TUFTS-CS Technical Report 2004-8

September 2004

Polynomial Certificates for Propositional Classes

by
Marta Arias Aaron Feigelson
Dept. of Computer Science Dept. of
Tufts University Leydig, Voit and Mayer Ltd.
Medford, Massachusetts 02155 Chicago, Illinois 60601
Roni Khardon Rocco A. Servedio
Dept. of Computer Science Dept. of Computer Science
Tufts University Columbia University

Medford, Massachusetts 02155 New York, NewYork 10027

Polynomial Certificates for Propositional Classes*

Marta Arias Aaron Feigelson
Department of Computer Science Leydig, Voit & Mayer, Ltd.
Tufts University Chicago, IL 60601
Medford, MA 02155, USA arf@alumni.northwestern.edu

marias@cs.tufts.edu

Roni Khardon Rocco A. Servedio
Department of Computer Science Department of Computer Science
Tufts University Columbia University
Medford, MA 02155, USA New York, NY 10027, USA
roni@cs.tufts.edu rocco@cs.columbia.edu

August 17, 2004

Abstract

This paper studies the complexity of learning classes of expressions in propositional
logic from equivalence queries and membership queries. In particular, we focus on
bounding the number of queries that are required to learn the class ignoring computa-
tional complexity. This quantity is known to be captured by a combinatorial measure
of concept classes known as the certificate complexity. The paper gives new construc-
tions of polynomial size certificates for monotone expressions in conjunctive normal
form (CNF), for unate CNF functions where each variable affects the function either
positively or negatively but not both ways, and for Horn CNF functions. Lower bounds
on certificate size for these classes are derived showing that for some parameter settings
the new certificates constructions are optimal. Finally, the paper gives an exponential
lower bound on the certificate size for a natural generalization of these classes known
as renamable Horn CNF functions, thus implying that the class is not learnable from
a polynomial number of queries.

*This work has been partly supported by NSF Grant IIS-0099446 (M.A. and R.K.) and by an NSF
Mathematical Sciences Postdoctoral Research Fellowship (R.S). Work done while A.F. was at the Department
of Electrical and Computer Engineering, Northwestern University, and while R.S. was at the Division of
Engineering and Applied Sciences, Harvard University.

1 Introduction

This paper is concerned with the model of exact learning from equivalence and membership
queries (Angluin, 1988). Since its introduction this model has been extensively studied
and many classes have been shown to be efficiently learnable. Of particular relevance for the
current paper are learning algorithms for monotone DNF expressions (Valiant, 1984; Angluin,
1988), unate DNF expressions (Bshouty, 1995), and Horn CNF expressions (Angluin, Frazier,
and Pitt, 1992; Frazier and Pitt, 1993). Some results in this model have also been obtained
for sub-classes of Horn expressions in first order logic but the picture there is less clear.
Except for a “monotone-like case” (Reddy and Tadepalli, 1997) the query complexity is
either exponential in one of the crucial parameters (e.g. universally quantified variables)
(Khardon, 1999; Arias and Khardon, 2002) or the algorithms use additional syntax based
oracles (Arimura, 1997; Reddy and Tadepalli, 1998; Rao and Sattar, 1998). It is thus
interesting to investigate whether this gap is necessary. The current paper takes a first step
in this direction by studying the query complexity in the propositional case.

Query complexity can be characterized using the combinatorial notion of polynomial
certificates (Hellerstein et al., 1996; Heged{is, 1995); see also (Balcazar, Castro, and Guijarro,
1999; Angluin, 2001). In particular, Hellerstein et al. (1996) and Heged{is (1995) show that a
class C is learnable from a polynomial number of proper equivalence queries (using hypotheses
in C) and membership queries if and only if the class C has polynomial certificates. This
characterization is information theoretic and ignores run time. Certificates have already
proved to be a useful tool for studying learnability. For example, conjunctions of unate
formulas are learnable with a polynomial number of queries but not learnable in polynomial
time unless P=NP (Feigelson and Hellerstein, 1998). A recent result of Hellerstein and
Raghavan (2002) shows that DNF expressions require a super-polynomial number of queries
even when the hypotheses are larger than the target function by some factor, albeit the
factor is small. The question whether DNF can be learned with hypotheses that are larger
than the target by a polynomial factor is a major open question in learning theory.

This paper establishes lower and upper bounds on certificates for several classes. We
give constructions of polynomial certificates for (1) monotone CNF where no variables are
negated, (2) unate CNF where by renaming some variables as their negations we get a mono-
tone formula, and (3) Horn CNF where each clause has at most one positive literal. We give
certificates in the standard learning model as well as the model of learning from entailment
(Frazier and Pitt, 1993) that is studied extensively in Inductive Logic Programming (see e.g.
(De Raedt, 1997)). The construction of certificates for the Horn case is based on an analysis
of saturation forming a “standardized representation” for Horn expressions that has useful
properties.

The learnability results that follow from these certificate results are weaker than the re-
sults in (Valiant, 1984; Angluin, 1988; Bshouty, 1995; Angluin, Frazier, and Pitt, 1992) since
we obtain query complexity results and the results cited are for time complexity. However,
the certificate constructions which we give are different from those implied by these earlier
algorithms, so our results may be useful in suggesting new learning algorithms. We also give
new lower bounds on certificate size for each of these concept classes. For some parameter
settings, our lower bounds imply that our new certificate constructions are exactly optimal.

Finally, we also consider the class of renamable Horn CNF expressions. Note that unate
CNF and Horn CNF generalize monotone expressions in two different ways. Renamable
Horn expressions combine the two allowing to get a Horn formula after renaming variables.
Renamable Horn formulas can be identified in polynomial time and have efficient satisfiability
algorithms and are therefore interesting as a knowledge representation (del Val, 2000). While
unate CNF and Horn CNF each have polynomial certificates, we give an exponential lower
bound on certificate size for renamable Horn CNF. This proves that renamable Horn CNF
is not learnable in polynomial time from membership and equivalence queries, and answers
an open question posed in (Feigelson, 1998).

2 Preliminaries

2.1 Representation Classes

We consider families of expressions built from n > 1 propositional variables. We assume
some fixed ordering so that an element of {0, 1}" specifies an assignment of a truth value to
these variables.

A literal is a variable or its negation. A term is a conjunction of literals. A DNF
expression is a disjunction of terms. A clause is a disjunction of literals. A CNF expression
is a conjunction of clauses. The DNF size of a boolean function f C {0,1}", denoted | f| ;5
is the minimum number of terms in a DNF representation of f. The CNF size of f, |f| oy
is defined analogously. In general, let R be a representation class for boolean formulas. Then
|flz is the size of a minimal representation for f in R. If f ¢ R, we assign |f|; = oc.

Next, we present some classes of boolean formulas and their properties. In what follows
we use the notation f(z) =1 or z = f interchangeably, where f is a boolean function and
x is an assignment. Both stand for classical formula satisfiability.

A monotone CNF (DNF) expression is a CNF (DNF) with no negated variables. Seman-
tically, a function is monotone iff:

Yo,y € {0,137 ifz <y then f(z) < f(y), (1)

where < between assignments denotes the standard bit-wise relational operator.
An anti-monotone CNF (DNF) expression is a CNF (DNF) where all variables appear
negated. Semantically, a function is anti-monotone iff:

Ve,y € {0,1}" ¢ if 2 <y then f(z) > f(y). (2)

Let a,z,y € {0,1}" be three assignments. The inequality between assignments x <, y is
defined as x @& a < y @ a, where < is the bit-wise standard relational operator and @ is the
bit-wise exclusive OR. Intuitively if a;, the 2’th bit of a is 0 then we get the normal order on
this bit. But if a; = 1 we used 1 < 0 for the corresponding variable. We denote x <, y iff
x <,y buty <L, x.

A boolean CNF function f (of arity n) is unate iff there exists some assignment a (called
an orientation for f) such that

Vo,y € {0,1}": if 2 <, y then f(z) < f(y). (3)

3

Equivalently, a variable cannot appear both negated and unnegated in any minimal CNF
representation of f. Each variable is either monotone or anti-monotone.

A term ¢ is a minterm for a boolean function f if ¢t = f but ¢’ |~ f for every other term
t'" C t. It is well known that a unate DNF expression has a unique minimal representation
given by the disjunction of its minterms.

A Horn clause is a clause in which there is at most one positive literal, and a Horn
expression is a conjunction of Horn classes. A Horn clause (Z;, V- - -VZ;, V;,,,) is easily seen
to be equivalent to the implication x;, - - - x5, — @y, ,; we refer to x;, - - - x;, as the antecedent
and to x;, ,, as the consequent of such a clause. Notice that an anti-monotone CNF expression
can be seen as a Horn CNF whose clauses have empty consequents. For example, the anti-
monotone CNF (aV b) A (bV ¢) is equivalent to the Horn CNF (ab — false) A (bc — false).

Let z,y € {0,1}" be two assignments. Their intersection x Ny is the assignment that
sets to 1 only those variables that are 1 in both x and y. It is well known that a function is
Horn iff

Ve,y €{0,1}": ifz = fandy E f, thenznNy = f (4)

The original characterization is due to McKinsey (1943), although it was stated in a
different context and in more general terms. It was further explored by Horn (1956). Finally,
a proof adapted to our setting can be found e.g. in (Khardon and Roth, 1996).

Let a,z,y € {0,1}" be three assignments. Let a[i] be the i-th bit of assignment a. The
unate intersection x N, y is defined as:

. xlt) ANyle] ifalil =0
(zNay)li] = { xH V yH oth([ejwise
It is easy to see that this definition is equivalent to (xN,y)[i] = ((z[i]®ali])N(y[i]Dali])) Dali]
and that (z N, y) <, = and (z N, y) <, y so that <, and N, behave like their normal
counterparts.

We say that a boolean CNF function f (of arity n) is renamable Horn if there exists
some assignment ¢ such that f. is Horn, where f.(z) = f(z @ ¢) for all x € {0,1}". In other
words, the function obtained by renaming the variables according to ¢ is Horn. We call such
an assignment ¢ an orientation for f. Equivalently, an expression is renamable Horn iff there
exists an assignment ¢ such that

Ve,y €{0,1}": ifz | fand y E f, then zN.y E f. (5)

Let B be any of the classes of propositional expressions defined above; B,, denotes the
subclass of B whose concepts have size at most m.

2.2 Derivation Graphs

We next introduce the notion of derivation graphs. Derivation graphs are useful in capturing
logical consequence of a Horn clause from a Horn expression.

Definition 2.1 A derivation of a clause C = A — a from a Horn expression T is a finite
directed acyclic graph G with the following properties. Nodes in G are propositional variables.

4

The node a is the unique node of out-degree zero. For each node b in G, let Pred(b) be the
set of nodes b in G with edges from b’ to b. Then, for every node b in G, either b € A or
Pred(b) — b is a clause in T. A derivation G of C' from T is minimal if no proper subgraph
of G s also a deriwation of C' from T'.

It follows from the Subsumption Theorem for SLD-resolution (Theorem 7.10 in (Nienhuys-
Cheng and De Wolf, 1997)) that if T = C, where T" is a Horn expression and C' a non-
tautological Horn clause, then there exists a derivation of C' from 7.

2.3 Learning with Queries and Certificates

We briefly review the model of exact learning with equivalence queries and membership
queries (Angluin, 1988). Before the learning process starts, a concept ¢ € B is fixed. We refer
to this concept as the target concept. The learning algorithm has access to an equivalence
oracle and a membership oracle that provide information about the target concept. In an
equivalence query, the learner presents a hypothesis (a formula in B) and the oracle answers
Yes if it is a representation of the target concept. Otherwise, it answers No and provides a
counterexample, that is, an example x € {0,1}" where the target and hypothesis disagree.
In a membership query, the learner presents an example and the oracle answers Yes or
No depending on whether the example presented is a member of the target concept. For
any target expression in the concept class the learning algorithm is required to identify the
target expression and get a Yes answer to an equivalence query. When concept classes
are parametrized by size we allow the learning algorithm to learn concepts in B, using
hypotheses in By,) for some polynomial p().

Definition 2.2 The query complexity of a concept class B, QC(B), is the minimum number
of queries required by any algorithm that learns B with equivalence and membership queries.

Finally we define the notion of certificates:

Definition 2.3 Let R be a class of representations defining a boolean concept class B. The
class R has polynomial certificates if there exist two-variable polynomials p(-,-) and q(-,-)
such that for every n,m > 0 and for every boolean function f C {0,1}" s.t. |f|n > p(m,n),
there is a set Q C {0, 1}" satisfying the following: (1)|Q| < q(m,n) and (2) for every g € B,
there is some x € Q s.t. g(x) # f(x). In other words, (2) states that no function in B, is
consistent with f over Q).

The certificate size C'S(B) is the smallest function g(m,n) for which the above holds.

As mentioned above certificates roughly characterize the number of queries needed to
learn a concept class:

Theorem 2.1 (Hegediis, 1995; Hellerstein et al., 1996)

CS5(B) < QC(B) < C5(B)log(|B])

3 Certificates for monotone and unate CNF's

In this section we give constructions of certificates for monotone and unate classes. We
present the basic result for the class of anti-monotone CNF so as to make the relation to the
certificate for Horn expressions as clear as possible.

Theorem 3.1 The class of anti-monotone CNF has polynomial size certificates with p(m,n) =
m and q(m,n) = min{(m +)n, ("") + m +1}.

Proof: Fix m,n > 0. Fix any f C {0,1}" s.t. |f],iicmoncne > P(m,n) = m. We proceed
by cases.

Case 1. f is not anti-monotone. In this case, there must exist two assignments x,y €
{0,1}" s.t. z <y but f(x) < f(y) (otherwise f would be anti-monotone). Let @ = {x,y}.
Notice that by definition no anti-monotone CNF can be consistent with ¢). Moreover, |Q| =
2 < q(m,n).

Case 2. f is anti-monotone. Let ¢; Acy A..Ac¢, A..Acp be aminimal representation
for f. Notice that &k > m + 1 since | f| i moncnr > P(M,0) = m.

We give two different constructions for certificates in this case that achieve the two
parts in the bound. Define assignment z!“! as the assignment that sets to 1 exactly those
variables that appear in ¢;’s antecedent. For example, if n = 5 and ¢; = v3v; — false then
zlel = 00101.

Remark 3.1 Notice that every z!%l falsifies ¢; (antecedent is satisfied but consequent is
false) but satisfies every other clause in f. If this were not so, then we would have that
some other clause c; in f is falsified by zlel, that is, the antecedent of ¢; is true and therefore
all variables in ¢; appear in ¢; as well (i.e. ¢; C ¢;). This is a contradiction since ¢; would be
redundant and we are looking at a minimal representation of f.

Let 0; be the assignment with 0 in position ¢ and 1 elsewhere. For the first construction let
Q = Q" UQ where
Q" = {a

Qt = {1 N0, [1<i<m+1and 29[j] = 1.}

1§i§m+1} and

Notice that |Q] < (m + 1)n. By the remark assignments in ()~ are negative, and since these
are the maxterms it is also clear that assignments in Q* are positive. Any anti-monotone
CNF g with at most m clauses will cover two examples z[%), 2] in Q= with the same term.
As a result one of the assignments directly below %! which is in Q% is also falsified by this
clause. So g is not consistent with Q).

For the second construction let Q = Q* U Q~ where

Q = {x[cz']

1§i§m+1} and

Notice that [Q] < (™5 1) + m + 1. As before the assignments in ()~ are negative for f.
The assignments in Q1 are positive for f. To see this, suppose some zl% N zls) € QF is

negative. Then there is some clause ¢ in f that is falsified by zl% N zl%] € Q. That is, all
variables in ¢ are set to 1 by zl% Nzl € Q. Therefore, all variables in ¢ are set to 1 by
2l and %] and they falsify the same clause which is a contradiction by the remark above.
Hence, all assignments in QF are positive for f.

It is left to show that no anti-monotone CNF g s.t. 9], moncye < M is consistent with
fover Q. Fixany g =c; A..Ac; with [<m. If g is consistent with @, then there is a
¢ € g falsified by two different z[%), zltl € Q= since we have m + 1 assignments in Q= but
strictly fewer clauses in g. Since they falsify ¢/, all variables in ¢’ are set to 1 in both]
and zl%]. Therefore, all variables in ¢’ are set to 1 in their intersection z!% N zl%!. Hence,
clause ¢ (and therefore g) is falsified by z!%l N zl%]. Thus, 2l N 2ls) € @t is negative for g
and g and f cannot be consistent. [|

By duality of the boolean operators and DNF vs. CNF representations we get

Corollary 3.2 The classes monotone DNF,anti-monotone DNF, monotone CNF, anti-monotone
CNF have certificates of size min{(m + 1)n, ("}") +m + 1}.

Constructing certificates for unate expressions appears harder at first consideration since
that are many more ¢ functions that may be consistent with (). Nonetheless essentially the
same construction works here as well. Since for unate classes we define an orientation to
transform the function to be monotone rather than anti-monotone, one would need the dual
of the previous construction. To make the notation similar to the previous case we present
the result for DNF which means taking the dual again so that we can use intersection as
before.

Theorem 3.3 Unate DNFs have polynomial size certificates with p(m,n) = m and g(m,n) =
min{(m +)n, ("}') + m + 1}.

Proof: Fixm,n > 0. Fixany f C {0,1}" s.t. |f|,.uepne > P(m,n) = m. Now we proceed
by cases.

Case 1. fis not unate. In this case, there must exist four assignments x,y, z, w € {0, 1}"
and a position i (1 < i < n) such that:

o z[j| =y[j] forall 1 < j < n,j#iand z[i] < y[i]
o z[j] =wlj] for all 1 < j < mn,j #iand z[i] > w|i]

o f(z)> f(y) and f(z) > f(w)

Let @ = {z,y,z,w}. Notice that |Q| < g(m,n). To see that no unate DNF can be consistent
with f over (), take any unate DNF ¢ and suppose it is consistent. Let a be an orientation
for g. If a[i] = 0 (i-th value given by a) then we have that = <, y but g(z) > g(y). If afi] = 1
then z <, w but g(z) > g(w). Therefore there cannot be any unate function consistent with
f over Q.

Case 2. f is unate. Let a be the assignment witnessing f being unate. Suppose w.l.o.g.
(just rename variables accordingly) that a = 0"1"" where r is the number of monotone
variables in f. Suppose that the variables in f are {vy, ..., v, }. Therefore, variables {vy, ..., v, }

7

appear always positive in f and variables {v,,1, ..., v,} appear always negative. Let t; V{3V
. Vit, V..Vt be amnimal DNF representation of f. Notice that &k > m + 1 since
| flunatepnr > P(m,n) = m. Define j-th value of assignment zl as (for 1 < j < n):

if j <r and v; appears in t;
if j <r and v; does not appear in ¢;
if j > r and v; appears in ¢,
if 7 > r and v; does not appear in t;

Notice that if f does not depend on a variable v;, so that it does not appear in any of the
terms, then its value is fixed to the same value in all the assignments.
Let 0; be defined as above. For the first construction let @) = @ U Q~ where

Qt = {x[ti]

Q = {a" M, (a®0;) |1 <i <m+1and 2] =1 - a[j].}

1§z’§m+1} and

Notice that @ @ 0; has all bits except the jth at their maximal value so zl N, (a @ 0;)
flips the jth bit in 2! to its minimum value. Each relevant variable has at least one pair
of assignments in Q",Q~ with Hamming distance 1 showing the direction of its influence.
Therefore any unate g consistent with) must have all variable polarities set correctly. As
a result, the argument for the monotone case shows that any unate g with at most m terms
over the relevant variables cannot be consistent with (). Since irrelevant variables have a
constant value in @) they cannot affect consistency of any potential g.
For the second construction let

Q-i- — {x[ti]

Q,:{m[ti]ma:c[tﬂ‘1§i<j§m+1}'

1§i§m+1} and

As before it is easy to see that the assignments in Q1 are positive and assignments in
are negative for f.

It is left to show that no unate DNF g s.t. |9 uepne < M is consistent with f over Q.
If ¢ is consistent with QF, then there is a t’ € ¢ satisfied by two assignments z%), 2t] € Q+.
Since zll |= #' and %! |= ¢’ all variables appearing in # have the same value in ! and
zl%) and therefore so does their their intersection N, with respect to any orientation ¢ and
in particular for N,. Since z!%! N, zl! € Q~, g is not consistent with Q. [|

Corollary 3.4 The class of Unate CNF has certificates of size min{(m+1)n, ("J')+m+1}.

4 Saturated Horn CNF's

This section develops a “standardized” representation for propositional Horn expressions
which can be obtained by an operation we call saturation. We establish properties of satu-
rated expressions that make it possible to construct a set of certificates in a similar way to
the case of anti-monotone CNF.

Definition 4.1 Let f be a Horn CNF. We define Saturation(f) as the Horn expression
returned by the following procedure:

SATURATION(f)

1 Sat— f

2 repeat

3 if there exist s; — b;, s; — b; in Sat s.t. b; #b;, s, C s;, bj € 55
4 then 8; — s; U {bj}

5 replace s; — b; with s, — b; in Sat.

6 until no changes are made to Sat

7 return Sat

By a saturation of f we mean any of the possible outcomes of the procedure SATURATION(f).
Note that we are not proposing to run this procedure but we are simply using it in the anal-
ysis that follows. In any case it is clear that the procedure must terminate within O(mn)
iterations, where m is the number of clauses in the initial expression, and n is the number
of variables.

Example 4.1 Notice that an expression can have many possible saturations. As an exam-
ple, take f = {a — b,a — c}; this expression has two possible saturations: Sat; = {ac —
b,a — c} and Saty = {a — b,ab — c}. Clearly, the result depends on the order in which we
saturate clauses.

Lemma 4.1 FEvery Horn expression is logically equivalent to its saturation.

Proof: We show inductively that after every iteration of the main loop in the procedure
above the logical value of the expression being computed does not change. Let Sat be the
expression before the update and Sat’ after. Let s; — b; € Sat be the clause updated to
si — b; € Sat’. We have to show that Sat = Sat’. Since s; — b; = s, — b; it follows that
Sat = Sat’. For the other direction Sat’ = Sat fix an arbitrary x such that z = Sat’. We
show that x = Sat. It holds that z = C’ for all clauses C” € Sat’ so we only need to show
that = = s; — b;. The two following cases arise: (1) the extra variable in s, (w.r.t. s;) is
set to 1 by z, or (2) it is set to 0. If (1) holds, then it is easy to see that z |= s; — b; iff
r = s, — b; and we conclude z = s; — b;. If (2) holds, then let s; — b; be the clause that
was used to add the extra variable (b;) to s;. We have seen that = = s; — b; and that b;
is set to 0, therefore s; must be falsified by = (that is, some variable in s; is set to 0 by).
Notice, too, that s; C s;. Hence, some variable in s; must be set to 0 by . Thus z = s, — b;
as required. []

Example 4.2 Notice that we use the notion of a “sequential” saturation in the sense that
we use the updated expression to continue the process of saturation. There is a notion
of “simultaneous” saturation that uses the original expression to saturate all the clauses.
Lemma 4.1 does not hold for simultaneous saturation. An easy example illustrates this. Let
f={a—b,a— c}. Clearly, SimSat(f) = {ac — b,ab — ¢} is not logically equivalent to f
(notice f = a — b but SimSat(f) = a — b).

Definition 4.2 An expression f is saturated iff f = Saturation(f).

Definition 4.3 A clause C' in a Horn expression f is redundant if f\ {C} = f. An
expression [is redundant if it contains a redundant clause.

Lemma 4.2 Let f be a non-redundant Horn expression. Let s; — b and s; — b be any two
distinct clauses in f with the same consequent. Then, s; € s;.

Proof: If s; C s;, then s; — b subsumes s; — b and f is redundant. [|

Lemma 4.3 If a Horn expression f is non-redundant, then all of its saturations are non-
redundant.

Proof: We show that if any fixed but arbitrary saturation of f is redundant (call it Sat’),
then f has to be redundant as well. Assume that Sat’ is redundant. We argue inductively
on the number of changes made to the expression f during the saturation process.

Base case: f is saturated (i.e. f = Sat’). Clearly f is redundant if Sat’ is.

Step case: f is not saturated (i.e. f # Sat’). Consider the last change made by the
saturation procedure before obtaining Sat’. Let Sat be the expression just before obtaining
Sat'; let s; — b; € Sat be the clause replaced by s, — b; € Sat’ using s; — b; € Sat. Notice
that s, = s; U{b;} and that Sat and Sat’ coincide in clauses other than s; — b; and s; — b;.
Since Sat’ is redundant, there is a clause C' € Sat’ that can be deduced from the other
clauses of Sat’. Therefore, there is a minimal derivation graph G’ of Sat’\ C’ F C’. Denote
C' € Sat the clause corresponding to C’ in Sat’. Now we proceed by cases. In every case we
transform G’ proving redundancy of the clause C' in Sat.

Case 1a. If s, — b; does not appear in the derivation graph and C” # s, — b;, then no
modification is needed to show that C' = C" is redundant in Sat.

Case 1b(1). If C' = s, — b; and the added b; does not appear in G’, then no modification
is needed and G’ shows that C' = s; — b; is redundant in Sat.

Case 1b(1). 1If C" = s, — b; and the added b; appears in G’, then we just add edges
b — b; for every b € s; (first add nodes b € s; not in G’ already). Notice that this is a valid
derivation graph for the redundant C' = s; — b; from Sat.

Case 2. Now suppose that the updated clause appears in the proof. Notice that the
variable b; has to be different from the consequent of the redundant clause. If this were
not so, we would have a smaller derivation graph, contradicting the fact that we assume a
minimal one. Therefore, the clause s; — b; used to saturate cannot be C" itself. We modify
G’ in the following way. If the variable b; has only one edge going to b;, we simply remove
b;, the edge b; — b;, all edges * — b; reaching b; and any unconnected parts remaining in
the derivation graph. If b; has more edges pointing at variables other than b;, we remove
the edge b; — b; but add edges b — b; for every b € s; (first adding any b € s; not in G’

already).
In either case, we obtain that C' € Sat is redundant. Applying the induction hypothesis,
we conclude that (the possibly unsaturated version of) C' is redundant in the initial f. =

10

Example 4.3 The converse of the previous lemma does not hold. That is, there are re-
dundant expressions f with non-redundant saturations. As an example: f = {ab — ¢,c —
d,ab — d} is clearly redundant since the third clause ab — d can be deduced from the first
two. If we saturate the first clause with the third, we obtain: Saturation(f) = {abd —
¢,c — d,ab — d} which is not redundant. However, if we saturate the third clause with the
first, we obtain a redundant saturation Saturation'(f) = {ab — ¢,¢ — d,abc — d}.

Finally, we observe that saturated expressions share a useful property with monotone
expressions:

Lemma 4.4 Let f be a non-redundant, saturated Horn expression. Let ¢ be any clause in
f. Let zl9 be the assignment that sets to one exactly those variables in the antecedent of c.
Then, z!° falsifies ¢ but satisfies every other clause ¢’ in f.

Proof: Let ¢ =s — b. Clearly, 29 falsifies ¢: its antecedent is satisfied but its consequent
is not. It also satisfies every other clause ¢ = s’ — ¥ in f. To see this, we look at the
following two cases: if s s, there is a variable in s’ not in s. Hence z9 [~ s’ and 2! |= ¢
If 8 C s then Lemma 4.2 guarantees that b # b’ since otherwise there would be a redundant
clause in f. Furthermore, ¥’ € s or f would not be saturated. Thus, !9 = ¢/ and 219 = ¢/. m

5 Certificates for Horn CNF

We can now use saturated expressions with the certificate construction developed for the
anti-monotone case.

Theorem 5.1 Horn CNF's have polynomial size certificates with p(m,n) = m(n + 1) and
qg(m,n) = (mgl) +m+1.

Proof: Fix m,n > 0. Fix any f C {0,1}" s.t. |f|,omene > P(m,n) = m(n +1). Again,
we proceed by cases.

Case 1. f is not Horn. By Eq. (4), there must exist two assignments z,y € {0, 1}" s.t.
rEfandy = fbutxnNy e f. Let Q = {z,y,zNy}. Again by Eq. (4) no Horn CNF can
be consistent with Q. Moreover, |Q| = 3 < q(m,n).

Case 2. fis Horn. Let ¢; Aca A..Acp be a minimal, saturated representation of f. Notice
that &' > m(n + 1) + 1 since |f|,,,.cxr > P(m,n) = m(n+1) and by Lemma 4.3 saturation
does not produce redundant clauses when starting from a non-redundant representation.
Since there are more than m(n + 1) clauses, there must be at least m + 1 clauses sharing a
single consequent in f (there are at most n + 1 different consequents among the clauses in
f, including the constant false). Let these clauses be ¢; = s; — b,.., ¢, = s — b, with
k > m + 1. As before define assignment z!® as the assignment that sets to 1 exactly those
variables that appear in ¢;’s antecedent. For example, if n = 5 and ¢; = vsvs — vy then

zl%) = 00101. Let Q = QT UQ~ where

Q = {x[cz‘]

1§z’§m+1} and

11

QJr:{x[cJﬂm[ca]}1§Z<]§m+1}

Notice that |Q| = |Q*| + Q7| < (') + m + 1 = g(m,n). The assignments in @~ are
negative for f, since z1% clearly falsifies clause ¢; (and hence it falsifies f). The assignments
in Q1 are positive for f. To see this, we show that every assignment in Q1 satisfies every
clause in f. Take any assignment z!%! N zl%! € QF. For clauses ¢ with a different consequent
than ¢; (thus ¢ # ¢;, ¢ # ¢;), Lemma 4.4 shows that zl! |= ¢ and z/%! |= ¢. Since ¢ is Horn,
gl N zlel = e For clauses with the same consequent as ¢; (and ¢;), we have two cases.
Either ¢ # ¢; or ¢ # ¢;. If ¢ # ¢;, then Lemma 4.2 guarantees that s Z s;, where s is ¢’s
antecedent. Therefore some variable in s is set to 0 by 2!l and hence by z!%l N z%]] too.
Thus, zl%!Nxl%] |= c. The other case is analogous. Hence, all assignments in Q* are positive
for f. The argument that no Horn CNF g s.t. |g|,,,,cnr < M is consistent with f over @ is
identical with the anti-monotone case. |

Remark 5.1 The construction above relies on the fact that we can find many clauses with
the same consequent. This fact does not hold in first order logic since the number of possible
consequents is not bounded and therefore this hinders generalization. It is thus worth noting
that a related construction with slightly worse bounds does not rely on this fact. In this
construction we use p(m,n) = m(n + 1) and assignments from m(n + 1) + 1 clauses in Q.
The set @ also includes all their pairwise intersections. Note that assignments in the latter
may be either positive or negative since we have not restricted the consequent. However,
now we get that a clause of g captures at least n + 2 assignments. On the other hand
since subsumption chains for antecedents (given by the subset relation over variables) are
of length at most n + 1, any set of of clauses of this size must have a pair of clause whose
antecedents do not subsume one another. As a result there is at least one pair of clauses
with incomparable antecedents, so that the intersection of assignments is positive for f but
negative for g and g is not consistent. Unfortunately, subsumption chains for antecedents in
first order logic can be long (Arias and Khardon, 2004) so there are still obstacles in lifting
the construction.

6 Learning from entailment

Work in inductive logic programming addresses learning formulas in first order logic and
several setups for representing examples have been studied. The setup studied above where
an example is an assignment in prepositional logic generalizes to using first order structures
(also known as interpretations) as examples. The model is therefore known as learning from
interpretations (De Raedt and Dzeroski, 1994). In the model of learning from entailment
an example is a clause. An clause example is positive if it is implied by the target and
negative otherwise. Therefore a certificate in this context is a set of clauses. In particular,
as in previous case, for any expression f whose size is more than p(m,n), a set @ of at most
q(m,n) clasues must satisfy that for any g € B,, at least one element ¢ of () separates f and
g, that is f = c and g [~ ¢ or vice versa. We present a general transformation that allows us
to obtain an entailment certificate from an interpretation certificate. Similar observations
have been made before in different contexts, e.g. (Khardon and Roth, 1999; De Raedt, 1997),
where one transforms efficient algorithms instead of just certificates.

12

Definition 6.1 Let x be an assignment. Then ones(x) is the set of variables that are set to
1in x. We slightly abuse notation and write ones(x) to denote also the conjunction of the
variables in the set ones(x).

Lemma 6.1 Let f be a boolean expression and x an assignment. Then,
z |= fif and only if f [~ (ones(r) = Vigones() b)-

Proof: Suppose z = f. Suppose by way of contradiction that f = (ones(z) = Vygpnes(r) 0)-
But since z [~ (ones(z) — Viygones(r) b) We conclude that = = f, which contradicts our
initial assumption. Now, suppose x [~ f. Hence, there is a clause s — \/,b; in f fal-
sified by x. This can happen only if s C ones(z) and b; ¢ ones(z) for all i. Clearly,

(s =V, b) = (ones(z) — \/beones(m) b). Therefore f = (ones(z) = Vigones(r) 0)- [

Theorem 6.2 Let S be an interpretation certificate for an expression f w.r.t. a class B
of boolean expressions. Then, the set {ones(x) — Vygp o5y b | @ € S} is an entailment
certificate for f w.r.t. B.

Proof: If S is an interpretation certificate for f w.r.t. some class B of propositional ex-
pressions, then for all g € B there is some assignment x € S such that x = f and = [~ ¢
or vice versa. Therefore, by Lemma 6.1, it follows that f [~ (ones(z) — Vygpneqq 0) and
g | (ones(z) — Vygonesa) b) or vice versa. Given the arbitrary nature of g the theorem
follows. [

Remark 6.1 In the theorem above we include non-Horn clauses in the certificate. This
is necessary since otherwise one cannot distinguish a function f from its Horn least upper
bound (Khardon and Roth, 1996; Selman and Kautz, 1996), the function that is equivalent
to the conjucntion of all Horn clauses implied by f. For example, one cannot distinguish
f={a—bb— cvd} from g = {a — b} with Horn clauses only. It is worth noting, however,
that the learning algorithm using these certificates can use them while making queries on
Horn clauses only. The algorithm in (Hegediis, 1995; Hellerstein et al., 1996) simulates the
Halving Algorithm and asks membership queries on members of the certificates for some
functions in the process. For a Horn expression T it holds that T = s — by V ... V by, if and
only if T = s — b; for some i. Thus, instead of asking a membership query on s — by V... Vb,
the algorithm can ask £ membership queries on s — b; and reconstruct the answer. So while
the certificate must include non-Horn clauses, the queries can avoid those.

7 Certificate size lower bounds

The certificate results above imply that unate and Horn CNF are learnable with a polynomial
number of queries but as mentioned above this was already known. It is therefore useful
to review the relationship between the certificate size of a class and its query complexity.
Recall from Theorem 2.1 that we have C'S(B) < QC(B) < CS(B)log(|B|). For the class of
monotone DNF there is an algorithm that achieves query complexity O(mn) (Valiant, 1984;
Angluin, 1988). Since log(|monotoneDNF',,|) = ©(mn), a certificate result is not likely to

13

improve the known learning complexity. In the case of Horn CNF, there is an algorithm
that achieves query complexity O(m?n) (Angluin, Frazier, and Pitt, 1992). Since again
log(|HornCNF,,|) = ©(mn) improving on known complexity would require a certificate for
Horn of size o(m). The results in this section show that this is not possible and in fact that
our certificate constructions are optimal. We do this by giving lower bounds on certificate
size. Naturally, these also imply lower bounds for the learning complexity.

In particular, for every m,n with m < n we construct an n-variable monotone DNF' f of
size < n and show that any certificate that f has more than m terms must have cardinality
at least g(m,n) = m + 1 + (m; 1). Recall that in strongly proper learning (Hellerstein
and Raghavan, 2002; Pillaipakkamnatt and Raghavan, 1996) the hypothesis must have size
smaller than or equal to the target. In this case our bound is tight for strongly proper
learning and also for algorithms using hypotheses of size up to n — 1. For m > n we show
that there is a monotone DNF of size m + 1 that requires a certificate of size Q(mn). Again
the bound is tight for strongly proper learning of monotone expressions. The lower bounds
apply for Horn expressions as well where for m > n we have a gap between O(m?) upper
bound and Q(mn) lower bound. The result for m < n is given in the next two theorems:

Theorem 7.1 Any certificate construction for monotone DNF for m < n with p(m,n) =m
has size q(m,n) > m+1+ ("]1).

Proof: Let X,, = {x1,..,z,} be the set of n variables and let m < n. Let f =t;V-- Vi1
where t; is the term containing all variables (unnegated) except z;. Such a representation
is minimal and hence f has size exactly m + 1. We show that any set with fewer than
m+ 1+ (m; 1) assignments cannot certify that f has more than m terms. That is, for any
set) of size less than m + 1 + (m; 1) assignments, we show that there is a monotone DNF
with at most m terms consistent with f over Q).

If @) contains at most m positive assignments of weight n — 1 then it easy to see that
the function with minterms corresponding to these positive assignments is consistent with f
over (). Hence we may assume that () contains at least m + 1 positive assignments of weight
n — 1. Since f only has m + 2 positive assignments, one of which is 1", @) must include all
m+ 1 positive assignments corresponding to the minterms of f. Thus if |Q| < m+1+ (" 1)
then () must contain strictly less than (m; 1) negative assignments. Notice that all the
intersections between pairs of positive assignments of weight n — 1 are different and there are
(m;r 1) such intersections. It follows that () must be missing some intersection between some
pair of positive assignments in (). But then there is an m-term monotone DNF consistent
with () which uses one term for the missing intersection and m — 1 terms for the other m — 1

positive assignments.]

We can strengthen the previous theorem so that for every n a fixed function f serves for
all m < n. The motivation behind this is that the lower bound in Theorem 7.1 implies a lower
bound on the query complexity of any strongly proper learning algorithm (Hellerstein and
Raghavan, 2002; Pillaipakkamnatt and Raghavan, 1996). Such algorithms are only allowed
to output hypotheses that are of size at most that of the target expression; this is in contrast
with the usual scenario in which learning algorithms are allowed to present hypotheses of
size polynomial in the size of the target. In the following certificate lower bound we use a

14

function f of DNF size n, so the resulting lower bound for learning algorithms applies to
algorithms which may use hypotheses of size at most n — 1 even if the target function is
much smaller.

Theorem 7.2 Any certificate construction for monotone DNF for m < n with p(m,n) <n
has size q(m,n) > m+1+ ("]7).

Proof: Let g(m,n)=m+1+ (m;l) and let f be defined as f = \/ie{l,.
term containing all variables (unnegated) except z;. Clearly, all ¢; are minterms, f has size
exactly n and f is monotone. We show that for any m < n and any set of assignments ()
of cardinality strictly less than ¢(m,n), there is a monotone function g of at most m terms
consistent with f over Q).

We first argue that w.l.o.g. we can assume that all the assignments in the potential
certificate) have exactly one bit set to zero (positive assignments) or two bits set to zero
(negative assignments). This follows since if) contains the positive assignment 1", or
a negative assignment with more than 2 bits set to zero, then we can replace these by
appropriate assignments with exactly 1 or 2 zeros which dominate the original assignments
to get a set @)'. Now any monotone function ¢ consistent with @’ is also consistent with Q).
As a result if Q)" is not a certificate then neither is Q.

We next show that if || < ¢(m,n) then there exists a function g consistent with (). Now
since assignments in () have either 1 or 2 zeros we can model the problem of finding a suitable
monotone function as a graph coloring problem. We map @) into a graph G = (V, E) where
V=_{pe| flp)=1} and E = {(p1,p2) | {p1,p2,01 NP2} C Q}. Let |V| =v and |E| = e.

First we show that if G is m-colorable then there is a monotone function g of DNF size
at most m that is consistent with f over (). It is sufficient that for each color ¢ we find a
term t, that (1) is satisfied by the positive assignments in @) that have been assigned color ¢,
with the additional condition that (2) . is not satisfied by any of the negative assignments
in). We define t. as the minterm corresponding to the intersection of all the assignments
colored ¢ by the m-coloring. Property (1) is clearly satisfied, since no variable set to zero in
any of the assignments is present in t.. To see that (2) holds it suffices to notice that the
assignments colored ¢ form an independent set in G and therefore none of their pair-wise
intersections is in (). By the assumption no negative point below the intersections is in
Q@ either. The resulting consistent function g contains all minterms ¢.. Since the graph is
m-~colorable, g has at most m terms.

It remains to show that G¢ is m-colorable. Note that the condition |Q| < g(m,n)
translates into v + e < g(m,n) in Gg. If v < m then there is a trivial m-coloring. For
v > m+ 1, it suffices to prove the following: any v-node graph with v > m + 1 with at most

(m;r 1) + m — v edges is m colorable. We prove this by induction on v.

) t; where t; is the

The base case is v = m + 1; in this case since the graph has at most (m; 1) — 1 edges it

can be colored with only m colors (reuse one color for the missing edge). For the inductive
step, note that any v-node graph which has at most (m; 1) + m — v edges must have some
node with fewer than m neighbors since otherwise there would be at least vm /2 > w =

W + 3 > (m; 1) + m — v edges in the graph. By the induction hypothesis there is an

m-coloring of the (v — 1)-node graph obtained by removing this node of minimum degree

15

and its incident edges. But since the degree of this node was less than m in G, we can color
G using at most m colors.]

Finally, we give an (mn) lower bound on certificate size for monotone DNF for the
case m > n. Like Theorem 7.1 this result gives a lower bound on query complexity for any
strongly proper learning algorithm.

Theorem 7.3 Any certificate construction for monotone DNF for m > n with p(m,n) =m
has size q(m,n) = Q(mn).

Proof: Fix any constant k. We show that for all n and for all m = (Z) — 1, there is a
function f of monotone DNF size m + 1 such that any certificate showing that f has more
than m terms must contain Q(nm) assignments.

We define f as the function whose satisfying assignments have at least n — k bits set
to 1. Notice that the size of f is exactly (Z) = m+ 1. Let P be the set of assignments
corresponding to the minterms of f, i.e. P consists of all assignments that have exactly
n — k bits set to 1. Let IV be the set of assignments that have exactly n — (k4 1) bits set to
1. Notice that f is positive for the assignments in P but negative for those in N. Clearly,
assignments in P are minimal weight positive assignments and assignments in N are maximal
weight negative assignments. Note that [P| = (}) and |[N| = (m + 1)2—;’1“ = (kil) = Q(mn)
for constant k. Moreover, any assignment in /N is the intersection of two assignments in P.

We next show that any certificate for f must have size at least |P| + |N|. As in the
previous proof, we may assume w.l.o.g. that any certificate () contains assignments in PUN
only. Let Q C PUN. If () has at most m positive assignments then it is easy to construct
a function consistent with () regardless of how negative examples are placed. Otherwise,
(@ contains all the m + 1 positive assignments in P and the rest are assignments in N. If
() misses any assignment in /N then we build a consistent function by using the minterm
corresponding to the missing intersection to “cover” two of the positive assignments with
just one term. The remaining m — 1 positive assignments in P are covered by one minterm
each. Hence, any certificate () must contain P U N and thus is of size Q(nm). [|

Finally, we observe that all the lower bounds above apply to unate and Horn expressions
as well. This follows from the fact that the function f used in the construction is outside the
class (has size more than m in all cases) and that the function g constructed is in the class
(since monotone DNF is a special case of unate DNF and Horn DNF). We therefore have:

Corollary 7.4 Any certificate construction for unate CNF (DNF) and for Horn CNF (DNF)
must satisfy the bounds given in Theorems 7.1, 7.2 and 7.5.

8 An exponential lower bound for renamable Horn

In this section we show that renamable Horn CNF expressions do not have polynomial
certificates. This answers an open question of (Feigelson, 1998) and implies that the class
of renamable Horn CNF is not exactly learnable using a polynomial number of membership
and equivalence queries. In the following let B be the class of renamable Horn expressions.

16

To show non-existence of certificates, we need to prove the negation of the property in
Definition 2.3, namely: for all two-variable polynomials p(, -) and g(-, -) there exist n,m > 0

and a boolean function f C {0,1}" with ’f’g > p(m,n) such that for every @ C {0,1}" it
holds (1) |Q] > g(m,n) or (2) some g € B,, is consistent with f over Q.
In particular, we define a function f that is not renamable Horn, so that ‘ f ‘B =00 >

p(m,n) holds for any function p(m,n).

Hence, we need to show: for every polynomial ¢(-,-), there exist n,m > 0 and a non-
renamable Horn f C {0,1}"s.t. ifno g € B,, is consistent with f over some set, of assignments
Q, then |Q| > q(m,n).

What we actually show is: for each n which is a multiple of 3 we can pick m = n® and
there exists a non-renamable Horn f C {0,1}" s.t. if no g € B, is consistent with f over
some set of assignments @, then |Q| > %22”/ 3. Equivalently, for every such n every certificate

Q@ that f is not a renamable Horn CNF function of size n% has to be of super-polynomial
(in fact exponential) size. This is clearly sufficient to prove the non-existence of polynomial
certificates for renamable Horn boolean functions.

We say that a set () such that no g € B, is consistent with f over () is a certificate that
f 18 not small renamable Horn. The following lemma is useful:

Lemma 8.1 Let f be a renamable Horn function. Then there is an orientation c for f such

that c = f.

Proof: Let ¢ an orientation of f such that ¢ [~ f. Let ¢ be the positive assignment of f
which is minimal with respect to the partial order <.. Such an assignment is unique. This
can be seen via Eq. (5) since if a and b are both positive assignments unrelated in the partial
order, then ¢’ = a Ny b is positive.

We claim that ¢ is an orientation for f. It suffices to show a Ny b = aN.b for all positive
assignments a and b. We show that (a Ny b)[i] = (a N b)[7] for all 1 < i < n. If i is such
that c[i] = ¢/[i] then clearly (a Ny b)[i] = (a N. b)[i]. Let ¢ be such that c[i] # '[i]. Then

every positive assignment sets the bit ¢ like c[i]: if a[i] # c[i] then (a N ¢)[i] = ¢[i] and
thus (a Ny ¢) < ¢ (strictly), contradicting the minimality of ¢. Thus a[i] = b[i] = ¢[i] and
(a A b)[i] = (aV b)[i], and therefore (a N, b)[i] = (a Ny b)[d]. [

Definition 8.1 Let n = 3k for some k > 1. We define f : {0,1}" — {0,1} to be the
function whose only satisfying assignments are 0¥1%1% 1%0*1% and 1¥1*0*.

Lemma 8.2 The function f defined above is not renamable Horn.

Proof: To see that a function f is not renamable Horn with orientation c it suffices to find

a triple (p1, p2,q) such that p; | f, p2 = f but g |~ f where ¢ = p; N p2. By Lemma 8.1 it
is sufficient to check that the three positive assignments are not valid orientations for f:
The triple (1¥1%0% 1*0%1%, 1¥1¥1%) rejects ¢ = 0F1%1*.

The triple (0¥1%1% 1%¥1%0%, 1¥1¥1%) rejects ¢ = 1k0F1*.

The triple (0¥1%1% 1%0¥ 1%, 1¥1¥1%) rejects ¢ = 1F1%0*. n

17

We say that a triple (p1, pa,q) such that py = f, po = f but ¢ |~ f is suitable for c if
q <c p1Me P2

Lemma 8.3 If Q) is a certificate that f 15 not small renamable Horn with orientation c, then
Q includes a suitable triple (p1,p2,q) for c.

Proof: Suppose that a certificate () that f is not small renamable Horn with orientation
¢ does not include a suitable triple (p1,p2, q) for c. That is, p1 |= f, p2 |= f but q [f where
q <. p1Nep2. We define a function g that is consistent with f on @) as follows:

1 ifreQandzl=f
g(x) =19 1 ifx <, (51N, 52) for any s1,5, € @ s.t. 81 = f and sy = f
0 otherwise.

The function g is consistent with () since by assumption no negative example is covered
by the second condition.

First we show that the function g is renamable Horn with orientation c¢. Consider any
assignments p1, py that are positive for g, i.e., p1 = g and py = g, and let t = pyNepa. If p1, P2
are included in @, then clearly ¢ |= g by the definition of g. If p; & @ then p; <. (s1N.s2) for
some positive sq, s2 € @ (second condition in the definition of g). Since ¢t <. p; <. ($1N¢52),
then by the definition of g, t = g as well. The same reasoning applies for the remaining case
p2 € Q. Hence, g is renamable Horn with orientation c.

Now, we show that g is also small. We use the fact that our particular f is designed to have
very few positive assignments. First notice that g only depends on the positive assignments
in). Moreover, these must be positive assignments for f . Suppose that () contains any
[< 3 of these positive assignments. Let these be x1,..,7;. A DNF representation for g is:

1<i<l 1<i<j<i

where ¢; is the term that is true for the assignment z; only and ¢; ; is the term that is true for
the assignment z; N, z; and all assignments below it (w.r.t. ¢). Notice that we can represent
this with just one term by removing literals that correspond to maximal values (w.r.t. c).
For example, if £ = 2 and 27 = 001111, x5 = 110011 and ¢ = 101001 then t; = U7 Tav3v4vV5V6,
x1 Ne z2 = 101011, and the only variable at its maximal value is v5 S0 t1 9 = vV1V2U3U4Vs.
Since [< 3, g has at most 3 + (g) = 6 terms. Hence, g has CNF size at most n
(multiply out all terms to get the clauses). Now we use the fact that if there is a CNF
formula representing ¢ of size at most n®, then there must be a (syntactically) renamable
Horn representation ¢ for g which is also of size at most n®: it is well known that if a
function h is Horn and ¢ is a non-Horn CNF representation for A, then every clause in g
can be replaced with a Horn clause which uses a subset of its literals; see e.g. (McKinsey,
1943) or Claim 6.3 of Khardon and Roth (1996). We arrive at a contradiction: @ is not a
certificate that f is not small renamable Horn with orientation c since g is not rejected. m

Theorem 8.4 For alln = 3k, there is a function f : {0,1}" — {0,1} which is not renamable
Horn such that any certificate Q showing that the renamable Horn size of f is more than n®
must have |Q| > £227/3,

18

Proof: The Hamming distance between any two positive assignments for f is 2n/3. Since
the intersection of two different bits equals the minimum of the two bits, any triple can be
suitable for at most 2"/3 orientations. A negative example in () can appear in at most 3
triples (only 3 choices for p;,ps), and hence any negative example in () contributes to at
most 3 - 2"/% orientations. The theorem follows since we need to reject all orientations. m

Corollary 8.5 Renamable Horn CNFs do not have polynomial size certificates.

9 Conclusion

The paper provides a study of the certificate complexity of several well known representation
classes for propositional expressions. Since certificates are known to characterize the query
complexity of exact learning with queries our results have direct implications for learnability.
In particular the paper provides certificates constructions and hence upper bounds on their
size for monotone, unate and Horn expressions. Lower bounds for these classes are also
derived and these are tight in some cases. A lower bound for the class of renamable Horn
expressions establishes that the class is not learnable with a polynomial number of queries.
The following table summarizes bounds obtained:

Class LowerBound UpperBound

unate DNF/CNF m < n ("I +m+1* (Th.72) ("7 +m-+1 (Th.33
unate DNF/CNF m > n Q(mn)** (Th. 7.3) O(mn) (Th. 3.3
Horn CNF m < n (" +m+1* (Th.72) (") +m+1 (Th 5.1
Horn CNF m > n Q(mn)** (Th. 7.3) (m;rl) +m+1 (Th. 5.1
renamable Horn CNF %22"/ 3 (Th. 8.4)

* For p(m,n) < n.
** Strong certificate size only, i.e. p(m,n) = m.

Several interesting questions remain unsolved. For Horn expressions with m > n clauses
there is a gap between the bounds of Q(mn) and O(m?). Also except for renamable Horn
the lower bounds are for strongly proper learnability or a small expansion in hypothesis size
p(m,n) < n. It would be interesting to clarify the status of these cases. Identifying the
certificate complexity of general DNF would be a big step toward resolving the complexity
of learning this class. As mentioned in the introduction known lower and upper bounds
on certificate complexity for first order Horn expressions still have an exponential gap and
certificates may provide a tool to resolve this question.

Acknowledgments

We thank José Luis Balcazar for comments on earlier drafts, and Lisa Hellerstein for raising
the question of certificate lower bound for strong learnability.

19

—_ — —

References

Angluin, D. 1988. Queries and concept learning. Machine Learning, 2(4):319-342, April.

Angluin, D., M. Frazier, and L. Pitt. 1992. Learning conjunctions of Horn clauses. Machine
Learning, 9:147-164.

Angluin, Dana. 2001. Queries revisited. In Proceedings of the International Conference on

Algorithmic Learning Theory, volume 2225 of Lecture Notes in Computer Science, pages
12-31, Washington, DC, USA, November 25-28. Springer.

Arias, M. and R. Khardon. 2002. Learning closed Horn expressions. Information and
Computation, 178:214-240.

Arias, M. and R. Khardon. 2004. The subsumption lattice and query learning. In Proceed-
ings of the International Conference on Algorithmic Learning Theory.

Arimura, Hiroki. 1997. Learning acyclic first-order Horn sentences from entailment. In
Proceedings of the International Conference on Algorithmic Learning Theory, Sendai,
Japan. Springer-Verlag. LNAI 1316.

Balcazar, José L., Jorge Castro, and David Guijarro. 1999. The consistency dimension
and distribution-dependent learning from queries. In Proceedings of the International
Conference on Algorithmic Learning Theory, Tokyo, Japan, December 6-8. Springer.
LNAT 1702.

Bshouty, Nader H. 1995. Simple learning algorithms using divide and conquer. In Proceed-
ings of the Conference on Computational Learning Theory.

De Raedt, L. 1997. Logical settings for concept learning. Artificial Intelligence, 95(1):187—
201. See also relevant Errata (forthcoming).

De Raedt, L. and S. Dzeroski. 1994. First order jk-clausal theories are PAC-learnable.
Artificial Intelligence, 70:375-392.

del Val, A. 2000. On 2-SAT and renamable Horn. In Proceedings of the National Conference
on Artificial Intelligence.

Feigelson, Aaron. 1998. On Boolean Functions and their Orientations: Learning, monotone
dimension and certificates. Ph.D. thesis, Northwestern University, Evanston, 1L, USA;
June.

Feigelson, Aaron and Lisa Hellerstein. 1998. Conjunctions of unate DNF formulas: Learning
and structure. Information and Computation, 140(2):203-228.

Frazier, M. and L. Pitt. 1993. Learning from entailment: An application to propositional
Horn sentences. In Proceedings of the International Conference on Machine Learning,
pages 120127, Amherst, MA. Morgan Kaufmann.

20

Hegedtis, T. 1995. On generalized teaching dimensions and the query complexity of learning.
In Proceedings of the Conference on Computational Learning Theory, pages 108-117, New
York, NY, USA, July. ACM Press.

Hellerstein, L., K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. 1996. How many queries
are needed to learn? Journal of the ACM, 43(5):840-862, September.

Hellerstein, Lisa and Vijay Raghavan. 2002. Exact learning of DNF formulas using DNF
hypotheses. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC-02), pages 465-473, New York, May 19-21. ACM Press.

Horn, A. 1956. On sentences which are true of direct unions of algebras. Journal of Symbolic
Logic, 16:14-21.

Khardon, R. 1999. Learning function free Horn expressions. Machine Learning, 37:241-275.

Khardon, R. and D. Roth. 1999. Learning to reason with a restricted view. Machine
Learning, 35(2):95-117.

Khardon, Roni and Dan Roth. 1996. Reasoning with models. Artificial Intelligence, 87(1-
2):187-213.

McKinsey, J. C. C. 1943. The decision problem for some classes of sentences without
quantifiers. J. Symbolic Logic, 8:61-76.

Nienhuys-Cheng, S. and R. De Wolf. 1997. Foundations of Inductive Logic Programming.
Springer-verlag. LNAT 1228.

Pillaipakkamnatt, Krishnan and Vijay Raghavan. 1996. On the limits of proper learnability
of subclasses of DNF formulas. Machine Learning, 25:237.

Rao, K. and A. Sattar. 1998. Learning from entailment of logic programs with local vari-
ables. In Proceedings of the International Conference on Algorithmic Learning Theory,
Otzenhausen, Germany. Springer-verlag. LNAT 1501.

Reddy, C. and P. Tadepalli. 1997. Learning Horn definitions with equivalence and member-
ship queries. In International Workshop on Inductive Logic Programming, pages 243-255,
Prague, Czech Republic. Springer. LNAI 1297.

Reddy, C. and P. Tadepalli. 1998. Learning first order acyclic Horn programs from en-
tailment. In International Conference on Inductive Logic Programming, pages 23-37,
Madison, WI. Springer. LNAT 1446.

Selman, Bart and Henry Kautz. 1996. Knowledge compilation and theory approximation.

J. of the ACM, 43(2):193-224.

Valiant, Leslie G. 1984. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November.

21

