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Abstract

In this paper we present a method for verifying Yhc bytecode, an intermediate form of Haskell suitable

for mobile code applications. We examine the issues involved with verifying Yhc bytecode programs and

we present a proof-of-concept bytecode compiler and verifier.

Verification is a static analysis which ensures that a bytecode program is type-safe. The ability to

check type-safety is important for mobile code situations where untrusted code may be executed. Type-

safety subsumes the critical memory-safety property and excludes important classes of exploitable bugs,

such as buffer overflows. Haskell’s rich type system also allows programmers to build effective, static

security policies and enforce them using the type checker. Verification allows us to be confident the

constraints of our security policy are enforced.

1 Introduction

In this paper, we adapt the ideas of bytecode verification to the Haskell setting. Our major contribution
is a working proof-of-concept implementation of a bytecode compiler and verifier. The verifier works by
comparing program bytecode to a certificate which provides evidence that the bytecode is well typed. The
certificate is produced by the compiler and contains type information that would otherwise be discarded
during type-erasure.

Type-safety is a desirable property for programming languages because it eliminates entire classes of ex-
ploitable bugs, such as buffer overflows. Type-safety also allows programmers to reason about the security
properties of their programs by reasoning within the abstraction of the source language. For example, the
technique of “lightweight static capabilities” [18] encodes program invariants into the type system. Using
lightweight static capabilities, one can provide APIs which will staticly ensure useful properties such as: a
given list is non-empty; an array access is in bounds (without a runtime check); or that a database resource
is only accessed while the database connection is open.

Type-safety is also an important ingredient of applet containers and mobile code execution platforms. Leroy
showed that type-safety forms the lynch-pin of applet security and isolation systems [21]. Type-safety
guarantees that programs cannot break the abstractions of the source language, and makes it possible to
design security and isolation systems within the language itself. For example, we could design applet system
where programs are only allowed to access the local machine by interacting with an abstract data type
describing the applet’s privileges. Such a type might have a list of directories where the applet is allowed to
write files. If we allow the applet to somehow break the abstraction barrier and interact with its privileges
descriptor in an unintended way, the applet may be able to escalate its privileges and breach the security of
the host system. Type-safety ensures that this does not occur.

Although there are a number of programming languages which boast strong type-safety, Haskell is uniquely
suited to be a host language for applets and mobile code execution. The primary reason for this is that
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Haskell code is purely functional, and side-effects are only possible via a special mechanism called the IO
monad. “Pure” programs (those not in the IO monad) are utterly benign: they are unable to perform any
actions which cause side-effects. The only things pure computations can do are: return a value, throw an
exception, or fail to terminate. They cannot perform potentially malicious actions, such as altering files or
communicating over a network. Furthermore, a program which is in the IO monad will always reflect this
fact via its type. If we restrict our applet container to only execute code which in not in the IO monad, we
can be confident it will be well-behaved. We can also allow limited access to side effects by designing an API
which is similar to the IO monad, but restricted by a security policy.

Unfortunately, transmitting raw source code is unacceptable for mobile applications and we cannot rely on
static properties of the source language for our security guarantees. Instead of source code, mobile execution
systems are usually based on bytecode, an intermediate program representation which is easy to interpret but
retains architecture portability. With a bytecode system, source programs are compiled to bytecode and the
bytecode is transmitted to the remote host where it is executed. Even though the source language has static
guarantees which ensure type-safety, it is possible to manually construct bytecode programs which violate
the runtime’s expected invariants. What we require is a system which allows us to “type-check” programs
that have already been compiled to bytecode and to reject invalid programs. The process of type-checking
bytecode programs is called verification.

Once a Haskell program is compiled, however, its type information is usually no longer available. Most
Haskell implementations perform type-erasure, which removes all type information from a program before it
is transformed into an executable. Our compiler is unusual in that it retains type information all the way
through compilation which is used to generate a type certificate which accompanies the bytecode program.
This type certificate can then used during the verification process to ensure that the bytecode program
is type-safe. Once the program has been verified, the type certificate is no longer needed, and execution
proceeds using only the bytecode. Our verification algorithm is lightweight and should be suitable for
adaptation to limited-resource machines.

The remainder of this paper is organized as follows. Section 2 introduces our compiler intermediate language
and and discusses points of note regarding its type system. Following that, section 3 briefly describes the
compilation target for the compiler, the Yhc bytecode interpreter. In section 4, we covert the implementation
of the IL compiler. Section 5 describes the workings of the bytecode type certificates and the verification
algorithm, while section 6 gives some additional background and discusses related work. Section 7 lists
possible future work and concludes.
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2 The Compiler Intermediate Language

Haskell is a full-scale programming language and involves a multitude of details, many of which are only
tangentally related to the matters at hand. To make the scope of this work manageable, we have focused our
efforts on a core calculus (called the Intermediate Language or IL hereafter) rather than attempt to handle
raw Haskell. This IL is sufficient to model the expressions and types of all of the Haskell 98 standard, given
a suitable translation. However, we make no attempt at this point to model the module system or deal with
the issues of separate compilation.1

We also do not attempt to treat side-effectual computation and the IO monad. We do this primarily because
the semantics of the IO monad are considerably more difficult to model than those of the pure functional
core of Haskell. However, this omission is not critical for our present aims.

The practical elements that one needs to execute the IO monad are just side-effectual primitive operations
and some way to control execution order. Both these elements are easily available in the G-Machine runtime
model which is the compilation target. Execution order is easily controlled using the G-Machine and we can
treat side-effectual primitives in the same way as pure primitives for the purposes of verification. In fact, the
verification algorithm as given in section 5 would require no changes to deal with side-effectual primitives
and the IO monad.

2.1 Design Considerations

The overall strategy for a complete certifying compiler involves translating the source Haskell code to a
typed intermediate language, performing lambda lifting, and then generating certified G-Machine bytecode.
To suit our purposes, the intermediate language should:� be capable of embedding all the constructs of the source language,� be capable of representing each of the intermediate steps up to code generation,� be as minimal as possible, and� have a well-established meta-theory.

Clearly, these properties coexist with some tension. As the first two requirements cannot be compromised,
the latter two have suffered the most. Thus the IL is more complicated than we would like and contains a
few minor extensions beyond those well-studied in the literature. Nonetheless, we have tried to define the
IL so that the most important meta-theoretic properties are retained, including the Church-Rosser property
and type-safety. One possible avenue of future work is to formally verify these properties.

The IL is built on the base of System Fω [10, 36]. To this base we add the following extensions:� primitive types and functions� term products and projections� type products and projections� recursive and non-recursive let� iso-recursive types� sum types, data constructors and case analysis� “top-level” recursive term definitions� “top-level” non-recursive type definitions

1Extending the IL to handle multiple modules should not be difficult, as the additional technical issues raised are minor.
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� a message-carrying error term� the “seq” primitive

Of these extensions, only type products are novel; the remainder are standard.2 The full syntax of the IL is
presented in table 1. Judgments relating to the type system may be found in table 5, table 6 and table 7.

2.2 IL Examples

Rather than belaboring the formal definition of the IL and its judgments, here we shall present some example
IL terms that we hope will help the reader to understand the ideas behind the IL and to justify the design
decisions. A more detailed discussion of the notable and unusual aspects of evaluation, typing and type
erasure may be found in the following sections.

We begin with some of the simplest possible definitions in the IL and work up toward more realistic examples.$bottom :: ∀a :: ⋆. a

≡ $bottom;$id :: ∀a :: ⋆. a → a

≡ Λa :: ⋆. λx :: a. x;$idP :: $P → $P
≡ $id [$P];

Here we have defined a trivially non-terminating term,$bottom, using nominal recursion.3 It is assigned the
the very general type ∀a :: ⋆. a, indicating that the term $bottom is a polymorphic term which can be
instantiated at any type with kind ⋆. 4

We have also defined the polymorphic identity function $id. Its type indicates that it is a function (at any
type a of kind ⋆) which accepts a term of type a and returns a term of type a. In this definition, note that
we use a type lambda to generate the polymorphic type. Type lambdas introduce polymorphic functions and
give rise to polymorphic types. $idP is a specialization of $id to the type $P (defined later). Type application
reduces with type lambdas via β-reduction so that, when reduced, $idP is equivalent to λx :: $P. x.

Note that top-level identifiers are typographicly distinguished from bound identifiers by the leading $. Also,
type variables appear in small caps. Finally, notice that the IL uses a Church-style type discipline, where
binders fix the type (or kind) of bound variables. A Church-style presentation has the significant advantage
that typechecking is a straightforward, top-down procedure and is decidable in many more cases than a
Curry-style presentation (without type annotations on binders) [40].

We could also have defined $bottom by using local nominal recursion via a reclet statement. Similar to
top-level identifiers, reclet-bound identifiers are distinguished by a leading % character.$bottom2 :: ∀a :: ⋆. a

≡ Λa :: ⋆. reclet {%x :: a ≡ %x; } in%x;

Also noteworthy is that the reclet construct is recursive, and thus reclet-bound variables scope both over
the reclet definitions and over the body of the reclet.

2However, the presentations of term products and sums are not standard. The subtleties relating to the two varieties of
products in the IL are covered in a later section.

3The term “nominal recursion” is used to indicate recursion where definitions refer to themselves by name, and to distinguish
it from recursion introduced by an explicit fixed-point operator.

4In fact, we could have assigned any valid, closed type to $bottom.
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k ::= Kinds:

⋆ Base Kind
k ⇒ k Arrow Kind
〈〈| k0, · · · , kn−1 |〉〉 Type-Product Kind
Πi Product Kind

t ::= Types:

a Type Variable

λ̂a :: k. t Type-Level Abstraction
t t Type-Level Application
〈〈 t0, · · · , tn−1 〉〉 Type Product
π̂i t Type Projection
t → t Arrow Type
∀a :: k. t Polymorphic Type
µa :: k. t Recursive Type
@{| p |} Primitive Type
〈| t0, · · · , tn−1 |〉 Product Type
{| i0 : t0, · · · ,

in−1 : tn−1 |} Sum Type

m ::= Terms:

x Term Variable
%x Let-Bound Variable$x Top-Level Definition
λx :: t. m Abstraction
m m Application
Λx :: k. m Type Abstraction
m [t] Type Application
error [t] “message” Error
seqm m Seq
@[ p ]{ z } Primitive
@{ f |m0, · · · , mn−1 } Primitive Function
〈m0, · · · , mn−1 〉 Product
πi m Projection
&Ci [j0 : t−, · · · , jn−1 : tn−1] m Sum Constructor
roll[t] m Recursive Roll
unroll m Recursive Unroll
let { x = m ; } in m Non-Recursive let
reclet{%x0 :: t0 = m0 ;

· · · ;
%xn−1 :: tn−1 = mn−1 ;

} in m

Recursive Let

case m
default m of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}

Case

primcase[ p ] m
default m of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}

Primitive Case

IsValue( λx :: t. m ) (V-Abs)

IsValue( @[ p ]{ z } ) (V-Prim)

IsValue( &Ai [t0, · · · , tn−1] m ) (V-Con)

IsValue( m )

IsValue( Λx :: k. m )
(V-AbsT)

IsValue( m )

IsValue( roll[t] m )
(V-Roll)

Table 1: Syntax of the IL and the IsValue Predicate
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To make things more concrete, let us define a data type such as one might define in Haskell. A simple
example of a Haskell data type is the following definition, which introduces the Peano numbers: 5

data P = Z | S P

This declaration introduces a new type P. This type has two data constructors, Z, which corresponds to zero,
and S, which is the successor function. Thus, S (S Z), for example, corresponds to the number 2. All the
usual arithmetic functions on natural numbers can be written using this data type. When translated into
the IL, one obtains:$P .

= µP :: ⋆. {| 0 : 〈| |〉, 1 : 〈| P |〉 |};$Z :: $P
≡ roll[$P] (&Z0 [0 : 〈| |〉, 1 : 〈| $P |〉] 〈 〉);$S :: $P → $P
≡ λx :: $P. roll[$P] (&S1 [0 : 〈| |〉, 1 : 〈| $P |〉] 〈 x 〉);

These definitions use a lot of syntax which may be unfamiliar, so a detailed explantation follows. In the
definition for $P, we see our first example of a recursive type. Recursive types are introduced by the
type-variable binder µ. The body of the recursive type is a sum of products. The first component of the
sum has tag 0 and is the empty product (sometimes called the unit). This first component corresponds to
the Z constructor, which takes no arguments. The second component, with tag 1, is a unary product and
corresponds to the S constructor, which takes a single argument of type P. Note that the recursion in this
type definition is introduced by the µ operator, and not by nominal recursion. Also, note that the IL takes
n-ary sum and product forms as primitive, rather than building them from binary sums and products, as
is more typical in the literature. Finally, notice that this translation take the informal characterization of
Haskell’s data types as “sums of products” quite literally. The unusual empty and unary products are used
to keep the translation uniform across all constructor arities.

Next, turn your attention to the translation of the Z constructor. The roll syntactic form introduces
recursive data. Its type parameter indicates the recursive type to introduce. The term parameter to roll

is a sum constructor, with the name “Z” and tag number 0. The sum constructor also takes a list of types,
which fix its type. Notice this type is just the definition of $P unrolled once. The pattern where a sum
type is immediately rolled into a recursive type is idiomatic of the translation of Haskell’s data constructors.
Finally, notice the argument to the sum constructor is just the empty product, which is natural for a data
constructor of arity 0.

The S constructor is similar to the Z constructor, except that it takes a single argument. It again exhibits
the sum-and-roll pattern, but the sum instead wraps a unary product containing the single argument.

Now, let’s actually do something with this type we’ve painstakingly constructed. Here is the definition of
the curried addition function on Peano numbers, first as we might define it in Haskell:

pAdd x y = case x of { Z -> y; S a -> pAdd a (S y) }

Here is the same definition translated into the IL:

5Actually, this definition introduces a slightly larger set than the usual Peano numbers because it admits the infinite “number”
S (S (S (· · ·))), which can be usefully compared to ℵ0. For our purposes, the difference is inconsequential.
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$pAdd :: $P → $P → $P
≡ λx :: $P. λy :: $P.

case (unroll x)
default (error [$P] “match fail”) of
{ 0 : λa :: 〈| |〉. y;
1 : λa :: 〈| $P |〉. $pAdd (π0 a) ($S y);

}

The most important things to note about this definition is the syntax of case analysis and use use of the
unroll syntactic form. The case form has three parts: first, the case scrutinee (appears directly after the
case keyword); second, the default branch (appears after default); and third, a collection of case arms
(after of and inside the braces). The case scrutinee is the value being analyzed. It must have a sum type,
and the value of its tag determines the overall value of the case expression. Each case arms consists of a tag
number and an expression. Whenever the tag value of the scrutinee matches a case arm, the payload of the
sum constructor is applied to the expression of that case arm (which must be a function of the correct type).
If it occurs that the tag value of the scrutinee matches no case arm, then the default expression becomes the
result of the case. Case arms are required to be ordered, so that each tag number can appear at most once
on the case arm list. The unroll form is dual to roll in that they have opposite effects on the typing of an
expression, and that they annihilate each other during evaluation. The idiom with unfold appearing as the
outermost construct in a case’s scrutinee arises from the translation of Haskell pattern matching.

The product projection syntax is also new, and appears in the second case arm. Its operation is entirely
straightforward. The projection πi will project the ith element from a product. Product and sum components
are numbered starting at 0.

Now we are going to examine the translation of one of Haskell’s most ubiquitous data structures: the
polymorphic list. This data structure is very much like the Peano numbers, but additionally carries a data
item in each “cons” cell. The major difference in the type is that the list type is actually a type constructor:
that is, a function on types. First, here is the Haskell definition: 6

data List a = Nil | Cons a (List a)

The corresponding IL translation is:$List
.
= µL :: ⋆ ⇒ ⋆. λ̂a :: ⋆. {| 0 : 〈| |〉, 1 : 〈| a,L a |〉 |};$Nil :: ∀a :: ⋆. $List a

≡ Λa :: ⋆. roll[$List a] (&Nil0 [0 : 〈| |〉, 1 : 〈| a, $List a |〉] 〈 〉);$Cons :: ∀a :: ⋆. a → $List a → $List a

≡ Λa :: ⋆. λx :: a. λxs :: $List a. roll[$List a] (&Cons1 [0 : 〈| |〉, 1 : 〈|a, $List a |〉] 〈 x, xs 〉);

The main points of interest in the definition of the $List type are the presence of a type-level lambda 7

and the higher-kinded type operator L.

The astute reader may wonder why the µ binder appears outside the type-level lambda in the definition of$List. As it happens, the $List type could be defined alternately as follows:$List2
.
= λ̂a :: ⋆. µL :: ⋆. {| 0 : 〈| |〉, 1 : 〈| a,L |〉 |};

6Although the list type actually has special syntax in Haskell, it is purely cosmetic. The list datatype could be defined
exactly as given here.

7Type-level lambdas are typographicly distinguished from term-level lambdas by the carat symbol.
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This definition is simpler and therefore, it could be argued, better. However, type definitions of this form
(with the type-level lambdas outermost) only work for the so-called “regular” data types: those where the
type parameters of the data type do not vary. The “nested” data types popularized by Richard Bird require
the more general formation [2]. To maintain consistency, all data types are translated in the same way, which
gives rise to the type shown for $List. Nested data types are useful because they can be used to allow the
type system to maintain non-trivial data structure invariants [3, 30].

The definition of mutually-recursive data types requires some care. Because the type system does not use
nominal recursion, all recursion must be introduced by the µ binder. In order to make mutually-recursive
definitions simpler, type products have been introduced into the IL. Type products are like term products
simply lifted to the level of types, and they have a corresponding kinding rule. Note that type products
should not be confused with the product type (the type of term products), which appears similar at first
glance.8

To illustrate the translation of mutually-recursive datatypes, consider the following Haskell data type defi-
nitions:

data A = MkA B

data B = MkB A

By using a strongly-connected-component analysis, the Haskell front-end can discover that these type defi-
nitions are mutually recursive. It will then translate these types and their constructors as follows:$AB

.
= µab :: 〈〈| ⋆, ⋆ |〉〉. 〈〈 {| 0 : 〈| π̂1 ab |〉 |}, {| 0 : 〈| π̂0 ab |〉 |} 〉〉;$A .
= π̂0 $AB;$B .
= π̂1 $AB;$MkA :: $B → $A
≡ λx :: $B. roll[$A] (&MkA0 [0 : 〈| $B |〉] 〈 x 〉);$MkB :: $A → $B
≡ λx :: $A. roll[$B] (&MkB0 [0 : 〈| $A |〉] 〈 x 〉);

The important thing to notice about these definitions is that the type $AB is defined by recursion over a
type product. The individual components of the tuple represent the various types being defined by mutual
recursion. While the type products are not strictly necessary to define mutually recursive types, the alternate
translation without them is significantly more complicated.

2.3 Formal Presentation of the IL

The compiler intermediate language is based on the well-known higher-order polymorphic lambda calculus,
also known as system Fω . In basic Fω, there are three syntactic categories: terms, types, and kinds. The IL
retains these syntactic categories and extends them with additional constructs needed to model the source
language.

Before discussing the features of the IL in detail, it is important to state the things with are specificly
not modeled by the IL. The biggest feature of Haskell which is not modeled by the IL is side-effectual
computation. In Haskell, side effects are captured in the abstract IO monad and its associated side-effectual
primitive operations. The IL, however, only models primitive operations which perform no side effects. This

8See section 2.3.1 for a discussion of the differences.
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decision is a deliberate simplification. It makes the presentation of the IL shorter than it would otherwise
be and makes it possible to directly specify and implement the semantics of the IL as a call-by-name term
reduction. The task of finding a good way to extend the IL to model Haskell’s IO monad is left for future
work. 9

Another major features of Haskell that is missing is the set of primitive types: Int, Integer, Float, Double
and Char. Instead, the IL is parameterized by an arbitrary set of primitives, primitive types and primitive
function symbols. This system is sufficient to encode each of the primitive types in Haskell. It also reduces
the number of evaluation and typing rules which must be dedicated to their treatment while at the same
time allowing a straightforward way to treat the many primitive types that can be introduced as language
extensions. The primitive system is covered in more detail below.

However, this does produce one odd discrepancy. In Haskell, the error form takes an arbitrary string
argument which is printed to the console if an unrecoverable error occurs. To faithfully represent this
primitive in the IL, we would have to explicitly treat both characters and lists.10 Instead, we have added
an error form to the IL which takes a constant string as part of it’s syntax. Thus the Haskell translation
to the IL can only handle compile-time constant strings. This is unfortunate, but the loss of expression is
acceptable in the face of the simplification it allows. Extending the IL to fully handle this case would be
straightforward.

Finally, the Haskell type-class system is not represented in the IL. Most Haskell implementations handle
type-classes by using the dictionary-passing mechanism [1], whereby type-classes are translated into tuples
of functions (called dictionaries) and functions with class constraints are given additional arguments to accept
these dictionaries. Dictionary-passing has the advantage of being simple to understand and allows one to
translate into lower-level languages which then do not need to deal with the complexities of overloading and
type-class resolution. As such, the IL assumes a Haskell front-end which performs the dictionary-passing
transformation, which significantly simplifies the type system.11

For reasons of space, we cannot go over each of the syntax constructs and various judgments in detail. Thus,
we intend only to cover unusual features or cases where standard features interact in non-obvious ways.

2.3.1 Products of a Deranged Mind

On of the most confusing aspect of the IL is the fact that there are seven different syntactic forms relating
to two different sorts of products. Even worse, neither of these products is precisely the same as the tuple
forms available in Haskell! Finally, despite the goal of building the IL around constructs well-studied in the
literature, we have chosen to take n-ary products as basic rather than the more usual binary products. In
what follows we shall attempt to explain the various constructs and to defend these design decisions.

2.3.2 Term-Level Products

The term product is written using single angle brackets: 〈 〉. Each term product has 0 or more components
(where components are typographicly separated by commas) and each component has a projection, written
πi for the ith component. The type of term products mirrors the term structure, in that it is also an n-
ary construct and the components of the product type correspond to the components of the term product.
Product types are written using angle brackets with a vertical line: 〈| |〉. Unlike the most straightforward

9As mentioned above, we do not feel that this omission is critical for the verification process.
10Strings in Haskell are simply lists of characters.
11Although most Haskell implementations use a dictionary-passing translation, it is not required. An alternative approach is

to use an intermediate language based on Pure Type Systems (PTS) [34]. Using PTS, type classes can be implemented using
a type-case construct which examines the type of the argument. The JHC Haskell implementation takes this approach. The
major disadvantage of using the PTS and type-case approach is that it requires a whole-program analysis, and thus is difficult
to reconcile with separate compilation.
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extension of Fω with products, the kind of IL products is distinguished from the base kind, and is written
Πn, where n is the arity of the product.

The term product is unlifted and differs from the products found in Haskell, which are lifted.12

The unlifted product is found in the IL for two main purposes. The first involves the translation of pattern
matching, and the second has to do with primitive operations.

Before the translation to IL, Haskell pattern matching is desugared into a simpler form. In this form
all instances of pattern matching are rewritten into (possibly nested) uses of the case statement, where
each pattern is in one of two forms. The first form is that of simple, linear patterns: those of the form
C x0 · · · xn−1 where C is a data constructor with arity n and all the xi are distinct pattern variables. The
second form is the wildcard pattern (written as a single underscore in Haskell), which matches any input.

Once in this form, Haskell case statements can be translated directly into IL case statements. Data
constructor patterns are translated into IL case arms. The tag number of the data constructor replaces its
name, and the pattern variables are replaced by a lambda which binds a product type with the appropriate
arity and types. Occurrences of the pattern variables in the body of the case arm are replaced by projections
from the product. The wildcard pattern (if present), becomes the default branch of the IL case form. If
there is no wildcard pattern, then the translation will insert an error term in the default branch. Table 2
gives an example of a pattern matching translation.

The other major use of products has to do with primitive operations. There are some cases where primitive
operations are best defined to return multiple results. For example, take the case of integer division. It is
possible to implement integer division such that it calculates both the quotient and remainder simultaneously.
If one requires both the remainder and the quotient, it is probably more efficient to calculate both with one
operation than to calculate each separately.

In order to accommodate primitives which return multiple results, we have arranged for all primitives to
be functions from a tuple of arguments to a tuple of results. This means that, in the IL, every primitive
function construct reduces to a tuple containing the results. In the common case where there is only one
result, the tuple will be the unary tuple with only one component. Product projection is used to access the
results.

The unusual kinding rule for term products deserves special mention (see table 5). Notice that the type
rule K-Prod ensures that each type component of a product type has kind ⋆. The reason for this is an
implementation issue. At runtime, all items of the types of kind ⋆ are represented by nodes in the heap
that might be either unevaluated thunks, a partial applications, or constructor nodes. Each such item
can be referenced by using a single word (heap pointer) which gives the address of the item in the heap.
Products, however, are unlifted, and thus are never represented by heap thunks. Because of this, we can
construct a product by simply allocating enough words to hold its components either in the heap (as part
of another object) or on the computation stack. If we force a product to contain only types of kind ⋆ then
we can staticly calculate the amount of space required to represent a product just by knowing its kind. In
particular, we can preallocate space even for polymorphic products. Furthermore, product projections can
be very easily compiled into static offset calculations from the base of the product, which plays nicely into
the stack-machine model which is the compilation target.

As a happy accident, the ⋆ symbol resembles the C pointer operator and can be considered mnemonic for a
data item represented by a pointer to a heap object. The product kind Πi can be viewed as an array of i
pointers to heap objects.

12The difference between lifted and unlifted products is best explained in the context of domain theory. An unlifted product
is one where ⊥ = (⊥,⊥), and a lifted product has an “extra” bottom, so that ⊥ 6= (⊥,⊥). In Haskell, products (AKA tuples)
are just special syntax for a sum-of-products with exactly one sum component. In the IL this is made explicit by translating
Haskell tuples as single-component sums of unlifted products. Thus the sum provides the required “extra bottom.”
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The original Haskell definition

data Either a b = Left a | Right b

filterLeft :: List (Either a b) -> List a

filterLeft Nil = Nil

filterLeft (Cons (Left a) xs) = Cons a (filterLeft xs)

filterLeft (Cons _ xs) = filterLeft xs

The desugared Haskell definition

filterLeft :: List (Either a b) -> List a

filterLeft =

\x -> case x of

Nil -> Nil

Cons p0 xs ->

case p0 of

Left a -> Cons a (filterLeft xs)

_ -> filterLeft xs

The translation into IL$Either
.
= µEither :: ⋆ ⇒ ⋆ ⇒ ⋆. λ̂a :: ⋆. λ̂b :: ⋆. {| 0 : 〈| a |〉, 1 : 〈| b |〉 |};$Left :: ∀a :: ⋆. ∀b :: ⋆. a → ($Either a) b

≡ Λa :: ⋆. Λb :: ⋆. λx :: a. roll[($Either a) b] (&Left0 [0 : 〈| a |〉, 1 : 〈| b |〉] 〈 x 〉);$Right :: ∀a :: ⋆. ∀b :: ⋆. b → ($Either a) b

≡ Λa :: ⋆. Λb :: ⋆. λx :: b. roll[($Either a) b] (&Right1 [0 : 〈| a |〉, 1 : 〈| b |〉] 〈 x 〉);$filterLeft :: ∀a :: ⋆. ∀b :: ⋆. $List (($Either a) b) → $List a

≡ Λa :: ⋆. Λb :: ⋆. λx :: $List (($Either a) b).
case (unroll x)
default (error [$List a] “Match Fail”) of
{ 0 : λp :: 〈| |〉. $Nil [a];
1 : λp :: 〈| ($Either a) b, $List (($Either a) b) |〉.

case (unroll (π0 p))
default ($filterLeft [a] [b] (π1 p)) of
{ 0 : λq :: 〈| a |〉. $Cons [a] (π0 q) ($filterLeft [a] [b] (π1 p));
}

}

Table 2: Example pattern matching translation
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2.3.3 Type-Level Products

In Fω, the types form a term system unto themselves, with the kinds as their type system. In particular, it
is the simply-typed lambda calculus enriched with a small number of primitive forms. Type-level products
are simply another enrichment to this type-level lambda calculus. Type-level products are written using
double angle brackets: 〈〈 〉〉. Like term-products, type-products are unlifted13 and are eliminated by using
a projection operator: π̂i. Type-level products also have a kinding rule that is completely analogous to the
type rule for term-level products. The kind of type-level products is written using double angle brackets
with a vertical line: 〈〈| |〉〉.

As we mentioned in section 2.2, type-products exist primarily as a technical device to simplify the definition
of mutually-recursive data types. Data types that are defined by mutual recursion in the source language are
translated into the fixpoint of a type product. The individual components of the product are then projected
out to obtain the desired data types. Because mutually-recursive datatypes are defined this way, type-level
products interact with recursive type unrolling in a way that may not be obvious at first. When attempting
to unroll a recursive type, one must “look through” type-level projection. The rule UR-Proj from table 5
captures this notion.

2.3.4 Recursive Data Types

In Haskell recursive data types are introduced by using the data or newtype keywords. The data keyword
introduces a new named sum-of-products data type together with its constructors. The newtype keyword
also introduces a new named type, but the new type always has exactly one constructor and is unlifted.
Additionally, the newtype keyword is guaranteed by the language definition to have the same runtime
representation as the wrapped type [32].

Both keywords introduce recursive types because the introduced type name can appear in the definition.
Furthermore, these keywords are the only way to define recursive types in Haskell.

Because Haskell does not grant the ability to define arbitrary recursive types, we can use an iso-recursive
system to model the types rather than the more technically challenging equi-recursive model. In an equi-
recursive model, a recursive type and its one-step unrolling are considered equivalent and the typechecker
is expected to discover this equivalence wherever necessary. In an iso-recursive model, a recursive type and
its one-step unrolling are merely isomorphic and the isomorphism is witnessed by injection and projection
functions which are called “roll” and “unroll,” respectively (or sometimes “in” and “out”). The metatheory
and implementation of iso-recursive type systems are considerably simpler than equi-recursive systems.

For these reasons, we have chosen to implement an iso-recursive system for the IL. The type isomorphism is
witnessed by the roll and unroll syntactic forms, which exist for this purpose. Their treatment in the IL
is standard except that we have extended the contexts in which a type can be unrolled.

The main point of interest concerning recursive types in the IL is the translation from Haskell. A number
of examples of the translation of data declarations where presented in section 2.2, so we shall only touch
on the main ideas. The basic idea is that Haskell data types are translated into a definition of a recursive
sum-of-products. Each data constructor is translated into a function which takes some number (possibly
0) of arguments, wraps those arguments in a product, wraps that product in a sum constructor, and then
wraps the sum constructor in roll. Conversely, pattern matching on a data type is translated into an IL
case statement where unroll is applied to the case scrutinee.

The case for newtype is simpler, but also more subtle. As with data, each newtype declaration is turned into
a recursive type. However, now there is no sum-of-products, only the body of the newtype. The newtype

13Actually, all the constructs of the type-system-considered-as-a-term-system are unlifted because evaluation is strongly
normalizing.
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$x :: t ≡ m

∆ ⊢e $x ⊲ m
(E-Def)

(%x, m) ∈ ∆

∆ ⊢e %x ⊲ m
(E-LetVar)

∆ ⊢e (Λx :: k. m) [t] ⊲ [x 7→ t]m (E-TyBeta)

∆ ⊢e l ⊲ m

∆ ⊢e (Λx :: k. l) ⊲ (Λx :: k. m)
(E-TyLam)

∆ ⊢e l ⊲ m

∆ ⊢e l [t] ⊲ m [t]
(E-TyApp)

∆ ⊢e (λx :: t. m) l ⊲ [x 7→ l]m (E-Beta)

∆ ⊢e l ⊲ m

∆ ⊢e (l j) ⊲ (m j)
(E-App)

∆ ⊢e error [t] msg ⊲ error [t] msg (E-Error)

∆ ⊢e (let { x = l ; } in m) ⊲ [x 7→ l]m (E-Let)

∆ ⊢e l ⊲ m

∆ ⊢e πi l ⊲ πi m
(E-Proj)

∆ ⊢e πi 〈m0, · · · , mn−1 〉 ⊲ mi (E-ProjProd)

∆ ⊢e l ⊲ m

∆ ⊢e seq l j ⊲ seqm j
(E-Seq1)

IsValue( m )

∆ ⊢e seq m j ⊲ j
(E-Seq2)

∆ ⊢e unroll (roll[t] m) ⊲ m (E-UnrollRoll)

∆ ⊢e l ⊲ m

∆ ⊢e unroll l ⊲ unroll m
(E-Unroll)

∆ ⊢e l ⊲ m

∆ ⊢e roll[t] l ⊲ roll[t] m
(E-Roll)

⊢prim f :: (p0, · · · , pn−1) ⇛ (q0, · · · , qr−1)
δf (x0, · · · , xn−1) = (z0, · · · , zr−1)

∆ ⊢e @{ f |@[ p0 ]{ x0 }, · · · , @[ pn−1 ]{ xn−1 } } ⊲
〈@[ q0 ]{ z0 }, · · · , @[ qr−1 ]{ zr−1 } 〉

(E-PrimFunc1)

∆ ⊢e l ⊲ m

∆ ⊢e @{ f |@[ p0 ]{ x0 }, · · · , @[ pn−1 ]{ xn−1 }, l, m0, · · · , mr−1 } ⊲
@{ f |@[ p0 ]{ x0 }, · · · , @[ pn−1 ]{ xn−1 }, m, m0, · · · , mr−1 }

(E-PrimFunc2)

Evaluation is defined by a small-step reduction relation. Taking the reflexive, transitive closure of the small-
step semantics gives the usual reduction relation. In the definition of evaluation, ∆ refers to an environment
which binds reclet variables to their definitions. The environment is enriched when evaluating under reclet,
and is initially empty. Evaluation occurs in the context of a particular module, and the rule E-Def refers
to definitions occuring in the module.

Table 3: Evaluation Rules for the IL, Part 1
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defs ⊢reclet x →֒ x (PL-Var)

defs ⊢reclet @[ p ]{ x } →֒ @[ p ]{ x } (PL-Prim)

defs ⊢reclet $x →֒ $x (PL-Def)

defs ⊢reclet λx :: t. m →֒
λx :: t. reclet { defs} in m

(PL-Abs)

defs ⊢reclet Λx :: k. m →֒
Λx :: k. reclet { defs} inm

(PL-AbsT)

defs ⊢reclet roll[t] m →֒
roll[t] reclet { defs} inm

(PL-Roll)

defs ⊢reclet 〈m0, · · · , mn−1 〉 →֒
〈 reclet { defs} in m0, · · · , reclet { defs} in mn−1 〉

(PL-Prod)

defs ⊢reclet &Ai [t0, · · · , tn−1] m →֒
&Ai [t0, · · · , tn−1] reclet { defs} inm

(PL-Con)

defs ⊢reclet l →֒ m

∆ ⊢e reclet { defs} in l ⊲ m
(E-PushRecLet)

(%x0, m0), · · · , (%xn−1, mn−1), ∆ ⊢e l ⊲ m

∆ ⊢e reclet {%x0 :: t0 = m0; · · · ; %xn−1 :: tn−1 = mn−1} in l ⊲
reclet {%x0 :: t0 = m0; · · · ; %xn−1 :: tn−1 = mn−1} in m

(E-RecLet)

∆ ⊢e l ⊲ m

∆ ⊢e case l default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲
case m default d of { j0 : a0; · · · ; jn−1 : an−1 }

(E-Case)

jx = i

∆ ⊢e case (&Ci [· · ·] m) default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲ (ax m)
(E-CaseArm)

∄x jx = i

∆ ⊢e case (&Ci [· · ·] m) default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲ d
(E-CaseDefault)

∆ ⊢e l ⊲ m

∆ ⊢e primcase[ p ] l default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲
primcase[ p ] m default d of { j0 : a0; · · · ; jn−1 : an−1 }

(E-PrimCase)

jx = γp(z)

∆ ⊢e primcase[ p ] (@[ p ]{ z }) default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲ ax

(E-PrimCaseArm)

∄x jx = γp(z)

∆ ⊢e primcase[ p ] (@[ p ]{ z }) default d of { j0 : a0; · · · ; jn−1 : an−1 } ⊲ d
(E-PrimCaseDefault)

Table 4: Evaluation Rules for the IL, Part 2
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KGood( ⋆ ) (KGood-Star)

KGood( Πi ) (KGood-Prod)

(µx :: k. t) # [x 7→ µx :: k. t]t
(UR-Mu)

s # t

s u # t u
(UR-App)

s # t

π̂i s # π̂i t
(UR-Proj)$x .

= t$x ⊲ t
(TyE-Def)

(λ̂x :: k. t) s ⊲ [x 7→ s]t (TyE-Beta)

π̂i 〈〈 t0, · · · , tn−1 〉〉 ⊲ ti
(TyE-ProdProj)

x ⊲ y

x z ⊲ y z
(TyE-App)

x ⊲ y

π̂i x ⊲ π̂i y
(TyE-Proj)

Γ ⊢k @{| p |} :: ⋆ (K-Prim)

(x, k) ∈ Γ

Γ ⊢k x :: k
(K-Var)

(x, k), Γ ⊢k t :: j KGood( j )

Γ ⊢k (∀x :: k. t) :: j
(K-All)

(x, k), Γ ⊢k t :: j

Γ ⊢k (λ̂x :: k. t) :: k ⇒ j
(K-Lam)

Γ ⊢k t1 :: k1 ⇒ k2 Γ ⊢k t2 :: k1

Γ ⊢k t1 t2 :: k2

(K-App)

Γ ⊢k t1 :: k1 KGood( k1 )
Γ ⊢k t2 :: k2 KGood( k2 )

Γ ⊢k t1 → t2 :: ⋆
(K-Arr)

(x, k), Γ ⊢k t :: j

Γ ⊢k (µ x :: k. t) :: j
(K-Mu)

Γ ⊢k t :: 〈〈| k0, · · · , kn−1 |〉〉

Γ ⊢k π̂i t :: ki

(K-Proj)

Γ ⊢k ti :: ki for all 0 ≤ i < n

Γ ⊢k 〈〈 t0, · · · , tn−1 〉〉 :: 〈〈| k0, · · · , kn−1 |〉〉
(K-TyProd)

Γ ⊢k ti :: ⋆ for all 0 ≤ i < n

Γ ⊢k 〈| t0, · · · , tn−1 |〉 :: Πn

(K-Prod)

ti ⊲ 〈| v0, · · · , vr−1 |〉
Γ ⊢k ti :: ki for all 0 ≤ i < n

Γ ⊢k {| j0 : t0, · · · , jn−1 : tn−1 |} :: ⋆
(K-Sum)

Similar to term evaluation, type evaluation is defined by a small-step semantics. Taking the reflexive,
transitive closure of the above relation gives the usual reduction relation. In the kinding and typing relations,
Γ refers to an environment which binds type variables to their kinds and term variables to their types. As
with the E-Def rule, the TyE-Def rule refers to definitions in scope in the current module.

Table 5: Kinding, Type Evaluation, and Unrolling Rules for the IL
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constructor translates simply into roll and pattern matching on a newtype becomes an application of
unroll. The reason we say that this is subtle is because newtype is rarely used for its ability to create
recursive types. Most newtype (and many data) declarations do not mention the name of the type being
defined. In this case the declaration is trivially recursive. Defining such “non-recursive” types in terms of
explicitly recursive types is a little counter-intuitive, but it means that the translation from Haskell is simple
and elegant. The rule is “all data and newtype declarations create recursive types,” even if the type is only
trivially recursive.

One final point about recursive types bears mentioning. Haskell’s type system contains a mixture of structural
and nominative elements, whereas the type system for the IL is purely structural. The two main features
that define a nominative type system are:� two types with the same name are guaranteed to have the same structure, and� two types with the same structure but different names are not considered equal.

Because we translate the nominal recursive types of Haskell into structurally recursive types in the IL, we
do not need to rely on the first property. Indeed, because our final aim is bytecode verification we should
not rely on this property, since doing so could open an attack vector on the verifier. Nonetheless, a correctly
constructed front-end which produces IL expressions will maintain the structural equality of Haskell types
with the same name. However, without special care, the IL will fail to discriminate between two nominally
different Haskell types which have the same structure, violating the second property.

We could choose simply to ignore this difference. After all, equating two structurally identical types can never
violate memory-safety. On the other hand, a common programming idiom in Haskell is to define abstract
data types by using the module system to hide the data type constructors. This way the programmer can
encapsulate the data type behind an interface, a practice which has well-known software engineering benefits.
If we ignore the nominal difference in the IL, it would be possible for an attacker to subvert such an abstract
data type by creating a structurally identical type in another module and using it as a back door. Such
back-door access to data types could also be used to defeat the guarantees provided by techniques such as
lightweight static capabilities.

Therefore, we must somehow preserve the nominal distinction of Haskell types. The simplist way to do so is
to modify the µ binder slightly so that it carries a label containing the original type name, fully qualified with
the module name. When comparing two types for equality, the labels must match as well as the structure of
the types. Together with sanity checks on modules to prevent name forging and to ensure that the internals
of abstract types are only referenced in their defining module this simple measure should prevent abstract
type subversion scenarios as outlined above.

For the sake of brevity, these extra labels are elided on terms appearing in this paper. However, the name of
the bound variable is consistently chosen to match the type name being defined. As a first approximation,
one could pretend that µ binders do not respect α-equivalence.

2.3.5 Primitives

Rather than spelling out and treating primitive types in the IL, we have decided to parameterize the IL over
an arbitrary “primitive system.” A primitive system is composed of the following items:� a finite set of symbols called “primitive types”� a finite set of symbols called “primitive functions”� for each primitive type, a countable (or finite) set of symbols called “primitives” (The sets of primitives

for each type are not required to be disjoint)� a decidable relation ⊢prim p :: pt which holds iff the primitive p is in the set of primitives of type pt
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(x, t) ∈ Γ

Γ ⊢ty x :: t
(Ty-Var)

(%x, t) ∈ Γ

Γ ⊢ty %x :: t
(Ty-LetVar)$x :: t ≡ m

Γ ⊢ty $x :: t
(Ty-Def)

Γ ⊢ty m :: t2 t1 ⊲ t2

Γ ⊢ty m :: t1
(Ty-Eval)

(x, t1), Γ ⊢ty m :: t2
Γ ⊢k t1 :: k KGood( k )

Γ ⊢ty (λx :: t1. m) :: t1 → t2
(Ty-Lam)

Γ ⊢ty m1 :: t1 → t2 Γ ⊢ty m2 :: t1

Γ ⊢ty m1 m2 :: t2
(Ty-App)

Γ ⊢ty (error [t] “message”) :: t (Ty-Error)

(x, k), Γ ⊢ty m :: t

Γ ⊢ty (Λx :: k. m) :: (∀x :: k. t)
(Ty-TyLam)

Γ ⊢ty m :: (∀x :: k. t) Γ ⊢k t′ :: k

Γ ⊢ty m [t′] :: [x 7→ t′]t
(Ty-TyApp)

Γ ⊢ty m1 :: t1 Γ ⊢k t1 :: ⋆
Γ ⊢ty m2 :: t2 Γ ⊢k t2 :: k KGood( k )

Γ ⊢ty seqm1 m2 :: t2
(Ty-Seq)

⊢prim z :: p

Γ ⊢ty @[ p ]{ z } :: @{| p |}
(Ty-Prim)

Γ ⊢ty m :: v
Γ ⊢k t :: k KGood( k )

t ⊲ u u # v

Γ ⊢ty roll[t] m :: t
(Ty-Roll)

Γ ⊢ty m :: u u # v

Γ ⊢ty unroll m :: v
(Ty-Unroll)

Table 6: Typing Rules for the IL, Part1
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Γ ⊢ty m :: 〈| t0, · · · , tn−1 |〉 0 ≤ i < n

Γ ⊢ty πi m :: ti
(Ty-Proj)

Γ ⊢ty mi :: ti Γ ⊢k ti :: ⋆ for all 0 ≤ i < n

Γ ⊢ty 〈m0, · · · , mn−1 〉 :: 〈| t0, · · · , tn−1 |〉
(Ty-Prod)

Γ ⊢ty m :: t the jh are ordered
Γ ⊢k {| j0 : t0, · · · , i : t, · · · , jr−1 : tr−1 |} :: ⋆

Γ ⊢ty &Ci [j0 : t0, · · · , i : t, · · · , jr−1 : tr−1] m ::
{| j0 : t0, · · · , i : t, · · · , jr−1 : tr−1 |}

(Ty-Con)

⊢prim f :: (p0, · · · , pn−1) ⇛ (q0, · · · , qr−1)
Γ ⊢ty mi :: @{| pi |} for all 0 ≤ i < n

Γ ⊢ty @{ f |m0, · · · , mn−1 } :: 〈| @{| q0 |}, · · · , @{| qr−1 |} |〉
(Ty-PrimFunc)

Γ ⊢ty l :: s Γ ⊢k s :: ⋆
(x, s), Γ ⊢ty m :: t Γ ⊢k t :: k KGood( k )

Γ ⊢ty (let { x = l ; } in m) :: t
(Ty-Let)

Γ′ = (%x0, t0), · · · , (%xn−1, tn−1), Γ
Γ′ ⊢ty m :: t Γ′ ⊢k t :: k KGood( k )

Γ′ ⊢ty mi :: ti Γ′ ⊢k ti :: ⋆ for all 0 ≤ i < n

Γ ⊢ty (reclet {%x0 :: t0 = m0; · · · ; %xn−1 :: tn−1 = mn−1; } in m) :: t
(Ty-RecLet)

Γ ⊢ty m :: {| i0 : s0, · · · , ir−1 : sr−1 |} Γ ⊢ty d :: t
Γ ⊢ty ay :: sx → t forall x, y where ix = jy the jy are ordered

Γ ⊢ty case m default d of { j0 : a0; · · · ; jn−1 : an−1 } :: t
(Ty-Case)

ji ∈ rng(γp) for all 0 ≤ i < n the ji are ordered
Γ ⊢ty m :: @{| p |} Γ ⊢ty d :: t Γ ⊢ty ai :: t

Γ ⊢ty primcase[ p ] m default d of { j0 : a0; · · · ; jn−1 : an−1 } :: t
(Ty-PrimCase)

Table 7: Typing Rules for the IL, Part 2
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� a mapping from each function symbol to a primitive function type, written ⊢prim f :: (p0, · · · , pn−1) ⇛

(q0, · · · , qr−1)� for each function symbol f , an interpretation function δf� for each primitive type pt, an invertible function γpt, which maps the primitives of pt onto a (not
necessarily proper) subset of Z� a proof that whenever ⊢prim f :: (p0, · · · , pn−1) ⇛ (q0, · · · , qr−1) and ⊢prim xi :: pi for all 0 ≤ i < n, then
δf(x0, · · · , xn−1) = (z0, · · · , zr−1) and ⊢prim zi :: qi for all 0 ≤ i < r

For example, let us define a simple primitive system with a few operations on the 32-bit two’s complement
integers. It shall have a single type symbol; let us call it “Int.” This system defines the addition and
subtraction functions on Int; let us assign these functions the symbols + and −, respectively. The primitive
symbols are then just the 32-bit binary sequences. We then set ⊢prim x :: Int whenever x is a 32-bit binary
sequence. We further set ⊢prim + :: (Int, Int) ⇛ (Int). Similar for −. The interpretation function δ+,
unsurprisingly, implements two’s complement addition, and δ− performs two’s complement subtraction.
Finally, we set γInt to be the usual semantic mapping for two’s complement integers. The proof is omitted,
but obvious.

Although the definitions given here are abstract, the basic idea behind a primitive system is actually quite
concrete. The primitive system is intended to be used to allow basic numeric computations be mapped
to actual hardware CPU instructions or to highly optimized special-purpose software libraries. The proof
obligation just says that the types assigned to the function symbols are correct.

The evaluation and typing rules for the IL (found throughout this section) contain references to the items
in the list above. We make the convention that the rules are written with a fixed, albeit arbitrary, primitive
system in mind. In other words, the judgment rules should be read with the primitive system held as an
abstract parameter.

The most interesting syntactic forms dealing with primitives are the primitive function form and the primitive
case form. A primitive function application consists of a function symbol and some number of arguments.
When the value of a primitive function is demanded, the arguments are evaluated in left-to-right order
(although, in truth, the order is arbitrary). When all arguments have been reduced to primitives, the
interpretation function for that primitive function symbol is called, and the primitive function redex is
replaced by a product containing the results. Primitive function applications are always required to be
saturated, but currying can be recovered by introducing lambdas.

The primitive case form is much like the regular case form, but it operates on primitives rather than sum
types. Case arms are numbered, as for the case, but now the indices are drawn from Z rather than the
non-negative integers. They are still required to be ordered. The case scrutinee of a primcase must be a
primitive type. Once the scrutinee is evaluated to a primitive, it is interpreted via the primitive interpretation
function γp, where p is the type of the primitive. Thereafter, evaluation is much the same as for case. If a
case arm matches the interpreted primitive, that arm is chosen; if no arm matches then the default is chosen.
Unlike the regular case, however, no arguments are passed into the primcase arm.

One final point to note is that the primitive type p is attached directly to the primcase syntactic form. This
primitive type is not subject to substitution which makes primcase monomorphic with respect to the type
of its scrutinee. We therefore maintain phase distinction because the primitive type of a primcase is fixed
and appropriate code can be generated at compile-time.

2.3.6 seq and its consequences

Haskell can largely be thought of as a heavily sugared variant of the call-by-name lambda calculus. Indeed,
all of the computational features we have examined thus far are straightforward extensions to the base
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calculus. However, Haskell also includes the seq primitive, which does not correspond to any call-by-name
lambda term. seq is specified by the following equations: [17, 32]

seq x y =

{

⊥ when x = ⊥
y when x 6= ⊥

seq is included in the language to solve a performance problem with Haskell. Because Haskell is a non-
strict language, evaluation of functions is usually delayed until the runtime can determine that the value is
actually needed for the computation. This is a big performance win when expensive, unneeded calculations
are skipped entirely. It is also a win in terms of the expressiveness of the language; interesting algorithms can
be expressed very naturally as the navigation of an “infinite” data structure. However, non-strictness also
has its costs. It sometimes takes significantly more time and space to keep track of a long string of cheap,
delayed computations than it would simply to perform them. Haskell programmers call such situations
“space leaks,” and they are probably the most common performance problem with Haskell programs.

To help deal with the problem of space leaks, the seq primitive function was introduced. Operationally, seq
evaluates its first argument to a value before returning its second argument.14 Using seq in the right places
can cause the compiler to evaluate expressions earlier and allow the garbage collector to reclaim intermediate
results sooner. This effect can significantly reduce the space usage of a program. It can also enable beneficial
compiler optimizations which would otherwise be unsound.

However, seq is not expressible within the call-by-name lambda calculus and so it represents a true increase
in expressive power over the base language. This has a number of unfortunate consequences, including the
loss of sound η-conversion, the weakening of the parametricity theorem for the language, and the weakening
of Wadler’s “free theorems” [17].

Nonetheless, seq is widely regarded as indispensable. It is therefore included as a base syntactic form in
the IL. The evaluation rules E-Seq1 and E-Seq2 give an operational interpretation. One subtle point to
note is that the typing rule Ty-Seq restricts the first argument to have kind ⋆, which means that seq only
operates on lifted data items. Products, because they are unlifted, are excluded.15

As with products and primitive applications, the IL seq form is syntax and must therefore be fully saturated;
again, a curried version is recovered by introducing lambdas. The translation of the seq function from the
Haskell Prelude can be given as:$seq :: ∀a :: ⋆. ∀b :: ⋆. a → b → b

≡ Λa :: ⋆. Λb :: ⋆. λx :: a. λy :: b. seq x y;

2.4 Type Erasure

Haskell is a language with strong static typing which maintains phase distinction [14]. This means that
type information is not needed at runtime and that no value reduction is required for typechecking. A
natural way to compile Haskell is to perform type erasure, which removes all type information once it is no

14Actually, the Haskell Report does not specify that seq have any operational behavior and the description here is an over-
specification. Seq is often implemented in exactly this way, however.

15It may be possible to further restrict seq in order to limit its negative semantic effects. The primary problem with seq is
that it allows one to distinguish between ⊥ and λx :: t. ⊥. If we can structure the kind system so that seq is unapplicable
at function types, we conjecture that we would recover sound η-conversion and parametricity. To do this, we would require a
kind system which distinguishes “ground” types, which have pointed domains, from function types, which would not. To retain
the ability to have polymorphic functions, we would require subsumption in the kind system so that the ground kind and the
function kind are subsumed by ⋆. It is not immediately clear what effect this semantic change would have when pushed back
into Haskell, but it would probably mean that seq would become syntax in the language which would have to be applied to at
least its first argument, rather than being exposed as a special polymorphic function, as it is in Haskell98.
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r ::= Type-Erased Terms

x Term Variable
%x Let-Bound Variable$x Top-Level Definition
λx. r Abstraction
r r Application
error “message” Error
seq r r Seq
@{ p } Primitive
@{ f | r0, · · · , rn−1 } Primitive Function
〈 r0, · · · , rn−1 〉 Product
πi r Product projection
&Ci r Sum Constructor
let { x = r ; } in r Non-Recursive Let

reclet{%x0 = r0 ;
· · · ;
%xn−1 = rn−1 ;

} in m

Recursive Let

case r
default r of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}

Case

primcase[ p ] r
default r of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}

Primitive Case

Table 8: Syntax of type-erased terms

longer needed (sometime after typechecking). Most current Haskell compilers do this at some point; the Yhc
compiler, for example, performs type erasure early and uses an untyped intermediate language for most of
the compilation pipeline. Type erasure is also a natural way to give the dynamic semantics of the language.
For our present aim, we wish to retain type information all the way up to code generation so that it is
available for verification purposes. Nonetheless, a type erasure transformation for the IL holds some interest
for reasons that shall made clear in what follows.

The syntax of type-erased terms is given in Table 8. It closely follows the term syntax of the IL except that
type annotations are removed from binders and forms that deal solely with types are removed altogether.16

The evaluation rules for type-erased terms are omitted for brevity, but they can be straightforwardly gener-
ated from the rules for the IL by removing inapplicable rules and dropping type annotations from binders.
Type erasure is a simple syntax-driven transformation and its definition is given in Table 9.17

To illustrate the effect of type-erasure, consider the following IL definition:$oMu
.
= λ̂A :: ⋆. µX :: ⋆. X → A;$omega :: ∀A :: ⋆. A

≡ ΛA :: ⋆. (λx :: $oMu A. (unroll x) x) (roll[$oMu A] (λx :: $oMu A. (unroll x) x));$omega defines the canonical non-terminating lambda term, decorated with the type annotations necessary
to make it typecheck. The type-erased form of $omega is given by:

[[$omega]] = (λx. x x) (λx. x x)

16One minor exception is the primcase form, which retains some type information. Nonetheless, this maintains phase
distinction and allows type erasure as discussed in section 2.3.5.

17It is our intention to define type erasure so that it commutes with evaluation. A proof to this effect would strengthen our
arguments about type rewrite rules. Some of the unusual rules defining what constitutes a value in the IL derive from the desire
for IL values to be mapped by type-erasure onto type-erased values.
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With the obfuscating type annotations removed, this term should be immediately familiar.

Another way to think about type erasure is to turn the relation around and view it as function from type-
erased terms to sets of IL terms. In this view, we can think of IL terms as type-annotated versions of the
erased terms; let us call such terms the IL terms generated by the untyped term.18 Suppose we are given a
type-erased term x. Let us define the set S to be the set of IL terms generated by x (note that S might be
empty). Let us further define the set Tx = {t | ∅ ⊢ty m :: t and m ∈ S}. Then the set Tx represents all the
types that could be assigned to x. We say that Tx is the types-set of x.

We can more directly define the types-set of a term x as:

Tx = {t | ∃m. [[m]] = x and ∅ ⊢ty m :: t}

Going a step further, we can define a notion of type subsumption based on these ideas. We say that a type
s subsumes a type t iff for every type-erased term x such that t ∈ Tx it holds that s ∈ Tx. The intention
here is that every computation which can be assigned type t can also be assigned type s. Alternately, we
may think of the (type-erased) terms of type s as a set, in which case the set of terms of type s includes the
set of terms of type t (which may give a better intuition for the term “subsumption”).

We write s :> t when s subsumes t.

It should be clear from the definitions that subsumption is both reflexive and transitive, which makes it
a preorder on types. It is not immediately clear whether subsumption in this system is anti-symmetric;
establishing either a positive or a negative result for this question might be an interesting avenue for future
work.

Finally, note that type erasure can be used as a proof device. See For example, Mitchell uses type erasure
and PERs to prove type soundness and confluence properties for F2 [25].

2.5 Type Rewriting Rules

The certificate-checking algorithm presented in section 5 relies on a number of type rewrite rules. These
rules specify transformations that the verifier is allowed to make on the type of a data item. In this section
we justify these rules using the ideas of type erasure and subsumption.

Let σ be a type rewrite rule. We write the application of σ to a type t as σ(t). We say that a type rewrite
rule is valid iff σ(t) :> t for all t where the rule applies. In other words, a rewrite rule is valid iff it rewrites
a type so that every term which can be assigned type t can also be assigned type σ(t).

Note that rewrite rules are partial; they usually require that the type to be rewritten be in a particular form.
The result of applying a rewrite rule to an inappropriate type is undefined. In the verifier, this is treated as
an error.

In order to demonstrate a type rewrite rule is valid, it is sufficient to demonstrate a transformation on typed
IL terms which preserves the type-erased image of the term and sends terms of type t to terms of type σ(t).
For each of the following rules, we shall give such a transformation and discuss why it has the necessary
properties.

The definition of type rewrite rules and term rewrite rules are given as one or more inference rules. Many
rewrite rules are parameterized, and these parameters will be used freely in the inference rules.

18We can easily classify the complexity generating the IL terms of an untyped term as as recursively enumerable. Sequentially
generating all IL terms is trivial. Typechecking is decidable, so we can easily filter all IL terms to only those which typecheck.
We further filter to only those IL terms which have the same type-erasure image as the target term. The resulting list is the
desired list of generated terms. The problem is undecidable because we can trivially reduce the problem of Curry-style System
F typechecking to it, which is known to be undecidable.
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[[x]] = x
[[%x]] = %x
[[$x]] = $x
[[λx :: t. m]] = λx. [[m]]
[[m1 m2]] = [[m1]] [[m2]]
[[Λx :: k. m]] = [[m]]
[[m [t]]] = [[m]]
[[error [t] msg]] = error msg
[[seq m1 m2]] = seq [[m1]] [[m2]]
[[roll[t] m]] = [[m]]
[[unroll m]] = [[m]]
[[πi m]] = πi [[m]]
[[@[ p ]{ z }]] = @{ z }
[[@{ f |m0, · · · , mn−1 }]]

= @{ f | [[m0]], · · · , [[mn−1]] }
[[〈m0, · · · , mn−1 〉]]

= 〈 [[m0]], · · · , [[mn−1]] 〉
[[&Ci [t0, · · · , tn−1] m]]

= &Ci [[m]]

[[let { x = l ; } in m]] = let { x = [[l]] ; } in [[m]]
[[reclet{%x0 :: t0 = m0 ;

· · · ;
%xn−1 :: tn−1

= mn−1 ;
} inm ]]

=

reclet{%x0 = [[m0]] ;
· · · ;
%xn−1 = [[mn−1]] ;

} in [[m]]

[[case m
default d of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}]]

=

case [[m]]
default [[d]] of
{ i0 : [[arm0]] ;

· · · ;
in−1 : [[armn−1]] ;

}
[[primcase[ p ] m
default d of

{ i0 : arm0 ;
· · · ;

in−1 : armn−1 ;
}]]

=

primcase[ p ] [[m]]
default [[d]] of
{ i0 : [[arm0]] ;

· · · ;
in−1 : [[armn−1]] ;

}

Table 9: Type Erasure

2.5.1 Polymorphic Application

This type rewrite rule takes a polymorphic type and replaces it with a specialization. The rewrite rule itself
is parameterized by the type to use for specialization. We write the polymorphic application rule at type s
as PolyAp s.

We require that s be closed, well-kinded type. Let us call its kind k.

Then, the inference rule which defines PolyAp s is:

Γ ⊢k s :: k

∀x :: k. t 7→ ([x 7→ s]t)
(PolyAp)

The associated term rewrite rule is:

Γ ⊢ty m :: (∀x :: k. m)

m 7→ m [s]
(PolyAp-Tm)

In short, the term rewrite rule involves adding a type application. During type erasure type applications are
removed, so this term rewrite rule is clearly erasure-image preserving. It is also not difficult to see that it
has the correct type effect and that the resulting term is correctly typed.

2.5.2 Type-lambda Hoisting

Sometimes a polymorphic type may have a universal binder nested under the right side of one or more
function arrows. We cannot use the PolyAp rule on such types, because the universal binder is not the
outermost construct. However, it is possible to hoist these binders so that they do appear outermost. The
rewrite rule that performs this rewrite is called PolyHoist.

23



t 7→ t′

(s → t) 7→ (s → t′)
(PolyHoist-1)

x /∈ FV(s)

(s → ∀x :: k. t) 7→ (∀x :: k. s → t)
(PolyHoist-2)

The term rewrite rules for PolyHoist are rather verbose, so we shall simply describe them here. The basic
idea that we introduce a new type lambda at the outermost level of the term, binding a new type variable. We
then traverse the original term, finding all maximal sub-terms which have a polymorphic binder outermost.
We then apply these sub-terms to the new type variable.

Because the term rewrite only manipulates type-binding lambdas and type applications, it clearly preserves
the type-erasure image of the term. Although we have not verified the proofs, we conjecture that term
transformation will generate correctly-type terms, and that it will have the desired effect on the types of the
terms.

2.5.3 Polymorphic Multi-application

The above two rules can be combined into a form of multi-application. The type rewrite rule PolyApply

xs, where xs is a list of closed, well-kinded types, indicates a polymorphic rewrite of multiple types. If
the universal binders are all on the outside of the term, then PolyApply simply corresponds to multiple
applications of PolyAp. However, PolyApply will also travel down the right spine of function arrows to
apply polymorphic types.

This rule can be seen as a composition of (multiple applications of) the above two rules, and thus it should
be clear that it is a valid rewrite rule.

This rule is the one actually used by the verification algorithm to deal with polymorphic specialization
because it is the most flexible.

2.5.4 Sum Expansion

In the IL, sum types are essentially finite maps from tag values to types. To correctly type, the only real
restriction on these types is that the one corresponding to the actual tag of the data constructor match the
type of the enclosed data. The types assigned to the other tags are largely irrelevant.

Sum expansion exploits this fact to rewrite sum types by adding new tag values to the sum. The types
assigned to these tags can be any arbitrary valid type. We know this because the actual tag of the data
constructor must be one of the tags already in the sum!

The ExpandSum i t rule is used to add the tag i, with type t to a sum type. The type t can be any type
that results in a correctly typed sum (which essentially means any valid product type).

The ExpandSum rule is defined by:

i′ 6= ix forall x where 0 ≤ x < m

{| i0 : t0, · · · , im−1 : tm−1 |} 7→ {| i0 : t0, · · · , i′ : t, · · · , im−1 : tm−1 |}
(ExpandSum)

The associated term rewrite rule looks almost identical:

i′ 6= ix forall x where 0 ≤ x < m

&Cj [i0 : t0, · · · , im−1 : tm−1] z 7→ &Cj [i0 : t0, · · · , i′ : t, · · · , im−1 : tm−1] z
(ExpandSum-Tm)

24



Again, this term rewrite rule manipulates only portions of the term that are erased, so the rewrite preserves
the type-erasure image. It should also be immediately clear that the rule generates a well-typed term and
that it has the expected effect.

The actual rule used by the verifier is a slight generalization of this one which allows sums to be expanded
by multiple components in one rewrite. It can be straightforwardly defined as multiple applications of the
above rule.

2.5.5 Roll and Unroll

The final two rewrite rules used by the verification engine are closely related. These rewrite rules are used
to witness the isomorphism between recursive types and their unrolling. These rules are used by the verifier
to handle recursive types. During compilation, uses of the IL roll and unroll constructs are turned almost
directly into applications of these rules.

First, we consider the RollType t rule. It is defined by:

t # s

s 7→ t
(RollType)

The corresponding term rewrite rule is:

∅ ⊢ty m :: s t # s

m 7→ roll[t] m
(RollType-Tm)

Next, the UnrollType rule is defined by:

s # t

s 7→ t
(UnrollType)

The corresponding term rewrite rule is:

∅ ⊢ty m :: s s # t

m 7→ unroll m
(UnrollType-Tm)

As before, we only manipulate constructs which are subject to type-erasure, and the rules must therefore
preserve type-erasure images. That the rules generate well-typed terms with the necessary type rewrites is
almost immediate from the definitions.
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3 Compilation Target

In the previous section, we introduced the compiler intermediate language and presented a term-rewriting
operational semantics. However, implementing Haskell programs via term-rewriting has major performance
problems. Better techniques are required.

The most successful and widely used implementation technique for Haskell is based on the idea of the graph
reduction machine, or G-machine. The basic idea behind the G-Machine is that a program is represented
as a directed graph with a distinguished node representing the “root” of the graph. Each node of the graph
is represents a part of the expression being evaluated. Execution proceeds by traversing the graph to find
a reducible sub-expression and overwriting the root node of the entire sub-expression with the result of
the reduction. This process proceeds until the root of the graph represents an irreducible value. See The
Implementation of Functional Programming Languages, chapters 12–15 for an introduction to the topic [31].

The G-machine technique is successful because: the program graph can be naturally expressed in terms
low-level concepts such as heap-allocated memory blocks and pointers, the graph concept lends itself well
to garbage collection, G-machine combinators can be compiled into fixed strings of instructions, and graph
reduction captures the work-sharing aspects of lazy evaluation.

Some Haskell compilers, such as GHC, use the G-Machine model as an intermediate step along the way to
native machine code. Yhc, however, targets a virtual machine that directly implements G-machine reduction.
The Yhc runtime is a combination of a G-machine and a stack-machine model. Combinators are defined using
an imperative, stack-machine bytecode set somewhat like the Java bytecode set, but the overall execution
of the program is directed by graph reduction.

The following sections describe in more detail the how the Yhc runtime executes bytecode programs. Much
of the information in these section is taken from the Yhc documentation wiki: http://www.haskell.org/

haskellwiki/Yhc.

3.1 Yhc Virtual Machine Architecture

At the highest level, the Yhc virtual machine is a von Neumann architecture with special support for graph
reduction. To run a Yhc program, one designates a “main” module. The Yhc runtime finds this module on
disk and loads it into memory. It then finds and loads all the (transitive) dependencies of the main module.
After all program text is loaded, a block of memory of a predetermined size is allocated. This block will
hold both the virtual machine stack and heap.19

The VM has a number of “global registers,” which contain important program state. The most important
of these is the instruction pointer, which keeps track of which bytecode instruction should be executed next.
Registers also exist to keep track of the top of the stack, the location of the current stack frame, and a
variety of other bookkeeping information.

The program stack contains a series of stack frames. Stack frames are pushed when combinators are evaluated
and popped when a combinator finishes executing, in much the same way that stack frames are managed in
a conventional language such as C. Each stack frame contains information necessary to restore the previous
frame, graph node currently being evaluated, and the “working” stack which is manipulated by bytecode
instructions.

The heap contains the program graph and is subject to garbage collection. Just before execution begins, the
runtime builds a heap node corresponding to the main entry point of the program and sets up a stack frame
to evaluate that node. As the program executes, the graph will evolve in the heap. The VM instruction

19Note that the VM stack and heap differ from the stack and heap of the C runtime itself, which are governed by the C ABI.
Unless otherwise stated, the terms “stack” and “heap” shall refer to the VM stack and heap.
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pointer is set to the beginning of the bytecode sequence for the entry point. Execution finally begins when
the runtime enters its main loop and starts to interpret the program bytecode.

3.2 Yhc Heap Layout

The main data structure used by the Yhc runtime is the heap node. Each heap node contains a header
followed by some number (possibly 0) of arguments. The header and arguments are each one machine word
in length. The node header gives the runtime the information necessary to interpret the node arguments
and determine the size of the node.

The node header is a combination of an info pointer and two flag bits. The info pointer is obtained by
masking out the lower two flag bits. The flag bits indicate the node state, which may be one of the following
four states:� 0 – IND This node is an indirection node. It has no arguments and the info pointer points to another

heap node.� 1 – NORMAL This node is a normal node, and the info pointer points to an info node.� 2 – GC Used by the garbage collector (see the Yhc documentation for details).� 3 – HOLE Indicates a node which is currently under evaluation. The info pointer points to an info
node.

Indirection nodes are used whenever it is necessary to “overwrite” a heap node with a new value. Rather
than copy the new value into the old heap node (because it might not fit), an indirection node is used to
point to it. When garbage collection occurs, indirection nodes are removed.

The remaining heap nodes fall into two categories: “constructors” and “applications.” A constructor is
an evaluated data item, such as a primitive integer or a algebraic data constructor. A constructor node
is created when the value is first calculated and remains in the heap until it becomes unreferenced and is
garbage collected. Constructor nodes are immutable and always have state NORMAL. Application nodes
are further broken down into “partial applications” and “saturated applications” (or “thunks”). Partial
application nodes always have state NORMAL. Thunks begin in state NORMAL. If they are required for
evaluation, they enter state HOLE. When the evaluation of a thunk is complete, it is overwritten with its
value, and thus enters state IND.

For constructors and applications, the info pointer will point to an “info node” which has further information
about the node. For constructors, it will indicate if the node is a primitive or an algebraic data constructor.
If the node is an algebraic constructor, it will additionally contain the name, arity, and tag number of the
constructor. Info nodes are shared among all similar constructors. For Application nodes, the info pointer
will point to a data structure describing the function to which the node arguments should be applied.
Function info nodes contain the function’s name, arity and some other housekeeping information. It will
also contain pointers to the function’s bytecode instructions and constant table. For partial applications,
the info node will also indicate how many arguments are still needed to saturate the application.

3.3 Combinator Execution

The heart of the Yhc interpreter is the main loop which evaluates executes the body of combinators. When
the value of a thunk is demanded, a new stack frame is pushed in order to evaluate the application. The
local working stack starts empty and the arguments to the application become available as the combinator
arguments of the current stack frame. Execution proceeds by reading the bytecodes and performing the
associated actions. Some bytecodes may demand the values of other data in the heap. If the value of
a thunk is demanded, a new stack frame is pushed and that thunk is evaluated before the current stack
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frame can continue. When the runtime encounters an instruction that causes a return, the top value on the
working stack is used to overwrite the value of the original thunk. The current stack frame is then popped
and execution proceeds with the next stack frame on the program stack. If the last stack frame has been
popped, execution halts.

The full bytecode set for the Yhc runtime is given in the appendix, along with a description of the behavior of
the instruction when executed. A simplified and abstracted bytecode set is given in Table 10. This simplified
bytecode set is the initial target for IL lowering.
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PUSH i Read the ith value from the stack and push it onto the top.
PUSH ARG i Read the ith argument to this combinator and push it onto the top of the stack.
APPLY Take a partial application off the top of the stack and apply it to the next element

on the stack. Finally, push the new application node onto the stack.
MK CON nm i x Create a data constructor node with the name nm, tag number i, and arity x using

the top x elements on the stack
UNPACK Take the top element of the stack, which must point to a data constructor node,

and push the elements of the constructor onto the stack.
SLIDE x Take the top element off of the stack, pop the next x elements, and then replace

the top element.
POP x Pop the top x elements off of the stack.
ALLOC x Create x “place-holder” nodes and push references to them on the stack.
UPDATE x Overwrite the node pointed to by the x + 1th position on the stack with the top

element of the stack.
RETURN Exit the local procedure and overwrite the current heap node with the value on top

of the stack.
EVAL Evaluate the top reference on the stack. If it is not already a value, a new stack

frame will be pushed.
INT SWITCH l ls ls is a list of (value,label) pairs. Examine the top element of the stack, which must

be an integer. If it matches any value from ls, jump forward to the specified label.
If no value matches, jump forward to l.

LOOKUP SWITCH l ls ls is a list of (tag-value,label) pairs. Examine the top element of the stack, which
must be a data constructor. If the tag value matches any value from ls, jump
forward to the specified label. If no value matches, jump forward to label l.

LABEL l Mark a branch destination.
PUSH FUNC nm Push an reference to the named super-combinator onto the stack.
PUSH PRIM p Push the given primitive symbol onto the stack.
PRIM TO INT pt Take a primitive value off the top of the stack and push it’s integer equivalent onto

the stack, using the γpt function for the given primitive type.
CALL PRIMITIVE f Call the interpretation function for the primitive function symbol f , using the ap-

propriate number of arguments from the top of the stack. Push the return value(s)
onto the stack.

MK BOTTOM msg Create a closure which will abort the program and print the given message when
evaluated.

REWRITE TYPE σ Rewrite the type of the top element on the stack using the given type rewrite rule.
See section 2.5 for information on rewrite rules.

Table 10: The Simplified Bytecode Set
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4 Compiler Implementation

We have implemented a compiler which takes IL as source code and produces certified bytecode as output.
The implementation process occurred in parallel with the design of the IL and certificate checking algorithms;
this helped to uncover errors or omissions in the design. In this section, we shall cover the implementation
strategy at a high level and provide additional details for any parts which are novel or which were especially
tricky to implement. We shall also make special note of how type information travels through the later
stages of compilation, as this process is different from many other compilers which discard type information
before these stages occur.

Our primary aims when developing this compiler were, in order of priority:� to develop a correct implementation,� to develop a modular solution so that each step can be understood and inspected independently, and� to reuse, to the extent possible, techniques from the literature.

An additional meta-goal of this entire project is to try to close the gap between formal type theory and the
practice of compiler construction. Thus, I have attempted to formulate each piece of the compiler with an
eye toward the possibility of formalizing machine-checked proofs of correctness.

Absent from the above list is the goal of producing efficient code. We have purposefully neglected this
important aspect of compiler implementation in order to keep the initial development manageable. Also,
the primary point of interest in this project is the process of code and certificate generation, which works
in much the same way regardless of the presence or absence of aggressive optimization. For these reasons,
any optimizations which are not on the direct compilation path have been avoided, especially those which
require complicated analyses.

The IL compiler can be viewed as three basic parts: the front-end, the lambda-lifter, and the back-end. In
what follows, we shall examine each section in turn.

The implementation of the compiler, certificate checker and a small shell environment for interacting with
the various stages of compilation required slightly less than 10,000 lines of Haskell code, including comments
and whitespace.20 The source, when compressed using gzip, is about 62K. The compiler was written using
minor extensions to the Haskell 98 standard and with heavy reliance on GHC’s standard libraries.

4.1 The Front End

The front-end of the IL compiler has three major tasks: parsing, serialization, and type checking.

Because the IL is an intermediate language, the human-interface concerns which dominate the concrete
syntax design for most languages do not carry as much weight as usual. Therefore, there is little syntax
sugar and no type inference engine to ease the burden of the many type annotations. The concrete syntax of
the IL is designed, as much as possible, to be a direct representation of the abstract syntax. Each construct
of the IL has a distinctive sequence of characters in the concrete syntax. The concrete syntax is designed to
be LL(1) and the parser is implemented using simple recursive-decent techniques from the Parsec parsing
library [20].

Following the implementation techniques of Pierce [36], the internal representation of the IL uses de Bruijn
indices rather than explicit nominal binders. By using a nameless de Bruijn representation, we have avoided
the problems arising from α-conversion. This makes the implementation of capture-avoiding substitution
much easier. Normally, a compiler would not be very concerned about substitution. However, we wished
to use the same program representation to directly interpret IL terms as well as for compilation. Direct

20However, and external projects were used to read and write bytecode and to drive the shell environment.
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interpretation of the IL terms helped us to define the operational semantics of the IL, and gave an additional
way to verify the results of compilation. Using a recursive decent parser makes the process of determining
variable scope and translating named variables to indices very easy. In order to support serialization, IL
constructs which bind variables save the original name of the bound variable.

Serialization is a straightforward affair which involves a simple tree walk of the abstract syntax. The only
interesting part of this process involves disambiguating variables which share a scope and have the same
name. The serializer maintains an environment containing the names of all variables currently in scope, and
it simply adds numeric indices to variables which have the same name as a variable already in scope.

Two different serializers exist: one which produces the concrete syntax of the IL and can be viewed as an
inverse to parsing, and one which produces a representation of the abstract syntax using LATEX macros. This
second serializer is used to produce much of the IL code appearing in this paper.

The final task of the front-end is typechecking. The base algorithm again follows Pierce [36]. The Church-
style calculus enables a simple top-down algorithm which does not require unification. The type-checking
rules given in tables 5, 6, and 7 are nearly algorithmic; this is no accident, because they were transcribed
from the code of the typechecker implementation.

The only point of particular note about typechecking has to do with checking an entire IL module. One
must take care that type definitions do not refer to themselves (directly or indirectly) because this would
allow one to define unrestricted equi-recursive types and destroy the strong normalization property of the
type system. To ensure that this does not occur, type definitions are sorted topologically; if any definition
completes a cycle, the module is rejected.

4.2 Lambda Lifting

The G-Machine is a framework for performing combinator reduction. Although it is possible to compile the
lambda calculus into a fixed set (or basis) of primitive combinators, such techniques tend to generate a large
number of combinators. Instead, modern G-Machine implementations of Haskell compile lambda expressions
into a custom set of combinators. Generating custom sets of combinators tends to produce programs using
many fewer combinators. As program execution time is strongly influenced by the number of combinator
reductions, using fewer combinators is a big advantage.

The combinators generated for the G-Machine are of a special form and are known as “super-combinators”
[15]. The defining characteristics of super-combinators are that they are combinators and that they contain
only sub-expressions which are also combinators.

The process of translating unrestricted lambda expressions into super-combinators is known as lambda-lifting,
and it is a crucial process for most modern Haskell implementations. Lambda lifting involves transforming
an expression into some number of combinator definitions such that no definition contains any free variables.

An additional transformation that is closely related to lambda-lifting is the full-laziness transform. We say
that a reduction technique has full-laziness if every expression is evaluated at most once. This property
is generally regarded as desirable and is a feature of some Haskell compilers, either in full or in a limited
form.21 The full-laziness transform has been associated with lambda-lifting since Huges presented the two
techniques together in a single, unified transformation [16].

However, Peyton-Jones and Lester showed that the full-laziness and lambda-lifting transformations could be
treated separately [33]. The key idea involves replacing maximal free expressions by trivial let expressions
before using a simple lambda lifter. For example, if e is a maximal free expression, then e would be replaced
by let { v = e ; } in v where v is a fresh variable. The let definition is then “floated” outward until it is

21It is sometime desirable to have slightly-less-than-full laziness. If an expression is “small enough,” it may be worthwhile
execute the expression multiple times but avoid memory accesses.
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just inside the innermost lambda that binds one of its free variables. Following let-floating, a simple, näıve
lambda lifter is applied. This combination of transformations ensures the full-laziness property when the
combinators are reduced in a G-Machine.

The IL compiler implements a lambda-lifter by following closely the implementation techniques of Peyton-
Jones and Lester [33]. However, the techniques had to be adapted to our typed setting because the calculus
in the paper was typeless. In most ways the adaptation was straightforward; however, using a typed calculus
did present one major difficulty. During the let-floating phase, it is possible to float a let definition outside
a type lambda which binds one of its free type variables. An expression so transformed will not typecheck.

There are two basic ways to resolve this difficulty. The first is to simply stop floating a let definition
as soon as it hits either a term or a type lambda which binds one of its type or term variables. This
solution is unsatisfactory because it compromises the full-laziness property to no advantage and can lead
to asymptotic slowdown of the compiled programs. The second solution, which is employed in the IL
compiler, is to abstract over free type variables when transforming maximal free expressions into let bindings.
For example, if an expression e contains the type variable a with kind k, then e would be replaced by
let { v = Λb :: k. [a 7→ b]e ; } in v [a] where v and b are fresh variables. This allows the let definition to
float over the type lambda which binds a and still typecheck properly.22

Unfortunately, we cannot simply abstract over all free type variables in expressions we wish to float. Instead
we must abstract only the type variables bound by type lambdas over which the expression will actually
have to float. Otherwise, typechecking will fail in some cases.

The problem is that term-lambda-bound variables may have types which contain free type variables. How-
ever, there is no way to abstract the free type variables in the type of a term variable once it is bound.
Thankfully, if such a term variable appears in a maximal free expression, it is impossible to float over the
type lambda which binds the free type variable (because the type lambda must appear outside the term
lambda, and we will stop floating once we reach the term lambda).

In order to make sure we only abstract over the required type variables, extra information about which
type variables are bound inside which term lambdas needs to be maintained during maximal free expression
identification. This complicates the analysis somewhat.

Happily, the identification of maximal free expressions and the handling of free type variables is the only
significant complication. Implementing the the näıve lambda lifter was completely straightforward. We
found that the modular approach advocated by Peyton-Jones and Lester helped tame the complexity of the
typed lambda lifter. If one were required to incorporate all of the minor changes required as well as the large
change discussed above into a single monolithic transformation, it would quickly become difficult to manage.

4.3 Code Generation Stage 1

With lambda-lifting completed, the original IL code has been transformed into super-combinators. In this
form type and term lambdas appear only as the outermost constructs of a definition. At this point, we strip
off the lambdas and instead think of variables as being bound “by the combinator.” We call the number of
term lambdas that are absorbed into the combinator definition in this way the combinator’s “arity,” and it
represents the number of parameters that must be supplied to the combinator before it can be reduced.

Now that free variables and lambdas have been removed from super-combinator definitions, it becomes
possible to assign a specific sequence of stage 1 G-Machine bytecode to each syntactic construct of the IL.
The stage 1 bytecode set is fairly small, and has been reproduced in full in table 10. Like the IL, stage 1
bytecode operates on explicitly-typed data. Unlike the IL, however, the type of a data item is not unique,
in much the same way a type-erased IL term can sometimes be assigned multiple types. Thus, there is an

22Interestingly, this transformation also tends to introduce large amounts of higher-rank polymorphism. This transformation
would be impossible if one instead used an IL which lacked rank-n polymorphism.
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explicit instruction for manipulating the types of expressions on the program stack, called REWRITE TYPE.
The argument to this instruction is a type rewrite rule. These rules are each each related to a syntactic
construct of the IL which manipulates types. See section 2.5 for more details about these rewrite rules.

All of the remaining IL constructs can be translated in a straightforward way into the computational in-
structions of the stage 1 bytecode. Below we highlight some of the interesting points of this transformation
process.

The translation of term variables is perhaps the trickiest part of this process because it interacts strongly
with the translation of term products and the let and reclet constructs. The basic idea is that each variable
is either a lambda-bound variable, a let-bound variable, or a reclet-bound variable. Each lambda-bound
variable is translated into a reference to one of the super-combinator parameters via the PUSH ARG instruction.
let and reclet expressions are translated by first building the right-hand-side expressions on the stack and
then translating the body. References to the bound variables are translated into references to specific stack
locations via the PUSH instruction. The argument or stack position of each variable is tracked by using an
environment which maps each de Bruijn index to an argument or stack position.

However, keeping track of the environment is complicated by term products. We wish term products to
have no explicit runtime representation, so products are organized as contiguous arrays of either combinator
parameters or stack positions. For example, an expression such as λx :: a. λy :: 〈| b,c,d |〉. · · · will be
translated into a combinator with four parameters where x is bound to the first parameter and y bound to
the second, third and fourth parameters. Products built on the stack are similarly organized into contiguous
sequences of stack slots. The nice thing about this organization is that product projection is translated very
simply as an offset calculation from the base of the product.

Fortunately, we have anticipated this problem by designing the kind system to differentiate products from
other sorts of data. We can use the kind of an expression to drive its bytecode translation. Our de Bruijn in-
dex environment must simply maintain the base location of each variable and its kind. From this information,
the correct argument or stack location can be calculated without difficulty.

References to top-level bindings are directly translated into PUSH FUNC instructions. Term application is
handled by first building the right side of the application on the stack, then the left side, and finally emitting
the APPLY instruction. This has the effect of building all the arguments to a string of applications on the
stack with the rightmost arguments on the bottom and then emitting multiple APPLY instructions in a row.
In later stages, these multiple APPLY instructions will be translated into more efficient instructions which
can apply multiple arguments at once.

The translation for case expressions involves three basic steps. First, code is generated for the case scrutinee.
The scrutinee is then EVALed to force the scrutinee expression to weak head-normal form. A LOOKUP SWITCH

expression is then emitted which will cause the G-Machine to branch based on the tag value of the scrutinee
expression. Next, code is emitted for each case arm. This involves emitting a LABEL at the start of each arm
and an UNPACK instruction to make available the product components of the sum expression. These values
are then applied to the body of the case arm. Finally, the default branch of the case is emitted. This involves
emitting a default LABEL, POPing the case scrutinee value, and then emitting code for the default branch.

During this stage, the primitive system is uninterpreted and is translated into the place-holder instructions
PUSH PRIM, PRIM TO INT and CALL PRIMITIVE.

The seq syntactic form is handled easily by the G-Machine environment. All that is required is to first
generate code for the first argument to seq and then emit the EVAL instruction. After the EVAL returns, the
result is popped off the stack and evaluation continues with the second argument.

The most complicated translation is that of reclet expressions. Local recursion is modeled in the G-
Machine by creating program graphs which contain cycles. This requires some way to reference a part of the
heap before its definition has been completed. The way this is handled is by using the ALLOC and UPDATE

instructions. ALLOC reserves space in the program heap, but leaves it uninitialized, and pushes a reference
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to this space on the program stack. The UPDATE instruction is used to overwrite the value of an uninitialized
heap location. To translate reclet we first ALLOC a location for each right-hand-side. We then generate
code for each RHS in turn. Once a RHS has been generated, we use UPDATE to overwrite the heap node we
reserved for the purpose. Once all the reclet definitions have been created, we can proceed to generating
the body of the reclet.

The final point of note about stage 1 code generation is that the control flow graph of the generated bytecode
is completely tree-structured. There are two factors that contribute to this. First, the two control-flow
instructions LOOKUP SWITCH and INT SWITCH only allow forward jumps. This forces the control-flow graph
to be acyclic. However, we additionally enforce tree-structure by performing a lightweight continuation-
passing-style transform as byte code is being generated. The CPS transformation causes any code generation
patterns that would otherwise generate joins in the CFG to instead cause duplicated code patterns to be
generated underneath case arms. While this might not be strictly necessary, it simplifies later analyses
greatly. Furthermore, the potential for code duplication is rather small because the lambda-lifting phase
tends to cause large functions to be broken down into much smaller pieces.

4.4 Code Generation Stage 2

There are three major changes that occur during the translation from stage 1 to stage 2. Stage 1 code
generation targets a G-Machine which explicitly manipulates types during execution, similar to the way
System F has explicit reduction rules relating to types. During the translation to Stage 2 code, we remove
all REWRITE TYPE instructions from the code stream to target a typeless G-Machine. If we were doing type-
erasure, we would simply forget this type information. However, we are instead interested in doing “type
segregation,” where the type information is retained, but separated from the computational information.
This separated type information becomes the type certificate. Certificates are discussed in more detail in
section 5.

The second major change is that stage 2 bytecode has a baked-in primitive system corresponding to the
capabilities of the Yhc runtime, whereas stage 1 bytecode is still conceptually parameterized over an arbitrary
primitive system. Thus the stage 2 translation must map the generic primitive instructions of stage 1 onto
stage 2 instructions corresponding to specific primitive operations. This means that the transformation
from stage 1 to stage 2 bytecode is itself parameterized by a set of functions that translate the PUSH PRIM,
PRIM TO INT and CALL PRIMITIVE instructions into sequences of stage 2 instructions. These additional
transformation functions are what implement the primitive system in the compiler.

The third major change involves compressing sequences of stage 1 APPLY instructions into single stage 2
instructions. The primary reason for this change is efficiency of the generated code. APPLY is an expensive
operation that involves a check for sufficient heap space,23 the allocation of space for a new closure, and the
copying of all the arguments of the previous closure to the new one. It is therefore desirable for the final
code to contain as few APPLY instructions as possible.

The first and most simple way to compress APPLY instructions involves adding a numeric argument. This
argument indicates how many stack items to apply. The stage 2 instruction APPLY x is equivalent to x
stage 1 APPLY instructions in a row. However, at run-time, it will only perform a single free space check
and only allocate a single new closure. The second way to compress APPLY instructions is to remove them
altogether. Whenever a sequence of APPLY instructions immediately follows a PUSH FUNC instruction, we
can eliminate some or all of the following APPLYs. If there are at least as many APPLYs as the arity of the
function, we can simply create a new, saturated application to the named function all at once using the new
stage 2 MK AP instruction. This instruction only allocates the closure once, and does not require a free space

23The APPLY instruction is special, in that is the only instruction apart from NEED HEAP that causes a free space check and
may trigger garbage collection. The reason for this is that it is not possible to staticly determine the amount of space required
by an APPLY instruction. The amount of space required is a function of the arity of the underlying super-combinator, but this
information is not captured by the type system and so requires a run-time check.
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check. If there are fewer APPLYs than the arity of the function, then we use the MK PAP instruction, which
create a partial application to the named super-combinator using as many arguments as are available. Like
MK AP, MK PAP does not require a free space check. Unfortunately, this compression of APPLY instructions
complicates type certificate construction. Section 5.2 discusses these complications.

4.5 Code Generation Stage 3

The third stage of code generation takes care of the final few details required to target the actual Yhc
bytecode instruction set. This primarily involves generating “constant tables” and converting label references
to jump offsets. The Yhc bytecode format associates with each super-combinator definition a constant table,
which is just a list of constants referenced in that combinator. Function names, constructor names, numeric
constants and string constants are all referenced via the constant table. Where stage 2 code has instructions
like PUSH INT and PUSH STRING, stage 3 code simply has the single instruction PUSH CONST, which references
the constant table. Also, stage 2 instructions which take names, like MK AP and MK CON, reference the constant
table instead in stage 3.

Both of these transformations are simple and have no particular theoretical interest; they relate merely to
details of the particular file format decision made by Yhc. For this reason, we shall not discuss these matters
in detail.
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5 Certificate Creation and Checking

The full type certificate required for verifying a bytecode module consists of the following items:� the definitions of all type synonyms used in the module,� the type and arity of each super-combinator in the module, and� for each super-combinator in the module, a list of rewrite rules to apply after each bytecode instruction

The type synonym definitions are retrieved directly from the IL module and need no further processing.
Type information about each super-combinator is available as soon as the lambda-lifting phase is complete.
The lists of rewrite rules are extracted during the translation from stage 1 to stage 2 bytecode. This process
will be explained in more detail below.

At the highest level of detail, verification follows these steps:� Ensure that all identifiers refer to type synonyms, functions or data constructors (as appropriate) that
are in scope.� Ensure that type synonym definitions are acyclic.� Ensure that each type synonym defines a closed type and that it kindchecks.� Ensure that the module does not reference unsafe primitives or foreign code via the Foreign Function
Interface.� Ensure that each super-combinator is assigned a closed type which kindchecks and that is has at least
as many function arrows as its arity.� Check that the bytecode for each super-combinator actually implements a function of the given type.

Except for the final step all these steps are essentially sanity checks to make sure the module and its certificate
are properly formed and do not require access to the bytecode stream.

Note that we disallow access to to runtime primitives and to foreign functions. This is because there is no
good way to ensure that primitives and foreign code are used safely; we simply cannot allow untrusted code
access to unsafe mechanisms that might be misused. We must relegate access to such facilities to trusted
modules and only make them available to untrusted code via safe APIs if we are to achieve the desired
security benefits.

5.1 Verification by Abstract Interpretation

The final step of verification is the most complicated and also the most interesting. Our task is to ensure that
a collection of recursive function definitions have the types specified in the certificate. To do this we examine
each super-combinator definition in turn. We proceed by first assuming that all references to combinators
in the bytecode sequence have the types given in the certificate. We then verify that, under the assumptions
we have made, the bytecode sequence accepts the correct number of arguments of the correct types and all
paths through the control flow graph end by returning a result of the expected type. If all bytecode sequences
in the module have their expected types, then verification succeeds and we conclude that super-combinator
definitions have the types stated in the certificate.

We can view this procedure as automatically verifying a proof. The proof we wish to verify is the statement
that all super-combinators perform computation that corresponds to the types given in the certificate. This
proof proceeds by induction over the ascending Kleene chain that forms the semantics of the recursive function
definitions. The base case of the proof is always trivial because the least element of the semantic domain
corresponds to the non-terminating computation, which can be assigned any valid type. The verification
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procedure corresponds to the inductive step of the proof with the super-combinator type definitions forming
the induction hypothesis.

The core of the verification algorithm involves using abstract interpretation to fully elaborate the type of
each item on the local execution stack. At the beginning of the execution of a super-combinator, the local
stack is always empty. Each legal instruction in the bytecode sequence may have some effect on the local
stack. For example, instructions like PUSH ARG and PUSH CONST add new items to the top of the stack, while
instructions such as POP and SLIDE remove items from the stack. Some instructions also have preconditions
that must be true before they can execute. For example, the ADD W instruction adds two primitive integers;
for it to execute properly, there must be two fully-evaluated primitive integers on the top of the stack.

To perform verification, we first allocate an array to hold the results of the abstract interpretation with one
location for each program point (the spaces between bytecode instructions). The information tracked is: an
abstract representation of the stack, consisting of a stack of types and their status codes; the amount of
heap space reserved; and the status of the arguments. A stack slot may have one of the following four status
codes: Normal, Evaluated, Uninitialized, or Zapped. An argument may be either Normal or Zapped. The
meanings of these status codes are explained below. The first location in the array is initialized with an
empty stack, 0 reserved heap space, and with all arguments in the Normal state.

The array is then filled out by stepping down each bytecode instruction in order. If an instruction is at
position i, then the information at location i in the array corresponds to the abstract state of the G-Machine
before that instruction executes. Given the previous state and the instruction, we calculate values of all
possible next positions and fill in those locations in the array. For most instructions, this will simply be
the next location, i + 1. Control flow instructions, however, may affect several locations in the array, and
the RETURN instruction affects no other locations because it signals the end of the control flow for the local
procedure.

Many instructions have preconditions that must be true for correct execution. As a simple example, the
instruction POP 2 requires that the stack contain at least two items. If the precondition for an instruction is
violated, then the array is filled with an error symbol rather than a valid next state and verification will fail.
The preconditions and stack effects for most instructions are readily apparent from a description of their
function. A brief description of the stack effect of each instruction is given in the appendix. However, the
more subtle cases will be discussed in detail below.

5.2 Incorporating Type Rewrite Rules

Now that we have laid out the basic ideas of the verification algorithm, the function of the type rewrite rules
can be explained. As we have mentioned, each bytecode instruction is paired with a (possibly empty) list
of rewrite rules. After the stack effects of an instruction have been calculated, (but before the new state is
written into the array) the rewrite rules for that instruction are applied, in the order they are listed, to the
top item on the stack. The rewrite rules always transform a type into a more specific or isomorphic type
and are therefore safe to apply at any time. As with instruction effects, rewrite rules can fail if applied to
invalid types. If this occurs, we once again write an error symbol into the array and verification will fail.

However, there is one problem with this scheme. Because we compress multiple APPLY instructions into fewer
during stage 2 translation, it can happen that type rewrite rules appearing between consecutive APPLYs get
“squeezed” out. These rules cannot simply be appended to the resulting instruction because these inner
rules are supposed to operate on the intermediate closures that we now avoid creating.

Because of the constraints of the type system, the only type rewrite rules that can appear between two con-
secutive APPLY instructions are the PolyApply rule and the UnrollType rule. If we encounter an UnrollType

rule, we simply break the compression process and emit two APPLY instructions, with the unroll rule attached
to the first. We anticipate that this will occur infrequently and that the performance implications will be
low. However, we expect that the PolyApply rule will often be intermixed with the APPLY instruction. It is
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important to be able to handle this case without interrupting the APPLY compression. Therefore, in addition
to the normal list of rewrite rules attached to each instruction, we also attach a list of types at which to
instantiate polymorphic parameters. This list is required to be empty for all instructions except APPLY,
MK AP and MK PAP. For these instructions, we use the attached types to specialize universal types appearing
in the function before arguments are consumed from the stack. After arguments are consumed, type rewrite
rules are applied as usual. This correctly emulates the behavior of the typeful stage 1 G-Machine.

5.3 The Role of Status Codes

We have thus far described how an abstract representation of the types on the stack at each program point
are calculated. However, some instructions require some additional preconditions that are not captured
by the type system. This extra information is tracked by the “status” of each stack slot. The “Normal”
status indicates that we have no particular knowledge about the given data item. It is the default status.
The “Evaluated” status indicates that we know the data item has been reduced to weak head normal form
(WHNF). The “Uninitialized” state is state is assigned to items on the stack that were created using the
ALLOC instruction, and will be discussed below. The “Zapped” state is used to indicate stack items that the
compiler has determined will not be used again. Zapping will also be discussed below. As mentioned above,
combinator arguments may have either the “Normal” or “Zapped” states.

Data with any status except “Zapped” may be the target of the EVAL instruction, which is used to instruct
the G-Machine to evaluate the targeted data. After EVAL, the status is set to evaluated. Instructions which
actually examine the contents of a heap node (such as INT SWITCH and FROM ENUM) or perform primitive
operations (such as ADD W) require their arguments to be evaluated.

In order to improve the space-behavior of programs, the Yhc bytecode set includes instructions that can
“zap” stack or argument slots to indicate that they will not be used in the future. When a stack or argument
slot is zapped it is replaced with a dummy pointer, and accessing that location generates an error. The
compiler inserts zaps in certain situations where it can staticly determine that data will no be accessed again
in the current local procedure. The hope is that data references will be removed from the root set and that
the garbage collector will therefore be able to reclaim memory sooner. Without zapping, many programs
would have significantly worse space behavior than expected.

When done correctly, zap instructions are only added in places where they will not affect program execution.
During verification, we check to ensure that this is true. When a location on the stack or an argument is
zapped, its status is set to reflect this. If that location is accessed by later instructions, the verifier will flag
this as an error.

The “Uninitialized” status exists to curb the use of a potentially dangerous instruction, UPDATE. The UPDATE
instruction tells the G-Machine to overwrite a heap location with the data item on the top of the stack. This
instruction is used in concert with ALLOC to implement reclet, as discussed in section 4.3. However, if its
use was unchecked UPDATE could be used to break referential integrity by overwriting arbitrary heap nodes.

In order to prevent the unsafe use of UPDATE, we restrict it so that only data items with the status “Unini-
tialized” can be overwritten. The only way to create uninitialized data is to use the ALLOC instruction. Once
a location has been overwritten, its status is set to that of the data with which it was overwritten. Thus,
heap locations created by ALLOC have a one-shot ability to be overwritten by UPDATE.24

Finally, note that the status codes record staticly-known information about the stack or argument pointer
itself, and not information about data in the heap. If a stack slot has status “Evaluated” then it is a pointer

24We could additionally require that all uninitialized data be overwritten so that it does not “leak.” It should be sufficient to
require that no combinator return with uninitialized data on the stack and prevent uninitialized data from being evaluated or
from being removed from the stack. However, we have not done this in our implementation. The Yhc runtime treats uninitialized
data in a way very similar to data created using the error primitive. Preventing uninitialized data from escaping, therefore,
does not gain anything in terms of safety and we decided to forego the extra effort required to implement this restriction.
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which is known to point to evaluated data. There is no contradiction, for example, if one has two pointers
to the same heap data with different status codes. Also, there is no heap data associated with a “Zapped”
pointer. A zapped pointer is much like a null pointer in C; it does not point to valid data.

5.4 Managing Reserved Heap Space

There are a large number of Yhc instructions that require heap allocation. It is important that the runtime
be able to manage its heap efficiently. The default runtime for Yhc is written in C and manages its heap using
a single pointer. The pointer begins at the base of the heap and indicates the next available free location.
When space is allocated, the pointer is incremented. The heap runs out of space when the next allocation
would drive the heap pointer into the space occupied by the program stack. When this happens, the garbage
collector is run to compact the heap. The heap pointer is reset to just beyond the end of the compacted heap
and execution continues. If the garbage collector cannot reclaim enough memory, the program immediately
aborts.

While checking for sufficient heap space is a cheap operation, it is still not free. If each instruction that
performed allocation were required to check for free space, it would incur a significant performance penalty.
Instead, Yhc requires the compiler to insert NEED HEAP instructions in the bytecode stream. A NEED HEAP

instructions “reserves” some amount of heap space for instructions that follow it. If the required amount
is not available, the garbage collector is run to compact the heap. This allows allocating instructions to
perform unchecked heap allocations.25 The amount of space to reserve can be calculated using a simple
static analysis of the bytecode.

If insufficient space is reserved, it is possible for allocations to overwrite other areas of memory. Because
of the way Yhc’s memory is laid out, this would involve overwriting parts of execution stack.26 While the
behavior would probably be difficult to predict, it might still be possible to construct an exploit. It would
certainly be possible to crash to runtime or to cause erratic behavior.

To prevent these problems, we track the amount of reserved heap space while doing verification. NEED HEAP

instructions increase the amount of reserved heap space and all instructions that perform allocation decrease
it. If the amount of reserved heap minus the current height of the stack ever falls below 0, then validation
fails.

5.5 Control Flow with Type Rewrite Effects

Most instructions have very straightforward abstract effects. All straight-line (i.e., non control-flow) in-
structions only affect the immediately following program point, and most have simple effects. The PUSH

instruction, for example, copies the type and status of an item further down in the stack onto the top and
the ZAP STACK and ZAP ARG instructions set the status of a stack or argument location to “Zapped.” Some
instructions, however, have more subtle effects on the abstract state.

By far the most complicated instructions, in terms of their abstract effects, are TABLE SWITCH and LOOKUP SWITCH.
The TABLE SWITCH instruction is really just a compressed special case of the LOOKUP SWITCH, so we will con-
centrate on the more general LOOKUP SWTICH. Both instructions work by examining the top item on the
stack (which must be a data constructor) and branching based on the value of the constructor’s tag. These
instructions are used in the translation of the case statement. LOOKUP SWITCH takes two arguments: a jump
target for the default branch and a list of tag-jump pairs. If the tag of the examined data item matches one
of the tags in the list, then the G-Machine jumps by the appropriate amount. If no tag matches, the default

25The APPLY instruction is a special case that always causes a free space check.
26Note that because the execution stack is organized to grow toward the heap, we must reserve enough space for the current

stack frame as well as all heap allocations.
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branch is taken. In order for these instructions to execute correctly, the item being examined must have a
sum type and it must have the Evaluated status.

The unusual thing about the TABLE SWITCH and LOOKUP SWITCH instructions is that they rewrite the type
of the examined data item to reflect the knowledge gained by examining the data constructor’s tag. For
example, if one examines a data item with the type {| 0 : A, 1 : B |} and discover that the constructor tag
is 0, then the type type {| 0 : A |} can be safely assigned to the data item instead. Thus, whenever a tag
is matched and a branch followed during verification, the sum type is restricted so that it only contains the
variant corresponding to the observed tag. If the default branch is taken we leave the type unchanged.27

This type rewrite is necessary to correctly handle the bytecode sequence that arises from the translation
of pattern matching. The first instruction that occurs after branching off of (a non-default arm of) a
TABLE SWITCH or LOOKUP SWITCH instruction is the UNPACK instruction. UNPACK takes the encapsulated
pointers out of a data constructor and pushes them onto the stack. The only way we can predict the effect
UNPACK will have is to know the number and types these pointers. We have this information exactly when
the type being unpacked is a sum type with exactly one variant, and type of this form are therefore required
for UNPACK.

27We could rewrite the type to remove variants that we know are not in the sum. However, there does not currently seem to
be any advantage to doing so, and we have opted for the simpler method.
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6 Background and Related Work

In previous work, Leroy lays a formal foundation for secure applets and demonstrates how a static type
system can be used to enforce security policy in an applet container [21]. The basic ideas laid out in that
paper provide much of the motivation for this work.

Bytecode verification has been present in the Java runtime systems since its inception in the early 1990’s.
The verification algorithm is specified using prose in The Java Virtual Machine Specification [23]. However,
because the process is rather tricky, a number of researchers have attempted to formalize the Java verification
problem and prove the correctness of verification algorithms. Initial work focused on the most difficult areas
of the Java verification problem, the handling of subroutines and object initialization [39, 8]. Freund and
Mitchel followed up by expanding the type systems developed for the subroutine and object initialization
problems into a system capable of handling almost all aspects of the Java verification problem [7]. In his
doctoral thesis, Klein presented a system with similar scope which he formally verified in a theorem prover
[19]. Klein’s system differs from previous work (and is similar to ours) in that he focuses on a verification
system using certificates (which he calls “lightweight verification”) rather than performing type inference at
verification time.

Although early implementations of the Java verifier had some problems [5], verification has largely been
successful at its task, and Java’s security record is quite good. To the best of our knowledge, the basic idea
of verification as a type-checking static analysis on bytecode originates with Java.

We cannot directly reuse previous work on Java bytecode verification because the execution model of Haskell
is so different from that of Java. While the Yhc bytecode set is stack based (like Java), it is also based on
combinator graph reduction (unlike Java). Graph reduction is designed specificly to deal with the issues
of implementing functional languages with lazy semantics. Furthermore, the type system of Haskell is
much richer than Java’s, which makes verification more difficult. In particular, Java does not have first-class
functions, a major feature of Haskell. The type system for Java bytecode also lacks parametric polymorphism.

Furthermore, Yhc bytecode differs from Java bytecode because it contains only forward branches. Thankfully,
this difference simplifies the problem. With no backward branches, all bytecode control flow graphs will be
acyclic. A major component of Java’s bytecode verification system is Kildall’s algorithm [4]. Kildall’s
algorithm is a fixed-point calculation over a control flow graph and has worst-case time complexity O(n2),
where n is the length of the bytecode sequence [9]. This fixed-point calculation is required to deal with
loops (backward branches) in Java bytecode. Because Yhc only has forward jumps, we do not need Kildall’s
algorithm but can instead rely on a linear time algorithms.

Starting in September 2005, the Yhc project has been working on a Haskell implementation which consists
of a bytecode compiler and interpreter. The Yhc project got a head start by reusing the NHC compiler.
The back-end of the NHC compiler was modified to emit the newly-designed Yhc bytecode format and a
stand-alone bytecode interpreter was written in C to execute the compiled programs.

NHC is also a bytecode compiler [37], and its bytecode instruction set was a starting point for the development
of the Yhc instruction set. However, NHC does not have a stand-alone bytecode file format. Instead, NHC
emits C code which contains the bytecode stream as static data. This generated code is compiled together
with the runtime using a C compiler to create the final executable.

The principal developers of the Yhc project have not addressed the issues of bytecode verification. This is
because the focus of the Yhc project has not been on “mobile” code, the primary use-case where verification
becomes compelling. Instead, the focus has largely been on portability, fast compilation, and debugging
tools. However, with the addition of a secure bytecode verifier, the Yhc project could easily form the basis
of a trustworthy applet and distributed code execution platform.

The Yhc compiler and interpreter are both functional and implement the vast majority of the Haskell 98
standard. The Yhc bytecode interpreter is a stand-alone program that does not rely on the compiler proper.
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Thus the Yhc bytecode interpreter makes an excellent compilation target for this project.

The present work shares some similarities with typed assembly language [26, 27]. However, work on TAL
differs from this work because it focuses on the call-by-value evaluation model of the ML family of languages,
and because it deals with a lower-level instruction set, more akin to actual machine instruction sets. However,
as some Haskell compilers do compile to native machine code, it might be interesting to investigate the
possibility of mapping the certified G-Machine bytecode which is the target of this work down to some form
of typed assembly language. This would allow a completely typed compilation pipeline all the way down to
machine code.

Bytecode verification is also related in spirit to proof-carrying code [29, 28]. It should be possible to recast
the current work using the framework of PPC. However, the current formulation is easier to understand and
implement than an alternate system utilizing the PPC framework, which employs a complete dependently-
typed theorem verification engine. Because PPC is a very general framework, utilizing it requires a through
understanding both of the PPC system itself and of the specific problem at hand. Nonetheless, relying on
a well-tested, general-purpose theorem proof framework is also a strength. Now that the issues concerning
typed G-Machine bytecode have been explored, it may be worthwhile to investigate reformulating the present
work using the PPC framework.

Objective Caml is a widely-used variant of ML which has implementations of both bytecode and native
machine code compilers. Although Meange sketches a design for an Objective Caml bytecode verifier, it
has not, to our knowledge, been implemented [24]. The design so sketched is similar to the present work in
the high level ideas. However, Objective Caml is a call-by-value language and thus its bytecode instruction
set shares few similarities with the G-Machine. Another major difference is that the author suggests using
unification during verification rather than using explicit type rewrites as we do. Relying on unification is
problematic because unification in the presence of Fω-style impredicative polymorphism is almost certainly
undecidable.28 Although compiling Haskell via translation to intermediate representations based on System
Fω is not strictly necessary, it is very convenient; working in a calculus with a weaker type system would
make compiler construction considerably more difficult. In particular, our solution to the problem of typed
labmda lifting would be impossible.

Govindavajhala and Appel have studied the possibility of circumventing security schemes based on static
analysis (as ours is) by inducing memory errors in the hardware of the host machine [12]. If one has physical
access to the host machine, it is possible to induce memory errors by, for example, subjecting the machine
to heat outside its normal operating range. It is possible to construct programs which can take advantage
of such memory errors and compromise the machine with high probability. Fortunately, such exploits can
be avoided by using hardware-based solutions such as EEC memory.

28A large body of work exists which give undecidability results for even heavily-restricted versions of the second-order
unification problem [11, 22, 38].
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7 Future Work and Conclusions

In this paper we investigated bytecode verification for the Haskell language, specificly the bytecode instruction
set used by the Yhc Haskell compiler project. We defined an intermediate language capable of encoding a
significant subset of the Haskell language. We defined the static and dynamic semantics of the IL using
standard syntax-oriented inference rules. Although we have yet to work through the proofs, we conjecture
that the IL possesses the important type-safety property.

Despite the original design goals of Haskell, the language does not have a standardized formal semantics. The
Haskell Report informally references a simple “core” language, into which the more complicated language
constructs can be translated [32]. Preliminary work was done to define the static [35] and dynamic [13]
semantics of Haskell, but this work was never completed and formalized into a full semantics for the language.

In section 2, we introduced the IL used for this work. While discussing the various design decisions that
went into the IL, we sketched a method for translating raw Haskell source into the IL. If this process were
formalized, one could view the IL as the target of a denotational “compilation” semantics for Haskell. A
possible avenue for future work is to investigate the possibility of using the IL as a stepping-stone for defining
a full semantics for the Haskell 98 standard. Such work would validate one of the initial assumptions of our
present work, which is that the IL is an appropriate intermediate language for the compilation of Haskell.
Developing a denotational CPO semantics for the IL (as opposed to the operational semantics found here)
would be an important part of any such work. The operational semantics given here over-specifies the
evaluation order, and denotational semantics are conducive to equational reasoning on programs.

Another interesting avenue of investigation regarding the IL would be to prove and formally verify its
meta-theory. Type-safety is the most important property we require. While the type system of the IL is
complicated, it is built using well-understood extensions to the solid base of Fω, and should be amenable to
standard proof methods. Also, it would be valuable to directly prove the type safety of certified bytecode
programs. The modal logic framework described in recent work by Appel may be a fruitful avenue of attack
[6].

We also wrote a compiler which translates IL “source” code into Yhc bytecode and an accompanying type
certificate. This compiler is very basic and makes no real attempt at program optimization. However, it is
careful to preserve type information all the way through the compilation pipeline so that it is available when
generating the type certificate. Multiple test programs were written in the IL (mostly transcribed from small
Haskell programs), and were tested for correct behavior.

Finally, a bytecode verifier was written which ensures that a bytecode program is well-typed. It takes as
input the executable bytecode and its accompanying certificate, and outputs either a success condition code
or an error. The goal is twofold: first, that any program which passes validation will be well-behaved when
executed and second, that any well-typed IL program can be correctly compiled into a bytecode program
which passes validation. We subjected the verifier to basic testing by compiling the above test programs
and ensuring that they passed the verifier. Additionally, several untypeable and incorrectly-typed bytecode
programs were manually created to test that the verifier correctly rejects these programs.

This work represents a proof-of-concept for generating type-certified Haskell programs based on the Yhc
bytecode instruction set. Issues not yet addressed include the Haskell module system (with the accompanying
separate compilation issues) and the side-effectual IO monad. Also, the formal properties of this system have
yet to be proven. Despite the work still to be done, we believe this work represents an important practical
step along the road to a full-scale type-certifying Haskell compiler and execution system.
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Appendix – Full Yhc Bytecode Set Description

Note: much of the material in this appendix is derived from the official bytecode documentation contained in
the Yhc source code. A human-readable version of this documentation can be viewed at http://www-users.
cs.york.ac.uk/~ndm/yhc/bytecodes.html.

Bytecode instructions are classified into three groups: straight-line instructions, control-flow instructions
and returning instructions. After executing a straight-line instruction the instruction pointer is always
incremented by exactly one. Control flow instructions, however, may increment the instruction pointer by
any legal amount and may cause the instruction pointer to be set to different values depending on the current
state of the program. A returning instruction is one which ends the current stack frame when executed.

Within the straight-line instructions is a collection of instructions which perform basic operations on the Int,
Float, and Double types. These are treated in a separate section from the other straight-line instructions.

Instructions which modify the local stack usually have accompanying stack-effect diagrams to help illustrate
the effect. The top line of these diagrams represents the stack before the instruction is executed, and the
bottom line represents the stack after. The top of the stack is oriented toward the left. Beyond the right
edge of the digram one can imagine the bottom portion of the stack which is unaffected by the instruction.
Each stack slot is described by a type and a status, as explained in section 5.1. In the effect diagrams, these
are represented by a pair in each cell; the first component of the pair is the type and the second is the status.
The status codes are:� N – Normal� E – Evaluated� U – Uninitialized� Z – Zapped

Either component of a stack slot may contain a variable instead of a concrete type or status. If the variable
appears in both lines, the corresponding slots are asserted to have the same type or status. If a concrete
type or status appears in the top line, it is a precondition of the instruction that the corresponding stack
slot have that type or status.

A frequent precondition of bytecode instructions is that some stack position be non-zapped. This is indicated
in the top line of the diagram with the statement s 6= Z, for some status variable s.

Indices into the stack or argument list always start at 0.

Straight-line Instructions

END CODE

This “instruction” is actually illegal. It is placed at the end of each combinator bytecode sequence as a
safeguard against buggy compilers. If this instruction is executed, the runtime will immediately exit with an
error. For verification purposes, this instruction is treated as an error if it is encountered along any control
flow path.

PRIMITIVE

This instruction is used to execute runtime primitives and to invoke the foreign function interface (FFI). See
the Yhc documentation for details on how this instruction works.
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For the purposes of verification, this instruction is considered an error wherever it appears. It is impossible
to verify the type correctness of uses of (potentially unsafe) runtime primitives and foreign functions. We
therefore cannot allow their use in untrusted code.

It might instead be possible to define a subset of runtime primitives which are safe and make those primitives
available via this instruction. For this to work, the meaning and type effects of this set of primitives would
have to be standardized. We leave this for future work.

NEED HEAP x

This instruction is used to reserve heap space for the instructions which follow it. When executed, this
instruction checks to be sure that at least 32x words are available in the heap. If there is not enough space in
the heap, garbage collection is performed. For verification, this instruction increases the amount of reserved
heap by 32x.

PUSH n

Pushes the nth item on the stack onto the top.

If sn = U , then s′n = N . Otherwise, s′n = sn.

t0, s0 · · · tn, sn 6= Z
tn, s′n t0, s0 · · · tn, sn

PUSH ZAP n

Pushes the nth item on the stack onto the top and additionally zaps the nth position on the stack.

t0, s0 · · · tn, sn 6= Z
tn, sn t0, s0 · · · tn, Z

ZAP STACK n

Zap the nth position on the stack.

t0, s0 · · · tn, sn 6= Z
t0, s0 · · · tn, Z

PUSH ARG n

Push the nth argument onto the top of the stack. The argument must not be zapped. Let an be the type
of the nth argument.

an, N
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PUSH ZAP ARG n

Push the nth argument onto the top of the stack. The argument must not be zapped. Additionally, zap the
nth argument. Let an be the type of the nth argument.

an, N

ZAP ARG n

Zap the nth argument. The argument must not be already zapped.

PUSH INT x

Push the literal, signed integer value x onto the stack.

@{| Int |}, E

PUSH CHAR x

Push the literal, unsigned integer value x onto the stack. The Yhc runtime does not have a separate character
primitive type; characters are treated as integers.

@{| Int |}, E

PUSH CONST n

Push the nth constant value from the constant table onto the stack. The type of the constant depends on
the entry in the constant table. See the Yhc documentation for details.

t, E

MK AP n

Create a fully saturated application node using the nth entry in the constant table, which must be a function
info entry. Let t be the type of the indicated function after polymorphic rewrites are applied. Then, we must
have that

t = t0 → · · · → tm−1 → t′

where m is the arity of the combinator.

t0, s0 6= Z · · · tm−1, sm−1 6= Z
t′, N
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MK PAP n m

Make a partial application using the nth entry in the constant table, which must be a function info entry.
The arity of the indicated function must be ≥ m. Let t be the type of the function after polymorphic rewrites
are applied. Then, we must have that

t = t0 → · · · → tm−1 → t′

If m is less than the arity of the indicated function, then the status s′ = E. Otherwise s′ = N .

t0, s0 6= Z · · · tm−1, sm−1 6= Z
t′, s′

APPLY n

Apply the function on the top of the stack to n additional arguments from the stack. If applying an extra n
arguments to the application a would super-saturate it (i.e. apply it to more arguments that the function’s
arity) then APPLY saturates the application fully and then builds further applications to the built-in function
apply to apply the rest of the arguments.

The function apply is defined as the bytecode sequence:

NEED_HEAP 1

PUSH_ZAP_ARG 1

PUSH_ZAP_ARG 0

EVAL

APPLY 1

RETURN_EVAL

which is to say it evaluates the fully-saturated application which then returns another application, and this
application is then applied to the additional argument.

See the Yhc documentation for more details.

Let t′ be the type t after polymorphic rewrites are applied. Then we must have

t′ = t0 → · · · → tn−1 → t′′

t, s 6= Z t0, s0 6= Z · · · tn−1, sn−1 6= Z
t′′, N

MK CON n

Build a constructor node using the nth item of the constant table, which must be a constructor info entry.
Let m be the arity of the product payload of the data constructor. Let i be the tag value of the data
constructor.

t0, s0 6= Z · · · tm−1, sm−1 6= Z
{| i : 〈| t0, · · · , tm−1 |〉 |}, E
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UNPACK

Take a data constructor with a known tag and unpack the contents of its data payload.

{| i : 〈| t0, · · · , tm−1 |〉 |}, E
t0, N · · · tm−1, N

SLIDE n

Temporarily remove the top item of the stack, pop the next n items on the stack, and then replace the
original item.

t, s 6= Z t0, s0 · · · tn−1, sn−1

t, s

POP n

Pop the top n items off of the stack.

t0, s0 · · · tn−1, sn−1

ALLOC n

Generate n place-holder heap nodes. Initially, these nodes will abort the program with an error if evaluated.
They are intended to be overwritten with the UPDATE instruction. Types are assigned to the place-holder
nodes via the polymorphic rewrite rules; there must be exactly n polymorphic rewrite rules for this instruc-
tion. Let t0 through tn−1 represent these types.

t0, U · · · tn−1, U

UPDATE n

Remove the top item from the stack. Then, overwrite the nth item (in the remaining stack) with the removed
item. We must have t = tn.

t, s 6= Z t0, s0 · · · tn, U
t0, s0 · · · t, s

EVAL

Evaluate the top item on the stack to weak head normal form. This instruction has no runtime effect if the
item is an unsaturated application or if the item is a constructor.

t, s 6= Z
t, E
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SELECTOR EVAL

This instruction is an abbreviation for the bytecode sequence:

PUSH_ARG 0

EVAL

This sequence occurs frequently due to the translation of type-class dictionaries and records.

a0, E

STRING

Convert a primitive string value into a Haskell string value, which is represented by a list of characters.

See the Yhc documentation for details on how this instruction works.

@{| CString |}, E$Prelude.String, E

FROM ENUM

Remove the top item on the stack (which must be a data constructor), and push an integer containing the
tag number of the constructor.

{| i0 : t0, · · · , im−1 : tm−1 |}, E
@{| Int |}, E

Control-flow Instructions

The instructions in this section are instructions which cause branching. Some additionally have stack effects.

JUMP x

Unconditionally increment the instruction pointer by x bytes. For verification, this instruction copies its
stack state to its jump location.

JUMP FALSE x

Remove the top item from the stack (which must be a boolean value). If it is false, increment the instruction
pointer by x bytes. Otherwise, continue execution at the next instruction.

For verification, this instruction has the following stack effect, which affects both the immediately following
instruction and its jump target.$Prelude.Bool, E
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INT SWITCH x j js

This instruction takes three arguments. The first is the number of alternatives in the switch. The second
argument is the default brach jump location. The third argument is a list of signed integer, jump location
pairs.

When executed, this instruction examines the top item on the stack, which must be an Int. If the integer
matches any of the values in the jump list, the instruction pointer is incremented by the given amount. If
no value matches, the default branch is taken.

The following stack effect applies to all branches (including the default branch).

@{| Int |}, E
@{| Int |}, E

LOOKUP SWITCH x j js

This instruction takes three arguments. The first is the number of alternatives in the switch. The second
argument is the default brach jump location. The third argument is a list of unsigned integer, jump location
pairs.

When executed, this instruction examines the top item on the stack, which must be a data constructor. If
the tag value matches any of the values in the jump list, the instruction pointer is incremented by the given
amount. If no tag value matches, the default branch is taken.

For verification, we require that the type of the top item on the stack be a sum type and that every tag
value that appears in the jump list also appear in the sum.

The following stack effect applies to the default branch:

{| i0 : t0, · · · , in−1 : tn−1 |}, E
{| i0 : t0, · · · , in−1 : tn−1 |}, E

The following stack effect applies to a branch corresponding to the data constructor matching the value ij :

{| i0 : t0, · · · , in−1 : tn−1 |}, E
{| ij : tj |}, E

TABLE SWITCH x js

This instruction takes two arguments. The first is the number of switch alternatives. The second is a list of
jump locations.

This instruction is very similar to the LOOKUP SWITCH instruction, except that the jump list contains only
jump locations and not tag value, jump location pairs. For TABLE SWITCH, each jump location has an assumed
tag value equal to its position in the list. TABLE SWITCH also has no default branch.

When executed, this instruction examines the top item on the stack, which must be a data constructor. The
instruction pointer is then incremented by the amount of the ith element in the jump list, where i is the tag
value of the constructor.

For verification, we require that the type of the top item on the stack be a sum type. We also require that
the sum type have exactly the tag values from 0 to x − 1.

The following stack effect applies to a branch corresponding to the data constructor matching the value i:
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{| 0 : t0, · · · , x − 1 : tx−1 |}, E
{| i : ti |}, E

Returning Instructions

These instructions cause the stack frame to return. Therefore, all the instructions in this section have no
stack effects. However, they all have preconditions which ensure that the combinator returns a data item of
the correct type.

RETURN

This instruction returns from the current stack frame using the top value on the local stack as the return
value.

For verification, the top item on the stack must have the correct type for the return value and it must be in
state “Evaluated.”

RETURN EVAL

This instruction is an abbreviation for the following bytecode sequence:

EVAL

RETURN

except that it also implements tail-call elimination. Operationally, the current stack frame is popped before
the new stack frame is created.

For verification, the top item on the stack must have the correct type for the return value and it may be in
any non-zapped state.

SELECT n

This instruction is an abbreviation for the following bytecode sequence:

UNPACK

PUSH_ZAP n

RETURN_EVAL

This sequence appears frequently when implementing type-class dictionaries and record selectors.

For verification, the top item on the stack must be a sum type with exactly one variant, and the nth element
of the product must have the correct return type.

Numeric Primitive Instructions

There are primitive operations dealing with three of the basic numeric types in Haskell: Int (bounded
integers), Float (single-precision floating-point), and Double (double-precision floating-point).

These instructions are rather arbitrarily chosen from the set of primitive operations required by the Haskell
98 standard. Operations not found here are implemented in the base library using the FFI to call the
appropriate C functions.
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ADD W, SUB W, MUL W, DIV W, MOD W

Each of these instructions performs one of the five basic numeric operations on integers. Respectively, these
are: addition, subtraction, multiplication, integer division, integer modulus. Each instruction has the same
stack effect.

@{| Int |}, E @{| Int |}, E
@{| Int |}, E

EQ W, NE W, LE W, LT W, GE W, GT W

Each of these instructions performs a comparison operation on integers. Respectively, these are: equality,
inequality, less-than-or-equal, less-than, greater-than-or-equal, greater-than. Each instruction has the same
stack effect.

@{| Int |}, E @{| Int |}, E$Prelude.Bool, E

NEG W

Unary negation of bounded integers.

@{| Int |}, E
@{| Int |}, E

ADD F, SUB F, MUL F, DIV F

Each of these instructions performs one of the four basic numeric operations on single-precision floating-point
values. Respectively, these are: addition, subtraction, multiplication, and division. Each instruction has the
same stack effect.

@{| Float |}, E @{| Float |}, E
@{| Float |}, E

MOD F

This instruction indicates the modulus of a floating-point number. It is nonsense and causes an error if
executed. For verification purposes, it is considered an error wherever it appears.

EQ F, NE F, LE F, LT F, GE F, GT F

Each of these instructions performs a comparison operation on single-precision floating-point values. Re-
spectively, these are: equality, inequality, less-than-or-equal, less-than, greater-than-or-equal, greater-than.
Each instruction has the same stack effect.

@{| Float |}, E @{| Float |}, E$Prelude.Bool, E
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NEG F

Unary negation of single-precision floating-point values.

@{| Float |}, E
@{| Float |}, E

ADD D, SUB D, MUL D, DIV D

Each of these instructions performs one of the four basic numeric operations on double-precision floating-
point values. Respectively, these are: addition, subtraction, multiplication, and division. Each instruction
has the same stack effect.

@{| Double |}, E @{| Double |}, E
@{| Double |}, E

MOD D

This instruction indicates the modulus of a floating-point number. It is nonsense and causes an error if
executed. For verification purposes, it is considered an error wherever it appears.

EQ D, NE D, LE D, LT D, GE D, GT D

Each of these instructions performs a comparison operation on double-precision floating-point values. Re-
spectively, these are: equality, inequality, less-than-or-equal, less-than, greater-than-or-equal, greater-than.
Each instruction has the same stack effect.

@{| Double |}, E @{| Double |}, E$Prelude.Bool, E

NEG D

Unary negation of double-precision floating-point values.

@{| Double |}, E
@{| Double |}, E
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