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Abstract

The problem of combining the ranked preferences of many

experts is an old and surprisingly deep problem that has

gained renewed importance in many machine learning, data

mining, and information retrieval applications. Effective

rank aggregation becomes difficult in real-world situations

in which the rankings are noisy, incomplete, or even disjoint.

We address these difficulties by extending several standard

methods of rank aggregation to consider similarity between

items in the various ranked lists, in addition to their

rankings. The intuition is that similar items should receive

similar rankings, given an appropriate measure of similarity

for the domain of interest. In this paper, we propose

several algorithms for merging ranked lists of items with

defined similarity. We establish evaluation criteria for these

algorithms by extending previous definitions of distance

between ranked lists to include the role of similarity between

items. Finally, we test these new methods on both synthetic

and real-world data, including data from an application in

keywords expansion for sponsored search advertisers. Our

results show that incorporating similarity knowledge within

rank aggregation can significantly improve the performance

of several standard rank aggregation methods, especially

when used with noisy, incomplete, or disjoint rankings.

1 Introduction.

Rank aggregation, the problem of combining the ranked
preferences of many experts, has been studied for several
centuries and was first driven by the need to design fair
elections. This study revealed a number of surprising
complexities, including the so-called Condorcet paradox
that a candidate who wins every pairwise majority
contests is not guaranteed to be the winner of many
intuitive election systems [15]. More recently, it was
shown that producing an optimal aggregation of even
four ranked lists is NP-hard under certain reasonable
assumptions [3].

Rank aggregation is an extremely useful tool for
modern data mining, especially for handling noisy data.

∗Work performed at Yahoo!, Inc., in Spring of 2006.

Rank aggregation can be thought of as the unsupervised
analog to regression, in which the goal is to find an
aggregate ranking that minimizes the distance to each
of the ranked lists in the input set. Rank aggregation
has also been proposed as an effective method for
nearest-neighbor ranking of categorical data [4], and
gives a robust approach to the problem of combining
the opinions of experts with different scoring schemes,
as are common in ensemble methods.

In real world problems, it is often the case that
the various experts provide noisy, incomplete rankings.
Data mining on information drawn from the Internet
is fraught with noise from inconsistent user behavior,
malicious “bots”, or mistaken user identification. In-
complete rankings may come in two forms. In top-k
lists, the experts may each provide rankings for only
the k best items (such as a ranked list of “Top Ten
Movies of All Time”). In partial lists, the experts may
provide complete rankings over a limited subset of the
possible items, due to incomplete knowledge of the item
universe (for example, a ranked list of “Movies I’ve Seen
This Month.”) Both types of incomplete rankings are
common in many real world applications, and each re-
quires different assumptions on the part of the rank ag-
gregation method chosen. Indeed, our work in this area
was initially motivated by the need to aggregate ranked
lists of keywords for the problem of keywords expansion
in sponsored search. As described in the experimental
section of this paper, we found that the ranked lists of
keywords from many sources were noisy and incomplete,
reducing the effectiveness of standard rank aggregation
methods.

In this paper, we address the problem of aggregat-
ing noisy, incomplete ranked lists through the addition
of similarity information. The intuition driving this ap-
proach is that similar items should be ranked similarly,
given an appropriate similarity measure for the data.
Thus, similarity can be used to help combat noisy rank-
ings, increase the effectiveness of comparisons between
incomplete rankings, and enable rank aggregation of
even disjoint lists.



As a motiving example, consider the following toy
problem, consisting of ranked lists from two experts:

Expert 1: A, B, C
Expert 2: C’, D, E

In these lists, the items C and C’ are highly similar,
but are not exact matches for one another. However,
if we cannot consider similarity, then the two lists are
completely disjoint. If we have no a priori reason to
prefer the opinions of one expert over another, then
standard methods of rank aggregation will interleave
the rankings in one of the following ways:

Aggregation 1: A, C’, B, D, C, E
Aggregation 2: C’, A, D, B, E, C

The first of these aggregations is unsatisfactory, as
highly similar items C and C’ are given divergent rank-
ings. In the second example the similar items are given
the most divergent rankings possible. However, both
the Spearman footrule distance and the Kendall tau
distance (two standard methods of measuring distance
between ranked lists) will judge both Aggregation 1 and
Aggregation 2 to be optimal rankings. Thus, if we are
to capitalize on similarity in rank aggregation, we need
both new aggregation methods and new evaluation mea-
sures.

Accordingly, the methods that we propose in this
paper capitalize on the additional information provided
by a defined similarity measure. Consider the following
alternative, based on rank aggregation with similarity:

Aggregation 3: A, B, C’, C, D, E

Aggregation 3 agrees with our intuition that C’ should
be ranked behind both A and B, while C should be
ranked ahead of both D and E. The evaluation methods
that we propose in this paper will prefer this third
aggregation to either of the previous two.

Contributions. In this paper, we extend previous
methods of rank aggregation to capitalize on the benefit
of similarity information between ranked items. The
rank aggregation methods we extend include Borda’s
method [15], several Markov Chain methods [3], and
the median rank aggregation method [4], each of which
may be best suited to different applications. We also
extend previous definitions of distance between ranked
lists, which enable the evaluation of the effectiveness of
these methods. The methods are evaluated empirically
on both synthetic and real-world data.

2 Definitions

Before moving further, we formalize the notions of
rankings and similarity.

2.1 Ranked lists. We start with a universe U of
items, each with a unique identifier i ∈ U . A ranked
list r of items i1 . . . in drawn from a universe U of items
is an ordered subset S ⊆ U with each i ∈ S, such that
r = [i1 ≥ i2 ≥ . . . ≥ in]. (Here, we draw heavily
on the notation of of [3].) For each item i ∈ S, r(i)
shows the ranking of item i in the ranked list r. Note
that the optimal ranking of any item is 1, rankings are
always positive, and higher rank shows lower preference
in the list. (We will use the terms list and ranked list
interchangeably.) The number of items in r is given by
|r|, and we assume that the items in U are each assigned
a unique identifier. We refer to the set of items in r by
Sr, although we will occasionally refer to items in a list
r with the shorthand notation i ∈ r, which should be
clear by context. Finally, we define the notation rn to
refer to the item i in r such that r(i) = n.

There are several special cases of ranked lists to
consider. A complete ranking is a list r that contains
a ranking for every item i ∈ U . A partial ranking is a
list r that contains rankings for only a subset of items
S ⊂ U . A Top-k list is a list r with |r| = k, and all
other items i /∈ r are assumed to be ranked below every
item in r by the given expert [5].

A projection operator is used in computing dis-
tances between partial and complete rankings [3]. When
T is a subset of U , and r is a (possibly partial) ranking
of items Sr ⊆ U , then the projection r|T contains only
items S ∩ T while keeping the relative orderings from r
invariant. The notation r|r2

denotes the projection of r
onto the set of objects in Sr2 .

2.2 Similarity functions. A pairwise similarity
function s(·, ·) between items in U must satisfy the
following requirements. First, the function must be
non-negative for all pairwise comparisons: ∀i, j ∈ U :
s(i, j) ≥ 0. Second, the function must be symmetric:
∀i, j ∈ U : s(i, j) = s(j, i). Third, the similarity be-
tween and item and itself must be greater than zero:
∀i ∈ U : s(i, i) > 0. Finally, the maximum similar-
ity between an item and any other item may not be
greater than the similarity between the item and itself:
∀i, j ∈ U : s(i, i) ≥ s(i, j). It will often be the case
that a normalized similarity function is useful. In these
cases, ∀i ∈ U : s(i, i) = 1. One method of normalizing

similarity functions is: snorm(i, j) = s(i,j)√
s(i,i)s(j,j)

.

These similarity requirements are flexible, allowing
the use of a wide range of similarity functions over vari-



ety of data types. These include similarity measures on
vectors, strings, documents, trees. Other valid similar-
ity measures include the vast array of positive definite
kernels from the literature on pattern recognition and
support vector machines [13] [14]. Formal distance met-
rics of the form d(·, ·) defined in a metric space, such as
Euclidean distance, may be transformed into similarity
measures through a variety of methods, including the

Gaussian kernel s(i, j) = e
−d(i,j)

σ2 [14].
For convenience, we define a special similarity mea-

sure called the uniqueness function, s0(·, ·):

∀i, j ∈ U : s0(i, j) =

{

0 if i 6= j
1 if i = j

The uniqueness function (a form of Dirac’s delta func-
tion) describes the case where every item in U is con-
sidered to be completely distinct from all other items in
U . We will use this function to show that standard rank
aggregation methods are special cases of our extended
aggregation methods using similarity.

Our distance measures between partial ranked lists
using similarity information will require a lambda-
similarity projection. This projection is defined from
a list r of items S ⊆ U onto a set T ⊆ U , and uses a
given similarity function s(·, ·). The projection yields
a new list rλ|T that contains a rank-invariant ordering
of all the items j ∈ T for which there exists an item
i ∈ S such that s(i, j) > λ. Here, λ represents a
minimum similarity threshold that i and j must meet
for the similarity to be considered meaningful. (In our
experiments, we will use λ = 0.) A possible variant is
to include only the d most similar items j ∈ T for each
item i ∈ S, which may provide increased computational
efficiency when used in conjunction with data structures
for fast nearest neighbor retrieval [10].

3 Measuring Disagreement Among Rankings

On an informal level, we desire that any method of
rank aggregation should seek to produce an aggregate
ranking with minimal total disagreement among the
input lists. In this section, we will extend two previous
measures of disagreement between ranked lists, namely
the Spearman footrule distance and the Kendall-Tau
distance, to include the case where we have a meaningful
similarity measure between items in the lists. This will
serve to define formally the problem of rank aggregation
with similarity, by establishing a success measure for our
methods of merging ranked lists of similar items. Note,
however, that not all of these distances will be metric –
most notably in the case of partial lists.

3.1 Standard Distance Measures Here, we re-
view two standard distance measures on ranked lists,
the Spearman Footrule Distance and the Kendall Tau
distance. We also recall their variants for partial lists,
and for groups of lists.

Spearman Footrule Distance. The Spearman
Footrule Distance measures the distance between two
ranked lists by summing the differences in the rankings
of each item. That is, given two complete rankings r1

and r2, F (r1, r2) =
∑

i∈U |r1(i) − r2(i)| [2].
The scaled footrule distance is normalized to the

range [0, 1] by dividing by an upper bound on the
distance between the complete rankings: Fs(r1, r2) =
2F (r1, r2)/|U |2. The scaled distance is useful for com-
paring the effectiveness of rankings across lists of differ-
ent sizes [3].

In this paper, we will often need to assess the total
distance between an aggregate ranking σ and a set
R of k expert rankings R = {r1 . . . rk}. When each
of the experts produces a complete ranking, then the
total distance is defined by: F (σ, R) = 1

k

∑k

j=1 F (σ, rj).
When the set R contains partial rankings, then define
U as the union of all items in the lists in R, and if σ
is a complete ranking on U then the induced footrule
distance is computed via projections of σ onto the
various lists in R: F (σ, R) = 1

k

∑k

j=1 F (σ|rj
, rj) [3].

Kendall Tau Distance. The Kendall tau distance
between two ranked lists is defined as the number of
pairwise disagreements in the relative rankings of items
in the two lists. That is, K(r1, r2) = |{i, j} s.t. r1(i) <
r1(j) and r2(i) > r2(j)| [7]. (This is equivalent to the
number of swaps that bubble sort must make to trans-
form r1 to r2 [3].) As above, the Kendall tau distance
may be scaled by the maximum possible disagreement,

which is in this case

(

|U |
2

)

. Furthermore, an induced

Kendall tau distance may be calculated in the same fash-
ion as the induced footrule distance, which allows the
computation of the total distance between an aggregate
ranking σ and a set of k expert rankings R. In this
case, let U be the union of all items in all the lists of
R, ensure σ is a complete ranking on U , and compute
Kind(σ, R) = 1

k

∑k

j=1 K(σ|rj
, rj) [3].

3.2 Distance Measures with Similarity These
previous methods of measuring distances between
ranked lists have a drawback for measuring distance be-
tween ranked lists of similar items when those lists are
incomplete, as in the case of partial, top-k, or disjoint
rankings. The drawback is that these methods ignore
the rankings of items that do not appear in both lists.
This makes sense when we do not have similarity infor-



mation – ignoring disjoint items may be the best solu-
tion. However, when we do have meaningful similarity
information for ranked items, ignoring the effect of sim-
ilar (but not identical) ranked items may cause us to
inappropriately prefer one aggregation over another, or
to be unable to distinguish between two aggregations.
An example of these problems was shown in the intro-
duction. To address these issues, we extend the stan-
dard distance measures to take similarity information
into account.

Footrule Similarity Distance. We now define
an extension of the Spearman footrule distance by
including the effect of a similarity function defined on
items in U . Note that we define this measure in terms
of a generic similarity function. In practice, the choice
of a particular similarity measure for domain is of great
importance, and the development of similarity measures
is an active area in the data mining and pattern
recognition communities. Here, we take the similarity
measure as given, and assume that the similarity scores
returned are meaningful within the given domain.

Definition 3.1. The footrule similarity distance be-
tween two (possibly partial) ranked lists σ and r, given
a similarity function s(·, ·), is defined as:

Fsim(σ, r, s(·, ·)) =
∑

i∈σλ|r

∑

j∈rλ|σ

s(i, j)|σλ|r(i) − rλ|σ(j)|

That is, the footrule similarity distance is calculated on
similarity projections of σ and r. The difference in
ranks for items in these resulting lists is weighted by
the strength of the similarity.

Definition 3.2. The scaled footrule similarity dis-
tance is defined as:

FsimScale(σ, r, s(·, ·)) =
2Fsim(σ, r, s(·, ·))

|U |2 ∑

i∈σλ|r

∑

j∈rλ|σ
s(i, j)

In this case, U is union of the items in σλ|r and rλ|σ,

and the term |U|2

2

∑

i∈σλ|r

∑

j∈σλ|σ
s(i, j) is an upper

bound on the maximum disagreement between the two
lists.

Definition 3.3. The induced footrule similarity dis-
tance on a list σ and set of lists r ∈ R is defined as:

F (σ, R, s(·, ·)) =
1

|R|
∑

r∈R

Fsim(σ, r, s(·, ·));

A scaled induced footrule similarity distance is similarly
defined, by substituting FsimScale for Fsim.

Let’s examine a few characteristics of these dis-
tances. First, when the uniqueness function s0(·, ·)
is used as the similarity function, Fsim(σ, r, s0(·, ·)) =
F (σ, r) and FsimScale(σ, r, s0(·, ·)) = Fs(σ, r). That is,
the original Spearman footrule distance can be viewed
as special cases of these generalized distances incor-
porating the role of similarity. (However, the scaled
footrule is not a special case of the scaled footrule sim-
ilarity distance, due to differences in the denominator.)

Second, it is important to note that these measures
are not metric in the formal sense. In particular, they
may fail the identity requirement of formal metrics, as
it is possible to have Fsim(r, r, s(·, ·)) 6= 0 for particular
choices of r, and s(·, ·). For example, consider the list:

r: A, B, C, A’

Here, the items A and A’ have positive similarity under
the given similarity measure. In this case, the footrule
similarity distance from r to itself will be greater than
zero, due to the disagreement in the rankings between
the similar items A and A’. This is an important point:
the similarity function is detecting an inconsistency in
the expert’s ranking. After all, if the similarity function
is well chosen for a given domain, then similar items
should have similar rankings. The footrule similarity
distance decreases as the inconsistency is reduced.

Third, computing the footrule similarity distance is
more expensive than the linear-time Spearman footrule
distance. The footrule similarity measure between
two lists r1 and r2 requires O(|r1||r2|) evaluations of
the similarity function. Thus, there is a premium on
selecting similarity functions that are both informative
and efficient.

Kendall Tau Similarity Distance. We now ex-
tend the Kendall tau distance to include item similarity.
As before, we will require the specification of a similar-
ity measure s(·, ·) on the items in U . Note that the
Kendall tau distance examines the number of pairwise
re-orderings between the two lists. Extending this mea-
sure raises the possible case that two items i and j in
list r1 may have many similar items i′1..i

′
n and j′1..j

′
m in

r2, and these similar items may be ordered in arbitrarily
complex ways. Thus, we first define an aggregate simi-
larity position function, g(·, ·, ·) and an aggregate simi-
larity list rg which will help resolve these complexities.

Definition 3.4. The aggregate similarity position of
item i with respect to list r, under similarity function
s(·, ·), is defined as

g(i, r, s(·, ·)) =

∑

j∈r s(i, j)r(j)
∑

j∈r s(i, j)



An aggregate similarity list rg is composed from lists r1,
r2, and similarity function s(·, ·), such that for every
element i ∈ r1, rg(i) = g(i, r2, s(·, ·)) when g(i, r2, s(·, ·))
is defined. When g(i, r2, s(·, ·)) is not defined, i is not
in rg. (Furthermore, note that rank values in rg are not
necessarily integers.) Such a list rg is returned from the
function rg(r1, r2, s(·, ·)).

Definition 3.5. The Kendall tau similarity distance
between two (possibly partial) ranked lists r1 and r2 on
items in U , given a pairwise similarity function s(·, ·)
on items in U , is defined as

Ksim(r1, r2, s(·, ·)) =
1
2{K(r1, rg(r1, r2, s(·, ·))) + K(r2, rg(r2, r1, s(·, ·)))}

Thus, Ksim(r1, r2) is the average Kendall tau distance
between r1 and its aggregate similarity list drawn from
r2, and the Kendall tau distance between r2 and its
aggregate similarity list drawn from r1.

As with the Footrule similarity distance, the origi-
nal Kendall tau distance is recovered from the Kendall
tau similarity distance by using the uniqueness function
s0(·, ·). Induced and scaled versions of the Kendall tau
similarity distance are defined in similar terms. Note
that scaled Kendall tau is not directly recoverable from
the scaled Kendall tau similarity distance using s0(·, ·).

Definition 3.6. The induced Kendall tau similarity
distance is computed in the same way as the Kendall
tau similarity distance, with Ki(·, ·) replacing K(·, ·).

Similarly, the scaled Kendall tau similarity distance
is computed with K(·, ·) replacing Ks(·, ·).

Unlike the Footrule similarity distance, the iden-
tity Ksim(i, i, s(·, ·)) = 0 holds. However, both
Ksim(·, ·, s(·, ·)) and K(·, ·) are non-metric for partial
rankings, as either will compute zero distance between
any list and the empty list. Finally, the evaluation of the
Kendall tau similarity metric also requires O(|r1||r2|)
similarity computations, in addition to the two order
n log n time evaluations of the Kendall tau distance.

3.3 Minimizing Distances Selecting a distance
measure on ranked lists, our goal in rank aggregation
is to find an aggregate list σ that minimizes the total
distance from σ to every given list r ∈ R, as computed
by the chosen distance measure.

Minimizing the Kendall tau distance results in what
is called a Kemeny optimal ranking, which has well
studied desirable properties, such as the Condorcet
criterion which states that the top ranked item in
aggregation should be the item that is preferred in a
majority of pairwise comparisons [15]. Unfortunately,

it has been shown that optimizing a Kemeny optimal
ranking from as few as four lists is NP-hard [3]. In our
setting of rank aggregation in the presence of similarity
information, we see that minimizing the the Kendall-tau
similarity distance is also NP-hard, as optimizing this
distance requires optimizing the Kendall-tau distance
on aggregate similarity lists.

4 Methods and Algorithms

Rank aggregation is a difficult problem even without
the presence of similarity information, and there is
no universally accepted best method. Moreover, rank
aggregation among similar items is, to our knowledge,
previously unstudied. Thus, we have developed a
number of different methods to approach this problem,
which draw from three main families of rank aggregation
algorithms: positional methods, Markov chain methods,
and median-rank methods. Our goal in this section
is not to present a single algorithm for all situations,
but rather to explore a diverse range of reasonable
approaches to a challenging new problem.

4.1 Borda’s Method. Borda’s method is an in-
tuitive method of rank aggregation first proposed for
electing members of to the Academy of Science in Paris
in 1770. Borda’s method relies on the absolute posi-
tion of items in the ranked lists, rather than their rela-
tive rankings, and is a classic representative of the class
of positional ranking methods. Positional rank aggre-
gation methods are generally computationally efficient,
but no positional method can produce rankings guaran-
teed to satisfy the Condorcet criterion [15].

Borda’s method assigns ranks to items based on a
total Borda score, which is computed on each list by
showing that the most preferred item in a universe of U
items gets |U | points, the next gets |U | − 1 points, and
so on.

More formally, Borda’s method on a set of complete
rankings R is computed as follows. For each item i and
list rk ∈ R, let Brk

(i) equal the number of items j in
rk such that rk(j) > rk(i). The total Borda score for
the item i is given by Bt(i) =

∑

r∈R Br(i). Ranks are
assigned by sorting scores Bt from highest to lowest,
with the highest score getting the lowest rank.

When R includes partial rankings, one proposal is
to assign any “leftover” score from a given list equally
among all remaining unranked items in the list [12].
That is, for a list rk, where |rk| = |U | − d, compute
the Brk

(i) as usual for all items i ∈ rk, and assign

Brk
(j) = (d+1)2−(d+1)

2d
for all items j /∈ rk. The Borda

scores Bt and rankings are assigned as above.



Borda’s Method with Similarity (BMS). We
extend Borda’s method to include the application of
similarity information. The basic idea is to create a
weighted average of Borda scores based on the similar-
ity between items. To this end, the BMS method ag-
gregates a set of ranked lists r ∈ R from a universe of
item i ∈ U , by first computing the Borda scores Bt(i)
for all items in U , using either the method for complete
or partial listings (above), as appropriate. Then, for
each item i, compute a Borda-Similarity score, given a
similarity function s(·, ·),

Bs(i) =
∑

j∈U

s(i, j)Bt(j)
∑

k∈U s(i, k)

and sort the items by Bs and assign ranks as with
the original Borda method. Notice that when the
uniqueness function s0(·, ·) is used, the rankings given
by BMS are identical to those given by Borda’s method.

Borda’s method computable in linear time (given
sorted rankings); BMS adds a number of similarity eval-
uations that is quadratic in |U |. However, Borda’s
method does not always perform well with partial rank-
ings, as the method is unable to propagate rankings.
This issue is addressed with the introduction of Markov
chain methods for rank aggregation.

4.2 Markov Chain Methods The Markov Chain
methods for ranked list aggregation represent the items
in the various lists as nodes in a graph, with transi-
tions probabilities from node to node defined by the
relative rankings of the items in the various lists. The
aggregate rankings of the lists are found by computing
(or approximating) the stationary distribution on the
Markov chain – that is, by determining which nodes
would be visited most often in a random walk on the
graph. We augment these methods to include the case
of similar items by adding epsilon transitions between
nodes, based on similarity between the corresponding
items. We will formalize these notions in this section,
starting with a brief review of basic characteristics of
Markov chains, and moving on to the four algorithms.
We will conclude with discussions of methods for ef-
ficiently computing (or approximating) the stationary
distribution across the Markov chains.

Markov Chains. Markov chains are well studied
models of stochastic processes. Here we review a few
of their basic characteristics that are salient to the
methods of rank aggregation.

A Markov chain M consists of a set of states S =
1..n and a transition probability matrix P of dimension
n×n. Markov chains function in discrete time steps, and
Pr(St = i) is defined as the probability that a random

A

B

C

D

E

Figure 1: Rank Aggregation with Markov Chains.
This Markov Chain represents the aggregation of lists
(B, C, D), (A, D, E), and (A, B, E). Exact
probabilities of transitions are determined by the choice
of mapping method. Self-transitions represent the
probability of staying at the node during a step.

walker on the chain will be at state i at time step t. The
transition probabilities are defined by

Pi,j = Pr(St = j|St−1 = i)

(Note that each row in P sums to 1.) Thus, Markov
chains are memoryless: the probability of moving to any
given state at the next time step depends only upon the
current state, not on any previous states.

The stationary distribution on a given Markov chain
is the set of probabilities: Pr(S∞ = i) for all i ∈ S.
All finite, irreducible, ergodic Markov chains have a
single stationary distribution, which may be computed
by finding the principle eigenvector of the matrix P ,
or closely approximated taking higher powers of P to
convergence or by simulating a random walk over M for
a large number of steps. For large chains, simulating the
random walk reduces computational cost considerably.

Markov Chain Rank Aggregation. When tran-
sition probabilities are defined by relative rankings, the
stationary distribution on a Markov chain implies an
ordering on the nodes in M (see Figure 1). This obser-
vation led Dwork et al. to propose a general algorithm
for rank aggregation, composed of three steps [3]:

1. Map the set of ranked lists R to a single Markov
chain M , with one node per item in U .
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Figure 2: Markov Chain Rank Aggregation with Similarity. On the left, the Markov Chains are not able
to merge the lists A, B, C and C’, D, E, because the lists are completely disjoint. On the right, adding the
dashed line of the similarity transition between C and C’ enables a smooth ranking across all items. Note that
epsilon transitions and self-transitions have been removed for clarity.

2. Compute (or approximate) the stationary distri-
bution π on M .

3. Rank the items in U from 1..n based on π. That
is, the node with the highest score in π is given rank 1,
and so on down to the node with the lowest score in π
which is given rank n.

The key to this method is to define the appropriate
mapping from the set of ranked lists R to a Markov
Chain M . Dwork et al. proposed, analyzed, and
tested four mapping schemes, which they dubbed MC1
through MC4 [3]. Although none of these methods
necessarily produces a Kemeny optimal ranking, these
methods have proven effective in practice [3].

Markov Chain Rankings with Similarity. Al-
though effective in many situations, the Markov Chain
methods fail when the input lists are disjoint. (See
Figure 2.) We address this issue with the addition of
similarity transitions, which can link together otherwise
isolated Markov Chain islands.

Similarity Transitions. Similarity transitions are
defined from node to node based on the similarity
measured between nodes. Thus, the ranking of an item
will depend not only on those items it is ranked higher
or lower than, but will also depend on the rankings of
items that are similar.

A similarity transition from Sk = i, with respect to
a given similarity function s(·, ·) is executed by choosing
an item j from U randomly from a weighted distribution
in which for all j ∈ U

Pr(i → j) =
s(i, j)

∑

l∈U s(i, l)

Note that if the similarity function is the uniqueness
function s0(·, ·), then a similarity transition will always
result in Sk+1 = Sk.

Furthermore, note that we also include small, uni-
form probability epsilon transitions from every node to
every other node. These eliminate the possibility of sink
nodes in the Markov chain, and ensure a smooth, com-
plete ranking on all the items in U . This smoothing
technique appears in a number of Markov chain based
ranking methods, including the Google PageRank algo-
rithm [11].

Formally, an epsilon transition is executed at Sk by
choosing an item j from U uniformly at random, and
setting Sk+1 = j.

The prior mappings MC1 through MC4 are general-
ized to consider similarity information, resulting in the
following mappings MCS1 through MCS4. Note that
each of these mappings include two parameters: ǫ de-
termines the probability of an epsilon transition, while
γ determines the probability of a similarity transition.

MCS1: At Sk = i, transition to Sk+1 as follows.
Create a multiset A of all nodes j such that there is a
list r ∈ R such that r(j) ≤ r(i), and choose a candidate
node j by selecting uniformly at random from the nodes
in A. Let Sk+1 = j if i 6= j. Otherwise, execute a
similarity transition with probability γ. If no similarity
transition is executed, then execute an epsilon transition
with probability ǫ. If no epsilon transition is executed,
let Sk+1 = i.

This method pays a relatively small amount of
attention to similarity information, and gives more
weight to the relative rankings.



MCS2: At Sk = i, transition to Sk+1 as follows.
Choose a list r uniformly at random from the subset
of the (possibly partial) lists r ∈ R for which r(i) is
defined. Choose a node for Sk+1 by choosing uniformly
at random from the items j such that r(j) ≤ r(i). Let
Sk+1 = j if i 6= j. Otherwise, execute a similarity
transition with probability γ. If no similarity transition
is executed, then execute an epsilon transition with
probability ǫ. If no epsilon transition is executed, let
Sk+1 = i.

Dwork et al. show that MC2 is a generalization
of the geometric mean variant of Borda’s method and
argue that this method is most sensitive of the four to
statistically significant minority opinions [3].

MCS3: At Sk = i, transition to Sk+1 as follows.
Choose a list r uniformly at random from the set of
lists r ∈ R such that r(i) is defined. Choose an
item j from r uniformly at random. If r(j) < r(i),
Sk+1 = j, otherwise execute a similarity transition with
probability γ. If no similarity transition is executed,
then execute an epsilon transition with probability ǫ. If
no epsilon transition is executed, let Sk+1 = i.

MCS4: At Sk = i, transition to Sk+1 as follows.
Choose an item j uniformly at random from U . if
r(j) < r(i) for a majority of the lists that ranked
both i and j, Sk+1 = j, otherwise execute a similarity
transition with probability γ. If no similarity transition
is executed, then execute an epsilon transition with
probability ǫ. If no epsilon transition is executed, let
Sk+1 = i.

Dwork et al. show that this method is a general-
ization of Copeland’s method of ranking items based on
the number of pairwise majority contests won [3].

4.3 Median Rank Aggregation. The third
method of rank aggregation we explore is that of me-
dian rank aggregation, which is to aggregate a set of
complete rankings by using the median rank for each
item. This method can produce footrule optimal aggre-
gations, which are within a constant bound of Kemeny
optimal. The rankings it produces satisfy the extended
Condorcet criterion, and it may be computed efficiently,
especially in the case where only the top k aggregate
rankings are required [4].

The heart of the medrank algorithm is as follows
[4]. To compute an aggregate ranking on items i ∈ U
from a set of complete ranked lists r ∈ R, begin by
initializing a set of scores M(i) = 0 for all i ∈ U .
Let the function c(i, n) return the number of of lists
in R for which r(i) = n. Starting at n = 1, compute
M(i) = M(i) + c(i, n) for all i ∈ U , incrementing n at
each step. The first item i with a score M(i) > θ gets

rank 1, the second such item gets rank 2, and so on, with
ties being arbitrarily broken. With standard medrank,

θ = |R|
2 ; thus, an item must appear in at least half the

lists before getting an aggregate rank.
The medrank algorithm thus creates an aggregate

ranking based on the median ranks of items in the
set of lists R, and does so in linear time.1 When
only the top k rankings are desired, the algorithm
will terminate early, and not every item in every list
will be explicitly examined, giving sub-linear evaluation
time. Furthermore, when the aggregate rankings are
all distinct (no ties), medrank produces a footrule
optimal ranking, which is within a constant bound of
the Kemeny optimal ranking [15].

When using medrank of partial rankings, some
of these theoretical guarantees are lost. To modify
medrank for use on partial rankings, we can set θ

to a value below |R|
2 . Similarly, Fagin et al. also note

the possibility of setting θ > |R|
2 , and expect improved

results [4] – although increasing θ may not necessarily
increase the quality of aggregating very noisy rankings.

Median/Similarity Rank Aggregation. We
propose a modification of medrank, which we call
simmedrank, to include the effect of similarity in rank
aggregation. The basic idea is to assign the highest
aggregate rank to the first item that achieves a certain
total similarity score γ in each of θ lists r ∈ R.

The method simmedrank works as follows. For
each list r ∈ R, and each item i ∈ U , set the total
similarity score ts(r, i) = 0. Starting at n = 1, let
ts(r, i) = ts(ri)+s(i, rn) for all i and r, using a similarity
function s(·, ·). (Recall that rn refers to the item in r at
rank n.) Let the function Ms(i, n) return the number
of lists r such that ts(r, i) ≥ γ at step n. The item i for
which Ms(i, n) > θ with the smallest value of n is given
aggregate rank 1, and so on. (Ties may be broken first
by comparing

∑

r∈R ts(r, i) at step n, with further ties
being broken arbitrarily.)

When the uniqueness function s0(·, ·) is used, set-
ting γ = 1 reduces to the original medrank method.
For other similarity measures and data sets, γ must be
chosen. (In absence of other information, max(s(i, i))
over i ∈ U is a reasonable starting value.) As before,
simmedrank may be used with partial lists by reduc-
ing the threshold value θ, although the standard ver-

sion uses θ = |R|
2 . When used to produce a complete

aggregate ranking over U , simmedrank will require an
additional quadratic number of similarity evaluations.
However, this number will be reduced if only the top k
results from the aggregate ranking are needed.

1Fagin et al. show efficient algorithms for computing medrank
on large databases using very few random accesses [4].



5 Experiments

In this section, we report the results on both real world
and synthetic data. We find that the addition of sim-
ilarity information to rank aggregation is a significant
benefit to noisy, incomplete rankings. Furthermore, we
find empirical support for the use of our distance mea-
sures with similarity.

The following parameters were used in our various
aggregation methods, all of which were set by testing
on small, independent tuning sets. The value of λ
in λ-similarity projections was zero. For the Markov
Chain methods, ǫ = .01, and γ = 1, and the stationary
distribution was approximated by the power method.

For the median rank methods, θ = |R|
2 , and for

simmedrank, γ = 1.

5.1 Synthetic Data We can view the goal of rank
aggregation in two ways. The goal may be seen as trying
to find a complete ranking σ on U that minimizes the
induced distance between σ and the input lists r ∈ R.
Or, we can imagine that there is some true ranking rt

on U , and that each given list r ∈ R is a distortion of
rt, possibly with missing items and noisy rankings. In
this case, the goal is to minimize the distance between
σ and rt – that is, to recover the true ranking from
the set of noisy rankings. Many evaluations of rank
aggregation methods have focused on the first version
of the problem [3], in part because it is difficult to know
the true ranking rt for real-world problems. However, it
is possible to create a test set of rankings R by randomly
distorting a given input ranking rt. Synthetic data
allows reasonable comparison between the output σ to
the true ranking rt.

Synthetic Data Sets. Because each of the
rank aggregation algorithms may react differently to
noisy rankings, partial rankings, and top-k rankings, we
created a set of test data for each situation.

For each set, we began with an initial ranked list rt,
composed of 100 items, which were grouped into twenty
families a..t of five items each. (These numbers were
chosen arbitrarily.) We defined a similarity function
sf (·, ·) such that sf (i, i) = 1 for all i ∈ U , 0 < sf (i, j) <
1 for all (i, j) such that i and j are in the same family
and i 6= j, and s(i, j) = 0 for all i and j in different
families. The list rt was formed by ranking the items in
order by family: (a1..a5, b1..b5, ..., t1..t5). Thus, rt was
constructed such that similar items have similar ranks.
We then created test data as follows.

Noise. For each test set of complete rankings,
we created a set of ten complete lists, each containing
noisy versions of rt. Noise was introduced by randomly
swapping pairs of rankings independently in each list.

We created test sets at five levels of noise: 10, 25, 50,
75, and 100 random swaps per list.

Partial. For each test set of partial rankings, we
created a seed set of ten noisy, complete rankings, as
above. We then pruned each ranking by removing each
item i with probability 1 − p. We used three levels of
noise (0, 10, 25), and five levels of p (0.1, 0.2, 0.3, 0.4,
0.5), starting with new seed lists each time.

Top-k. For each test of top-k rankings, we first
created a set of ten noisy, complete rankings as above.
We then selected the top k of these items from each list.
We created lists at noise levels of 0, 10, and 25, and with
k at levels of 10, 25, 50, and 100, starting with new seed
lists each time.

We ran each rank aggregation method on each data
set, and report the results in Table 1, Table 2, and Ta-
ble 3. We report results for the induced scaled Kendall
tau similarity distance, noting that these results were
consistent with the induced scaled Footrule similarity
distance and with non-scaled versions of each measure.
Furthermore, every improvement in both measures be-
tween σ and R corresponded with an improvement be-
tween σ and the ground truth rt.

Synthetic Results. Across these tests, each
method of rank aggregation with similarity was con-
sistently superior to the corresponding method without
similarity. These results show the potential for improve-
ment when a meaningful similarity measure is defined
on a set of ranked items.

The Noise results in Table 1 show that using rank
aggregation with similarity gives improvement for all
methods tested (except for medrank with low noise
levels), and that this benefit increases as noise increases.

The Partial results in Table 2 show increasing
benefit to using rank aggregation with similarity as the
coverage of the partial lists increases. We conjecture
that at very low levels of coverage, such as the p =
0.1 level, there may be very few items with non-zero
similarity in the lists. Note also that the Markov Chain
methods out-perform Borda’s method and medrank,
which matches the intuition that the Markov Chain
methods are well suited to partial lists.

The Top-k results in Table 3 also show increasing
benefit as k increases. Here, the Markov Chain methods
also out perform the other two methods. These results
were consistent at other noise levels.

Evaluating the Distance Measures. At this
point, it is appropriate to question the effectiveness
of our evaluation measures. How do we know that
the Kendall tau similarity distance and the Footrule
similarity distance are meaningful success measures?



Table 1: Aggregating Noisy Rankings. Results are given for aggregating complete lists (of 100 items) at
varying levels of noise. Results reported are for the scaled Kendall-Tau similarity distance, induced between
aggregate list σ and a set of ten input lists r ∈ R, averaged over 50 independent trials. (Recall that the ideal
value is zero.) Results are in format: mean (standard deviation).

Noise Level: 10 25 50 75 100

borda .123 (.016) .224 (.017) .339 (.021) .395 (.017) .418 (.017)
bms .106 (.014) .194 (.015) .299 (.019) .353 (.019) .386 (.019)

mc3 .135 (.017) .230 (.016) .340 (.021) .395 (.017) .418 (.017)
mcs3 .120 (.014) .203 (.014) .306 (.019) .361 (.019) .386 (.019)

mc4 .104 (.016) .216 (.019) .339 (.020) .396 (.017) .419 (.017)
mcs4 .104 (.017) .208 (.017) .310 (.019) .364 (.019) .389 (.019)

medrank .103 (.016) .212 (.018) .343 (.020) .401 (.018) .426 (.017)
simmedrank .107 (.017) .228 (.024) .345 (.022) .391 (.021) .413 (.020)

mc1 .147 (.020) .237 (.016) .342 (.021) .396 (.017) .419 (.017)
mcs1 .146 (.019) .235 (.016) .340 (.021) .395 (.018) .417 (.017)

mc2 .155 (.022) .256 (.016) .359 (.022) .408 (.018) .429 (.017)
mcs2 .160 (.023) .256 (.021) .356 (.022) .404 (.019) .425 (.018)

Table 2: Aggregating Partial Rankings. Results are given for aggregating partial lists of various size at noise
level 25. (Results consistent with tests at other noise levels.)

p: 0.1 0.2 0.3 0.4 0.5

mc4 .041 (.011) .088 (.015) .125 (.017) .152 (.016) .164 (.018)
mcs4 .034 (.009) .071 (.013) .100 (.014) .100 (.014) .137 (.022)

mc3 .041 (.011) .090 (.016) .128 (.018) .157 (.017) .171 (.017)
mcs3 .035 (.010) .076 (.010) .106 (.015) .131 (.016) .142 (.015)

mc2 .043 (.012) .094 (.017) .136 (.019) .167 (.018) .187 (.018)
mcs2 .041 (.012) .090 (.015) .128 (.019) .161 (.018) .181 (.018)

mc1 .042 (.012) .094 (.017) .136 (.019) .166 (.017) .184 (.017)
mcs1 .040 (.012) .094 (.015) .129 (.019) .160 (.017) .178 (.017)

borda .055 (.013) .124 (.019) .177 (.120) .177 (.019) .231 (.018)
bms .059 (.015) .123 (.022) .154 (.023) .154 (.023) .183 (.022)

medrank .057 (.013) .126 (.020) .182 (.020) .182 (.020) .245 (.019)
simmedrank .063 (.015) .133 (.020) .159 (.022) .159 (.022) .151 (.018)

Table 3: Aggregating Top-k Rankings. Results are given for aggregating sets of top-k lists, where the
maximum list size is 100, at noise level 25. (Results consistent with tests at other noise levels.)

k: 10 25 50 100

mc4 .036 (.013) .076 (.013) .140 (.016) .216 (.019)
mcs4 .031 (.013) .068 (.012) .123 (.014) .208 (.017)

mc3 .037 (.013) .084 (.014) .152 (.015) .230 (.016)
mcs3 .036 (.014) .078 (.014) .135 (.014) .203 (.015)

mc2 .041 (.014) .094 (.017) .167 (.017) .256 (.020)
mcs2 .039 (.014) .089 (.017) .162 (.018) .256 (.021)

mc1 .042 (.014) .094 (.016) .165 (.016) .237 (.016)
mcs1 .039 (.014) .090 (.017) .161 (.016) .235 (.016)

medrank .081 (.016) .134 (.019) .196 (.017) .212 (.019)
simmedrank .075 (.013) .119 (.014) .170 (.013) .228 (.025)

borda .086 (.016) .143 (.019) .205 (.015) .224 (.017)
bms .079 (.021) .132 (.020) .189 (.016) .194 (.015)



Table 4: Evaluating Distance Measures. Results on all distance measures for MC3 and MC3S, on partial
lists, noise 25, p 0.5. Distance measured between aggregate list σ and input set of lists r ∈ R, and between σ
and ground truth ranking rt. Format is: mean (standard deviation). Results show that the similarity versions of
distance measures are consistent in preferring similarity aggregation over non-similarity aggregation on all tests,
while non-similarity distance measures are inconsistent. This pattern is repeated in many results across our tests.

Kendall-tau Footrule Kendall-tau Sim. Footrule Sim.

mc3 (lists) .059 (.007) .244 (.012) .171 (.017) .289 (.010)
mcs3 (lists) .065 (.007) .256 (.011) .142 (.015) .277 (.011)

mc3 (truth) .223 (.030) .308 (.039) .184 (.030) .309 (.039)
mcs3 (truth) .146 (.015) .212 (.033) .141 (.024) .213 (.033)

One way of confirming their usefulness empirically
is with the results reported in Table 4. We compared
the Kendall-tau and Footrule Distances (non-similarity
versions) between the aggregate list σ and the input lists
r ∈ R, and also between σ and the ground truth rt. We
would expect that if one method shows improvement on
K(σ, R), it would also show improvement on K(σ, rt).
This was often not the case with the Kendall tau or
Spearman Footrule in their original forms.

In our tests we have found that an improvement
in Ksim(σ, R) does correspond with an improvement in
Ksim(σ, rt), and similarly so for the Footrule similarity
distance. That is, reducing the similarity distance
between an aggregate list and the set of input lists
corresponds to a reduction in the distance between the
aggregate list and the ground truth. This empirical test
serves as an important sanity check for our evaluation
measures – reducing the Kendall tau similarity distance
or the footrule similarity distance creates an aggregation
closer to ground truth.

5.2 Real World Data. Finally, we experiment
with data drawn from a real-world application: key-
words expansion for sponsored search. In sponsored
search, a service provided by many Internet search en-
gines such as Yahoo!, an advertiser places bids on a set
of keywords. When a user searches for that keyword,
the search engine may show the advertiser’s listing in a
premium area, and the advertiser will pay the bid price
to the search engine if the user clicks on the listing.

It is advantageous to both advertisers and search
engines to make sure that the advertiser is bidding on
as large a list of relevant keywords as possible – this
reduces unused inventory and optimizes both market
efficiency and user traffic. The goal of keywords ex-
pansion is to automatically suggest additional relevant
keywords to a given advertiser. There are many meth-
ods for generating such suggestions, including the use
of taxonomies, mining the text of the advertiser’s web-
site, and analyzing aggregate user behavior and keyword

use. However, each of these method has incomplete cov-
erage of the total keyword space and is subject to noise.
The various methods of generating suggestions use dif-
ferent scoring mechanisms, on different scales, and per-
haps with different levels of confidence. Finally, expe-
rience has shown that these lists of suggested keywords
have little exact overlap, although many of the keywords
share high levels of string similarity. For example, the
keywords “Honda Civic” and “red Honda Civic” may
appear as distinct items in different lists of suggested
keywords. This is a perfect application for rank aggre-
gation with similarity information, which can meaning-
fully join ranked lists of non-overlapping, similar items
– even on partial lists in the presence of moderate noise.

We tested our methods on ten data sets, each with
three ranked lists of keywords generated by distinct
methods of keyword suggestion, some of which were
quite noisy. Furthermore, there was little overlap among
the lists in each set. The similarity measure used on the
keywords was a simple n-gram string matching kernel
[9], with n = 2. Other similarity measures, such as those
based on edit distance, could also have been used.

Results. The results in Table 5 show that in this
experiment, rank aggregation with similarity consis-
tently out performed non-similarity aggregation meth-
ods, as measured by both the scaled footrule similar-
ity distance, with simmedrank and MC4 showing the
best overall results. Similar improvement was mea-
sured with the scaled Kendall tau similarity distance,
although BMS performed relatively better and MC4
fared relatively worse when evaluated with this mea-
sure. This experiment serves as a real world example
of noisy rankings, with a mixture of characteristics of
partial and top-k lists, which benefits from the addition
of similarity information to rank aggregation.

6 Discussion

The use of similarity information in rank aggregation
has a wide range of potential applications. It could
be used in spam reduction [3], importance ranking of



Table 5: Aggregating Keyword Rankings. Results for rank aggregation on keywords expansion data for
scaled Footrule similarity distance. Results were consistent with those of the scaled Kendall similarity distance,
except that BMS had relatively better performance on that measure, and MCS4 had relatively worse performance.

set id: 0 1 2 3 4 5 6 7 8 9

medrank 0.237 0.237 0.234 0.230 0.248 0.211 0.242 0.251 0.225 0.242
simmedrank 0.189 0.194 0.200 0.186 0.206 0.174 0.174 0.195 0.191 0.237

mc4 0.242 0.257 0.255 0.245 0.268 0.208 0.266 0.256 0.242 0.242
mcs4 0.197 0.209 0.198 0.189 0.213 0.176 0.192 0.196 0.208 0.186

mc3 0.242 0.256 0.254 0.240 0.268 0.207 0.267 0.257 0.242 0.242
mcs3 0.209 0.227 0.218 0.203 0.226 0.181 0.212 0.201 0.216 0.203

mc2 0.240 0.253 0.253 0.246 0.271 0.207 0.279 0.260 0.242 0.242
mcs2 0.221 0.242 0.239 0.219 0.253 0.188 0.245 0.226 0.223 0.226

mc1 0.241 0.253 0.253 0.248 0.269 0.208 0.283 0.264 0.241 0.241
mcs1 0.224 0.246 0.240 0.218 0.255 0.191 0.256 0.238 0.223 0.224

borda 0.242 0.258 0.253 0.242 0.268 0.206 0.262 0.250 0.243 0.243
bms 0.228 0.233 0.256 0.239 0.259 0.188 0.203 0.198 0.210 0.274

web pages [11], or to improve the quality of results in
meta-search [3]. Indeed, Ravi Kumar has noted the
possibility of defining a similarity measure that rewards
dis-similarity, and using these methods to improve
diversity within the top-k results in meta-search [8]. It
is also possible to imagine using rank aggregation with
similarity in the field of social choice, and designing
elections in which party affiliation is used as a similarity
measure between candidates.

In the fields of data mining and machine learning,
rank aggregation with similarity has its strongest use as
a method of unsupervised learning, in which items are
implicitly clustered as an effective aggregate ranking is
found. Future work will lie in further exploring ways in
which these goals can be simultaneously achieved.
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