
Soft Segmentation of CT Brain Data

Alexandra Lauric and Sarah Frisken

Tufts University, Halligan Hall Room 102, 161 College Ave, Medford MA 02155, USA
alauri02,frisken@cs.tufts.edu

Abstract. Unlike research on brain segmentation of Magnetic Reso-
nance Imaging (MRI) data, research on Computed Tomography (CT)
brain segmentation is relatively scarce. Because MRI is better at differ-
entiating soft tissue, it is generally preferred over CT for brain imaging.
However, in some circumstances, MRI is contraindicated and alternative
scanning methods need to be used. We have begun to explore methods
for soft tissue segmentation of CT brain data with a goal of enhancing
the utility of CT for brain imaging. In this study, we consider the effec-
tiveness of existing algorithms for segmenting brain tissue in CT images.
Three methods (Bayesian classification, Fuzzy c-Means and Expecta-
tion Maximization) were used to segment brain and cerebrospinal fluid.
While these methods outperformed the commonly used threshold-based
segmentation, our results show the need for developing new imaging pro-
tocols for optimizing CT imaging to differentiate soft tissue detail and
for designing segmentation methods tailored for CT.
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1 Introduction

Image segmentation is the process of assigning labels to individual pixels in
a volumetric data set, based on some criteria in the image. In medical image
segmentation, pixels are labeled by tissue type. Image segmentation is required
in many medical applications ranging from the education and assessment of
medical students to image-guided surgery and surgical simulation.

Appropriate segmentation methods are highly dependent on image acquisi-
tion modality and the tissue of interest. For example, bone can be segmented
in CT data using simple thresholding techniques because of the high contrast
between bone and surrounding tissues. In contrast, soft tissues are not well dif-
ferentiated in CT images and thresholding is inadequate.

Because it provides superior contrast of soft tissue structures (Fig. 1), MRI
is the method of choice for imaging the brain and most research on brain seg-
mentation focuses on MRI. There are, however, numerous situations when MRI
is contraindicated and other alternatives, usually CT, need to be explored [1].
These situations include patients who are too large for the MRI scanner, claustro-
phobic patients, patients with metallic or electrical implants and patients unable
to remain motionless for the duration of the examination due to age, pain, or



medical condition. Additional advantages of using CT include good detection of
calcification, hemorrhage and bony detail, plus lower cost, short imaging times,
and widespread availability. For these reasons, we have begun to explore methods
for segmenting soft tissue in CT images. As a first step, we have evaluated the
effectiveness of several segmentation methods developed for MRI for segmenting
brain tissue in CT images.

Fig. 1. Comparison between MRI(left) and CT(right) images of the brain. Gray and
white matter are clearly distinguishable in the MRI image, but not in the CT image,
while bone is easy to detect in the CT image.

In this paper, we compare three soft segmentation methods applied to CT
images of the brain. These methods (Bayesian classification, Fuzzy c-Means, and
Expectation Maximization) have been used on MRI data with good results, and
are representative of the class of soft segmentation algorithms. Soft segmentation
allows each pixel to belong to multiple classes, with varying degrees of member-
ship. More common segmentation methods use hard segmentation where a pixel
is assigned exclusively to one class. Hard decisions about the membership of a
pixel involve throwing away some of the information contained in the data; soft
segmentation methods have the advantage of avoiding these decisions until later
in the process, thereby keeping more options available for post-processing steps.
Soft segmentation can be converted to hard segmentation by using the maximum
membership classification rule. Under this rule a pixel is assigned to the class
with which it has the highest membership value.

The first method presented is based on Bayesian classification. The method
uses Bayes rule to predict class membership as a conditional probability that a
given pixel belongs to a particular class.

The second segmentation method is based on Fuzzy c-Means (FCM) clus-
tering. The method alternates between partitioning the pixels into clusters and
updating the parameters of each cluster. Like many clustering algorithms, FCM
favors large clusters and, as a result, pixels belonging to small clusters are often
misclassified. To compensate for this behavior, we use the Population-Diameter
Independent (PDI) algorithm, which was introduced in [2] as a variation of FCM.
The PDI algorithm uses cluster weights to balance the influence of large clusters.



The third segmentation method is the Expectation Maximization (EM) al-
gorithm, which partitions pixels into clusters by determining the maximum like-
lihood parameters of a mixture of known distributions.

All three methods perform segmentation by constructing statistical models
but they have complimentary strengths and limitations. Bayesian classification
is simple, fast and robust, but it requires training and is sensitive to the accuracy
of training data. FCM is an efficient, self-organizing clustering algorithm which
does not require training. However, unlike the Bayesian classifier, FCM does not
explicitly incorporate prior knowledge. Expectation Maximization combines the
strengths of both algorithms: it is based on Bayes rule, so it incorporates prior
knowledge, but it is an unsupervised segmentation method, so it does not require
any training.

2 Related Work

The literature on brain segmentation from MRI data is extensive and soft seg-
mentation methods are well researched. In [3], Spence gives an overview of the
research on MRI brain segmentation. We will only refer here to work on MRI
that uses one of the three methods presented in this paper.

Laidlaw et al. [4] used Bayesian classification to identify the distribution of
different materials in MRI volumetric datasets of the brain. In this approach,
voxels are allowed to contain more than one material and information from
neighboring pixels is incorporated into the classification process.

The FCM algorithm was used by Li et al. [5] to segment MR brain images.
Pham and Prince [6] extended the traditional FCM to address the inhomo-
geneities due to the MR acquisition process. PDI was introduced by Shihab in
[2]. Shihab proposed a new objective function and normalized each cluster con-
tribution by dividing it by a value representing the strength of its contribution.

EM segmentation for MR brain images was first proposed by Wells et al.
in [7]. Wells used EM algorithm to simultaneously estimate the classification
of the image and a corrupting bias field characteristic to MR imaging. Kapur
[8] introduced a variation of the EM algorithm which replaced the statistically
independent priors from classic EM with a Gibbs prior, thereby incorporating
spatial information into the segmentation process.

Unlike literature on brain segmentation for MRI, the literature on brain
segmentation on CT data is relatively sparse. The most common approaches use
active contours [9], thresholding and region growing [10]. However all of these
methods require manual input.

In [11], Hu et al. segmented brain matter from 3D CT images by first applying
Fuzzy C-means and thresholding to 2D slices of the volume to create 2D masks,
and then propagating the 2D masks between neighboring slices.

A method for automatic CT brain segmentation of intracerebral brain hem-
orrhage (ICH) is proposed by Loncaric and Kovacevic in [12]. Five regions of
interest (background, skull, brain, ICH and calcifications) were segmented using
a combination of K-Means clustering and neural networks.



3 Classification

Classification is a supervised learning technique which seeks to partition a feature
space into groups (classes). Classifiers are trained on labeled (pre-classified) data
and then applied to samples with unknown labels. The pre-classified data is used
to learn the characteristics of the classes which are in turn used to label a new
data sample.

In image segmentation, classification is used to label each image pixel. Pixels
are described by a set of features (i.e., a feature vector) such as a pixel’s inten-
sity, the average intensity of its neighbors, or its spatial relationship to known
structures. The pre-classified data is usually obtained by manually segmenting
related image data.

3.1 Bayesian Classification

Bayesian classification is a probabilistic algorithm based on Bayes rule:

P (A|B) =
P (B|A) P (B)

P (A)
(1)

In image segmentation, Bayes rule can be applied to determine the a posteriori
conditional probability for each class for a given pixel. In mathematical terms,
Bayes rule for pixel i, with feature vector xi, and class k is

P (k|xi) =
P (xi|k) P (k)

P (xi)
. (2)

P (k|xi) is the a posteriori conditional probability that pixel i is a member of
class k, given its feature vector xi. P (k|xi) gives the membership value of pixel
i to class k, where k takes values between 1 and c (the number of classes), while
i takes values between 0 and N -1 (the number of pixels in the image). Note that∑c

j=1 P (j|xi) = 1.
P (xi|k) is the conditional density distribution, i.e., the probability that pixel

i has feature vector xi given that it belongs to class k. If the feature vectors of
class k have a Gaussian distribution, the conditional density function has the
form

P (xi|k) =
1

(2π)
n
2 det

1
2 (Σk)

e−
1
2 (xi−pk)

T
Σk(xi−pk), (3)

where pk and Σk are the mean feature vector and the covariance matrix of class
k. The mean and the covariance of each class are estimated from training data.
n is the dimension of the feature vector.

The prior probability of class k is

P (k) =
|ωk|∑c

j=1 |ωj |
, (4)

where |ωk| is a measure of the frequency of occurrence of class k and
∑c

j=1 |ωj |
is a measure of the total occurrence of all classes. In image segmentation, |ωk| is



usually set to the number of pixels which belong to class k in the training data,
and

∑c
j=1 |ωj | to the total number of pixels in the training data.

P (xi) is the marginal likelihood of pixel i which measures the likelihood that
feature vector xi will occur in the dataset. This term is used as a normalizing
factor according to formula

P (xi) =
c∑

j=1

P (xi|j) P (j) . (5)

The output of Bayesian classification is a soft segmentation of the input im-
age. To convert from soft to hard segmentation, the label of pixel i is de-
cided using the maximum a posteriori (MAP) rule: class (i) = k such that
P (xi|k) = maxj P (xi|j).

4 Clustering

Clustering is an unsupervised classification of data samples into groups (clus-
ters). While classifiers are trained on pre-labeled data and tested on unlabeled
data, clustering algorithms take as input a set of unlabeled samples and organize
them into clusters based on similarity criteria. The algorithm alternates between
dividing the data into clusters and learning the characteristics of each cluster
using the current division [13].

In image segmentation, a clustering algorithm iteratively computes the char-
acteristics of each cluster (e.g. mean, standard deviation) and segments the image
by classifying each pixel in the ”closest” cluster according to a distance metric.
The algorithm alternates between the two steps until convergence is achieved or
a maximum number of iterations is reached.

4.1 Fuzzy C-Means

Fuzzy clustering algorithms partition an input data set into fuzzy clusters, such
that each element in the data can belong to multiple clusters. Fuzzy c-means
(FMC) [14] is such an algorithm which provides a method to segment the pixels
into c fuzzy clusters, while simultaneously updating the locations of these clusters
and the degrees of membership associated with each pixel. Intuitively, the degree
to which a pixel belongs to a cluster is inversely proportional to the distance from
the pixel to the center of that cluster. The objective function used to optimally
partition the data is:

Minimize : JFCM =
c∑

k=1

N∑
i=1

(uik)m
d2

ik (xi,pk) (6)

Subject to :
c∑

k=1

uik = 1,∀i ∈ {0..N − 1}, (7)



where c is the number of clusters, N is the number of pixels in the image, m ≥ 1
is an exponent controlling how fuzzy the result should be, xi is the feature vector
associated with pixel i, uik is the membership value for pixel i with cluster k,
pk is the mean vector of cluster k and dik is the distance from xi to pk.

The distance metric is defined as

d2
ik (xi,pk) = ‖xi − pk‖2

A = (xi − pk)T
A (xi − pk) . (8)

A is a positive definite matrix. If A is the identity matrix, dik is the Euclid-
ian distance. In this work, A is the covariance matrix, Σk, so that dik is the
Mahalanobis distance [13].

In order to minimize JFCM , we use Lagrange multipliers to update estimates
of pk, Σk and uik according to:

ut+1
ik =

1∑c
j=1

(
d2

ik

d2
ij

) 1
(m−1)

, (9)

pt+1
k =

∑N−1
i=0 um

ikxi∑N−1
i=0 um

ik

, and (10)

Σt+1
k =

∑N−1
i=0 uik

(
xi − pt+1

k

) (
xi − pt+1

k

)∑N−1
i=0 uik

. (11)

FCM iterates through the equations (9)-(11) until convergence is achieved. The
steps of the algorithm are:

1. Fix c to the number of classes and m typically to 2. Initialize the mean vector
pk and the covariance matrix Σk for each class to a random vector and the
identity matrix respectively. For each pixel initialize the membership values
uik to 1

c .
2. Update membership values uik, weighted means pk, and covariance matrices

Σk, using (9)-(11).
3. Compare the change in the membership values between times t and t + 1. If

maxik{|ut+1
ik − ut

ik|} ≤ ε stop. Otherwise, repeat steps 2 to 5.

The strengths and weaknesses of FCM are analyzed in detail in [2] with the
conclusion that the standard objective function is suboptimal when clusters are
close to each other, but differ in size and diameter. The size of a cluster is defined
in terms of its population, while its diameter is defined as the diameter of a
hyper-sphere which contains the entire cluster. FCM favors clusters with large
sizes and/or large diameters, resulting in misclassification of pixels belonging to
small clusters (Fig. 2).

To compensate for these shortcomings in FCM, Shihab [2] proposed the
Population-Diameter Independent algorithm (PDI) which uses a new objective
function in which each cluster contribution is normalized and divided by a num-
ber ρk representing the strength of its contribution. If the clusters make equal
contributions to the objective function, the normalizer ρk is set to 1

c . Otherwise



clusters with small contributions are assigned small normalizers and clusters with
large contributions are assigned large normalizers, thereby increasing the con-
tribution of smaller clusters and decreasing the contribution of larger clusters.
The new optimization function is:

Minimize : JFCM =
c∑

k=1

1
ρr

k

N∑
i=1

(uik)m
d2

ik (xi,pk) (12)

Subject to :
c∑

k=1

uik = 1,∀i ∈ {0..N − 1}, and (13)

c∑
k=1

ρk = 1, (14)

where ρk is the normalizer for cluster k and r allows control over the influence
of ρ. When r is set to 0, PDI collapses to FCM. The updates for uik, pk, Σk and
ρk are derived, using Lagrange multipliers, as follows:

ut+1
ik =

ρr
k∑c

j=1

(
d2

ik

d2
ij

) ρr
j

(m−1)

, (15)
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ikd2
ik

) 1
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r+1
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, and (17)
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∑N−1
i=0 uik

(
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k
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)∑N−1
i=0 uik

. (18)

Figure 2 shows a comparison between FCM and PDI segmentation for one input
image. Regions of the brain matter are misclassified by FCM as cerebrospinal
fluid and the brain matter appears very fragmented. PDI balances the contribu-
tions of all clusters and results in a better segmentation with significantly less
fragmentation.

4.2 Expectation Maximization

The Expectation-Maximization algorithm is an estimation method used to deter-
mine the maximum likelihood parameters of a mixture of known distributions
in the presence of hidden or unobserved data [8]. In image segmentation, the
observed data are the feature vectors associated with pixels, while the hidden
variables are the expectations for each pixel that it belongs to each of the given
clusters.



Fig. 2. Comparison between FCM and PDI. a) Original CT image. b) FCM results. c)
PDI results. In the RGB labels, red is for low intensity bone, green for brain matter and
blue for cerebrospinal fluid (CSF). CSF cluster has a large diameter (high variance)
causing FCM to assign more pixels to this cluster and misclassify regions of brain
matter as CSF. As a result, the brain matter appears very fragmented. PDI corrects
this by decreasing the strength of CSF cluster.

The algorithm starts with an initial guess at the model parameters of the
clusters and than re-estimates the expectations for each pixel in an iterative
manner. Each iteration consists of two steps: the expectation (E) step and the
maximization (M) step. In the E-step, the probability distribution of each hidden
variable is computed from the observed values and the current estimate of the
model parameters (e.g. mean, covariance). In the M-step, the model parameters
are re-estimated assuming the probability distributions computed in the E-step
are correct.

Using the notation of Sections 3.1 and 4.1 and assuming Gaussian distribu-
tions for all clusters, the hidden variables are the expectations Eik that pixel i
belongs to cluster k. The model parameters to estimate are the mean, the covari-
ance and the mixing weight corresponding to each cluster. The mixing weight
is a measure of a cluster’s strength, representing how prevalent the cluster is in
the data.

E-step:

Et
ik = P

(
k|xi, Θ

t
k

)
=

P (xi|ωk, Θt
k)πt

k∑c
j=1 P

(
xi|ωj , Θt

j

)
πt

j

. (19)

M-step:

πt+1
k =

1
N

N−1∑
i=0

Et
ik, (20)

pt+1
k =

1
Nπt+1

k

N−1∑
i=0

Et
ikxi, and (21)

Σt+1
k =

1
Nπt+1

k

N−1∑
i=0

Et
ik

(
xi − pt+1

k

) (
xi − pt+1

k

)
, (22)

where Θt
k are the model parameters of class k at time t and πt

k is the mixing
weight of class k at time t. Note that

∑c
j=1 πt

j = 1 ∀t.



The algorithm iterates between the two steps until the log likelihood increases
by less than some threshold or a maximum number of iterations is reached. EM
algorithm can be summarized as follows:

1. Initialize the means p0
k, the covariance matrices Σ0

k and the mixing weights
π0

k . Typically, the means are initialized to random values, the covariance
matrices to the identity matrix and the mixing weights to 1

c .
2. E-step: Estimate Eik for each pixel i and class k, using (19).
3. M-step: Estimate the model parameters for class k, using (20)-(22).
4. Stop if convergence condition

(
log

∏N−1
i=0 Et+1

ik − log
∏N−1

i=0 Et
ik

)
≤ ε is achieved.

Otherwise, repeat steps 2 to 4.

5 Implementation

The three segmentation algorithms were implemented in C++. We used the In-
sight Segmentation and Registration Toolkit (ITK) library [16] for IO operations
(reading and writing DICOM and RGB series).

In our approach, the feature vector for each pixel is composed of a single
value, the mean value of a 3x3 window centered on the pixel. Using this mean
pre-filters the image to reduce noise in the input data.

Two intensity threshold values were preset to segment air (xi ≤ −150) and
bone (xi ≥ 300). Only pixels with intensities between these values were consid-
ered for classification. This approach is feasible for CT images as CT scanners
are calibrated so that tissues of certain densities always produce the same range
of CT values, clustered around the “true” CT number (Hounsfield unit) of the
tissue (e.g. 0 for water and -1000 for air).

The number of classes was set to 3 and pixels were categorized as belonging
to low intensity bone, brain matter, and cerebrospinal fluid (CSF). All meth-
ods require initial means and covariance matrices for each of the three classes.
The initial means were provided by the user. A visualization tool was used to
compute statistics on small regions in the initial data to estimate means for all
classes (100 for low intensity bone, 40 for brain matter and 0 for CSF). The re-
sulting means were used to generate a first fuzzy classification of the data using
Euclidian distances. The resulting classes provided the initial means and covari-
ance matrices for the three methods. In the case of Bayesian classification, this
approach provided a reasonable alternative to the manual segmentation step.

6 Results

The three segmentation algorithms were applied to volumetric CT images of a
human head in order to segment the brain tissue from bone and cerebrospinal
fluid (CSF). The input scan consists of 3D CT images of size 512 x 512. In the
volumetric data, the voxel size is 0.48mm x 0.48mm x 4.5mm (width x height x
depth). To visualize our results, we show the output from soft segmentation as



RGB images, the corresponding hard segmentation as grayscale images, and we
generate 3D models of the brain from the resultant hard segmentation.

Figure 3 presents the results for soft segmentation of the brain from the
Bayesian classification, the PDI and the EM method. The probability fields
are saved as RGB images. Each color component of each pixel contains the
membership value for one of the three classes (red for low intensity bone, green
for brain matter, and blue for CSF). As expected, the Bayesian classification
(Fig. 3b) results in a very fuzzy labeling. This is because the classification is
not an iterative method and there is no convergence criteria incorporated in the
algorithm. PDI (Fig. 3c) gives the best results of the three methods. The EM
method (Fig. 3d) appears to be more sensitive to noise in the data than PDI.

To create labels for brain matter (Fig. 4) and for CSF (Fig. 5) we converted
the output from soft segmentation to hard segmentation. In the soft segmen-
tation results, each pixel has three associated probabilities, one for each class.
We classified a pixel as belonging to the class with which it has the highest
probability value as long as the value is bigger than a threshold. The threshold
was set to 0.5 for Bayesian classification and to 0.8 for EM and PDI. A higher
threshold was used for EM and PDI because they resulted in less fuzzy segmen-
tation. We also compared the resulting labels with threshold-based segmentation
of the brain (Fig. 4b and 5b). All three methods outperformed threshold-based
segmentation, which resulted in very noisy labels.

From the resultant hard segmentation, we generated 3D models of the brain
(Fig. 6). Threshold-based segmentation gives a very rough brain surface while
PDI produces the smoothest results. The fact that EM is sensitive to noise is
also apparent in the 3D model. However, the EM algorithm has the advantage
of explicitly incorporating prior knowledge and, while this characteristic was not
explored in this work, it could lead to interesting directions for future research.

7 Conclusions

We are interested in brain segmentation in CT data. Because of a lack of research
in this area, we started by exploring existing methods that have been successful
for segmenting MRI data. Three soft segmentation methods (Bayesian classifi-
cation, Fuzzy c-Means and Expectation Maximization) were applied to segment
brain tissue from bone and CSF in CT brain data and the results have been
presented. All three methods performed better than threshold-based segmenta-
tion, with PDI giving the best results. Unfortunately, we were unable to locate
a database of pre-segmented CT brain images and the lack of ground truth data
prevented us from performing an absolute comparison of the three methods.

Our results show that brain segmentation can be performed on CT data.
There are, however, limitations to the level of detail that can be achieved. While
most work on brain MRI data segments gray matter and white matter, this is
not possible on CT images where, as shown in Fig. 1, the two tissues are not
distinguishable. To address this problem we have begun exploring new imaging
protocols that provide better differentiation of soft tissue detail in CT data.



The new use of dual energy CT for clinical applications has the potential of
redefining the role of CT imaging for soft tissue segmentation. Dual energy CT
scanners use two X-ray energy levels simultaneously [15], allowing radiologists
to better differentiate, characterize and isolate body tissues and fluid. Adapting
the algorithms presented here to incorporate characteristics of the dual energy
CT data is a major focus of our future research.
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Fig. 3. CT brain segmentation. In the RGB labels, red is for low intensity bone, green
for brain matter and blue for cerebrospinal fluid (CSF). (a) Original axial CT slice.
(b) Output from Bayesian classification. This method results in fuzzier segmentation
compared to the other two methods. (c) Output from PDI method. The method corrects
FCM behavior by reducing the influence of large clusters. (d) Output from EM method.
The method is sensitive to noise in the data.

Fig. 4. CT brain segmentation. (a) Original axial CT slice. (b) Simple thresholding of
the original data. (c) Brain matter from Bayesian classification. (d) Brain matter from
PDI method. (e) Brain matter from EM method.

Fig. 5. CT brain segmentation. (a) Original axial CT slice. (b) Simple thresholding of
the original data. (c) CSF from Bayesian classification. (d) CSF from PDI method. (e)
CSF from EM method.

Fig. 6. 3D models of the brain (a) Simple thresholding of the original CT image (b)
Bayesian classification (c) PDI (d) EM algorithm.


