
TUFTS-CS Technical Report 2004-7

August 2004

The Subsumption Lattice and Query Learning

by

Marta Arias

Dept. of Computer Science

Tufts University

Medford, Massachusetts 02155

Roni Khardon

Dept. of Computer Science

Tufts University

Medford, Massachusetts 02155



The Subsumption Lattice and Query Learning∗

Marta Arias and Roni Khardon

Department of Computer Science, Tufts University

Medford, MA 02155, USA

{marias,roni}@cs.tufts.edu

July 22, 2004

Abstract

The paper identifies several new properties of the lattice induced by the subsump-

tion relation over first-order clauses and derives implications of these for learnability.

In particular, it is shown that the length of subsumption chains of function free clauses

with bounded size can be exponential in the size. This suggests that simple algorith-

mic approaches that rely on repeating minimal subsumption-based refinements may

require a long time to converge. It is also shown that with bounded size clauses the

subsumption lattice has a large branching factor. This is used to show that the class of

first-order length-bounded monotone clauses is not properly learnable from member-

ship queries alone. Finally, the paper studies pairing, a generalization operation that

takes two clauses and returns a number of possible generalizations. It is shown that

there are clauses with an exponential number of pairing results which are not related to

each other by subsumption. This is used to show that recent pairing-based algorithms

can make exponentially many queries on some learning problems.

1 Introduction

The field of Inductive Logic Programming (ILP) is concerned with developing theory and
methods that allow for efficient learning of classes of concepts expressed in the language of
first-order logic. Subsumption is a generality relation over first order clauses that induces
a quasi-order on the set of clauses. The subsumption lattice is of crucial importance since
many ILP algorithms perform a search over this space and as a result the lattice has been
investigated extensively in the literature (see survey in [16]). The paper contributes to this
study in two ways. First, we expose and prove new properties of the subsumption lattice of
first-order clauses. Second, we use these properties to prove negative learning results in the
model of exact learning from queries. These results illustrate the connection between the
subsumption lattice and learning.

∗This work has been partly supported by NSF Grant IIS-0099446

1



This work arises from the study of query complexity of learning in first order logic. Several
positive learnability results exist in the model of exact learning from queries [1]. However,
except for a “monotone-like case” [20] the query complexity is either exponential in one of
the crucial parameters (e.g. the number of universally quantified variables) [14, 3] or the
algorithms use additional syntax-based oracles [7, 21, 19]. It is not clear whether the expo-
nential dependence is necessary or not. Previous work in [4] showed that the VC-dimension
cannot resolve this question. The current paper explores how properties of subsumption
affect this question.
We start by considering the length of proper subsumption chains c1 ≺ c2 ≺ . . ≺ cn of first

order clauses of restricted size. This is motivated by two issues. First, many ILP algorithms
(e.g. [22, 18, 8]) use refinement of clauses where in each step the clause is modified using a
minimal subsumption step. Thus the length of subsumption chains hinges on convergence
of such approaches. A second motivation comes from the use of certificates [13, 12] to study
query complexity. It is known [13, 12] that a class C is learnable from equivalence and
membership queries if and only if the class C has polynomial certificates. Previous work in
[6] developed certificates for propositional classes. In particular, one of the constructions of
certificates for Horn expressions uses the fact that all proper subsumption chains of propo-
sitional Horn clauses are short. Hence any generalization of this construction to first order
logic relies on the length of such chains.
Section 3 shows that subsumption chains can be exponentially long (in number of literals

and variables) even with function free clauses with a bounded number of literals. This re-
sult suggests that simple algorithmic approaches that rely only on minimal refinement steps
may require a long time to converge and excludes simple generalizations of the certificate
construction. We also show that if one imposes inequalities on all terms in a clause then sub-
sumption chains are short. This further supports the use and study of inequated expressions
as done e.g. in [14, 3, 9].
The chain length result gives an informal argument against certain approaches. Section 4

uses a similar construction to show that the class of length-bounded monotone first order
clauses is not properly learnable using membership queries only. This result is derived by
studying the lattice structure of length bounded clauses and using it to show that the teaching
dimension [2, 10] is exponential in the size. The result follows since the teaching dimension
gives a lower bound for the number of membership queries required to learn a class [2, 10].
Finally in Section 5 we address the complexity of the algorithms given in [14, 3] discussed

above. One of the sources of exponential dependence on the number of variables is the
number of pairings. Intuitively, a pairing is an operation that, given two first-order clauses,
results in a new clause which is more general than the initial ones; two clauses have many
pairings and the algorithm enumerates these in the process of learning. Results in [14, 3]
gave an upper-bound on the number of pairings, but left it open whether a large number of
pairings can actually occur in examples. We give an exponential lower bound (in number
of variables) on the number of pairings and construct an explicit example showing that the
algorithm can be forced to make an exponential number of queries.
Due to space limitations several proofs are omitted from the paper; they can be found in

[5].



2 Preliminaries

We assume familiarity with basic concepts in first order logic as described e.g. in [15, 16].
We briefly review notions relevant to this paper.
A signature S consists of a finite set of predicates P and a finite set of functions F ,

both with their associated arities. Constants are functions with arity 0. A countable set of
variables x1, x2, x3, . . . is used to construct expressions. A variable is a term. If t1, . . . , tn
are terms and f ∈ F is a function symbol of arity n, then f(t1, ..., tn) is a term. An atom
is an expression p(t1, ..., tn) where p ∈ P is a predicate symbol of arity n and t1, ..., tn are
terms. An atom is called a positive literal. A negative literal is an expression ¬l where l
is a positive literal. A clause is a disjunction of literals where all variables are universally
quantified. A Horn clause has at most one positive literal and an arbitrary number of
negative literals. A Horn clause ¬p1 ∨ ...∨¬pn ∨ pn+1 is equivalent to its implicational form
p1 ∧ ... ∧ pn → pn+1. We call p1 ∧ ... ∧ pn the antecedent and pn+1 the consequent of the
clause. A meta-clause is a pair of the form [s, c], where both s and c are sets of atoms
such that s ∩ c = ∅; s is the antecedent of the meta-clause and c is the consequent. Both
are interpreted as the conjunction of the atoms they contain. Therefore, the meta-clause
[s, c] is interpreted as the logical expression

∧

b∈c s→ b. An ordinary clause C = sc → bc
corresponds to the meta-clause [sc, {bc}]. Fully inequated clauses [3] are clauses whose terms
are forced to be always distinct. That is, any instance of a fully inequated clause is not
allowed to unify any of its terms. This can be done by adding explicit inequalities on all
terms as in: E = [x 6= f(x)] ∧ [x 6= a] ∧ [a 6= f(x)] ∧ p(x, f(x)) ∧ p(a, x)→ q(a).
We use the symbol ‘|=’ to denote logical implication which is defined following the stan-

dard semantics of first-order logic.
We need several parameters to quantify the complexity of a first-order expressions; we

use the first-order expression E = ¬p(x, f(x))∨¬p(a, b)∨q(b) to illustrate these. NTerms(·):
counts the number of distinct terms in the input expression. Hence, NTerms(E) = 4
corresponding to the term set {x, a, f(x), b}. WTerms(·): similar to NTerms , with the
only difference that functional terms are given twice as much weight as variables. Hence,
WTerms(E) = 7 since terms in {a, f(x), b} contribute 2 and x contributes 1. NLiterals(·):
counts the number of literals in the input expression. Hence, NLiterals(E) = 3.
Let C,D be two arbitrary first-order clauses. We say that a clause C subsumes a clause

D and denote this by C ¹ D if there is a substitution θ such that C · θ ⊆ D. Moreover,
they are subsume-equivalent, denoted C ∼ D, if C ¹ D and D ¹ C. We say that C strictly
or properly subsumes D, denoted C ≺ D, if C ¹ D but D 6¹ C. The relation ¹ is reflexive
and transitive and hence it induces a quasi-order on the set of clauses.

3 On the Length of Proper Chains

In this section we study the length of proper subsumption chains of clauses c1 ≺ c2 ≺ . . ≺ cn.
It is known that infinite chains exist if one does not restrict clause size [17, 16] but bounds
for clauses of restricted size (which are necessarily finite) were not known before. We show
that in the case of fully inequated clauses, the length of any proper chain is polynomial in
the number of literals and the number of terms in the clauses involved. On the other hand, if



clauses are not fully inequated, then chains of length exponential in the number of variables
(or literals) exist, even if clauses are function free.

3.1 Subsumption Chains for Fully Inequated Clauses are Short

We say that a substitution θ is unifying w.r.t. a clause c1 if there exist two distinct terms
t, t′ in c1 that have been syntactically unified i.e. t · θ = t′ · θ. The following two lemmas
relate subsumption and size parameters:

Lemma 3.1 Let c1, c2 be two fully inequated clauses. If c1 ¹ c2, then (1) it must be via a
non-unifying substitution w.r.t. c1, (2) WTerms(c1) ≤WTerms(c2), and (3) NLiterals(c1) ≤
NLiterals(c2).

Proof: Let θ be the witnessing substitution for the fact that c1 ¹ c2. Suppose that θ is
unifying w.r.t. c1. That is, there exist two distinct terms t, t

′ in c1 that have been unified
and therefore t · θ = t′ · θ = t̂. Since c1 is fully inequated, the inequality (t 6= t′) ∈ c1. But
then (t 6= t′) · θ is precisely (t̂ 6= t̂) and since c2 is fully-inequated it cannot be included,
contradicting the fact that c1 · θ ⊆ c2. Thus (1) holds.
For (2) note that by (1) all distinct terms in c1 remain distinct in c1 · θ because θ is

non-unifying. Hence, c2 has at least as many terms as c1 since it contains c1θ. Moreover, θ
might replace (light) variables by (heavier) functional terms, and (2) follows.
For (3) note that if NLiterals(c1) > NLiterals(c2), then at least two literals in c1, and

hence two terms in c1, must be unified in c1, contradicting (1).

Lemma 3.2 Let c1, c2 be fully inequated clauses such that c1 ≺ c2. Then, either NLiterals(c1) <
NLiterals(c2) or WTerms(c1) < WTerms(c2).

Proof: By the previous lemma we only need to disprove the possibility that bothNLiterals(c1) =
NLiterals(c2) and WTerms(c1) = WTerms(c2). Suppose so, and let θ be the substitution
such that c1θ ⊆ c2. Then θ induces a 1-1 mapping of terms. Now if θ maps a variable to a
non-variable term then WTerms(c1) < WTerms(c2). So θ must be a variable renaming. If θ
is a variable renaming and NLiterals(c1) = NLiterals(c2), then c1 and c2 must be syntactic
variants, contradicting the assumption that c2 6¹ c1.

As a result each step in a strict subsumption chain reduces one of NLiterals or WTerms
and we get:

Theorem 3.3 The longest proper subsumption chain of fully inequated clauses with at most
t terms and l literals is of length at most 2t+ l.

Proof: Let c1 ≺ c2 ≺ . . ≺ cn be a chain of maximal length. By Lemma 3.2, after each step
in the chain (from left to right), either we increase the number of literals, or the quantity
WTerms increases. By Lemmas 3.1 these quantities never decrease. The bound t on the
number of terms implies that WTerms can never grow beyond 2t (in the case that all the
terms are functional). Since NLiterals cannot surpass l, the number of total clauses in our
chain is at most 2t+ l.



3.2 Function Free Clauses Have Long Proper Chains

In this section we demonstrate that function free first-order clauses can produce chains of
exponential length. We start with a simple construction where the arity of predicates is not
constant.
Let p be a predicate symbol of arity a. The chain d1 Â d2 Â . . Â dn is defined inductively.

The first clause is d1 = p(z, . . , z), and given a clause di = p1, p2, . . , pk, we define the
next clause di+1 as follows: (1) if p1 contains only two occurrences of the variable z, then
di+1 = p2, . . , pk, or else (2) if p1 contains c ≥ 3 occurrences of the variable z, replace the
atom p1 by a new set of atoms p

′
1, . . , p

′
k′ such that k

′ = min(c, l − k + 1), and every new
atom p′j for 1 ≤ j ≤ k′ is a copy of p1 in which the j’th occurrence of the variable z has been
replaced by a new fresh variable not appearing in di (the same variable for all copies).

Example 3.1 Suppose p has arity 4 and that l = 3. The construction produces the following
chain of length 11:

p(z, z, z, z)

Â p(x1, z, z, z), p(z, x1, z, z), p(z, z, x1, z)

Â p(x1, x2, z, z), p(z, x1, z, z), p(z, z, x1, z)

Â p(z, x1, z, z), p(z, z, x1, z)

Â p(x2, x1, z, z), p(z, x1, x2, z), p(z, z, x1, z)

Â p(z, x1, x2, z), p(z, z, x1, z)

Â p(z, z, x1, z)

Â p(x2, z, x1, z), p(z, x2, x1, z), p(z, z, x1, x2)

Â p(z, x2, x1, z), p(z, z, x1, x2)

Â p(z, z, x1, x2)

Â ∅

Let N(c, s) be the number of subsumption generalizations that can be produced by this
method when starting with a singleton clause which is allowed to expand on s literals (i.e.,
l = s+1) and whose only atom has c ≥ 2 occurrences of the variable z. Then, the following
relations hold:

• N(2, s) = 1, for all s ≥ 0. To see this note that when there are only 2 occurrences of
the variable z, the only possible step is to remove the atom, thus obtaining the empty
clause.

• N(c, 0) = c − 1, for all c ≥ 2. This is derived by observing that when we have c ≥ 2
occurrences of the distinguished variable z and no expansion on the number of literals
is possible, we can apply c − 2 steps that replace occurrences of z by new variables,
and a final step that drops the literal. After this, no more generalizations are possible.

• N(c, s) = 1+
∑s

i=max(0,s−c+1)N(c−1, i), for all c > 2, s > 0. This recurrence is obtained
by observing that the initial clause containing our single atom can be replaced by



min(c, s + 1) “copies” in a first generalization step leaving q = max(0, s − c + 1)
empty slots. After this, each of these copies which contain c − 1 occurrences of the
distinguished variable z, go through the series of generalizations: the left-most atom
has q positions to use for its expansion and is generalized N(c− 1, q) times until it is
finally dropped; the next atom has q + 1 position to expand since the left-most atom
has been dropped, and hence it produces N(c − 1, q + 1) generalization steps until it
is finally dropped, and so on.

Lemma 3.4 N(c, s) ≥
(

c
s+1

)
− 1 for c ≥ 2 and s ≥ 0.

Proof: Recall that in case that n < k,
(
n
k

)
= 0. The proof is by induction on c, s. The

base cases are when s = 0 or c = 2:

• N(c, 0) = c− 1 ≥
(
c
1

)
− 1 = c− 1 for all c ≥ 2.

• N(2, s) = 1 ≥
(
2

s+1

)
− 1 for all s ≥ 0.

For the step case, assume that N(c′, s′) ≥
(

c′

s′+1

)
− 1 for values c′ < c or s′ < s. Then, if

c ≥ 3 and s ≥ 1 we have that:

N(c, s) = 1 +
s∑

i=max(0,s−c+1)
N(c− 1, i) (1)

≥ 1 +N(c− 1, s) +N(c− 1, s− 1) (2)

≥ 1 +

(
c− 1
s+ 1

)

− 1 +
(
c− 1
s

)

− 1 (3)

=

(
c

s+ 1

)

− 1 (4)

For (2), notice that c ≥ 3 and s ≥ 1 imply that 0 ≤ s − 1 and s − c + 1 ≤ s − 1, hence
max{0, s− c+1} ≤ s− 1. For (3) we apply the induction hypothesis, and for (4) we use the
basic identity

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)
which also holds for n, k such that k > n.

It remains to show that this is a proper chain. First, we investigate key structural
properties of the clauses participating in our chain. It is easy to verify the following lemma
by induction on the updates of di.

Lemma 3.5 Let Vars(p) be the variables occurring in the atom p. For all di = p1, . . , pk the
following properties hold:

• Every atom pj ∈ di contains no repeated occurrences of variables, with the exception of
z, which appears at least twice in each atom.

• Vars(pj) ⊇ Vars(pj+1) for all j = 1, . . , k − 1.

From the properties stated in the previous lemma, it follows that we can view any clause
di as a sequence of blocks of atoms B1, B2, . . , Bm such that all the atoms in a single block
contain exactly the same variables, and variables appearing in neighboring blocks are such
that Vars(Bj) ⊃ Vars(Bj+1).



Lemma 3.6 Fix some clause di, and let p be an atom in any block B. If p · θ ∈ B, then θ
does not change variables in p.

Proof: By induction on the updates of di. The claim is trivially true for d1 since it contains
a single atom. For the step case, assume the lemma is true for di = p1, . . , pk.
If di+1 = p2, . . , pk (left-most atom was dropped), then the induction hypothesis guaran-

tees the result. Otherwise, di+1 = p′1, . . , p
′
k′ , p2, . . , pk (left-most atom replaced by new set

containing one more variable in different places). By the induction hypothesis we only have
to check that the claim is true for the new block B = p′1, . . , p

′
k′ . If k

′ = 1 then B contains
a single atom and the lemma is trivially true. Otherwise, B contains at least two atoms.
Notice that the way the atoms p′1, . . , p

′
k′ have been created is by replacing the variable z in

p1 by a new variable x, but in different positions in each new atom p(t′j). Hence, it holds
that for every pair p1, p2 ∈ B, they agree on all positions except in two where one has the
variable z and the other one has the new variable x (and vice versa for the other position).
If p1 · θ = p2 then θ would have to map the variable z into the newly introduced variable x.
But this would result in an atom with at least two occurrences of x, and such atoms do not
appear in the clauses we create. Hence, the new variable must be left untouched by θ and
therefore there is no θ such that p1 · θ = p2. Since p1, p2 are arbitrary atoms we conclude
that p · θ 6∈ B unless p · θ = p and therefore θ does not change the value of variables in p.

Lemma 3.7 Let di be any clause in the sequence and let B1, . . , Bm be its blocks. Then, for
any pair of blocks Bi1 and Bi2 s.t. i1 < i2, there exists some variable in Vars(Bi2) \ {z}
that is in the same position j in all the atoms in Bi1 but in all the atoms in Bi2 it appears
in different positions, always different from the one in Bi1. Moreover, all the atoms in Bi2

contain the variable z at position j.

Proof: By induction on the updates of di. The claim is trivially true for d1 since it
contains a single atom and hence a single block. For the step case, assume the lemma is true
for di = p1, . . , pk.
If di+1 = p2, . . , pk (left-most atom was dropped), then the induction hypothesis guaran-

tees the result. If di+1 = p′1, . . , p
′
k′ , p2, . . , pk, then the property is guaranteed by the induction

hypothesis for pairs of blocks in p2, . . , pk. It remains to check that the lemma is true when
Bi1 = p′1, . . , p

′
k′ and Bi2 is any other block in di+1. If the replaced atom p1 ∈ di appeared

in a different block in di as the atoms in Bi2 , then the induction hypothesis applies. If p1
appeared in the same block as the atoms in Bi2 , then the variable that was introduced by
the creation of that block has to be in different positions in all the atoms in Bi2 . Since all
the atoms in p′1, . . , p

′
k′ inherit this variable from p1, the lemma follows.

Lemma 3.8 Fix some clause di = p1, . . , pk with at least 2 atoms (i.e., k ≥ 2). Then
(p2, . . , pk) · θ ⊆ di only if θ does not change variables in p2.

Proof: Let di = B1, . . , Bm. Let p be any atom in any block Bj and assume p · θ ∈ di.
Notice that p · θ 6∈ B1, . . , Bj−1 since atoms in blocks B1, . . , Bj−1 contain strictly more
variables than p · θ. Hence p · θ ∈ Bj, . . , Bm. We first claim that if θ does not change
variables in Bj+1, . . , Bm then θ does not change variables in Bj. To prove the claim note



that if p · θ ∈ Bj then Lemma 3.6 applies. On the other hand if p · θ ∈ Bj′ for j < j ′

then Lemma 3.7 guarantees that there exists some variable x ∈ Vars(Bj′) that appears in a
position in p in which atoms in Bj′ contain the variable z. Since by assumption θ does not
change this variable this implies that p · θ 6∈ Bj′ leading to a contradiction.
Finally if (p2, . . , pk) · θ ⊆ di then we have an atom p as above from each block. Therefore

we can apply the claim inductively starting with j = m and until j = i2 where i2 is the block
index of p2. This implies that θ does not change variables that appear in the leftmost block
of p2, . . , pk, and hence in p2 as required.

Lemma 3.9 For all i = 1, . . , n− 1 we have that di Â di+1.

Proof: Suppose that di = p1, . . , pk. We have the following possible transitions from di to
di+1:
Case 1. di+1 = p2, . . , pk. Clearly, di ⊃ di+1, and hence di º di+1 via the empty substi-

tution. Suppose by way of contradiction that di ¹ di+1, so there must be a substitution θ
s.t. di · θ ⊆ di+1. Clearly, i + 1 6= n since otherwise we could not satisfy di · θ ⊆ di+1 = ∅.
Therefore, di+1 6= ∅ and di contains at least 2 atoms. The fact di · θ ⊆ di+1 implies that
(p2 . . , pk) · θ ⊆ di, and by Lemma 3.8, θ must not change variables in p2. If p1 and p2 are in
the same block, then p1 · θ = p1 6∈ di+1. If p1 and p2 are in different blocks, then Lemma 3.7
guarantees that for every atom in p2, . . , pk there is a variable that appears in a different
location in p1 and as above this variable cannot be changed by θ. Hence, p1 · θ 6∈ di+1,
contradicting our assumption that di ¹ di+1.
Case 2. di+1 = p′1, . . , p

′
k′ , p2, . . , pk. Let x be the newly introduced variable. Then,

di+1 · {x 7→ z} ⊆ di and hence di º di+1. To see that di 6¹ di+1, suppose that this is not
the case. Hence, there must be a substitution θ such that di · θ ⊆ di+1. If di = p1, (i.e., di
contains one atom only), then p1 · θ ⊆ p′1, . . , p

′
k′ . In this case, θ must map z into the new

variable x but this results in multiple occurrences of x, and hence p1 · θ 6⊆ p′1, . . , p
′
k′ . Hence,

di must contain at least two atoms and the substitution θ must satisfy that (p1, . . , pk) · θ ⊆
p′1, . . , p

′
k′ , p2, . . , pk. The new atoms p

′
1, . . , p

′
k′ contain more variables than p1, . . , pk, therefore

(p1, . . , pk) · θ ⊆ p2, . . , pk. By the same reasoning as in the previous case, we conclude that
di Â di+1.

Now Lemma 3.4 and Lemma 3.9 imply:

Theorem 3.10 Let p be a predicate symbol of arity α ≥ 1. There exists a proper subsump-
tion chain of length

(
α
l

)
of function free clauses using at most α variables and l literals.

The construction above can be improved to use predicates of arity 3 as follows.

Definition 3.1 Let d be any clause. Let Trans(d) be the clause obtained by replacing each
literal p(t1, . . , ta) with a new set {p(yi, yi+1, ti) | 1 ≤ i ≤ a} , where all y1, . . , ya+1 are new
variables not appearing in d. The new variables y1, . . , ya+1 are different for each atom in d.

Example 3.2 The clause p(z, x1, x2, z), p(z, z, x1, z) is transformed into the clause p(y1, y2, z),
p(y2, y3, x1), p(y3, y4, x2), p(y4, y5, z), p(y

′
1, y

′
2, z), p(y

′
2, y

′
3, z), p(y

′
3, y

′
4, x1), p(y

′
4, y

′
5, z).



Consider a function free clause d with predicate symbols of arity at most a, containing v
variables and l literals. Then, Trans(d) uses predicates of arity 3, has l(a+ 1) + v variables
and al literals. The next lemma gives the main property of this transformation:

Lemma 3.11 Let d1, d2 be clauses. Then, d1 ¹ d2 iff Trans(d1) ¹ Trans(d2).

Proof: Assume first that d1 ¹ d2, i.e., there is a substitution θ from variables in d1 into
terms of d2 such that d1 · θ ⊆ d2. Obviously, θ does not alter the value of the new variables
added to Trans(d1), and hence Trans(d1)·θ = Trans(d1 ·θ) ⊆ Trans(d2), so that Trans(d1) ¹
Trans(d2).
For the other direction, assume that there exists a substitution θ such that Trans(d1)·θ ⊆

Trans(d2). Let d1 = l11 ∨ l21 ∨ . . ∨ lk1
1 and let {yj1, . . , yjarity(lj1)+1} be the variables used in the

transformation for literal lj1 in d1, for 1 ≤ j ≤ k1. Similarly, let d2 = l12 ∨ l22 ∨ . . ∨ lk2
2 and

let {y′j1, . . , y′jarity(lj2)+1} be the variables used in the transformation for literal l
j
2 in d2, for

1 ≤ j ≤ k2. First we show that θ must map blocks of auxiliary variables in Trans(d1),

{yj1, . . , yjarity(lj1)+1} into blocks of auxiliary variables in Trans(d2), {y′j
′

1 , . . , y
′j′

arity(lj
′

2 )+1
} so

that the predicate symbol of lj1 coincides with the predicate symbol of l
j′

2 . Moreover, the

order of the variables is preserved, i.e., θ maps each yji 7→ y′j
′

i , for all 1 ≤ i ≤ arity(lj
′

2 ). By
way of contradiction, suppose that there exists a pair of variables in Trans(d1), y

j
i and y

j
i+1,

that have been mapped into y′a∗ and y
′b
∗, respectively, where a 6= b. Then, p(yji , y

j
i+1, ∗) · θ =

p(y′a∗, y
′b
∗, ∗) ∈ Trans(d2). This contradicts the fact that, by construction, all literals in

Trans(d2) are such that the superscripts of the first two auxiliary variables coincide.

Suppose now that some yji has been mapped into y
′j′
i′ where i 6= i′ and i is the smallest

such index. Assume also that the predicate symbol corresponding to literal lj1 is p. If i > 1,

then p(yji−1, y
j
i , ∗)·θ = p(y′j

′

i−1, y
′j′
i′ , ∗) ∈ Trans(d2). But this is a contradiction since all literals

in Trans(d2) are such that its two initial arguments have the form p(y ′∗h, y
′∗
h+1, ∗) and here

(i− 1)+ 1 6= i′. If i = 1, then since i′ > 1 there must be an index h s.t. θ maps yji+h 7→ y′j
′

i′+h

but θ does not map yji+h+1 7→ y′j
′

i′+h+1. Thus we arrive to the same contradiction as in the
previous case.
Now, the fact that each yji 7→ y′j

′

i implies that θ maps arguments of literals in d1 into
arguments in the same position of literals in d2. Moreover, since blocks of variables are not
mixed, all arguments from a literal in d1 are mapped into all the arguments of a fixed literal
in d2, so we conclude that d1 · θ ⊆ d2.

Theorem 3.12 If there is a predicate symbol of arity at least 3, then there exist proper
subsumption chains of length at least 2

√
v/2 of function free clauses using at most v variables

and v
2
literals, where v ≥ 9.

Proof: Theorem 3.10 shows that there exists a chain of length
(
a
l

)
=
( √

v√
v/2

)
> 2

√
v/2 if

we use predicate symbols of arity
√
v,
√
v variables and

√
v
2
atoms per clause. Consider the

chain Trans(d1) Â Trans(d2) Â . . Â Trans(dn). Lemma 3.11 guarantees that this is also a

proper chain. The chain has clauses with
√
v
2
(
√
v + 1) +

√
v = v

2
+ 3

√
v
2
≤ v variables (here

we use v ≥ 9) and √v
√
v
2
= v

2
literals.



4 Learning from Membership Queries Only

The previous result suggests that simple use of minimal refinement steps may require long
time to converge. We next use a related construction to show that there can be no polyno-
mial algorithm that properly learns the class of monotone function-free and length-bounded
clauses from membership queries only. We use a combinatorial notion, the teaching dimen-
sion [2, 10], that is known to be a lower bound for the complexity of exact learning from
membership queries only.

Definition 4.1 The teaching dimension of a class T is the minimum integer d such that
for each expression f ∈ T there is a set T of at most d examples (the teaching set) with
the property that any expression g ∈ T different from f is not consistent with f over the
examples in T .

Let k be such that log2 k is an integer. Then 〈t1, .., tk〉 denotes the term represented by a
complete binary tree of applications of a binary function symbol f of depth log k with leaves
t1, .., tk. For example, 〈1, 2, 3, 4, 5, 6, 7, 8〉 represents the term f(f(f(1, 2), f(3, 4)), f(f(5, 6),
f(7, 8))).Notice that the number of distinct terms in 〈t1, .., tk〉 is at most k+

∑k
i=1NTerms(ti).

In particular, if each ti is either a variable or a constant, then NTerms(〈t1, .., tk〉) ≤ 2k.
Let p be a unary predicate symbol. Consider the clause p(〈a, .., a〉), where the constant a

occurs k times. We consider all the possible minimal generalizations of p(〈a, .., a〉). That is,
clauses C that are strict generalizations of p(〈a, .., a〉) for which no other clause C ′ is such
that p(〈a, .., a〉) Â C ′ Â C. Among them we find the clauses

Ck = p(〈x, .., x〉)
Ck−1 = p(〈a, x, .., x〉) ∨ p(〈x, a, x, .., x〉) ∨ .. ∨ p(〈x, .., x, a〉)
Ck−2 = p(〈a, a, x, .., x〉) ∨ p(〈a, x, a, x.., x〉) ∨ .. ∨ p(〈x, .., x, a, a〉)

...

Ck/2 = p(〈a, .., a, x, .., x〉) ∨ .. ∨ p(〈x, .., x, a, .., a〉)
...

C1 = p(〈a, .., a, x〉) ∨ p(〈a, .., a, x, a〉) ∨ .. ∨ p(〈x, a, .., a〉)

where each Ci includes all possibilities of replacing i positions with a variable. Clearly,
|Ci| =

(
k
i

)
. In particular,

∣
∣Ck/2

∣
∣ =

(
k
k/2

)
> 2k/2.

We next define the learning problem for which we find an exponential lower bound. The
signature S consists of the function symbol f of arity 2, two constants a, b, and a single
predicate symbol p of arity 1. Fix l to be some integer. Let the (representation) concept
class be C = {first-order monotone S-clauses with at most l atoms} and the set of examples
be E = {first order ground monotone S-clauses with at most l atoms}.
We identify the representation concept class C with its denotations in the following way.

The concept represented by C ∈ C is {E ∈ E | C |= E} which in this case coincides with
{E ∈ E | C ¹ E}. Thus, this problem is cast in the framework of learning from entailment.



Suppose that the target concept is f = p(〈a, .., a〉) and that l ≤ (
k
k/2)
2
. We want to find

a minimal teaching set T for f . The cardinality of a minimal teaching set for f is clearly
a lower bound on the teaching dimension of C. By definition, the examples in T have to
eliminate every other expression in C. In other words, for every expression g in C other than
f , T must include an example E such that f ¹ E and g 6¹ E or vice versa.
We first observe that the clause Ck/2 is not included in our concept class C because it

contains too many literals: l ≤ (
k
k/2)
2
=
|Ck/2|
2

<
∣
∣Ck/2

∣
∣. However, subsets of Ck/2 with exactly

l atoms are included in C because they are monotone S-clauses of at most l literals. Note
also that each clause includes ≤ 2kl terms. There are K =

(( k
k/2)
l

)
> (2

k/2

l
)l = 2Ω(lk) such

subsets where we use an additional restriction that l ≤ k. Let these be C1
k/2, .., C

K
k/2. By

definition, the teaching set T has to reject each one of these K clauses.
Notice that Cj

k/2 ¹ f = p(〈a, .., a〉) for each j = 1, . . , K (consider the witnessing substi-

tution {x 7→ a}). Now, to reject an arbitrary C j
k/2, T has to include some example E ∈ E s.t.

Cj
k/2 ¹ E but p(〈a, .., a〉) 6¹ E. The only example in E that qualifies is E j = Cj

k/2 · {x 7→ b}.
Hence, for each Cj

k/2 the example E
j must be included in T and these examples are distinct.

Hence, T must contain all the examples in E1, . . , EK . Substituting k =
√
t and l ≤

√
t
2
so

that 2kl ≤ t we obtain:

Theorem 4.1 Let C be the class of monotone clauses built from a signature containing 2
constants, a binary function symbol and a unary predicate symbol with at most l ≤

√
t
2
literals

and t terms per clause. Then, the teaching dimension of C is 2Ω(l
√
t).

5 On the Number of Pairings

Plotkin [17] (see also [16]) defined the least general generalization (lgg) of clauses w.r.t.
subsumption and gave an algorithm to compute it. The lgg of C1, C2 is a clause C that
subsumes both clauses, namely C ¹ C1, C ¹ C2, and is the least such clause, that is D ¹ C
for any D that subsumes both clauses. The algorithm essentially takes a cross product of
atoms with the same predicate symbol in the two clauses and generalizes arguments bottom
up. We proceed with formal definitions.

Definition 5.1 A pair of literals are compatible if they use the same predicate symbol (and
hence same arity) and have the same sign. A pair of first-order terms are compatible if they
agree on their leftmost function symbol (and hence on their arity as well).

The algorithm computing the lgg is as follows:



lgg(C1, C2)

1 if C1, C2 are clauses
2 then S ← ∅
3 for each pair of compatible literals l1 ∈ C1 and l2 ∈ C2
4 do S ← S ∪ lgg(l1, l2)
5 return S
6 if C1, C2 are compatible literals
7 then if C1 = p(t1 . . tn), C2 = p(t′1 . . t

′
n) are compatible positive literals

8 then return p(lgg(t1, t
′
1) . . lgg(tn, t

′
n))

9 else / ∗ C1 = ¬p(t1 . . tn) and C2 = ¬p(t′1 . . t′n) ∗ /
10 return ¬p(lgg(t1, t

′
1) . . lgg(tn, t

′
n))

11 if C1, C2 are first-order terms
12 then if C1 = f(t1 . . tn), C2 = f(t′1 . . t

′
n) are compatible terms

13 then return f(lgg(t1, t
′
1) . . lgg(tn, t

′
n))

14 else return a new variable x

This procedure is designed to be initially called with two clauses as arguments; in the
subsequent recursive calls the arguments are either compatible literals of first-order terms.
It is important to note that whenever the lgg returns a new variable (step 14 in lgg)

the algorithm stores the fact that the pair C1, C2 has been mapped to x into what we call
the lgg table. If this pair of terms come up again, they are mapped to the same variable.
More formally, the lgg table produced by the computation of lgg(C1, C2) is a mapping from
Terms(C1) × Terms(C2) into the new set of terms Terms(lgg(C1, C2)). We denote the lgg
tables as sets of ordered triplets of the form [t1 - t2 => t3], meaning that t1 and t2 are
mapped to t3 = lgg(t1, t2).

Example 5.1 Let C1 = {p(a, f(b)), p(g(a, x), c), q(a)} and C2 = {p(z, f(2)), q(z)}. Their
pairs of compatible literals are {p(a, f(b))−p(z, f(2)), p(g(a, x), c)−p(z, f(2)), q(a)−q(z)}.
Their lgg is lgg(C1, C2) = {p(X, f(Y )), p(Z, V ), q(X)}. The lgg table produced during the
computation of lgg(C1, C2) is

[ a - z => X ] (from p(a, f(b)) with p(z, f(2)))
[ b - 2 => Y ] (from p(a, f(b)) with p(z, f(2)))
[ f(b) - f(2) => f(Y ) ] (from p(a, f(b)) with p(z, f(2)))

[ g(a, x) - z => Z ] (from p(g(a, x), c) with p(z, f(2)))

[ c - f(2) => V ] (from p(g(a, x), c) with p(z, f(2)))

The number of literals in the lgg of two clauses can be as large as the product of the
number of literals in the two clauses and repeated application of lgg can lead to an exponential
increase in size. Pairings are subsets of the lgg that avoid this explosion in size by imposing
an additional constraint requiring that each literal in the original clauses is paired at most
once with a compatible literal of the other clause. In Example 5.1, we have the literal
p(z, f(2)) ∈ C2 paired to the literals p(a, f(b)) and p(g(a, x), c) of C1. A pairing disallows
this by including just one copy in the result. Naturally, given two clauses we now have many
possible pairings instead of a single lgg .



Pairings are defined in [14, 3] by way of matchings of terms. Notice that the first two
columns of the lgg table define a matching between terms in the two clauses. In our example
this matching is not 1-1 since the term f(2) in C2 has been used in more than one entry of
the matching, in particular, in entries f(b) − f(2) and c − f(2). This reflects the fact that
the atom p(z, f(2)) of C2 is paired with two atoms in C1 in the lgg . Every 1-1 matching
corresponding to a 1-1 restriction of the lgg table induces a pairing.

5.1 General Clauses

We first show that general clauses allowing the use of arbitrary terms can have an exponential
number of pairings. Fix v such that log2 v is an integer. Let ti,j be a ground term that is
unique for every pair of integers 0 ≤ i, j ≤ v − 1. For example, ti,j could use two unary
function symbols f0 and f1 and a constant a and we define ti,j as a string of applications
of f0 or f1 of length 2 log v, finalized with the constant a such that the first log v function
symbols encode the binary representation of i and the last log v function symbols encode j.
For example, if v = 8, then the term t5,3 can be encoded as f1(f0(f1

︸ ︷︷ ︸

5

(f0(f1(f1
︸ ︷︷ ︸

3

(a)))))). The

size of such a term (in terms of symbol occurrences) is exactly 2 log v + 1. Let x0, . . , xv−1
and y0, . . , yv−1 be variables. We define

C1 =
∨

0≤i,j <v

0≤l<v−1

p(ti,j, xl, xl+1)

C2 =
∨

0≤i,j<v
p(ti,j, yi, yj).

Notice that |C1| = v2(v − 1) and |C2| = v2, and they use a single predicate symbol of
arity 3.
Any 1-1 matching between the variables in C1 and C2 can be represented by a permutation

π of {0, . . , v − 1}: each variable xi in C1 is matched to yπ(i) in C2. All the matchings
considered in this section map the common ground terms of C1 and C2 to one another, i.e.,
the extended matchings also contain all entries [t - t => t], where t is any ground term
appearing in both C1 and C2. Let the extended matching induced by permutation π be

{
xi − yπ(i) ⇒ Xπ(i)

∣
∣ 0 ≤ i ≤ v − 1

}
∪ {t− t⇒ t | t ∈ Terms(C1) ∩ Terms(C2)} .

First we study lggπ(C1, C2), the pairing induced by the 1-1 matching represented by π.
A literal p(ti,j, Xa, Xb) is included in lggπ(C1, C2) iff a = π(l) and b = π(l + 1) for some
l ∈ {0, . . , v−2} (this is the condition imposed by C1), and i = a, j = b (this is the condition
imposed by C2). Therefore, lggπ(C1, C2) =

∨

0≤l<v−1 p(tπ(l),π(l+1), Xπ(l), Xπ(l+1)).
Finally we see that different permutations yield pairings that are subsumption inequiva-

lent, i.e., lggπ(C1, C2) 6¹ lggπ′(C1, C2) for any π 6= π′. It is sufficient to observe that since π
and π′ are distinct, there must exist some term tπ(l),π(l+1) in lggπ(C1, C2) that is not present
in lggπ′(C1, C2). This holds since a distinct pair of consecutive indices exists for any two
permutations. Since the terms t∗,∗ are ground, subsumption is not possible. There are v!
distinct permutations of {0, . . , v − 1} and therefore:



Theorem 5.1 Let S be a signature containing a predicate symbol of arity at least 3, two
unary function symbols and a constant. The number of distinct pairings between a pair of
S-clauses using v variables, O(v3) literals and terms of size O(log v) can be Ω(v!).

5.2 Function Free Clauses

We next generalize the construction to use function free clauses. We start with a construction
using non-fixed arity. Our construction mimics the behavior of pairing ground terms in the
previous section by using 2 additional variables, z0 and z1, that encode the integers i and
j in a similar way to ti,j . By looking at matchings π that match the variables z0 and z1
to themselves, we guarantee that the resulting lggπ contains the correct encoding of the
variables in the last and previous-to-last positions of the atoms. Let

C1 =
∨

(i1,..,ilog v)∈{0,1}log v

(j1,..,jlog v)∈{0,1}log v

0≤l<v−1

p(zi1 , . . , zilog v , zj1 , . . , zjlog v , xl, xl+1)

C2 =
∨

(i1,..,ilog v) = binary(i)

(j1,..,jlog v) = binary(j)

0≤i,j<v

p(zi1 , . . , zilog v , zj1 , . . , zjlog v , yi, yj)

where we use binary(n) to denote the tuple zn1 , . . , znlog v
encoding n in its binary repre-

sentation using z0, z1. For example, assuming v = 8, binary(6) = z1, z1, z0. Notice that
|C1| = v2(v − 1) and |C2| = v2, the clauses use a single predicate symbol of arity 2 log v + 2,
and both clauses use exactly v + 2 variables.
Any 1-1 matching between the variables x0, . . , xv−1 in C1 and y0, . . , yv−1 in C2 can be

represented by a permutation π of {0, . . , v − 1}: each variable xi in C1 is matched to yπ(i)
in C2. Let the matching induced by permutation π be

{
xi − yπ(i) ⇒ Xπ(i)

∣
∣ 0 ≤ i < v

}
.

First we study lggπ∪{z0−z0,z1−z1}(C1, C2), the pairing induced by the 1-1 matching repre-
sented by π augmented with z0 and z1 matched to themselves. A literal p(zi1 , . . , zilog v , zj1 ,
. . , zjlog v , Xa, Xb) is included in lggπ(C1, C2) iff a = π(l) and b = π(l+1) for some l ∈ {0, . . , v−
2} (this is the condition imposed by C1), and (i1, . . , ilog v) = binary(a), (j1, . . , jlog v) =
binary(b) (this is the condition imposed by C2). Therefore, lggπ∪{z0−z0,z1−z1}(C1, C2) =∨

0≤l<v−1 p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)).

Example 5.2 Let v = 4 and let π = (3201). Hence, in this example we use a predicate
symbol p of arity 6. For clarity, we omit the predicate symbol throughout the example and
denote atom p(t1, . . , t6) by just the argument tuple (t1, . . , t6). Also, we omit the disjunction
operator ∨.



Then, clause C1 is

(z0, z0, z0, z0, x0, x1) (z0, z0, z0, z1, x0, x1) (z0, z0, z1, z0, x0, x1) (z0, z0, z1, z1, x0, x1)

(z0, z1, z0, z0, x0, x1) (z0, z1, z0, z1, x0, x1) (z0, z1, z1, z0, x0, x1) (z0, z1, z1, z1, x0, x1)

(z1, z0, z0, z0, x0, x1) (z1, z0, z0, z1, x0, x1) (z1, z0, z1, z0, x0, x1) (z1, z0, z1, z1, x0, x1)

(z1, z1, z0, z0, x0, x1) (z1, z1, z0, z1, x0, x1) (z1, z1, z1, z0, x0, x1) (z1, z1, z1, z1, x0, x1)

(z0, z0, z0, z0, x1, x2) (z0, z0, z0, z1, x1, x2) (z0, z0, z1, z0, x1, x2) (z0, z0, z1, z1, x1, x2)

(z0, z1, z0, z0, x1, x2) (z0, z1, z0, z1, x1, x2) (z0, z1, z1, z0, x1, x2) (z0, z1, z1, z1, x1, x2)

(z1, z0, z0, z0, x1, x2) (z1, z0, z0, z1, x1, x2) (z1, z0, z1, z0, x1, x2) (z1, z0, z1, z1, x1, x2)

(z1, z1, z0, z0, x1, x2) (z1, z1, z0, z1, x1, x2) (z1, z1, z1, z0, x1, x2) (z1, z1, z1, z1, x1, x2)

(z0, z0, z0, z0, x2, x3) (z0, z0, z0, z1, x2, x3) (z0, z0, z1, z0, x2, x3) (z0, z0, z1, z1, x2, x3)

(z0, z1, z0, z0, x2, x3) (z0, z1, z0, z1, x2, x3) (z0, z1, z1, z0, x2, x3) (z0, z1, z1, z1, x2, x3)

(z1, z0, z0, z0, x2, x3) (z1, z0, z0, z1, x2, x3) (z1, z0, z1, z0, x2, x3) (z1, z0, z1, z1, x2, x3)

(z1, z1, z0, z0, x2, x3) (z1, z1, z0, z1, x2, x3) (z1, z1, z1, z0, x2, x3) (z1, z1, z1, z1, x2, x3)

Clause C2 is

(z0, z0, z0, z0, y0, y0) (z0, z0, z0, z1, y0, y1) (z0, z0, z1, z0, y0, y2) (z0, z0, z1, z1, y0, y3)

(z0, z1, z0, z0, y1, y0) (z0, z1, z0, z1, y1, y1) (z0, z1, z1, z0, y1, y2) (z0, z1, z1, z1, y1, y3)

(z1, z0, z0, z0, y2, y0) (z1, z0, z0, z1, y2, y1) (z1, z0, z1, z0, y2, y2) (z1, z0, z1, z1, y2, y3)

(z1, z1, z0, z0, y3, y0) (z1, z1, z0, z1, y3, y1) (z1, z1, z1, z0, y3, y2) (z1, z1, z1, z1, y3, y3)

The matching induced by π = (3201) is

{x0 − y3 ⇒ X3, x1 − y2 ⇒ X2, x2 − y0 ⇒ X0, x3 − y1 ⇒ X1}.

And lggπ∪{z0−z0,z1−z1}(C1, C2) is (notice that we have marked literals of C1 and C2 which
participate in this lgg)

(z1, z1, z1, z0, X3, X2) (z1, z0, z0, z0, X2, X0) (z0, z0, z0, z1, X0, X1)

Finally, we want to check whether different permutations yield pairings that are sub-
sumption inequivalent, i.e., if for any π 6= π′

lggπ∪{z0−z0,z1−z1}(C1, C2) ¹ lggπ′∪{z0−z0,z1−z1}(C1, C2).

To this end, we investigate which substitutions θ satisfy

lggπ∪{z0−z0,z1−z1}(C1, C2) · θ ⊆ lggπ′∪{z0−z0,z1−z1}(C1, C2).



If θ does not change the values of z0, z1, then as before some atom

p(binary(π(l)), binary(π(l + 1)), ∗, ∗) · θ = p(binary(π(l)), binary(π(l + 1)), ∗, ∗)
in lggπ∪{z0−z0,z1−z1}(C1, C2) · θ does not occur in lggπ′∪{z0−z0,z1−z1}(C1, C2). If θ maps both
variables z0, z1 to the same value (either z1 or z0), then inclusion cannot happen since
lggπ′∪{z0−z0,z1−z1}(C1, C2) contains no atoms of the form p(z0, . . , z0, ∗, ∗) or p(z1, . . , z1, ∗, ∗).
Obviously, if z0 or z1 are mapped into any other variableX∗, then the inclusion is not possible
either. Hence, θ must exchange the values of z0, z1, and:

p(binary(π(l)), binary(π(l + 1)), ∗, ∗) · θ = p(binary(π(l)), binary(π(l + 1)), ∗, ∗)
where binary(n) is the “complement” of binary(n). For example, assuming v = 8, binary(6) =
z0, z0, z1. More precisely, binary(n) = binary(v − 1 − n). We have seen that there is only
one permutation π′ = π for which there exists some θ s.t. lggπ∪{z0−z0,z1−z1}(C1, C2) · θ ⊆
lggπ′∪{z0−z0,z1−z1}(C1, C2).Moreover, θ is exactly {z0 7→ z1, z1 7→ z0}∪{Xl 7→ Xv−1−l | 0 ≤ l < v}.
We therefore get:

Theorem 5.2 Let S be a signature containing a predicate symbol of arity at least 2 log v+2.
The number of distinct pairings between a pair of function free S-clauses using v+2 variables,
O(v3) literals can be Ω(v!).

5.3 Function Free Clauses with Fixed Arity

As in the previous section we can improve the result to use arity 3 predicates by using
the construction of Lemma 3.11. Using the same clauses C1 and C2 from the previous
construction, we establish that for some appropriate 1-1 matching Mπ it holds:

lggMπ(Trans(C1),Trans(C2)) ≈ Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)), (5)

where ≈ indicates that the clauses are syntactic variants, that is they are the same up to
variable renaming.
In the previous section we established that there are v!

2
distinct pairings between C1, C2.

Lemma 3.11 guarantees that the transformation on clauses Trans(·) preserves subsumption,
hence there must be also v!

2
distinct clauses corresponding to the right hand side of Equa-

tion (5). Equation (5) therefore establishes that there are also v!
2
different pairings between

Trans(C1) and Trans(C2). Moreover, the clauses Trans(C1) and Trans(C2) use resources
within bounds, namely, they use a polynomial number of atoms (in v), a polynomial number
of variables (in v), but fixed arity 3.
To fix notation, let us unfold the transformation:

Trans(C1) =
∨

i=(i1,..,ilog v)∈{0,1}log v

j=(j1,..,jlog v)∈{0,1}log v

0≤l<v−1

Pl,i,j,xl,xl+1

Trans(C2) =
∨

(i1,..,ilog v) = binary(i)

(j1,..,jlog v) = binary(j)

0≤i,j<v

Pi,j,yi,yj



where

Pl,i,j,A,B = p(ul,i,j1 , ul,i,j2 , zi1) ∨ . . ∨ p(ul,i,jlog v, u
l,i,j
log v+1, zilog v) ∨

p(ul,i,jlog v+1, u
l,i,j
log v+2, zj1) ∨ . . ∨ p(ul,i,j2 log v, u

l,i,j
2 log v+1, zjlog v) ∨

p(ul,i,j2 log v+1, u
l,i,j
2 log v+2, A) ∨ p(ul,i,j2 log v+2, u

l,i,j
2 log v+3, B),

Pi,j,A,B = p(wi,j
1 , wi,j

2 , zi1) ∨ . . ∨ p(wi,j
log v, w

i,j
log v+1, zilog v) ∨

p(wi,j
log v+1, w

i,j
log v+2, zj1) ∨ . . ∨ p(wi,j

2 log v, w
i,j
2 log v+1, zjlog v) ∨

p(wi,j
2 log v+1, w

i,j
2 log v+2, A) ∨ p(wi,j

2 log v+2, w
i,j
2 log v+3, B),

Intuitively, the clause Pl,i,j,xl,xl+1
uses the additional variables {ul,i,jk }1≤k≤2 log v+3 to “en-

code” the atom p(binary(i), binary(j), xl, xl+1) in C1, i.e.

Pl,i,j,xl,xl+1
= Trans(p(binary(i), binary(j), xl, xl+1)).

Similarly, the clause Pi,j,yi,yj uses the set of auxiliary variables {wi,j
k }1≤k≤2 log v+3 to “encode”

the atom p(binary(i), binary(j), yi, yj) in C2, i.e.,

Pi,j,yi,yj = Trans(p(binary(i), binary(j), yi, yj)).

Notice that Trans(C1) uses Θ(v
3 log v) literals and variables, and Trans(C2) uses Θ(v

2 log v)
literals and variables. Both use a single predicate of arity 3.

Example 5.3 Following Example 5.2, let p(z1, z0, z1, z1, x1, x2) be an atom in C1 and
p(z0, z1, z1, z0, y1, y2) be an atom in C2. Then,

P1,2,3,x1,x2 = Trans(p(z1, z0, z1, z1, x1, x2))

= p(u1,2,31 , u1,2,32 , z1) ∨ p(u1,2,32 , u1,2,33 , z0)

∨ p(u1,2,33 , u1,2,34 , z1) ∨ p(u1,2,34 , u1,2,35 , z1)

∨ p(u1,2,35 , u1,2,36 , x1) ∨ p(u1,2,36 , u1,2,37 , x2)

P1,2,y1,y2 = Trans(p(z0, z1, z1, z0, y1, y2))

= p(w1,21 , w1,22 , z0) ∨ p(w1,22 , w1,23 , z1)

∨ p(w1,23 , w1,24 , z1) ∨ p(w1,24 , w1,25 , z1)

∨ p(w1,25 , w1,26 , y1) ∨ p(w1,26 , w1,27 , y2)



Then Trans(C1) =

(u0,0,0
1 ,u0,0,0

2 ,z0) (u
0,0,0
2 ,u0,0,0

3 ,z0) (u
0,0,0
3 ,u0,0,0

4 ,z0) (u
0,0,0
4 ,u0,0,0

5 ,z0) (u
0,0,0
5 ,u0,0,0

6 ,x0) (u
0,0,0
6 ,u0,0,0

7 ,x1)

(u0,0,1
1 ,u0,0,1

2 ,z0) (u
0,0,1
2 ,u0,0,1

3 ,z0) (u
0,0,1
3 ,u0,0,1

4 ,z0) (u
0,0,1
4 ,u0,0,1

5 ,z1) (u
0,0,1
5 ,u0,0,1

6 ,x0) (u
0,0,1
6 ,u0,0,1

7 ,x1)

...

(u0,3,2
1 ,u0,3,2

2 ,z1) (u
0,3,2
2 ,u0,3,2

3 ,z1) (u
0,3,3
3 ,u0,3,3

4 ,z1) (u
0,3,2
4 ,u0,3,2

5 ,z0) (u
0,3,2
5 ,u0,3,2

6 ,x0) (u
0,3,2
6 ,u0,3,2

7 ,x1)

(u0,3,3
1 ,u0,3,3

2 ,z1) (u
0,3,3
2 ,u0,3,3

3 ,z1) (u
0,3,3
3 ,u0,3,3

4 ,z1) (u
0,3,3
4 ,u0,3,3

5 ,z1) (u
0,3,3
5 ,u0,3,3

6 ,x0) (u
0,3,3
6 ,u0,3,3

7 ,x1)

(u1,0,0
1 ,u1,0,0

2 ,z0) (u
1,0,0
2 ,u1,0,0

3 ,z0) (u
1,0,0
3 ,u1,0,0

4 ,z0) (u
1,0,0
4 ,u1,0,0

5 ,z0) (u
1,0,0
5 ,u1,0,0

6 ,x1) (u
1,0,0
6 ,u1,0,0

7 ,x2)

(u1,0,1
1 ,u1,0,1

2 ,z0) (u
1,0,1
2 ,u1,0,1

3 ,z0) (u
1,0,1
3 ,u1,0,1

4 ,z0) (u
1,0,1
4 ,u1,0,1

5 ,z1) (u
1,0,1
5 ,u1,0,1

6 ,x1) (u
1,0,1
6 ,u1,0,1

7 ,x2)

...

(u1,2,0
1 ,u1,2,0

2 ,z1) (u
1,2,0
2 ,u1,2,0

3 ,z0) (u
1,2,0
3 ,u1,2,0

4 ,z0) (u
1,2,0
4 ,u1,2,0

5 ,z0) (u
1,2,0
5 ,u1,2,0

6 ,x1) (u
1,3,3
6 ,u1,2,0

7 ,x2)

...

(u1,3,3
1 ,u1,3,3

2 ,z1) (u
1,3,3
2 ,u1,3,3

3 ,z1) (u
1,3,3
3 ,u1,3,3

4 ,z1) (u
1,3,3
4 ,u1,3,3

5 ,z1) (u
1,3,3
5 ,u1,3,3

6 ,x1) (u
1,3,3
6 ,u1,3,3

7 ,x2)

(u2,0,0
1 ,u2,0,0

2 ,z0) (u
2,0,0
2 ,u2,0,0

3 ,z0) (u
2,0,0
3 ,u2,0,0

4 ,z0) (u
2,0,0
4 ,u2,0,0

5 ,z0) (u
2,0,0
5 ,u2,0,0

6 ,x2) (u
2,0,0
6 ,u2,0,0

7 ,x3)

(u2,0,1
1 ,u2,0,1

2 ,z0) (u
2,0,1
2 ,u2,0,1

3 ,z0) (u
2,0,1
3 ,u2,0,1

4 ,z0) (u
2,0,1
4 ,u2,0,1

5 ,z1) (u
2,0,1
5 ,u2,0,1

6 ,x2) (u
2,0,1
6 ,u2,0,1

7 ,x3)

...

(u2,3,3
1 ,u2,3,3

2 ,z1) (u
2,3,3
2 ,u2,3,3

3 ,z1) (u
2,3,3
3 ,u2,3,3

4 ,z1) (u
2,3,3
4 ,u2,3,3

5 ,z1) (u
2,3,3
5 ,u2,3,3

6 ,x2) (u
2,3,3
6 ,u2,3,3

7 ,x3)

Trans(C2) =

(w0,0
1 ,w0,0

2 ,z0) (w
0,0
2 ,w0,0

3 ,z0) (w
0,0
3 ,w0,0

4 ,z0) (w
0,0
4 ,w0,0

5 ,z0) (w
0,0
5 ,w0,0

6 ,y0) (w
0,0
6 ,w0,0

7 ,y0)

(w0,1
1 ,w0,1

2 ,z0) (w
0,1
2 ,w0,1

3 ,z0) (w
0,1
3 ,w0,1

4 ,z0) (w
0,1
4 ,w0,1

5 ,z1) (w
0,1
5 ,w0,1

6 ,y0) (w
0,1
6 ,w0,1

7 ,y1)

(w0,2
1 ,w0,2

2 ,z0) (w
0,2
2 ,w0,2

3 ,z0) (w
0,2
3 ,w0,2

4 ,z1) (w
0,2
4 ,w0,2

5 ,z0) (w
0,2
5 ,w0,2

6 ,y0) (w
0,2
6 ,w0,2

7 ,y2)

(w0,3
1 ,w0,3

2 ,z0) (w
0,3
2 ,w0,3

3 ,z0) (w
0,3
3 ,w0,3

4 ,z1) (w
0,3
4 ,w0,3

5 ,z1) (w
0,3
5 ,w0,3

6 ,y0) (w
0,3
6 ,w0,3

7 ,y3)

(w1,0
1 ,w1,0

2 ,z0) (w
1,0
2 ,w1,0

3 ,z1) (w
1,0
3 ,w1,0

4 ,z0) (w
1,0
4 ,w1,0

5 ,z0) (w
1,0
5 ,w1,0

6 ,y1) (w
1,0
6 ,w1,0

7 ,y0)

(w1,1
1 ,w1,1

2 ,z0) (w
1,1
2 ,w1,1

3 ,z1) (w
1,1
3 ,w1,1

4 ,z0) (w
1,1
4 ,w1,1

5 ,z1) (w
1,1
5 ,w1,1

6 ,y1) (w
1,1
6 ,w1,1

7 ,y1)

(w1,2
1 ,w1,2

2 ,z0) (w
1,2
2 ,w1,2

3 ,z1) (w
1,2
3 ,w1,2

4 ,z1) (w
1,2
4 ,w1,2

5 ,z0) (w
1,2
5 ,w1,2

6 ,y1) (w
1,2
6 ,w1,2

7 ,y2)

(w1,3
1 ,w1,3

2 ,z0) (w
1,3
2 ,w1,3

3 ,z1) (w
1,3
3 ,w1,3

4 ,z1) (w
1,3
4 ,w1,3

5 ,z1) (w
1,3
5 ,w1,3

6 ,y1) (w
1,3
6 ,w1,3

7 ,y3)

(w2,0
1 ,w2,0

2 ,z1) (w
2,0
2 ,w2,0

3 ,z0) (w
2,0
3 ,w2,0

4 ,z0) (w
2,0
4 ,w2,0

5 ,z0) (w
2,0
5 ,w2,0

6 ,y2) (w
2,0
6 ,w2,0

7 ,y0)

(w2,1
1 ,w2,1

2 ,z1) (w
2,1
2 ,w2,1

3 ,z0) (w
2,1
3 ,w2,1

4 ,z0) (w
2,1
4 ,w2,1

5 ,z1) (w
2,1
5 ,w2,1

6 ,y2) (w
2,1
6 ,w2,1

7 ,y1)

(w2,2
1 ,w2,2

2 ,z1) (w
2,2
2 ,w2,2

3 ,z0) (w
2,2
3 ,w2,2

4 ,z1) (w
2,2
4 ,w2,2

5 ,z0) (w
2,2
5 ,w2,2

6 ,y2) (w
2,2
6 ,w2,2

7 ,y2)

(w2,3
1 ,w2,3

2 ,z1) (w
2,3
2 ,w2,3

3 ,z0) (w
2,3
3 ,w2,3

4 ,z1) (w
2,3
4 ,w2,3

5 ,z1) (w
2,3
5 ,w2,3

6 ,y2) (w
2,3
6 ,w2,3

7 ,y3)

(w3,0
1 ,w3,0

2 ,z1) (w
3,0
2 ,w3,0

3 ,z1) (w
3,0
3 ,w3,0

4 ,z0) (w
3,0
4 ,w3,0

5 ,z0) (w
3,0
5 ,w3,0

6 ,y3) (w
3,0
6 ,w3,0

7 ,y0)

(w3,1
1 ,w3,1

2 ,z1) (w
3,1
2 ,w3,1

3 ,z1) (w
3,1
3 ,w3,1

4 ,z0) (w
3,1
4 ,w3,1

5 ,z1) (w
3,1
5 ,w3,1

6 ,y3) (w
3,1
6 ,w3,1

7 ,y1)

(w3,2
1 ,w3,2

2 ,z1) (w
3,2
2 ,w3,2

3 ,z1) (w
3,2
3 ,w3,2

4 ,z1) (w
3,2
4 ,w3,2

5 ,z0) (w
3,2
5 ,w3,2

6 ,y3) (w
3,2
6 ,w3,2

7 ,y2)



(w3,3
1 ,w3,3

2 ,z1) (w
3,3
2 ,w3,3

3 ,z1) (w
3,3
3 ,w3,3

4 ,z1) (w
3,3
4 ,w3,3

5 ,z1) (w
3,3
5 ,w3,3

6 ,y3) (w
3,3
6 ,w3,3

7 ,y3)

Let [v]
def
= {0, . . , v − 1}. We define the 1-1 matching Mπ between Trans(C1) and

Trans(C2) as follows:

{xi − yπ(i) ⇒ Xπ(i)}0≤i<v ∪ {z0 − z0, z1 − z1} ∪ (6)

{ul,π(l),π(l+1)k − w
π(l),π(l+1)
k ⇒ W l

k}1≤k≤2 log v+3 and 0≤l<v−1 ∪ (7)

{u0,i,jk − wi,j
2 log v+4−k}1≤k≤2 log v+3 and (i,j)∈[v]2\{(π(l),π(l+1)) |0≤l<v−1} (8)

First we note that this is indeed a 1-1 matching since no variable in Trans(C1) or
Trans(C2) is used twice in Mπ, and all variables in Trans(C2) are present in it (the clause
Trans(C2) has fewer variables than Trans(C1)).
Parts (7) and (8) determine the matchings between auxiliary variables (those coming

from the transformation Trans); part (6) matches original variables. As we see next, (7)
is designed so that atoms in lggπ∪{z0−z0,z1−z1}(C1, C2) are included in the pairing and (8)
guarantees that everything else is not included in the pairing.
We carefully study lggMπ(Trans(C1),Trans(C2)). We observe thatMπ matches auxiliary

variables u∗,i,j∗ −wi,j
∗ . Therefore atoms are included in the pairing only if they are produced by

P∗,i,j,∗,∗ ∈ Trans(C1) and Pi,j,∗∗ ∈ Trans(C2) sharing the same i, j. In the case that i = π(l)
and j = π(l + 1) for some l ∈ {0, . . , v − 2}, we observe by (7) that the auxiliary variables
are matched following their order in the chain {ul,π(l),π(l+1)k − w

π(l),π(l+1)
k ⇒ W l

k}1≤k≤2 log v+3,
and hence clauses Pl,π(l),π(l+1),xl,xl+1

∈ C1 and Pπ(l),π(l+1),yπ(l),yπ(l+1)
∈ C2 are included in the

pairing precisely as

Pπ(l),π(l+1),Xπ(l),Xπ(l+1)
≈ Trans(p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

where the auxiliary variables used in the transformation are W l
1, . . ,W

l
2 log v+3. To see that

atoms in the product P∗,i,j,∗,∗ × Pi,j,∗∗ are not included in the pairing when (i, j) ∈ [v]2 \
{(π(l), π(l + 1)) | 0 ≤ l < v − 1}, it is sufficient to observe that the auxiliary variables are
matched in reversed order {u0,i,jk − wi,j

2 log v+4−k} (8), so that in order to be included it is re-
quired that an atom p(wi,j

k+1, w
i,j
k , ∗) exists in Trans(C2) which is not possible by construction.

Therefore:

lggMπ(Trans(C1),Trans(C2))

≈
∨

0≤l<v−1
Pπ(l),π(l+1),Xπ(l),Xπ(l+1)

≈
∨

0≤l<v−1
Trans(p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

≈ Trans(
∨

0≤l<v−1
p(binary(π(l)), binary(π(l + 1)), Xπ(l), Xπ(l+1)))

≈ Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)).



Example 5.4 Following Example 5.3, the matching M(3201) is as follows. Corresponding to
(6):

{x0 − y3 ⇒ X3, x1 − y2 ⇒ X2, x2 − y0 ⇒ X0, x3 − y1 ⇒ X1} ∪ {z0 − z0, z1 − z1}

Corresponding to (7):

{u0,3,21 − w3,21 ⇒ W 0
1 , u

0,3,2
2 − w3,22 ⇒ W 0

2 , . . , u
0,3,2
7 − w3,27 ⇒ W 0

7 } ∪

{u1,2,01 − w2,01 ⇒ W 1
1 , u

1,2,0
2 − w2,02 ⇒ W 1

2 , . . , u
1,2,0
7 − w2,07 ⇒ W 1

7 } ∪
{u2,0,11 − w0,11 ⇒ W 2

1 , u
2,0,1
2 − w0,12 ⇒ W 2

2 , . . , u
2,0,1
7 − w0,17 ⇒ W 2

7 }
Corresponding to (8):

{u0,0,01 − w0,07 , u0,0,02 − w0,06 , . . , u0,0,07 − w0,01 } ∪ {u0,0,21 − w0,27 , u0,0,22 − w0,26 , . . , u0,0,27 − w0,21 } ∪

{u0,0,31 − w0,37 , u0,0,32 − w0,36 , . . , u0,0,37 − w0,31 } ∪
{u0,1,01 − w1,07 , u0,1,02 − w1,06 , . . , u0,1,07 − w1,01 } ∪ {u0,1,11 − w1,17 , u0,1,12 − w1,16 , . . , u0,1,17 − w1,11 } ∪
{u0,1,21 − w1,27 , u0,1,22 − w1,26 , . . , u0,1,27 − w1,21 } ∪ {u0,1,31 − w1,37 , u0,1,32 − w1,36 , . . , u0,1,37 − w1,31 } ∪
{u0,2,11 − w2,17 , u0,2,12 − w2,16 , . . , u0,2,17 − w2,11 } ∪ {u0,2,21 − w2,27 , u0,2,22 − w2,26 , . . , u0,2,27 − w2,21 } ∪

{u0,2,31 − w2,37 , u0,2,32 − w2,36 , . . , u0,2,37 − w2,31 } ∪
{u0,3,01 − w3,07 , u0,3,02 − w3,06 , . . , u0,3,07 − w3,01 } ∪ {u0,3,11 − w3,17 , u0,3,12 − w3,16 , . . , u0,3,17 − w3,11 } ∪

{u0,3,31 − w3,37 , u0,3,32 − w3,36 , . . , u0,3,37 − w3,31 } ∪
Notice that the portion of the matching

{u0,3,21 − w3,21 ⇒ W 0
1 , u

0,3,2
2 − w3,22 ⇒ W 0

2 , . . , u
0,3,2
7 − w3,27 ⇒ W 0

7 }

makes sure that the atoms P0,3,2,x0,x1 in Trans(C1)

(u0,3,2
1 ,u0,3,2

2 ,z1) (u
0,3,2
2 ,u0,3,2

3 ,z1) (u
0,3,3
3 ,u0,3,3

4 ,z1) (u
0,3,2
4 ,u0,3,2

5 ,z0) (u
0,3,2
5 ,u0,3,2

6 ,x0) (u
0,3,2
6 ,u0,3,2

7 ,x1)

and the atoms P3,2,y3,y2 in Trans(C2)

(w3,2
1 ,w3,2

2 ,z1) (w
3,2
2 ,w3,2

3 ,z1) (w
3,2
3 ,w3,2

4 ,z1) (w
3,2
4 ,w3,2

5 ,z0) (w
3,2
5 ,w3,2

6 ,y3) (w
3,2
6 ,w3,2

7 ,y2)

appear in the pairing lggM(3201)
(Trans(C1),Trans(C2)) as

(W 0
1 ,W

0
2 ,z1) (W

0
2 ,W

0
3 ,z1) (W

0
3 ,W

0
4 ,z1) (W

0
4 ,W

0
5 ,z0) (W

0
5 ,W

0
6 ,X3) (W 0

6 ,W
0
7 ,X2).

Finally, lggM(3201)
(Trans(C1),Trans(C2)) =

(W 0
1 ,W

0
2 ,z1) (W

0
2 ,W

0
3 ,z1) (W

0
3 ,W

0
4 ,z1) (W

0
4 ,W

0
5 ,z0) (W

0
5 ,W

0
6 ,X3) (W 0

6 ,W
0
7 ,X2)

(W 1
1 ,W

1
2 ,z1) (W

1
2 ,W

1
3 ,z0) (W

1
3 ,W

1
4 ,z0) (W

1
4 ,W

1
5 ,z0) (W

1
5 ,W

1
6 ,X2) (W 1

6 ,W
1
7 ,X0)

(W 2
1 ,W

2
2 ,z0) (W

2
2 ,W

2
3 ,z0) (W

2
3 ,W

2
4 ,z0) (W

2
4 ,W

2
5 ,z1) (W

2
5 ,W

2
6 ,X0) (W 2

6 ,W
2
7 ,X1)



Recall lggπ∪{z0−z0,z1−z1}(C1, C2) is

(z1, z1, z1, z0, X3, X2) (z1, z0, z0, z0, X2, X0) (z0, z0, z0, z1, X0, X1)

and hence Trans(lggπ∪{z0−z0,z1−z1}(C1, C2)) is

(Y 1
1 ,Y

1
2 ,z1) (Y

1
2 ,Y

1
3 ,z1) (Y

1
3 ,Y

1
4 ,z1) (Y

1
4 ,Y

1
5 ,z0) (Y

1
5 ,Y

1
6 ,X3) (Y 1

6 ,Y
1
7 ,X2)

(Y 2
1 ,Y

2
2 ,z1) (Y

2
2 ,Y

2
3 ,z1) (Y

2
3 ,Y

2
4 ,z1) (Y

2
4 ,Y

2
5 ,z0) (Y

2
5 ,Y

2
6 ,X2) (Y 2

6 ,Y
2
7 ,X0)

(Y 3
1 ,Y

3
2 ,z1) (Y

3
2 ,Y

3
3 ,z1) (Y

3
3 ,Y

3
4 ,z1) (Y

3
4 ,Y

3
5 ,z0) (Y

3
5 ,Y

3
6 ,X0) (Y 3

6 ,Y
3
7 ,X1)

and indeed one can check that

lggM(3201)
(Trans(C1),Trans(C2)) ≈ Trans(lgg(3201)∪{z0−z0,z1−z1}(C1, C2))

via the variable renaming {Y 1
k ↔ W 0

k , Y
2
k ↔ W 1

k , Y
3
k ↔ W 2

k | 1 ≤ k ≤ 7} .

Theorem 5.3 Let S be a signature containing a predicate symbol of arity at least 3. The
number of distinct pairings between a pair of function free S-clauses using O(v3 log v) vari-
ables, O(v3 log v) literals can be Ω(v!).

Renaming parameters to use v1/4 original variables in the theorem we get:

Corollary 5.4 Let S be a signature containing a predicate symbol of arity at least 3. The
number of distinct pairings between a pair of function free S-clauses using at most v variables
and v literals can be Ω(2v/4).

5.4 Implications for Learnability

The Algorithms in [14, 3] are shown to learn first order classes from equivalence and member-
ship queries. The algorithms use pairings in the process of learning and a tv upper bound on
the number of these is used. No explicit lower bound was given leaving open the possibility
that better analysis might yield better upper bounds. The results above can be used to
give a concrete example where an exponential number of queries is indeed used. We sketch
the details here for the algorithm in [3]. Let the target be T . The algorithm maintains a
set of meta-clauses as its hypothesis. Two major steps in the algorithm are minimization
and pairing. In minimization, given a counter example clause C s.t. T |= C the algorithm
iterates dropping one object at a time and asking an entailment membership query to check
whether it is correct. For example given p(x1, x2), p(x2, x3), p(x1, x3), p(x3, x4) → q(x3, x3)
dropping x2 (and all atoms using it) yields p(x1, x3), p(x3, x4) → q(x3, x3). In this way a
counter example with a minimal set of variables is obtained. Then the algorithm tries to
find a pairing of the minimized example and a meta-clause in the hypothesis which yields an
implied clause of smaller size. This is done by enumerating all “basic” pairings. If no such
pairing is found then the clause is added as a new meta-clause to the hypothesis. Therefore
in order to show that the algorithm makes an exponential number of queries it suffices to
show a target T = D1∧D2 where (1) each of D1, D2 is already minimal so that minimization



does not alter them, (2) D1, D2 have an exponential number of “basic” pairings, and (3)
T 6|= C for any C which is a pairing of D1, D2. If this holds then we can give the clause D1

to the algorithm as a counter example and then follow with D2. The algorithm will ask a
membership query on all the pairings getting an answer of No every time and eventually add
D2 to its hypothesis. We omit the technical definition of “basic” pairings but note that all
pairings constructed in the previous section are “basic” since they map variables to variables.
Let f() be a nullary predicate symbol, and q() and r() binary predicates. Let N1, N2 be

the number of variables used in C1, C2 in the construction above respectively, and rename
these variables (in any order) so that C1 uses variables v1, . . . , vN1 , and C2 uses variables
w1, . . . , wN2 . Then we use q() and r() to define chains of variables touching all variables
in C1, C2: Q = ∧1≤l<N1q(vl, vl+1) and R = ∧1≤l<N2r(wl, wl+1). Now define C

′
1, C

′
2 to be

the conjunction of the atoms from C1, C2 above (we used disjunction above) and let D1 =
C ′1 ∧Q→ f() and D2 = C ′2 ∧ R→ f(). Finally T = D1 ∧D2. The following 3 lemmas give
useful properties of T and its clauses.

Lemma 5.5 D1 6¹ D2 and hence D1 6|= D2. D2 6¹ D1 and hence D2 6|= D1.

Proof: To see that D1 6¹ D2 and D2 6¹ D1, it suffices to notice that in D1 there are atoms
containing the predicate symbol q which is not present in D2, and in D2 there are atoms
containing the predicate symbol r which is not present in D1. D1 6|= D2 and D2 6|= D1 follow
from the fact that when considering clauses that are not self-resolving and where chaining
is not possible, logical implication coincides with subsumption [11].

Lemma 5.6 Let C be any clause. Let T = D1 ∧D2 as defined above. If T |= C then it is
the case that either D1 ¹ C or D2 ¹ C.

Proof: Since the clauses in T are not self-resolving and D1 and D2 cannot be resolved
together, implication reduces to subsumption [11].

Lemma 5.7 Let T = D1 ∧D2 as defined above. If D is a result of dropping any object from
D1 or D2 then T 6|= D.

Proof: By Lemma 5.6, T |= D iff D1 ¹ D or D2 ¹ D. Assume D is a result of dropping an
object from D1 (the other case is similar). Then since Q,R use different predicate symbols
it is clear that D2 6¹ D. To see that D1 6¹ D notice that D1 includes a q() chain of length
N1 including all variables in D1. Consider any substitution θ mapping variables in D1 to
variables inD and assume that v1 is mapped to wk for some k. The only way for subsumption
to work is to map v2 to wk+1 and so on. However, since D contains strictly fewer variables
than D1 then for some i it must be the case that q(wk+i, wk+i+1) is not in D. Therefore it
cannot be the case that D1θ ⊆ D.

Lemma 5.7 establishes condition (1). It is easy to see that the clauses have exactly the
same pairings as in the previous section since the atoms by q and r are dropped in every
pairing and the chains do not introduce new variables. This implies that condition (2) holds.
Finally (3) holds since q and r atoms are dropped in every pairing so subsumption is not
possible. We therefore get:

Theorem 5.8 The algorithm of [3] can make Ω(2v/4) queries on some learning problems.



References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, April 1988.

[2] Dana Angluin. Queries revisited. In Proceedings of the International Conference on
Algorithmic Learning Theory, volume 2225 of Lecture Notes in Computer Science, pages
12–31, Washington, DC, USA, November 25-28 2001. Springer.

[3] M. Arias and R. Khardon. Learning closed Horn expressions. Information and Compu-
tation, 178:214–240, 2002.

[4] M. Arias and R. Khardon. Complexity parameters for first-order structures. In Pro-
ceedings of the 13th International Conference on Inductive Logic Programming, pages
22–37. Springer-Verlag, 2003. LNAI 2835.

[5] M. Arias and R. Khardon. The subsumption lattice and query learning. Technical
Report 2004-7, Department of Computer Science, Tufts University, 2004.

[6] M. Arias, R. Khardon, and R. A. Servedio. Polynomial certificates for propositional
classes. In Proceedings of the Conference on Computational Learning Theory, pages
537–551. Springer-Verlag, 2003. LNAI 2777.

[7] Hiroki Arimura. Learning acyclic first-order Horn sentences from entailment. In Proceed-
ings of the International Conference on Algorithmic Learning Theory, Sendai, Japan,
1997. Springer-Verlag. LNAI 1316.

[8] L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of the 6th
Conference on Algorithmic Learning Theory, volume 997. Springer-Verlag, 1995.

[9] F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Ideal theory refinement under
object identity. In Proceedings of the International Conference on Machine Learning,
pages 263–270, 2000.

[10] Sally A. Goldman and Michael Kearns. On the complexity of teaching. Journal of
Computer and System Sciences, 50:20–31, 1995.

[11] G. Gottlob. Subsumption and implication. Information Processing Letters, 24(2):109–
111, 1987.

[12] T. Hegedus. On generalized teaching dimensions and the query complexity of learning.
In Proceedings of the Conference on Computational Learning Theory, pages 108–117,
New York, NY, USA, July 1995. ACM Press.

[13] L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many queries
are needed to learn? Journal of the ACM, 43(5):840–862, September 1996.

[14] R. Khardon. Learning function free Horn expressions. Machine Learning, 37:241–275,
1999.



[15] J. W. Lloyd. Foundations of logic programming; (2nd extended ed.). Springer-Verlag
New York, Inc., 1987.

[16] S. Nienhuys-Cheng and R. De Wolf. Foundations of Inductive Logic Programming.
Springer-verlag, 1997. LNAI 1228.

[17] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153–163,
1970.

[18] J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,
1990.

[19] K. Rao and A. Sattar. Learning from entailment of logic programs with local vari-
ables. In Proceedings of the International Conference on Algorithmic Learning Theory,
Otzenhausen, Germany, 1998. Springer-verlag. LNAI 1501.

[20] C. Reddy and P. Tadepalli. Learning Horn definitions with equivalence and membership
queries. In International Workshop on Inductive Logic Programming, pages 243–255,
Prague, Czech Republic, 1997. Springer. LNAI 1297.

[21] C. Reddy and P. Tadepalli. Learning first order acyclic Horn programs from entailment.
In International Conference on Inductive Logic Programming, pages 23–37, Madison,
WI, 1998. Springer. LNAI 1446.

[22] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.


