)
dimension. VC based bounds apply in several models of learnability including
the PAC model and the model of exact learning with queries (Ehrenfeucht et
al., 1989; Maass and Turán, 1992). Several lower bound results for first order
learnability (Arimura, 1997; Khardon, 1999a; Maass and Turan, 1995) ignore
some parameters and prove exponential or infinite growth w.r.t other parame-
ters. Thus, (Arimura, 1997; Khardon, 1999a) show that the complexity may be
exponential in the arity of predicates. However, both papers do not highlight the
fact that the number of literals in the expressions being learned is of the same
order (also exponential in arity). The paper (Maass and Turan, 1995) shows that
the VC dimension is infinite with a single binary predicate but does not highlight
the fact that these cases allow for an infinite number of constants (called param-
eters) whose encoding is not accounted for in the size of expressions1. In fact,
any such lower bound going beyond the size of expressions must have a hidden
unaccounted aspect: since the VC dimension is bounded by the logarithm of the
class size, for discrete cases the lower bounds cannot be larger than the size of
the learned expressions assuming a reasonable encoding scheme.

Therefore, the question is what constitutes a good set of parameters for first
order learnability. Such a set should capture the size and avoid the confusion
from inter-related parameter sizes. To answer this question we consider a setting
where the parameters of the FOL signature (number of predicates, constants,
function symbols, arity) are fixed in advance and are therefore numerical con-
stants. The concept class is defined by the other parameters controlling the
expressions (number of variables, terms, clauses etc).

We start our investigation by defining when two sets of parameters are “re-
lated” so that polynomial learnability transfers from one to the other. Using this

1 The case here is similar to learning classes with real valued parameters where each
number is charged one unit of complexity, but nonetheless the VC Dimension of
various concept classes is bounded. The negative result mentioned shows that this
does not hold for first order logic except in very restricted cases. The work in (Maass
and Turan, 1995; Grohe and Turán, 2002) identifies syntactic restrictions on formu-
las, examples, and background knowledge that give bounded VC Dimension in this
setting.

we show that there is no simple answer (set of parameters) if the standard notion
of formula size is used: the standard notion of size for FOL is not polynomially
bounded by the natural parameters of FOL. On the other hand if we use a more
compact representation, where a repeated term is counted only once, then one
can derive a polynomial bound for the total size. The crucial parameters turn
out to be c, l, and t where c is the number of clauses in the Horn expression, l is
the largest number of literals in a single clause, and t is the maximal number of
terms and subterms in a single clause. With this in mind we prove that the VC
dimension is Θ̃(cl+ ct) (where Θ̃() hides logarithmic factors in the standard Θ()
notation). This holds for ILP both in the model of learning from interpretations
(De Raedt and Dzeroski, 1994) and for learning from entailment (Frazier and
Pitt, 1993). Therefore, our results identify a natural separation of the parameters
to fixed ones relating to the signature and variable ones relating to the construc-
tion of expressions. With this we give a new notion of size and corresponding
set of parameters that capture it, and characterize the VC Dimension which is
polynomially related to these parameters.

The rest of the paper is organized as follows. The next section gives some
technical preliminaries. Section 3 defines complexity measures for first order
logic. Section 4 develops the notion of polynomially related sets of parameters
and Section 5 applies this notion to first order logic. Section 6 develops the
results on the VC Dimension. The concluding section gives further discussion of
the results and directions for future work.

2 Preliminaries

We assume familiarity with first order logic, as given e.g. in (Lloyd, 1987). The
following gives the basic definitions for concept classes and learnability in this
context.

A signature determines the variables, function symbols and predicate symbols
(with their respective arity) over which formulas are built. Function symbols of
arity zero are often called constants. A term is built bottom up from constants
and variables by applying function symbols of the appropriate arity; if t1, . . , ta
are terms and f is an a-ary function symbol f , then f(t1, . . , ta) is a term. An
atom is a predicate applied to a tuple of terms of the appropriate length. A literal
is an atom or the negation of an atom.

We consider universally quantified first order Horn expressions. A clause is a
disjunction of literals where all variables in the clause are (implicitly) universally
quantified. A Horn clause has at most one positive literal. A Horn expression
is a conjunction of Horn clauses. Note that any clause can be written as C =
(∧

n∈Negn)→ (∨
p∈Posp) where Neg and Pos are the sets of atoms that appear

in negative and positive literals of C respectively. When doing so we will refer
to (∧

n∈Negn) as the antecedent of C and to (∨
p∈Posp) as the consequent of C.

A clause is range restricted if every term that appears in its consequent also
appears in its antecedent. A clause is constrained if every term that appears in
its antecedent also appears in its consequent. For example, consider a signature

with a predicate p of arity 2, a constant b, a function symbol f of arity 1 and
a variable x. The clause C1 = p(x, b) ∧ p(f(b), x)→ p(f(x), f(b)) is constrained
but not range restricted, the clause C2 = p(x, b) ∧ p(f(b), f(x)) → p(f(x), b) is
range restricted but not constrained, and the clause C3 = p(x, b) ∧ p(f(b), x)→
p(f(x), b) is neither range restricted nor constrained.

Given a signature S, an S-interpretation (sometimes called S-model or S-
structure) assigns a “meaning” to symbols in the language in the following way.
The interpretation includes a domain D whose elements are referred to as ob-
jects. Each function symbol is associated with a mapping from tuples of domain
objects of appropriate arity to domain objects. Each predicate symbol is asso-
ciated with a subset of tuple of the appropriate arity on which it is true; this is
known as the extension of the predicate. We refer to the set of possible interpre-
tations over S as Int(S).

A formula is given a truth value on an interpretation in a natural way, by
first extending the function mapping to a term assignment associating an object
to each term and then evaluating the resulting atoms and logical connectives
based on the extension of predicates in the interpretation.

If an expression T evaluate to true on interpretation I then we say that I
satisfies T and denote this by I |= T . In this case, we also say that I is a model
of T . If T evaluates to false under I, then we say that I falsifies T and denote
this by I 6|= T . A first order expression T1 entails (logically implies) another
expression T2, denoted T1 |= T2, if every model of T1 is also a model of T2. Two
expressions T1, T2 are logically equivalent, denoted T1 ≡ T2, iff T1 |= T2 and
T2 |= T1.

There are several settings in ILP for defining what constitute concepts and
examples (Muggleton and DeRaedt, 1994). We mainly consider the framework
of learning from interpretations (De Raedt and Dzeroski, 1994) where examples
given to the learner are interpretations. Concepts are represented by first order
formulas. A concept is associated with a set of interpretations for which it is true.
Thus the concept represented by a formula ψ is {M |M |= ψ and M ∈ Int(S)}.
A concept class is a set of concepts usually described by a family of formulas
representing the concepts.

We also consider learning from entailment (Frazier and Pitt, 1993) where
examples are clauses in the language. To minimize confusion we defer definition
and discussion of this setting to Section 6.2.

The size of a concept is the size of the smallest formula representing it. If
no such formula exists, then the concept’s size is infinite. Usually the size of a
formula is its string length but other notions of size are also possible and we
discuss these in detail below. Given a concept class C and a notion of size, we
define C≤m as the concepts in C of size at most m. Naturally, C = ∪m≥1C

≤m.

While our discussion and results are largely independent of the learning model
it will be useful to have a model in mind. We briefly review the model of exact
learning with equivalence queries and membership queries (Angluin, 1988) in the
context of learning from interpretations. Before the learning process starts, a
concept is fixed among all the concepts in the concept class. We refer to this

concept as target concept. The goal of the learner is to output an expression
that represents the target concept. The learner (the learning algorithm) has ac-
cess to an equivalence oracle and a membership oracle that provide information
about the target concept. In an equivalence query, the learner presents a hy-
pothesis (in the form of a first order formula) and the oracle answers Yes if
it is a representation of the target concept. Otherwise, it answers No and pro-
vides a counterexample, that is, an example (interpretation) where target and
hypothesis disagree. In a membership query, the learner presents an example
(interpretation) and the oracle answers Yes or No depending on whether the ex-
ample presented is a member of the target concept. We assume that the learner
is given the signature S as input.

Definition 1. The query complexity of a learning algorithm A at any stage in
a run is the sum of the sizes of the (i) inputs to equivalence queries, and (ii)
inputs to membership queries made up to that stage.

Notice that the definition of query complexity uses two different notions of
size, one capturing the complexity of the hypotheses, the other capturing the
complexity of the examples.

Definition 2. An algorithm A is a polynomial query learning algorithm for a
concept class C if there exists a polynomial r(·, ·) such that, for any positive
integer m, and for any unknown target concept c ∈ C≤m:

(i) A uses membership queries and equivalence queries of the form EQ(h) where
h represents a concept in C

(ii) A eventually halts and outputs a string h representing the target concept c,
and

(iii) at any stage, if n is the size of the longest counterexample received so far
in response to an equivalence query, the query complexity of A at that stage
does not exceed r(n,m).

3 Complexity parameters for first order logic

We introduce different ways of quantifying the representation or description
complexity of first order expressions. We illustrate them using the following first
order expression E:

(∀X add(zero,X,X)) ∧ (∀X ∀Y ∀Z add(X,Y, Z)→ add(succ(X), Y, succ(Z)))

We start with global notions of size for expressions:

StringSize(·): as its name suggests, StringSize counts the number of syntactic
symbols used to write down the input expression, ignoring spaces. Predicate and
function symbols whose name is longer than one letter contribute just 1. In our
example, StringSize(E) = 44.

TreeSize(·): this size measure counts the number of nodes in a tree constructed
recursively in the following manner. If the expression is a quantified expres-
sion, then put the quantifier in the root (labeled with the quantifier, FORALL or
EXISTS), the quantified variable as its left child and the rest of the expression as
the right child. If the expression is a conjunct, then add as children to the root
(labeled with AND) all its conjuncts. Disjuncts are treated analogously, having OR

as the root and the disjuncts as children. For implications the root is labeled with
IMPLIES and the left child is the antecedent and the right child the consequent.
With a negation the node is labeled with NOT and the only child is the rest of the
expression. For atomic formulas, the root is labeled with the predicate symbol
and the children are its arguments. If the expression is a variable, then the root
is a leaf labeled with the variable name. For functional terms, the root is the
outermost function symbol and the children are its arguments. In our example,
TreeSize(E) = 24, and the associated tree is:

"
""

H
HH

#
##

XXXXXX
PPPP

aaa

"
""

"
""

cc

H
H

HH

,
,

b
bb

Z
ZZ

"" aa

AND

X

FORALLFORALL

FORALL

FORALL

IMPLIES

X Z

add

succ succ

add

ZYX

Y

Z

X

Y

add

Xzero X

DAGSize(·): counts the number of nodes in a DAG constructed by unifying
identical subtrees that correspond to terms in the tree constructed as explained
above. We assume that expressions are standardized apart, that is, we avoid re-
use of variable names that belong to scopes of different quantifiers. This converts
our expression E into the equivalent E ′:

(∀X ′ add(zero,X ′, X ′))∧(∀X ∀Y ∀Z add(X,Y, Z)→ add(succ(X), Y, succ(Z)))

In the example, the only repetition of terms are of variables X,Y, Z,X ′ which
appear 3 times each. We save 4×(3−1) = 8, henceDAGSize(E ′) = TreeSize(E)−
8 = 16.

We next consider natural parameters of first order representations. Notice
that some of these parameters apply only to clause based expressions such as
Horn expressions.

NTerms(·): counts the maximum number of distinct terms (including sub-
terms) in a clause. In the example, NTerms(E) = 5, corresponding to term set
in the second clause {X,Y, Z, succ(X), succ(Z)}. When clear from the context
we denote this parameter by t.

NVariables(·): counts the maximum number of distinct variables appearing
in any clause of the input expression. In the example, NVariables(E) = 3, corre-
sponding to variable set in the second clause {X,Y, Z}. We denote this parameter
by v.

Depth(·): the maximum depth of any functional term appearing in the input
expression. In the example, Depth(E) = 2 corresponding to the deepest term
succ(X) (or succ(Z)). We denote this parameter by d.

NLiterals(·): counts the maximum number of literals in any clause of the input
expression. In the example, NLiterals(E) = 2 from the second clause. We denote
this parameter by l.

NPredicates(·): counts the number of distinct predicate symbols appearing
in the input expression. In the example, NPredicates(E) = 1 corresponding to
{add/3}. We denote this parameter by p.

NFunctions(·): counts the number of distinct function symbols appearing in
the input expression. In the example, NFunctions(E) = 2 corresponding to the
function symbols zero/0 and succ/1. We denote this parameter by f .

Arity(·): the largest arity of any predicate or function symbol appearing in the
input expression. In the example, Arity(E) = 3 corresponding to the predicate
add/3. We denote this parameter by a.

NClauses(·): counts the number of clauses. In our example, NClauses(E) = 2.
We denote this parameter by c.

4 Relating parameters to “Size”

While learnability is usually defined in terms of the notion of size, it may be
useful to provide bounds using other measures (as various authors have done).
We therefore need to extend the definitions of query complexity and learnability
to refer to a set of parameters. This is done in a natural way so that query com-
plexity measures each of the parameters, and learnability requires a polynomial
bound in every parameter. However, this is not sufficient. We must also identify
when such a replacement preserves polynomial learnability. For this we define:

Definition 3. Let C be a class of first order expressions. Let k and j be positive
integers. Let C = {C1, . . , Ck} be a list of complexity measures on expressions
in C, and let D = {D1, . . , Dj} be an alternative list of complexity measures on
expressions in C. We say that C and D are polynomially related w.r.t. C if there
exist polynomials p1, . . , pk of arity j and polynomials q1, . . , qj of arity k such
that for every E ∈ C:

(i) for all i = 1, . . , k: Ci(E) ≤ pi(D1(E), . . , Dj(E)), and

(ii) for all i = 1, . . , j: Di(E) ≤ qi(C1(E), . . , Ck(E)).

The next lemma follows directly from the definition of polynomial relation:

Lemma 1. The polynomial relation between sets of complexity measures is re-
flexive, transitive, and symmetric.

The next theorem shows that this notion of polynomial relation among com-
plexity measures captures exactly the situations in which one can substitute the
related complexity measures without changing the learning model.

Theorem 1. Let C be a class of first order expressions. Let C1, . . , Ck be a set
of complexity measures that is polynomially related to Size w.r.t. the class C,
where Size is some notion of size for the expressions in C. Let p1(·), . . , pk(·) and
q(·, . . , ·) be the polynomials witnessing their polynomial relation. Similarly, let
D1, . . , Dk′ be a set of complexity measures that is polynomially related to Size

′

w.r.t. the class E, where E is a representation class for the examples, and Size′

is some notion of size for the example representations in E. Let p′1(·), . . , p
′
k′(·)

and q′(·, . . , ·) be the polynomials witnessing their polynomial relation.

Suppose that A is a learning algorithm for C with query complexity (w.r.t.
C1, . . , Ck and D1, . . , Dk′) bounded by polynomials si(c1, . . , ck, d1, . . , dk′) for
i = 1, . . , k, and s′j(c1, . . , ck, d1, . . , dk′) for j = 1, . . , k′, where c1, . . , ck bound
the complexity (w.r.t. C1, . . , Ck) of the target concept and d1, . . , dk′ bound the
complexity (w.r.t. D1, . . , Dk′) of the counterexamples received. Then, A is a
polynomial query learning algorithm for C.

Proof. Notice that items (i) and (ii) of Definition 2 on learnability hold trivially
since we have assumed that A is a learning algorithm for C working in the same
model. We show that item (iii) holds. Namely, there is a polynomial r(·, ·) s.t.
at any stage, if n is the size of the longest counterexample received so far in
response to an equivalence query, the query complexity of A at that stage does
not exceed r(n,m).

In the following, f1..k(args) stands for f1(args), . . , fk(args). We define

r(n,m) = q(s1..k(p1..k(m), p′1..k′(n))) + q′(s′1..k′(p1..k(m), p′1..k′(n))).

Observe that all the functions s1, . . , sk, s
′
1, . . , s

′
k′ , p1, . . , pk, p

′
1, . . , p

′
k′ and q, q′

are polynomials and hence r is a polynomial, too. It is left to show that r bounds
the query complexity for A.

Notice that c ∈ C≤m implies that c ∈ C≤p(m) because p1(m), . . , pk(m) bound
the complexity measures in C1, . . , Ck. By assumption, the query complexity

(w.r.t. parameters C1, . . , Ck) of A is bounded by s1..k(p1..k(m), p′1..k′(n)) and

by s′1..k′(p1..k(m), p′1..k′(n)). Hence, the query complexity of A (w.r.t. Size and

Size′) is bounded by q(s1..k(p1..k(m), p′1..k′(n))) + q′(s′1..k′(p1..k(m), p′1..k′(n))).
ut

Remark 1. Note that we require polynomial bounds in both directions to guar-
antee learnability. This is needed for learning with queries and for proper PAC
learnability (where hypothesis class is the same as concept class), whereas a one
sided bound suffices for PAC predictability.

It is useful to highlight what can go wrong if this does not hold. In the
figure below we can see three terms: t1 has TreeSize exponential in the depth
while its DAGSize is just linear (further discussion of t1 is given in Theorem 2
below); t2 has both TreeSize and DAGSize exponential in the depth; finally t3 has
both TreeSize and DAGSize linear in the depth. Now, if one has an algorithm
that learns w.r.t. TreeSize then when learning an expression including t1 the
algorithm is allowed to include t2 in a query but this is not possible for learning
w.r.t. DAGSize since t1 is just polynomial in the depth whereas t2 is exponential.
On the other hand, if one has an algorithm that learns w.r.t. DAGSize then when
learning an expression including t3 the algorithm can use t1 in its query. If we
try to use this algorithm to learn w.r.t. TreeSize this query is too large.

TreeSize(t1) = Θ(2d)

DAGSize(t1) = Θ(d)

TreeSize(t2) = Θ(2d)

DAGSize(t2) = Θ(2d)

TreeSize(t3) = Θ(d)

DAGSize(t3) = Θ(d)

.................................

.....................................

...

..

...

..

...

..

...

..

.................................

.....................................

.................................

.....................................

f f

f

1 1111

f f

1 1 1

f

f

.................................

.....................................

...

..

...

..

...

..

...

..

.................................

.....................................

.................................

.....................................

f f

f

f f

1

f

f

g

g

g

12 3 5 64 7 8

t t t2 31

5 Relating complexity measures for first order logic

The previous two sections give complexity parameters and a tool to relate them.
We next investigate which subsets of the alternative complexity measures are
polynomially related to our notions of size.

Definition 4. LetM be the set of alternative complexity parameters {NTerms,
NVariables, Depth, NLiterals, NPredicates, NFunctions, Arity, NClauses}.

It is not hard to see that the tree representation can be padded with extra
commas and parentheses and therefore:

Lemma 2. StringSize is polynomially related to TreeSize.

As a result while typically we think of StringSize as defining learnability
we can discuss complexity with respect to TreeSize without loss of clarity. The
question is whether we can find a combination of the alternative parameters in
M that is polynomially related to TreeSize. Suppose that E is a first order Horn
expression s.t.

NTerms(E) = t NVariables(E) = v Depth(E) = d
NLiterals(E) = l NPredicates(E) = p NFunctions(E) = f
Arity(E) = a NClauses(E) = c

Observe that any term appearing in E has size at most O(ad). Hence, any
atomic formula has size at most 1 + O(ad+1) = O(ad+1) (1 for the predicate
symbol, ad+1 for the arguments). Hence, any Horn clause can have size no more
than 1+2v+lO(ad+1) = O(v+lad+1) (1 for the implication symbol in the clause,
2v for the quantifiers and quantified variables, and O(ad+1) for each atom in the
clause). Therefore

TreeSize(E) = O(cv + clad+1).

On the other hand, it is clear that all the parameters above are bounded by
TreeSize(E). The next theorem shows that the converse does not hold:

Theorem 2. TreeSize is not polynomially bounded by any subset of parameters
in M for classes over signatures with at least one constant and one function
symbol of arity at least 2.

Proof. We give an expression E such that its TreeSize is exponential in NTerms.
Let E = p(t1), where t1 is a complete tree of degree a with internal nodes labeled
with function symbol f and leaves labeled with constant 1:

p(

d times
︷ ︸︸ ︷

f(. . f(f(f(

a times
︷ ︸︸ ︷

1, . . , 1), . . , f(1, . . , 1)), . . , f(f(1, . . , 1), . . , f(1, . . , 1))) . .))

The following figure represents t1 when a = 2, d = 3:

.................................

.....................................

...

..

...

..

...

..

...

..

.................................

.....................................

.................................

.....................................

f f

f

1 1111

f f

1 1 1

f

f

The complexity measures for E are:

NTerms(E) = d NVariables(E) = 0 Depth(E) = d
NLiterals(E) = 1 NPredicates(E) = 1 NFunctions(E) = 2
Arity(E) = a NClauses(E) = 1 TreeSize(E) = Θ(ad)

Hence no polynomial combination of the available complexity measures upper
bounds TreeSize(E). ut

This is a surprising fact that has not been noticed in previous work working
with these parameters. No polynomial combination of the parameters above can
replace TreeSize.

Proposition 1. If there are no function symbols of arity greater than 1, then
the set {NClauses,NLiterals ,Depth} is polynomially related to TreeSize.

Proof. This follows from the fact that in this case TreeSize = O(clad). ut

On the other hand, exponential lower bounds in terms of arity have been
derived when ignoring NLiterals. These essentially reflect the following fact:

Proposition 2. If the number of literals is ignored then TreeSize and DAGSize
are not polynomially bounded by Arity.

Proof. Let p be a predicate of arity a. Let {1, . . , t} be a set of t distinct terms
built e.g. by one constant and one unary function. Let P be the set of all different
p() atoms built from these terms; |P | = ta. Let p̂ be a particular element in P .
Let E be the expression E = P \ {p̂} → p̂. The complexity of E is given by:

NTerms(E) = t NVariables(E) = 0 Depth(E) = t
NLiterals(E) = ta NPredicates(E) = 1 NFunctions(E) = 2
Arity(E) = a NClauses(E) = 1
TreeSize(E) = Ω(ta) DAGSize(E) = Ω(ta)

Hence, the tree size is exponential in the arity and is not polynomially bounded
by other parameters when l is ignored. ut

As in the case of TreeSize, DAGSize also gives an upper bound for all the
alternative parameters inM. This time the relation in the other direction is also
polynomial. Notice that a DAG encodes terms in a smarter way, since multiple
occurrences of a term are only counted once. Hence, t terms in a clause con-
tribute Θ(t) to the DAGSize only. An atomic formula contributes only 1 since
its arguments are encoded with the terms already. Hence, every clause has size
at most O(v + t+ l) = O(t+ l) and

c+ l + t ≤ DAGSize(E) = O(ct+ cl).

We therefore have:

Theorem 3. The set of parameters {NTerms,NLiterals ,NClauses} is polyno-
mially related to DAGSize w.r.t. the class of first order Horn expressions.

Notice that the theorem is true for any values of the other parameters. The
previous proposition shows DAGSize can be exponential in arity but as the the-
orem shows in such a case one of c, l, t must be large as well. It is also interesting
to note that several results on learning with queries give upper bounds in terms
of ta and other parameters (Arimura, 1997; Reddy and Tadepalli, 1998; Rao and
Sattar, 1998; Arias and Khardon, 2002). While l ≤ p · ta these bounds do not
directly relate to DAGSize or TreeSize.

6 The VC Dimension of first order Horn expressions

This section characterizes the Vapnik-Chervonenkis dimension (VC Dimension)
of first order Horn expressions. It is known that the VC Dimension provides
tight bounds on the number of examples for PAC learning (Ehrenfeucht et al.,
1989) as well as a lower bound for the number of equivalence and membership
queries for exact learning (Maass and Turán, 1992).

It is well known that for a finite class T , we have VCDim(T) ≤ log |T |. To
obtain an upper bound for the VC Dimension of first order Horn expressions,
we compute first how many concepts there are in the class H≤c,t,l of first order
Horn expressions with at most c clauses, at most t terms per clause, and at most
l literals per clause.

We show how to encode each concept in H≤c,t,l with a binary alphabet. In
order to represent terms or literals we need to refer to function and predicate
symbols; assume there are p predicate and f function symbols (of arity at most
a) that we can refer to by using log p and log f bits, respectively. We assume
that a, p and f are constant values, hence a, log p and log f are just O(1). To
encode a set of t distinct terms, we list them in a table with t rows, where each
row is of size at most log f +a log t (log f are the bits used to encode the head of
the term, and a log t are the number of bits used to encode its arguments). This
makes a total of t(log f + a log t) = O(t log t) bits for the term table. Now, we
just need log t bits to refer to terms in the expressions (the indices of the terms
in the term table). To encode a clause, we use a table with at most l rows, each
being of size at most 1 + log p + a log t (1 is to indicate whether the literal is
negated or not). This results in l(1 + log p + a log t) = O(l log t) for the clause
table. Hence, to encode a single clause we need O(l log t+ t log t) bits. To encode
c clauses, we need to have a term and a clause table for each clause, and hence
O(cl log t+ ct log t) bits are sufficient.

With O(cl log t+ ct log t) bits we can represent at most 2O(cl log t+ct log t) dif-
ferent concepts, thus we conclude:

Theorem 4. VCDim(H≤c,t,l) = O(cl log t+ ct log t).

Note that the theorem is valid regardless of the representation of examples
and is therefore valid both for learning from interpretations and for learning from
entailment. In the rest of this section we show that VCDim(H≤c,t,l) = Ω(cl+ct).
The two learning models are handled in the next two subsections. We start with
the necessary definitions (Blumer et al., 1989).

Definition 5. Let I be a set, H ⊆ 2I , and S ⊆ I. Then ΠH(S) is the set
{h ∩ S | h ∈ H}, i.e. the set of subsets of S that can be obtained by intersection
with elements of H. If |ΠH(S)| = 2|S|, then we say that H shatters S. Finally,
VCDim(H) is the size of the largest set shattered by H (or ∞ if arbitrary large
sets are shattered).

6.1 Learning from interpretations

In the following sequence of lemmas we construct sets of interpretations of ap-
propriate cardinality, and show how to shatter them by giving families of first
order Horn expressions separating each possible dichotomy of the interpretation
sets. We make extensive use of the interpretations’ function mappings to ensure
that terms evaluate to appropriate values so that separation is guaranteed.

Lemma 3. There exists a set of c interpretations that can be shattered using
first order Horn expressions bounded by NClauses ≤ c, NTerms ≤ log c + 3,
NLiterals = 2, NVariables = 0, Depth = log c, Arity = 2, NFunctions = 4 and
NPredicates = 2.

Proof. We construct a set of c different terms using a function f of arity 2 and
three constants 1, 2 and 3 and by forming ground terms of depth log c in the
following manner:

T̂ = {f(a1, f(a2, f(a3, f(...f(alog c, 3)...)) | ai ∈ {1, 2} for all 1 ≤ i ≤ log c}

Notice that there are exactly 2log c = c such terms. Moreover, every term in T̂
is of size 2 log c+ 1 and contains at most log c+ 3 distinct subterms.

We define I the set of interpretations to be shattered by giving an interpre-

tation per element of T̂ . Hence, |I| = ˆ|T | = c. The domain of the interpretation
It̂, consists of the Θ(log c) objects corresponding to the subterms appearing in
t̂ (including itself) and a distinguished object ∗. The function mapping for f is
defined to follow the functional structure of the distinguished term t̂, and unde-
fined entries are mapped to ∗. Notice that any term t′ ∈ T̂ s.t. t̂ 6= t′ is mapped
to the special object ∗ under the interpretation It̂. Finally, the extension of It̂
contains a single atom P (t̂) in its extension.

Given any subset S ⊆ I, define HS using predicate symbols P/1 and F/0 as

HS =
{
P (t̂)→ F ()

∣
∣ It̂ ∈ S

}
.

We now show that HS separates interpretations in S from interpretations in
I\S. Interpretations I in S falsify one of the clauses inHS (the one corresponding
to I’s distinguished term) and hence I 6|= HS . Interpretations I not in S falsify
each clause’s antecedent (the terms present in the clauses of HS are all mapped
to the special object ∗ under I) and hence I |= HS . ut

The VC Dimension construction of (Khardon, 1999a) uses a signature that
grows with NTerms. The following lemma modifies this construction to use a
fixed signature.

Lemma 4. For l ≤ ta, there exists a set of l interpretations that can be shattered
using first order Horn expressions bounded by NTerms = 2t, NVariables = t,
Depth = log t, NLiterals ≤ l, NPredicates = 3, NFunctions = 1, Arity ≤ a and
NClauses = 1.

Proof. We construct a set of interpretations I that is shattered using first order
Horn expressions with parameters as stated. Fix a and t. The expressions use a
predicate symbol F () of arity 0, a unary predicate L and a predicate symbol Q
of arity logt l. Notice that logt l ≤ a since l ≤ ta. Let

Qall =
{
Q(i1, . . . , ilog

t
l)

∣
∣ ij ∈ {1, .., t} for all j = 1, . . . , logt l

}
.

Notice that |Qall| = tlogt
l = l.

Let f be a binary function, and let τ be the term represented by a binary
balanced tree of depth log t whose leaves are labeled by the objects 1 . . . t (in
order) and whose internal nodes are labeled by the function symbol f . Such a
term contains 2t subterms.

The domain for all the interpretations in I includes an object for each sub-
term of τ (including 1, .., t) and a special object ∗. The function mappings for
f follow the functional structure of τ with undefined entries completed by the
special domain object ∗. Interpretations include in their extension the atom L(τ)
and all the atoms in Qall except one. Hence, there are l interpretations in I.

Given a subset S ⊆ I we defineHS as follows. Let τ ′ be the result of replacing
j ∈ {1, . . , t} by the corresponding variable xj ∈ {x1, . . , xt} in τ . Let QS be the
intersection of the Q() atoms in the extensions of all the interpretations in S
after the same substitution. Then

HS = L(τ ′) ∧QS → F ().

We show that HS separates S from its complement I \ S. Suppose I ∈ S.
Take the substitution {xj 7→ j}. Then I 6|= HS because the antecedent is satisfied
(it is a subset of the extension of I) but F () is not. Suppose on the other hand
that I 6∈ S. Substitutions other than {xj 7→ j} falsify L(τ ′). The clause HS is
also satisfied under the substitution {xj 7→ j} because the “omitted Q” in I’s
extension is present in QS . Hence I |= HS . ut

Lemma 5. For l ≤ ta, there exists a set of cl interpretations that can be shat-
tered using range-restricted and constrained first order Horn expressions bounded
by NClauses ≤ c, NTerms = Θ(log c + t), NLiterals ≤ l, NVariables = t,
Depth = Θ(log c+ log t), Arity ≤ a, NFunctions = 5 and NPredicates = 4.

Proof. Let I be the set shattered in Lemma 4. We create a new set of interpre-
tations I+ of cardinality cl in the following way. We have an additional set of c
terms constructed in the same way as in Lemma 3, let us denote this set T̂c. As
in Lemma 3, T̂c contains c distinct terms of depth log c each.

We augment the interpretations in the construction of Lemma 4 by associat-
ing each I ∈ I with a new term in T̂c (and hence we create c new interpretations
in I+ for each old interpretation in I), adding log c new objects and the cor-
responding functional mappings following the terms’ structure and completing
undefined entries with the special object ∗. Additionally, we include the atom
P (ĉ) in the extension of interpretations with distinguished term ĉ ∈ T̂c. Hence
|I+| = cl.

Given a subset S ⊆ I we define HS as:

HS =
{

L(τ ′) ∧QSĉ
∧ P (ĉ)→ F (τ ′, ĉ)

∣
∣
∣ ĉ ∈ T̂c

}

, (1)

where τ ′ is the same as above, Sĉ is the subset of interpretations in S with
distinguished term ĉ, and QSĉ

is constructed as in Lemma 4. Notice that HS is
both range-restricted and constrained.

We show that HS separates S from its complement I \ S. Let I be any
interpretation in I. Suppose that ĉ is the distinguished term in T̂c associated to
I. Terms c′ 6= ĉ evaluate to ∗ under I, and every clause in HS containing P (c′) is
satisfied. The clause containing P (ĉ) is falsified iff I ∈ S by the same reasoning
as in Lemma 4. ut

The next result shows that by varying the number of terms we can shatter
arbitrarily large sets with a fixed signature.

Lemma 6. There exists a set of t interpretations that can be shattered us-
ing Horn expressions bounded by NClauses = 1, NTerms ≤ 4t, NLiterals =
2, NVariables = 0, Depth = 2 log t + 2, Arity = 2, NFunctions ≤ 9 and
NPredicates = 2.

Proof. Let t = k log k for some k ∈ N . Using the same signature as in Lemma 3
we generate a set T̂ of k terms of depth log k each. We associate to every in-
terpretation a term in T̂ and an index i ∈ {1, .., log k} and we denote by It̂,i

the interpretation associated to (t̂, i) ∈ T̂ × {1, .., log k}. Thus, we have a set of

interpretations I s.t. |I| = ˆ|T | |{1, .., log k}| = k log k = t.
Given a subset S ⊆ I, we construct the term TREES that intuitively asso-

ciates to every possible term t̂ in T̂ a set of indices lt̂ where lt̂ =
{
i
∣
∣ It̂,i ∈ S

}
.

The function mappings in each interpretation It̂,i ensure that the term TREES
evaluates to a special domain object y if and only if the index i appears in the
set of indices for term t̂ encoded in TREES . The expression HS is now defined
as:

HS =M(TREES)→ F ().

Each interpretation includes in its extension the atom M(y) so that the clause
HS is falsified by I iff the term TREES evaluates to y under I, i.e., iff I ∈ S.

We first describe the structure of the term TREES . Let St̂ be the subset of
S consisting of interpretations It̂,i in S and let lt̂ =

{
i
∣
∣ It̂,i ∈ St̂

}
. We encode

the set lt̂ with the term fi1(fi2(· · · filog k
(a)) · · ·) where ij = 0 if j 6∈ lt̂ and ij = 1

otherwise. Denote this term by tl
t̂
. As an example, assume log k = 6 and let the

set lt̂ = {1, 4, 5}. Then, tlt̂ = f1(f0(f0(f1(f1(f0(a)))))). Notice that we are using
two unary functions f0 and f1 and a constant a. Next we use a binary function g
to encode the association between terms t̂ and their sets of indices lt̂ as g(t̂, tlt̂).
Finally, TREES is constructed as a balanced tree (using a binary function h)
whose leaves are terms of the form g(t̂, tl

t̂
), for every t̂ ∈ T̂ .

Example 1. Let k = 4. Then T̂ = {t̂1, t̂2, t̂3, t̂4}, where

– t̂1 = f(1, f(1, 3))
– t̂2 = f(1, f(2, 3))
– t̂3 = f(2, f(1, 3))
– t̂4 = f(2, f(2, 3))

If S = {(t̂1, 1), (t̂2, 2), (t̂3, 1), (t̂3, 2)}, then:

– lt̂1 = {1}, lt̂2 = {2}, lt̂3 = {1, 2} and lt̂4 = {}.
– tl

t̂1
= f1(f0(a)), tl

t̂2
= f0(f1(a)), tl

t̂3
= f1(f1(a)) and tl

t̂4
= f0(f0(a)).

– TREES =

h h

h

gg g g

f1

f0

a a a a

f1

f0 f1

f1

f0

f0

f

f

3

f

f

3

f

f

3

f

f

3

1

1

1

2

2

1

2

2

Let us now describe in detail the domain and function mappings for inter-
pretation It̂,i. The domain objects are:

– Three special objects ∗, y, n.
– Up to log k+3 distinct objects that represent all terms and subterms present

in the distinguished term t̂.
– Up to 2k + 1 objects representing all the possible terms and subterms of

the vector indices fi1(fi2(· · · filog k
(a)) · · ·) for all possible ij ∈ {0, 1} where

1 ≤ j ≤ log k.

The function mappings are:

– The constants 1, 2, 3 potentially appearing in t̂ are mapped to objects 1, 2, 3.
The mapping for binary function f follows the functional structure of t̂, with
undefined entries mapped to the special object ∗.

– The constant a is mapped to object a. Unary functions f0 and f1 also mimic
the functional structure of terms and subterms of fi1(fi2(· · · filog k

(a)) · · ·)
for all possible ij ∈ {0, 1} where 1 ≤ j ≤ log k.

– The binary function g(t1, t2) is mapped to special object y iff t1 = t̂ and the
unary function used at depth i in term t2 is f1. Otherwise it is set to the
special object n.

– Finally, the binary function h(a1, a2) is mapped to domain object y iff either
a1 = y or a2 = y, otherwise it is mapped to object n.

Finally, the only atom present in each interpretation is M(y).
We prove that It̂,i falsifies HS iff It̂,i ∈ S. Notice that It̂,i falsifies HS iff It̂,i

satisfies the atom M(TREES) iff the term TREES is mapped to the domain
object y under It̂,i iff some term g(t1, t2) is mapped to y iff term g(t̂, t2) is mapped

to y (other terms g(t1, t2) where t1 6= t̂ are mapped to n by construction) iff the
unary function used at depth i in term t2 is f1 iff It̂,i ∈ S.

We finally quantify the complexity of the parameters used in HS : it has 1
clause, 2 literals, no variables, uses one single term of depth Θ(log k) (that is
O(log t)) which contains Θ(k log k) subterms (that is Θ(t) subterms) that are
built from 4 constants, 5 function symbols whose maximal arity is 2. ut

Lemma 7. There exists a set of ct interpretations that can be shattered using
range-restricted and constrained Horn expressions bounded by NClauses ≤ c,
NTerms = Θ(t+log c), NLiterals = 2, NVariables = 0, Depth = O(log t+log c),
Arity = 2, NFunctions ≤ 9 and NPredicates = 3.

Proof. We extend the previous construction. Let I be the set shattered in
Lemma 6. We create a new set of interpretations I+ of cardinality ct in the
following way. We have an additional set of c terms constructed in the same way
as in Lemma 3 using the constants 1,2,3 and a binary function symbol g. Let us
denote this set T̂c. As in Lemma 3, T̂c contains c distinct terms of depth log c
each. Notice that we can safely re-use 1,2,3 and g since these are never combined
in the construction of Lemma 6.

As before, we augment the interpretations in the construction of Lemma 6
by associating I ∈ I with a new term in T̂c (and hence we create c new in-
terpretations in I+ for each old interpretation in I), adding log c new objects
and the corresponding functional mappings following the term’s structure. Hence
|I+| = ct. In addition we modify the predicateM that now has arity 2. The only
atom true in I is M(ĉ, y), where ĉ is the distinguished term associated to I.

For each subset S ⊆ I we define

HS =
{

M(ĉ,TREESĉ
)→ F (ĉ,TREESĉ

)
∣
∣
∣ ĉ ∈ T̂c

}

,

where Sĉ is the subset of interpretations in S with distinguished term ĉ. Notice
that HS is both range-restricted and constrained.

We finally prove that I falsifies HS iff I ∈ S. Suppose that ĉ is the distin-
guished term in T̂c associated to I. I contains the atom M(ĉ, y) in its extension,
and every clause M(c′,TREES

c′
) → F (c′,TREES

c′
) in HS s.t. ĉ 6= c′ is sat-

isfied since term c′ does not evaluate to domain object ĉ under I. The clause
M(ĉ,TREESĉ

)→ F (ĉ,TREESĉ
) is falsified iff I ∈ Sĉ by the same reasoning as

in Lemma 6. ut

Combining Lemmas 5 and 7 we conclude:

Theorem 5. Let S be a signature with at least 9 function symbols and 4 predi-
cates of arity at least 2. The VC Dimension of the class of range-restricted and
constrained first order Horn expressions over S with at most c clauses, each
using up to l literals and t+ log c terms is Ω(cl + ct).

Corollary 1. The VC Dimension of the class of range-restricted and constrained
expressions in H≤c,t,l for learning from interpretations is Θ̃(cl + ct).

6.2 Learning from entailment

In learning from entailment (Frazier and Pitt, 1993), examples are clauses and
class membership is determined by logical consequence. That is, a clause C is
a member of the concept represented by target expression T iff T |= C. Thus
a concept is associated with the set of clauses that it implies. The notions of
equivalence and membership queries are adapted so that the examples used are
clauses rather than interpretations.

In some cases it is easy to transform a lower bound from learning from inter-
pretations to learning from entailment. In particular the construction in Lemma 5
uses interpretations whose term structure is simple. Any object that appears in
the extension of any predicate has a unique maximal term that describes it. Thus
in some sense one can think of the relation I 6|= HS as subsumption between the
clauses in HS and the “terms structure” of the extension in I.

Example 2. To illustrate this property consider a signature with one predicate
p of arity 1, two constants a, b, and one function f of arity 1. Consider two
interpretations with the same domain {1, 2, ∗}, same extension where p(2) is the
only true atom, and same mapping for f with f(1) = 2, f(2) = ∗, and f(∗) = ∗.
The first interpretation maps a→ 1, b→ ∗. In this case we can give a “maximal
atom” p(f(a)) to describe what is true in the interpretation. The antecedent
of any clause that is falsified by the interpretation must subsume p(f(a)). The
second interpretation maps a → 1, b → 2. In this case there are two possible
“maximal atoms” p(f(a)) and p(b) describing what is true in the interpretation
and we cannot make the same claim regarding subsumption.

If this property holds then we can turn things around and make an antecedent
of a clause CI from the extension of predicates in the interpretation. If we can
also choose an appropriate consequent then such a construction would satisfy
I 6|= HS iff HS |= CI . We can therefore construct a set of clauses that are
shattered from the previous construction. One can abstract this idea and show
how such a transformation can be done (see related discussion in (Khardon,
1999b)) and that we get a shattered set. But in our case a direct application as
given in the following lemma is easier to see:

Lemma 8. For l ≤ ta, there exists a set of cl clauses that can be shattered
using range-restricted and constrained first order Horn expressions bounded by
NClauses ≤ c, NTerms = Θ(log c+ t), NLiterals ≤ l, NVariables ≤ t, Depth =
Θ(log c+ log t), Arity ≤ a, NFunctions = 5 and NPredicates = 4.

Proof. We give a set of clauses Cl and show that it can be shattered. Let I+ be
as in Lemma 5 and let Cl = {CI |I ∈ I

+} where for I ∈ I+ whose associated
term is ĉ we have

CI = H{I}(from Eq. 1) = L(τ ′) ∧Q{I} ∧ P (ĉ)→ F (τ ′, ĉ).

Given a subset S ⊆ Cl we define HS using Eq. 1 where we use the interpreta-
tions corresponding to the clauses S in the definition of HS . Notice that in our
case implication and subsumption are equivalent since no chaining of rules or
self subsumption is possible (Gottlob, 1987). Now for C ∈ Cl whose associated
term is ĉ the corresponding clause in HS is a subset of C (no substitution needs
to be applied) and therefore HS |= C. On the other hand consider C 6∈ Cl with
associated term ĉ. It is clear that clauses in HS with other associated terms
cannot be used to imply C. For the clause with the same associated term only
the empty substitution can be used due to the atom L(τ ′). However in this case
the “omitted Q” atom in C is present in the clause in HS and the clause cannot
be subsumed. ut

The term structure in the interpretations in Lemmas 6 and 7 is more complex
and we cannot use the extensions directly in clause bodies. However a related
construction yields the same bounds.

Lemma 9. There exists a set of t clauses that can be shattered using Horn ex-
pressions bounded by NClauses = 1, NTerms ≤ 2t, NLiterals = 1, NVariables ≤
t, Depth = log t, Arity = 2, NFunctions = 3 and NPredicates = 1.

Proof. For each 1 ≤ i ≤ t, let t̂i be a term of depth log t represented by a binary
tree of t leaves with binary function symbol f . Each t̂i has as the i-th leaf a
constant a and in all other leaves a constant b.

Let P be a unary predicate symbol. The set of clauses to be shattered is
Cl = {Ci | 1 ≤ i ≤ t}, where Ci is the single literal P (t̂i). Clearly, |Cl| = t.

Given a subset S ⊆ Cl, let TERM S be the term represented by a balanced
binary tree of depth log t with internal nodes labeled by a function symbol f
and with the constant b in a leaf i if and only if Ci ∈ S. All other leaves are
labeled with distinct variables, namely, a leaf in position j s.t. Cj 6∈ S contains
a variable xj . HS is defined as the single clause with just one literal:

HS = P (TERM S).

Now we prove that Ci ∈ S iff HS 6|= Ci, or equivalently, that Ci ∈ S iff
P (TERM S) 6|= P (t̂i). Fix any Ci. By construction the i-th leaf of t̂i contains
the constant a. If Ci ∈ S, then the i-th leaf of TERM S contains the constant
b and subsumption is not possible. Therefore, P (TERM S) 6|= P (t̂i). If Ci 6∈
S, then TERM S contains a variable xi in the i-th leaf. The substitution θ =
{xi 7→ a} ∪ {xj 7→ b | 1 ≤ j ≤ t and j 6= i} is s.t. P (TERM S)θ = P (t̂i) so that
P (TERM S) |= P (t̂i). ut

Lemma 10. There exists a set of ct clauses that can be shattered using range-
restricted and constrained Horn expressions bounded by NClauses ≤ c, NTerms =
Θ(t+log c), NLiterals = 2, NVariables ≤ t, Depth = O(log t+log c), Arity = 2,
NFunctions ≤ 4 and NPredicates = 2.

Proof. We extend the construction in the previous lemma. First create a set of
c distinct terms T̂c as in Lemma 3. It is safe to reuse the same binary function
symbol f and the constants a and b; hence an extra constant is needed to mimic
the construction from Lemma 3 of T̂c.

Let P,R be binary predicate symbols. The new set of clauses is

Cl =
{

P (ti, ĉ)→ R(ti, ĉ)
∣
∣
∣ 1 ≤ i ≤ t and ĉ ∈ T̂c

}

.

Clearly, |Cl| = |{1, . . , t}| ×
∣
∣
∣T̂c

∣
∣
∣ = tc.

Given a subset S ⊆ Cl, let HS be

HS =
{

P (TERM Sĉ
, ĉ)→ R(TERM Sĉ

, ĉ)
∣
∣
∣ ĉ ∈ T̂c

}

,

where Sĉ is the subset of S of clauses that are associated to the term ĉ. Notice
that HS is both range-restricted and constrained.

Let Ci,ĉ be the clause in Cl that contains the terms ti and ĉ. We next show that
Ci,ĉ ∈ S iff HS 6|= Ci,ĉ. Notice that P (TERM S

c′
, c′) → R(TERM S

c′
, c′) 6|= Ci,ĉ

if ĉ 6= c′. Hence, HS |= Ci,ĉ iff P (TERM Sĉ
, ĉ)→ R(TERM Sĉ

, ĉ) |= Ci,ĉ. Finally,
to prove that Ci,ĉ ∈ S iff P (TERM Sĉ

, ĉ)→ R(TERM Sĉ
, ĉ) 6|= Ci,ĉ it is sufficient

to observe that Ci,ĉ ∈ S iff Ci,ĉ ∈ Sĉ, so that a similar argument as in Lemma 9
applies. ut

Combining Lemmas 8 and 10 we conclude:

Theorem 6. Let S be a signature with at least 9 function symbols and 4 predi-
cates of arity at least 2. The VC Dimension of the class of range-restricted and
constrained first order Horn expressions over S with at most c clauses, each using
up to l literals and t+ log c terms in the framework of learning from entailment
is Ω(cl + ct).

Corollary 2. The VC Dimension of the class of range-restricted and constrained
expressions in H≤c,t,l for learning from entailment is Θ̃(cl + ct).

Now applying the lower bound given by (Maass and Turán, 1992) we can
conclude:

Corollary 3. Any algorithm that exactly learns the class of range-restricted
and constrained expressions in H≤c,t,l for either learning from interpretations
or learning from entailment must make Ω(cl + ct) membership and equivalence
queries.

7 Conclusions and future work

The paper studies different complexity parameters for first order learnability.
The results show that the standard notion of size is not polynomially related
to parameters that are commonly used in the literature, identify an alternative
notion of size that can be captured, and characterize the VC-dimension showing
that the new size and parameters are indeed crucial for learnability. This gives
a uniform treatment to different ways of quantifying the complexity and puts
previous work in context so that lower bounds can be interpreted appropriately.

The results are also useful in clarifying the complexity of recent algorithms
on learning Horn expressions with equivalence and membership queries. The
case of Horn definitions (with a single head) (Reddy and Tadepalli, 1997) is
indeed polynomial in c + l + t. Other results are either not polynomial (Arias
and Khardon, 2002) or rely on syntax based oracles (Arimura, 1997; Reddy
and Tadepalli, 1998; Rao and Sattar, 1998). For example, our results in (Arias
and Khardon, 2002) show that constrained and range-restricted expressions are
learnable with complexity polynomial in c + tv + ta, where v is the number
of variables per clause and a is the maximum arity of predicates and function
symbols (we simplify here by ignoring some of the parameters). Note that ta

essentially bounds l but may in fact be much larger than l. This issue seems to
arise in any context where multiple consequents are possible and identifying these
may require looking at the ta possibilities. More importantly, it is not known
whether the exponential dependence on v is necessary or not and this remains
the main discrepancy between known lower and upper bounds. As pointed out
above, VC based bounds cannot resolve this question since they are limited by
expression size. The notion of certificate size of concept classes, developed by
(Hellerstein et al., 1996; Hegedus, 1995) gives both lower and upper bounds
for query complexity and thus may provide tools to do so. Characterizing the
certificate complexity of first order classes is an interesting direction for future
work. Preliminary results solving some cases in propositional logic are reported
in (Arias, Khardon, and Servedio, 2003).

References

Angluin, D. 1988. Queries and concept learning. Machine Learning, 2(4):319–
342, April.

Arias, M. and R. Khardon. 2002. Learning closed Horn expressions. Information
and Computation, 178:214–240.

Arias, M., R. Khardon, and R. A. Servedio. 2003. Polynomial certificates for
propositional classes. In Proceedings of the Conference on Computational
Learning Theory, pages 537–551. Springer-Verlag. LNAI 2777.

Arimura, Hiroki. 1997. Learning acyclic first-order Horn sentences from entail-
ment. In Proceedings of the International Conference on Algorithmic Learn-
ing Theory, Sendai, Japan. Springer-Verlag. LNAI 1316.

Blumer, Anselm, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. 1989. Learnability and the Vapnik-Chervonenkis dimension. Journal
of the ACM, 36(4):929–965, October.

Cohen, W. 1995. PAC-learning recursive logic programs: Efficient algorithms.
Journal of Artificial Intelligence Research, 2:501–539.

De Raedt, L. and S. Dzeroski. 1994. First order jk-clausal theories are PAC-
learnable. Artificial Intelligence, 70:375–392.

Džeroski, Sašo, Stephen Muggleton, and Stuart Russell. 1992. PAC-learnability
of determinate logic programs. In David Haussler, editor, Proceedings of the
Conference on Computational Learning Theory, pages 128–135, Pittsburgh,
PA, July. ACM Press.

Ehrenfeucht, Andrzej, David Haussler, Michael Kearns, and Leslie Valiant. 1989.
A general lower bound on the number of examples needed for learning. In-
formation and Computation, 82(3):247–251, September.

Frazier, M. and L. Pitt. 1993. Learning from entailment: An application to
propositional Horn sentences. In Proceedings of the International Conference
on Machine Learning, pages 120–127, Amherst, MA. Morgan Kaufmann.

Gottlob, G. 1987. Subsumption and implication. Information Processing Let-
ters, 24(2):109–111.

Grohe, Martin and Gyorgy Turán. 2002. Learnability and definability in trees
and similar structures. In Proceedings of the 19th Annual Symposium on
Theoretical Aspects of Computer Science (STACS), pages 645–658. Springer.
LNCS 2285.

Hegedus, T. 1995. On generalized teaching dimensions and the query complexity
of learning. In Proceedings of the Conference on Computational Learning
Theory, pages 108–117, New York, NY, USA, July. ACM Press.

Hellerstein, L., K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. 1996. How
many queries are needed to learn? Journal of the ACM, 43(5):840–862,
September.

Horváth, Tamás and György Turán. 2001. Learning logic programs with struc-
tured background knowledge. Artificial Intelligence, 128(1-2):31–97, May.

Kearns, M.J. and U.V. Vazirani. 1994. An Introduction to Computational Learn-
ing Theory. MIT Press, Cambridge, MA.

Khardon, R. 1999a. Learning function free Horn expressions. Machine Learning,
37:241–275.

Khardon, R. 1999b. Learning range restricted Horn expressions. In Proceedings
of the Fourth European Conference on Computational Learning Theory, pages
111–125, Nordkirchen, Germany. Springer-verlag. LNAI 1572.

Kietz, Jörg-Uwe and Saso Dzeroski. 1994. Inductive logic programming and
learnability. SIGART Bulletin, 5(1):22–32, January.

Lloyd, J. W. 1987. Foundations of logic programming; (2nd extended ed.).
Springer-Verlag New York, Inc.

Maass, W. and Gy. Turan. 1995. On learnability and predicate logic (extended
abstract). In Proceedings of the 4th Bar-Ilan Symposium on Foundations of
AI (BISFAI).

Maass, Wolfgang and György Turán. 1992. Lower bound methods and sep-
aration results for online learning models. Machine Learning, 9:107–145,
October.

Muggleton, S. and L. DeRaedt. 1994. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19 & 20:629–680, May.

Muggleton, S. and C. Feng. 1992. Efficient induction of logic programs. In
S. Muggleton, editor, Inductive Logic Programming. Academic Press, pages
281–298.

Rao, K. and A. Sattar. 1998. Learning from entailment of logic programs with
local variables. In Proceedings of the International Conference on Algorith-
mic Learning Theory, Otzenhausen, Germany. Springer-verlag. LNAI 1501.

Reddy, C. and P. Tadepalli. 1997. Learning Horn definitions with equivalence
and membership queries. In International Workshop on Inductive Logic Pro-
gramming, pages 243–255, Prague, Czech Republic. Springer. LNAI 1297.

Reddy, C. and P. Tadepalli. 1998. Learning first order acyclic Horn programs
from entailment. In International Conference on Inductive Logic Program-
ming, pages 23–37, Madison, WI. Springer. LNAI 1446.

