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Abstract

We propose proximity graph depth as a class of depth func-
tions, based on the minimum path length along proximity
graph edges to the convex hull of a point set. We ana-
lyze the characteristics of several proximity graph depth

functions both theoretically and experimentally, define
depth contours enclosing regions of increasing depth, and
present algorithms for calculating depth values in a point
set and depth contours.

The contribution of this paper is in the novel approach

for analyzing depth in multimodal data sets. Most exist-

ing depth function do not cope with multimodality or

distributions with more then one center. We define seeds,

the multimodal version of the depth median, as an es-

timator for the centers of the multimodal data sets and

present experimental results that demonstrate that, un-

like most depth functions, the proximity graph depth can

indeed distinguish multimodal data sets.

1 Introduction

The proliferation of data enabled by the information
age has driven the development of new data analysis
techniques. The concept of data depth [21, 17] has
been developed over the last decade as a method of
multivariate data analysis in which no distributional
assumptions are needed. Proposed data depth mea-
sures are inherently geometric, with a numeric value
assigned to each data point that represents its central-
ity within the given data set. Most depth measures
are defined with respect to a probability distribution
or to a data set. We direct our attention to the latter
case, and apply computational geometry techniques
to its study and analysis. Many depth measures have
been defined and heavily studied: e.g. halfspace or
Tukey depth [27]1, convex-hull peeling depth [5, 3],
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1The half-space depth of a point x relative to a set of

points S = {X1, ...,Xn} is the minimum number of points of

S lying in any closed half-space determined by a line through

x.

and simplicial depth [17].
Two key problems emerge. First of all, propo-

nents of data depth argue the effectiveness of using
these methods in higher dimensions and the insights
to be gained. If these depth measures were effec-
tively computable in higher dimensions, this would
indeed be the case. However, in practice, the compu-
tational complexity of most well-behaved measures
is exponential in dimension. For example, the best
known algorithms for computing the halfspace depth
of n data points in two-dimensions run in Θ(n2) time
[18] and the generalization of these algorithms to d-
dimensions will run in Θ(nd) time, clearly impractical
for dimensions larger than 5. An approximation al-
gorithm for computing the halfspace depth in R

d in
O(mp3 + mpn) time, where m is the number of p-
subsets used was suggested in [22], but with no guar-
antee on the quality of the approximation. For these
types of data depth to be practical in higher dimen-
sions, faster algorithms, either exact or approximate,
will need to be developed.

The second issue is equally important. The pro-
ponents of data depth advocate the fact that no dis-
tributional assumptions are needed, but indeed a key
distributional assumption is in fact being made. The
four desirable properties of depth function, suggested
by statisticians [30] assume that each data set is cen-
trally symmetric. If these techniques are to be ap-
plied broadly, however, in an attempt to extract in-
formation from large experimental data sets which
may reflect multiple phenomena, these assumptions
of centrality may obscure the fact that the data sets
are multi-modal. There is need for geometric data
depth metrics that can report a single center, if indeed
there is only one, but can also detect the likelihood
that the data reflects multiple distributions.

A couple of candidate data depth metrics that try
to combat these problems have been suggested. Un-
der the Delaunay depth metric, the depth of a point
in a data set is the path length from that point to
the convex hull of the data set along the graph that
is the Delaunay triangulation of the point set. Green
and Sibson [10] mentioned the idea of using the path
length to the convex hull along Delaunay triangula-
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tion edges as a depth measure. Recently Abellanas et
al. [1] have proved several combinatorial properties
associated with Delaunay depth in the planar case.
They noted that Delaunay depth does detect multi-
ple “centers” of maximal depth. Note, however, that
computing the Delaunay triangulation of n points in
d dimensions has a lower bound of Ω(n⌈ d

2
⌉). All pre-

vious discussion is restricted to the Delaunay Trian-
gulation and does not include experimental analysis.

In this paper, we propose proximity graph depth
as a class of depth functions generalized from the con-
cept of Delaunay depth and provide a framework from
which to assess the efficacy of the various instantia-
tions. In addition to analyzing Delaunay depth, we
study the range of β-skeleton graph depth (includ-
ing Gabriel Graph depth and Relative Neighborhood
Graph depth). These principles can be viewed as an
extension of computational morphology [25] where “a
computational geometrical structure is intended to
extract the form of the input.” The underlying algo-
rithms that we will use are classic, rather than new.
The contribution of this paper is in the generalization
of Delaunay depth to any type of proximity graph,
in the definition of depth contours and estimators for
the centers in a multimodal data set, but most impor-
tantly its contribution is in the experimental analysis
of the efficacy of the depth functions based on these
individual proximity graphs. We show that the prox-
imity graph depth functions have the ability to detect
multi-modal data sets, and that certain β-skeleton
graph depth functions provide output comparable in
quality to Delaunay triangulation depth while having
only a linear computational dependency on dimen-
sion.

2 Background

2.1 Proximity Graphs

Proximity graphs are graphs in which points close to
each other by some definition of closeness are con-
nected [13]. We concentrate our analysis on the De-
launay triangulation [8] and β-skeletons [14] which
are a parameterized family of neighborhood graphs,
which include as a special case the Gabriel graph and
the relative neighborhood graph. Other types of prox-
imity graphs, not studied in this work, include vari-
ants like the k-relative neighborhood graphs [13], rect-
angular influence graph [12], sphere of influence graph
[26] and γ-neighborhood graphs [28]. We denote by
δ(p, q) the Euclidean distance between points p and
q.

Definition 2.1 The Delaunay triangulation (DT)
of a d-dimensional point set S is the simplicial decom-
position of the convex hull of S such that the d-sphere

defined by the points of every simplex in the decom-
position contains no point r ∈ S [8].

This decomposition is the dual of the Voronoi dia-
gram and is unique for every set of points [6].

Definition 2.2 The β skeleton of a point set S in
R

d is the set of edges joining β-neighbors.
Points p and q are lune-based β-neighbors for β ≥
1, iff the lune defined by the intersection of the spheres
centered at (1 − β

2 )p + β

2 q and (1 − β

2 )q + β

2 p, each

with radius β
2 δ(p, q), contains no point r ∈ S.

Points p and q are circle-based β-neighbors for
β ≥ 1, iff the lune defined by the union of the two
spheres of radius β

2 δ(p, q) contains no point r ∈ S.
Points p and q are β-neighbors for β < 1, iff the
lune defined by the intersection of the two sphere of
radius β

2 δ(pq) which contain p and q in their boundary
contains no point r ∈ S (for β < 1 the lune-based and
circle-based neighbors are identical).

For β > 1 the lune-based β-skeletons are pla-
nar and monotonic with respect to β: Gβ1

(S) ⊂
Gβ2

(S), for β1 < β2. The Gabriel graph (GG) [9] is
the lune-based 1-skeleton while the relative neighbor-
hood graph (RNG) [24] is the lune-based 2-skeleton.

The circle-based β-skeletons for β > 1, are
not necessarily planar and have a reverse monotonic
relation with respect to β: Gβ1

(S) ⊂ Gβ2
(S), for

β1 > β2.
For β < 1, as β becomes smaller, the β skeleton

tends towards the complete graph.
In a 2-dimensional planar graph with n points,

the number of edges is linear in n: |E| ≤ 3n−6. Any
proximity graph guaranteed to be planar (including
the DT, GG, and RNG) is therefore linear in the size
of the point set. A d-dimensional proximity graph ap-
proaches a complete graph as d → ∞, so the number

of edges in a graph of n points approaches n(n−1)
2 .

2.2 Depth Contours

Depth Contours [27] are nested regions of increasing
depth and serve as a topological map of the data.
The jth depth contour consists of all those points in
space of depth ≥ j. Contours have applications in
visualization and quantification of data sets. Section
6 defines and studies depth contours for the proximity
graph depth measure.

2.3 Modes and Medians

It is often useful to find a single point that approxi-
mates a data set for simplification of calculations and
analysis. In one dimension, this value is easily located
as the central value, the median of the set. With the
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addition of dimensions, though, the goal of finding
a suitable median becomes much more complicated.
See [23, 2] for related surveys.

In depth-based statistics the deepest point (the
median) serves as an estimator for the center of the
data set in any dimension. It is possible for several
points to tie for the deepest depth and then the me-
dian is the group of deepest points2.

Definition 2.3 The median of a point set S under
some depth measure D : S → R is the set of points
M such that ∀p ∈ M , D(p) ≥ D(q) ∀q ∈ S.

The use of a single point or group of points as the
median relies on the assumption of unimodality that
is common in depth measures. If the depth function
reaches maximality at multiple points throughout the
data set, a single median consisting of those points
will be useless as an approximator of the set.

The mode of a point set is the most common value
obtained in a set of observations [29]. We use the
term mode flexibly and refer to a bimodal (or mul-
timodal) distribution or point set as one having two
(or more) local maxima. The multiple maxima can
be created, for example, from two different unimodal
distributions that were combined.

Often clustering algorithms are used to detect the
points associated with each mode of the data set.
This association, however, will not necessarily at-
tribute a data point to the center of the distribution
where it originated. For example, points located be-
tween two centers and far from each could be assigned
to either of the two clusters.

3 Proximity Graph Depth

For any proximity graph we define a depth measure
using each point’s minimum path length along graph
edges to the convex hull of the data set S. To dis-
tinguish between points included in the point set S
and those not, we term members of S as points, while
positions refer to points in space that are not in S.

Definition 3.1 The [proximity graph] depth of a
point p relative to a point set S = {p1 . . . pn} is the
minimum number of edges in the [proximity graph] of
S that must be traversed in order to travel from p to
any point on the convex hull of S.

Definition 3.2 The [proximity graph] depth of
a position x /∈ S relative to a set of points S =
{p1 . . . pn} is the minimum number of edges in the
[proximity graph] of S ∪ x that must be traversed to
travel from x to any point on the convex hull of S∪x.

2In some cases the center of mass of the set of deepest points

is used as a single estimator for the deepest point.

Figure 1: a) The DT of a 100-point data set and b)

breadth-first search tree inward from convex hull vertices

on the same point set.

3.1 Overall Complexity

The depths of all points in a proximity graph can be
determined in linear time in the number of edges in
the graph by using a breadth-first search (BFS) of the
graph, beginning at every point on the convex hull of
S (Figure 1). The depth of a point is its depth in
the BFS tree. Assignment of all depths of a point set
is accomplished by (1) Computation of the proximity
graph; (2) Location of all convex hull points; and (3)
Breadth-first search of the proximity graph.

In two dimensions there are optimal O(n log n)
time algorithms to compute the DT [8], the circle-
based β-skeletons for β ≥ 1, and the lune-based β-
skeleton for 1 ≤ β ≤ 2 [14, 16, 11]. The lune-
based β-skeletons for β > 2 and the β-skeletons for
β < 1 can be computed in optimal O(n2) time [14,
11]. Points on the convex hull can be determined in
O(n log n) time [20], for an overall time requirement
of O(n log n) for the DT and O(n2) or O(n log n) for
the β-skeleton.

In dimensions higher than 2, the DT can be cal-
culated in O(n⌈ d

2
⌉) time [7]. The β-skeletons require

checking n points for interiority on n2 lunes, which
requires a distance calculation for a total of O(dn3)
time. More efficient algorithms for specific graphs
like the GG or RNG or for 3-dimensional space are
known [13]. The set of points on the convex hull of
the set can be found in O(mn) time, where m is the
number of extreme points [19]. Breadth-first search
then requires linear time in the size of the proximity
graph. Clearly, the time complexity in higher dimen-
sions is dominated by the computation of the prox-
imity graph itself. Assignment of all depths, then,
has a total complexity of O(n⌈ d

2
⌉) time for Delau-

nay depth and O(dn3) time for the β-skeleton depths.
The exponential dependence on dimension for calcu-
lating Delaunay depth makes it impractical for use in
high dimensions.
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Figure 2: The 2-skeleton (RNG) for a set of 14 points.

Points p, q are deepest but are also very close to the con-

vex hull.

3.2 Performance Issues with Sparse β-

skeletons

Skeletons with β > 1 are sparse, which makes them
ineffective for use in the proximity graph depth mea-
sures in two dimensions: a point infinitely close to the
convex hull can have an arbitrarily large depth (Fig-
ure 2). The sparsity makes the graphs overly sensitive
to differences in the density of points in S: pockets
of only slightly higher density than surrounding areas
can create regions of high depth that are inconsistent
with the overall shape of the data. Therefore, discus-
sion will now focus on the DT and β-skeletons with
β ≤ 1.

Experimental analysis (see Section 4.4) shows that
although for some β ≤ 1, the β-skeletons do not have
consistent performance and do not capture the struc-
ture of the set well for 2-dimensions, graphs with
β ∈ [.96, .97] exhibit performance very similar to that
of the DT, at greater computational efficiency.

4 Multimodality and Seeds

Data depth is often used to estimate the location of a
given point set, where the median of the set is defined
as the deepest point(s) (Section 2.3). Medians are
not well suited to serve as estimators in multimodal
situations, estimating a set using a simple median can
ignore local maxima that represent multiple modes.
Instead, we define an estimator for the center of a
data set that can cope with multimodal situations.

Definition 4.1 A seed of a point set S under some
depth measure D : S → R is a connected set of points
T ⊂ S such that ∀p, q ∈ T, D(p) = D(q) and ∀r ∈
S, r /∈ T adjacent to some u ∈ T, D(r) < D(u).

Most depth functions are unable to discern or
cope with multimodal data sets. For example, Fig-
ure 3(a) shows the halfspace depth contours for a
bimodal data set. The halfspace median is located
in the region between the two clusters, clearly not
a good estimator for the sets. The proximity graph
seeds are powerful and unique in that they are sensi-
tive to variance in density within a point set and can

correctly locate several centers of the data set. Figure
3(b) shows the DT-depth contours for the same point
set. As can clearly be seen, the DT-depth function
correctly recognizes the two centers.

In the following sections we provide experimental
and theoretical analysis of the concept of seeds. Sec-
tion 4.1 demonstrates quantitatively how the prox-
imity graph depth can discern multimodal data sets
from unimodal sets and seeds can correctly estimate
the centers of the different clusters. Section 4.2 presents
algorithmic analysis of the concept of seeds. Section
4.3 suggests improvements to the concepts and Sec-
tion 4.4 presents experimental results testing the con-
cept on randomly generated data sets with one or two
modes.

4.1 Quantitative Analysis of Proxim-

ity Depth for Unimodal and Mul-

timodal Data Sets

To quantify the ability of the proximity graph seeds
to discern unimodality and bimodality we conducted
an experimental analysis on unimodal and bimodal
sets in two dimensions. Bimodal sets were created
by combining two 200-point normal distribution sets,
each with x and y standard deviations of 10. They
began centered at the same x-coordinate, but were
then separated in increments of 10. The unimodal
sets began with an x-coordinate standard deviation
of 10, which was gradually increased to stretch the
unimodal set in the x-direction. We then plotted the
standard deviation of the x-values of the seeds against
the x-coordinate range of the set. Bimodal sets that
are close behave very similarly to unimodal sets, but
as the bimodal sets pull apart their seeds separate,
illustrating the bimodal behavior (Figure 4). Similar
behavior was observed for each of the proximity graph
depth measures. Our code was written in C++ using
the LEDA library [15].

Points of different clusters are not necessarily dis-
tinguished by the proximity graph depth measures.
Distributions that are too close behave as a single
mode; those separated by large empty regions appear
unimodal as the dearth of points between the clusters
prevents paths from traveling inward quickly from the
convex hull. However, two clusters that are well sepa-
rated are easily distinguished using proximity-depth.

4.2 Seeds Algorithms and Complexity

Finding seeds requires a recursive search to locate
all points associated with the seed and to locate all
points in S that are connected to that seed. The basic
process to compute the seeds is that of comparing the
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(a) (b)

Figure 3: Depth contours for a bimodal point set consisting of two groups of 200 normally distributed points. (a)
Halfspace depth contours. The deepest contour is in the region between the centers of the two sets. (b) Delaunay
depth contours (for clarity only every second contour is drawn). The contours correctly recognize the two centers.

Figure 4: Computation of points of local maximal depth

(seeds) using the DT depth function for unimodal and

bimodal point sets. For every x-value X the unimodal

point set was constructed to have comparable width to

the width of the bimodal point set, whose separation is

X. The standard deviation of the x-values of the seeds

were computed. The results support our assumption, that

in a bimodal point set we expect to find wider gaps be-

tween the seeds and therefore larger standard deviation

compared to unimodal point sets.

depth of point p to the depth of its neighbors in the
proximity graph and checking whether it is deeper or
of the same depth as its neighbors (compare(p)).

One method of computation searches the list of
points to locate those that are deeper or of the same
depth as their neighbor. In this case, every connected
grouping of points must be checked and there can
be O(n) such groupings. The compare(p) process
is called recursively for each point p in a grouping
exactly once and obtains a yes/no answer for that
point before returning. Because compare(p) elimi-
nates points of lower depth than p, it is called at most
n times. Each call iterates through some portion of
p’s adjacency list. Each edge in the graph represents
two entries in adjacency lists, which means that even

if every single point in the adjacency list is accessed
at every call, each edge is considered exactly twice,
producing an algorithm with a running time that is
linear in the size of the proximity graph. The size
of the graph is linear in two dimensions and up to
quadratic in higher dimensions (see Section 3). The
process does not add to the overall complexity, be-
cause construction of the graphs requires at least as
much time.

4.3 Improvements to the Concept of

Seeds

Proximity graph measures can be overly sensitive to
differences in density of points and create more seeds
than desirable. If so, it may be necessary to prune
the set of seeds. For values of β < 1 near 1, is-
sues similar to those in the RNG occur: there can
be points very close to the convex hull that achieve
high depth because of the sparsity at the extremity
of the set (Figure 2b). This means that there can be
local maxima (seeds) at the very edge of the point
set, which is clearly not desirable. Here, we propose
several ways of combating erroneous seeds for a given
β and evaluate them experimentally. Since the num-
ber of seeds is monotonic relative to β (for β < 1),
an alternate method of handling erroneous seeds is to
change the value of β.

4.3.1 Significant Maxima

One way to narrow the definition of a seed is to in-
clude only those seeds that are local maxima, and
whose neighbors would be maxima were the points
of the seed eliminated, i.e. the seed must be a local
maxima by two depths rather than one:

Definition 4.2 A significant seed of a point set
S under some depth measure D : S → R is a seed
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T ⊂ S which for U = {r|r adjacent to T}, U is a
seed of S\T .

Unfortunately, it is possible to have two seeds at
the center of a mode which are separated by only one
point. They form double peak in the depth, rather
than a single, but if the double peaks are even and
separated by two proximity graph edges, neither of
them registers as a significant seed and that mode
would be eliminated from notice. A simple check fixes
this problem.

If there is a target or limit for the number of seeds,
it is possible to modify the definition to require larger
and larger peaks. For example, one could require that
the removal of both the seed and the second depth
leave the third deepest group as a seed. This process
could be expanded to achieve the desired number of
seeds, which are called the most significant seeds.

4.3.2 Convex-Hull Path Origins

Another way of assessing the validity of a seed is to
find the number of convex hull breadth-first search
roots that could have initiated paths to that seed. If
many points could have created the path that labeled
a point, the seed is relatively central compared to a
seed for which there were only one or two path origins.

Definition 4.3 The CH-value of a seed T is the
number of convex hull vertices that can be reached by
a path originating at T for which the depths of points
visited along the path is strictly decreasing.

Seeds can be assigned a CH-value by beginning
at a seed and breadth-first searching outward, under
the condition that every edge traversed must decrease
in depth by one. The number of convex hull points
reached in this manner is the CH-value. Once each
seed is assigned its CH-value, it is possible to weed
out weak seeds by, for example, using only those with
CH-value great than 2 and over half of the maxi-
mum: these seeds are called CH-point seeds.

Limiting seeds to those having CH-value greater
than 2 is desirable because the bad case of seeds near
the convex hull (Figure 2) contains seeds with paths
to only two convex-hull points.

4.4 Experimental Analysis of β-skeletons

and Seeds Location Schemes

In order to study different β-skeletons and how their
performance compares with the DT, we generated 300
normally distributed point sets with 400 points each
and calculated the average number of seeds produced.
The code was written in C++, using the LEDA li-
brary [15]. We used only seeds with CH value that

is at least half of the maximal value, and then plot-
ted the average number of seeds against the average
deepest depth attained by the point set (Figure 5).
The locations of the points indicate that the values
β = .962 and β = .970 best approximate the per-
formance of Delaunay Depth for these two character-
istics. The weakness of the GG (1-skeleton) is also
very visible here, as it finds many more seeds in a
unimodal data set than the other graphs.

We then used the same point sets to compare dif-
ferent methods of seed determination. Four types of
graphs were generated: the DT, the GG and the .962-
skeleton and .970-skeleton. For each graph, three
seed computing schemes were used (simple seeds, sig-
nificant seeds and CH-point seeds). Since the sets are
unimodal, a low number of seeds is desirable.

The DT demonstrated the best performance, but
the .962-skeleton and .970-skeleton graphs performed
well. The GG method reports more seeds than are de-
sirable (average of 11, compared to < 6 for the other
graphs). It is much more sparse than the DT, so is
more sensitive to changes in density of points, which
in turn creates local maxima that do not necessarily
lie in separate modes of the set.

Each proximity graph depth measure reports dra-
matically fewer significant seeds and/or CH-point seeds.

Figure 5: Performance comparison of proximity-depth

schemes for 300 normally distributed unimodal point sets

with 400 points. A low average number of seeds and a high

average number of deepest depth values is desirable. The

.962-skeleton and .970-skeleton perform most similarly to

the DT The weakness of the GG (1-skeleton) is also very

visible here, as it finds many more seeds than the other

graphs.
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Average Number of Seeds over 300 Runs
Graph Seeds Significant CH-point

Seeds Seeds
Gabriel 11.00 2.20 1.79

Delaunay 2.80 1.00 1.25
.962-skeleton 4.70 1.25 1.38
.970-skeleton 5.12 1.27 1.43

Table 1: A comparison of seed location schemes in 400

point 2-dimensional point sets following a normal distri-

bution. Sets are unimodal, so a low number of seeds is

desirable. The DT demonstrated the best performance

5 Features of Proximity Graph

Depth

5.1 Depth limits

Given a set S of n points with n ≥ 3, the maximum
Tukey depth of any point or position must lie between
⌊n

3 ⌋ and ⌊n
2 ⌋. The span of maximum depths for prox-

imity graph depth is far broader. If all points of S lie
on its convex hull, the highest proximity-depth of a
point p ∈ S is 0. The depth of any position inside the
convex hull has depth 1. Thus, the minimum deepest
depth attained is 1.

On the other hand, if the points in S can be placed
arbitrarily, the maximal depth of a position in the DT
is ⌈n+1

3 ⌉ − 1: an arrangement of equilateral triangles
radiating outward, each with the same center point
and same orientation will create a set in which each
depth contour is a triangle and each depth is attained
by only three points.

The maximal β-skeleton depth can be even higher.
For example, it is possible to construct a point set
such that the GG (1-skeleton) consists of a convex
k-gon and a path consisting of an arbitrary number
of vertices within the convex k-gon. The point at the
end of the path has depth n − k − 1, which can be
n − 4.

Thus, the deepest position relative to any set S
with |S| > 2 will have depth i such that 1 ≤ i ≤
⌈n+1

3 ⌉ − 1 in the DT depth and as much as n − 4 in
the β-skeleton depth.

5.2 Robustness

Outliers are observations that deviate from the main
part of the data and can have an undesirable influ-
ence on its analysis. Robustness, the consistency in
performance of a statistical measure in the presence
of outliers, is defined by its breakdown value [4]:

Definition 5.1 The breakdown value of an esti-
mator R of the data set S is the smallest fraction of
contamination points that must be added to S to shift

the estimator arbitrarily far:
ǫ∗(R, Sn) = min m

n+m
such that

supSn+m
‖R(Sn+m) − R(Sn)‖ = ∞

where Sn+m is a contaminated data set obtained by
adding m arbitrary points.

The breakdown value indicates the imperturba-
bility of an approximator: how stable it is in the
presence of outliers. A one-dimensional median, for
example, requires the addition of n points to move
it outside the original set, for a breakdown value of
1
2 . A breakdown value of 1

2 is in fact maximal for
any statistical estimator [4], and has been achieved
by depth measures including Tukey depth [27].

The proximity-graph-based median can be cor-
rupted through the construction of an erroneous clus-
ter that attains depth greater than the true median:
by strategically placing points at infinity such that
the maximal depth of the cluster increases with the
addition of every three points, it is possible to build
a cluster of points with maximal depth i with only
3i + 1 additional points (see also Section 5.1). The
breakdown value of a set with i depth values, then,
requires the formation of a set of depth i+1 at infin-
ity, which requires 3(i + 1) + 1 = 3i + 4 points.

Since the maximal depth of a set can range from
1 to ⌈n+1

3 ⌉ − 1 (for DT) or n − 4 (for β-skeleton),
the breakdown value also has a wide range, depen-
dent on the maximal depth of the set. A shallow
point set (one with median of low depth) will have a
low breakdown value, whereas a deeper point set will
have a relatively high breakdown value. The lowest
possible number of contamination points needed for
breakdown occurs in the case of maximal point depth
of 0. This case will require 3(0) + 4 = 4, which is a
breakdown value of 4

n+4 .
The lower bound is quite small, as analysis on a

set of any size could be made invalid by the inclusion
of only four outliers. In the best case, however, there
are a maximum number of depths and the number of
contamination values added is linear with the num-
ber of points. For example, for the DT the number
of contamination values added is:

3(⌈n+1
3 ⌉ − 1) + 4 = ⌈n + 1⌉ + 1 = n + 2

for a breakdown value of n+2
n+(n−1) = n+2

2n+2 . For very

large sets, in the best case the breakdown value ap-
proaches 1

2 : limn→∞
n+2
2n+2 = 1

2 . The upper bound is
therefore maximal.

6 Depth Contours

Depth Contours, as described in Section 2.2 are re-
gions of increasing depth that provide a topological
map of the data. We provide an effective method of
defining depth contours for the DT depth function

7



Figure 6: ((a) Delaunay contours and (b) simplified De-

launay contours for a set of 25 points. In the Delaunay

contours position X is a vertex of the Delaunay depth

contours but not a point of the set S. In the simplified

contours all vertices are points in S.

(Section 6.1) and lune-based β-skeleton depth func-
tions (Section 6.3).

6.1 Delaunay Contours

The depth of a position in the DT measure is defined
by its depth upon its hypothetical addition to the
set. Each triangle in the DT corresponds to an empty
circle defined by the three points of the triangle. A
point p added to a triangulated set will be connected
to all defining points of the circles which contain p. In
order for position x to be of depth ≥ j, it cannot be
in any Delaunay circle with a defining point of depth
< j − 1. Therefore the borders of the contours of a
point set, those places where the depth of positions
change, are defined by arcs of the Delaunay circles
(Figure 6a).

Definition 6.1 The jth Delaunay depth contour
of point set S is the area inside the convex hull of S
which is not inside any Delaunay circle with a defin-
ing point of depth < j − 1.

The contours are nested pseudo-polygons, with edges
that are arcs rather than straight segments.

A point of the set S need not lie on the bound-
ary of a contour. Points that define boundaries may
lie between the Delaunay boundaries rather than on
them (see Figure 6a). In a multimodal set, some of
the contours may not be continuous; each local max-
imum can have its own section of the jth contour.

For more properties of Delaunay depth contours
in the plane, see Abellanas et al. [1].

6.2 Simplified Delaunay Contours

It is possible to simplify the boundaries of the Delau-
nay contours by changing the definition of the con-
tours so that they are defined by straight lines rather
than by arcs (Figure 6b).

Definition 6.2 The jth Delaunay simplified con-
tour of point set S is the area inside the convex hull
of S which is not inside any Delaunay triangle with
a defining point of depth < j − 1.

This definition creates a new classification system
for the depth of positions. Segments on the bound-
aries correspond to an arc between the same two end-
points in the detailed boundaries, so the simplifica-
tion maintains the general structure of the contours.

Positions affected by the slight change are those
that lie between the Delaunay edge used in the sim-
plification and the corresponding arc in the general
contour boundary. The arc is more central to the
data set, so positions can have a deeper depth in the
simplification than in the original contours.

The simplified contours are not always convex,
but are simple polygons or groups of simple poly-
gons. Every point on a boundary has outward visi-
bility to the next boundary; no part of the polygon
obstructs its view to the contour of next lower depth.
This characteristic is inherent in the definition of the
depth measure, as every point must have a proximity
graph edge to a point of lower depth.

The simplified contours have the useful character-
istic that all vertices of the boundaries of the contours
are points in S. This is not the case for the version
using arcs, because the arcs can intersect at positions
that are not part of the point set (Figure 6a).

6.3 β-skeleton Depth

In order to define contours for lune-based β-skeleton
depth, it is necessary to refer to the angle of the arcs
of the defining lune.

Definition 6.3 The arc angle, θβ of a β-skeleton
is the angle of the arcs forming the lunes that define
the graph.

A segment p1p2 in the β-skeleton of set S with
p1, p2 ∈ S is defined by an empty lune (Section 2). A
position p added to S connects to those points q ∈ S
for which the lune defined by p and q is empty.

Lemma 6.4 Given points p, q, r ∈ S, r is interior
to lune(p, q) with arc ∠θβ iff angle prq > π −

θβ

2
(Figure 7a).

Proof 6.5 Assume point r is on the boundary of the
lune, then w.l.o.g. it is on the boundary of the circle
centered at c. Let c be the center of one of the circles
defining the lune(p, q), that passes through point r.
Points p, q are on the boundary of the circle. Then
if ∠pcq = θβ, ∠cpq and ∠cqp are each

π−θβ

2 . Now,
let ∠qpr = α and ∠pcr = φ. Then, because segments

8



Figure 7: Proof of Lemma 6.4. a) ∠prq = π −

pcq

2
. b)

The boundary dividing points that can connect to a in

the β-skeleton graph from those for which b is in the way.

Figure 8: The region of influence in the 1-skeleton

(Gabriel Graph) for point q. Point t, though not con-

nected to q in the GG, participates in defining the region

of influence of q.

pc and rc are radii and thus the same length, ∠cpr =
∠crp = π−φ

2 . But ∠cpr = α+ π−θk

2 so α =
θβ−φ

2 . By
the same argument using triangle rcq, angle ∠pqr =
γ = φ

2 . So:

∠prq = π − α − γ = π −
θβ−φ

2 − φ

2 = π −
θβ

2
Since a point r on the boundary of the lune will have
∠prq = π−

θβ

2 , any point s with ∠psq > ∠prq will be
interior to the lune.

Lemma 6.4 indicates that in order for p to connect
to q ∈ S, the angle formed by every other point r ∈ S
with p and q must be less than π −

θβ

2 .
For every q ∈ S there is an associated convex

region containing exactly those positions which, if
added to S, would be connected to q.

Definition 6.6 The β-skeleton region of influ-
ence of a point q ∈ S is the set of all positions x
inside the convex hull of S that are connected to q in
the β-skeleton of S∪x and all points p ∈ S connected
to q in the β-skeleton of S.

A point can affect the region of influence of q with-
out being connected to q in the graph. In Figure 8a,
for example, point t is not connected to point q in the
GG, but nevertheless affects its region of influence.

Definition 6.7 The jth β-skeleton depth contour
of point set S is the area inside the convex hull of S
which is not in the β-skeleton region of influence of
any point of depth < j − 1.

Figure 9: β-skeleton contours for a) β = 1 and b) β

slightly less than 1.

These contours behave similarly to those of the
DT, except that no simplification is necessary. Un-
like the Delaunay simplified contours, however, the
vertices on the boundaries of the contours need not
be points in S (Figure 9).

7 Conclusions and Future Work

We proposed and evaluated depth measures based on
path length in proximity graphs. We showed that β-
skeleton depths can achieve comparable performance
to DT depth in detecting the possibility of multiple
underlying distributions, but can be computed far
more efficiently than DT depth in high dimensions.

The work presented just begins to tap the poten-
tial of the use of proximity graphs as depth functions.
Next steps include the study of additional proximity
graphs and experimental analysis in higher dimen-
sions. Additional effort will focus on possible uses of
these measures for preprocessing or improving clus-
tering algorithms.

Experimental analysis of the proximity graph abil-
ities to discern unimodal and multimodal data sets
(as described in Section 4.1) is already underway for
dimensions greater then 2. In R

2 the optimal β value
to distinguish a bimodal from a unimodal distribu-
tion was empirically computed to lie between .96 and
.97. We plan to determine how the optimal vales of β
in other dimensions compare and the effect of using
other models of distribution.

Acknowledgement: The authors would like to
thank G. Toussaint for introducing us to the concept
of Delaunay depth and initiating this work and to
thank F. Hurtado for a fruitful discussion.

References

[1] M. Abellanas, M. Claverol, and F. Hurtado. Point
set stratification and delaunay depth, 2005. ACM
Computing Research Repository, cs.CG/0505017.

[2] G. Aloupis. Geometric measures of data depth.
DIMACS Series in Disc. Math. and Theoretical

Comp. Sci., 2005. Submitted for publication.

9



[3] V. Barnett. The ordering of multivariate data. J.

Roy. Statist. Soc. Ser. A, 139(3):318–355, 1976.

[4] D. L. Donoho and M. Gasko. Breakdown properties
of location estimates based on halfspace depth and
projected outlyingness. The Annals of Statistics,
20(4):1803–1827, 1992.

[5] W. Eddy. Convex hull peeling. In H. Caussinus,
editor, COMPSTAT, pages 42–47. Physica-Verlag,
Wien, 1982.

[6] H. Edelsbrunner. Algorithms in Computational
Geometry. Springer-Verlag, 1978.

[7] H. Edelsbrunner and R. Seidel. Voronoi diagrams
and arrangements. Discrete and Computational

Geometry, 1:25–44, 1986.

[8] S. Fortune. Voronoi diagrams and Delaunay
triangulations. In Handbook of discrete and

computational geometry, CRC Press Ser. Discrete
Math. Appl., pages 377–388. CRC Press, Inc., Boca
Raton, FL, USA, 1997.

[9] K. Gabriel and R. Sokal. A new statistical
approach to geographic variation analysis.
Systematic Zoology, 18:259–278, 1969.

[10] P. J. Green and R. Sibson. Computing dirichlet
tessellations in the plane. The Computer Journal,
21(2):168–173, 1978.

[11] F. Hurtado, G. Liotta, and H. Meijer. Optimal and
suboptimal robust algorithms for proximity graphs.
Comput. Geom., 25(1-2):35–49, 2003. Special issue
on the European Workshop on Computational
Geometry—CG01 (Berlin).

[12] M. Ichino and J. Sklansky. The relative
neighborhood graph for mixed feature variables.
Pattern Recognition, 18(2):161–167, 1985.

[13] J. W. Jaromczyk and G. T. Toussaint. Relative
neighborhood graphs and their relatives. Proc.

IEEE, 80(9):1502–1517, sep 1992.

[14] D. G. Kirkpatrick and J. D. Radke. A framework
for computational morphology. In G. Toussaint,
editor, Computational geometry, pages 217–248.
North-Holland, 1985.

[15] LEDA. Library of efficient data structures and
algorithms. www.ag2.mpi-sb.mpg.de/LEDA.

[16] A. Lingas. A linear-time construction of the relative
neighborhood graph from the Delaunay
triangulation. Comput. Geom., 4(4):199–208, 1994.

[17] R. Liu, J. Parelius, and K. Singh. Multivariate
analysis by data depth: descriptive statistics,
graphics and inference. The Annals of Statistics,
27:783–858, 1999.

[18] K. Miller, S. Ramaswami, P. Rousseeuw,
T. Sellarés, D. Souvaine, I. Streinu, and A. Struyf.
Efficient computation of location depth contours by
methods of combinatorial geometry. Statistics and

Computing, 13(2):153–162, 2003.

[19] T. Ottmann, S. Schuierer, and S. Soundaralakshmi.
Enumerating extreme points in higher dimensions.
In Symposium on Theoretical Aspects of Computer

Science, pages 562–570, 1995.

[20] F. Preparata and S. Hong. Convex hulls of finite
sets of points in two and three dimensions.
Commun. ACM, 20(2):87–93, 1977.

[21] P. J. Rousseeuw. Introduction to
positive-breakdown methods. In J. E. Goodman
and J. O’Rourke, editors, Handbook of discrete and

computational geometry, Discrete Mathematics and
its Applications (Boca Raton), pages xviii+1539.
Chapman & Hall/CRC, Boca Raton, FL, second
edition, 2004.

[22] P. J. Rousseeuw and A. Struyf. Computing location
depth and regression depth in higher dimensions.
Statistics and Computing, 8:193–203, 1998.

[23] C. G. Small. A survey of multidimensional medians.
Internat. Statistical Review, 58:263–277, 1990.

[24] G. Toussaint. The relative neighborhood graph of a
finite planar set. Pattern Recognition, 12:261–268,
1980.

[25] G. T. Toussaint. Pattern recognition and
geometrical complexity. In Proc. Fifth International
Conference on Pattern Recognition, pages
1324–1347, 1980.

[26] G. T. Toussaint. A graph theoretical primal sketch.
In G. T. Toussaint, editor, Computational

morphology, pages 229–260. North-Holland, 1988.

[27] J. Tukey. Mathematics and the picturing of data.
In Proceedings of the International Congress of

Mathematics, pages 523–531, 1974.

[28] R. C. Veltkamp. The γ-neighborhood graph.
Comput. Geom., 1(4):227–246, 1992.

[29] E. W. Weisstein. Mode. From MathWorld,
http://mathworld.wolfram.com/Mode.html.

[30] Y. Zuo and R. Serfling. General notions of
statistical depth function. The Annals of Statistics,
28(2):461–482, 2000.

10


