
TUIMS: Laying the Foundations for a Tangible User Interface 
Management System 

 
Orit Shaer, Robert J.K Jacob 
Computer Science Department 

Tufts University 
Medford, MA  02155, USA 
E-mail: oshaer@cs.tufts.edu 

ABSTRACT 

The development of Tangible User Interfaces entails a 
unique set of challenges in comparison to traditional GUI 
development. These challenges range from conceptual 
through methodological to technical. To address these 
challenges, this paper proposes a new class of software 
tools for TUIs: the Tangible User Interface Management 
System (TUIMS). TUIMS draws from earlier work on 
UIMS [8] and provides an alternative paradigm for 
developing TUIs. Rather than developing a TUI using an 
API for a specific sensing mechanism, TUI developers 
would specify a TUI in a specialized high level description 
language which is technologically independent. This 
technology independent specification can then be translated 
into a program controlling a set of physical objects in a 
specific target technology. To demonstrate the benefits of a 
TUIMS, we are currently developing Prism.  Prism is a 
TUIMS aimed at: reducing the effort required to build a 
TUI, encouraging exploration of alternative designs, and 
lowering the threshold for retargeting a TUI to new 
input/output technologies. The Prism system will support 
development of TUIs based on microcontrollers and RFID 
readers. Prior to developing a TUIMS, it was necessary to 
identify the set of high level constructs that would serve as 
a basis for a high level description language for TUIs, in the 
same way that widget, windows and events formed the 
basic ingredients of GUI toolkits. Therefore, we proposed 
the TAC Paradigm [10], a conceptual framework for TUIs 
providing a set of core constructs for describing TUIs while 
addressing many of the conceptual challenges unique to the 
rich design space of TUIs. By providing a simple set of 
constructs, the TAC paradigm enables construction of a 
high level description language for TUIs, thus laying the 
foundations for the development of a TUIMS. 

KEYWORDS 
Tangible User Interface (TUI), User Interface Management 
System (UIMS), User Interface Description Language 
(UIDL), Software toolkit. 

INTRODUCTION 

The last decade has seen a wave of new research aimed at 
fusing the physical and digital worlds. This work has led to 
the development of a collection of interfaces allowing users 
to take advantage of their spatial skills and to interact 
collaboratively with augmented physical objects in order to 
access and manipulate digital information. These interfaces 
are referred to as Tangible User Interfaces [3] (TUIs). 
Interaction with TUIs draws on users’ existing skills of 
interaction with the real world, thereby offering the promise 
of interfaces that are quicker to learn and easier to use. 
However, these interfaces are currently more challenging to 
build than traditional user interfaces. Following are a 
number of conceptual, methodological and technical 
challenges TUI developers face. A more comprehensive 
discussion of these challenges can be found in [10]. 

Interlinked Virtual and Physical Worlds: While graphical 
user interfaces rely solely on virtual objects, Tangible user 
interfaces make use of both virtual and physical objects, 
which coexist and exchange information with each other. 
The TUI developer is challenged with determining which 
information is best represented digitally and which is best 
represented physically [11]. 
Continuous and Distributed Interaction: TUIs provide 
users a set of physical objects with which they can interact 
in a discrete or continuous fashion. In addition, multiple 
users can simultaneously interact with multiple physical 
objects. Existing user interface models such as Event Based 
models do not capture continuous and discrete interaction 
explicitly [4], thus, TUI developers are often required to 
deal with continuous and distributed interaction in 
considerably ad-hoc, low-level programming approaches. 

Multiple behaviors, objects and actions: In existing user 
interface paradigms each interactive component 
encapsulates its behavior. However, the behavior of a 
physical object in a TUI may change in different contexts 
of use (e.g. when a new physical object is added to the TUI 
the behavior of an existing object may change). 
Furthermore, in a TUI, any object that a user may grab 
from her physical surroundings could be part of an interface 
and there are numerous interaction actions that can be 
performed with, or on any physical object (e.g. squeeze, 
stroke, toss, push, tap, pat, etc.). Thus the existing user 
interface paradigms fall short of capturing the dynamic 
behavior of TUIs.  

No Standard Input / Output devices: Currently there are no 

  
  
  
  
  



standard input or output devices for accomplishing a given 
task in a TUI (e.g. measuring a movement of an object can 
be implemented using RFID, magnet sensation or computer 
vision). Because each technology currently requires a 
different set of physical devices and code instructions, the 
integration of novel technologies into an application is 
difficult as well as costly [5].  

Early Feedback:  Unlike homogeneous desktop systems 
having standard and available input/output devices; TUIs 
use novel hardware that may not be available early in the 
design process.  Thus, a rapid prototype to simulate the 
functionality and the hardware is needed [7] to avoid 
postponing testing until the whole system has been 
developed. However, building a proof of concept prototype 
using available technology may require rewriting the TUI 
software when the actual deployment technology is 
selected. 

To address these challenges, we suggest a new class of 
software tools for TUIs: the Tangible User Interface 
Management System (TUIMS). Unlike existing physical 
toolkits which provide support and abstractions for a 
specific set of sensing mechanisms, the TUIMS provides a 
higher level model that is aimed at capturing the essence of 
the tangible interaction. The TUIMS, which draws from 
earlier work on UIMS [8], allows developers to easily 
specify a TUI using a specialized high level description 
language (TUIDL). This technology independent 
specification can then be translated into a program 
controlling a set of physical objects in a specific target 
technology.   

In order to provide a basis for a high level description 
language for TUIs, we proposed the TAC Paradigm [10]. 
The TAC paradigm is a conceptual framework for TUIs, 
providing core constructs for describing these systems 
which are analogues to widgets, windows and events in 
GUIs.  

To demonstrate the benefits of a TUIMS to developers, 
Prism is currently being developed. Prism is a TUIMS 
instantiation aimed at enabling TUI developers with limited 
experience in hardware programming to accomplish the 
following: 

1. Implement the core functionality of a TUI while 
relying on the Prism system to implement the 
communication with the input/output devices, thus 
reducing the effort required to program a TUI system. 

2. Create a model which describes the structure and 
behavior of a TUI in a high level description language. 
Since the model is technology independent, it can be 
easily retargeted to support other input/output 
technologies (e.g. microcontrollers, RFID and 3D 
graphical simulation). 

3. Explore alternative designs (i.e. different physical 
representations) for the same application functionality, 
while reusing the original application logic. This 
reduces the time necessary to build different systems 
with similar functionality.   

4. Rapidly prototype a TUI from a high level description 
early in the development process using a 3D graphical 

simulation environment or available hardware, thus, 
providing early feedback to the system developer. The 
high level description used for the early prototype can 
then be incrementally developed to create the 
deployable system. 

The Prism system is intended to enable prototyping and 
development of TUIs, while providing support for the 
following input/output technologies: a 3D graphical 
simulation environment, the HandyBoard and Cricket 
microcontrollers, as well as an RFID reader. The system 
will enable TUI developers to augment TUI’s with speech, 
sound and video streams. Its flexible architecture will allow 
developers to easily extend Prism to support additional 
technologies.  

The following sections are organized as follows: First the 
TAC Paradigm, laying the conceptual foundations for 
TUIMSs is summarized. Next follows a discussion of how 
to model TUIs using the TUIML high level description 
language.  Finally, the TUIMS architecture is presented and 
is demonstrated through the Prism system. The paper closes 
with a summary and our future plans. 

THE TAC PARADIGM 

The Token and Constraints (TAC) Paradigm [10] provides 
a set of constructs for describing TUIs while addressing 
many of the conceptual challenges such as multiple 
behaviors, objects and actions as well as continuous and 
distributed interaction, unique to the rich design space of 
TUIs. By providing a set of constructs for TUIs which are 
equivalent to widgets, windows and events for GUIs, the 
TAC paradigm lays the foundation for a high level 
description language for TUIs.  

The TAC paradigm approach is based on describing a TUI 
as a set of relationships between two types of physical 
objects: tokens and constraints. A Token is a physical 
object that represents digital information or a computational 
function and is manipulated by the user in order to access 
or modify digital information. A Constraint is a physical 
object that provides the context for token manipulation. The 
relationship between a token and a set of constraints is 
called a TAC. Each TAC encapsulates a set of manipulation 
actions that can be performed on it.  By encapsulating the 
manipulation actions in the TAC relationship rather than in 
the token entity, the paradigm allows a different behavior to 
be specified for each token in each different context, thus 
resolving the challenge of multiple behaviors. 

The manipulation of a TAC, is considered the manipulation 
of a token in respect to a set of constraints. The 
manipulation has computational interpretation. For 
example, in the Marble Answering Machine [2], we 
consider a marble the token and the replay indentation the 
constraint. The manipulation of the marble in respect to the 
replay indentation has computational interpretation: it 
provides access to the message bound to the marble. Each 
TAC can be manipulated discretely, continuously or in both 
ways.  

To specify a TUI using the TAC paradigm, a developer 
defines the possible TACs within a TUI and describes their 



behavior. For each TAC, the developer specifies the actions 
that may be performed upon it, and their responses. These 
relationships may be instantiated at run time by either the 
user or the system. The simplicity of specifying a TUI 
using the TAC paradigm implicitly supports distributed 
interaction by maintaining a set of parallel TAC 
relationships. 

Thus far, we have discussed the TAC Paradigm and 
identified TACs as the conceptual building blocks of TUIs. 
Similar to widgets in a GUI, TAC objects encapsulate the 
set of manipulation actions that can be performed upon a 
physical object in a TUI. A detailed discussion of the TAC 
Paradigm terminology, properties and evaluation can be 
found in [10]. 
MODELING TANGIBLE USER INTERFACES 
Building upon the set of constructs provided by the TAC 
paradigm we introduce TUIML (Tangible User Interface 
Markup Language), a high level description language for 
TUIs. The TUIML design, which is influenced by recent 
user interface description languages [1,4,9], provides 
support for the entire life cycle of a TUI while using XML 
as an underlying technology. 
TUIML predefines five basic modules: Task, Domain, 
Representation, TAC and Control, each describing a 
different aspect of the TUI system.  
The task and domain modules describe the semantics of the 
TUI system. The representation and TAC modules describe 
the syntax of the TUI system. The representation module 
defines a set of logical physical objects and their properties. 
The TAC component defines the context for interaction 
actions performed upon these logical physical objects and 
determines which semantic functions are invoked as a result 
of an interaction action.  The control component describes 
the control flow of the tangible interaction and the TUI’s 
initial state. These are modeled using a Colored Petri Nets 
(CPN) [6] based formalism that captures both the parallel 
and the continuous characteristics of a TUI  
In order to validate the expressiveness and usefulness of 
TUIML, we are currently taking a number of validation 
activities including hand coded representations of new and 
existing TUIs. Having validated the language, it will be 
used to specify TUIs in our proposed TUIMS system. 
TUIMS ARCHITECTURE 
The design of the TUIMS architecture is intended to 
facilitate the development of technologically portable TUI 
systems and allow TUI developers to extend the number of 
input and output technologies supported by the TUIMS. 
This architecture, which draws from the UIMS architecture 
[8], is depicted in figure 1. 

The main components of the architecture are: the modeling 
tools, the model, the implementation tools, the dialogue 
manager and the lexical handlers. 

The model is the core component of the system. It 
organizes the information into the five TUIML modules: 
task, domain, representation, TAC and control.  Its modular 
structure allows incremental development and reuse of 
existing modules throughout the development of an  

 

individual TUI system and across the development of 
different TUI systems.  

The modeling tools are aimed at assisting developers in 
building the model while shielding them from the syntax of 
the modeling language. They provide a convenient way to 
specify the interface and access existing specifications.  

The implementation tools translate the TUIML 
specification into programming language source code, thus 
assisting the TUI developer in the implementation process.  

Lexical Handlers are programs that control the 
communication and user interaction with a given sensing 
mechanism. Each lexical handler is responsible for both 
establishing communication with the set of devices 
included in a given sensing mechanism, and for generating 
events to and from those devices. Events generated by a 
lexical handler are sent to the dialogue manager. Each 
event sent contains an ID indicating a specific physical 
object and other necessary information. In order to extend 
TUIMS support to a new sensing mechanism, the TUI 
developer simply needs to provide a lexical handler for the 
new mechanism. 

The Dialog Manager is driven from the representation, 
TAC and control modules. It is responsible for both binding 
actual or graphical physical objects to the logical physical 
objects defined in the representation module, and for 
invoking application functions in response to events 
received from the lexical handlers. The dialogue manager 
keeps track of the instantiated physical objects and their 
IDs. It contains an entry for each lexical handler that maps 
input/output events from the lexical handler to the syntactic 
interaction actions. By modifying these entries a TUI 
developer can easily retarget a TUI or parts of a TUI to a 
different sensing mechanism. When a new physical object 
is initialized, its lexical handler sends its ID to the dialog 
manager which in turn, instantiates a new logical physical 
object and stores an entry mapping the physical object ID to 
the logical physical object ID. Any manipulation action 
performed upon a physical object or a change in the state of 
a logical physical object is reported to the dialog manager; 
in response the dialog manager invokes the proper function 
from the application logic or updates the relevant lexical 
handler.  

Figure 1: The TUIMS architecture 



PRISM 

The Prism environment employs the TUIMS architecture 
and is implemented in Java using the Java3D, Java Media 
Framework and Java Speech APIs. It allows a TUI 
developer to specify a TUI in the TUIML description 
language. This specification can then be automatically 
translated into a graphical simulator or a program 
controlling a set of physical interaction objects.   

The Prism environment aims to be both a TUI development 
environment and a run-time environment, where run-time 
services can be provided.  

The development environment consists of several views, 
each used as a modeling tool for specifying a different 
aspect of the TUI. These specifications are saved as a 
TUIML file and can be reloaded and reused. Prism provides 
the following views: Task, Domain, Canvas, TACs and 
Control. The task and domain views provide form based 
tools for specifying and implementing the application logic. 
The canvas view (see figure 2) provides users with a 
graphical editor for sketching 3D representations of 
physical objects. It’s used for specifying the representation 
component by creating graphical representations of 
physical objects, then relating them to domain elements and 
combining them into TACs. The canvas is also used for 
simulating user interaction with the sketched objects and 
testing alternative representations of the same underlying 
functionality. The TAC view allows users to define 
manipulation actions for each TAC and relate these 
manipulation actions to elements from the task model.  The 
control view provides a visual editor for specifying the 
control flow of the TUI and the TUI’s initial state. It 
provides users a list of available lexical handlers and 
allows them to map low level events to TAC events.  

The run-time environment will generate a dialog manager 
component from the TUI specification that will manage 
binding the semantic events to input/output events.  It will 
provide run time support for a Java3D simulation 
environment, the HandyBoard and Cricket microcontrollers 
as well as an RFID reader. The environment will also 
generate source code from the specifications to be loaded 
into the HandyBoard and Crickets microcontrollers.   

 

 

 

 

 

 

 

 
 

Figure 2: The Prism canvas view provides users a graphical 
editor for sketching and simulating 3D representations of 
physical objects. 

SUMMARY AND FUTURE WORK 

Our research is aimed at providing a new class of software 
tools for TUIs: TUIMS. These software tools rely on rich 
high level representations of TUIs, which capture both the 
structure and dynamic behavior of TUIs. We believe that a 
TUIMS will reduce the effort required to create a TUI, will 
encourage experimentation with alternative designs and 
will produce more reliable and technologically portable 
systems. To demonstrate the benefits of a TUIMS, we are 
currently building Prism, a TUIMS which supports 3D 
graphical simulation, rapid prototyping and development of 
TUIs using microcontrollers as well as an RFID reader. We 
intend to evaluate Prism by incorporating it into a TUI 
design class and using it to build new TUI systems, as well 
as to rebuild existing systems. 

REFERENCES 
1. Ali, M.F., et al. Building multiplatform user interfaces using 

UIML. in Computer Aided Design of User Interfaces  
(CADUI'02). 2002. 

2. Crampton Smith, G. The Hand That Rocks the Cradle. in  ID 
magazine, May/June 1995, pp 60-65. 

3. Ishii, H. and B. Ullmer. Tangible Bits: Towards Seamless 
Interfaces between People, Bits and Atoms. in Proceedings of 
the ACM Human Factors in Computing Systems (CHI 97). 
1997. Atlanta, Georgia, USA. 

4. Jacob, R.J.K., L. Deligiannidis, and S. Morrison, A Software 
Model and Specification Language for Non-WIMP User 
Interfaces. ACM Transactions on Computer-Human 
Interaction (TOCHI), 1999. 6(1): pp. 1-46. 

5. Klemmer, S.R. and J.A. Landay. Papier-Mache: Toolkit 
Support for Tangible Input. in Human Factors in Computing 
Systems: CHI2004. 2004. Vienna, Austria: CHI Letters. 

6. Kristensen L. M., Christensen, S. and Jensen K., The 
Practitioner’s Guide to Coloured Petri Nets, International 
Journal on Software Tools for Technology Transfer, 1998, 2: 
pp. 98-132. 

7. Myers, B., S.E. Hudson, and R. Pausch, Past, Present, and 
Future of User Interface Software Tools. ACM Transactions 
on Computer-Human Interaction (TOCHI), 2000. 7(1). 

8. Olsen, D.R., User Interface Management Systems: Models 
and Algorithms. 1992: Morgan Kaufmann. 

9. Puerta, A. and J. Eisenstein, XIML: A Multiple User Interface 
Representation Framework for Industry, in Multiple User 
Interfaces, A. Seffah and H. Javahery, Editors. 2003, John 
Wiley and Sons. 

10. Shaer, O., Leland N., E.H Calvillo-Gamez, and R.J.K. Jacob, 
The TAC Paradigm: Specifying Tangible User Interfaces. 
Personal and Ubiquitous Computing (in press), 2004. 

11. Ullmer, B., Tangible Interfaces for manipulating aggregates 
of digital information. PhD thesis, Massachusetts Institute of 
Technology, 2002. 

 


