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ABSTRACT

Prior to doctoral work by Stafford, control dependence algorithms only worked for uni-
procedure analysis and inlined multi-procedure analysis. Inlined multi-procedure analysis
fails to address recursion, and in most cases can be too costly to perform. Stafford took a
compositional approach to multi-procedure analysis by developing a language-independent,
composed control dependence graph for any uni- or multi-procedure software component.
This paper details an effort to implement that algorithm in the C++ language using Stanford
University Intermediate Format (SUIF) and Machine SUIF (MachSUIF).
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INTRODUCTION 

Control dependence, in short, describes the ability of a program statement to 

affect the execution of another program statement.  The introduction of procedure calls 

into control dependence analysis complicates matters significantly.  Until recently, 

dependence analysis on multi-procedure programs could be performed using two 

different methods:  one involving inlining a procedure’s control flow graph into the 

calling procedure, and the other involving joining control flow graphs with edges from 

the procedures’ call sites to their respective target procedures. 

Prior to doctoral work performed by Stafford [6], control dependence algorithms 

worked for uni-procedure analysis.  Multi-procedure analysis involving inlining a called 

procedure’s control flow graph does work, as it simply produces a large uni-procedure 

control flow graph.  However, problems occur when the graph grows too large so as to be 

computationally intractable.  Additionally, a control flow graph which inlines the same 

procedure more than once is going to cause redundant analysis.  The inlining method also 

does not address recursion, which would be impossible to handle when a procedure 

recurses an unknown number of times (which is generally the case).  The other 

aforementioned method does not take into consideration non-return from the called 

procedure.  Non-return may result from a halt (e.g. an “exit” statement in a C program) 

embedded in the called procedure, or an infinite loop or infinite recursion. 

The method described in Stafford’s thesis takes a compositional approach.  A 

compositional approach analyzes each procedure in isolation and then, using the source 

program’s call graph, attempts to combine each procedure’s graph in a meaningful 

manner.  In addition to addressing the inefficiency of inlining, Stafford’s method also 
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augments the traditional control dependence graph with inherited control dependence 

arcs, which address the possibility of non-return due to halting or infinite 

recursion/looping. 

INTRODUCTION:  OBJECTIVE 

The purpose of this project is to provide a proof of concept for Stafford’s 

algorithm.  Until this writing, the algorithm has never been committed to code.  The 

eventual hope is that it would provide a tool for developers, for debugging and 

maintenance purposes; or researchers, for other analyses.  Such a tool may require data 

dependence analysis, which is neither addressed in this project nor in Stafford’s 

algorithm.  For right now, to demonstrate that Stafford’s algorithm is correct and possible 

to implement is a good starting point. 

This paper describes the algorithm and its implementation, and the problems that 

occurred during the process and how they were resolved.  The project, itself, can be 

thought of as a software component:  it provides a composed control dependence graph 

(CCDG), and it requires a control flow graph (CFG) and forward dominance information 

for each source procedure.  It used another component from which to derive control flow 

graph and forward dominance information:  MachSUIF, an API designed by Michael D. 

Smith’s research group at Harvard University.  MachSUIF, though a good tool in its own 

right, was not a perfect fit for this project, and to that end, this paper will detail where the 

project ends and the MachSUIF API begins, should a future project commence to swap 

MachSUIF out for a more appropriate API. 

Before discussing MachSUIF and components, it is important to have a general 

understanding of the Stafford algorithm. 
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THE ALGORITHM 

The scope of this section is not to describe the algorithm or its background in full.  

Stafford’s thesis provides such an explanation [6].  The purpose of this section is to 

describe it in enough detail to the reader so that the reader can understand the decisions 

made when implementing the project. 

THE ALGORITHM:  DATA STRUCTURES 

 The idea behind compositional analysis of a source program is to process each 

individual source procedure separately and then to recombine them afterwards, at what is 

called “program composition time.”  Creating the CCDG requires a few data structures 

beforehand.  First is the procedure control flow graph, or PCFG.  (In many cases, it is 

simply referred to as the CFG.) 

THE ALGORITHM:  DATA STRUCTURES:  PCFG 

A CFG is a representation of the control flow of a program.  A control flow graph 

works, informally, as follows:  if the execution of statement2 has the potential to directly 

follow the execution of statement1 during the execution of a program, then statement2 is 

a child of statement1 in the control flow graph.  In other words, the CFG maps all 

possible walks through a program’s execution. 

if 

true1 false1

true2 false2

join  

 Figure 1.  An “if” statement in a program can be modeled in a CFG, as shown above. 
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Figure 1 shows an “if” statement as modeled in a control flow graph.  Nodes 

“true1” and “true2” are sequential statements that follow in execution if the “if” 

statement evaluates to true.  Likewise, “false1” and “false2” are sequential statements 

that execute if the “if” statement evaluates to false.  The node “join”, while not 

representing a particular program statement, is necessary to indicate that control flow at 

that point no longer follows two paths following the “if” statement, but that the paths 

have merged at that point.  A CFG will represent a traditional loop as a set of nodes in 

sequence, with the last node in the loop extending an arc back to a predecessor node that 

holds the loop’s conditional statement, or loop header.  The aforementioned loop header 

node will have two arcs, one proceeding down the list of statements to execute following 

a “true” evaluation, and one jumping to the next statement in sequence after a “false” 

evaluation. 

Stafford augments the traditional PCFG with a new type of arc.  In addition to the 

normal arc, which is the only type of arc shown in Figure 1, she introduces the 

“interrupted flow arc”, or IFA, which extends from every procedure call to the next node 

in sequence.  (For future reference, note that an “IFA target” is the child vertex in an IFA.  

I.e., for any IFA (u, v), v is the IFA target.  Also, a node representing a procedure call is a 

“call site”.)  The purpose of this arc is to recognize that control flow does not actually 

move from a called procedure node to the following node, but that it moves from the 

calling node to an entirely different procedure, and then eventually back to that node.  An 

IFA will later help to recognize the possibility for non-return from a procedure call, 

which as previously stated, could result from infinite looping, infinite recursion, or an 

embedded halt. 
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A final augmentation, which is commonplace for many analyses, is a super initial 

vertex, VI, and a super return vertex, VR.  In all cases, except where halts exist, all control 

flow must initiate from VI and terminate at VR.  In cases where halts exist, control flow 

also terminates at the node corresponding to the halt. 

THE ALGORITHM:  DATA STRUCTURES:  PFDF 

From the PCFG, one can generate the procedure forward dominance forest, or 

PFDF.  The notion of it being a forest is somewhat of a misnomer, because it may only be 

a tree, as seen in Figure 1.  “Forward dominance”, also known as postdominance or 

inverse dominance, describes the relationship of CFG nodes with regards to execution 

order in a walk through a procedure or program.  Assume that statement1 and statement2 

are two statements in a procedure (statement1 and statement2 do not necessarily have to 

be adjacent to each other).  statement2 forward dominances statement1 if every walk 

from statement1 to the end of that procedure includes statement2. 

join

 

Figure 2.  The “if” statement from Figure 1, as a forward dominance forest. 

Figure 2, shown above, illustrates the same “if” statement from Figure 1 as a 

PFDF.  As one can see, many of the nodes from the original CFG are in a reverse 

orientation in the FDF.  For instance, “join”, which was originally at the bottom of the 

CFG, is now at the top.  That indicates that all walks through the all of the nodes in the 

original “if” statement must include “join”. 

if true2 false2

true1 false1
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It is important to realize that a PFDF is not simply a control flow graph flipped 

upside-down.  Were that to be true, both “true” and both “false” statements would 

forward dominate the “if” statement, which is clearly not the case.  Clearly from the 

diagram above, “join” is the only forward dominator of “if”, because all walks through 

“if” must also include “join”.  (Some PFDF graphs contain self-arcs, to indicate that all 

walks from a node include that node.  In such graphs, all nodes forward dominate 

themselves, because all walks through, say, “if”, must include the node for “if”.  

However, Stafford’s algorithm relies on the notion of “strict dominance”, which does not 

include those self-arcs.) 

Stafford’s PFDF recognizes interrupted flow from procedure calls just as 

Stafford’s PCFG does.  All IFAs in a PCFG have corresponding “reverse” arcs in a 

PFDF.  So, an arc (u, v) in a PCFG will have a special type of arc (v, u) in a PFDF.  

These reverse-IFAs are known as “pfdom” arcs, or potential forward dominance arcs. 

As earlier stated, a PFDF is not always a forest.  If Figure 2 represented the entire 

PFDF for a procedure (and was thus outfitted with vertices VI and VR), it would be a tree, 

not a forest.  A PFDF is a forest when a procedure contains one or more halts, because a 

procedure statement will have two or more possible exit points from that procedure, 

resulting in two or more roots in the PFDF.  (For future reference, the tree/forest type of a 

particular PFDF will be stated as its “T/F type.”) 

THE ALGORITHM:  DATA STRUCTURES:  PCDG 

The last procedure-specific data structure necessary to complete the CCDG 

algorithm is a PCDG, or “Procedure Control Dependence Graph.”  It is interesting to note 

that a PCDG in Stafford’s algorithm is the equivalent of a CCDG, were the procedure 
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corresponding to the PCDG the only procedure (or “main” procedure) in the program.  

This is because a PCDG maps control dependence, just as a CCDG does; only it maps it 

for one procedure. 

if 

 

Figure 3.  A control dependence graph generated from the CFG in Figure 1, and the FDF in Figure 2. 

Figure 3 shows the control dependence graph for the “if” statement used in the 

previous examples.  Control dependence, as previously and informally defined, is the 

ability of one statement to affect the execution of another statement.  As one can see from 

the above example, the “if” statement has control over the execution of the two branches 

underneath it in its CFG, however the “join” statement is not control dependent on “if”, 

because it will execute regardless of the evaluation of the condition in the “if” statement.  

In this particular example, there is no real parent node for “join” and “if” (hence, it is a 

blank placeholder in Figure 3).  However, in a “real” control dependence graph, both the 

CFG and FDF would be augmented with super entry and exit nodes (VI and VR), ensuring 

that no graph would end up in the situation shown above. 

Again, Stafford’s algorithm makes modifications to the traditional PCDG.  

Stafford also adds direct inherited control dependence (dicd) arcs between the parent-

child pair of each IFA, and deletes all other arcs leading to IFA target nodes.  

Additionally, all nodes that forward dominate an IFA target inherit the control 

dependence of the nearest IFA target that they forward dominate.  Stafford indicates this 

true1 true2 false1 false2 join 
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with arcs extending from all IFA targets to their forward-dominating PFDF ancestors.  

These steps illustrate the uncertainty of return from called procedures.  Stafford also 

inserts potential control dependence arcs from loop headers to their forward-dominating 

PFDF ancestors to indicate uncertainty of return from loops.  (All potential control 

dependence arcs will be later resolved to “normal” ones or deleted.)  Finally, Stafford 

removes all traditional arcs from the PCDG’s super entry vertex, VI, and replaces them 

with direct inherited control dependence arcs to indicate that execution of the first 

procedure statements rely on execution of the procedure, itself. 

THE ALGORITHM:  DATA STRUCTURES:  Call Graph 

The final data structure necessary is the program’s call graph.  Every edge in a 

call graph represents a call from one procedure to another.  For example, an edge (main, 

A) represents a call originating from main() to the procedure A().  In this implementation, 

the call graph has a one-to-one correspondence between edges and procedure calls, with 

information about the call site stored within the edge.  So, if main() calls A() twice, there 

will be two edges, (main, A), with each edge storing information about the original call 

site, making both edges unique. 

The call graph object must also support “contracting”, which is a term used to 

describe the path-based depth-first search algorithm designed by Gabow [2].  The 

contracting will provide the DFS path used, and thus a post-order traversal path, and will 

eliminate iteration problems caused by recursion in the source code.  (Were one to iterate 

through a call graph that modeled recursive source code, one would infinitely loop.) 
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THE ALGORITHM:  PROCEDURES 

Stafford’s algorithm is presented in full in Chapter 4 of her dissertation.  This is a 

brief presentation of that same algorithm. 

There are three procedures required to construct the CCDG.  Each procedure 

requires information constructed by the previous procedure to continue.  

Construct_PFDF(PCFG G), to be executed on each procedure, Construct_PCDG(PCFG 

G, PFDF F, string CD_type), again to be executed on each procedure, and 

Construct_CCDG, to be executed once after each PFDF and PCDG has been constructed. 

THE ALGORITHM:  PROCEDURES:  Construct_PFDF() 

Construct_PFDF() assumes that the PCFG for the procedure has already been 

created.  The PCFG requires a super entry and super exit vertex and a set of interrupted 

flow arcs for the set of procedure calls.  Construct_PFDF() uses the algorithm of 

Lengauer and Tarjan [3] to generate the PFDF.  Then, it augments the PFDF with 

additional information.  If the PFDF’s root has an out-degree of 1 (keeping in mind that 

Stafford’s PFDF uses strict dominance), the forest has no halts, and is thus a tree.  If the 

PFDF’s root has more than one edge extending from it, the PFDF’s T/F type will be 

denoted as a forest.  Stafford keeps track of the forest roots and then calculates all 

potential forward dominance (pfdom) arcs by reversing all the interrupted flow arcs of 

the source PCFG. 

THE ALGORITHM:  PROCEDURES:  Construct_PCDG() 

Weak control dependence analysis is a subset of the traditional type of “strong” 

control dependence analysis discussed here.  Weak control dependence analysis 

recognizes that some loops may never break.  As one may expect, weak dependence 
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analysis is somewhat more complicated than strong control dependence analysis.  

Stafford’s algorithm allows the user to choose between Ferrante’s direct control 

dependence algorithm [1] and Podgurski’s direct weak control dependence algorithm [5].  

Upon receiving the user’s choice, the correct algorithm executes.  Next, all interrupted 

flow arcs from the procedure’s corresponding PCFG convert into direct potential control 

dependence (dpcd) arcs in the PCDG, recognizing that the IFA targets have the potential 

to have the same control dependence as their parent nodes, pending return from the called 

procedure.  All IFA targets lose any other dependencies that they may have. 

After adding dpcd arcs, Stafford converts all arcs extending from the super entry 

vertex, VI, into direct inherited control dependence (dicd) arcs.  Then, for all IFA targets, 

she extends dicd arcs from those targets to every node that postdominates it, up to the 

root of the tree, or up to (but not including) the next IFA target.  Stafford also detects all 

loop headers and extends dpcd arcs to every node that postdominates it, up to the root of 

the tree, or up to (but not including) the next IFA target. 

THE ALGORITHM:  PROCEDURES:  Construct_CCDG() 

The very first action that Construct_CCDG() takes is to connect all prior PCDG 

graphs with dicd arcs from call sites to their corresponding procedures’ super entry 

vertices.  Then, it contracts the call graph which, as previously stated, allows one to 

iterate through the call graph, even if the call graph models recursion.  Additionally, the 

path used in contracting can be reversed for the post-order traversal that follows in the 

next step. 

The next step is a process called “pfdom resolution,” which either converts pfdom 

arcs with corresponding IFAs to indirect forward dominance arcs, or deletes them, if the 
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called procedure referenced in the IFA is a tree or a forest, respectively.  Until stated, the 

algorithm processes through each procedure in a postorder traversal.  The reason for the 

postorder traversal is that if a source procedure’s T/F type is found to be a forest, each 

procedure calling it must be marked as a forest, too, to indicate the embedded halt.  When 

moving in a postorder traversal through the call graph, none of the procedures calling it 

have been processed, yet; when one processes a forest procedure, one can simply update 

the procedures that call it.  This is a much more efficient solution than what would be 

achieved through an inorder traversal. 

For every node processed, check if that node is involved with recursion.  If not, 

and if the node’s corresponding procedure is a forest, then remove the pfdom arcs 

corresponding to this procedure and notate the calling procedure’s PFDF as a forest.  

(Note that in the implementation, one must keep track of the deleted arcs for future use.)  

If the node is not involved with recursion, and if the node’s corresponding procedure is a 

tree, then all pfdom arcs corresponding to this procedure are converted into indirect 

forward dominance arcs (which will be kept for future use).  (Nothing is done to the T/F 

type of the calling procedures if the procedure is found to be a tree.) 

The call graph contract() routine will group nodes that are reachable from each 

other.  In cases where a node is involved with recursion, one must process through each 

node group in the same manner as above.  It is necessary to process the grouped nodes 

because they are all reachable from each other. 

Once all postorder iteration of the call graph is performed, it is necessary to 

iterate, one last time, through each source procedure.  Upon completion of this iteration, 

the CCDG algorithm is complete. 
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For each interrupted flow arc in the current procedure, check for arcs removed 

during pfdom resolution.  Recall that these arcs were removed as a result of the procedure 

having embedded halts.  For each corresponding target procedure, draw a dicd arc from 

the return vertex of that procedure to the original call site’s IFA target.  Doing this asserts 

that the IFA target of a procedure call with an embedded halt has the same control 

dependence as the return vertex of the called procedure.  For IFA targets in loops, one 

must also remove the dpcd arcs incident to their call sites and make them direct control 

dependence arcs (i.e. “normal” arcs). 

While iterating through the IFAs for the current procedure, check for indirect 

forward dominance arcs.  Said arcs will have a dicd arc drawn in the opposite direction of 

the infdom arc.  Such an arc will “look” like an IFA in a PCFG, in that it will have the 

same nodes, but while the IFA pertains to the CFG, the dicd arc pertains to the CDG, and 

such arcs only exist for procedures that call procedures that are of “tree” T/F type.  (In 

cases where the called procedure is a forest, the dicd arc extends from the called 

procedure’s return vertex to the IFA target.  This step was outlined in the previous 

paragraph.)  In cases where the IFA exists in a loop, remove all dpcd arcs to the call site. 

Finally, remove the dpcd arc corresponding to the IFA.  Upon removal of the last 

dpcd arc of the last procedure, the algorithm is completed.  When the algorithm is 

completed, no more dpcd arcs should exist.  The final CCDG consists of direct control 

dependence arcs (“normal” arcs) and direct inherited control dependence (dicd) arcs only. 
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THE IMPLEMENTATION 

As earlier stated, the project implements Stafford’s algorithm using SUIF 

(Stanford University Intermediate Format) and MachSUIF (Machine SUIF) as APIs.  It 

assumes an input of a set of procedure CFGs in MachSUIF’s .cfg format, and it produces 

a CCDG and all intermediary data structures in plaintext format simply as node pairs (e.g. 

“(main, A)”). 

This section will describe the software that comprises the heart of the project 

itself, and will explain the reasoning behind design decisions.  It will also document the 

split between the MachSUIF API and the project code.  The code, itself, was documented 

using Doxygen, an inline documentation engine similar 

to Javadoc.  As of this writing, Doxygen is capable of 

generating documentation in HTML, RTF, or LaTeX.  

An HTML version of Doxygen’s generated 

documentation is available on the Web at:  

http://www.cs.tufts.edu/r/serg/ccdg/doxygen/. 

 
  CCDG 

Generator 

MachSUIF 

SUIF 

THE IMPLEMENTATION:  API’S USED 

MachSUIF and SUIF were the only two APIs used in the implementation.  SUIF 

stands for “Stanford University Intermediate Format”, and is a compiler designed for 

research purposes.  Machine SUIF sits on top of SUIF, and the CCDG generator sits on 

top of MachSUIF, as shown in Figure 4.  As diagrammed, there is no interaction between 

the CCDG generator and SUIF, itself.  Though Stafford’s algorithm is language-

independent, and will work with most imperative languages, MachSUIF only handles C 

and FORTRAN inputs.  Consequently, the CCDG generator only handles C and 

Figure 4.  MachSUIF’s relation 
to SUIF and the CCDG 
generator. 
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FORTRAN inputs.  Unfortunately, even if MachSUIF could handle C++, the CCDG tool 

would not be able to, as Stafford’s algorithm does not address exception handling. 

As an aside, because MachSUIF supports C, and the only code tested upon the 

CCDG generator was C code, all “source procedures”, as they were previously called, 

will now be referred to as “source functions”.  Additionally, all project code 

documentation and commenting refers to “functions”, not “procedures.” 

MachSUIF facilitates the process of designing compiler passes that optimize 

machine code.  The process of generating a CCDG is actually a compiler pass, and is 

controlled by a master class, CcdgSuifPass, which inherits from a SUIF class, 

PipelinablePass.  According to SUIF’s documentation [7], a pass is pipelinable if its 

computation can be applied to each source function independently.  Most of SUIF’s 

passes work through implicit iteration.  When one sets up a pipelinable pass subclass, 

SUIF iterates through all functions, calling do_procedure_definition() once per each 

source function. 

Before discussing the issues involved in the implementation, we will provide 

documentation on installing SUIF and MachSUIF in Tufts University’s Computer 

Science Department Solaris environment.  Note that while Doxygen is not an API, it was 

used in generating documentation for the CCDG generator code base.  Were someone to 

update the project’s documentation, one would need to check for this installation.  At the 

time of this writing, Doxygen was available on most Tufts University CS Department 

Linux systems. 
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THE IMPLEMENTATION:  INSTALLATION 

The version of SUIF used for this installation is SUIF 2.2.0-4 and the version of 

MachSUIF used was 2.02.07.15.  At the time of implementation, these were the most 

recent versions of SUIF and MachSUIF available.  SUIF and MachSUIF were compiled 

with gcc 2.95.3 on a Sun Ultra-250 running Solaris 5.9.  It may be possible to use gcc 3.x 

to compile SUIF, however I have not tested my project with anything above 2.95.3, as 

SUIF’s README mentioned being tested with 2.95.3. 

The following are the steps taken to install the current version of SUIF and 

MachSUIF found on Tufts CS systems: 

1. Ensure that proper directory and umask for install are in place. 
2. Untar basesuif (basesuif-2.2.0-4.tar.gz). 
3. Untar MachSUIF (machsuif-2.02.07.15.tar.gz). 
4. Move basesuif’s results to the appropriate directory. 
5. Set appropriate environment variables. 

a. Execute /bin/sh ./install 
6. Add MachSUIF to the list of packages to install (so that one does not have to 

make a separate install of MachSUIF). 
a. Move the result of the untarring to $NCIHOME/suif/suif2b/machsuif 
b. Execute setenv $MACHSUIFHOME $NCIHOME/suif/suif2b/machsuif 
c. Execute echo machsuif >> 

$NCIHOME/suif/suif2b/extra_suif_packages 

7. Patch MachSUIF’s bit_vector.cpp file. 
a. Execute patch –p1 < $MACHSUIFHOME/patches/basesuif-2.2.0-

4.patch 
8. Fix a glitch with gcc 2.95.3’s templates support and MachSUIF. 

a. Execute echo EXTRA_CXXFLAGS += -D__STL_USE_SGI_ALLOCATORS >> 
$NCIHOME/Makefile.options.gcc 

9. Compile. 
a. Execute make setup 
b. Execute make 

10. Test. 
a. Execute make test 

11. Clean up the MachSUIF installation directory. 
a. Execute cd $MACHSUIFHOME; make tidy 

12. Install the Solaris front end for SUIF. 
a. Because the file does not extract into its own directory, create a new 

directory:  Execute mkdir foo; cp Sparc_Solarisc2s.tar.gz foo; 
cd foo 
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b. Extract the archive file. 
c. Execute make install 

13. Remove all unnecessary archives and the temporary directory created in step 12.a. 
 

The CCDG generator can run in three different modes:  normal mode, file mode, 

and debug mode.  In normal mode, the program will write all output to standard out.  In 

file mode, all output will be to files.  A file named <prefix>.cfg with a source function 

named <functionname> will result in files named: 

 <prefix>_<functionname>.pcdg 

 <prefix>_<functionname>.pcfg 

 <prefix>_<functionname>.pfdf 

 <prefix>.cg, and 

 <prefix>.ccdg. 

To compile the actual CCDG project, first choose the mode in which to run the generator, 

and set it as a #define in ccdg.h.  Locate the line: 

#define RUNMODE <MODE> 

and change <MODE> to one of the following: 

 DEBUGMODE 

 FILEMODE 

 NORMALMODE 

simply cd to the directory containing the project (at the time of this writing, /r/serg/ccdg/) 

and type make to compile.  That will create an executable file in $NCIHOME/bin called 

do_ccdg.  To setup SUIF for running, execute source /r/serg/suif.login.  (One may 

wish to source it, automatically, in your $HOME/.login file.)  C code must be run through 

preprocessing prior to running it with do_ccdg.  A small Perl script contained with the 

project called c2cfg will run all the necessary compiler passes to get a .c file into proper 
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.cfg form.  (You may want to put this file in $NCIHOME/bin.)  Upon generating the .cfg 

file, <prefix>.cfg, run do_ccdg <prefix>.cfg. 

THE IMPLEMENTATION:  DATA STRUCTURES 

Only one-fourth of the code of the CCDG project is involved with directly 

implementing Stafford’s algorithm.  The remainder of the code is either involved with 

setting up the MachSUIF pass or providing robust storage mechanisms with ample and 

easy means of iterating through and retrieving items from said mechanisms.  A full run-

down of the available data structures, complete with inheritance hierarchies, is available 

in the Doxygen-generated developer documentation.  However, a quick look at some of 

these data structures will reveal much about the code’s underlying details. 

THE IMPLEMENTATION:  DATA STRUCTURES:  Edges 

Most of Stafford’s algorithm involves iterating through data structures, adding 

and removing different kinds of edges, and converting edges to different types.  Thus, it 

is important that any supporting data structures facilitate this as much as possible.  My 

philosophy in coding the project was to move all the internal details of the supporting 

data structures away from the algorithm implementation, within reason, so that there 

would not be a huge gap between the written Stafford algorithm and the actual 

implementation.  Edge collections were stored as arrays, just as they were in Stafford’s 

algorithm.  The primary hope was that bugs resulting from incongruity with the written 

algorithm would become more apparent. 

In the implementation, every graph is described as a set of edges, not as a singular 

graph data structure.  There is a different edge object instance for every type of edge, e.g. 

IFA, dicd, or pfdom arc.  Most edges, regardless of type, use the same data structure, 
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CfgEdge.  Despite the name, CfgEdge data structures are not just used in the PCFG 

implementation, but are used to describe edges in the PFDF, PCDG, and CCDG 

implementations, as well.  The reason for the name is that the edge contains CfgNode 

objects.  Though the many supporting graphs used in the algorithm are different, the 

nodes are the same throughout.  For example, node 3 in a procedure’s CFG will be the 

same node 3 in the procedure’s FDF and the same node in the procedure’s CDG.  So, the 

name CfgEdge does not describe what type of graph the edge belongs to, but rather, what 

type of node it contains.  There is a second type of edge, a CgEdge, which holds call 

graph nodes of type CgNode.  The third and last type of edge, CfgSpanningEdge, holds 

CfgNode objects that span multiple source functions (CfgSpanningEdge inherits from 

CfgEdge).  These edges all stay consistent with the naming convention. 

Every edge, (u, v), has two vertices, u, and v.  Thus, every edge object, whether 

CfgEdge, CfgSpanningEdge, or CgEdge, has methods u() and v(), which return the 

respective nodes.  In addition to holding CgNode objects, the CgEdge class holds 

CfgNode objects to act as call site and target markers, so in addition to providing u() and 

v() methods, it provides u_cfg() and v_cfg() methods, as well.  Every edge also provides 

a function, fprint(), which prints the edge to a target file descriptor.  Additionally, every 

edge overloads the == operator in order to provide more convenience to the user of the 

edge class. 
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THE IMPLEMENTATION:  DATA STRUCTURES:  Collections 

As stated earlier, every graph in the implementation is a collection of edges.  

Every edge is of type CollectionItem.  Every edge collection inherits from the class 

Collection, which stores items of type CollectionItem.  Collections store items in arrays.  

The thought of implementing them as linked lists was entertained as a possibility, but due 

to the many different collections 

that a node could be in 

simultaneously, one could not 

put “next” and “last” pointers in 

the nodes themselves:  one 

would have to wrap the nodes 

and store the list pointers in the 

wrapper class.  Also, it was 

realized that most collections 

would be iterated through many 

times more than they would be added to, and arrays are faster than linked lists in terms of 

iteration speed. So, I decided that the best approach would be with arrays. 

void Collection::add(CollectionItem *ci) {
  CollectionItem **temp; 
  int i; 
 
  if(num_items >= max_items) { 
    max_items += COLLECTION_CHUNK_SIZE; 
    temp = new CollectionItem*[num_items];
    for(i = 0; i < num_items; ++i) 
      temp[i] = set[i]; 
    delete set; 
    set = new CollectionItem*[max_items]; 
    for(i = 0; i < num_items; ++i) 
      set[i] = temp[i]; 
  } 
  set[num_items++] = ci; 
} 

Figure 5.  Code for the Collection base class. 

Unfortunately, arrays in C are not dynamically expandable.  Thus, the internal 

code for adding items to the array is not very elegant.  As one can see from Figure 5, the 

Collection’s storage array has to be re-allocated after adding a certain number of items, as 

defined by COLLECTION_CHUNK_SIZE.  I decided that time is more important than 

disk space, and have therefore set COLLECTION_CHUNK_SIZE to a reasonably high 
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value:  20.  I estimate that most Collections will never exceed a size of 20, and even 

fewer would exceed a size of 40. 

There is another unfortunate condition:  one collection type does not inherit from 

the Collection base class.  The class CfgNodes, which holds a collection of type 

CfgNode, is incapable of inheriting from type Collection because the type CfgNode is 

provided by MachSUIF, and is therefore incapable of inheriting from type 

CollectionItem.  The thought of wrapping the class appealed to me, but I have shied away 

from wrapping any classes in this project, in order to achieve speed. 

All Collections support the method fprint(), which prints all of its CollectionItems 

to a file descriptor.  In each case, the fprint() routine simply iterates through its 

CollectionItems and calls its objects’ own fprint() methods. 

THE IMPLEMENTATION:  DATA STRUCTURES:  Call graph 

Occupying roughly one-third of the number of lines of code in the CCDG project, 

the call graph class and its supporting data structures make up, by far, the single largest 

and most complicated component in the implementation.  At its simplest, the call graph is 

simply a pointer to a root with each node holding information about its own children.  

But the call graph object also provides postorder and inorder iteration methods, search 

methods, and a contract() method implementing a simplified version of Gabow’s path-

based depth-first search algorithm [2] (see “STEPS TAKEN:  Construct_CCDG()” for 

details on the simplification). 

The CallGraph object points to a root of type CgNode.  Each CgNode has 

children of type CgNode, stored in a Collection called CgNodes.  CgNode objects can 

also be stored in a CollectionItem called CgEdge, and in a Collection called CgEdges.  
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CgEdges store more information than CgNodes:  they also store the corresponding 

CfgNodes that contain the call site and target nodes corresponding to that edge.  Ideally, 

instead of having CgNode children, each node would have a CgEdges collection of 

children.  Unfortunately, gcc compilation fails when placing a CgEdges object as a 

member of a CgNode object.  The cause for it is still unknown, but I suspect that either 

the two are circularly dependent on each other, or that gcc 2.x simply cannot support the 

combination of these two closely-related inherited classes.  Consequently, the CallGraph 

class stores the CgEdges, and thus the CgNode children of a CgNode are only useful 

when initially contracting the graph. 

THE IMPLEMENTATION:  STEPS TAKEN 

The CCDG generator had several issues during several parts of its development.  

All of the issues were resolved, though some solutions were more elegant than others.  

This section will provide a run-through of the issues encountered with each portion of the 

algorithm. 

THE IMPLEMENTATION:  STEPS TAKEN:  Construct_PFDF() 

On lines 1 – 3 of Stafford’s Construct_PFDF() procedure, the algorithm builds the 

data structure AT for use with Lengauer and Tarjan’s PFDF algorithm [3].  AT provides 

all “return” or “halt” edges.  Because MachSUIF provides forward dominance 

information out-of-the-box, the construction of AT is not necessary.  Nor is the Forest_list 

data structure necessary.  However, we compute both, regardless. 

In Construct_PFDF(), the Cfg generated by MachSUIF does not completely 

match the PCFG that Stafford specifies.  This is partly because MachSUIF generates a 

control flow graph for machine code instructions instead of for program statements.  
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Also, in Stafford’s examples, a no-op node follows each procedure call.  Some 

augmentation of the default Cfg data structure follows its generation, in order to fit it to 

Stafford’s PCFG.  In most cases, the match is not identical, but it is close.  The biggest 

problem is that Stafford prefers a 1:1 correspondence between program statement and 

PCFG node.  I have not yet figured out a way to make that happen. 

On lines 6 – 9 of Construct_PFDF(), one checks the out-degree of the root of the 

PFDF and assigns the T/F type based on that out-degree.  First, it is important to know 

that MachSUIF does not use strict dominance, and as a result, one would have to check 

that the out-degree of the PFDF root equals 2, not 1.  But in actuality, one cannot use that 

qualification, either, because MachSUIF treats calls to exit() in source code as function 

calls, not as halts.  Thus, the exit() call site in a PCFG has a vertex that extends from it to 

a child node, just as does every other function call.  Consequently, the PFDF root never 

has an out-degree of more than 2. 

Finally, on line 14 of Construct_PFDF(), Stafford’s algorithm assumes that all 

interrupted flow arcs have been calculated with the PCFG.  MachSUIF does not provide 

IFAs, so one must calculate them there.  (As the IFA is an invention of Stafford’s 

algorithm, one would not expect any API to provide them, outright.) 

THE IMPLEMENTATION:  STEPS TAKEN:  Construct_PCDG() 

On lines 1 – 6 of Construct_PCDG(), Stafford’s algorithm assumes that a decision 

has been made about strong or weak dependence analysis.  In the implementation, the 

user specifies strong or weak dependence analysis in a function called initialize(), which 

runs prior to any processing of source functions.  I made the decision that the same type 

of analysis must be performed on all source functions.  While choosing different analyses 
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for different source functions will not cause problems in the algorithm, it does cause 

problems with a command line interface-based tool that must prompt the user once for 

each source function in the code; when dealing with large software with dozens of 

function calls, this might be quite a nuisance.  In a GUI-based CCDG tool, one may 

decide make a default value and give the user the ability to change analyses for separate 

functions. 

On line 2 of Construct_PCDG(), Stafford’s algorithm calls for the computation of 

Ferrante, et al.’s direct control dependence algorithm [1].  In implementing Ferrante’s 

algorithm, I stopped short of implementing region nodes, as I do not see them as being 

necessary in Stafford’s algorithm.  Additionally, in my calculation of Ferrante, there is no 

edge between (VI, VR), though there should be.  So, I put one in manually. 

On line 5 of Construct_PCDG(), Stafford’s algorithm calls for the computation of 

Podgurski’s direct weak control dependence algorithm [5].  This step remains un-

implemented, due to the shear work involved in understanding and implementing a 

second large-scale algorithm, with all of its necessary supporting objects. 

On line 11 of Construct_PCDG(), Stafford adds VI to the collection of nodes, T, 

which will be used in processing beginning on line 15.  That step was put in place so that 

lines 15 through 22 will add dicd arcs extending from every PCDG initial vertex to its 

corresponding children.  This works under the assumption that VI is always a child of 

node 1 in the PFDF.  In MachSUIF’s PFDF, VI is always a child of VR.  Consequently, 

this does not work, so I have created my own steps to ensure the same end, and thus T 

does not contain VI in the implementation. 
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On line 18 of Construct_PCDG(), the variable s refers to the call site adjacent 

from the same node, t, referenced in lines 15 and 16.  In other words, s and t in lines 15 – 

23 in Construct_PCDG() represent the (s, t) in IG from line 12. 

On line 25 of Construct_PCDG(), one must insert dpcd arcs, not dicd arcs, as one 

is instructed to do so.  This is a typo in the Stafford algorithm. 

THE IMPLEMENTATION:  STEPS TAKEN:  Construct_CCDG() 

Until this point in the algorithm, no arcs have spanned any source functions.  

Previously, all procedure-specific data structures were arrays, and each source function 

had a corresponding array index number.  Line 3 of Construct_CCDG() calls for the first 

set of spanning arcs to be created.  At this point, new arcs go into a different data 

structure than before.  Before the end of the procedure, all necessary procedure-specific 

dicd arcs will also be copied into the same data structure that the arcs from line 3 use. 

On line 6, the call graph contract() routine, originally specified by Gabow [2], is 

actually a simplified version of the Gabow algorithm.  In short, the new algorithm 

performs a depth-first search and keeps track of the current path with a stack.  Path 

information is stored in the nodes, themselves, and the stack grows and shrinks as the 

DFS routine recurses through the source functions.  Upon hitting a node already in the 

path stack, it contracts all nodes from that node to the end of the stack.  I see no reason 

why this simplified algorithm is not as appropriate as the original Gabow algorithm. 

Lines 24 – 42 of Construct_CCDG() remain un-implemented.  While most of the 

lines are the exact same as from lines 10 – 23, I have chosen not to implement them to 

save time, testing, and the possibility of infinite looping if I do not handle recursion 

correctly.  Additionally, at this point, my call graph data structure has no set of methods 
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to report back which nodes are grouped with which.  I do not see it as a difficult task to 

put this functionality into place, but it has not been done, yet. 

THE IMPLEMENTATION:  THE PROJECT AS A COMPONENT 

Although it was not designed as such, the CCDG generator project can be thought 

of as a reusable software component, taking in an input of a CFG for the source code, and 

producing a CCDG, all PCFGs, PFDFs, PCDGs, and the program call graph.  This 

section attempts to draw lines between MachSUIF and the CCDG generator code. 

Unfortunately, MachSUIF is not entirely object oriented.  Methods related to 

postdominance information are contained in a DominanceInfo object.  However, 

extracting information from the Cfg object or CfgNode objects requires ordinary 

functions, not methods.  A partial alphabetical listing of used MachSUIF methods and 

functions is available in Table 1, below (documentation for each of these is available 

through MachSUIF’s documentation page [4]). 
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Parent Object Function/Method 
- AnyBody* get_body(OptUnit*) 
 CfgNodeHandle nodes_end(Cfg*) 
 CfgNodeHandle nodes_start(Cfg*); 
- CfgNode* get_entry_node(Cfg*) 
- CfgNode* get_exit_node(Cfg*) 
- CfgNode* get_succ(CfgNode*, int pos) 
- CfgNode* insert_empty_node(Cfg*, CfgNode *tail, CfgNode 

*head) 
- IdString get_name(SymbolTableObject*) 
- Instr* get_cti(CfgNode*) 
- Sym* get_target(Instr *instr) 
- bool ends_in_call(CfgNode*) 
- bool optimize_jumps(Cfg*) 
- bool remove_unreachable_nodes(Cfg*) 
 bool postdominates(CfgNode *dominator, CfgNode 

*dominatee) const 
- int get_number(CfgNode *) 
- void canonicalize(Cfg*,  bool keep_layout    = false, 

bool break_at_call  = false, bool break_at_instr = false) 
- void fprint(FILE*, Cfg*, bool follow_layout, bool 

show_code) 
DominanceInfo CfgNode *immed_postdom(CfgNode *n) const 
DominanceInfo void find_dominators() 

Table 1.  Functions and methods provided by MachSUIF that were used in the CCDG generator.  
Note that this does not include all procedures used in setting up the MachSUIF pass. 

The CCDG generator code actually uses more functions and methods than that, but the 

ones omitted serve the sole purpose of setting up the MachSUIF compiler pass that 

generates the CCDG and all supporting data structures.  All non-pass-related data 

structures used are available in Table 2, below. 

Object Type Object Name 
class Anybody 
class Cfg 
typedef list<CfgNode*>::iterator CfgNodeHandle 
class CfgNode 
class DominanceInfo 
class Instr 
class IdString 
typedef ProcedureDefinition OptUnit 
typedef Symbol Sym 

Table 2.  Objects provided by MachSUIF that were used in the CCDG generator implementation.  
Note that this list does not include all objects used in setting up the MachSUIF pass. 

Unfortunately, there was no thought put into swapping out MachSUIF during 

most of the development of the project.  Had there been, MachSUIF’s functionality 

 - 29 - 



would have been wrapped wherever possible, so that every reference to and instance of 

the above would have to be replaced once, versus the many times in which they were 

used.  Unfortunately, that did not happen, and as a result, separating MachSUIF and the 

CCDG generator would be a nontrivial task. 
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CONCLUSION 

On the whole, this project was a success.  The generator is very easy to use, 

requiring minimal user interaction, and the output is human-readable.  The two biggest 

problems were that it was not completed in its entirety, and that MachSUIF was not a 

perfectly appropriate fit for the project.  See “Future Work” for additional information on 

remedying these problems. 

CONCLUSION:  FUTURE WORK 

Due to the extensive nature of this project, and the learning curve necessary to 

understand control dependence analysis, the entirety of Stafford’s algorithm was not fully 

completed in code.  Most prominently missing is the implementation of Podgurski’s 

weak control dependence algorithm [5], and support for recursion (lines 24 through 43 in 

Stafford’s Construct_CCDG() procedure).  The remainder of the code for Stafford’s 

algorithm has been implemented in full. 

Perhaps an even more severe limitation of the project is that it will not accept 

more than one source .cfg file.  Consequently, that prohibits analysis of programs of any 

significant size, which will all span multiple files.  MachSUIF’s documentation mentions 

that one must use its scripting capabilities to put several CFGs into one file_set_block.  

From what it seems, no changes must be made to the CCDG pass code, but rather to the 

preprocessing that converts a .c file into a .cfg file.  If one could put multiple .c files into 

a .cfg file, that would solve the multiple source files problem. 

An even more ambitious project would be to remove MachSUIF as an API and 

replace it with a more appropriate API.  The problem with MachSUIF is that it deals with 

machine code, and provides a CFG (and therefore a PFDF) for machine code.  There is 
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rarely a 1:1 correspondence between program statements and machine code, and in many 

cases, there will not be a 1:1 correspondence between program statements and CFG 

nodes.  This is an unfortunate problem for anyone wanting to use the CCDG tool for 

serious development or maintenance purposes.  Another point of failure was that 

MachSUIF treated embedded halts as ordinary function calls, in that embedded halt 

nodes still had children, and there was no way to remove the edges incident to those 

children.  A good, appropriate API will be one that: 

 provides a PCFG for source code, rather than machine code 

 provides a 1:1 correspondence between source code statements and nodes 

 can generate a PFDF from a PCFG (otherwise one will have to implement 

Lengauer and Tarjan [3] manually, as MachSUIF provided a PFDF) 

 provides “join” nodes after branches resulting from “if” statements (MachSUIF 

does provide this) 

 provides the ability to add nodes (MachSUIF does provide this) 

 either provides no CFG node children after an embedded halt, or provides the 

capability to remove edges 

It may be possible that SUIF is an appropriate API for this project; however I find 

SUIF to be so poorly documented and supported that it may be a poor choice for someone 

without a sense of adventure.  To emphasize, I will add the otherwise implicit 

qualification for an appropriate API: 

 has documentation that is thorough and well-organized, and well-supported 

Another ambitious project would be to reuse more code in the CCDG generator 

through the use of templates.  Currently, a strong inheritance hierarchy exists for 

 - 32 - 



collections of objects, and every edge and call graph node inherits from the type 

CollectionItem, which is the only type that a Collection object can hold.  Unfortunately, 

CfgNode objects cannot be held in a collection because they are a built-in MachSUIF 

type, thus they cannot inherit from anything.  However, with templates one could 

implement a Collection that held anything, regardless of data type.  Prior to re-

implementing with templates, one would have to recompile SUIF, MachSUIF, and the 

CCDG generator with gcc 3.x.  All attempts at combining templates with inheritance in 

gcc 2.x have failed.  So I have been told, many issues with templates and inheritance have 

been fixed with gcc 3.x. 

On the topic of C/C++ issues, very little regard is paid to memory deallocation in 

the CCDG generator.  The reason for this is that many nodes and edges are passed 

around, spanning functions and collections.  In order to properly deallocate the memory 

used by edges and nodes would require extensive and complex reference counting.  With 

algorithm correctness being of a higher priority than memory management, and because 

the program simply runs from start to finish with little or no user interaction, I have opted 

not to do that.  I do free some memory where it is obvious to do so, but never more than 

that.   A future project, if needed, would be to count references and deallocate edges and 

nodes when no longer necessary. 

Perhaps the most obvious piece of future work would be a graphical user interface 

for the CCDG tool.  The project in its current state provides edges as node pairs, e.g. 

“(main, A)” with optional notations afterward, e.g. “(main, A) dicd”.  Reconstructing a 

graph has the potential to be a significant task if the source program is sufficiently large.  

As of this writing, there is one GUI project underway (see “Related Work”). 
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CONCLUSION:  RELATED WORK 

There are two related projects reaching conclusion at the same time as this 

project.  Currently, Shuanghong He is developing a front end to this project, using the 

SUIF/MachSUIF installation with my project as a TCP/IP server to talk to a client 

running a Java front end.  My project, by itself, provides graphs as text files describing 

sets of edges.  He’s project parses those files and converts the edges into AT&T’s dot 

format and image files.  That saves the often cumbersome step of translating the edges 

into an actual pictorial representation.  Matthew Salter is finishing development of a 

component architecture description language, Simple Architecture Definition Language 

($ADL), which identifies control dependencies between components based on the $ADL 

specification.  Salter’s project analyzes inter-component relationships, whereas this 

project analyzes intra-component pathways.  One could attain a full picture of a 

component assembly’s control dependence with a combination of Salter’s project and 

this. 
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