
First Order Markov Decision Processes

A Dissertation

submitted by

Chenggang Wang

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

Computer Science

TUFTS UNIVERSITY

May 2007

c©Chenggang Wang, May, 2007

ADVISOR: Professor Roni Khardon

Abstract

Relational Markov Decision Processes (RMDP) are a useful abstraction for complex rein-

forcement learning problems and stochastic planning problems since one can develop ab-

stract solutions for them that are independent of domain size or instantiation. This thesis

develops compact representations for RMDPs and exact solution methods for RMDPs

using such representations. One of the core contributions of the thesis is development

of the First Order Decision Diagram (FODD), a representation that captures functions

over relational structures, together with a set of operators to manipulate FODDs. FODDs

offer a potentially compact representation for complex functions over relational structures

and can therefore serve as underlying engine for efficient algorithms with relational struc-

tures. The second core contribution is developing exact solution methods for RMDPs

based on FODD representations. In particular FODDs are used to represent value func-

tions, transition probabilities, and domain dynamics of RMDPs. Special operations are

developed to implement exact value iteration and a novel variant of policy iteration and

the algorithms are shown to calculate optimal solutions for RMDPs. Finally we show how

the algorithms for RMDPs using FODDs can be extended to handle relational Partially

Observable MDPs.

ii

Acknowledgments

I would like to thank my advisor, Professor Roni Khardon, for giving me the opportunity

to complete my Ph.D. This thesis would never have been possible without his guidance,

insight, and encouragement. He has been a great example and inspiration of how much

one can accomplish: a devoted parent, an excellent researcher, and a great teacher and

advisor.

I would like to thank my former advisor, the late Professor Jim Schmolze, for his

incredible understanding, support, and wise advice, during a very difficult time in my life

when my daughter had medical issues. Without his help and belief in me, I would not

have been able to continue with my study.

I would like to thank Professor Souvaine for her support and encouragement during all

these years. I would also like to thank the members of my committee, Professors Anselm

Blumer, Carla Brodley, Sridhar Mahadevan, and Eric Miller, for their valuable comments

and feedback.

I would like to thank the staff at the Tufts Computer Science Department. George

Preble, in particular, has been very helpful.

I would like to thank Saket Joshi for many profitable and interesting discussions.

We worked together on First Order Decision Diagrams and value iteration for relational

MDPs.

Finally, I would like to thank my parents for their unbounded love and everlasting

belief in me, and my husband, Bin Yu, for his love, support, and wisdom.

iii

DEDICATION

To my parents.

iv

Contents

1 Introduction 2

1.1 Background and Motivation . 4

1.2 Our Approach and Contributions . 6

1.3 Thesis Overview . 10

2 Markov Decision Processes 12

2.1 Fully Observable Markov Decision Processes 12

2.1.1 Value Iteration . 13

2.1.2 Policy Iteration . 14

2.1.3 Heuristic Search . 15

2.2 Propositionally Factored MDPs . 17

2.3 Relational or First Order MDPs . 19

2.4 Partially Observable MDPs . 23

2.4.1 Exact Algorithms . 24

2.4.2 Approximations . 26

2.4.3 Heuristic Search . 27

2.4.4 Heuristic Solutions . 27

2.4.5 Propositionally Factored POMDPs 28

2.4.6 First Order POMDPs . 29

2.5 Other Related Work . 29

v

3 First Order Decision Diagrams 32

3.1 Propositional Decision Diagrams . 32

3.2 First Order Decision Diagrams . 34

3.2.1 Syntax of First Order Decision Diagrams 34

3.2.2 Semantics of First Order Decision Diagrams 35

3.2.3 Basic Reduction of FODDs . 38

3.2.4 Combining FODDs . 40

3.2.5 Order of Labels . 40

3.3 Additional Reduction Operators . 41

3.3.1 (R5) Strong Reduction for Implied Branches 42

3.3.2 (R6) Weak Reduction Removing Dominated Siblings 42

3.3.3 (R7) Weak Reduction Removing Dominated Edges 53

3.3.4 Comparing R6 and R7 . 66

3.3.5 (R8) Weak Reduction by Unification 68

3.4 Summary . 69

4 Decision Diagrams for MDPs 70

4.1 Example Domain . 70

4.2 The Domain Dynamics . 71

4.3 Probabilistic Action Choice . 73

4.4 Reward and Value Functions . 74

4.5 PPDDL and FODDs . 74

4.5.1 PPDDL Action Effects . 75

4.5.2 Transformations of Action Effects 76

4.5.3 Translating Action Effects into FODDs 78

4.5.4 A Special Case in Translation . 80

5 Value Iteration and Policy Iteration with FODDs 87

5.1 Value Iteration with FODDs . 87

5.1.1 Regression by Block Replacement 89

vi

5.1.2 Object Maximization . 92

5.1.3 Adding and Maximizing Over Actions 93

5.1.4 Convergence and Complexity . 95

5.1.5 A Comprehensive Example of Value Iteration 96

5.1.6 Representing Policies . 99

5.2 Policy Iteration for Relational MDPs . 101

5.2.1 The Value Associated with a Policy 101

5.2.2 Relational Modified Policy Iteration 102

5.2.3 A Comprehensive Example of Policy Iteration 104

5.2.4 Correctness and Convergence . 107

6 Value Iteration for Relational POMDPs 115

6.1 Additional Representations for VI in RPOMDPs 116

6.1.1 Specifying Observations . 116

6.1.2 Representing Value Functions . 119

6.1.3 Representing Belief States . 119

6.1.4 The Expected Value of a Belief State 122

6.2 Value Iteration for RPOMDPs . 124

6.2.1 Incremental Pruning . 125

6.2.2 Relational VI for POMDPs . 127

6.2.3 Executing Policies . 131

6.3 Open Issues . 133

6.3.1 Pruning . 133

6.3.2 Non-stationary Policy Tree v.s. Stationary Policy Graph 134

6.4 Summary and Discussion . 135

7 Discussion and Future Work 136

7.1 Contributions . 136

7.2 Future Work and Open Questions . 138

7.2.1 Implementation and Evaluation . 138

vii

7.2.2 Representations . 138

7.2.3 Exploring Efficiency Issues and Alternative Algorithmic Ideas of

RMPI . 139

7.2.4 Open Issues and Approximations in RPOMDPs 140

viii

List of Figures

1.1 An example of block replacement. 8

2.1 Decision tree building and evaluation. 16

2.2 An example illustrating the DBN. 18

2.3 An example illustrating regression over an action alternative. 22

3.1 A BDD representing the boolean function x1 ∨ x2 ∨ x3. 33

3.2 A simple FODD. 34

3.3 An example of the value function. 35

3.4 Examples illustrating weakness of normal form. 39

3.5 A simple example of adding two FODDs. 40

3.6 An example illustrating the need to keep the inequality. 46

3.7 An example illustrating the need to relax R6 conditions. 47

3.8 Examples illustrating Remove Reduction R6. 47

3.9 An Example illustrating that intersection of variables is more than we need

sometimes in P6.5. 49

3.10 An example illustrating a minimum set of variables. 49

3.11 An example illustrating the condition for replacing a branch with 0 in R6. 50

3.12 An example illustrating conditions P6.2 and P6.4 cannot guarantee that

we can drop a node. 51

3.13 An example illustrating the order of how R6 is applied. 51

3.14 An example illustrating that we may need to reorder the nodes in order to

apply R6. 52

ix

3.15 An example illustrating that the reductions are order dependent. 52

3.16 An example illustrating the condition for removing a node in R7. 56

3.17 An example illustrating the condition for removing a node in R7. 56

3.18 An example illustrating the subtraction condition in R7. 57

3.19 An example illustrating the need to relax condition V7.3 in R7. 58

3.20 An example illustrating the order of applying R7. 59

3.21 An examples illustrating the use of R7. 59

3.22 Base cases when every B is related to some A. 61

3.23 A figure to illustrate a loop condition. 63

3.24 An example to illustrate that we can have a loop if we allow some edges to

point to a constant. 66

3.25 An example to illustrate that we can have a loop under more complex value

conditions. 67

3.26 An example illustrating R8. 69

4.1 A template for the TVD . 72

4.2 FODDs for logistics domain: TVDs, action choice, and reward func-

tion. (a)(b) The TVDs for Bin(B,C) and On(B,T) under action choice

unloadS(b∗, t∗). (c)(d) The TVDs for Bin(B,C) and On(B,T) under ac-

tion choice loadS(b∗, t∗, c∗). Note that c∗ must be an action parameter

so that (d) is a valid TVD. (e) The TVD for T in(T,C) under action

choice driveS(t∗, c∗). (f) The probability FODD for the action choice

unloadS(b∗, t∗). (g) The reward function. 72

4.3 An example showing that the choice probability can depend on action pa-

rameters. 73

4.4 Examples illustrating translating action effects in PPDDL into TVDs. . . 81

4.5 The TVD for at under action choice move-left-outcome2 in the elevator

domain. 82

4.6 Translating a condition into FODD components. 82

x

4.7 The choice probability for the action alternative corresponding to e1. . . . 83

4.8 The choice probability for the action alternative Lc-green before reduction

and sorting. Lp denotes light-preference, H heading, n, s, ns and e north,

south, north-south, and east respectively. 85

4.9 (a) The choice probability for the action alternative Lc-green. (b)The TVD

for light-color under the action alternative Lc-green 86

5.1 An example showing a complex reward function. 89

5.2 An example illustrating why variables are not allowed in TVDs. 90

5.3 A FODD illustrating the idea of block combination 91

5.4 An example illustrating union or. 93

5.5 An example illustrating the need to standardize apart. 94

5.6 An example of value iteration in the Logistics Domain. 100

5.7 The result after performing Rel-greedy(R) in the logistics domain. 101

5.8 An example of policy iteration. 105

5.9 The policy π̂0
1 = Rel-greedy(V0) if we assume an ordering that puts A1 first. 107

5.10 An example of policy iteration without the assumption of an absorbing

state. (a) Q
A1(x∗)
V0

. (b) Q
A2(x∗)
V0

. (c) Q
no-op
V0

. (d) The value function ŵ0
1 and

the policy π̂0
1 such that (ŵ0

1, π̂
0
1) = Rel-greedy(V0). (e) An intermediate re-

sult when performing Rel-regress-policy(ŵ0
1, π̂

0
1). Note that we replace a leaf

node annotated with action A2(x) with Q
A2(x∗)

ŵ0
1

after the action parameter

x∗ is substituted with x. (f) AppendingQ
A2(x∗)

ŵ0
1

through block combination.

Reductions were used to replace the right branches of p1(y) and p2(y) with

0 in the result. (g) The result after Rel-regress-policy(ŵ0
1, π̂

0
1). 108

5.11 A possible scenario. (a) A policy π. (b) The resulting policy π̂ after

regressing over π. 109

xi

6.1 Example illustrating observation probabilities: (a) Probability for an ob-

servation aspect p(x∗) Prob(p(x∗), A(x∗)). (b) Probability for the other ob-

servation aspect q(x∗) Prob(q(x∗), A(x∗)). (c) Multiply (a)(b) and get the

probability Prob(o1, A(x∗)) for a complete observation o1 = p(x∗) ∧ q(x∗). 119

6.2 An example illustrating the belief state. 121

6.3 An example of value iteration. (a) The reward function R. (b) The

TVD for p1(x) under action A1(x
∗
1). (c) The TVD for p2(x) under action

alternative A2S(x∗2). (d) Observation probabilities Prob(q2(x
∗), A3(x

∗)).

(e) Q
A1(x∗

1)
R (i.e., v1). (f) Q

A2(x∗

2)
R (i.e., v2). (g) Q

A3(x∗

3)
R (i.e., v3). (h)

QA3(x∗),q2(x∗),v1
. (i) QA3(x∗),¬q2(x∗),v2

. (j) One parameterized value func-

tion in QA3(x∗). 128

6.4 The parameterized policy tree corresponding to the value function in Fig-

ure 6.3(j) . 130

6.5 A parameterized policy tree . 132

6.6 An example illustrating how to determine pointwise dominance. 134

7.1 Example illustrating variable renaming on edges. 139

7.2 Example illustrating the copy operator. 139

xii

First Order Markov Decision Processes

1

Chapter 1

Introduction

Many real-world problems can be cast as sequential decision making under uncertainty.

Consider the simple example where an agent delivers boxes. The agent can take three

types of actions: to load a box on a truck, to unload a box from a truck, and to drive a

truck to a city. However the action effects may not be perfectly predictable and may be to

some extent stochastic. For example its gripper may be slippery so load actions may not

succeed, or its navigation module is not reliable and it may end up in a wrong location.

This uncertainty compounds the already complex problem of planning a course of action

to achieve some goals or get rewards.

Markov Decision Processes (MDP) have become the de facto standard models for

sequential decision making problems (Boutilier et al., 1999). These models also provide a

general framework for artificial intelligence (AI) planning, where an agent has to achieve

or maintain a well-defined goal. MDP models an agent interacting with the world. The

agent can observe the state of the world, and takes actions to change the state of the

world; and the agent tries to optimize the rewards it obtains in the world.

We can specify the possible states in the world in terms of a set of propositional

variables called state attributes, that together determine the world state. Consider a very

simple logistics problem that has only one box, one truck, and one destination, which

is Paris, then we can have state attributes such as truck in Paris (TP), box in Paris

(BP), box in Boston (BB), etc. If we let the state space be represented by n binary state

2

attributes then the total number of states would be 2n. Thus any algorithm that works

by state enumeration will require time exponential in n. Indeed, it is well known that the

standard representation and algorithms for MDPs that enumerates all the states in the

world does not scale to solve realistic planning domains.

However we can do better than this. There has been previous work called the proposi-

tionally factored approach which directly operates on state attributes instead of enumer-

ating states. By specifying a succinct MDP model and developing algorithms that exploit

MDP structure this approach can solve large MDP problems.

But what if we have a more complicated problem? What if now we have four trucks,

three boxes, and the goal is that there is a box in Paris, but it does not matter which box

is in Paris? With the propositionally factored approach, we need to have one propositional

variable for every possible instantiation of the properties and relations in the domain, e.g.,

box 1 in Paris, box 2 in Paris, box 1 on truck 1, box 2 on truck 1, etc. The goal becomes

box 1 in Paris or box 2 in Paris or box 3 in Paris or box 4 in Paris. And there will be a

huge number of possible actions, such as to load box 1 on truck 1, to load box 1 on truck

2, etc. The problem becomes huge. We also lose the structure and lose the benefits in

terms of computation.

This is why first order or relational MDPs (RMDP) are an attractive approach. With

the first order representations of MDPs, we can describe domain objects and relations

among them, and use quantification in specifying objectives. In the logistics exam-

ple, we can introduce three predicates to capture the relations among domain objects,

i.e., Bin(Box,City), T in(Truck,City), and On(Box, Truck) with their obvious mean-

ing. We have three parameterized actions, i.e., load(Box, Truck), unload(Box, Truck),

and drive(Truck,City). We can define the goal using existential quantification, i.e.,

∃b,Bin(b, Paris).

The relational approach performs general reasoning and never needs to propositionalize

a domain. As a result the complexity does not change when the number of domain objects

changes. Also the solutions obtained are good for any domain size (even infinite ones)

simultaneously. Such an abstraction is not possible within the propositional approach.

3

Now an obvious question is how to represent and solve relational MDPs efficiently and

that is the main issue addressed in this thesis. The thesis develops compact represen-

tations and efficient solution methods that utilize such representations for RMDPs. In

terms of representation, we develop First Order Decision Diagrams (FODD) to handle the

relational structure and define a set of reduction operators to minimize the representation

size when working with such diagrams. In terms of solution methods, we show how value

iteration can be performed using FODDs. We also develop a new algorithm, Relational

Modified Policy Iteration, which incorporates an aspect of policy improvement into policy

evaluation. We show that the algorithm converges to the optimal value function and pol-

icy. We further extend our work to relational Partially Observable MDPs (RPOMDP),

where the process is “partially” observable if the agent’s knowledge about the current

state of world is not complete.

1.1 Background and Motivation

In the past years there has been an increased interest in developing RMDPs. Some exam-

ples include symbolic dynamic programming (SDP) (Boutilier et al., 2001), the relational

Bellman algorithm (ReBel) (Kersting et al., 2004), first order value iteration (FOVIA)

(Großmann et al., 2002; Hölldobler & Skvortsova, 2004), approximate linear programming

for RMDPs (Guestrin et al., 2003a; Sanner & Boutilier, 2005; Sanner & Boutilier, 2006),

Envelop-based planning (Gardiol & Kaelbling, 2003), approximate policy iteration (Fern

et al., 2003), inductive policy selection using first order regression (Gretton & Thiebaux,

2004), and first order machine learning (Mausam & Weld, 2003). These methods show

how classical MDP solution methods can be “upgraded” to RMDPs in some cases intro-

ducing novel techniques to approximate RMDP solutions.

Among these, only SDP, ReBel, and FOVIA are exact solution methods. To our

knowledge there is no working implementation of SDP because it is hard to keep the state

formulas consistent and of manageable size in the context of situation calculus. Compared

with SDP, ReBel and FOVIA provide a more practical solution. They both use restricted

4

languages to represent RMDPs, so that reasoning over formulas is easier to perform. We

are interested in developing a representation that combines the strong points of these

approaches and supports efficiently exact solution methods.

It is interesting that all exact solution methods listed above use the value iteration

algorithm (Puterman, 1994). Other algorithms and in particular Policy Iteration (Put-

erman, 1994) may have obvious advantages, especially in cases where the abstract value

function requires an infinite number of state partitions, but there is a simple optimal pol-

icy for the domain. Recall that a value function assigns each state a value that captures

the “long-term reward” expected when starting in this state. An abstract value function

assigns values to sets of states or “abstract states” so actual states do not need to be

enumerated. To illustrate the property above, consider the blocks world domain and a

simple goal that there is no block on block a, i.e. Clear(a). This requires an infinite

number of state partitions in the optimal value function (Kersting et al., 2004) because

we do not know how many blocks are on top of the stack of a and this number determines

the value expected. However the optimal policy, stating that any block which is above a

must be moved, is trivial and can be expressed as follows:

∃x,Above(x, a) ∧ Clear(x) →MoveToTable(x)

otherwise, do nothing (no-op).

Therefore in some cases a value function requires infinite size to represent and thus con-

verging to the optimal value function is problematic. However finding a compact policy

may be possible, so policy iteration may be better than value iteration in such cases.

Therefore we are interested in developing and analyzing relational variants of both value

iteration and policy iteration.

Partially Observable Markov Decision Processes (POMDP) provide a more general

framework for sequential decision making problems than MDPs. MDPs assume that the

underlying state of the process is known with certainty. This assumption is too strong

for many practical planning problems, e.g., in medical diagnosis, the exact internal state

of the patient is not completely known, yet the doctor needs to decide on a course of

action. POMDPs generalizes MDPs by allowing for imperfect or incomplete information

5

about the underlying state of the process. Each POMDP action has two effects: changing

the world and gathering information about the world. In recent years, researchers have

sought to combine the benefits of logic with the power of POMDPs (e.g., (Geffner &

Bonet, 1998; Poole, 1997; Boutilier & Poole, 1996; Bacchus et al., 1999; Hansen & Feng,

2000)). However, there has not been much research on relational or first order POMDPs

(RPOMDP). Boutilier and Poole (1996) and Hansen and Feng (2000) only develop solution

methods for propositionally factored POMDPs. Poole (1997) and Bacchus et al. (1999)

only focus on first order representations and do not build planners. Geffner and Bonet

(1998) compile the first order modeling language into the underlying POMDP with flat

states, therefore their approach can not provide general solutions. We are interested in

extending our work to POMDPs and developing relational RPOMDPs.

1.2 Our Approach and Contributions

Inspired by the successful application of Algebraic Decision Diagrams (ADD) (Bryant,

1986; McMillan, 1993; Bahar et al., 1993) in solving propositionally factored MDPs and

POMDPs (Hoey et al., 1999; St-Aubin et al., 2000; Hansen & Feng, 2000; Feng & Hansen,

2002), we develop First Order Decision Diagrams (FODD) by lifting propositional ADDs

to handle relational structure. We then use FODDs in the solution of RMDPs. The

intuition behind this idea is that the ADD representation allows information sharing,

e.g., sharing the value of all states that belong to an “abstract state”, so that algorithms

can consider many states together and do not need to resort to state enumeration. If

there is sufficient regularity in the model, ADDs can be very compact, allowing problems

to be represented and solved efficiently.

First order decision trees and even decision diagrams have already been considered

in the literature (Blockeel & De Raedt, 1998; Groote & Tveretina, 2003) and several se-

mantics for such diagrams are possible. Blockeel and De Raedt (1998) lift propositional

decision trees to handle relational structure in the context of learning from relational

datasets. Groote and Tveretina (2003) provide a notation for first order Binary Decision

6

Diagrams (BDD) that can capture formulas in Skolemized conjunctive normal form and

then provide a theorem proving algorithm based on this representation. In this thesis we

study the differences between semantics based on each representation and point out that

the semantics by Groote and Tveretina (2003) supports value iteration better than the

semantics based on first order decision trees (Blockeel & De Raedt, 1998). Therefore we

adapt and extend their approach to handle first order MDPs. In particular, we extend

the definitions to handle existential quantification and numerical leaves through the use

of an aggregation function. This allows us to capture value functions using algebraic

diagrams in a natural way. We also provide additional reduction transformations for alge-

braic diagrams that help keep their size small, and allow the use of background knowledge

in reductions. We then develop appropriate representation and algorithms showing how

value iteration can be performed using the decision diagrams. In particular, we use truth

value diagrams (TVD), a special FODD, to capture domain dynamics, and use FODDs to

represent probabilities, rewards, and value functions. We perform regression of the value

function, that is we calculate the value of a state before an action from the values of states

after an action, using an operation we call “block replacement”. In this operation each

node in a diagram is replaced with a TVD capturing its regressed value. This offers a

modular and efficient form of regression that accounts for all potential effects of an action

simultaneously. Figure 1.1 illustrates how to perform block replacement. Each block is a

TVD for the corresponding predicate under an action. This diagram is simply shown for

illustration. Precise definitions and technical details are given in following chapters. The

value function V1, capturing the optimal value function when there is one step to go, is

represented using a FODD as shown on the left hand side of Figure 1.1. This value func-

tion partitions the whole state space into the following four abstract states, and assigns

a value to each abstract state.

∃b,Bin(b, Paris) : 19

¬∃b,Bin(b, Paris) ∧ ∃b, t, On(b, t) ∧ T in(t, Paris) ∧ rain : 6.3

¬∃b,Bin(b, Paris) ∧ ∃b, t, On(b, t) ∧ T in(t, Paris) ∧ ¬rain : 8.1

otherwise: 0

7

Other operations over diagrams require “standardizing apart” (as in logic). Some oper-

ations on the graphs of the diagrams are followed by reductions to maintain small size.

We show that our version of abstract value iteration is correct and hence it converges to

optimal value function and policy.

Bin (b, Paris)

b= b*

On (b, t*)

Tin (t* , Paris)

19 On (b, t)

b= b*

t= t*

0

0

Tin (t, Paris)

rain

 6.3 8.1

0

Bin (b, Paris)

 On (b, t)

19

Tin (t, Paris)
 rain

 6.3 0 8.1

V1

Figure 1.1: An example of block replacement.

We also investigate the potential of developing and analyzing policy iteration for re-

lational domains in the context of FODDs. We introduce a new algorithm, Relational

Modified Policy Iteration, that uses special operations with FODDs to mimic the origi-

nal modified policy iteration algorithm (Puterman, 1994). We point out two anomalies

of policy languages in the context of policy evaluation. First, some policy languages in

the literature do not have well defined value functions. Second, there is some interaction

between the value and policy languages so that, when using a restricted representation

scheme, the value function of some natural policies are not expressible in the language.

Overcoming this difficulty, our algorithm incorporates an aspect of policy improvement

into policy evaluation. We show that the algorithm converges to the optimal value func-

tion and policy.

Finally we discuss first steps towards solving RPOMDPs. We use FODDs to model

an action’s informational effect, and develop a sum statement to represent belief states.

8

We then show how the value iteration algorithm can be lifted to the relational case. The

result is not complete and we discuss several open questions that arise due to subtle issues

that do not exist in the propositional case during planning and execution.

It is useful to compare our solutions to the propositional ones. The main difficulty in

lifting the ideas from the propositional case (Hoey et al., 1999; St-Aubin et al., 2000) is

that in relational domains the transition function specifies a set of schemas for conditional

probabilities. The propositional solution uses the concrete conditional probability to

calculate the regression function. But this is not possible with schemas. One way around

this problem is to first ground the domain and problem at hand and only then perform

the reasoning (see for example (Sanghai et al., 2005)). However this does not allow for

solutions abstracting over domains and problems. Like SDP, ReBel, and FOVIA, our

constructions do perform general reasoning and they do so by using decision diagrams.

In summary, our contributions include the following:

1. We have identified differences between the semantics based on first order deci-

sion trees (Blockeel & De Raedt, 1998) and the semantics based on first order

BDDs (Groote & Tveretina, 2003) for first order decision diagrams and their rele-

vance for RMDP algorithms.

2. We have developed the technical details of first order ADDs and for the algorithms

using them in the solution of relational MDPs. It is non-trivial to lift methods for

propositional decision diagrams to the first order case, and our work highlights some

of the key semantics and computational issues and proposes solutions. We have also

developed novel weak reduction operations for first order decision diagrams and

shown their relevance to solving relational MDPs.

3. We have developed relational value iteration for MDPs using FODDs and have

shown that it is correct and thus converges to the optimal value function and policy.

4. We have developed and analyzed policy iteration in the relational domain and have

shown that the algorithm converges to the optimal value function and policy and

that it dominates the iterates from value iteration.

9

5. We have lifted a value iteration algorithm for propositional POMDPs to handle

the relational case. Although the result is not complete, we have made first steps

towards solving RPOMDPs, and identified some subtle issues that do not exist in

propositional case during planning and execution.

Our contributions are discussed in more detail in Chapter 7.

1.3 Thesis Overview

This introductory chapter has briefly summarized the research background, motivation,

and our approach. The remainder of the thesis is organized as follows.

Chapter 2 provides background on standard MDPs, including POMDPs, and their

solution methods. It discusses propositionally factored representations and current work

on RMDPs focusing on exact solution methods. It also summarizes related work.

Chapter 3 describes our representation framework FODDs. It examines in detail the

syntax and semantics of the language. A large part of this chapter is devoted to developing

reduction operators that remove redundancies in FODDs. These are not important for

correctness of our algorithms but are crucial to keep representation small and make the

algorithms feasible.

Chapter 4 describes how to represent RMDPs with FODDs. To facilitate the de-

scription it introduces a variant of the “logistics problem” as an example domain. It also

discusses the expressiveness of the representation and gives a procedure of translating into

FODDs problem descriptions in PPDDL (Younes & Littman, 2004), which has become a

standard language used to encode probabilistic planning domains and problems.

Chapter 5 presents our algorithms for RMDPs, relational value iteration and relational

modified policy iteration, and investigates properties of policy language that arise in

context of policy iteration. It shows that relational value iteration is correct and hence

converges. For relational modified policy iteration, the algorithm incorporates an aspect

of policy improvement into policy evaluation, but it still converges to the optimal value

function and policy.

10

Chapter 6 describes how the algorithms for RMDPs using FODDs can be extended

to handle Relational POMDPs. In particular it shows how the incremental pruning al-

gorithm (Cassandra et al., 1997) that implements value iteration can be lifted to the

relational case. It points out some subtle issues that do not exist in the propositional case

during planning and execution, and raises some open questions.

Finally, Chapter 7 summarizes the contributions of this work and points out some

directions for future research.

11

Chapter 2

Markov Decision Processes

In this chapter we review standard notions and commonly used solution methods in

Markov Decision Processes, including Partially Observable Markov Decision Processes.

We also introduce previous work on handling large state spaces. For a comprehensive

introduction to fully observable MDPs please refer to (Puterman, 1994).

2.1 Fully Observable Markov Decision Processes

Fully Observable Markov Decision Processes (MDPs) are mathematical models of sequen-

tial optimization problems with stochastic actions where the agent has full knowledge of

the state of the world. A MDP can be characterized by a state space S, an action space

A, a state transition function Pr(sj|si, a) denoting the probability of transition to state

sj given state si and action a, and an immediate reward function r(s), specifying the

immediate utility of being in state s.

A policy π for a MDP is a mapping from S to A. It is associated with a value function

V π : S → ℜ, where V π(s) is the expected discounted total reward that the agent gets

if it starts at state s. V π can be computed exactly by solving the following set of linear

equations with one equation for each state:

V π(s) = r(s) + γ
∑

s′∈S

Pr(s′|s, π(s))V π(s′) (2.1)

12

A solution to a MDP is an optimal policy that maximizes expected discounted total

reward as defined by the Bellman equation.

V ∗(s) = maxa∈A[r(s) + γ
∑

s′∈S

Pr(s′|s, a)V ∗(s′)]

where V ∗ represents the optimal state-value function.

A class of algorithms, such as value iteration, policy iteration, linear programming,

and heuristic search, can be used to find optimal policies.

2.1.1 Value Iteration

The value iteration algorithm (VI) uses the Bellman equation to iteratively refine an

estimate of the optimal value function

Vn+1(s) = maxa∈A[r(s) + γ
∑

s′∈S

Pr(s′|s, a)Vn(s′)] (2.2)

where Vn(s) represents our current estimate of the value function and can be considered

as the optimal value function when an agent has n steps to go, and Vn+1(s) is the next

estimate and can be considered as the optimal value function when an agent has n+1 steps

to go. Value iteration starts with the reward function, which is the optimal value function

when an agent has 0 step to go, and repeats the update until ‖Vn+1(s)−Vn(s)‖ ≤ ε(1−γ)
2γ

,

which guarantees that ‖Vn+1(s)−V
∗(s)‖ ≤ ε, a condition known as ε-optimality. The set

of actions πn+1(s) = argmaxa∈A[r(s) + γ
∑

s′∈S Pr(s
′|s, a)Vn(s′)] are called the greedy

policy with respect to the value function Vn. Since we can calculate Vn+1 and πn+1 at the

same time, we introduce the notation (Vn+1, πn+1) = greedy(Vn).

Let Qa
V denote the value obtained by performing action a for one step and receiving

the terminal value V . We can rewrite Equation 2.2 in the following two steps:

1. Regression:

Qa
Vn

= r(s) + γ
∑

s′∈S Pr(s
′|s, a)Vn(s′).

2. Maximization:

13

Vn+1(s) = maxa∈AQ
a
Vn

(s).

2.1.2 Policy Iteration

Fixing a policy π in Equation (2.2) (instead of maximizing over actions), and replacing

Vn with a generic value function V we obtain

Qπ
V (s) = r(s) + γ

∑

s′∈S

Pr(s′|s, π(s))V (s′)

so that Qπ
V is the value obtained by executing policy π for one step and then receiving

the terminal value V . Note that Qπ
V (s) = Qa

V (s) where π(s) = a. When V is Vn and the

output is taken as Vn+1 we get the successive approximation algorithm calculating the

value function V π (Puterman, 1994). We later distinguish the algorithmic part from the

Q value calculated in order to check whether they are the same in the relational case. We

therefore denote the algorithm calculating Q from V and π by regress-policy(V, π).

Policy iteration (PI) is an alternative algorithm to VI that can be faster in some

cases (Puterman, 1994). PI starts with any policy π and repeats the following steps until

the policy does not change.

1. Policy evaluation: compute V π by solving Equation 2.1 or through successive ap-

proximation.

2. Policy improvement: π = greedy(V π).

The final policy is the optimal policy and the value function corresponding to this

policy is the optimal value function.

For large state spaces it may be computationally prohibitive to evaluate the policy

exactly or use successive approximation until convergence. It has been observed that

the exact value of the current policy is not needed for policy improvement and an ap-

proximation based on a few number of iterations of successive approximation is often

sufficient (Puterman, 1994). Therefore, Puterman (1994) introduced Modified Policy It-

eration (MPI) where the sequence mn of non-negative integers controls the number of

14

updates in policy evaluation steps:

Procedure 1 Modified Policy Iteration

1. n = 0, V0 = R.

2. Repeat

(a) (Policy improvement)

(w0
n+1, π) = greedy(Vn).

(b) If ‖w0
n+1 − Vn‖ ≤ ǫ(1 − γ)/2γ, return Vn and π, else go to step 2c.

(c) (Partial policy evaluation)

k=0.

while k < mn+1 do

i. wk+1
n+1 = regress-policy(wk

n+1, π).

ii. k=k+1.

(d) Vn+1 = w
mn+1

n+1 , n = n+ 1.

Note that this algorithm uses the same stopping criterion as that of value iteration,

and the returned policy is ǫ-optimal. Puterman (1994) has shown that the algorithm

converges for any mn sequence.

A MDP can also be solved by formulating it as a linear program (LP). For details see

(Puterman, 1994).

2.1.3 Heuristic Search

If the initial state is known and we have a finite-horizon MDP, i.e., the planning problem

proceeds for a finite number of stages, we can solve the MDP using forward search. We

can construct a stochastic decision tree rooted at the initial state by expanding on actions

up to a certain depth and then computing expectations and maximizations as we “fold

back” the tree, where we first determine values at leaves and then proceed to calculate

values at successive levels of the tree. Figure 2.1 illustrates this process. A brute-force

15

forward search would require time exponential in the horizon to calculate the expected

value for a single state and cannot solve the infinite-horizon problem. However heuristic

search algorithms that focus on a partial search space can do much better and can handle

infinite horizon problems.

sinit

 a1 an

s1 sm

 a1 an

s1

Build the
decision
 tree Evaluation

V0(s1)

Pr(s1|sinit,a)
=p1

V(a1)
=∑i≤mpiV i

V1

V=maxj≤n
jaV

Figure 2.1: Decision tree building and evaluation.

Note that the decision tree is an AND-OR tree — the actions form the OR branches

because the optimal action for a state is a choice among a set of actions; and a set of

possible next states form the AND branches for an action because the utility of an action

is a sum of the utility of each next state multiplied by the probability of transition to

that state. The heuristic search algorithm AO* (Nilsson, 1971; Martelli & Montanari,

1973) is often used to find optimal solutions for problems formalized as AND-OR trees or

graphs. However, AO* can only take an acyclic graph as a solution and thus unable to

handle solution with loops, which are typical for MDPs, e.g., a policy that keeps trying

a stochastic action until it succeeds. LAO* (Hansen, 2001) is an extension of AO*, in

which a solution is represented as a finite state controller. In contrast to AO*, which

updates state values in a single backward pass from the states on the fringe of best partial

solution to the start state, LAO* relies on a dynamic programming algorithm such as

value iteration or policy iteration to perform such update.

16

Real time dynamic programming (RTDP) (Barto et al., 1995) is another method to

avoid search in the entire state space. RTDP is a probabilistic extension of a heuristic

search algorithm Learning Real-Time A* (LRTA*) (Korf, 1990). Trial-based RTDP starts

with an admissible heuristic function (i.e., non-overestimating). Each trial begins with

the initial state and repeats the following steps until a goal is reached or a stopping

criterion is met: first, for the current state an action is greedily selected based on the

heuristic function; then the current state is updated based on the outcome of the action.

This updates the heuristic function for next iteration. If the heuristic function is non-

overestimating and there is a path (with positive probability) from the initial state to the

goal, the algorithm converges to an optimal solution (Barto et al., 1995).

2.2 Propositionally Factored MDPs

Value iteration and policy iteration for MDPs require time polynomial in |S| and |A| for

each iteration. However |S| can be very large. If we let the state space be represented

by n binary state attributes X = X1, . . . ,Xn, then the total number of states would

be 2n. This is the well-known “curse of dimensionality”, implying that algorithms that

enumerate states run in exponential time in the number of state attributes. Consequently

efficient representations that explicitly model structure in MDP problems, and algorithms

that utilize such structure are extremely important in order to solve problems with large

state spaces.

Several representations for propositionally factored MDPs, where a state is represented

by a set of attributes, have been proposed. These representations can be much more

concise than the standard representation. Dynamic Bayesian Networks (DBN) (Dean

& Kanazawa, 1989) are most widely used factored representation of MDPs. Let X =

{X1, · · · ,Xn} represent the state attributes at the current time t and X′ = {X ′
1, · · · ,X

′
n}

represent the state attributes in the next step t + 1. Figure 2.2 shows a DBN involving

two stages (also referred to as two-stage temporal Bayesian network (2TBN)). Each edge

between two state attributes in the DBN indicates a direct probabilistic dependency be-

17

tween them, therefore the DBN explicitly captures independence among state attributes.

Notice that we have one DBN for each action a.

X1

X2

Xn

X1’

X2’

Xn’

Time t Time t+1

 Prob(X2’)
 X2 t f

 t - -
 f - -

 Prob(Xn’)
 X1 Xn t f

 t t - -
 t f - -
 f t - -
 f f - -

Figure 2.2: An example illustrating the DBN.

With the DBN representation, we can define the state transition function as follows:

P (X ′
1,X

′
2, · · · ,X

′
n|X1,X2, · · · ,Xn, a) = P (X ′

1|Pa(X
′
1), a) × P (X ′

2|Pa(X
′
2), a) · · · ×

P (X ′
n|Pa(X

′
n), a)

where Pa(X ′
i) refers to the parent nodes of X ′

i in the DBN. This formula is true in general,

because it is using all the parents of a node. But it is most convenient when all parents

are in time slice t since then the action’s effect on each variable is independent given the

previous state.

Let m be the maximum number of variables a variable can depend on, then we need to

specify n2m parameters with the DBN representation. Since in many domains each state

attribute only depends on a few others, this factored representation of state transition

functions may require much fewer parameters than a full state-based transition matrix,

which requires 22n parameters. We can specify the conditional probability more com-

pactly for each successor state attribute using decision trees or algebraic decision diagrams

(ADD) because of a property called context-specific independence, i.e., certain values of

variables in a conditional probability table (CPT) make other values irrelevant (Boutilier

et al., 1996). As shown by Boutilier et al. (2000) and Hoey et al. (1999), we can further

use decision trees or ADDs to compactly represent rewards, value functions, and policies.

18

There are alternative representations to the DBN representation such as probabilis-

tic STRIPS-like language (PStrips) (Kushmerick et al., 1995). Littman (1997) proved

that the two representations are representationally equivalent if one is allowed to change

domain encoding. However each has its own strength that makes each more suitable to

represent a certain class of problems. The DBN representation is better at describing

the effects of actions on distinct variables, while PStrips is more effective for representing

actions with correlated effects (Boutilier et al., 1999).

Now that we have compact representations for MDPs, the next challenge is to develop

algorithms that can exploit such factored representations. Boutilier et al. (2000) and

Hoey et al. (1999) have shown that if we can represent each of r(s), Pr(s′|s, a), and

Vk(s) compactly using a decision tree or an algebraic decision diagram (ADD) then value

iteration and policy iteration can be done directly using these representations, avoiding

the need to enumerate the state space. In general ADDs provide a more compact repre-

sentation than decision trees. Empirical studies by Hoey et al. (1999) showed substantial

speedup for propositionally factored domains and that ADD representation outperforms

the algorithm using the decision tree representation. Feng and Hansen (2002) further

generalize the LAO* algorithm to solve factored MDPs represented using ADDs. The

ADD representation and first order generalizations for them are discussed in detail in

Chapter 4.

2.3 Relational or First Order MDPs

Propositional solutions, obtained by grounding a domain instance, do not provide abstract

solutions that are independent of domain size or instantiation and they get slower with

increasing problem size. There has been an increasing interest in developing relational or

first order representations of MDPs because one can develop abstract solutions for them.

While “DBNs+ADDs” and “DBNs+decision trees” approaches have been successfully

used for efficient representations and computations in propositionally factored MDPs, it

is not straightforward to use similar techniques in first-order MDPs. One difficulty lies in

19

lifting the propositional DBN to the first order case without having to propositionalize the

domain. While the relational or first-order DBN (RDBN) can specify the dependencies

between different predicates, it is not clear how it can capture the correlation between

different instances of the same predicate. For example in the blocks world, the action

move(x, y, z), which means moving block x to y from z, causes on(x, y) and ¬on(x, z) to

happen simultaneously. They are either simultaneously true or simultaneously false. But

the RDBN will make +on(x, y) and −on(x, z) conditionally independent whatever the

preconditions are. Mausam and Weld (2003) and Sanghai et al. (2005) defined a version

of RDBNs that handled such cases by having multiple DBN nodes for the same predicate

(with different arguments). As a result, they perform inference at the propositional level.

On the other hand, we can easily use PStrips to represent the following action:

Move(x, y, z)

Precondition: on(x, z), clear(x), clear(y)

Effects:0.1 nothing

0.9 add list clear(z), on(x, y)

del list on(x, z), clear(y)

where for any object x, y, z, if the precondition on(x, z) ∧ clear(x) ∧ clear(y) holds, then

with probability 0.9 on(x, z) ∧ clear(y) will be false in next state and clear(z) ∧ on(x, y)

will be true. With probability 0.1 the next state will be identical to the current state.

First-order MDPs were first introduced by Boutilier et al. (2001). We call their

approach SDP for Symbolic Dynamic Programming. Their work was developed in the

context of the situation calculus. One of the useful restrictions introduced in their work

is that stochastic actions must be specified as a randomized choice among determinis-

tic alternatives. For example, action load in the logistics example can succeed or fail.

Therefore there are two alternatives for this action: loadS (load success) and loadF (load

failure). The formulation and algorithms support any number of action alternatives. The

randomness in the domain is captured by a random choice specifying which action alter-

native gets executed following some specified probability. In this way one can separate the

20

regression over action effects, which is now deterministic, from the probabilistic choice of

action. The same style of specification is used in the PStrips example given above where

choice of “effects-version” is probabilistic but each effect is deterministic.

Boutilier et al. (2001) introduce the case notation to represent probabilities and

rewards compactly. The expression t = case[φ1, t1; · · · ;φn, tn], where φi is a logic formula,

is equivalent to (φ1 ∧ t = t1) ∨ · · · ∨ (φn ∧ t = tn). In other words, t equals ti when φi is

true. The φi’s are disjoint and partition the state space. The ti’s are constants. Each φi

denotes an abstract state whose member states have the same value for that probability

or reward.

On each regression step during value iteration, the value of a stochastic action A(~x)

parameterized with free variables ~x is determined in the following manner:

Q
A(~x)
V (s) = rCase(s)⊕ γ[⊕jpCase(nj(~x), s) ⊗Regr(vCase(do(nj(~x), s)))]

where rCase(s) and vCase(s) denote reward and value functions in case notation, nj(~x)

denotes the possible outcomes of the action A(~x), and pCase(nj(~x), s) the choice proba-

bilities for nj(~x). Operators ⊕ and ⊗ are defined in the following way:

case[φi, ti : i ≤ n] ⊕ case[ψj , vj : j ≤ m] = case[φi ∧ ψj , ti + vj : i ≤ n, j ≤ m]

case[φi, ti : i ≤ n] ⊗ case[ψj , vj : j ≤ m] = case[φi ∧ ψj, ti · vj : i ≤ n, j ≤ m]

Note that we can replace a sum over s′ in the standard value iteration with a sum

over j, the action alternatives, since different next states arise only through different

action alternatives. Regr is the same as classical goal regression, which determines what

states one must be in before an action in order to reach a particular state after the

action. Figure 2.3 illustrates the regression of ∃b,Bin(b, Paris) in the reward function

R through the action alternative unloadS(b∗, t∗). ∃b,Bin(b, Paris) will be true after the

action unloadS(b∗, t∗) if it was true before or box b∗ was on truck t∗ and truck t∗ was in

Paris. Notice how the reward function R partitions the state space into two regions or

21

abstract states, each of which may include an infinite number of complete world states

(e.g., when we have infinite number of domain objects). Also notice how we get another

set of abstract states after the regression step, which ensures that we can work on abstract

states and never need to propositionalize the domain.

),(, ParisbBinb∃

),(

),(*

*,,

ParistTin

tbOntt

bbtb

∧
∧=

∧=∃

),(, ParisbBinb∃
10

),(, ParisbBinb¬∃
 0

R

Figure 2.3: An example illustrating regression over an action alternative.

After the regression, we get a parameterized Q-function which accounts for all possible

versions of an action. We need to maximize over the action parameters of each Q-function

to get the maximum value that could be achieved by using an instance of this action. Con-

sider the logistics example where we have two boxes b1 and b2, and b1 is on truck t1 which

is in Paris (On(b1, t1) and T in(t1, Paris)), while b2 is in Boston (Bin(b2, Boston)). For

the action schema unload(b∗, t∗), we can instantiate b∗ and t∗ with b1 and t1 respectively,

which will help us to achieve the goal; or we can instantiate b∗ and t∗ with b2 and t1

respectively, which will have no effect. Therefore we need to perform maximization over

action arguments to get the best instance of an action.

In SDP, this is done by sorting each partition in Q
A(~x)
V by the value in decreasing order

and including the negated conditions for the first n partitions in the partition formula

for the (n+ 1)th partition, ensuring that a partition can be satisfied only when no higher

value partition can be satisfied. Notice how this step leads to complex description of the

resulting state partitions.

Finally, to get the next value function we maximize over the Q-functions of different

22

actions.

The solution of ReBel (Kersting et al., 2004) follows the same outline but uses a

simpler logical language, a probabilistic STRIPS-like language, for representing RMDPs.

More importantly the paper uses a decision list (Rivest, 1987) style representation for

value functions and policies. The decision list gives us an implicit maximization operator

since rules higher on the list are evaluated first. As a result the object maximization step

is very simple in ReBel. Each state partition is represented implicitly by the negation

of all rules above it, and explicitly by the conjunction in the rule. On the other hand

regression in ReBel requires that one enumerate all possible matches between a subset of

a conjunctive goal (or state partition) and action effects and reason about each of these

separately.

Besides exact solution methods, there are other representation languages and algo-

rithms based on approximation or heuristic methods (Guestrin et al., 2003a; Mausam &

Weld, 2003; Fern et al., 2003; Gardiol & Kaelbling, 2003; Gretton & Thiebaux, 2004;

Sanner & Boutilier, 2005; Sanner & Boutilier, 2006). For example, (Fern et al., 2003;

Gretton & Thiebaux, 2004) use inductive learning methods, which first solve instantia-

tions of RMDPs in small domains and then generalize these policies to large domains.

Sanner and Boutilier (2005; 2006) give a method that does not need to propositionalize

the domain. They represent value functions as a linear combination of first order basis

functions and obtain the weights by lifting the propositional approximate linear program-

ming techniques (Schuurmans & Patrascu, 2001; Guestrin et al., 2003b) to handle the

first order case.

2.4 Partially Observable MDPs

The MDP model assumes that the underlying state of the process will be known with

certainty during plan execution. The POMDP generalizes the MDP model by allowing

for another form of uncertainty — the states are not directly observable. We add an

observation space O and an observation function Pr(o|s, a), denoting the probability of

23

observing o when action a is executed and the resulting state is s.

Since the agent does not know the state, a belief state — a probability distribution

over all states — is commonly used. Let ba represent the updated belief state that results

from doing action a in belief state b and bao from observing o after doing a in b, we can

update a belief state as follows (Kaelbling et al., 1998):

ba(s) =
∑

s′∈S

Pr(s|s′, a)b(s′) (2.3)

bao(s) = Pr(o|s, a)ba(s)/
∑

s′∈S

Pr(o|s′, a)ba(s′) (2.4)

We use Pr(o|b, a) to denote the denominator
∑

s′∈S Pr(o|s
′, a)ba(s′) in equation 2.4,

which is the probability of observing o given the belief state b and action a.

Given a belief state, its successor belief state is determined by the action and the

observation. Therefore a POMDP can be converted to a MDP over belief space. The

Bellman update now becomes:

Vn+1(b) = maxa∈A[
∑

s∈S

b(s)r(s) + γ
∑

o∈O

Pr(o|b, a)Vn(bao)] (2.5)

Since the state space for this MDP is a |S|-dimensional continuous space, it is much

more complex than MDPs with discrete state space. A significant amount of work has been

devoted to finding efficient algorithms for POMDPs, e.g., (Hauskrecht, 1997; Cassandra,

1998; Hansen, 1998; Zhang et al., 1999). In the following sections we review some of them.

2.4.1 Exact Algorithms

Like fully observable MDPs, value iteration and policy iteration are two commonly used

algorithms for solving POMDPs. Value iteration algorithms conduct search in the value

function space whereas policy iteration search in the policy space.

Most exact algorithms are value iteration algorithms. They start with an initial value

function and iteratively perform Bellman updates to generate the value function for the

next stage. Although the states of the belief state MDP are continuous, Sondik (1971)

24

and Smallwood and Sondik (1973) prove that value functions for POMDPs are piecewise

linear and convex (PWLC) and can be represented by a finite set of |S|-dimensional vectors

{v1, · · · , vn}. That is, the value function can be represented as V (b) = maxi

∑
s b(s)v

i(s).

There are several value iteration algorithms, e.g., one-pass (Sondik, 1971), linear sup-

port (Cheng, 1988), enumeration algorithm (Monahan, 1982), incremental pruning (Zhang

& Liu, 1997; Cassandra et al., 1997), and the witness algorithm (Kaelbling et al., 1998).

The first two algorithms generate a new set of vectors directly by backing up on a finite

number of systematically generated belief points. The next two algorithms first generate

a set of vectors that are not parsimonious and then prune redundant vectors. The witness

algorithm (Kaelbling et al., 1998) first constructs for each action a parsimonious set of

vectors based on a finite number of belief points called “witness points” and then puts

together vectors for different actions for further pruning. Among these algorithms, the in-

cremental pruning (IP) algorithm is easy to understand and implement, yet very efficient,

and thus becomes the basis for many other algorithms for POMDPs, such as incremental

pruning with point-based improvement (Zhang & Zhang, 2001) and propositionally fac-

tored POMDPs (Hansen & Feng, 2000). We will explain this algorithm in more detail in

Chapter 6 when we discuss relational POMDPs.

Policy iteration for POMDPs was first suggested by Sondik (1978), who proposed

to represent policies as finite state controllers (FSC). Hansen (1998) proposed a more

practical and implementable version. A policy is represented with a FSC, with each node

associated with an action and each arc associated with an observation. The algorithm

starts with an arbitrary FSC, and each iteration, just like that of MDPs, consists of two

steps: policy evaluation and policy improvement. First, the current policy is evaluated by

solving a set of linear equations, yielding a set of |S|-dimensional vectors, one for each FSC

node. Next a dynamic programming update, e.g., incremental pruning, is used to generate

a new set of vectors from the set of vectors obtained from policy evaluation. For each new

vector that is added in the update, a new node is added to FSC and useless nodes are

pruned away. Hansen (1998) proved that the algorithm converges to the optimal policy

and also showed empirically that policy iteration converges faster than value iteration.

25

2.4.2 Approximations

Solving POMDPs exactly is hard (Papadimitrios & Tsitsiklis, 1987; Madani et al., 2003).

Therefore there has been a substantial amount of research directed to calculating good

approximations of the optimal solution. Hauskrecht (2000) provides a comprehensive

survey of computing approximate value functions of POMDPs. For example, grid-based

method (Lovejoy, 1991; Brafman, 1997; Hauskrecht, 1997; Zhou & Hansen, 2001) is the

first approximation approach for POMDPs and is still widely used (Zhou & Hansen,

2001). It approximates value functions by discretizing the belief space using a fixed

or variable grid and maintaining values only for the grid points. Values at non-grid

points are estimated by interpolation/extrapolation. Another example of value function

approximation is to approximate each vector that composes the piecewise linear convex

value functions by a linear combination of basis functions (Guestrin et al., 2001).

There has also been work on approximation of belief states. Belief states can be rep-

resented compactly using Dynamic Bayesian Networks (DBNs), e.g., Forbes et al. (1995)

determine the current belief state by the network for the current time slice along with

current percepts. Unfortunately, even though variables start out being independent (thus

admitting a compact representation of distribution) and there are only a few connections

between one variable and another, over time, all the variables may become fully corre-

lated. Therefore, compact representation of belief states is usually impossible (Poupart &

Boutilier, 2000; Boyen & Koller, 1998). Based on this observation, several approximation

schemes have been proposed. Boyen and Koller (1998) approximate belief states of DBNs

by dividing the state variables into a set of subset of variables and using a product of

marginals of each subset as a simplification, assuming that the subsets are independent.

Koller and Fratkina (1998) propose another approximation scheme based on density trees,

which are similar to classification decision trees. A density tree splits on the domains of

variables, and the probabilities labeling the leaves denote the summations of probabilities

of every state consistent with the corresponding branch. Moreover, the distribution at

each leaf is uniform over these states, making density trees similar in meaning to our belief

26

state representation which is covered in Chapter 6.

2.4.3 Heuristic Search

Since the POMDP is a belief state MDP, we can build a stochastic decision tree and

perform heuristic search just as in MDPs. The differences is that each tree node is now

a belief state, and given an action the probability of transitioning to the next belief state

is determined by Pr(o|b, a) (as defined in Section 2.4).

Washington (1996; 1997) perform AO* search in the belief state space, which can be

used to solve finite-horizon problems. We can use LAO* for infinite-horizon POMDPs;

however testing whether two belief states are equal (so as to know whether they refer to

the same state in the search space) is a costly operation. Hansen (1998) uses AO* in a

variant of policy iteration when the initial state is known. Although AO* is used in this

case, the solution can be cyclic because it uses value function corresponding to a finite

state controller as the lower bound function and improves the controller during search.

The algorithm converges to a ε-optimal policy for the initial belief state after a finite

number of steps.

Bonet and Geffner (2000) use RTDP-BEL, an adaptation of RTDP for solving belief

state MDPs, to search for an approximation of the optimal plan. Bonet and Geffner

(2001) further provide a unified view of solving planning problems, where the action

dynamics can be deterministic, non-deterministic, and probabilistic, and sensor feedback

can be null, partial, and complete, as a heuristic search in the form of real-time dynamic

programming in the (belief) state space.

2.4.4 Heuristic Solutions

To solve a POMDP we can solve the underlying MDP, and use that as the basis of various

heuristics. Cassandra (1998) provides a set of heuristic solution methods. The simplest

one is the most likely state (MLS) method — find the most likely state according to the

current belief state and choose the action according to the policy for the underlying MDP.

The most widely used is the Q-MDP method. Instead of using policies as in the MLS,

27

it uses the Q-functions of the optimal policy for the underlying MDP, and choose the

action that maximize
∑

s b(s)Q
a(s). The problem with this approach is that it assumes

that all the uncertainty will vanish in the next step, because the underlying MDP is fully

observed. Hence it will never perform information gathering actions (Cassandra, 1998).

Cassandra (1998) tries to alleviate this problem by a dual model control method —

if the entropy of the belief state is below a pre-specified threshold, use one of the above

heuristics; otherwise choose an action to reduce the entropy. This problem can also be

partially overcome by doing deeper lookahead, as in (Washington, 1996; Washington,

1997). Zubek and Dietterich (2000) propose another approach to solve this problem.

Instead of using the underlying MDP as an approximation of the POMDP value function,

they define an “even-odd” POMDP that is identical to the original POMDP except that

the state is fully observable at even time steps. This even-odd POMDP can be converted

into an equivalent MDP (the 2MDP) with different actions and rewards. Let V ∗
2MDP be

the optimal value function for the 2MDP (which captures some of the sensing costs of the

original POMDP). They get an improved approximation to the POMDP value function by

performing a shallow lookahead search and evaluating the leaf states using V ∗
2MDP . Zubek

and Dietterich (2001) further define a chain-MDP approximation when the actions can

be partitioned into those that change the world and those that are pure sensing actions.

For such problems, the chain-MDP algorithm is able to capture more of the sensing costs

than the even-odd POMDP approximation in many cases (Zubek & Dietterich, 2001).

2.4.5 Propositionally Factored POMDPs

Several representations for propositionally factored POMDPs have been proposed.

Boutilier and Poole (1996) describe an algorithm based on Monahan’s enumeration al-

gorithm that exploits the factored representation in a POMDP in the form of Dynamic

Bayesian Network to compute decision tree structured value functions and policies. But

the belief state is not represented in a compact way. When it comes to policy execution,

one must maintain a distribution over flat states online. Hansen and Feng (2000) extend

this algorithm by using Algebraic Decision Diagrams instead of decision trees and an

28

efficient incremental pruning algorithm instead of Monahan’s enumeration algorithm to

compute the dynamic programming update. Their test results indicate that a factored

state representation can significantly speed up dynamic programming in the best case and

incurs little overhead in the worst case.

2.4.6 First Order POMDPs

First order representations have also been proposed for POMDPs. Poole (1997) uses choice

space to capture uncertainty, and uses logic programs to capture deterministic certainty.

Bacchus et al. (1999) extend the situation calculus to include probability. But these two

works only focus on knowledge representation and do not build a planner. Geffner and

Bonet (1998) use a goal satisfaction model and compile the high-level modeling language

into the underlying POMDP with flat states; therefore their approach does not scale up

well to large problems.

2.5 Other Related Work

In a classical planning framework like STRIPS (Fikes & Nilsson, 1972), actions have

deterministic effects and the initial state is known. Under these assumptions, all states

that are reachable during plan execution can be computed trivially from the initial state

and the actions executed. There is no need to obtain feedback from the environment.

Plans generated are in the form of sequence of actions, totally ordered or partially ordered.

Some examples include UCPOP (Penberthy & Weld, 1992), Graphplan (Blum & Furst,

1995), and SatPlan (Kautz & Selman, 1996). Weld (1999) surveys AI planning techniques.

However, classical planners are rarely useful in the real world domains that involve un-

certainty, because the plan may fail at an early stage. In the past decade, there has been

growing interest in generalizing classical planners that ignored stochastic uncertainty to

planning problems that include uncertainty about both the effects of actions and the prob-

lem state. These are called conditional and/or probabilistic planners, e.g., C-BURIDAN

(Drape et al., 1994), Weaver (Blythe, 1998), and Mahinur (Onder, 1997). These systems

29

extend STRIPS representations to allow for stochastic actions. They first develop a base

plan using a classical planning method, then improve plans by either increasing the chance

of the occurrence of the desired outcome of an action or dealing with the situation when

the desired outcome of an action does not occur by forming new branches that indicate

alternative response to different observational result or simply removes one action and

replace it with an alternative. These systems use a goal satisfaction model and ignore

plan cost. C-BURIDAN and Weaver give plans that reach any goal state with probability

exceeding some threshold and Mahinur tries to improve the probability until time allot-

ted has expired. In addition, Weaver introduces an explicit mechanism to efficiently deal

with exogenous events, i.e., events beyond the control of an agent. Mahinur selects flaws

for refinement by estimating how much utility could be gained based on a simplifying

assumption of additive, independent rewards associated with each top-level subgoal.

Hyafil and Bacchus (2003) provide an interesting comparison between solving confor-

mant probabilistic planning (CPP) via constraint satisfaction problems (CSP) and via

POMDPs (with complete unobservability), and their findings are that the CSP method is

faster for shorter plans but the POMDP method eventually catches up — the complexity

of the CSP method is always exponential in the plan length, while the increase in the

number of vectors needed to represent the value function in POMDPs tends to slow down

as plan length increases.

There has also been research on planning under partial observability in non-

deterministic domains, where uncertainties are treated as disjunctions and there is no

information about the relative likelihood of possible outcomes or states. As a result, one

must plan for all contingencies, which makes scaling a concern. However, this may be

desirable in domains where all eventualities need to be considered. For example, Bertoli

et al. (2001) propose conditional planning under partial uncertainty as and-or heuristic

search of the possibly cyclic graph induced by the domain, and used Binary Decision Dia-

gram (BDD) based techniques, which provide data structures and algorithms for making

the operations on belief sets more efficient. The conditional acyclic plans generated are

guaranteed to achieve the goal despite of the uncertainty in the initial condition and the

30

effects of actions. However, the planner cannot solve problems that require a cyclic plan,

such as the Omelette problem (Geffner & Bonet, 1998).

Boutilier et al. (1999) provide a comprehensive survey on MDPs and explain how

MDPs provide a unifying framework for sequential decision making problems including

AI planning. The survey includes compact representations of MDPs (e.g., DBN and

PStrips) and efficient solution methods utilizing abstraction, aggregation, and decompo-

sition methods.

31

Chapter 3

First Order Decision Diagrams

In this chapter we describe our representation framework FODDs. We examine the syntax

and semantics of the language, and develop reduction operators that remove redundancies

in FODDs. These are crucial to keep the representation small and make algorithms

feasible.

3.1 Propositional Decision Diagrams

A decision diagram is a labeled directed acyclic graph where non-leaf nodes are labeled

with propositional variables, each non-leaf node has exactly two children corresponding

to true and false branches, and leaves are labeled with numerical values. A decision

diagram is a compact representation of a mapping from a set of boolean variables to a

set of values. A Binary Decision Diagram (BDD) represents a mapping to a boolean set

{0, 1} (Bryant, 1986). An Algebraic Decision Diagram (ADD) represents a more general

mapping to any discrete set of values (Bahar et al., 1993).

An ADD defines a function f for each node using the following rules (Bahar et al.,

1993):

1. For a leaf node labeled c, f = c.

2. For non-leaf node labeled x, f = x · ftrue + (¬x) · ffalse, where ftrue and ffalse are

functions corresponding to its two children.

32

The functions corresponding to a BDD is defined in the same way except that “·” is

replaced by ∧ and “+” replaced by ∨. Figure 3.1 shows a BDD representing the boolean

function x1 ∨ x2 ∨ x3. In this diagram as well as in the rest of the thesis, left going edges

represent true branches.

 x1

 x2

x3

 1 0

Figure 3.1: A BDD representing the boolean function x1 ∨ x2 ∨ x3.

Ordered decision diagrams (ODD) specify a fixed order on propositions and require

that node labels respect this order on every path in the diagram. It is well known (Bryant,

1986) that starting with any ODD, we can reduce its size by repeatedly applying the

following rules until neither is applicable:

1. Merge nodes with same label and same children.

2. Remove a node with both children leading to the same node.

For a given variable ordering, every function has a unique canonical representation.

That is, we have the following theorem:

Theorem 1 (Bryant, 1986)

If two ODDs D1 and D2 are reduced, and they represent the same function, then D1 and

D2 are isomorphic.

This theorem shows that reducing an ODD gives a normal form. This property means

that propositional theorem proving is easy for ODD representations. For example, if a

formula is contradictory then this fact is evident when we represent it as a BDD, since

the normal form for a contradiction is a single leaf valued 0. This together with efficient

manipulation algorithms for ODD representations lead to successful applications, e.g., in

VLSI design and verification (Bryant, 1992; McMillan, 1993; Bahar et al., 1993).

33

3.2 First Order Decision Diagrams

3.2.1 Syntax of First Order Decision Diagrams

There are various ways to generalize ADDs to capture relational structure. One could

use closed or open formulas in the nodes, and in the latter case we must interpret the

quantification over the variables. In the process of developing the ideas in this thesis we

have considered several possibilities including explicit quantifiers but these did not lead

to useful solutions. We therefore focus on the following syntactic definition which does

not have any explicit quantifiers.

p (x)
 q (x)

h (y)
 1

0

 1

0

Figure 3.2: A simple FODD.

Definition 1 1. We assume a fixed set of predicates and constant symbols, and an

enumerable set of variables. We also allow using an equality between any pair of

terms (constants or variables).

2. A First Order Decision Diagram (FODD) is a labeled directed acyclic graph, where

each non-leaf node has exactly two children. The outgoing edges are marked with

values true and false.

3. Each non-leaf node is labeled with: an atom P (t1, . . . , tn) or an equality t1 = t2

where each ti is a variable or a constant.

4. Leaves are labeled with numerical values.

We can see that the definition of a FODD is quite similar to that of an ADD except

that it allows for more expressivity in a non-leaf node — a node can be labeled with a

predicate or an equality in addition to a propositional literal.

34

Figure 3.2 shows a FODD with binary leaves. To simplify diagrams in the thesis

we draw multiple copies of the leaves 0 and 1 (and occasionally other values or small

sub-diagrams) but they represent the same node in the FODD.

We use the following notation: for a node n, n↓t denotes the true branch of n, and

n↓f the false branch of n; n↓a is an outgoing edge from n, where a can be true or

false . For an edge e, source(e) is the node that edge e issues from, and target(e) is

the node that edge e points to. Let e1 and e2 be two edges, we have e1 = sibling(e2) iff

source(e1) = source(e2). It is clear that the two outgoing edges of any node are siblings

to each other.

In the following we will slightly abuse the notation and let n↓a mean either an edge or

the sub-FODD this edge points to. We will also use n↓a and target(e1) interchangeably

where n = source(e1) and a can be true or false depending on whether e1 lies in the

true or false branch of n.

3.2.2 Semantics of First Order Decision Diagrams

We use a FODD to represent a function that assigns values to states. For example, in

the logistics domain, we would like to assign values to different states in such a way that

if there is a box in Paris, then the state is assigned a value of 19; if there is no box in

Paris but there is a box on a truck that is in Paris and it is raining, this state is assigned

a value of 6.3, etc, as shown in Figure 3.3. So the question is how we define semantics of

FODDs in order to have the intended meaning?

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

Figure 3.3: An example of the value function.

The semantics of first order formulas are given relative to interpretations. An inter-

35

pretation has a domain of elements, a mapping of constants to domain elements, and for

each predicate a relation over the domain elements which specifies when the predicate is

true. In the MDP context, an interpretation is just a state. For example in the logistics

domain, a state includes objects such as boxes, trucks, and cities, and relations among

them, such as box 1 on truck 1 (On(b1, t1)), box 2 in Paris (Bin(b2, Paris)), etc. There

is more than one way to define the meaning of FODD B on interpretation I. In the

following we discuss two possibilities.

Semantics Based on a Single Path

A semantics for decision trees is given by Blockeel and De Raedt (1998) that can be

adapted to FODDs. The semantics define a unique path that is followed when traversing

B relative to I. All variables are existential and a node is evaluated relative to the path

leading to it.

In particular, when we reach a node some of its variables have been seen before on

the path and some are new. Consider a node n with label l(n) and the path leading to it

from the root, and let C be the conjunction of all labels of nodes that are exited on the

true branch on the path. Then in the node n we evaluate ∃~x,C ∧ l(n), where ~x includes

all the variables in C and l(n). If this formula is satisfied in I then we follow the true

branch. Otherwise we follow the false branch. This process defines a unique path from

the root to a leaf and its value.

For example, if we evaluate the diagram in Figure 3.2 on the interpretation with

domain {1, 2, 3} and relations {p(1), q(2), h(3)} then we follow the true branch at the

root since ∃x, p(x) is satisfied, but we follow the false branch at q(x) since ∃x, p(x)∧q(x)

is not satisfied. Since the leaf is labeled with 0 we say that B does not satisfy I. This

is an attractive approach, because it builds mutually exclusive partitions over states, and

various FODD operations can be developed for it. However, for reasons we discuss later

this semantics is not so well suited to value iteration, and it is therefore not used in the

thesis.

36

Semantics Based on a Multiple Paths

Following Groote and Tveretina (2003) we define the semantics first relative to a variable

valuation ζ. Given a FODD B over variables ~x and an interpretation I, a valuation ζ

maps each variable in ~x to a domain element in I. Once this is done, each node predicate

evaluates either to true or false and we can traverse a single path to a leaf. The value

of this leaf is denoted by MAPB(I, ζ).

Different valuations may give different values; but recall that we use FODDs to rep-

resent a function over states, and each state must be assigned a single value. Therefore,

we next define

MAPB(I) = aggregateζ{MAPB(I, ζ)}

for some aggregation function. That is, we consider all possible valuations ζ, and for

each we calculate MAPB(I, ζ). We then aggregate over all these values. In the special

case of Groote and Tveretina (2003) leaf labels are in {0, 1} and variables are universally

quantified; this is easily captured in our formulation by using minimum as the aggregation

function. In this thesis we use maximum as the aggregation function. This corresponds

to existential quantification in the binary case (if there is a valuation leading to value 1,

then the value assigned will be 1) and gives useful maximization for value functions in the

general case. We therefore define:

MAPB(I) = max
ζ

{MAPB(I, ζ)}

Consider evaluating the diagram in Figure 3.2 on the interpretation with domain

{1, 2, 3} and relations {p(1), q(2), h(3)}. The valuation where x is mapped to 2 and y

is mapped to 3 denoted {x/2, y/3} leads to a leaf with value 1 so the maximum is 1.

When leaf labels are in {0,1}, we can interpret the diagram as a logical formula. When

MAPB(I) = 1, as in our example, we say that I satisfies B and when MAPB(I) = 0 we

say that I falsifies B.

We define node formulas (NF) and edge formulas (EF) recursively as follows. For a

37

node n labeled l(n) with incoming edges e1, . . . , ek, the node formula NF(n) = (∨iEF(ei)).

The edge formula for the true outgoing edge of n is EF(n↓t) = NF(n) ∧ l(n). The edge

formula for the false outgoing edge of n is EF(n↓f) = NF(n) ∧ ¬l(n). These formulas,

where all variables are existentially quantified, capture the conditions under which a node

or edge are reached.

3.2.3 Basic Reduction of FODDs

Groote and Tveretina (2003) define several operators that reduce a diagram into “normal

form”. A total order over open predicates (node labels) is assumed. We describe these

operators briefly and give their main properties.

(R1) Neglect operator: if both children of a node p in the FODD lead to the same node

q then we remove p and link all parents of p to q directly.

(R2) Join operator: if two nodes p, q have the same label and point to the same 2 children

then we can join p and q (remove q and link q’s parents to p).

(R3) Merge operator: if a node and its child have the same label then the parent can

point directly to the grandchild.

(R4) Sort operator: If a node p is a parent of q but the label ordering is violated (l(p) >

l(q)) then we can reorder the nodes locally using 2 copies of p and q such that labels

of the nodes do not violate the ordering.

Define a FODD to be reduced if none of the 4 operators can be applied. We have the

following:

Theorem 2 (Groote & Tveretina, 2003)

(1) Let O ∈ {Neglect, Join, Merge, Sort} be an operator and O(B) the result of applying

O to FODD B, then for any ζ, MAPB(I, ζ) = MAPO(B)(I, ζ)

(2) if B1, B2 are reduced and satisfy ∀ζ, MAPB1(I, ζ) = MAPB2(I, ζ) then they are iden-

tical.

38

Property (1) gives soundness, and property (2) shows that reducing a FODD gives a nor-

mal form. However, this only holds if the maps are identical for every ζ and this condition

is stronger than normal equivalence. This normal form suffices for Groote and Tveretina

(2003) who use it to provide a theorem prover for first order logic, but is not strong

enough for our purposes. Figure 3.4 shows two pairs of reduced FODDs (with respect to

R1-R4) such that MAPB1(I) = MAPB2(I) but ∃ζ,MAPB1(I, ζ) 6= MAPB2(I, ζ). In this

case although the maps are the same the FODDs are not reduced to the same form. In

Section 3.3.2 we show that with additional reduction operators we have developed, B1

in the first pair is reduced to one. Thus the first pair have the same form after reduc-

tion. However, our reductions do not resolve the second pair. Even though B1 and B2

are logically equivalent (notice that we just change the order of two nodes and rename

variables), they cannot be reduced to the same form using R1-R4 or our new operators.

Notice that both these functions capture a path of two edges labeled p in a graph. To

identify a unique minimal syntactic form one may have to consider all possible renamings

of variables and the sorted diagrams they produce, but this is an expensive operation.

See (Garriga et al., 2007) for a discussion of normal form for conjunctions that uses such

an operation.

p (x)
 p (y)

 1
 0

1

B1 B2

1

p (x, y)
 p (y, z)

 1

 0

0

p (x, y)
 p (z, x)

 1

 0

0

Figure 3.4: Examples illustrating weakness of normal form.

39

3.2.4 Combining FODDs

Given two algebraic diagrams we may need to add the corresponding functions, take

the maximum or use any other binary operation, op, over the values represented by the

functions. Here we adopt the solution from the propositional case (Bryant, 1986) in

the form of the procedure Apply(p,q,op) where p and q are the roots of two diagrams.

This procedure chooses a new root label (the lower among labels of p, q) and recursively

combines the corresponding sub-diagrams, according to the relation between the two labels

(<, =, or >). In order to make sure the result is reduced in the propositional sense one

can use dynamic programming to avoid generating nodes for which either neglect or join

operators ((R1) and (R2) above) would be applicable.

Figure 3.5 illustrates this process. In this example, we assume predicate ordering as

p1 < p2, and parameter ordering x1 < x2.

0

p1 (x1)

 p2 (x1)

10

1

2

3

0

 p2 (x2)
 9

⊕ =

p1 (x1)

 p2 (x1)

1+3

2+3

10+3

10

 p2 (x2)
 19

0

 p2 (x2)
 9

0+3

Figure 3.5: A simple example of adding two FODDs.

3.2.5 Order of Labels

The syntax of FODDs allows for two “types” of objects: constants and variables. In the

process of our MDP algorithm we use a third type which we call action parameters. This

is required by the structure of the value iteration algorithm given in Chapter 5. Action

parameters behave like constants in some places and like variables in others.

We assume a complete ordering on predicates, constants, action parameters, and vari-

ables. Any argument of a predicate can be a constant or an action parameter or a variable.

The ordering < between two labels is given by the following rules:

40

1. P (x1, ..., xn) < P ′(x′1, ..., x
′
m) if P < P ′

2. P (x1, ..., xn) < P (x′1, ..., x
′
n) if there exists i such that type(xi) < type(x′i) or

type(xi) = type(x′i) and xi < x′i (where type can be constant, action parameter,

or variable) and xj = x′j for all j < i.

It may be helpful if the equality predicate is the first in the predicate ordering so that

equalities are at the top of the diagrams. During reduction we often encounter situations

where one side of the equality can be completely removed. It may also be helpful to order

the parameter types in the following order: constant < action parameters < variables.

This ordering may be helpful for reductions. Intuitively, a variable appearing later can be

bound to the value of a constant so it is better to place the variable lower in the diagram.

The action parameters are constants before object maximization, but become variables

after object maximization, so we put them in the middle.

The rest of this chapter focuses on reductions. Readers can understand the thesis

without reading it, but notice that reductions are performed to minimize the FODD size

whenever possible.

3.3 Additional Reduction Operators

In our context, especially for algebraic FODDs we may want to reduce the diagrams

further. We distinguish strong reduction that preserves MAPB(I, ζ) for all ζ and weak

reduction that only preserves MAPB(I). In the following let B represent any background

knowledge we have about the domain. For example in the Blocks World we may know

that ∀x, y, [on(x, y) → ¬clear(y)].

When we define conditions for reduction operators, there are two types of conditions:

the reachability condition and the value condition. We name reachability conditions by

starting with P (for Path Condition) and the reduction operator number. We name

conditions on values by starting with V and the reduction operator number.

41

3.3.1 (R5) Strong Reduction for Implied Branches

Consider any node n such that whenever n is reached then the true branch is followed.

In this case we can remove n and connect its parent directly to the true branch. We first

present the condition, followed by the lemma regarding this operator.

(P5) : B |= ∀~x, [NF(n) → l(n)] where ~x are the variables in EF(n↓t).

Let R5-remove(n) denote the operator that removes node n and connects its parent

directly to the true branch. Notice that this is a generalization of R3. It is easy to see

that the following lemma is true:

Lemma 1 Let B be a FODD, n a node for which condition P5 hold, and B′ the result of

R5-remove(n), then for any interpretation I and any valuation ζ we have MAPB(I, ζ) =

MAPB′(I, ζ).

A similar reduction can be formulated for the false branch, i.e., if B |= ∀~x, [NF(n) →

¬l(n)] then whenever node n is reached then the false branch is followed. In this case

we can remove n and connect its parent directly to the false branch.

Implied branches may simply be a result of equalities along a path. For example

(x = y) ∧ p(x) → p(y) so we may prune p(y) if (x = y) and p(x) are known to be true.

Implied branches may also be a result of background knowledge. For example in the

Blocks World if on(x, y) is guaranteed to be true when we reach a node labeled clear(y)

then we can remove clear(y) and connect its parent to clear(y)↓f .

3.3.2 (R6) Weak Reduction Removing Dominated Siblings

Consider any node n such that if we can reach node n using some valuation then we can

reach n↓t using a possibly different valuation. Intuitively, if n↓t always gives better values

than n↓f then we should be able to remove n↓f from the diagram. We first present all

the conditions needed for the operator and show relations between them, and then follow

with the definition of the operator.

(P6.1) : B |= ∀~x, [NF(n) → ∃~y, l(n)] where ~x are the variables that appear in NF(n), and

~y the variables in l(n) and not in NF(n). This condition requires that every valuation

42

reaching n can be extended into a valuation reaching n↓t.

(P6.2) : B |= [∃~x,NF(n)] → [∃~x, ~y,EF(n↓t)]. This condition requires that if n is reachable

then n↓t is reachable but does not put any restriction on the valuations (in contrast with

the requirement in P6.1 to extend the valuation reaching n).

(P6.3) : B |= ∀~u, [∃~v,NF(n)] → [∃~v, ~w,EF(n↓t)] where ~u are the variables that appear in

n↓t, ~v the variables that appear in NF(n) but not in n↓t, and ~w the variables in l(n) and

not in ~u or ~v. This condition requires that for every valuation ζ1 that reaches n↓f there

is a valuation ζ2 that reaches n↓t and such that ζ1 and ζ2 agree on all variables in (the

sub-diagram of) n↓t.

(P6.4) : no variable in ~y appears in the sub-diagram of n↓t, where ~y is defined as in P6.1.

(P6.5) : B |= ∀~r, [∃~v,NF(n)] → [∃~v, ~w,EF(n↓t)] where ~r are the variables that appear in

both n↓t and n↓f , ~v the variables that appear in NF(n) but not in ~r and ~w the variables in

l(n) and not in ~r or ~v. This condition requires that for every valuation ζ1 that reaches n↓f

there is a valuation ζ2 that reaches n↓t and such that ζ1 and ζ2 agree on the intersection

of variables in (the sub-diagrams of) n↓t and n↓f .

(V6.1) : min(n↓t) ≥ max(n↓f) where min(n↓t) is the minimum leaf value in n↓t, and

max(n↓f) the maximum leaf value in n↓f . In this case regardless of the valuation we

know that it is better to follow n↓t and not n↓f .

(V6.2) : all leaves in the diagram D = n↓t − n↓f have non-negative values (denoted as

D ≥ 0). In this case for any fixed valuation it is better to follow n↓t instead of n↓f .

We have the following lemma regarding relations among the conditions above:

Lemma 2

(a) P6.1 → P6.2

(b) P6.1 ∧ P6.4 → P6.3

(c) P6.3 → P6.5 → P6.2

(d) V6.1 → V6.2

Proof: It is clear that (a), (c), and (d) hold.

To prove (b), let ~u denote variables that appear in n↓t. From the conditions that

43

B |= ∀~x, [NF(n) → ∃~y, l(n)] and no variables in ~y appear in n↓t, we have B |= ∀(~x ∪

~u), [NF(n) → ∃~y, l(n)]. Let ~v denote all variables that appear in NF(n) but not in n↓t,

this is the same as B |= ∀(~v ∪ ~u), [NF(n) → ∃~y, l(n)], which is indeed stronger than P6.3.

We define the operator R6-replace(b, n↓f) as replacing n↓f with any constant value b

between 0 and min(n↓t). We have the following lemmas about this operator.

Lemma 3 Let B be a FODD, n a node for which condition P6.2 and V6.1 hold, and

B′ the result of R6-replace(b, n↓f), then for any interpretation I we have MAPB(I) =

MAPB′(I).

Proof: By P6.2, for any valuation ζ1 that reaches n↓f there is another valuation ζ2 reaching

n↓t, and by V6.1 it gives better value. Therefore, the map will never be determined by

the false branch and we can replace it with any constant value between 0 and min(n↓t)

without changing the map.

Lemma 4 Let B be a FODD, n a node for which condition P6.5 and V6.2 hold, and

B′ the result of R6-replace(b, n↓f), then for any interpretation I we have MAPB(I) =

MAPB′(I).

Proof: Consider any valuation ζ1 that reaches n↓f . By the condition P6.5, there is also

a valuation ζ2 that reaches n↓t. Because they agree on the variables in the intersection

of n↓t and n↓f , ζ2 must lead to a better value (otherwise, there would be a branch in

D = n↓t − n↓f with negative value). Therefore according to maximum aggregation the

value of MAPB(I) will never be determined by the false branch. Therefore we can

replace n↓f with a constant.

Note that the conditions in two lemmas are not comparable since P6.5 → P6.2 and

V 6.1 → V 6.2.

In some cases we can also drop the node n completely and connect its parents directly

to n↓t. We define this action as R6-drop(n). We have the following lemma:

44

Lemma 5 Let B be a FODD, n a node for which condition P6.3 and V6.2 hold, and B′

the result of R6-drop(n), then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Note first that since P6.3 → P6.5 we can replace n↓f with a constant. Consider

any valuation ζ1 for the FODD. If ζ1 leads to n↓t it will continue reaching n↓t and the

value will not change. If ζ1 leads to n↓f it will now lead to n↓t reaching some leaf of

the diagram (and giving its value instead of the constant value assigned above). By the

condition P6.3, ζ2 will reach the same leaf and assign the same value. So under maximum

aggregation the map is not changed.

Symmetric operators for R6-replace and R6-drop can be defined and used. The trans-

formation is straightforward so we omit the details.

An important special case of R6 occurs when l(n) is an equality t1 = y where y is

a variable that does not occur in the FODD above node n. In this case, the condition

P6.1 holds since we can choose the value of y. We can also enforce the equality in the

sub-diagram of n↓t. Therefore if V6.1 holds we can remove the node n connecting its

parents to n↓t and substituting t1 for y in the diagram n↓t. (Note that we may need to

make copies of nodes when doing this.) As we see below this case is typical when using

FODDs for MDPs.

However, we can not handle inequality (i.e., when it is better to go to the false

branch child of the equality) in the same way. Even if we assume that the domain has

more than two objects, thus the inequality can always hold if it is at the root, we cannot

drop the node. The best we can do is to replace the true branch of the equality with

a constant if all relevant conditions hold. Consider the example shown in Figure 3.6(a).

If we drop the node b = b1, we get the FODD as shown in Figure 3.6(b), from which

we can further apply R6 to remove Bin(b1, Paris). Suppose we have an interpretation I

with domain {box1, box2, truck1} and relations {Bin(box1, Paris), T in(truck1, Paris)}.

MAPB1(I) = 0.1. But if the equality is removed, MAPB2(I) = 10 via valuation

{b/box1, b1/box1, t/truck1}. Since our initial development of these ideas Joshi (2007)

has developed a more elaborate reduction to handle equalities by taking a maximum over

45

the left and right children.

B1

b=b1

Bin (b,Paris)

Bin (b1,Paris)

Tin (t,Paris)

0.1 0

Bin (b,Paris)

Bin (b1,Paris)

Tin (t,Paris)

10 0

B2

Bin (b,Paris)

Bin (b1,Paris)

Tin (t,Paris)

10 0

(a)
(b)

Figure 3.6: An example illustrating the need to keep the inequality.

Some care is needed when applying weak reductions, e.g. when replacing a sub-

diagram with 0 as above. While this preserves the map it does not preserve the map

for every valuation. If we apply non-monotonic operations that depend on all valuations

(e.g. subtract two diagrams that share variables) the result may be incorrect. However,

the reductions are always safe for monotonic operations and when we only operate in this

way if different diagrams do not share variables.

Examples and Discussion

In practice it may be worth checking P6.1 and V6.1 instead of other conditions just to

save time, but sometimes these conditions are not strong enough. Consider the example

shown in Figure 3.7(a). Here we can see that the FODD is not reducible using P6.1

and V6.1. First, the valuation reaching T in(t2, Paris) may not be extended to reach

T in(t2, Paris)↓t. Second, min(T in(t2, Paris)↓t) 6≥ max(T in(t2, Paris)↓f . But it is in-

deed reducible if we use relaxed conditions on reachability (P6.2) and values (V6.2). First

we can remove the node T in(t2, Paris) because both P6.3 and V6.2 hold and we get the

FODD shown in Figure 3.7(b). Then we further remove the node On(b2, t2) and get the

result as shown in Figure 3.7(c).

46

Tin(t2, Paris)

Tin(t1, Paris)

 6.3 8.1 4.41 7.29

 rain

Bin (b1, Paris)

10

On (b2, t2)

 rain

On(b1,t1)

Bin (b1, Paris)

10

On (b2, t2)
 Tin(t1, Paris)

 rain

On(b1,t1)

0 6.3 8.1

Bin (b1, Paris)

Tin(t1, Paris)
 rain

On(b1,t1)

 6.3 8.1

10

0

(a) (c) (b)

0

Figure 3.7: An example illustrating the need to relax R6 conditions.

Figure 3.8 illustrates two cases in R6. In part (a) conditions P6.1, P6.4 and V6.1 hold

and we can drop p(y) completely. We cannot drop p(y) in part (b). Intuitively removing

p(y) removes a constraint on y. Consider an interpretation I with domain {1, 2} and

relations {p(1), q(1), f(2)}. Before reduction, MAPB1(I) = 1. But if p(y) is removed

MAPB2(I) = 2.

p (x)
 q (x)

 1

p (y)
 t (x)

 2

 0

0

 0

p (x)
 q (x)

 2

t (x)
 1

0

 0

(a)

p (x)
 q (x)

 1

p (y)
 f (y)

 2

 0

0

 0

p (x)
 q (x)

 1

f (y)

 2

0

 0

(b)

B1 B2

Figure 3.8: Examples illustrating Remove Reduction R6.

Note that the only difference between lemma 3 and lemma 4 is that the former requires

47

that the two valuations agree on only a subset of variables in n↓t that also appear in n↓f

for replacing a branch with a constant, while the latter requires two valuations agree on all

the variables in n↓t for removing a node. We can use the same example to illustrate why

we need stronger condition for removing a node. Again look at the node p(y); p(y)↓t has

variable y, while p(y)↓f is a constant. Therefore, the intersection is empty, and conditions

P6.5 and V6.2 hold. But we have seen that we cannot remove the node. Intuitively, when

we remove a node, we must guarantee that we do not gain extra value. If only condition

P6.5 and V6.2 hold, we can only guarantee that for any valuation reaching n↓f , there

is another valuation reaching n↓t with a better value. But if we remove the node n, a

valuation that was supposed to reach n↓f may reach a better value that it would never

have reached otherwise. This would change the map. Condition P6.3 is sufficient, but

not necessary. A weaker condition can be stated as: for any valuation ζ1 that reaches

n↓f and thus will be redirected to reach a value v1 in n↓t when n is removed, there is a

valuation ζ2 that reaches n↓t with a value v2 and v2 ≥ v1. However, this condition may

be too complex to test in practice.

Note that condition P6.5 is also sufficient, but not necessary. Sometimes valuations

just need to agree on a smaller set of variables than the intersection of variables. To see

this, consider the example as shown in Figure 3.9, where A−B > 0 and the intersection

is {x3, x4}. But we just need to agree on {x4} for if we rename x3 in left diagram as x′3

then we still get A−B > 0. Intuitively, if the variable in the first FODD does not cause

loss in value (compared with the situation if the variable did not exist), and this same

variable in the second FODD does not cause increase in value, then we can rename the

variable and still get the same result.

We can develop a recursive procedure to find a smaller set of variables than the

intersection that still guarantees that A−B > 0 (Joshi, 2007). But the smallest size set

is not unique. Consider the following example as shown in Figure 3.10.

In this example, to get A−B > 0 we must preserve either {x, z} or {x, y}. Intuitively

we have to agree on the variable x to avoid the situation when two paths p(x, y) ∧ ¬q(x)

and p(x, y) ∧ q(x) ∧ h(z) can co-exist. In order to prevent the co-existence of two paths

48

A B

p(x1)

r(x4)

q(x3) 10

5

8

2

q(x3)

h(x6)

r(x4) 1

1

4

0

Figure 3.9: An Example illustrating that intersection of variables is more than we need
sometimes in P6.5.

A B

p(x, y)

q(x) h(z)

3 2 3 2

p(x, y)

q(x)

1

h(z)

2 1 h(z)

3 1

Figure 3.10: An example illustrating a minimum set of variables.

49

¬p(x, y)∧¬h(z) and p(x, y)∧ q(x)∧ h(z), either y or z have to be the same as well. Now

if we change this example a little bit and replace each h(z) with h(z, v), then we have two

minimum sets of variables of different size, one is {x, y}, and the other is {x, z, v}.

Note that the reachability condition P6.2 alone together with V6.2, i.e., combining the

weaker portions of conditions from Lemma 3 and Lemma 4, cannot guarantee that we can

replace a branch with a constant. Figure 3.11 illustrates this. Note that both conditions

hold for p(y). Consider an interpretation I with domain {1, 2} and relations {p(1), q(2)}.

Before reduction, MAPB1(I) = 6 via valuation {x/1, y/2}. But if p(y)↓f is replaced with

0, MAPB2(I) = 0. Intuitively the subtraction operation D = n↓t − n↓f is propositional,

so the test in V6.2 implicitly assumes that the common variables in the operants should

be the same and P6.2 does not check this.

B1 B2

q(y)
 6 0

p(x)
 p(y)

q(y)

 7 0

 0

p(x)
 p(y)

0

q(y)

 7

0

 0

Figure 3.11: An example illustrating the condition for replacing a branch with 0 in R6.

Also note that, although P6.1∧P6.4 is a sufficient reachability condition for dropping a

node, we cannot drop a node if the condition P6.2∧P6.4 hold for reachability. Figure 3.12

illustrates this. It is easy to see that conditions P6.2 and P6.4 hold for q(x2). Consider

an interpretation I with domain {1, 2} and relations {p(1, 1), p(2, 1), q(1), r(2)}. Before

reduction, MAPB1(I) = 1 via valuation {x1/x2/1, y1/y2/1}. But if q(x2) is removed,

MAPB2(I) = 2 via valuation {x1/1, x2/2, y1/y2/1}.

Finally, we illustrate the symmetric operator when n↓t is dominated by n↓f . Consider

the first example in Figure 3.4. Here the condition P6.1 hold for p(y): ∀x, [¬p(x) →

∃y,¬p(y)] as well as V6.1: min(p(y)↓f) = 1 ≥ max(p(y)↓t) = 0 and P6.4. Therefore we

can remove p(y) and connect its parent p(x) directly to 1. Note that the application of

some reductions may trigger other reductions. In this case, both children of p(x) now

50

0

p(x1,y1)
 p(x2,y2)

 1

q(x1)
 q(x2)

 r(x2)

 0

 0

p(x1,y1)
 p(x2,y2)

 0

q(x1)

 2

 0

 0

 2

 0

r(x2)
 1

 B1 B2

Figure 3.12: An example illustrating conditions P6.2 and P6.4 cannot guarantee that we
can drop a node.

point to 1. So we can use neglect operator and the final result is 1.

Application Order, Node Reordering, and Normal Form

In some cases the order of application of reductions is important. Consider Figure 3.13.

R6 is applicable to two nodes: p(x2, y2) and q(x2). If we do it in a top down manner, we

find that we cannot remove node p(x2, y2), because x2 is used below. But if we start from

q(x2), we first remove this node, which makes removing p(x2, y2) possible. So it may be

useful to apply R6 in a bottom up manner.

0

p(x1,y1)
 p(x2,y2)

 1

q(x1)
 q(x2)

 2

 0

 0

p(x1,y1)

 0

q(x1)

 2

 0

p(x1,y1)
 p(x2,y2)

 0

q(x1)

 2

 0

 0

Figure 3.13: An example illustrating the order of how R6 is applied.

Sometimes for R6 to be applicable, we need to reorder the nodes. Consider Fig-

ure 3.14(a). Here although the condition P6.1 holds for On(b2, t2), we cannot remove this

node because t2 is used below. But if we reorder the nodes so that On(b1, t
∗) is placed

below On(b2, t2), we can remove the node On(b1, t
∗).

One might hope that repeated application of R6 will lead to a unique reduced result

51

On (b1, t*)

Tin (t2, Paris)

On (b2, t2)

 0

 (a)

Bin (b1, Paris) Bin (b1, Paris)

 9.81

10

On (b1, t*)

Tin (t2, Paris)
 rain

 8.89

On (b2, t2)

 0

Bin (b1, Paris)

 9.81

10

Tin (t2, Paris)
 rain

 8.89

On (b2, t2)

 0

 (b) (c)

 9.81

Bin (b1, Paris)

10

rain

 8.89

Figure 3.14: An example illustrating that we may need to reorder the nodes in order to
apply R6.

but this is not true. In fact, the final result depends on the choice of operators and order

of application. Consider Figure 3.15(a). We can apply R6 to the node T in(t∗, Paris) and

we get the FODD shown in Figure 3.14(a). To see why the reachability condition P6.2

holds, consider the following formula:

On (b1, t*)

Tin (t2, Paris)

Bin (b1, Paris)

On (b2, t2)

 0

 (a)

Bin (b1, Paris) Bin (b1, Paris)

10 On (b1, t*)

Tin (t2, Paris)

 9.81

rain

 8.89

On (b2, t2)

 0

Bin (b1, Paris)

 9.81

10

Tin (t* , Paris)
 rain

 8.89

On (b1, t*)

 0

 (b)

 (c)
 9.81

rain

 8.89

Tin (t* , Paris)

Tin (t* , Paris)

10

Figure 3.15: An example illustrating that the reductions are order dependent.

B |= ∃b1, b2, t2, t
∗, [¬Bin(b1, Paris) ∧On(b1, t

∗) ∧On(b2, t2) ∧ T in(t2, Paris)]

→ ∃b1, b2, t2, t
∗, [¬Bin(b1, Paris)∧On(b1, t

∗)∧On(b2, t2)∧T in(t2, Paris)∧T in(t∗, Paris)]

This condition holds because we can let both b1 and b2 take the value of b2, and both t2

and t∗ take the value of t2, and use the domain knowledge ∀b, c, [∃t,On(b, t) → ¬Bin(b, c)]

(On(b2, t2) means that ¬Bin(b2, Paris) is true). Also P6.3 holds too because there is no

variable below the node T in(t∗, Paris). Since P6.3 and V6.2 hold, we can remove this

52

node and get the FODD shown in Figure 3.14(a). After reordering and application of R6

we get the final result as shown in Figure 3.14(c).

However, if we do reordering first and put T in(t∗, Paris) above T in(t2, Paris), we have

a FODD as shown in Figure 3.15(b). We can apply R6 first on the node T in(t2, Paris)

then on node On(b2, t2) and get the final result as shown in Figure 3.15(c). Comparing

the final results in Figure 3.15(c) and Figure 3.14(c), we can see that although their maps

are the same for any interpretation, they are not isomorphic. From this example we can

see that the reductions are order dependent, at least when we allow for node reordering.

3.3.3 (R7) Weak Reduction Removing Dominated Edges

Consider any two edges e1 and e2 in a FODD whose formulas satisfy that if we can follow

e2 then we can also follow e1. As in R6 if e1 gives better value than e2 then intuitively

we can replace e2 with a constant.

Let p = source(e1), q = source(e2), e1 = p↓a, and e2 = q↓b, where a and b can be true

or false , depending on whether e1 or e2 lies in the true or false branch of p or q.

Again we first present all the conditions and then give the reductions.

(P7.1) : B |= [∃~x,EF(e2)] → [∃~y,EF(e1)] where ~x are the variables in EF(e2) and ~y the

variables in EF(e1).

(P7.2) : B |= ∀~u, [[∃~w,EF(e2)] → [∃~v,EF(e1)]] where ~u are the variables that appear in

both target(e1) and target(e2), ~v the variables that appear in EF(e1) but are not in ~u,

and ~w the variables that appear in EF(e2) but are not in ~u. This condition requires that

for every valuation ζ1 that reaches e2 there is a valuation ζ2 that reaches e1 and such that

ζ1 and ζ2 agree on all variables in the intersection of target(e1) and target(e2).

(P7.3) : B |= ∀~r, [[∃~s,EF(e2)] → [∃~t,EF(e1)]] where ~r are the variables that appear in

both target(e1) and target(sibling(e2)), ~s the variables that appear in EF(e1) but are

not in ~r, and ~t the variables that appear in EF(e2) but are not in ~r. This condition

requires that for every valuation ζ1 that reaches e2, there is a valuation ζ2 that reaches

e1 and such that ζ1 and ζ2 agree on all variables in the intersection of target(e1) and

target(sibling(e2)).

53

(V7.1) : min(target(e1)) ≥ max(target(e2))

(V7.2) : min(target(e1)) ≥ max(target(sibling(e2)))

(V7.3) : all leaves in D = target(e1) − target(e2) have non-negative values, i.e., D ≥ 0.

(V7.4) : all leaves in G = target(e1) − target(sibling(e2)) have non-negative values.

We define the operators R7-replace(b, e1, e2) as replacing target(e2) with a constant

b that is between 0 and min(target(e1)) (we may write it as R7-replace(e1, e2) if b = 0),

and R7-drop(e1, e2) as dropping the node q = source(e2) and connecting its parents

to target(sibling(e2)). We further present an additional condition, followed by lemmas

regarding the operators.

(S1) : NF(source(e1)) and sub-FODD of target(e1) remain the same before and after

R7-replace and R7-drop.

Lemma 6 Let B be a FODD, e1 and e2 edges for which condition P7.1, V7.1, and S1

hold, and B′ the result of R7-replace(b, e1, e2), then for any interpretation I we have

MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 that reaches target(e2). Then according to P7.1,

there is another valuation reaching target(e1) and by V7.1 it gives a higher value. There-

fore, MAPB(I) will never be determined by target(e2) so we can replace target(e2) with

a constant between 0 and min(target(e1)) without changing the map.

Lemma 7 Let B be a FODD, e1 and e2 edges for which condition P7.2, V7.3, and S1

hold, and B′ the result of R7-replace(b, e1, e2), then for any interpretation I we have

MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 that reaches target(e2). By P7.2 there is another

valuation ζ2 reaching target(e1) and by V7.3 it achieves a higher value (otherwise, there

must be a branch in D = target(e1)−target(e2) with negative value). Therefore according

to maximum aggregation the value of MAPB(I) will never be determined by target(e2),

and we can replace it with a constant as described above.

54

Lemma 8 Let B be a FODD, e1 and e2 edges for which condition V7.2 hold in ad-

dition to the conditions for replacing target(e2) with a constant, and B′ the result of

R7-drop(e1, e2), then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation reaching target(e2). As above its true value is dom-

inated by another valuation reaching target(e1). When we remove q = source(e2) the

valuation will reach target(sibling(e2)) and by V7.2 the value produced is smaller than

the value from target(e1). So again the map is preserved.

Lemma 9 Let B be a FODD, e1 and e2 edges for which P7.3 and V7.4 hold in addition

to conditions for replacing target(e2) with a constant, and B′ the result of R7-drop(e1, e2),

then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 reaching target(e2). As above its value is dominated

by another valuation reaching target(e1). When we remove q = source(e2) the valuation

will reach target(sibling(e2)) and by the condition P7.3, ζ2 will reach leaf of greater value

in target(e1)(otherwise there will be a branch in G leading to a negative value). So under

maximum aggregation the map is not changed.

To summarize if both P7.1 and V7.1 hold or both P7.2 and V7.3 hold then we can

replace target(e2) with a constant. If we can replace and V7.2 or both P7.3 and V7.4

hold then we can drop q = source(e2) completely.

Examples and Discussion

Figure 3.16 illustrates why we cannot remove a node if only P7.1 and V7.1 hold. No-

tice that the conditions hold for e1 = [p(x)]↓t and e2 = [p(y)]↓t so we can replace

[p(y)]↓t with a constant. Consider an interpretation I with domain {1, 2} and relations

{q(1), p(2), h(2)}. Before reduction, MAPB1(I) = 10 via valuation {x/2}. But if p(y)

is removed, MAPB2(I) = 20 via valuation {x/1, y/2}. Therefore we need the additional

condition V7.2 to guarantee that we will not gain extra value with node dropping.

We also use an example to illustrate why we need the condition S1, which says that

we must not harm the value promised by target(e1). In other words, we must guarantee

55

 10 p(y)

 7

q(y)

h(y)

p(x)

 9 20 0

 B2
 p(x)

 10 h(y)
 20 0

 B1

Figure 3.16: An example illustrating the condition for removing a node in R7.

that p = source(e1) is reachable just as before and the sub-FODD of target(e1) is not

modified after replacing a branch with 0. Recall that p = source(e1) and q = source(e2).

The condition is violated if q is in the sub-FODD of p↓t, or if p is in the sub-FODD of

q↓t. But it holds in all other cases, that is when p and q are unrelated (one is not the

descendent of the other), or q is in the sub-FODD of p↓f , or p is in the sub-FODD of q↓f .

Consider Figure 3.17(a). Here conditions P7.2 and V7.3 hold for e1 = [r(y)]↓t and

e2 = [r(x)]↓t. So if we ignore S1, we could replace [r(x)]↓t with 0, which of course gives

a wrong result. R6 can be used here on node r(y), and this gives the result as shown in

Figure 3.17(c).

r(x)

0 3

 R7

(b)

r(x)

 10

 3

 R6

(c)

 10
 (a)

r(x)

r(y)

5

 3

 q

 p

Figure 3.17: An example illustrating the condition for removing a node in R7.

Note that conditions of Lemma 6 and Lemma 7 are not comparable since P7.2→P7.1

and V7.1→V7.3. The reachability condition P7.1 together with V7.3 cannot guarantee

that we can replace a branch with a constant. Figure 3.18 illustrates this. Consider an

interpretation I with domain {1, 2, 3, 4} and relations {h(1, 2), q(3, 4), p(2)}. The domain

knowledge is that ∃x, y, h(x, y) → ∃z,w, q(z,w). So P7.1 and V7.3 hold for e1 = [q(x, y)]↓t

56

and e2 = [h(z, y)↓t]. Before reduction, MAPB1(I) = 3. But if h(z, y)↓t is replaced with

0, MAPB2(I) = 0. As we saw in R6 the substitutions mentioned in P7.2 must preserve

variables in ~u because apply has an implicit assumption that the common variables in the

operants are the same.

h(z,y)

 0

q(x,y)

 0

p(y)

 5

q(x,y)

 0

p(y)

 5

 0

 0
 3

 B1

 B2

p(y)
 0

 3

Figure 3.18: An example illustrating the subtraction condition in R7.

We can further relax the conditions in R7 to get wider applicability. Let T be a diagram

with q = source(e2) as root but with target(sibling(e2)) replaced with 0. Consider the

diagram D∗ = target(e1) − T . We modify the condition V7.3 as follows:

(V7.3∗) : all leaves in D∗ have non-negative values, i.e., D∗ ≥ 0. Then it is clear that

for any fixed valuation it is better to follow e1 instead of going through q to e2.

If we use condition V 7.3∗, we need to modify the condition P7.2 to the following:

(P7.2∗) : B |= ∀~u, [[∃~w,EF(e2)] → [∃~v,EF(e1)]]. The only difference from P7.2 is that

now ~u denotes the variables that appear in the intersection of target(e1) and T , i.e.,

the union of target(e2) and l(q) where q = source(e2). I.e., ~u = var(target(e1)) ∩

(var(target(e2)) ∪ var(l(q))).

To see why this relaxation is useful, consider the FODD in Figure 3.19(a). If we

look at e1 = [p(x1)]↓t and e2 = [p(x2)]↓t that is in the sub-FODD of p(x1)↓f , we can

see that V7.3 does not hold because [p(x1)]↓t − [p(x2)]↓t 6≥ 0. But now with relaxation

of V7.3, we can apply R7 and Figure 3.19(b) shows reduced result. Note however that

we can obtain the same final result using different operators. We first apply R7 on a

pair of edges [q(y)]↓t and [q(y)]↓t in left and right sub-diagrams, and get the FODD in

Figure 3.19(d). Then we can apply R7 on a pair of edges [q(y)]↓f and [q(y)]↓f in left and

right sub-diagrams, and this time we can remove the node p(y) (on the right side). We get

57

 0

 10

p(x2)

p(x1)

 8

q(y)

 0

 0

p(x2)

 3

q(y)
 9 10

p(x2)

p(x1)

 8

q(y)

 0

p(x2)

 0

q(y)
 9 10

p(x2)

p(x1)

 8

q(y)

 0

 (a) (b)
 (c)

 0

 10

q(y)

p(x1)

 8

 0

 (d)

p(x2)
 0

 10

p(x2)

p(x1)

 8

q(y)

 0 0

 (e)

Figure 3.19: An example illustrating the need to relax condition V7.3 in R7.

the FODD in Figure 3.19(e). By applying neglect operator, we obtain the FODD shown

in Figure 3.19(b). In this case we need to go through more steps to get the same result.

As in R6 order of application of R7 may be important. Consider the FODD in

Figure 3.20(a). R7 is applicable to edges e1 = [p(x1, y1)]↓t and e2 = [p(x2, y2)]↓t, and

e′1 = [q(x3)]↓t and e′2 = [q(x2)]↓t. If we do it in a top down manner, i.e., first apply

R7 on the pair [p(x1, y1)]↓t and [p(x2, y2)]↓t, we will get the FODD in Figure 3.20(b),

and then we apply R7 again on [q(x3)]↓t and [q(x2)]↓t, and we will get the FODD in

Figure 3.20(c). However, if we apply R7 first on [q(x3)]↓t and [q(x2)]↓t (thus get Fig-

ure 3.20(d)), it will make it impossible for R7 to apply to [p(x1, y1)]↓t and [p(x2, y2)]↓t

because [p(x1, y1)]↓t − [p(x2, y2)]↓t will have negative leaves now. However, this does not

mean that we cannot reduce the FODD using this order. We can do reduction by compar-

ing [q(x3)]↓t and [q(x2)]↓t that is in the right part of FODD. We can first remove q(x2) and

get a FODD shown in Figure 3.20(e), and then use neglect operator to remove p(x2, y2).

It is interesting that above two examples both show that we need to take more steps if

we choose to work on unrelated nodes first using R7.

R7 can be applied to the FODD in Figure 3.21(a), which cannot be reduced by other

reduction operators. Note that R6 is not immediately applicable because p(y)↓t−p(y)↓f 6≥

58

p(x1,y1)

q(x3)

 0

p(x2,y2)
 q(x2)

 5

 0

 0 10 q(x2)
 5 0

p(x1,y1)
 q(x3)

10 q(x2)

 5

 0

q(x3)

10 0

p(x1,y1)
 q(x3)

10 0

p(x2,y2)
 q(x2)

 5

 0

 0

p(x1,y1)
 q(x3)

10 0

p(x2,y2)
 0

 0

(a)

(b)

(c)

(d)

(e)

p(x1,y1)

Figure 3.20: An example illustrating the order of applying R7.

0. Since P7.1, V7.1, V7.2, and S7.1 hold for e1 = [h(A)]↓f and e2 = [h(B)]↓f , we can

remove the node h(B) and get the FODD as shown in Figure 3.21(b). Now P6.1, P6.4,

and V6.1 hold for the node p(y), so we can apply R6 and remove p(y). Figure 3.21(b)

shows the final result.

The last few examples illustrate that R7 can be applied in a flexible way that often

avoid the pitfalls we have seen with R6. It remains an open question whether we can use

it to get a notion of normal form.

p(x)
 p(y)

 3

h(A)

h(B)
 0 5 0

 0

 (a)

p(x)

 5

h(A)

 0

0

 (c) (b)

p(x)

p(y)

 5

h(A)

 0

0

 0

Figure 3.21: An examples illustrating the use of R7.

Simultaneous Application of R7

We can save computation time if we can apply several instances of R7 simultaneously so

that we only need to compute edge formulas and conditions once. For this to be possible,

59

we need a theorem that says if conditions for R7 hold for a set of pairs of edges, then

we can always find an ordering of applying all these reductions sequentially and therefore

we can do reductions simultaneously. As we show next this holds in some cases but not

always.

We start with R7-replace(eA, eB) under simple conditions, which do not involve sub-

traction and complex reachability condition. Note that we have the following simple

conditions for R7-replace(eA, eB) to be applicable:

1. If we can reach eB , then we can reach eA (P7.1).

2. min(eA) ≥ max(eB)(V7.1).

3. Reachability of eA does not change after the reduction (S1).

We have the following theorem regarding simultaneous R7-replace under simple con-

ditions. Note that the theorem gives the required ordering since we can pick the first

reduction to apply and then inductively apply the rest.

Theorem 3 Suppose we have a FODD where all basic reduction operators (i.e., neglect

operator, join operator, and merge operator) have been applied. If there are m ≥ 2 pairs

(e1A, e
1
B) · · · (emA , e

m
B) of edges such that P7.1, V7.1, S1 hold for each pair, and none of the

edges point to a constant, then there is a k such that after applying R7-replace(ekA, e
k
B),

P7.1, V7.1, S1 hold for all other pairs.

Note that these pairs of edges are not necessarily disjoint. We may have cases where

one edge dominates more than one edge, e.g., (e1, e2) and (e1, e3), or one edge dominates

and is also dominated by other edges, e.g., (e1, e2) and (e3, e1). We will refer an edge e

as an eA edge if there is a pair (eiA, e
i
B) such that eiA = e; and an edge e as an eB edge if

there is a pair (eiA, e
i
B) such that eiB = e.

Proof: The proof is by induction. In both the base case and the inductive step, we

will look at two situations, i.e.,

1. ∃i, eiB is not related to any ejA.

60

2. ∀i, eiB is related to some ejA.

By “related”, we mean that either eiB is above ejA, or it is below ejA, or it is ejA. Note

that eiB cannot be related to eiA, otherwise condition S1 will be violated.

In the base case, m=2. So we have two pairs (e1A, e
1
B) and (e2A, e

2
B).

In situation 1, consider the case where e1B is unrelated to e2A (the other case is sym-

metric). In this case, we can replace e1B with 0. Consider P7.1 for (e2A, e
2
B). e2B may

become less reachable (e.g., when e2B is below e1B ; in the extreme, e2B becomes 0 if it only

has one parent, then we need to do nothing on the second pair of edges), but since e2A is

not affected, condition P7.1 either still holds or R7-replace(e2A, e
2
B) has already been done

(in the extreme case). Consider V7.1 for (e2A, e
2
B). The value of e2B may be reduced (e.g.,

when e2B is above e1B), but since the value of e2B can only go down and the value of e2A is

not affected, condition V7.1 still holds.

In situation 2, every eB is related to some eA. We have the following cases, which are

illustrated in Figure 3.22.

1
Ae

2
Be 1

Be

2
Ae

2
Be 2

Ae

Case 1 Case 2

1
Ae 1

Be 1
Ae 2

Ae

Case 3 Case 4

1
Ae 1

Be

2
Be 2

Ae 2
Be 1

Be

Figure 3.22: Base cases when every B is related to some A.

61

1. e1A above e2B , e2A above e1B .

2. e1A above e2B , e2A below e1B .

3. e1A below e2B , e2A above e1B .

4. e1A below e2B , e2A below e1B .

Note that for each case, we can replace “above” or “below” with “same as”. The

following argument hold in these cases as well.

Now we prove that situation 2 is impossible, i.e., it is impossible for us to have any

of the above cases. Note that if C is a sub-FODD of D, then we have min(C) ≥ min(D)

and max(D) ≥ max(C).

1. min(e2B) ≥subtree min(e1A) ≥V 7.1 max(e1B)

≥ min(e1B) ≥subtree min(e2A) ≥V 7.1 max(e2B)

Therefore e2B points to a constant. A contradiction to the condition of the theorem.

2. min(e2B) ≥subtree min(e1A) ≥V 7.1 max(e1B)

≥subtree max(e2A) ≥ min(e2A) ≥V 7.1 max(e2B)

Therefore e2B points to a constant. A contradiction to the condition of the theorem.

3. max(e1A) ≤subtree max(e2B) ≤V 7.1 min(e2A)

≤subtree min(e1B) ≤ max(e1B) ≤V 7.1 min(e1A)

Therefore e1A points to a constant. A contradiction to the condition of the theorem.

4. max(e1A) ≤subtree max(e2B) ≤V 7.1 min(e2A)

≤ max(e2A) ≤subtree max(e1B) ≤V 7.1 min(e1A)

Therefore e1A points to a constant. A contradiction to the condition of the theorem.

Now for the inductive step. Assume that the theorem holds for m = k pairs of edges.

We show that the theorem holds for m = k + 1 pairs. Again first look at situation 1.

There is an eiB that is not related to any ejA, then we can apply R7-replace(eiA, e
i
B), and

we can use a similar argument as in the base case to prove that P7.1, V7.1, S1 hold for

the remaining k pairs.

62

Now look at situation 2, where each eiB is related to some ejA. We can seek a loop

condition such that

e1B above/below e2A,

e2B above/below e3A,

· · ·

en−1
B above/below enA,

enB above/below e1A.

The loop condition is illustrated in Figure 3.23. Note that the vertical pairs of edges

(e1B , e
2
A), · · · , (eiB , e

i+1
A), · · · , (enB , e

1
A)

are about the position (above/below), so we call such a pair “position” pair of edges. The

diagonal pairs (eiA, e
i
B) are about dominance, and we call such a pair “dominance” pair

of edges.

eB

eA

1
Be

2
Ae

3
Be2

Be

4
Ae3

Ae

n
Be1−n

Be

1
Aen

Ae

Figure 3.23: A figure to illustrate a loop condition.

We can find a loop by starting with any eB , and we name it as e1B . Since it is related

to some eA, choose one and name it as e2A. Look at all (eA, eB) pairs where eA = e2A, and

choose one eB and name it as e2B . Since it is also related to some eA, choose one and name

it as e3A. We continue with the chaining procedure until we find a loop. Whenever we

have an edge eiB , we will look at all edges from eA’s that are related to it and choose one.

There are two possibilities: one is that this eA has appeared in the chain, then we know

we have a loop (starting from the eB that is dominated by this eA before, and ending

63

with eA). The other possibility is that this eA has never appeared in the chain, so we

name it as ei+1
A and continue. Whenever we have an edge ejA, we will look at all (eA, eB)

pairs where eA = ejA. There are two possibilities: one is that one of eB ’s has appeared in

the chain, which means we have found a loop (beginning at where this eB first appears,

ending in ejA). The other possibility is that none of eB ’s have appeared before, then we

just choose one and name it as ejB and go on. We know that at some point we must find

an eB that has appeared before because we only have k + 1 pairs of edges (thus k + 1 eB

edges). The maximum length of a loop is k + 1.

Suppose there is a loop of length n where n ≥ 3 (we have proved for n = 2 in the base

case). As we can see in the above chaining process, a loop does not necessarily start with

e1B , but we use the loop as shown in Figure 3.23 in the following proof. We prove it will

always lead to a contradiction. we consider the following two cases:

1. e1B is below e2A.

min(e1B) ≥subtree min(e2A) ≥V 7.1 max(e2B)

If e2B is below e3A, we have

≥ min(e2B) ≥subtree min(e3A) ≥V 7.1 max(e3B)

If e2B is above e3A, we have

≥subtree max(e3A) ≥ min(e3A) ≥V 7.1 max(e3B)

· · ·

· · · ≥ max(enB)

If enB is below e1A, we have

≥ min(enB) ≥subtree min(e1A) ≥V 7.1 max(e1B)

If enB is above e1A, we have

≥subtree max(e1A) ≥ min(e1A) ≥V 7.1 max(e1B)

Therefore we have min(e1B) ≥ max(e1B), i.e., e1B points to a constant. A contradic-

tion to the condition of the theorem.

2. e1B is above e2A.

max(e2A) ≤subtree max(e1B) ≤V 7.1 min(e1A)

64

If enB is above e1A, we have

≤ max(e1A) ≤subtree max(enB) ≤V 7.1 min(enA)

If enB is below e1A, we have

≤subtree min(enB) ≤ max(enB) ≤V 7.1 min(enA)

· · · ≤ min(en−1
A)

· · ·

· · · ≤ min(e3A)

If e2B is above e3A, we have

≤ max(e3A) ≤subtree max(e2B) ≤V 7.1 min(e2A)

If e2B is below e3A, we have

≤subtree min(e2B) ≤ max(e2B) ≤V 7.1 min(e2A)

Therefore we have max(e2A) ≤ min(e2A), i.e., e2A points to a constant. A contradic-

tion to the condition of the theorem.

Note that the condition in the theorem is sufficient, but not necessary. Since a loop can

start anywhere, it is easy to see that for each “position” pair of edges in the loop, every

edge that is below the other in a pair points to a constant. Therefore, a tighter condition

could be “for any loop, not all edges that are below some edges point to constants” instead

of “none of the edges point to a constant”. It is also easy to see from the above proof

that if both edges in a “dominance” pair (eiA, e
i
B) are below some other edges in one loop,

then eiA and eiB must point to the same constant.

Figure 3.24(a) shows that a loop can exist if we allow all edges that are below some

edges to point to a constant. If we replace e1B with 0, we reduce the value of e2A, thus

condition V7.1 is violated for (e2A, e
2
B). If we replace e2B with 0, we reduce the value of

e1A, thus condition V7.1 is violated for (e1A, e
1
B). This example does not raise a real need

for reduction because we can either reverse (e2A, e
2
B) then all the conditions still hold but

we will not get a loop; or we can simply list one pair (e1A, e
1
B) and totally ignore (e2A, e

2
B).

In both cases, we get Figure 3.24(b) as a result. But if we do replace e2B with 0 in the

first place, then we cannot reduce the FODD any more. Thus the example illustrates

65

the complications that can arise. Note that this is another example where the reduced

result is not unique. We can see from this example that it is important to develop some

heuristics for applying R7.

p(y)

p(z)

1
Ae

0

2
Be

p(x)

q(x)

2 3

3

p(x)

q(x)

2 0

0

1
Be

2
Ae

(a)

p(y)

p(z)

p(x)

q(x)

2 3

3

0

0

(b)

Figure 3.24: An example to illustrate that we can have a loop if we allow some edges to
point to a constant.

One might hope that we can also do R7-replace(eA, eB) simultaneously under more

sophisticated value conditions. But it is difficult, if possible, to have a similar theorem.

Figure 3.25(a) shows that a loop can exist in such a situation, which will prevent us

from finding an ordering of applying all these reductions sequentially. Here conditions

P7.2, V7.3, and S1 hold for a set of pairs (e1A, e
1
B), (e2A, e

2
B), (e3A, e

3
B) and we have a loop

(e2B , e
1
A), (e1B , e

2
A). If we replace e1B with 0, V7.3 will be violated for (e2A, e

2
B). If we replace

e2B with 0, V7.3 will be violated for (e1A, e
1
B). However we can apply R7-drop(e3A, e

3
B) and

get Figure 3.25(b). We can do one more reduction and get Figure 3.25(c). Note that the

new pair of edges (e1A, e
1
B) as shown in Figure 3.25(b) was not there before.

3.3.4 Comparing R6 and R7

In this section we show that R6 is in fact a special case of R7. Let p = source(e1) and

q = source(e2). R6 is a special case of R7 when p = q, i.e., e1 and e2 are siblings. Let

e1 = p↓t and e2 = p↓f , then all the conditions in R7 become the following:

P7.1 requires that B |= [∃~x,EF(p↓f)] → [∃~y,EF(p↓t)], which is P6.2 in R6.

66

1
Ae

2
Be

p(y)

p(z)

0 p(x)

s(x)

r(x)

q(x)

6

3 2

4

5

p(x)

s(x)

q(x)

5

3 2

10

1
Be

2
Ae

(a)

3
Be

3
Ae

p(x)

s(x)

r(x)

q(x)

6

3 2

4

5

10

p(y)

p(z)

0

1
Ae

1
Be

(b)

10

p(y)

0

(c)

Figure 3.25: An example to illustrate that we can have a loop under more complex value
conditions.

V7.1 requires that min(p↓t) ≥ max(p↓f), which is V6.1 in R6.

P7.2 requires that B |= ∀~u, [[∃~w,EF(p↓f)] → [∃~v,EF(p↓t)]]. Note that ~u now becomes

the intersection of variables in p↓t and p↓f , therefore this condition is the same as P6.5 in

R6.

P7.3 requires that B |= ∀~r, [[∃~s,EF(p↓f)] → [∃~t,EF(p↓t)]]. Note that ~r are the variables

that appear in both target(e1) and target(sibling(e2)), and in this case, sibling(e2) = e1,

therefore ~r = var(target(e1)) = var(p↓t). This condition is the same as P6.3 in R6.

S1 requires that NF(p↓t) and sub-FODD of p↓t remain the same before and after the

replacement with 0, which is always true in this case.

V7.2 requires that min(p↓t) ≥ max(p↓t), which means that p↓t is a constant.

V7.3 requires that all leaves in D = p↓t − p↓f have non-negative values, which is the

same as condition V6.2 in R6.

V7.4 requires that all leaves in G = p↓t−p↓t have non-negative values, which is always

true.

In R7, we can replace a branch with 0 if (P7.1 ∧ V7.1) ∨ (P7.2 ∧ V7.3) holds. For the

special applications as R6 this is translated to (P6.2 ∧ V6.1) ∨ (P6.5 ∧ V6.2), which is

67

exactly the same as in the conditions for replacing in R6. In R7, we can remove a node if

we can replace and (V7.2) ∨ (P7.3 ∧ V7.4). For R6, this is translated to p↓t is a constant

(if this holds, then P6.3 holds) or P6.3 (in addition to (P6.2 ∧ V6.1) ∨ (P6.5 ∧ V6.2)),

this is exactly what R6 says about dropping the node.

3.3.5 (R8) Weak Reduction by Unification

Consider a FODD B. Let ~v denote its variables, and let ~x and ~y disjoint subsets of ~v,

which are of the same cardinality. We define the operator R8-unify(B,x, y) as replacing

variables in ~x by the corresponding variables in ~y. We denote the resulting FODD by

B{~x/~y} and clearly it only has variables in ~v \~x.

We first present the condition, followed by lemmas regarding this operator.

(V8) : all leaves in B{~x/~y} −B are non negative.

Lemma 10 Let B be a FODD, B′ the result of R8-unify(B,~x, ~y) for which V8 holds,

then for any interpretation I we have MAPB(I) = MAPB′(I).

Proof: Consider any valuation ζ1 to ~v in B. By V8, B{~x/~y} gives a better value on

the same valuation. Therefore we do not lose any value by this operator. We also do not

gain any extra value. Consider any valuation ζ2 to variables in B′ reaching a leaf node

with value v, we can construct a valuation ζ3 to ~v in B with all variables in ~x taking the

corresponding value in ~y, and it will reach a leaf node in B with the same value. Therefore

the map will not be changed by unification.

In some cases, R6 is not directly applicable because variables are used below the node

n. Figure 3.26 gives an example. Here R6 does not apply because x2 is used below. But

with {x1/x2}, we can get a FODD as shown in Figure 3.26(b). Since (b) − (a) ≥ 0, (b)

becomes the result after reduction. If we unify in the other way, i.e.,{x2/x1}, we will

get Figure 3.26(c), it is isomorphic to Figure 3.26(b), but we cannot reduce the original

FODD to this result, because (c) − (a) 6≥ 0. This phenomenon happens since all the

reductions use propositional apply and are therefore sensitive to variable names.

68

We can also see that if we allow to use reordering in R6, we can first reorder the nodes

in Figure 3.26(a) so that p(x1) is placed below p(x2). Then we can use R6 to remove node

p(x1).

 10 0

 (a)

 10
 (b)

p(x2)

q(x2)

0

(c)

p(x1)

q(x1)

0 10

x1 / x2

x2/ x1

 0

 0

p(x1)
 p(x2)

q(x2)

0

 0

Figure 3.26: An example illustrating R8.

3.4 Summary

In this chapter we developed first order decision diagrams, their semantics, and reduction

operators for them. As mentioned above one of the important properties of propositional

ADDs is that given a variable ordering a formula has a unique representation that serves

as a normal form for the formula, and this is useful in the context of theorem proving.

While we have developed reduction operators, we have not established such a normal form

for FODDs, so this remains an important open question. We cannot guarantee in advance

that our reduction operators will be applicable and useful in a particular domain, but as

the following chapters illustrate they can substantially reduce the size of diagrams used

in value iteration and policy iteration.

69

Chapter 4

Decision Diagrams for MDPs

In this chapter we describe how to represent relational MDPs with FODDs. We follow

Boutilier et al. (2001) and specify stochastic actions as a randomized choice among

deterministic alternatives. We therefore use FODDs to represent the domain dynamics

of deterministic action alternatives, probabilities, rewards, and value functions. We also

discuss the expressiveness of the representation and give a procedure of translating into

FODDs problem descriptions in PPDDL (Younes & Littman, 2004), which has become a

standard language used to encode probabilistic planning domains and problems.

4.1 Example Domain

We first give a concrete formulation of the logistics problem discussed in the introduction.

This example follows exactly the details given by Boutilier et al. (2001), and is used

to illustrate our constructions for MDPs. The domain includes boxes, trucks and cities,

and predicates are Bin(Box,City), T in(Truck,City), and On(Box, Truck). Following

Boutilier et al. (2001), we assume that On(b, t) and Bin(b, c) are mutually exclusive, so

a box on a truck is not in a city. That is, our background knowledge includes statements

∀b, c, t, On(b, t) → ¬Bin(b, c) and ∀b, c, t, Bin(b, c) → ¬On(b, t). The reward function,

capturing a planning goal, awards a reward of 10 if the formula ∃b,Bin(b, Paris) is true,

that is if there is any box in Paris. Thus the reward is allowed to include constants but

70

need not be completely ground.

The domain includes 3 actions load, unload, and drive. Actions have no effect if

their preconditions are not met. Actions can also fail with some probability. When

attempting load, a successful version loadS is executed with probability 0.99, and an

unsuccessful version loadF (effectively a no-operation) with probability 0.01. The drive

action is executed deterministically. When attempting unload, the probabilities depend

on whether it is raining or not. If it is not raining then a successful version unloadS is

executed with probability 0.9, and unloadF with probability 0.1. If it is raining unloadS

is executed with probability 0.7, and unloadF with probability 0.3.

4.2 The Domain Dynamics

The domain dynamics are defined by truth value diagrams (TVDs). For every action

schema A(~a) and each predicate schema p(~x) the TVD T (A(~a), p(~x)) is a FODD with

{0, 1} leaves. The TVD gives the truth value of p(~x) in the next state when A(~a) has been

performed in the current state. We call ~a action parameters, and ~x predicate parameters.

No other variables are allowed in the TVD. We will explain why we need this restriction

in Section 5.1.1. The truth value is valid when we fix a valuation of the parameters.

Notice that the TVD simultaneously captures the truth values of all instances of

p(~x) in the next state. Notice also that TVDs for different predicates are separate and

independent. This can be safely done even if an action has coordinated effects (not

conditionally independent) since the actions are deterministic.

For any domain, a TVD for predicate p(~x) can be defined generically as in Figure 4.1.

The idea is that the predicate is true if it was true before and is not “undone” by the

action or was false before and is “brought about” by the action. TVDs for the logistics

domain in our running example are given in Figure 4.2. All the TVDs omitted in the

figure are trivial in the sense that the predicate is not affected by the action. In order

to simplify the presentation we give the TVDs in their generic form and did not sort

the diagrams. Notice in the examples that the TVDs capture the implicit assumption

71

usually taken in such planning-based domains that if the preconditions of the action are

not satisfied then the action has no effect.

p(x)

 1 0

 0

undo
bring
about

Figure 4.1: A template for the TVD

Bin (B, C)

B= b*

Tin(t*, C)
 0

0

1

(c)

On (B, T)

B= b*

T= t*

0

0

1

(b)

Bin (B, C)

1 B= b*

On (B, t*)

Tin (t* , C)

1 0

(a)

On (B, T)

1 B= b*

T= t*

Tin (T, c*)

1 0

(d)

Bin (B, c*)

Tin (T, C)

T= t*

C≠ c*

0 1

T= t*

C= c*

1 0

(e)

rain

0.7 0.9

Bin (b, Paris)

10 0

(f) (g)

C= c*

Figure 4.2: FODDs for logistics domain: TVDs, action choice, and reward function. (a)(b)
The TVDs for Bin(B,C) and On(B,T) under action choice unloadS(b∗, t∗). (c)(d) The
TVDs forBin(B,C) andOn(B,T) under action choice loadS(b∗, t∗, c∗). Note that c∗ must
be an action parameter so that (d) is a valid TVD. (e) The TVD for T in(T,C) under action
choice driveS(t∗, c∗). (f) The probability FODD for the action choice unloadS(b∗, t∗). (g)
The reward function.

Notice how we utilize the multiple path semantics with maximum aggregation. A

predicate is true if it is true according to one of the paths specified so we get a disjunction

over the conditions for free. If we use the single path semantics the corresponding notion

of TVD is significantly more complicated since a single path must capture all possibilities

for a predicate to become true. To capture that we must test sequentially for different

72

conditions and then take a union of the substitutions from different tests and in turn this

requires additional annotation on FODDs with appropriate semantics. Similarly an OR

operation would require union of substitutions, thus complicating the representation. We

explain these issues in more detail in Section 5.1.1 after we introduce the first order value

iteration algorithm.

4.3 Probabilistic Action Choice

One can consider modeling arbitrary conditions described by formulas over the state to

control nature’s probabilistic choice of action. Here the multiple path semantics makes

it hard to specify mutually exclusive conditions using existentially quantified variables

and in this way specify a distribution. We therefore restrict the conditions to be either

propositional or depend directly on the action parameters. Under this condition any

interpretation follows exactly one path (since there are no variables and thus only the

empty valuation) thus the aggregation function does not interact with the probabilities

assigned. A diagram showing action choice for unloadS in our logistics example is given

in Figure 4.2. In this example, the condition is propositional. The condition can also

depend on action parameters, for example, if we assume that the result is also affected

by whether the box is big or not, we can have something as in Figure 4.3 regarding the

action choice probability of unloadS.

Big(b*)

 rain

0.7

0.9

 0.9

Figure 4.3: An example showing that the choice probability can depend on action param-
eters.

Note that a probability usually depends on the current state. It can depend on arbi-

trary properties of the state (with the restriction stated as above), e.g., rain and big(b∗),

as shown in Figure 4.3. We allow arbitrary conditions that depend on predicates with

arguments restricted to action parameters so the dependence can be complex. However,

73

we do not allow any free variables in the probability choice diagram. For example, we

cannot model a probabilistic choice of unload(b∗, t∗) that depends on other boxes on the

truck t∗, e.g.,

∃b,On(b, t∗) ∧ b 6= b∗ : 0.2

otherwise, 0.7.

While we can write a FODD to capture this condition, the semantics of FODD means that

a path to 0.7 will be selected by max aggregation so the distribution cannot be modeled

in this way. While this is clearly a restriction, the conditions based on action arguments

still give a substantial modeling power.

4.4 Reward and Value Functions

Reward and value functions can be represented directly using algebraic FODDs. The

reward function for our logistics domain example is given in Figure 4.2.

4.5 PPDDL and FODDs

In terms of expressiveness, our approach can easily capture probabilistic STRIPS style

formulations as in ReBel, allowing for more flexibility since we can use FODDs to capture

rewards and transitions. However, it is more limited than SDP since we cannot use

arbitrary formulas for rewards, transitions, and probabilistic choice. For example we

cannot express universal quantification using maximum aggregation. Our approach can

also easily capture traditional maze-like RL domains with state based reward (which are

propositional) in factored form since the reward can be described as a function of location.

In general, it seems that one may be able to get around representation restrictions in some

cases by modifying the set of base predicates.

Probabilistic Planning Domain Definition Language (PPDDL) (Younes & Littman,

2004) has become a standard language for describing probabilistic and decision theoretic

planning problems. It has been used to describe probabilistic planning domains and

problems since the fourth International Planning Competition (IPC-4) held as part of the

74

International Conference on Planning and Scheduling (ICAPS’04) in which probabilistic

planning track was introduced (Younes et al., 2005). PPDDL is an extension of the Plan-

ning Domain Definition Language (PDDL) (McDermott, 2000) with additional constructs

to support the modeling of probabilistic effects and decision-theoretic concepts, e.g. re-

wards. PPDDL can be considered a probabilistic STRIPS-like language but with richer

constructs. In this section we sketch a procedure of generating TVDs from PPDDL action

descriptions. Note that our representation is more restricted than general PPDDL, e.g.,

we do not support functions or universal quantification.

4.5.1 PPDDL Action Effects

An action in PPDDL, a ∈ A, consists of a precondition φa and effect ea. We support the

following action effects (which are also rules to recursively construct action effects).

1. Simple effects: null-effect ⊤, and atomic formula or its negation, i.e., p(~x) and ¬p(~x)

where p is a predicate and ~x are predicate parameters.

2. Conjunction of effects: e1 ∧ · · · ∧ en where ei is an effect.

3. Conditional effect: c�e where c is a formula over predicates, dictating the condition

for the effect e to take place.

4. Probabilistic effects: p1e1 | . . . | pnen meaning that the effect ei occurs with prob-

ability pi. If
∑n

i=1 pi < 1, we have a default effect null effect with probability

pi+1 = 1 −
∑n

i=1 pi.

For example the following is an action description for move-left in the elevator domain

in the probabilistic track of the Fifth International Planning Competition (IPC-5) held

in ICAPS’06 (Gerevini et al., 2006). This domain is about an agent moving around to

collect coins scattered in different positions in different floors. The agent can take the

elevator to move up and down. It can also move horizontally to the left or the right but

risk ending up in some place (i.e., position p1 in floor f1 as shown below) that is not the

75

destination. Consider for example the following PPDDL description (where predicates

are written in prefix notation):

(:action move-left

:parameters (?f - floor ?p ?np - pos)

:precondition (and (at ?f ?p) (dec_p ?p ?np)

:effect (probabilistic 0.5 (and (not at ?f ?p))(at ?f ?np))

0.5 (and (not (at ?f ?p))

(when (gate ?f ?p)(at f1 p1))

(when (not (gate ?f ?p)) (at ?f ?np))))

)

In this description f1 is a constant of type floor and p1 is a constant of type position.

The symbols starting with question marks denote variables. The precondition dictates

that the agent must initially be in the starting location and the destination position must

be immediately to the left of its current position. The effect equation says that with

probability 0.5 the agent will successfully land at the destination position and thus no

longer be in its previous position. But with probability 0.5, although the agent will not be

in previous position, where it actually lands on depends on whether the condition (gate

?f ?p) is true. If it is true, the agent will be at an unexpected place (i.e., position p1 in

floor f1); otherwise, it will be in the destination.

Note that PPDDL allows for more complicated action effects, e.g., universal effects or

associating a reward with a state transition. Rewards associated with state transitions can

be easily incorporated into our framework by using a more general reward model R(s, a).

On the other hand we cannot handle universal effects without grounding the domain.

4.5.2 Transformations of Action Effects

PPDDL allows arbitrary nesting of conditional and probabilistic effects thus can be very

complex. Note that TVDs are defined for deterministic action alternatives and should not

have any probabilistic effects inside. Rintanen (2003) has proved that any action effect

e constructed by Rules in Section 4.5.1 can be translated into the form p1e1 | . . . | pnen

where ei is a deterministic effect by using the following equivalences. Rintanen (2003)

76

called this form Unary Nondeterminism Normal Form(1ND)

c� (e1 ∧ · · · ∧ en) ≡ (c� e1) ∧ · · · ∧ (c� en)

c� (c′ � e) ≡ (c ∧ c′) � e

c� (p1e1 | . . . | pnen) ≡ p1(c� e1) | . . . | pn(c� en)

e ∧ (p1e1 | . . . | pnen) ≡ p1(e ∧ e1) | . . . | pn(e ∧ en)

p1(p
′
1e

′
1 | . . . | p′ke

′
k) | p2e2 | . . . | pnen ≡ (p1p

′
1)e

′
1 | . . . | (p1p

′
k)e

′
k | p2e2 | . . . | pnen

Rintanen (2003) showed that the first three equivalences are used to move the condi-

tionals inside so that their consequents are atomic effects, and the last two equivalences

are applied to the intermediate results to get the effect of the 1ND form. With this

transformation we decompose a stochastic action a into a set of deterministic action al-

ternatives ai, one for each action effect ei, and the probability this action alternative gets

chosen is pi.

Note that now each effect ei has the form (ci1 � ei1)∧ . . .∧ (cini
� eini

) and each eij is

a conjunction of simple effects. In order to facilitate the translation of action effects into

TVDs, we would like to have conditions ci1, · · · , cini
mutually exclusive and collectively

exhaustive. We use the following equivalences (Younes & Littman, 2004) to accomplish

this.

e ≡ ⊤ � e

c� e ≡ (c� e) ∧ (¬c� ⊤)

(c1�e1)∧(c2�e2) ≡ ((c1∧c2)�(e1∧e2))∧((c1∧¬c2)�e1)∧((¬c1∧c2)�e2)∧((¬c1∧¬c2)�⊤)

Both transformations can result in exponential increases in the size of the effect for-

mula (Rintanen, 2003; Younes & Littman, 2004). Later we will give a special case where

we may have exponential savings compared to the result obtained by performing these

transformations directly.

77

We can use the equivalences described above to translate the action effect of move-left

into the desired form. For the sake of uniformity with the syntactic format used in the rest

of the thesis, we do not include question marks before a variable, and we use parenthesis

around predicate parameters.

0.5(⊤ � (¬at(f, p) ∧ at(f, np))) |

0.5(gate(f, p) � (¬at(f, p) ∧ at(f1, p1)) ∧ (¬gate(f, p) � (¬at(f, p) ∧ at(f, np))

Therefore we will have two deterministic alternatives for this action, denoted as

move-left-outcome1 (move-left succeeds) and move-left-outcome2 (move-left has condi-

tional effects). For move-left-outcome1, it would be more straightforward to have just

¬at(f, p) ∧ at(f, np). I.e., if an action alternative has only a conjunction of simple effects

then we keep it as is.

4.5.3 Translating Action Effects into FODDs

The following is a sketch of the procedure to translate an effect (of a deterministic action

alternative) of the form (ci1 � ei1) ∧ . . . ∧ (cini
� eini

) into a set of TVDs, one TVD for

each predicate p(~x). Note that eij is a conjunction of simple effects and conditions are

mutually exclusive and collectively exhaustive.

Procedure 2 1. Initialize the TVD for each predicate as shown in Figure 4.4(a). k=1.

2. For the conditional effect cik � eik, for each predicate p(~x), do the following:

(a) If the predicate does not appear in the effect, we leave the TVD as is.

(b) If the predicate appears as the positive effect p(), let t be the number of times p()

(with different set of predicate parameters) appears in eik. We use ~vik
j where

j ≤ t to denote predicate parameters in one p(). We construct a sub-FODD as

follows, which is illustrated in Figure 4.4(b):

i. The root node of this sub-FODD is cik.

ii. (cik)↓f is left “open”.

78

iii. (cik)↓t is linked to a sequence of predicate parameters equality tests starting

from ~x = ~vik
1 . For each j ∈ {1 · · ·m − 1}, create a test for predicate

parameters equality ~x = ~vik
j , and set (~x = ~vik

j)↓t = 1 and (~x = ~vik
j)↓f

linked to the test for ~x = ~vik
j+1. For j = m the test is ~x = ~vik

m and we set

(~x = ~vik
m)↓t = 1 and (~x = ~vik

m)↓f = 0.

In this case we need to change the “bring about” branch. We link such a sub-

FODD directly to p(~x)↓f if p(~x)↓f = 0, or to an “open” exit otherwise. We

illustrate these two cases in Figure 4.4(c)and (d) respectively.

(c) If the predicate appears as the negative effect ¬p(), we need to change the

“undo” branch. The construction is symmetric to the above and is illustrated

in Figure 4.4(e), (f), and (g), which correspond to constructing a sub-FODD

to test predicate parameters equality, the case when p(~x)↓f = 1, and the case

when there is an “open” exit respectively.

3. Set k = k + 1 (go to the next conditional effect). If k < ni go to 2.

4. Note that here we handle the last condition-effect pair.

(a) If the predicate does not appear in the effect and if the TVD has “open” exit,

we close it by linking the exit to 0 in the sub-FODD of p(~x)↓f , and 1 in p(~x)↓t.

(b) If the predicate appears as the positive effect p(), and if all the other conditions

have appeared in the sub-FODD of p(~x)↓f , we link the “open” exit with the sub-

FODD for testing a sequence of predicate parameters equality (all the conditions

are mutually exclusive and exhaustive, therefore the last condition is implied by

the conjunction of the negations of all the other conditions). This is illustrated

in Figure 4.4(h). If not all conditions have appeared in the p(~x)↓f , we still

need to test this condition, followed by test for parameters equality. This is

illustrated in Figure 4.4(i).

(c) If the predicate appears as the negative effect p(), the construction is symmetric

to the above.

79

5. As the last step, we need to add the precondition φa to the TVDs of those predicates

with “bring about” or “undo” branches, as illustrate by Figure 4.4 (j). In “bring

about” branch (φa)↓f = 0, and in “undo” branch (φa)↓f = 1.

Figure 4.5 shows the TVD of the predicate at for move-left-outcome2. First note that

we deal with the precondition differently than (P)PDDL. In (P)PDDL it is considered

an error to apply an action in a state where the precondition does not hold . However

we consider an action as no-op if the precondition does not hold. Also note that strong

reductions and sorting have to be applied to get the final TVD. In this example The

final diagram is obtained after a neglect reduction to remove the unnecessary condition

gate(f, p) in at(F,P)↓t.

Note that currently we only handle conditions (e.g., preconditions or conditions in

conditional effect) as a conjunction of atomic formulas and equalities. Figure 4.6 illustrates

how to translate a condition C = c1 ∧ c2 · · · ∧ cn into FODD components.

4.5.4 A Special Case in Translation

Recall that the action effect transformations may cause exponential size increases. Here

we give a special case where our representation can provide more compact encoding even

compared with the PPDDL description. If we have a probabilistic effect in the following

form:

(p11(c1 � e1) | . . . | p1n(c1 � en))∧

· · · ∧

pm1(cm � e1) | . . . | pmn(cm � en)

where ei is a conjunction of simple effects, and c1 . . . cm are mutually exclusive and exhaus-

tive conditions. Notice repetitive structure where ci repeats in row and ei in column. If

we use the transformation rules, we may end up with nm deterministic action alternatives.

In fact, we can just have n deterministic alternatives, one for each ei, and use the choice

80

 (a)

p(x)

 0 1
 (b)

 (c)

 (e)

 (h)

 (b)

 (j)

 aφ

 cik

 1

x =
ik

v1

x =
ik

v2

 1

x =
ik

tv

 1 0

 “open”
 exit

p(x)

 0

p(x)

 (b)

p(x)

 cil

 “open”
 exit

p(x)

 cil

 (d)

 0

x =
ik

v1

 cik

x =
ik

v2

 0

x =
ik

tv

 0 1

 “open”
 exit

p(x)

 ci1

 …

 ci,n-1

 1

x =
in

v1

x =
in

tv

 1 0

p(x)

 1

p(x)

 (e)

 (f)

p(x)

 cil

 “open”
 exit (e)

p(x)

 cil

 (g)

p(x) p(x)

 aφ

1 0

p(x)

 cij

 …

 cin

 0

 (i)

Figure 4.4: Examples illustrating translating action effects in PPDDL into TVDs.

81

parameters

condition

at(f, p)

dec-p(p, np)

gate(f, p)

F=f

P=p

0 1

F=f

P=p

0 1

1

at(F, P)

at(f, p)

dec-p(p, np)

gate(f, p)

F=f1

P=p1

1 0

F=f

P=np

1 0

0

Precond

at(F, P)

at(f, p)

dec-p(p, np)

gate(f, p)

F=f1

P=p1

1 0

F=f

P=np

1 0

0

at(f, p)

Dec-p(f, np)

F=f

P=p

0 1

1

Figure 4.5: The TVD for at under action choice move-left-outcome2 in the elevator
domain.

c1

c2

cn

C↓
t C↓

f

C

Figure 4.6: Translating a condition into FODD components.

82

probabilities to capture all the conditions. For example, for the first action alternative

corresponding to e1, we have the choice probability defined as shown in Figure 4.7. Note

that we do not need to include the last condition cm because cm = ¬c1 ∧ · · · ∧ ¬cm−1.

c1

 c2

 p11

 p21 …

 pm-1,1

 cm-1

pm1

Figure 4.7: The choice probability for the action alternative corresponding to e1.

The following is an action description for look-at-light in the drive domain in the

probabilistic track of the Fifth International Planning Competition (Gerevini et al., 2006).

(:action look-at-light

:parameters (?x - coord ?y - coord)

:precondition (and

(light_color unknown)

(at ?x ?y)

)

:effect (and

(probabilistic

9/10

(when (and (heading north) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color green)))

1/10

(when (and (heading north) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color red))))

(probabilistic

9/10

(when (and (heading south) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color green)))

1/10

(when (and (heading south) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color red))))

(probabilistic

1/10

(when (and (heading east) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color green)))

83

9/10

(when (and (heading east) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color red))))

(probabilistic

1/10

(when (and (heading west) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color green)))

9/10

(when (and (heading west) (light_preference ?x ?y north_south))

(and (not (light_color unknown))(light_color red))))

(probabilistic

1/10

(when (and (heading north) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color green)))

9/10

(when (and (heading north) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color red))))

(probabilistic

1/10

(when (and (heading south) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color green)))

9/10

(when (and (heading south) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color red))))

(probabilistic

9/10

(when (and (heading east) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color green)))

1/10

(when (and (heading east) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color red))))

(probabilistic

9/10

(when (and (heading west) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color green)))

1/10

(when (and (heading west) (light_preference ?x ?y east_west))

(and (not (light_color unknown))(light_color red))))

(probabilistic

1/2

(when (light_preference ?x ?y none)

(and (not (light_color unknown))(light_color green)))

1/2

(when (light_preference ?x ?y none)

(and (not (light_color unknown))(light_color red)))))

84

)

Intuitively look-at-light is a sensing action to sense the light color. Therefore the

precondition is that the light color is unknown and the agent is at the right spot. It only

has two outcomes. One is that the agent senses light color to be green and we denote

the outcome as Lc-green, and other is that the agent senses light color to be red and

we denote this outcome as Lc-red. Each outcome is associated with different probabilities

under different conditions. Figure 4.8 gives the choice probability for the action alternative

Lc-green. Note that, as a heuristic, we start with the condition of shortest length, i.e., we

start with the condition light-preference being none.

c2

c1

H(n)

Lp(x,y,ns)

0.9 H(s)

Lp(x,y,ns)

0.9

Lp(x,y,none)

0.5

0.9

Figure 4.8: The choice probability for the action alternative Lc-green before reduction and
sorting. Lp denotes light-preference, H heading, n, s, ns and e north, south, north-south,
and east respectively.

.

Figure 4.9 shows the choice probability after reduction and sorting, and the TVD for

light-color(abbreviated as LC) under the action alternative Lc-green.

We translated action descriptions in several domains in the probabilistic track planning

problems in IPC-5 and we have found that TVDs and choice probabilities represented as

FODDs provide a concise and natural encoding of action effects.

85

Lp(x,y,none)

 0.5 Lp(x,y,ns)

 H(n)

 0.9 H(s)

 0.9 0.1

 H(n)

 0.1 H(s)

 0.1 0.9

 (a)

Lc(C)

 Lc(unknown)

 At(x,y)

 0 1

 Lc(unknown)

 At(x,y)

C=green

 1 0

 0

 (b)

Figure 4.9: (a) The choice probability for the action alternative Lc-green. (b)The TVD
for light-color under the action alternative Lc-green

.

86

Chapter 5

Value Iteration and Policy

Iteration with FODDs

In this chapter, we present our algorithms for RMDPs. We show how value iteration can

be performed using FODDs. We also introduce a new algorithm, Relational Modified

Policy Iteration. We point out two anomalies of policy languages in the context of policy

evaluation and show that our algorithm incorporates an aspect of policy improvement

into policy evaluation. We further provide the proof that the algorithm converges to the

optimal value function and policy.

5.1 Value Iteration with FODDs

The general first order value iteration algorithm (Boutilier et al., 2001) works as follows:

given the reward function R and the action model as input, we set V0 = R,n = 0 and

repeat the procedure Rel-greedy until termination:

Procedure 3 Rel-greedy

1. For each action type A(~x), compute:

Q
A(~x)
Vn

= R⊕ [γ ⊗⊕j(prob(Aj(~x)) ⊗Regr(Vn, Aj(~x)))] (5.1)

87

2. QA
Vn

= obj-max(Q
A(~x)
Vn

).

3. Vn+1 = maxAQ
A
Vn

.

The notation and steps of this procedure were discussed in Section 2.3 except that

now ⊗ and ⊕ work on FODDs instead of case statements. Note that since the reward

function does not depend on actions, we can rewrite the procedure as follows:

Procedure 4 Rel-greedy

1. For each action type A(~x), compute:

T
A(~x)
Vn

= ⊕j(prob(Aj(~x)) ⊗Regr(Vn, Aj(~x))) (5.2)

2. QA
Vn

= R⊕ γ ⊗ obj-max(T
A(~x)
Vn

).

3. Vn+1 = maxAQ
A
Vn

.

Later we will see that the object maximization step makes more reductions possible;

therefore by moving this step forward before adding the reward function we may get

some savings in computation. We compute the updated value function in this way in the

comprehensive example of value iteration given later in Section 5.1.5.

Value iteration terminates when ‖Vi+1 − Vi‖ ≤ ε(1−γ)
2γ

, i.e., when each leaf node of the

resulting FODD from subtraction operation has a value less than the threshold (Puterman,

1994).

Some formulations of goal based planning problems use an absorbing state with zero

additional reward once the goal is reached. We can handle this formulation when there

is only one non-zero leaf in R. In this case, we can replace Equation 5.1 with Q
A(~x)
Vn

=

max(R, γ ⊗ ⊕j(prob(Aj(~x)) ⊗Regr(Vn, Aj(~x))). Note that, due to discounting, the max

value is always ≤ R. If R is satisfied in a state we do not care about the action (max

would be R) and if R is 0 in a state we get the value of the discounted future reward.

Note that we can only do this in goal based domains, i.e., there is only one non-zero

leaf. This does not mean that we cannot have disjunctive goals, but it means that we

88

must value each goal condition equally. For example, this method does not apply when

we have complex reward functions, e.g., the one as shown in Figure 5.1.

p1 (x)
 10

 5

20

p2 (x)
 p3 (x)

 0

Figure 5.1: An example showing a complex reward function.

5.1.1 Regression by Block Replacement

We first describe the calculation of Regr(Vn, Aj(~x)) using a simple idea we call block

replacement. We then proceed to discuss how to obtain the result efficiently.

Consider Vn and the nodes in its FODD. For each such node take a copy of the

corresponding TVD, where predicate parameters are renamed so that they correspond

to the node’s arguments and action parameters are unmodified. BR-regress(Vn, A(~x)) is

the FODD resulting from replacing each node in Vn with the corresponding TVD, with

outgoing edges connected to the 0, 1 leaves of the TVD.

Let s denote a state resulting from executing an action A(~x) in ŝ. Notice that Vn and

BR-regress(Vn, A(~x)) have exactly the same variables. We have the following lemma:

Lemma 11 Let ζ be any valuation to variables of Vn (and thus also variables of

BR-regress(Vn, A(~x))), MAPVn(s, ζ) = MAPBR−regress(Vn,A(~x))(ŝ, ζ)

Proof: Consider the paths P, P̂ followed under the valuation ζ in the two diagrams. By

the definition of TVDs, the sub-paths of P̂ applied to ŝ guarantee that the corresponding

nodes in P take the same truth values in s. So P, P̂ reach the same leaf and the same

value is obtained.

Now we can explain why we cannot have variables in TVDs through an example il-

lustrated in Figure 5.2. Suppose we have a value function as defined in Figure 5.2(a),

saying that if there is a blue block that is not on a big truck then value 1 is as-

signed. Figure 5.2(b) gives the TVD for On(B,T) under action loadS, in which c is

89

Big(t)

Blue (b)

Big(t)

Bin (b, c)

0

(c)

0

Blue (b)

On(b,t)
 0 1

On (B, T)

1 B= b*

T= t*

Tin (T, c)

1 0

Bin (B, c)

On (b, t)

0 b= b*

t= t*

Tin (t, c)

0 1

(a)

(b)

Figure 5.2: An example illustrating why variables are not allowed in TVDs.

a variable instead of an action parameter. Figure 5.2(c) gives the result after block

replacement. Consider an interpretation ŝ with domain {b1, t1, c1, c2} and relations

{Blue(b1), Big(t1), Bin(b1, c1), T in(t1, c1)}. After the action loadS(b1, t1) we will reach

the state s = {Blue(b1), Big(t1), On(b1, t1), T in(t1, c1)}, which gives us a value of 0.

But Figure 5.2(c) with b∗ = b1, t
∗ = t1 evaluated in ŝ gives value of 1 by valuation

{b/b1, c/c2, t/t1}. Here the choice c/c2 makes sure the precondition is violated. By mak-

ing c an action parameter, applying action must explicitly choose valuation and this leads

to correct value function. Object maximization turns action parameters into variables

and allows us to choose the argument so as to maximize the value.

The naive implementation of block replacement may not be efficient. If we use block

replacement for regression then the resulting FODD is not necessarily reduced and more-

over, since the different blocks are sorted to start with the result is not even sorted.

Reducing and sorting the results may be an expensive operation. Instead we calculate

the result as follows. For any FODD Vn we traverse BR-regress(Vn, A(~x)) using postorder

traversal in term of blocks and combine the blocks. At any step we have to combine up

to 3 FODDs such that the parent block has not yet been processed (so it is a TVD with

binary leaves) and the two children have been processed (so they are general FODDs). If

we call the parent Bn, the true branch child Bt and the false branch child Bf then we

can represent their combination as [Bn ×Bt] + [(1 −Bn) ×Bf].

90

Bt

Bn
 Bf

Figure 5.3: A FODD illustrating the idea of block combination

Lemma 12 Let B be a FODD (as shown in Figure 5.3) where Bt and Bf are FODDs,

and Bn is a FODD with {0, 1} leaves. Let B̂ be the result of using Apply to calculate the

diagram [Bn × Bt] + [(1 − Bn) × Bf]. Then for any interpretation I and valuation ζ we

have MAPB(I, ζ) = MAP
B̂

(I, ζ).

Proof: This is true since by fixing the valuation we effectively ground the FODD and

all paths are mutually exclusive. In other words the FODD becomes propositional and

clearly the combination using propositional Apply is correct.

A high-level description of the algorithm to calculate BR-regress(Vn, A(~x)) by block

combination is as follows:

Procedure 5 1. Perform a topological sort on Vn nodes.

2. In reverse order, for each non-leaf node n (its children Bt and Bf have already been

processed), let Bn be a copy of the corresponding TVD, calculate [Bn ×Bt] + [(1 −

Bn) ×Bf].

3. Return the FODD corresponding to the first node (i.e., the root).

Notice that different blocks share variables so we cannot perform weak reductions

during this process. However, we can perform strong reductions in intermediate steps

since they do not change the map for any valuation. After the process is completed we

can perform any combination of weak and strong reductions since this does not change

the map of the regressed value function.

From the discussion so far we have the following lemma:

Lemma 13 Given a value function Vn and an action type A(~x), Equation 5.1 correctly

calculates the value of executing A(~x) and receiving the terminal value Vn.

91

In Section 4.2 we briefly mentioned why the single path semantics does not sup-

port value iteration as well as the multiple path semantics, where we get disjunc-

tion for free. Now with the explanation of regression, we can use an example to il-

lustrate this. Suppose we have a value function as defined in Figure 5.4(a), saying

that if we have a red block in a big city then value 1 is assigned. Figure 5.4(b)

gives the result after block replacement under action unloadS(b∗, t∗). However this

is not correct. Consider an interpretation ŝ with domain {b1, b2, t1, c1} and relations

{Red(b2), Blue(b1), Big(c1), Bin(b1, c1), T in(t1, c1), On(b2, t1)}. Note that we use the sin-

gle path semantics. We follow the true branch at the root since ∃b, c,Bin(b, c) is true

with {b/b1, c/c1}. But we follow the false branch at Red(b) since ∃b, c,Bin(b, c)∧Red(b)

is not satisfied. Therefore we get a value of 0. As we know, we should get a value of 1

instead with {b/b2, c/c1}, but it is impossible to achieve this value in Figure 5.4(b) with

the single path semantics. The reason block replacement fails is that the top node decides

on the true branch based on one instance of the predicate but we really need all true

instances of the predicate to filter into the true leaf of the TVD.

To correct the problem, we want to capture all instances that were true before and not

undone and all instances that are made true on one path. Figure 5.4(c) gives one possible

way to do it. Here ∪ stands for union operator, which takes a union of all substitutions,

and we treat union as an edge operation. Note that it is a coordinated operation, i.e.,

instead of taking the union of the substitutions for b′ and b′′, c′ and c′′ separately we

need to take the union of the substitutions for (b′, c′) and (b′′, c′′). This approach may be

possible but it clearly leads to complicated diagrams. Similar complications arise in the

context of object maximization. Finally if we are to use this representation then all our

procedures will need to handle edge marking and unions of substitutions so this approach

does not look promising.

5.1.2 Object Maximization

Notice that since we are handling different probabilistic alternatives of the same action

separately we must keep action parameters fixed during the regression process and until

92

Big(c)

Bin(b, c)

(b,c)←
(b’,c’) ∪
(b”,c”)

(b,c)←
(b’,c’)

(b,c)←
(b”,c”)

Bin(b’,c’)

b”=b*

On(b”,t*)

Tin(t*,c”)

Red(b)

0

Big(c)
 1

(b,c)←
(b’,c’)

(b,c)←
(b”,c”)

Bin(b’,c’)

b” =b*

On(b”,t*)

Tin(t*,c”)

Red(b)

0

Big(c)

1

Bin(b” ,c”)

b” =b*

On(b”,t*)

Tin(t*,c”)

0

0

Red(b)

1 0

(a)

(b)

(c)

Figure 5.4: An example illustrating union or.

they are added in step 1 of the algorithm. In step 2 we maximize over the choice of action

parameters. As mentioned above we get this maximization for free. We simply rename

the action parameters using new variable names (to avoid repetition between iterations)

and consider them as variables. The aggregation semantics provides the maximization.

Since constants are turned into variables additional reduction is typically possible at this

stage. Any combination of weak and strong reductions can be used.

From the discussion we have the following lemma:

Lemma 14 Object maximization correctly computes the maximum value achievable by

an action instance.

5.1.3 Adding and Maximizing Over Actions

Adding and maximizing over actions can be done directly using the Apply procedure. Re-

call that prob(Aj(~x)) is restricted to include only action parameters and cannot include

variables. We can therefore calculate prob(Aj(~x)) ⊗ Regr(Vn, Aj(~x)) in step (1) directly

using Apply. However, the different regression results are independent functions so that

in the sum ⊕j(prob(Aj(~x)) ⊗ Regr(Vn, Aj(~x))) we must standardize apart the different

93

regression results before adding the functions (note that action parameters are still con-

sidered constants at this stage). Similarly the maximization Vn+1 = maxAQ
A
n+1 in step

(3) must first standardize apart the different diagrams. The need to standardize apart

complicates the diagrams and often introduces structure that can be reduced. In each of

these cases we first use the propositional Apply procedure and then follow with weak and

strong reductions.

q (x)
 p (x)

 10

0

 5

(a)

q (x1)

q (A)

 1

p (x1)

 0

 5 0

 2.5

p (A)
 A=x*

1

 0

(c)

V0 ASucc(x*)

(b)

x1= x*
 q (x1)

+

q (x2)
 p (x2)

 5

0

 2.5

q (x2)
 q (x1)

 p (x1)
 x1= x*

 q (x1)
 7.5

 …

Figure 5.5: An example illustrating the need to standardize apart.

Figure 5.5 illustrates why we need to standardize apart different action outcomes.

Action A can succeed (denoted as ASucc) or fail (denoted as AFail, effectively a no-

operation), and each is chosen with probability 0.5. Part (a) gives the value function V 0.

Part (b) gives the TVD for P (A) under the action choice ASucc(x∗). All other TVDs

are trivial. Part (c) shows part of the result of adding the two outcomes for A after

standardizing apart (to simplify the presentation the diagrams are not sorted). Consider

an interpretation with domain {1, 2} and relations {q(1), p(2)}. As can be seen from (c),

by choosing x∗ = 1, i.e. action A(1), the valuation x1 = 1, x2 = 2 gives a value of 7.5 after

the action (without considering the discount factor). Obviously if we do not standardize

apart (i.e x1 = x2), there is no leaf with value 7.5 and we get a wrong value. Intuitively the

94

contribution of ASucc to the value comes from the “bring about” portion of the diagram

and AFail’s contribution uses bindings from the “not undo” portion. Standardizing apart

allows us to capture both simultaneously.

5.1.4 Convergence and Complexity

Since each step of Procedure 3 is correct we have the following theorem:

Theorem 4 If the input to Procedure 3, Vn, correctly captures the value function when

there are n steps to go, then the output Vn+1 correctly captures the value function when

there are n+ 1 steps to go.

Note that for first order MDPs some problems require an infinite number of state

partitions. Thus we cannot converge to V ∗ in a finite number of steps. However, since

our algorithm implements VI exactly standard results about approximating optimal value

functions and policies still hold. In particular the following standard result (Puterman,

1994) holds for our algorithm, and our stopping criterion guarantees approximating opti-

mal value functions and policies.

Theorem 5 Let V ∗ be the optimal value function and let Vk be the value function calcu-

lated by the relational VI algorithm.

(1) If r(s) ≤M for all s then ‖Vn − V ∗‖ ≤ ε for n ≥
log(2M

ε(1−γ)
)

log 1
γ

.

(2) If ‖Vn+1 − Vn‖ ≤ ε(1−γ)
2γ

then ‖Vn+1 − V ∗‖ ≤ ε.

To analyze the complexity of our VI algorithm notice first that every time we use the

Apply procedure the size of the output diagram may be as large as the product of the size

of its inputs. While reductions will probably be applicable we cannot guarantee this in

advance or quantify the amount of reductions. We must also consider the size of the FODD

giving the regressed value function. While Block replacement is O(N) where N is the size

of the current value function, it is not sorted and sorting may require both exponential

time and space in the worst case. For example, Bryant (1986) gives an example of how

ordering may affect the size of a diagram. For a function of 2n arguments, the function

95

x1 ·x2+x3 ·x4+ · · ·+x2n−1 ·x2n only requires a diagram of 2n+2 nodes, while the function

x1 · xn+1 + x2 · xn+2 + · · · + xn · x2n requires 2n+1 nodes. Notice that these two functions

only differ by a permutation of their arguments. Now if x1 ·x2 +x3 ·x4 + · · ·+x2n−1 ·x2n is

the result of block replacement then clearly sorting requires exponential time and space.

The same is true for our block combination procedure or any other method of calculating

the result, simply because the output is of exponential size. In such a case heuristics that

change variable ordering, as in propositional ADDs (Bryant, 1992), would probably be

very useful.

Assuming TVDs, reward function, and probabilities all have size ≤ C, each action has

≤M action alternatives, the current value function Vn has N nodes, and worst case space

expansion for regression and all Apply operations, we can calculate the following upper

bound on run time for one iteration. Consider the first step calculating the parameter-

ized Q-function for each action A. For each action alternative Aj of A, regression of Vn

through Aj by block combination takes time O(CN) and has size O(CN). Multiplying the

regression result with the corresponding choice probability requires time O(CN+1). Sum-

ming over all action alternatives of A takes time O(CM(N+1)) and has size O(CM(N+1)).

The second step, object maximization, just traverses the FODD and renames action pa-

rameters using new variable names, and therefore takes time O(CM(N+1)). The third

step maximizing over all actions takes time O(CM2(N+1)). Therefore the overall time

complexity for one iteration is O(CM2(N+1)) given the current value function Vn is of size

N . However note that this is the worst case analysis and does not take reduction into

account. As the next example illustrates reductions can reduce diagrams substantially

and therefore save considerable time in computation.

5.1.5 A Comprehensive Example of Value Iteration

Figure 5.6 traces steps in the application of value iteration to the logistics domain. Note

that TVDs, action choice probabilities, and reward function are given in Figure 4.2. We

assume the ordering among predicates as Bin < “=” < On < Tin < rain.

Given V0 = R as shown in Figure 5.6(a), Figure 5.6(b) gives the result of regression

96

of V0 through unloadS(b∗, t∗) by block replacement, denoted as Regr(V0, unloadS(b∗, t∗)).

Figure 5.6(c) gives the result of multiplying Regr(V0, unloadS(b∗, t∗)) with

the choice probability of unloadS Pr(unloadS(b∗, t∗)). The result is denoted as

Pr(unloadS(b∗, t∗)) ⊗Regr(V0, unloadS(b∗, t∗)).

We perform the same computation for unloadF (b∗, t∗). Figure 5.6(d) gives the result

of Pr(unloadF (b∗, t∗)) ⊗ Regr(V0, unloadF (b∗, t∗)). Notice that this diagram is similar

since unloadF does not change the state and the TVDs for it are trivial.

Figure 5.6(e) gives the unreduced result of adding two outcomes for unload(b∗, t∗),

i.e., [Pr(unloadS(b∗, t∗)) ⊗ Regr(V0, unloadS(b∗, t∗))] ⊕ [Pr(unloadF (b∗, t∗)) ⊗

Regr(V0, unloadF (b∗, t∗))]. Note that we first standardize apart diagrams for

unloadS(b∗, t∗) and unloadF (b∗, t∗) by renaming b in the first diagram as b1 and b

in the second diagram as b2. Action parameters b∗ and t∗ at this stage are considered

as constants and we do not change them. Also note that the recursive part of Apply

(addition ⊕) has performed some reductions, i.e., removing the node rain when both of

its children lead to value 10.

In Figure 5.6(e), for node Bin(b2, Paris) in the left branch, conditions

P6.1: ∀b1, [Bin(b1, Paris) → ∃b2, Bin(b2, Paris)],

P6.4: b2 does not appear in the sub-FODD of Bin(b2, Paris)↓t, and

V6.1: min(Bin(b2, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f) = 9

hold. Therefore according to Lemma 2, conditions P6.3 and V6.2 hold, which means we

can drop node Bin(b2, Paris) and connect its parent Bin(b1, Paris) to its true branch

according to Lemma 5. Figure 5.6(f) gives the result after this reduction.

Next, consider true child of Bin(b2, Paris) and true child of the root. Conditions

P7.1: [∃b1, b2,¬Bin(b1, Paris) ∧Bin(b2, Paris)] → [∃b1, Bin(b1, Paris)],

V7.1: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓t) = 10, and

V7.2: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f) = 9

hold. According to Lemma 6 and Lemma 8, we can drop the node Bin(b2, Paris) and

connect its parent Bin(b1, Paris) to Bin(b2, Paris)↓f . Figure 5.6(g) gives the result

after this reduction and now we get a fully reduced diagram. This is T
unload(b∗,t∗)
V0

in

97

Procedure 4.

In the next step we perform object maximization to maximize over action parameters

b∗ and t∗ and get the best instance of the action unload. Note that b∗ and t∗ have now

become variables, and we can perform one more reduction: we can drop the equality

on the right branch by the special case of R6. Figure 5.6(h) gives the result after

object maximization, i.e., obj-max(T
unload(b∗ ,t∗)
V0

). Note that we have renamed the action

parameters to avoid the repetition between iterations.

Figure 5.6(i) gives the reduced result of multiplying Figure 5.6(h),

obj-max(T
unload(b∗,t∗)
V0

), by γ = 0.9, and adding the reward function. This result is

Qunload
1 .

We can calculate Qload
1 and Qdrive

1 in the same way and results are shown in Fig-

ure 5.6(j) and Figure 5.6(k) respectively. For drive the TVDs are trivial and the

calculation is relatively simple. For load, the potential loading of a box already in Paris

is dropped from the diagram by the reduction operators in the process of object maxi-

mization.

Figure 5.6(l) gives V1, the result after maximizing over Qunload
1 , Qload

1 and Qdrive
1 .

Here again we standardized apart the diagrams, maximized over them, and then reduced

the result. In this case the diagram for unload dominates the other actions. Therefore

Qunload
1 becomes V1, the value function after the first iteration.

Now we can start the second iteration, i.e., computing V2 from V1. Figure 5.6(m)

gives the result of block replacement in regression of V 1 through action alternative

unloadS(b∗, t∗). Note that we have sorted the TVD for on(B,T) so that it obeys the

ordering we have chosen. However, the diagram resulting from block replacement is not

sorted.

To address this we use the block combination algorithm to combine blocks bottom up.

Figure 5.6(n) illustrates how we combine blocks T in(t, Paris), which is a TVD, and

its two children, which have been processed and are general FODDs. After we combine

T in(t, Paris) and its two children, On(b, t)↓t has been processed. Since On(b, t)↓f = 0,

now we can combine On(b, t) and its two children in the next step of block combination.

98

Continuing this process we get a sorted representation of Regr(V1, unloadS(b∗, t∗)).

5.1.6 Representing Policies

There is more than one way to represent policies with FODDs. We can represent a policy

implicitly by a set of regressed value functions. After the value iteration terminates, we

can perform one more iteration and compute the set of Q-functions using the Equation 5.1.

Given a state s, we can compute the maximizing action as follows:

1. For each Q-function QA(~x), compute MAPQA(~x)(s), where ~x are considered as vari-

ables.

2. For the maximum map obtained record the action name and action parameters

(from the valuation) to obtain the maximizing action.

We can also represent a policy explicitly with a special FODD where each leaf is an-

notated both with a value and with a parameterized action. Note that the values are

necessary; a policy with only actions at leaves is not well defined because our semantics

does not support state partitions explicitly. Given a state, multiple paths may be tra-

versed, but we only choose an action associated with the maximum value. We will give

an example of such a policy in the next section.

Notice that we can extend Procedure 3 to calculate the greedy policy at the same

time it calculates the updated value function. To perform this we simply annotate leaves

of the original Q functions with the corresponding action schemas. We then perform

the rest of the procedure while maintaining the action annotation. We use the notation

(Vn+1, π) = Rel-greedy(Vn) to capture this extension where Vn+1 and π refer to the same

FODD but Vn+1 ignores the action information. Since π captures the maximizing action

relative to Vn, from Theorem 4 We have:

Lemma 15 Let (Vn+1, π) = Rel-greedy(Vn), then Vn+1 = Qπ
Vn

.

Figure 5.7 gives the result after performing Rel-greedy(R) in the logistics domain.

This corresponds to the value function given in Figure 5.6(l). It is accidental that all the

99

V0

Bin (b, Paris)

10 0

Bin (b, Paris)

10 b= b*

On (b, t*)

Tin (t* , Paris)

10 0

(b)

0

Bin (b, Paris)

7

b= b*

On (b, t*)

Tin (t* , Paris)

rain

9

(h)

(l)

(c)

(e)

Bin (b, Paris)

b= b*

On (b, t*)

Tin (t* , Paris)

19
 b=b*

t= t*

On(b, t) 0

0 Tin (t, Paris)

rain

 6.3 8.1

0

(f)

(a)

Bin (b, Paris)

3 1

rain 0

(d)

(g)

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

unloadQ1

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

V1

0

 9

Bin (b1, Paris)

10

On (b1, t*)
 Tin (t* , Paris)

 rain

 7

b1= b*

7

rain

9

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

10

Bin (b2, Paris)

10

7

rain

9

Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

3

rain

1 7

rain

9

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

10

10 Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

3

rain

1

Bin (b1, Paris)

10 On (b1, t1)
 Tin (t1, Paris)

 rain

 7 0 9

(i)

Bin (b, Paris)

19 0

Bin (b, Paris)

19 0

loadQ1

driveQ1

(j)

(k)

(m)

0 0

Tin (t, Paris)

0 1

rain

 6.3 8.1
⊗

⊕
Tin (t, Paris)

1 0

⊗ 0

=
Tin (t, Paris)

rain

 6.3 8.1

0

(n)

Figure 5.6: An example of value iteration in the Logistics Domain.

100

leaves have the same action. In general different leaves will be annotated with different

actions.

Tin (t, Paris)
 rain

6.3
unload(b,t)

8.1
unload(b,t)

0
unload(b,t)

Bin (b, Paris)

19
unload(b,t)

On (b, t)

Figure 5.7: The result after performing Rel-greedy(R) in the logistics domain.

5.2 Policy Iteration for Relational MDPs

So far we have discussed how to perform value iteration for relational MDPs. We have

also discussed implicit and explicit representations for policies. In this section we show

how to perform policy iteration with the explicit policy representation.

5.2.1 The Value Associated with a Policy

In any particular state we evaluate the policy FODD and choose a binding that leads

to a maximizing leaf to pick the action. However, note that if multiple bindings reach

the same leaf then the choice among them is not specified. Thus our policies are not

fully specified. The same is true for most of the work in this area where action choice

in policies is based on existential conditions although in practical implementations one

typically chooses randomly among the ground actions. Some under-specified policies are

problematic since it is not clear how to define their value — the value depends on the

unspecified portion, i.e., the choice of action among bindings. For example, consider the

blocks world where the goal is Clear(a) and the policy is Clear(x) →MoveToTable(x).

If x is substituted with a block above a, then it is good; otherwise it will not help reach

the goal. We therefore have:

101

Observation 1 There exist domains and existential relational policies whose value func-

tions are not well defined.

Our algorithm below does not resolve this issue. However, we show that the policies we

produce have well defined values.

5.2.2 Relational Modified Policy Iteration

Relational Modified Policy Iteration (RMPI) uses the MPI procedure from Section 2.1.2

with the following three changes. 1) We replace Step 2a with (w0
n+1, π

0
n+1) =

Rel-greedy(Vn). 2) We replace the procedure regress-policy with a relational coun-

terpart which is defined next. 3) We replace Step 2(c)i with (wk+1
n+1, π

k+1
n+1) =

Rel-regress-policy(wk
n+1, π

k
n+1). Notice that unlike the original MPI we change the policy

which is regressed in every step. The resulting procedure is as follows:

Procedure 6 Relational Modified Policy Iteration (RMPI)

1. n = 0, V0 = R.

2. Repeat

(a) (Policy improvement)

(w0
n+1, π

0
n+1) = Rel-greedy(Vn).

(b) If ‖w0
n+1 − Vn‖ ≤ ǫ(1 − γ)/2γ, return Vn and π, else go to step 2c.

(c) (Partial policy evaluation)

k=0.

while k < mn+1 do

i. (wk+1
n+1, π

k+1
n+1) = Rel-regress-policy(wk

n+1, π
k
n+1).

ii. k=k+1.

(d) Vn+1 = w
mn+1

n+1 , n = n+ 1.

Our relational policy regression generalizes an algorithm from (Boutilier et al., 2000)

where propositional decision trees were used to solve factored MDPs.

102

Procedure 7 Rel-regress-policy

Input: wi, π

Output: wi+1, π̂

1. For each action A() occurring in π, calculate the Q-function for the action type A(~x),

Q
A(~x)
wi , using Equation (5.1).

2. At each leaf of π annotated by A(~y), delete the leaf label, and append Q
A(~x)
wi after

(a) substituting the action parameters ~x in Q
A(~x)
wi with ~y, (b) standardizing apart the

Q-function from the policy FODD except for the shared action arguments ~y, and (c)

annotating the new leaves with the action schema A(~y).

3. Return the FODD both as wi+1 and as π̂.

As in the case of block replacement, a naive implementation may not be efficient since

it necessitates node reordering and reductions. Instead we can use an idea similar to block

combination to calculate the result as follows. For i’th leaf node Li in the policy, let A(~y)

be the action attached. We replace Li with 1 and all the other leaf nodes with 0, and get

a new FODD Fi. Multiply Fi with Q
A(~y)
wi and denote the result as Ri. We do this for each

leaf node Lj and calculate Rj . Finally add the results using ⊕jRj .

Note that all the policies produced by RMPI are calculated by Rel-greedy(V) and

Rel-regress-policy(V ′, π′). Since these procedures guarantee a value achievable by leaf

partitions, the maximum aggregation semantics implies that the value of our policies is

well defined.

Finally, our notation (wi+1, π̂) = Rel-regress-policy(wi, π) suggests that π̂ may be

different from π. This is in contrast with the propositional case (Boutilier et al., 2000)

where they are necessarily the same since all the leaves of a single Q-function have the

same label and every interpretation follows exactly one path. In our case the policies may

indeed be different and this affects the MPI algorithm. We discuss this point at length

when analyzing the algorithm.

Concerning the runtime complexity, a similar upper bound as that in value iteration

can be calculated for policy iteration under worst case conditions. As for value iteration

103

the bound is exponential in the size of the input formula. However, as the following

example illustrates, reductions do save considerable computation time.

5.2.3 A Comprehensive Example of Policy Iteration

We use the following simple domain to illustrate the RMPI algorithm. The domain is

deterministic but it is sufficient to demonstrate the crucial algorithmic issues. The domain

includes four predicates: p1(x), p2(x), q1(x), q2(x) and three deterministic actions A1, A2,

and no-op, where A1(x) makes p1(x) true if q1(x) is true, and A2(x) makes p2(x) true

if q2(x) is true. The action “no-op” does not change anything. The reward function,

capturing a planning goal, awards a reward of 10 if the formula ∃x, p1(x) ∧ p2(x) is

true. We assume the discount factor is 0.9 and that there is an absorbing state when

∃x, p1(x)∧p2(x) holds, i.e., no extra value will be gained once the goal is satisfied. Notice

that this is indeed a very simple domain. The optimal policy needs at most two steps

using A1 and A2 to bring about p1() and p2() (if that is possible) to reach the goal.

Figure 5.8(a) gives the reward function R and the value function V0. Figure 5.8(b)

gives the TVD for p1(x) under action A1(x
∗). Figure 5.8(c) gives the TVD for p2(x)

under action A2(x
∗). All the TVDs omitted in the figure are trivial in the sense that the

predicate is not affected by the action.

Figure 5.8(d) and (e) show parameterized Q-functions Q
A1(x∗)
V0

and Q
A2(x∗)
V0

as calcu-

lated in the first step of value iteration. The Q-function for no-op is the same as V0 since

this action causes no change. Figure 5.8(f) shows the value function w0
1 and the policy

π0
1 that is greedy with respect to the reward function R, i.e., (w0

1, π
0
1) = Rel-greedy(V0).

Figure 5.8(g) and (h) show parameterized Q-functions Q
A1(x∗)

w0
1

and Q
A2(x∗)

w0
1

. Qnoop

w0
1

is the same as w0
1. All the steps so far are calculated exactly in the same way as we have

illustrated for VI and we therefore omit the details. The next step, Rel-regress-policy

makes use of these diagrams.

Figure 5.8(i) gives the partial result of Rel-regress-policy after appending Q
A2(x∗)

w0
1

.

Notice that we replace a leaf node annotated with action A2(x) with Q
A2(x∗)

w0
1

after the

action parameter x∗ is substituted with x. We also need to standardize apart the policy

104

p1 (x)

10

 p2 (x)
 0

p1 (x)

10
no-op

 p2 (x)
 q2 (x)

 p2 (x)

9
A2(x)

q1 (x)
 9
A1(x)

0
no-op

0
no-op

 (a)
 (b)

 (c)
 (d)

(g)

p1 (x)
 p2 (x)

 q2 (x)

 p2 (x)
 q1 (x)

 (h)

p1 (x)
 p2 (x)

 q2 (x)

 p2 (x)
 q1 (x)

 0
 0

 0

 0

 1

⊗

 =

 (i)

x= x*
 p1 (x)

 p2 (x)

10

0

 p2 (x)

q1 (x)
 9

0

0

p1 (x)
 p2 (x)

10

 (e)

q2 (x)

x= x*
 p1 (x)

 p2 (x)
 10

 9

0

0

p1 (x)
 p2 (x)

 10

0

p1 (x)

10
no-op

 p2 (x)
 q2 (x)

 p2 (x)

9
A2(x)

 q1 (x)
 9
A1(x)

0
no-op

 0
no-op

 q1 (x)
 q2 (x)

 8.1
A1(x)

 0
no-op

 (j)

1

 x=x*

1

 0

p1 (x)
 q1 (x)

p1 (x)
 1

 0

1

 x=x*

1

 0

p2 (x)
 q2 (x)

p2 (x)
 1

 0

(f)

q1 (y)
 0

y= x
 p1 (y)

 p2 (y)
 10

q2 (y)
 0

p2 (y)
 q1 (y)

 8.1

0

p1 (y)
 p2 (y)

 10

q2 (y)
 8.1

0

p2 (y)
 q1 (y)

 8.1

0
 9

8.1

0

q2 (y)

q1 (y)
 0

y= x
 p1 (y)

 p2 (y)
 10

q2 (y)
 0

p2 (y)
 q1 (y)

 8.1

0

p1 (y)
 p2 (y)

 10

q2 (y)
 8.1

0

p2 (y)
 q1 (y)

 8.1

0

8.1

0

q2 (y)

 9

 0

 q2 (x)

p1 (x)
 p2 (x)

 p2 (x)

 q2 (x)

 0

 0

 0

 0

 9

y= x
 p1 (x)

 p1 (y)

 p2 (y)

 0

10

 0

 0

 (k)

q1 (x)
 0

x= x*
 p1 (x)

 p2 (x)
 10

q2 (x)
 0

p2 (x)
 q1 (x)

 9

0

p1 (x)
 p2 (x)

 10

q2 (x)
 8.1

0

p2 (x)
 q1 (x)

 8.1

0

8.1

0

q2 (x)

q1 (x)
 0

x= x*
 p1 (x)

 p2 (x)
 10

q2 (x)
 0

p2 (x)
 q1 (x)

 8.1

0

p1 (x)
 p2 (x)

 10

q2 (x)
 8.1

0

p2 (x)
 q1 (x)

 8.1

0

8.1

0

q2 (x)

9

8.1

 Qno-op

 Qno-op QA1(x) Qno-op

Figure 5.8: An example of policy iteration.

105

FODD and the Q-function except for the shared action parameter. In this case, we

rename x in Q
A2(x∗)

w0
1

as y. The same is done for all the leaves but in the figure we omitted

the details of other Q-functions and simply wrote Q-function names in the subtrees. It is

instructive to review the effect of reductions in this case to see that significant compaction

can occur in the process. On the left side of y = x, we can replace each y with x, therefore

the node predicates are determined and only the leaf valued 9 remains. On the right side

of y = x, the path leading to 10 will be dominated by the path p1(x), p2(x) → 10 (not

shown in the figure), therefore we can replace it with 0. Now we can see that the left side

of y = x dominates the other side. Since y is a new variable it is free to take value equal

to x. Therefore we can drop the equality and its right side. The same type of reduction

occurs for the other Q-functions replaced at the leaves, so that w1
1 = w0

1. Recall that

for our example domain actions are deterministic and they have no “cascaded” effects so

there is no use executing the same action twice. It is therefore not surprising that in this

case w1
1 = Rel-regress-policy(w0

1 , π
0
1) is the same as w0

1.

Figure 5.8(k) illustrates the process of appending the Q-function using block combi-

nation. Notice that reductions were used to replace the right branches of p1(y) and p2(y)

with 0 in the result.

Figure 5.8(j) shows the value function and policy (w0
2, π

0
2) that are greedy with

respect to w1
1, i.e., V1. As above to get this diagram we first calculate the Q-functions

with respect to w1
1. The parameterized Q-functions are the same as in Figure 5.8(g) and

(h). To get Figure 5.8(j), we first perform object maximization and then maximize over

the Q-functions. w0
2 and π0

2 are also the optimal value function and policy.

Note that we assume a lexicographical ordering on actions, which determines which

action gets chosen if two or more actions give the same value. In this way the policies

obtained in the process are unique. In this example, no-op is placed first in the ordering.

The ordering among actions may affect the policy obtained. If we put A1 first, then

(ŵ0
1, π̂

0
1) = Rel-greedy(V0) will be the one shown in Figure 5.9, where A1(x) replaced

no-op on some of the leaves. Furthermore, ŵ1
1 = Rel-regress-policy(ŵ0

1, π̂
0
1) is the same as

the optimal value function.

106

p1 (x)

10
A1(x)

 p2 (x)
 q2 (x)

 p2 (x)

9
A2(x)

q1 (x)
 9
A1(x)

0
A1(x)

0
A1(x)

Figure 5.9: The policy π̂0
1 = Rel-greedy(V0) if we assume an ordering that puts A1 first.

For further illustration of policy iteration we also include Figure 5.10 that shows poli-

cies and value functions for the example domain without the assumption of an absorbing

state.

5.2.4 Correctness and Convergence

The procedure Rel-regress-policy is the key step in RMPI. The correctness of MPI relies

on the correctness of the regression step. That is, the output of the regression procedure

should equal Qπ
V . This is possible when one is using a representation expressive enough

to define explicit state partitions that are mutually exclusive, as for example in SDP

(Boutilier et al., 2001). But it may not be possible with restricted languages. In the

following we show that it is not possible for implicit state partitions used in FODDs and

in ReBel (Kersting et al., 2004). In particular, the regression procedure we presented

above may in fact calculate an overestimate of Qπ
V . Before we expand on this observation

we identify useful properties of the regression procedure.

Lemma 16 Let (wi+1, π̂) = Rel-regress-policy(wi, π), then wi+1 = Qπ̂
wi ≥ Qπ

wi.

Proof: wi+1 = Qπ̂
wi holds by the definition of the procedure Rel-regress-policy.

Let s be any state; we want to prove wi+1(s) ≥ Qπ
wi(s). We first analyze how Qπ

wi(s)

can be calculated using the diagram of wi+1. Let A(~x) be the maximizing action for s

according to the policy π, and ζ a valuation that reaches the leaf node annotated by the

action A(~x) in π, i.e., MAPπ(s, ζ) = maxζ1{MAPπ(s, ζ1)}. Denote the part of ζ that

corresponds to action parameters ~x as ζA and let ζv1 = ζ \ ζA.

107

p1 (x)

19
no-op

 p2 (x)
 q2 (x)

 p2 (x)

9
A2(x)

q1 (x)
 9
A1(x)

0
no-op

0
no-op

(d)

p1 (x)
 p2 (x)

 q2 (x)

 p2 (x)
 q1 (x)

 (e)

p1 (x)
 p2 (x)

 q2 (x)

 p2 (x)
 q1 (x)

 0
 0

 0

 0

 1

⊗ =

 q2 (x)

p1 (x)
 p2 (x)

 p2 (x)

 q2 (x)

 0

 0

 0

 0

 17.1

 (f)

x= x*
 p1 (x)

 p2 (x)

19

0

 p2 (x)

q1 (x)
 9

0

0

p1 (x)
 p2 (x)

19

 (a)

q2 (x)

x= x*
 p1 (x)

 p2 (x)
 19

 9

0

0

p1 (x)
 p2 (x)

 19

0

y= x
 p1 (x)

 p1 (y)

 p2 (y)

 0

27.1

 0

 0

 0

p1 (x)

27.1
no-op

 p2 (x)
 q2 (x)

 p2 (x)

17.1
A2(x)

 q1 (x)
 17.1
A1(x)

0
no-op

 0
no-op

 q1 (x)
 q2 (x)

 8.1
A1(x)

 0
no-op

)(
ˆ

2
0
1

xA

w
Q

 (g)

(b)

q1 (y)
 0

y= x
 p1 (y)

 p2 (y)
 27.1

q2 (y)
 0

p2 (y)
 q1 (y)

 8.1

0

p1 (y)
 p2 (y)

 27.1

q2 (y)
 8.1

0

p2 (y)
 q1 (y)

 8.1

0

8.1

0

q2 (y)

 q1 (y)
 0

y= x
 p1 (y)

 p2 (y)
 27.1

q2 (y)
 0

p2 (y)
 q1 (y)

 8.1

0

p1 (y)
 p2 (y)

 27.1

q2 (y)
 8.1

0

p2 (y)
 q1 (y)

 8.1

0

8.1

0

q2 (y)

 17.1

17.1
 0

p1 (x)
 p2 (x)

 19

(c)

Figure 5.10: An example of policy iteration without the assumption of an absorbing

state. (a) Q
A1(x∗)
V0

. (b) Q
A2(x∗)
V0

. (c) Q
no-op
V0

. (d) The value function ŵ0
1 and the policy

π̂0
1 such that (ŵ0

1, π̂
0
1) = Rel-greedy(V0). (e) An intermediate result when performing

Rel-regress-policy(ŵ0
1, π̂

0
1). Note that we replace a leaf node annotated with action A2(x)

with Q
A2(x∗)

ŵ0
1

after the action parameter x∗ is substituted with x. (f) Appending Q
A2(x∗)

ŵ0
1

through block combination. Reductions were used to replace the right branches of p1(y)
and p2(y) with 0 in the result. (g) The result after Rel-regress-policy(ŵ0

1, π̂
0
1).

108

Recall that wi+1 is obtained by replacing each leaf node of π with the correspondingQ-

function. For state s, ζ will reach the root node of Q
A(~x)
wi in wi+1. Note that the variables

in π and Q
A(~x)
wi are all standardized apart except that they share action parameters ~x,

therefore the valuation to ~x in Q
A(~x)
wi has been fixed by ζA. We denote the valuation to

all the other variables in Q
A(~x)
wi as ζv2 . The final value we get for Qπ

wi(s) is maxζv2
Q

A(ζA)
wi .

That is, if η is the valuation to variables in wi+1 such that η = ζ + ζv2 then we have

MAPwi+1(s, η) = Qπ
wi(s). Since wi+1(s) is determined by the maximal value any valuation

can achieve, we get wi+1(s) ≥ Qπ
wi(s).

We next show that the inequality in Lemma 16 may be strict, i.e., we may have

wi+1 = Qπ̂
wi > Qπ

wi , and this happens when π 6= π̂. We first give some intuition and then

demonstrate the inequality through an example. Figure 5.11 illustrates a scenario where

although the policy π says that the action A1() should be taken if the 10 leaf is reachable

in a state s, e.g. to execute action A1(1) in {p(1),¬p(2) · · · }, the policy π̂ resulting from

Rel-regress-policy(V, π) says that a better value may be achieved if we take action A2(),

e.g., A2(2). Intuitively the decision made by the leaves in part (a) of the diagram is

reversed by the leaves in the expanded diagram so the choice of action is changed.

p(x)

A2(x)
5

A1(x)
10

 p(x)

20 15
(a)

(b)

Figure 5.11: A possible scenario. (a) A policy π. (b) The resulting policy π̂ after regressing
over π.

Consider a domain with reward function as shown in Figure 5.1, and with three actions

A1, A2, and no-op. A1(x) makes p1(x) true if q1(x) is true, i.e., q1(x) → p1(x). A2(x)

makes p2(x) true if q2(x) is true, and p3(x) true if p2(x) is true, i.e., q2(x) → p2(x) and

p2(x) → p3(x). Therefore in some states it is useful to do the same action twice. Note

that once p1(x) is true, there is no way to undo it. For example, if we execute action A1(1)

109

in state {q1(1),¬p1(1), p2(1),¬p3(1)}, then this state will gain the value of 10 but never

be able to reach a better value 20. In the following discussion we use the decision list

representation where each rule corresponds to a path in the FODD and rules are ordered

by value to capture maximum aggregation. We also assume γ > 0.5. The following list

gives some of the partitions in the policy and the value function (w0
1, π) = Rel-greedy(R).

¬p1(x) ∧ p2(x) ∧ p3(x) → 20 + 20γ(no-op).

¬p1(x) ∧ p2(x) ∧ ¬p3(x) → 5 + 20γ(A2(x)).

¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ p3(x) → 20γ(A2(x)).

p1(x) → 10 + 10γ(no-op).

q1(x) → 10γ(A1(x)).

¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ ¬p3(x) → 5γ(A2(x)).

Consider next the calculation of (w1
1, π̂) = Rel-regress-policy(w0

1, π). To illustrate the

result consider the last state partition ¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ ¬p3(x). After executing

A2(x), this state will transition to the state ¬p1(x) ∧ p2(x) ∧ ¬p3(x) that is associated

with the value 5+20γ. Taking discount factor into account, the value for ¬p1(x)∧q2(x)∧

¬p2(x) ∧ ¬p3(x) now becomes 5γ + 20γ2. The following lists gives some of the partitions

for (w1
1, π̂).

¬p1(x) ∧ p2(x) ∧ p3(x) → 20 + 20γ + 20γ2(no-op).

¬p1(x) ∧ p2(x) ∧ ¬p3(x) → 5 + 20γ + 20γ2(A2(x)).

¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ p3(x) → 20γ + 20γ2(A2(x)).

p1(x) → 10 + 10γ + 10γ2(no-op).

¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ ¬p3(x) → 5γ + 20γ2(A2(x)).

q1(x) → 10γ + 10γ2(A1(x)).

Note that state partitions ¬p1(x)∧q2(x)∧¬p2(x)∧¬p3(x) and q1(x) have now switched

places because state partitions are sorted by values in decreasing order. Therefore in

this example π 6= π̂. Now suppose we have a state {q1(1),¬p1(1),¬p2(1),¬p3(1), q2(1)}.

According to π we should choose q1(x) → 10γ(A1(x)) and execute the action A1(1). But

according to π̂, we should follow ¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ ¬p3(x) → 5γ + 20γ2(A2(x)),

therefore executing the action A2(1).

110

Therefore, due to the use of maximum aggregation, policy evaluation with our rep-

resentation incorporates an element of policy improvement. It is also important to note

that this is not just a result of the procedure we use but in fact a limitation of the

representation, in this case because we cannot capture universal quantification. In the

example above, to represent the policy, i.e., to force executing the policy even if it

does not give the maximal value for a state, we need to represent the state partition

¬p1(x) ∧ q2(x) ∧ ¬p2(x) ∧ ¬p3(x) ∧ ¬∃y, q1(y) → A2(x).

The condition ¬∃y, q1(y) must be inserted during policy evaluation to make sure that

we evaluate the original policy, i.e., to execute A1(x) whenever ∃x, q1(x) is true. This

involves universal quantification but our representation is not expressive enough to rep-

resent every policy. On the other hand, as we have shown above, our representation is

expressive enough to represent each iterate in value iteration as well as the optimal policy

when we start with a reward function with existential quantification. This is true because

each value function in the sequence includes a set of existential conditions, each showing

that if the condition holds then a certain value can be achieved. From the example and

discussion we have:

Observation 2 There exist domains and well defined existential relational policies such

that (1) regress-policy cannot be expressed within an existential language, and (2) wi+1 =

Qπ̂
wi > Qπ

wi.

Therefore the obvious question is whether our RMPI algorithm converges to the correct

value and policy. Notice that in addition to the overestimate our algorithm differs from

MPI in that it uses a different policy in every step of policy evaluation. For the following

analysis we have encapsulated all the FODD dependent properties in Lemma 16. The

following arguments hold for any representation for which Lemma 16 is true. We show

that the overestimate will not exceed the optimal value function, i.e., there is a policy that

gives us at least the value in any value function obtained in the policy iteration process.

We will also show that the sequence we get is monotonically increasing in value if R ≥ 0,

and that it converges to the optimal value function.

111

To facilitate the analysis we represent the sequence of value functions and poli-

cies from our algorithm as {(yk, πk)} with (y0, π0) = (R,no-op). Using this notation

(yk, πk) = Rel-greedy(yk−1) when yk corresponds to w0
n for some n, and (yk, πk) =

Rel-regress-policy(yk−1, πk−1) where yk corresponds to wi
n and i > 0.

Lemma 17 (a) yn+1 = Qπn+1

yn (n ≥ 0).

(b) Qπn+1

yn ≥ Qπn

yn .

Proof: When (yn+1, πn+1) = Rel-greedy(yn), then by Lemma 15, yn+1 = Qπn+1

yn . By

the property of greedy policies, i.e. ∀π′, Qπn+1

yn ≥ Qπ′

yn we get Qπn+1

yn ≥ Qπn

yn . When

(yn+1, πn+1) = Rel-regress-policy(yn, πn), then by Lemma 16, yn+1 = Qπn+1

yn ≥ Qπn

yn .

Lemma 18 ∀k,∃π̃k such that V π̃k ≥ yk.

Proof: The proof is by induction on k. The induction hypothesis is satisfied for k=0

because the policy that always performs no-op can achieve value ≥ R. Assume it holds

for k = 1, 2, . . . , n, i.e., yk(k = 1, 2, . . . , n) can be achieved by executing some policy π̃k.

By Lemma 17 yn+1 can be achieved by acting according to πn+1 in the first step, and

acting according to π̃n in the next n steps.

Note that it follows from this lemma that yi is achievable by some (possibly non-

stationary) policy and since stationary policies are sufficient (Puterman, 1994) we have

Lemma 19 yi ≤ V ∗, where V ∗ is the optimal value function.

Next we prove that the value function sequence is monotonically increasing if R ≥ 0.

Lemma 20 ∀i, yi+1 ≥ yi.

Proof: We prove yi+1 ≥ yi by induction. When i = 0, (y1, π1) = Rel-greedy(y0) and

y0 = R.

y1(s) = R(s) + γ
∑

Pr(s′|s, π1(s))y0(s′)

≥ R(s)(By y0 = R ≥ 0)

= y0(s)

112

When i = 1, (y2, π2) = Rel-regress-policy(y1, π1).

y2(s) = R(s) + γ
∑

Pr(s′|s, π2(s))y1(s′)

≥ R(s) + γ
∑

Pr(s′|s, π1(s))y1(s′)

(By Lemma 16)

≥ R(s) + γ
∑

Pr(s′|s, π1(s))y0(s′)

(By the first base case)

= y1(s)

Assume the hypothesis holds for i = 3, 4, . . . , n. Now we want to prove yn+1 ≥ yn.

yn+1(s) = R(s) + γ
∑

Pr(s′|s, πn+1(s))yn(s′)

(By Lemma 17 (a))

≥ R(s) + γ
∑

Pr(s′|s, πn(s))yn(s′)

(By Lemma 17 (b))

≥ R(s) + γ
∑

Pr(s′|s, πn(s))yn−1(s′)

(By assumption)

= yn(s)

It is easy to see that we have the following lemma without the assumption R ≥ 0.

Lemma 21 Suppose for some N such that w0
N = greedy(VN−1) ≥ VN−1, then ∀i ≥

N, yi+1 ≥ yi.

Let V V I
i denote each iterate in value iteration. Lemma 20 and the fact that if v ≥ u

then v̂ ≥ û where v̂ = greedy(v) and û = greedy(u) (Puterman, 1994) imply:

Lemma 22 Vk ≥ V V I
k .

113

Now from Lemma 19 and Lemma 22 we see that Vk always gives a better approximation

of V ∗ than V V I
k , therefore the same guarantee as in Theorem 5 hold and we have the

following theorem:

Theorem 6 Let V ∗ be the optimal value function and let Vk be the value function calcu-

lated by the relational MPI algorithm.

(1) If r(s) ≤M for all s then ‖Vn − V ∗‖ ≤ ε for n ≥
log(2M

ε(1−γ)
)

log 1
γ

.

(2) If ‖Vn+1 − Vn‖ ≤ ε(1−γ)
2γ

then ‖Vn+1 − V ∗‖ ≤ ε.

114

Chapter 6

Value Iteration for Relational

POMDPs

In this chapter we show how the algorithms for RMDPs using FODDs can be extended

to handle Relational POMDPs (RPOMDP). In particular we show how a value iteration

algorithm — incremental pruning (Cassandra et al., 1997) can be lifted to the relational

case. As will be clear from our discussion, while the planning algorithm is correct our

current solution is not complete, since subtle issues (that do not exist in propositional

case) arise during planning and execution. These are left as open questions at this stage.

In a domain that is characterized by a relational POMDP, some predicates may be

fully observable, while some are not. Some actions are deterministic, while some are

stochastic. Some actions change the world while some gather information about the

world. But a typical POMDP action both changes the world and gathers information.

We use a simple domain to illustrate how relational POMDP domains are formalized as

well as the algorithm. The domain includes three predicates p1(x), p2(x), and q2(x) where

p1 and q2 are fully observable, but p2 is not. The domain has three actions A1, A2, and A3.

A1(x) deterministically makes p1(x) true. When attempting A2(x), a successful version

A2S(x) is executed with probability 0.7 and it makes p2(x) true, and an unsuccessful

version A2F (effectively a no-op) is executed with probability 0.3. A3(x) is a pure sensing

115

action, i.e., it does not change state of the world, that provides imperfect information

about p2(x) through the observation predicate q2(x). If p2(x) is true, then q2(x) is true

with probability 0.9. If p2(x) is false, then q2(x) is true with probability 0.2. The reward

function, capturing a planning goal, awards a reward of 10 if the formula ∃x, p1(x)∧p2(x) is

true. Note that value functions can include some predicates that are not fully observable

(such as p2()) because they are used in combination with the belief state which gives

distribution over these predicates. We assume the discount factor is 0.9 and that there

is an absorbing state ∃x, p1(x) ∧ p2(x), i.e., no extra value will be gained once the goal

is satisfied. Notice that this is a very simple domain. Each action has only one effect: it

either changes the world or gathers information.

Figure 6.3(a) gives the reward function for this domain and TVDs are given in Fig-

ure 6.3(b)(c). All the TVDs omitted in the figure are trivial in the sense that the predicate

is not affected by the action.

6.1 Additional Representations for VI in RPOMDPs

In previous chapters we have shown how to model the causal effect of an action, choice

probabilities, rewards, and value functions. To perform VI for RPOMDPs, we need to

model an action’s informational effect, i.e., to specify observation probabilities. We need

to represent value functions, which are different from the MDP value functions since they

are evaluated over belief states instead of single states. We also give a representation for

the belief state and discuss how to calculate its expected value. However our VI algorithm

does not use belief states to update a value function, that is, belief states are only used

during execution.

6.1.1 Specifying Observations

An observation could be complex and could include quantification. For example, in the

logistics domain if the goal ∃b,Bin(b, Paris) is not fully observable, we may have a sensing

action which gives such information. Here we only deal with atomic observations and

116

assume that each observation is associated with a subset of the action parameters, i.e.,

the agent can only have observations about the objects it operates on. In the example, if

we execute A3(x
∗), then the observation we get will be q2(x

∗) or ¬q2(x
∗).

We allow different aspects of an observation performed by an action to be modeled

separately. We use predicates to specify different aspects of an observation and assume

these aspects are independent. A complete observation is the cross product of different

aspects. For example, if an observation O() after an action A(~x) has two aspects p(~y)

and q(~z) where ~y ⊆ ~x and ~z ⊆ ~x, then there are four possible observations, which are

O1(~y ∪ ~z) : p(~y) ∧ q(~z), O2(~y ∪ ~z) : p(~y) ∧ ¬q(~z), O3(~y ∪ ~z) : ¬p(~y) ∧ q(~z), O4(~y ∪ ~z) :

¬p(~y) ∧ ¬q(~z). We use |OA| to denote the number of possible observations associated

with an action A. Let n be the number of aspects of an observation for an action, then

|OA| = 2n.

There are different observation models we could use. One commonly used in the

planning context is that a probability associated with an action/observation indicates the

likelihood of the observation made by the action being correct, e.g., the observation model

used in (Poole, 1997). This model is similar to our model of causal effects of a stochastic

action, and thus may provide a unified view of actions. For example, if we have an action

A1 which intends to make p true and there is 0.9 probability that this intention succeeds.

Therefore action A1 has two deterministic alternatives, A1S (for A1 successfully fulfills

its intention) and A1F (for A1 fails in fulfilling its intention), with probability 0.9 and

0.1 respectively. At the same time A1 has an informational effect, i.e., it can observe p’s

value but may not be accurate. Again A1 has two deterministic alternatives in sensing.

One is A1A (for A1 accurately tells p’s value), the other is A1I (for A1 inaccurately tells

p’s value, i.e., gives the opposite value), say with probability 0.7 and 0.3. Therefore if

an agent observes that p is true, then one of following situation holds: (1) p is true and

A1A (2) p is false and A1I. Also there are four deterministic alternatives, which are

A1S ∧ A1A, A1F ∧ A1A, A1S ∧ A1I, and A1F ∧ A1I. with probability 0.63, 0.07, 0.27,

and 0.03 respectively.

Another observation model follows the POMDP convention, i.e., the observation prob-

117

ability defines the likelihood of the observation given a state. Recall that the observation

probability Pr(o|s, a) in the POMDP refers to the probability of observing o when action

a is executed and the resulting state is s. Here we make the assumption that the observa-

tion probability depends on the future state, but not the current state. This is the model

we use in the thesis.

There is a tradeoff between the two approaches. On the one hand, the deterministic

alternative approach provides a unified view of action effects. On the other hand, the

POMDP approach may provide more compact representation. Let n be the number of

aspects of an observation. The POMDP approach can capture 2n observations compactly

(by making the independence assumption) whereas with the deterministic alternative

approach we need 2n deterministic alternatives.

In this thesis, we adopt the POMDP approach. We use FODDs to specify observation

probabilities Prob(Ok(~x), A(~x)). Just as choice probabilities, the conditions cannot con-

tain variables — only action parameters and propositions can appear in the observation

probability FODD. Figure 6.3(d) gives the observation probability Prob(q2(x
∗), A3(x

∗)).

Note that the condition p2() refers to the truth value of p2() after the action execution.

It says that if p2(x
∗) is true, then q2(x

∗) will be observed with probability 0.9. If p2(x
∗)

is false, then q2(x
∗) will be observed with probability 0.2.

If we have more than one observation aspect, we can multiply the probability FODD for

each aspect and get the probability of a complete observation. Figure 6.1 gives an example.

Note that Prob(¬p(x∗), A(x∗)) = 1 ⊖ Prob(p(x∗), A(x∗)), Prob(¬q(x∗), A(x∗)) = 1 ⊖

Prob(q(x∗), A(x∗)), Prob(p(x∗)∧q(x∗), A(x∗)) = Prob(p(x∗), A(x∗))⊗Prob(q(x∗), A(x∗)),

and Prob(p(x∗) ∧ ¬q(x∗), A(x∗)) = Prob(p(x∗), A(x∗)) ⊗ Prob(¬q(x∗), A(x∗)).

Note that if the action provides no feedback, the observation will be nil, obtained with

certainty when the action is executed. In this case |OA| = 1 since a single feedback means

no feedback. In the example domain, |OA1 | = |OA2 | = 1 and |OA3 | = 2.

When different observation aspects are correlated, determining the probability of an

observation can be done by representing the dependencies with a Bayesian network. This

requires some simple probabilistic reasoning. We will not discuss the details here.

118

r(x*)
 0.8

0.1

 t(x*)
 0.9

 0

(a)

(b)

r(x*)

(c)

 t(x*)
 0.72

 0

 t(x*)
 0.09

 0

Figure 6.1: Example illustrating observation probabilities: (a) Probability for an obser-
vation aspect p(x∗) Prob(p(x∗), A(x∗)). (b) Probability for the other observation aspect
q(x∗) Prob(q(x∗), A(x∗)). (c) Multiply (a)(b) and get the probability Prob(o1, A(x∗)) for
a complete observation o1 = p(x∗) ∧ q(x∗).

6.1.2 Representing Value Functions

The value function for a flat POMDP is piecewise linear and convex and represented by

a set of state-value functions V = {v0, v1, · · · , vn}. The value function for the RPOMDP

can be represented by a set of FODDs. Each FODD vi is a value function as in RMDP,

except that now vi contains action parameters accumulated along the decision stages. We

will explain the reason for this difference from propositional case later.

6.1.3 Representing Belief States

We do not need to manipulate belief states in the process of calculating the optimal value

function. But belief states are needed when we execute the policy and we need to provide

an initial belief state for execution. Therefore it is reasonable to assume that a belief

state is grounded, i.e., it only contains ground propositions and there is no quantification.

However this does not mean that we have to enumerate the world states. Each partition

in the belief state can be an abstract state, which includes a set of world states.

To represent a belief state in a compact fashion, we introduce the sum notation.

t = sum(ψ)[φ1, t1; · · · ;φn, tn] describes the sum of a function ψ over sets of states, where

φi is a logic formula and the φi’s are disjoint. The interpretation of the above is that

∑
s:φi(s)

ψ(s) = ti for all ti where s is an actual state. In other words, ti equals the sum

of ψ(s) over all the states s in which φi is true.

We further assume that every state that satisfies the condition contributes equally to

the quantity associated with the condition. We call this the uniform distribution property

119

for sum.

For example, let Bel(s) be the agent’s belief that it is in state s, in a domain which

includes one predicate p(x) and two objects {1, 2}, then b = sum(Bel)[p(1), 0.8;¬p(1), 0.2]

means that if we add Bel(s) over all the states in which p(1) is true, the sum is 0.8. For

¬p(1), the sum is 0.2. Moreover, these beliefs are uniformly distributed between p(2) and

¬p(2), i.e., b = sum[p(1)∧ p(2), 0.4; p(1) ∧¬p(2), 0.4;¬p(1) ∧ p(2), 0.1;¬p(1) ∧¬p(2), 0.1].

Thus, instead of maintaining a belief state whose size is the number of states, which grows

exponentially with the number of propositions, the sum notation keeps track of a smaller

number of abstract states.

Every proposition for which the agent has no information, represented by having a

0.5 probability of being true, need not appear in the sum notation because of its uniform

distribution property. Hence in the above example, p(2) need not appear. Moreover,

states s for which Bel(s) = 0 need not appear in a sum statement.

We leave ψ out of the sum notation for the remainder of the thesis because it is always

the case that ψ = Bel.

The sum notation is thus useful in scenarios where (a) there are many propositions for

which the agent has no information, or (b) there are many states s for which Bel(s) = 0,

or both. As the agent acts and observes, the size of the sum representation can grow

with respect to the number of propositions about which it gains some information that

were previously unknown. The growth is polynomial in specific instances but exponential

overall in the worst cases. However, as the number of states s where Bel(s) = 0 grows,

the size of the sum representation shrinks.

We can also use ground FODDs as a realization of the sum statement. Since there

are no variables in the FODD, paths are mutually exclusive. Following the seman-

tics of the sum notation, the interpretation of a leaf node ti in this FODD is that

∑
s:s satisfies NF (ti)

Bel(s) = ti. In other words, ti equals the sum of Bel(s) over all

the states s in which NF (ti) is true. Note how the semantics of the belief state FODD is

different from the (propositional) FODDs we have seen so far. For the belief state FODD,

suppose n is the number of all states that satisfy the leaf node condition, then each state

120

gets ti/n value, while for the ordinary FODDs, every state that satisfies the condition

gets ti value and we call this type of FODDs “traditional” FODDs.

p1 (1)
 p2 (1)

 0.8

0.1

p1 (1)
 p2 (1)

 p1 (2)

0.1
 p2 (2)

p2 (2)
 0.2

0.2

0.2

0.2

(a)

(b)

Figure 6.2: An example illustrating the belief state.

Figure 6.2(a) illustrates a belief state FODD in our example domain, which corre-

sponds to the sum statement sum[p1(1) ∧ p2(1) : 0.8; p1(1) ∧ ¬p2(1) : 0.1;¬p1(1) : 0.1].

Suppose the domain has two objects {1, 2}, then p1(1) ∧ p2(1) : 0.8 means that if we add

Bel(s) over all the states in which p1(1)∧p2(1) is true, the sum is 0.8. It can be refined as

shown in Figure 6.2(b), which corresponds to the beliefs about the following four actual

world states:

p1(1) ∧ p2(1) ∧ p1(2) ∧ p2(2) : 0.2

p1(1) ∧ p2(1) ∧ p1(2) ∧ ¬p2(2) : 0.2

p1(1) ∧ p2(1) ∧ ¬p1(2) ∧ p2(2) : 0.2

p1(1) ∧ p2(1) ∧ ¬p1(2) ∧ ¬p2(2) : 0.2

As we discussed in Chapter 2, if the initial belief state is known, we can do a forward

search and only consider belief states that are reachable from the initial belief state. In

this case we need to update a belief state after an action and an observation. This could

involve two steps: first we determine the effects of a stochastic action without considering

the observation received, and then we incorporate the observation and compute the final

belief state. It is relatively easy to perform forward update with the sum statement. For

example, to update the belief state discussed above, sum[p1(1)∧p2(1) : 0.8; p1(1)∧¬p2(1) :

0.1;¬p1(1) : 0.1], after A1(1), we first update each state partition with the action effect of

121

A1(1), and get an intermediate result [p1(1) ∧ p2(1) : 0.8; p1(1) ∧ ¬p2(1) : 0.1; p1(1) : 0.1].

Note that the third partition now changes from ¬p1(1) to p1(1). Also note that the

resulting states are not disjoint. Therefore we need to perform refinement as needed

so that we get a “legal” sum statement. In this case, we need to refine p1(1) : 0.1 to

p1(1) ∧ p2(1) : 0.05 and p1(1) ∧ ¬p2(1) : 0.05. The final belief state after action A1(1)

now becomes sum[p1(1) ∧ p2(1) : 0.85; p1(1) ∧ ¬p2(1) : 0.15]. However, it is not clear how

to “push forward” the partitions with FODDs. It seems much more difficult to perform

progression than regression over actions for FODDs.

6.1.4 The Expected Value of a Belief State

When we have 0 step to go, the expected value of a belief state given a reward function

R is computed using
∑

s b(s)MAPR(s) =
∑

s b(s)maxζMAPR(s, ζ). Recall the details of

our example domain as captured in Figure 6.3(a)-(c), and consider the following belief

state:

¬p1(1) ∧ p2(1) ∧ p1(2) ∧ p2(2) : 0.09

¬p1(1) ∧ ¬p2(1) ∧ p1(2) ∧ p2(2) : 0.01

¬p1(1) ∧ p2(1) ∧ p1(2) ∧ ¬p2(2) : 0.81

¬p1(1) ∧ ¬p2(1) ∧ p1(2) ∧ ¬p2(2) : 0.09

Note that we do not have uncertainty about p1() and the only uncertainty is about

the truth value of p2(). In this case we know that p1(1) is false but p1(2) is true.

For the first two belief states the valuation x = 2 (please refer Figure 6.3(a)) gives

the value of 10, and for the next two belief states every valuation leads to a value of 0.

Therefore the expected value of this belief state is 0.09 × 10 + 0.01 × 10 = 1.

Consider Q-function QA(~x) capturing value when we have one step to go. We cannot

use the same equation as above to calculate the expected value of a belief state. Note that

in the relational domain, two actions are the same iff they have the same action name and

parameters. If we calculate as above then it is possible that the maximizing valuations

for two different states do not agree on action parameters. Thus if we calculate as above

the resulting value assumes we can execute two different actions in the same belief state,

122

based on the actual state we are in, which is clearly wrong.

We illustrate this with an example. Suppose we have the following belief state where

we know that both p1(1) and p1(2) are false. The Q-function we use is depicted in

Figure 6.3(e) where x∗1 is the action parameter.

¬p1(1) ∧ p2(1) ∧ ¬p1(2) ∧ p2(2) : 0.63

¬p1(1) ∧ ¬p2(1) ∧ ¬p1(2) ∧ p2(2) : 0.27

¬p1(1) ∧ p2(1) ∧ ¬p1(2) ∧ ¬p2(2) : 0.07

¬p1(1) ∧ ¬p2(1) ∧ ¬p1(2) ∧ ¬p2(2) : 0.03

For the first and the fourth state in the belief state, it does not matter what value x∗1

takes. Both x∗1 = 1 and x∗1 = 2 will give the first state value of 9 and the fourth state

value of 0. For the second state, x∗1 = 2 will give a better value, which is 9. For the

third state, x∗1 = 1 will give a better value, which is also 9. Therefore the expected value

calculated using a state based formula is wrong because it is based on the best action for

each state in a belief state thus the value may not be achievable since we do not know

the underlying state.

This issue is also important within the VI algorithm for RPOMDPs. As we discuss

later we cannot perform a step of object maximization as we did in RMDP because it will

choose a different action per state and not per belief state.

To correctly capture the intended semantics of the value function, we define the ex-

pected value of a belief state given a Q-function as

V al(QA(~x), b) = maxζ~x

∑

s

b(s)maxζMAPQ(s, ζ) (6.1)

where ζ~x is valuation to action parameters and ζ is valuation to all the other variables

(also called free variables) in the function. Therefore unlike the propositional case, each

Q-function is a function over belief states instead of individual states. Note that for the

belief state discussed above, the expected value given the Q-function in Figure 6.3(e) is

8.73 when x∗1 = 2.

As we will show later in the value iteration algorithm, a set of parameterized value

123

functions that make up a value function include all the action parameters accumulated

over the decision stages. Given a parameterized value function vi, the expected value of

a belief state is defined as

V al(vi, b) = maxζ~xi

∑

s

b(s)maxζi
MAPvi(s, ζi) (6.2)

where ζ~xi
is valuation to all the action parameters in vi and ζi is valuation to all the other

variables in vi.

The expected value given a set of parameterized value functions {v1, · · · , vn} is defined

as

V al(b) = maxi≤n{V al(v
i, b)} (6.3)

While Equation 6.2 clearly defines the value assigned to any belief state b it does not

provide an efficient algorithm to calculate this value. Recall that in the sum statement

each state in the belief state can be an abstract state. The combination of abstract states

in b with the FODD semantics leads to some complications and at this point we have not

identified an efficient algorithm for this task. A correct but inefficient algorithm will refine

the belief state so that each state corresponds to a complete world state and calculate

directly. The question of efficient evaluation is an important open question in order to

utilize our approach and may in fact be an issue with other representations for relational

POMDPs.

6.2 Value Iteration for RPOMDPs

We start by reviewing a propositional value iteration algorithm — incremental pruning

(Cassandra et al., 1997). This algorithm has been adapted for use with ADDs in the

propositional case by Hansen and Feng (2000). We then discuss how to lift it to handle

the relational case.

124

6.2.1 Incremental Pruning

We have seen in Chapter 2 that a POMDP can be considered as a belief state MDP. We

have written the Bellman update as follows:

Vn+1(b) = maxa∈A[
∑

s∈S

b(s)r(s) + γ
∑

o∈O

Pr(o|b, a)Vn(bao)] (6.4)

In their development of Incremental pruning, Cassandra et al. (1997) break up the

definition of value function Vn+1 into combinations of simpler value functions.

Vn+1(b) = maxa∈AQ
a(b)

Qa(b) =
∑

o

Qa,o(b)

Qa,o(b) =

∑
s∈S r(s)b(s)

|O|
+ γPr(o|b, a)Vn(bao)

Each of the above three value functions is piecewise linear and convex. Therefore we

can use a set of state-value functions to represent each value function. That is, each such

function, say w(b), can be represented using {v1, · · · , vm} for some m where

w(b) = maxi

∑

s

b(s)vi(s) (6.5)

We use Vn+1, Q
a, and Qa,o to denote the minimum-size set for each value function re-

spectively, and compute them as follows:

Vn+1 = PRUNE(∪a∈AQ
a) (6.6)

Qa = PRUNE(
⊕

o∈O

Qa,o) (6.7)

Qa,o = PRUNE({Qa,o,i|vi ∈ Vn}) (6.8)

125

where Qa,o,i is defined by

Qa,o,i =
R(s)

|O|
+ γ

∑

s′∈S

Pr(s′|s, a)Pr(o|s′, a)vi(s′) (6.9)

Equation 6.9 fixes an action and an observation, and associates it with some vector vi

in Vn. That is, we fix a future strategy, and then calculate the expected value of executing

action a and when receiving the observation o acting according to the policy encoded in

vi (simply be rewarded by vi). We call each tuple (a, o, i) an action-observation strategy.

Equation 6.8 collects all action-observation strategies together, one corresponding to

each vi. If we maximize over this set as in Equation 6.5 then we get the best value

achievable when taking action a and observing o. We will postpone the explanation of

pruning until later. Without pruning the value function for Qa,o contains |Vn| state-value

functions.

The cross sum of two sets of vectors, A and B, is denoted as A
⊕
B and defined

as {α + β|α ∈ A, β ∈ B}. Equation 6.7 sums together all the value contributions from

different observations. The cross sum makes sure we consider every possible vi as a

continuation to every observation o. Thus if we maximize over this set using Equation 6.5

we get the best value achievable by taking action a. Notice that each o will lead to a

different next state boa where a potentially different action computed in correspondence to

vi can be taken. Without pruning, the value function for Qa contains |Vn|
|O| state-value

functions.

Equation 6.7 then puts together the value function for each action. Without pruning,

the value function for Vn+1 contains |A||Vn|
|O| state-value functions. This description fits

the enumeration algorithm (Monahan, 1982), which will perform pruning at the end of

each iteration. The efficiency of the incremental algorithm lies in that it performs pruning

whenever possible, as shown in all equations. It also interleaves pruning and cross sum in

Equation 6.7 as follows:

Qa = PRUNE(. . . (PRUNE(Qa,o1 ⊕Qa,o2) . . . ⊕Qa,on).

126

6.2.2 Relational VI for POMDPs

The general first order value iteration algorithm works as follows: given as input the

reward function R and the action model, we set V0 = R, n=0, and perform the following

steps until termination. Note that the algorithm is presented without pruning, which is

discussed in the next section.

Procedure 8 Rel-VI-POMDP

1. For each action type A(~x) and each observation O
A(~x)
k associated with the action,

compute:

For each vi ∈ Vn

QA(~x),O
A(~x)
k

,i = R
|OA|

⊕ γ[
∑

j(prob(Aj(~x)) ⊗ Regr(Prob(O
A(~x)
k , A(~x)), Aj(~x)) ⊗

Regr(vi, Aj(~x)))].

2. QA(~x),O
A(~x)
k = ∪iQ

A(~x),O
A(~x)
k

,i

3. QA(~x) =
⊕

O
A(~x)
k

QA(~x),O
A(~x)
k .

4. QA = rename action parameters ~x as special constants in QA(~x).

5. Vn+1 = ∪AQ
A.

Note that when we have an absorbing state (as in our example), the equation in the

first step becomes

QA(~x),O
A(~x)
k

,i = γ[
∑

j

(prob(Aj(~x)) ⊗Regr(Prob(O
A(~x)
k , A(~x)), Aj(~x)) ⊗Regr(vi, Aj(~x)))]

(6.10)

The equation in the third step becomes

QA(~x) = max(R,
⊕

O
A(~x)
k

QA(~x),O
A(~x)
k) (6.11)

The first step: corresponds to Equation 6.9. It looks similar to calculating the Q-

function for an action type in VI for RMDPs but it also takes observation probabilities

127

p1 (x)

10

 p2 (x)
 0

 (a)

 (b)

 (c)

 (d)

(h)

⊗ =

 (i)

 (e)

 (j)

1

 x=x1
*

 p1 (x)
 1

 0

1

 x= x2
*

 p2 (x)
 1

 0

 p2 (x
*)

 0.9

 0.2

(f)

p1 (x)

10

 p2 (x)
 0

 (g)

 p2 (x
*)

 0.1

 0.8

 p2 (x
*)

 p2 (x
*)

 0.9

 0.2

 =

p1 (x1)
 p2 (x1

*)
 0

p2(x1
*)

9

9

p2(x1)

10

0

p2(x1)

10

p1 (x2)

10

 p2 (x2)
 6.3

p1 (x2)

10

 p2 (x2)
 0

p1 (x2
*)

 p1 (x1)
 p2 (x1

*)
 0

p2(x1
*)

9

9

p2(x1)

10

0

p2(x1)

10

p2 (x1
*)

 p2 (x
*)

 p2 (x1)
 8.1

 7.29

 p2 (x
*)

 7.29

 1.62

 p2 (x1)
 1.8

 1.62

 p2 (x1)
 8.1

0

 p2 (x1)
 1.8

 0

p1 (x1)
 p2 (x1

*)
 0

p1 (x2)

10

 p2 (x2)
 6.3

p1 (x2)

10

 p2 (x2)
 0

p1 (x2
*)

 p1 (x2)
 p2 (x

*)
 p2 (x2)

 0.9

 0.567

 p2 (x
*)

0
 p2 (x2)

 7.2

 4.536

 p2 (x2)
 7.2

0

 p2 (x2)
 0.9

 0

p1 (x2
*)

 p1 (x2)
 0

p1 (x2
*)

p1 (x1)
 p2 (x1

*)
 p2 (x

*)

 p2 (x
*)

 p2 (x1)

 p2 (x1)
 10

7.857

 10

6.156

 p2 (x1)

 p2 (x1)
 10

0.567

 10

4.536

p2 (x1
*)

 p2 (x
*)

 p2 (x

*)
 p2 (x1)

 p2 (x1)
 10

7.29

 10

1.62

 p2 (x1)

 p2 (x1)
 10

 0

 10

 0

p1 (x1)
 0

p2 (x1

*)

7.29

p2 (x
*) 0

 1.62

⊗0.9

⊗0.9

⊗

Figure 6.3: An example of value iteration. (a) The reward function R. (b) The TVD for
p1(x) under action A1(x

∗
1). (c) The TVD for p2(x) under action alternative A2S(x∗2). (d)

Observation probabilities Prob(q2(x
∗), A3(x

∗)). (e) Q
A1(x∗

1)
R (i.e., v1). (f) Q

A2(x∗

2)
R (i.e., v2).

(g) Q
A3(x∗

3)
R (i.e., v3). (h) QA3(x∗),q2(x∗),v1

. (i) QA3(x∗),¬q2(x∗),v2
. (j) One parameterized

value function in QA3(x∗).

128

into account. We need to regress over conditions of observation probabilities because

these conditions are about the future state.

If the action has no observation, i.e., |OA| = 1, the first step can be rewritten as

VA(~x),i = R⊕γ[
∑

j(prob(Aj(~x))⊗Regr(vi, Aj(~x)))]. This is exactly the same as calculating

the Q-function for an action type given a terminal value function in VI for RMDPs.

Note that in the first iteration, we do not need to take observations into account.

When we have one step to go, the observation after executing the action will not affect

the expected value of the action. It is only when determining V2 and so on that we need

to take observations into account and determine what to do next based on the observation

obtained.

Figure 6.3(e)(f)(g) give a set of FODDs {v1, v2, v3} as the result of the first iteration.

We omit details of calculating these but give details of second iteration since it is more

informative. Figure 6.3(h)(i) shows QA3(x∗),q2(x∗),v1
and QA3(x∗),¬q2(x∗),v2

respectively,

calculated by Equation 6.10. Figure 6.3(h) corresponds to the expected future value of

executing action A3(x
∗), and on observing q2(x

∗) following the policy encoded in v1.

Figure 6.3(i) corresponds to the expected future value of executing action A3(x
∗), and

on observing ¬q2(x
∗) following the policy encoded in v2. Note that since A3() is a pure

sensing action and does not change the world, there is only one deterministic alternative,

which is no-op. Therefore the calculation is simplified since Prob(Aj) = 1 and FODDs

before and after regression over this action are the same.

The second step: corresponds to Equation 6.8. It groups the resulting FODDs in

the first step by the action and the observation.

The third step: corresponds to Equation 6.7. It calculates the cross sum
⊕

on

sets of FODDs for the same parameterized action, collecting the contribution of each

observation and its associated next step value function vi. Note that we use
⊕

to denote

cross sum, while use ⊕ to denote the addition of two FODDs. Figure 6.3(j) gives the result

of max(R,QA3(x∗),q2(x∗),v1
⊕QA3(x∗),¬q2(x∗),v2

), calculated as in Equation 6.11. This gives

one of the functions for the action type A3(x
∗). It also encodes a non-stationary 2-step

parameterized policy tree as shown in Figure 6.4.

129

After the third step, we get a set of FODDs including all possible value functions of

an action type.

¬ q2(x*) q2(x*)

A3(x*)

A1(x1*) A2(x2*)

Figure 6.4: The parameterized policy tree corresponding to the value function in Fig-
ure 6.3(j)

The fourth step: is an extra step that does not exist in the propositional case.

That is because the concept of action parameters does not exist in the propositional

case. Recall that so far we have calculated Q-function relative to an action schema

parameterized with arguments ~x. The fourth step turns the action parameters into special

constants for each value function in the set. This is also fundamentally different from

RMDPs, which will perform object maximization at this stage to get the maximal value

an instance of an action can achieve. However we cannot do the same thing here. We have

explained this in the previous section, and we recap it here because it is very important and

shows the subtlety of relational POMDPs. Note that for different paths the maximizing

action parameters may be different, i.e., maximizing action parameters are based on

each (abstract) state. This is fine for RMDPs because we know the current state. But

for POMDPs we only have a distribution over possible states and we do not know the

current state. We cannot maximize action parameters at planning stage and have to wait

until the execution stage to determine what action parameters to choose to produce the

maximum expected value. If we maximize action parameters at this stage, it would be like

calculating the optimal value function VMDP for the underlying MDP, and calculating

the expected value of a belief state b by
∑

s b(s)VMDP (s). This is wrong because each

VMDP (s) may be associated with different action but we have to use the same action for

a belief state.

130

A value function includes all action parameters accumulated along the value iteration

process. This is not convenient, but this is one way to ensure correctness and that the

same action is performed for a belief state.

Consider again our running example. In the first iteration when we reach the fourth

step, we have Q-functions for A1(x
∗
1), A2(x

∗
2), and A3(x

∗
3) as shown in Figure 6.3(e)(f)(g)

and we denote them as {v1, v2, v3}. Here x∗1 and x∗2 are action parameters for the corre-

sponding Q-functions. Notice that x∗3 was dropped in reducing Q
A3(x∗

3)
R . This is simply

because A3() is a pure sensing action and will not have any effect when there is only one

step to go. In the second iteration, a value function for A3(x
∗) shown in Figure 6.3(j)

contains three action parameters: its own action parameter x∗ and two action parame-

ters, x∗1 and x∗2, “inherited” from its future plan. The action parameters are treated as

constants for the purpose of reductions. In evaluation they are treated differently than

other variables as prescribed in Equation 6.2.

The fifth step: corresponds to Equation 6.6. It simply puts together the Q-function

for each action (which is made up of a set of value function FODDs) and this set forms

the updated value function.

6.2.3 Executing Policies

A value function implicitly encodes policies. Each function in our value function Vn

encodes a non-stationary parameterized n step policy tree as shown in Figure 6.5. The root

node determine the first action to take, the next action choice depends on the resulting

observation. The policy tree decides a sequence of action types to take if we have a

sequence of observations. However, we need the initial belief state to know which concrete

action to take.

Given a belief state b and the optimal value function expressed as a set of FODDs

{v1, · · · , vn}, we use Equation 6.3 to obtain the expected value of b. At the same time,

we get the specific function that gives such value (which is a policy tree), together with

the valuation to all action parameters in the policy tree. Therefore we get a complete n

step conditional plan for this belief state.

131

1A
no (x) 1

1
Ao (x)

A1(x)

Am(mx) Ak(kx)

A j(jx)

Ap(px) As(sx)

Figure 6.5: A parameterized policy tree

For example if we have an initial belief state b as follows and we have two steps to go:

¬p1(1) ∧ p2(1) ∧ p1(2) ∧ p2(2) : 0.09

¬p1(1) ∧ ¬p2(1) ∧ p1(2) ∧ p2(2) : 0.01

¬p1(1) ∧ p2(1) ∧ p1(2) ∧ ¬p2(2) : 0.81

¬p1(1) ∧ ¬p2(1) ∧ p1(2) ∧ ¬p2(2) : 0.09

The set of functions which make up V2 will include the one in Figure 6.3(j), which we

denote as v1
2 . First we use Equation 6.2 for each function. In calculating the expected

value of b given v1
2 , we find that the valuation {x∗/1, x∗1/1, x

∗
2/2} gives the best value. The

first two states evaluate to 10 (it does not matter what action parameters to take), the

third state evaluates to 7.857, and the fourth state evaluates to 4.536. We have highlighted

paths corresponding to the last two states in Figure 6.3(j). The expected value of b given

v1
2 is 0.09×10+0.01×10+0.81×7.857+0.09×4.536 = 7.77241. Suppose v1

2 gives the best

value among all functions, then we have a conditional plan for b when there are two steps

to go, which is the policy tree shown in Figure 6.4 with instantiated action parameters

{x∗/1, x∗1/1, x
∗
2/2}.

From the discussion so far we have:

Theorem 7 If the input to Procedure 8, Vn, is a collection of Q-functions correctly cap-

turing the value of belief states when there are n steps to go, then the output Vn+1 is a

collection of Q-functions correctly capturing the value function when there are n+ 1 steps

132

to go.

Note that since we have to keep action parameters along the decision stages, this VI

algorithm can only handle finite horizon POMDP problems. Moreover, we do not have

pruning and the algorithm is limited to small action sets and observation sets.

6.3 Open Issues

In this section we discuss remaining issues in computing value functions for RPOMDP.

We have already discussed the question of efficient calculation of value of a belief state in

Section 6.1.4.

6.3.1 Pruning

The pruning step takes a set of FODDs and removes dominated FODDs. The simplest

dominance is pointwise, i.e., one FODD gives better value for all states than another. To

determine if v pointwise dominate u, we could calculate t = v−u. If all the leaf nodes are

positive, then we know that this is true. But since subtraction with Apply is essentially

propositional, the result is sensitive to variable names. Figure 6.6 illustrates this. Suppose

x1 and x2 are variables (i.e., not action parameter constants). Intuitively Figure 6.6(a)

dominates Figure 6.6(b). But (a) − (b) 6≥ 0.

To solve this problem, we develop a “generalized” reduction operator R7. It uses the

same set of conditions and performs the same operations. The only difference is that the

two edges e1 and e2 come from two independent FODDs D1 and D2, and all e1’s come

from D1, whereas all e2’s come from D2. If at the end D2 is reduced to 0, then we say

that the value function D2 is pointwise dominated by D1. Note that action parameters

are constants during this process.

Figure 6.6(c)-(e) illustrate the process. First we can replace p(x2)↓t with 0 because if

we can reach p(x2)↓t, we can also reach p(x1)↓t, and min(p(x1)↓t) ≥ max(p(x2)↓t). We

can replace p(x2)↓f with 0 in the same way. Finally Figure 6.6(b) is reduced to 0.

133

p(x1)

2

4

p(x2)
 1

 3

(a)

(b)

(c)

r(x1)
 1

p(x2)
 0

 3

p(x2)
 0

 0

(d)

 0

(e)

Figure 6.6: An example illustrating how to determine pointwise dominance.

Besides pointwise dominance, a state-value function v can be dominated by a set of

state-value functions that does not include v. There is a linear programming method to

detect this type of dominance. In the propositionally factored case, Hansen and Feng

(2000) first perform a preprocessing step that creates the most refined state partitions

that are consistent with state partitions in each state-value function. Then they treat

each resulting state partition as a concrete state and perform pruning as in the POMDP

that enumerates state space using a linear programming formulation. However they have

a much smaller state space because each state actually includes a set of states.

As discussed before in the thesis due to multiple path semantics, the FODD repre-

sentation does not support explicit state partitions. It is not clear at this stage how we

can perform this type of pruning in the relational case and we leave this as an important

open question that needs to be resolved before our technique can be applied efficiently for

POMDP.

6.3.2 Non-stationary Policy Tree v.s. Stationary Policy Graph

Since we have to treat action parameters as constants and keep action parameters at

all decision stages, it is impossible to get a policy graph (finite state controller) as the

policy representation. This may be fine for “one shot” task-oriented problems. Here an

infinite-horizon problem is more like an indefinite-horizon because the agent will always

execute actions for some finite number of stages until reaching a terminal state, though

the exact number cannot be determined beforehand. However, for decision problems

involving process-oriented behavior where there is no persistent terminal state, it is only

134

intuitive that the policy repeat itself at some point. I.e., the action parameters for the

same action should be the same at some point. It is not clear at this stage how to get a

stationary parameterized policy graph, and again we leave this as an open question.

6.4 Summary and Discussion

In this chapter, we developed first steps towards solving RPOMDPs. We developed ad-

ditional representations for value iteration in RPOMDPs and lifted a value iteration

algorithm to handle the relational case. We raised several open questions concerning

evaluating the expected value of a belief state, pruning, policy graphs, and belief update.

135

Chapter 7

Discussion and Future Work

We first summarize the contributions of the thesis and then point out some directions for

future research.

7.1 Contributions

In this thesis, we describe the use of first order decision diagrams as a new representa-

tion for relational MDPs. We give technical details surrounding the semantics of these

diagrams and the computational operations required for symbolic dynamic programming.

We also introduce Relational Modified Policy Iteration using FODD representations and

provide its analysis. We further extend our work to handle relational POMDPs. Specifi-

cally, our contributions include the following:

1. We have identified important differences between the single-path and multiple-path

semantics for first order decision diagrams. By contrasting the single path semantics

with the multiple path semantics we see an interesting tension between the choice of

representation and task. The multiple path method does not directly support state

partitions, which makes it awkward to specify distributions and policies (since values

and actions must both be specified at leaves). However, this semantics simplifies

many steps by easily supporting disjunction and maximization over valuations which

are crucial for for value iteration so it is likely to lead to significant savings in space

136

and time.

2. We have developed the technical details of first order ADDs and for the algorithms

using them in the solution of relational MDPs. It is non-trivial to lift methods for

propositional decision diagrams to the first order case, and our work highlights some

of the key semantics and computational issues and proposes solutions. We have also

developed novel weak reduction operations for first order decision diagrams and

shown their relevance to solving relational MDPs.

3. We have developed a relational value iteration algorithm for MDPs using FODDs.

Value iteration for relational MDPs has been studied before, e.g., in SDP and ReBel.

Our contribution is that we have developed a calculus of FODDs to implement value

iteration, which combines the strong points of the SDP and ReBel approaches. On

the one hand we get simple regression algorithms directly manipulating the diagrams

so regression is simple as in SDP. On the other hand we get object maximization

for free as in ReBel. We also get space saving since different state partitions can

share structure in the diagrams.

4. We have developed and analyzed policy iteration in the relational domain. We have

introduced Relational Modified Policy Iteration using FODD representations. We

have observed that policy languages have an important effect on correctness and

potential of policy iteration since the value of a policy may not be expressible in the

language. Our algorithm overcomes this problem by including an aspect of policy

improvement into policy evaluation. We have shown that the algorithm converges

to the optimal value function and policy and that it dominates the iterates from

value iteration.

5. We have lifted a value iteration algorithm for propositional POMDPs to handle

the relational case. Although the result is not complete, we have made first steps

towards solving RPOMDPs, and identified some subtle issues that do not exist in

propositional case during planning and execution.

137

7.2 Future Work and Open Questions

The future agenda of this work includes four major items. First, we want to complete

implementation and empirical evaluation. Second, we want to improve the current repre-

sentation by allowing for more compaction. Third, we want to explore several questions

concerning efficiency and alternative algorithmic ideas of RMPI. Fourth, we want to tackle

open questions raised in Chapter 6 and further examine how approximation techniques

can be implemented in this framework for RPOMDPs.

7.2.1 Implementation and Evaluation

An implementation and empirical evaluation are under way (Joshi, 2007). Any imple-

mentation can easily incorporate the idea of approximation by combining leaves with

similar values (St-Aubin et al., 2000) to control the size of FODDs. The precise choice

of reduction operators and their application will be crucial to obtain an effective system,

since in general there is a tradeoff between run time needed for reductions and the size

of resulting FODDs. We can apply complex reduction operators to get the maximally

reduced FODDs, but it takes longer to perform the reasoning required.

7.2.2 Representations

There are many open issues concerning the current representation. It would be interest-

ing to investigate conditions that guarantee a normal form for a useful set of reduction

operators. Also, the representation can be improved to allow further compression. For

example it would also be interesting to investigate the effect of allowing edges to rename

variables when they are traversed so as to compress isomorphic sub-FODDs. Another

interesting possibility is a copy operator that evaluate several copies of a predicate (with

different variable) in the same node. Figure 7.1 and Figure 7.2 show how we can get

further compression by using such constructs. To be usable one must modify the FODD

and MDP algorithmic steps to handle diagrams with the new syntactic notation.

138

B(z)

 0

C(w)

A(w)

 1

w/x

z/x
 p(x, y)

 0 0

Figure 7.1: Example illustrating variable renaming on edges.

p (x)
 q (x)

 1

p (y)
 f (y)

 2

 0

0

 0

p (x) ∧ p (y)

q (x)

 1

f (y)

 2

0

 0

Figure 7.2: Example illustrating the copy operator.

7.2.3 Exploring Efficiency Issues and Alternative Algorithmic Ideas of

RMPI

Several interesting questions remain concerning efficiency and alternative algorithmic

ideas of RMPI. Some of these can become clearer through an experimental evaluation.

First it would be interesting to compare the relational versions of VI and PI in terms

of efficiency and convergence speed. In the basic scenario when we enumerate states,

an iterate of successive approximation in PI is cheaper than one in VI since we do not

calculate and maximize over actions. However, with symbolic representations we regress

over each action schema in any case, so the question is whether the specialized regression

algorithm presented here is faster than the one doing greedy selection. As illustrated in

the example and discussion in Chapter 5, significant pruning of diagrams may occur when

regressing a value function over a policy that has the same structure. However, in general

for symbolic representations it is not clear from the outset that policy evaluation steps

are faster than VI regression steps. A second issue is the stopping criterion. Pure PI

stops when the policy does not change, but MPI adopts a value difference as in VI. It is

possible that we can detect convergence of the policy at the structural level (by ranking

139

or aggregating actual values), and in this way develop an early stopping criterion. But

it is not clear how widely applicable such an approach is and whether we can guarantee

correctness. Finally, RMPI uses a different policy in every step of policy evaluation. It

would be interesting to analyze the algorithm if the policy is kept fixed in this process.

7.2.4 Open Issues and Approximations in RPOMDPs

Several important questions for RPOMDPs were already raised in Chapter 6, including

efficient calculation of the expected value of a belief state, pruning, and representing policy

as a finite state controller (or policy graph). Another direction we would like to pursue

is approximation. Value iteration for RPOMDP is costly and infeasible except for very

simple problems. We want to examine how approximation techniques for propositional

POMDPs can be incorporated into our framework and whether they are effective. One

possibility is to approximate RPOMDP value functions by a set of linear combination

of first order basis functions and to develop a first order generalization of approximation

techniques described in (Guestrin et al., 2001) for propositionally factored POMDPs.

Sanner and Boutilier (2005; 2006) used similar techniques in the solution of first order

MDPs and showed promising results.

140

Bibliography

Bacchus, F., Halpern, J. Y., & Levesque, H. J. (1999). Reasoning about noisy sensors

and effectors in the situation calculus. Artificial Intelligence, 111, 171–208.

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., &

Somenzi, F. (1993). Algebraic decision diagrams and their applications. Proceedings of

the International Conference on Computer-Aided Design (pp. 188–191).

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic

programming. IEEE Transactions on Automatic Control, 34(6), 589–598.

Bertoli, P., Cimatti, A., Roveri, M., & Traverso, P. (2001). Planning in nondeterministic

domains under partial observability via symbolic model checking. Proceedings of the

International Joint Conference of Artificial Intelligence (pp. 473–478).

Blockeel, H., & De Raedt, L. (1998). Top down induction of first order logical decision

trees. Artificial Intelligence, 101, 285–297.

Blum, A., & Furst, M. (1995). Fast planning through planning graph analysis. Proceedings

of the International Joint Conference of Artificial Intelligence (pp. 1636–1642).

Blythe, J. (1998). Planning under uncertainty in dynamic domains. Doctoral dissertation,

Carnegie Mellon University.

Bonet, B., & Geffner, H. (2000). Planning with incomplete information as heuristic search

in belief space. Proceedings of the International Conference on Artificial Intelligence

Planning Systems (pp. 52–61).

141

Bonet, B., & Geffner, H. (2001). Planning and control in artificial intelligence: A unifying

perspective. Applied Intelligence, 14(3), 237–252.

Boutilier, C., Dean, T., & Goldszmidt, M. (2000). Stochastic dynamic programming with

factored representations. Artificial Intelligence, 121(1), 49–107.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of Artificial Intelligence Research,

11, 1–94.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific in-

dependence in Bayesian networks. Proceedings of the Workshop on Uncertainty in

Artificial Intelligence (pp. 115–123).

Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable de-

cision processes using compact representations. Proceedings of the National Conference

on Artificial Intelligence (pp. 1168–1175).

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for first-

order MDPs. Proceedings of the International Joint Conference of Artificial Intelligence

(pp. 690–700).

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes.

Proceedings of the Workshop on Uncertainty in Artificial Intelligence (pp. 33–42).

Brafman, R. (1997). A heuristic variable grid solution method of POMDPs. Proceedings

of the National Conference on Artificial Intelligence (pp. 76–81).

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, C-35, 677–691.

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary decision dia-

grams. ACM Computing Surveys, 24, 293–318.

Cassandra, A. (1998). Exact and approximate algorithms for partially observable markov

decision processes. Doctoral dissertation, Brown University.

142

Cassandra, A., Littman, M., & Zhang, N. (1997). Incremental pruning: A simple, fast,

exact method for partially observable Markov Decision Processes. Proceedings of the

Workshop on Uncertainty in Artificial Intelligence (pp. 54–61).

Cheng, H. (1988). Algorithms for partially observable Markov decision processes. Doctoral

dissertation, University of British Columbia.

Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation.

Computational Intelligence, 5(3), 142–150.

Drape, D., Hanks, S., & Weld, D. (1994). Probabilistic planning with information gather-

ing and contingent execution. Proceedings of the International Conference on Artificial

Intelligence Planning Systems (pp. 31–36).

Feng, Z., & Hansen, E. A. (2002). Symbolic heuristic search for factored Markov Decision

Processes. Proceedings of the National Conference on Artificial Intelligence (pp. 455–

460).

Fern, A., Yoon, S., & Givan, R. (2003). Approximate policy iteration with a policy

language bias. International Conference on Neural Information Processing Systems.

Fikes, R., & Nilsson, N. (1972). A new approach to the application of theorem proving

to problem solving. Artificial Intelligence, 2, 189–208.

Forbes, J., Huang, T., Kanazawa, K., & Russell, S. (1995). The BATmobile: towards a

bayesian automated taxi. Proceedings of the International Joint Conference of Artificial

Intelligence (pp. 1878–1885).

Gardiol, N. H., & Kaelbling, L. P. (2003). Envelop-based planning in relational MDPs.

International Conference on Neural Information Processing Systems.

Garriga, G., Khardon, R., & Raedt, L. D. (2007). On mining closed sets in multi-relational

data. Proceedings of the International Joint Conference of Artificial Intelligence (pp.

804–809).

143

Geffner, H., & Bonet, B. (1998). High-level planning and control with incomplete infor-

mation using POMDPs. Proceedings of Fall AAAI Symposium on Cognitive Robotics.

Gerevini, A., Bonet, B., & Givan, B. (2006). Fifth international planning competition.

Gretton, C., & Thiebaux, S. (2004). Exploiting first-order regression in inductive policy

selection. Proceedings of the Workshop on Uncertainty in Artificial Intelligence (pp.

217–225).

Groote, J. F., & Tveretina, O. (2003). Binary decision diagrams for first-order predicate

logic. The Journal of Logic and Algebraic Programming, 57, 1–22.

Großmann, A., Hölldobler, S., & Skvortsova, O. (2002). Symbolic dynamic programming

within the fluent calculus. Proceedings of the IASTED International Conference on

Artificial and Computational Intelligence.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003a). Generalizing plans to new

environments in relational MDPs. Proceedings of the International Joint Conference of

Artificial Intelligence (pp. 1003–1010).

Guestrin, C., Koller, D., Par, R., & Venktaraman, S. (2003b). Efficient solution algorithms

for factored MDPs. Journal of Artificial Intelligence Research, 19, 399–468.

Guestrin, C., Koller, D., & Parr, R. (2001). Solving factored POMDPs with linear value

functions. IJCAI-01 workshop on Planning under Uncertainty and Incomplete Infor-

mation.

Hansen, E. (1998). Solving POMDPs by search in policy space. Proceedings of the

Workshop on Uncertainty in Artificial Intelligence (pp. 211–219).

Hansen, E. A., & Feng, Z. (2000). Dynamic programming for POMDPs using a fac-

tored state representation. Proceedings of the International Conference on Artificial

Intelligence Planning Systems (pp. 130–139).

Hansen, E.A.and Zilberstein, S. (2001). LAO*: a heuristic search algorithm that finds

solutions with loops. Artificial Intelligence, 129, 35–62.

144

Hauskrecht, M. (1997). A heuristic variable-grid solution method for POMDPs. Proceed-

ings of the National Conference on Artificial Intelligence (pp. 727–733).

Hauskrecht, M. (2000). Value-function approximations for partially observable markov

decision processes. Journal of Artificial Intelligence Research, 13, 33–94.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999). SPUDD: Stochastic planning using

decision diagrams. Proceedings of the Workshop on Uncertainty in Artificial Intelligence

(pp. 279–288).

Hölldobler, S., & Skvortsova, O. (2004). A logic-based approach to dynamic program-

ming. AAAI-04 workshop on learning and planning in Markov Processes – advances

and challenges.

Hyafil, N., & Bacchus, F. (2003). Conformant probabilistic planning via CSPs. Proceedings

of the International Conference on Automated Planning and Scheduling (pp. 205–214).

Joshi, S. (2007). Implementing value iteration with FODDs for RMDPs. Private commu-

nication.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101, 99–134.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic,

and stochastic search. Proceedings of the National Conference on Artificial Intelligence

(pp. 1194–1201).

Kersting, K., Otterlo, M. V., & Raedt, L. D. (2004). Bellman goes relational. Proceedings

of the International Conference on Machine Learning.

Koller, D., & Fratkina, R. (1998). Using learning for approximation in stochastic pro-

cesses. Proceedings of the International Conference on Machine Learning (pp. 287–295).

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42(2-3), 189–211.

145

Kushmerick, N., Hanks, S., & Weld, D. S. (1995). An algorithm for probabilistic planning.

Artificial Intelligence, 76, 239–286.

Littman, M. (1997). Probabilistic propositional planning: Representations and complex-

ity. Proceedings of the National Conference on Artificial Intelligence (pp. 748–754).

Lovejoy, W. (1991). Computationally feasible bounds for partially observed markov deci-

sion processes. Operations Research, 39, 162–175.

Madani, O., Hanks, S., & Condon, A. (2003). On the undecidability of probabilistic

planning and related stochastic optimization problems. Artificial Intelligence, 147, 5–

34.

Martelli, A., & Montanari, U. (1973). Additive and/or graphs. Proceedings of the Inter-

national Joint Conference of Artificial Intelligence (pp. 1–11).

Mausam, & Weld, D. (2003). Solving relational MDPs with first-order machine learn-

ing. Proceedings of ICAPS Workshop on Planning under Uncertainty and Incomplete

Information.

McDermott, D. (2000). The 1998 AI planning systems competition. AI Magazine, 21,

35–55.

McMillan, K. L. (1993). Symbolic model checking. Kluwer Academic Publishers.

Monahan, G. (1982). A survey of partially observable Markov decision processes. Man-

agement Science, 28, 1–16.

Nilsson, N. J. (1971). Problem-solving methods in artificial intelligence. McGraw-Hill,

New York.

Onder, N. (1997). Contingency selection in plan generation. Doctoral dissertation, Uni-

versity of Pittsburgh.

Papadimitrios, C., & Tsitsiklis, N. (1987). The complexity of Markov decision processes.

Mathematics of Operations Research, 12(3), 441–450.

146

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner for

ADL. Third International Conference on Principles of Knowledge Representation and

Reasoning (pp. 103–114).

Poole, D. (1997). The independent choice logic for modeling multiple agents under un-

certainty. Artificial Intelligence, Special Issue on Economic Principles of Multi-Agent

Systems, 94, 7–56.

Poupart, P., & Boutilier, C. (2000). Value-directed belief state approximation for

POMDPs. Proceedings of the Workshop on Uncertainty in Artificial Intelligence (pp.

497–506).

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic pro-

gramming. Wiley.

Rintanen, J. (2003). Expressive equivalence of formalism for planning with sensing. Pro-

ceedings of the International Conference on Automated Planning and Scheduling (pp.

185–194).

Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2, 229–246.

Sanghai, S., Domingos, P., & Weld, D. (2005). Relational dynamic bayesian networks.

Journal of Artificial Intelligence Research, 24, 759–797.

Sanner, S., & Boutilier, C. (2005). Approximate linear programming for first-order MDPs.

Proceedings of the Workshop on Uncertainty in Artificial Intelligence.

Sanner, S., & Boutilier, C. (2006). Practical linear value-approximation techniques for

first-order MDPs. Proceedings of the Workshop on Uncertainty in Artificial Intelligence.

Schuurmans, D., & Patrascu, R. (2001). Direct value approximation for factored MDPs.

International Conference on Neural Information Processing Systems (pp. 1579–1586).

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable

markov processes over a finite horizon. Operations Research, 21, 1071–1088.

147

Sondik, E. (1971). The optimal control of partially observable markov decision processes.

Doctoral dissertation, Stanford University.

Sondik, E. (1978). The optimal control of partially observable markov processes over the

infinite horizon: Discounted costs. Operation Research, 26(2), 282–304.

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). APRICODD: Approximate policy con-

struction using decision diagrams. International Conference on Neural Information

Processing Systems (pp. 1089–1095).

Washington, R. (1996). Incremental markov-model planning. IEEE International Con-

ference on Tools with Artificial Intelligence (pp. 41–47).

Washington, R. (1997). BI-POMDP: Bounded, incremental, partially-observable Markov-

model planning. Proceedings of the European Conference on Planning (pp. 440–451).

Weld, D. S. (1999). Recent advances in AI planning. AI Magazine, 20, 93–123.

Younes, H., & Littman, M. (2004). PPDDL1.0:an extension to PDDL for expressing plan-

ning domains with probabilistic effects (Technical Report CMU-CS-04-167). Carnegie

Mellon University.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track

of the international planning competition. Journal of Artificial Intelligence Research,

24, 851–887.

Zhang, N., Lee, S., & Zhang, W. (1999). A method for speeding up value iteration

in partially observable markov decision processes. Proceedings of the Workshop on

Uncertainty in Artificial Intelligence (pp. 696–703).

Zhang, N. L., & Liu, W. (1997). A model approximation scheme for planning in partially

observable stochastic domains. Journal of Artificial Intelligence Research, 7, 199–230.

Zhang, N. L., & Zhang, W. (2001). Speeding up the convergence of value iteration

in partially observable markov decision processes. Journal of Artificial Intelligence

Research, 14, 29–51.

148

Zhou, R., & Hansen, E. (2001). An improved grid-based approximation algorithm for

POMDPs. Proceedings of the International Joint Conference of Artificial Intelligence

(pp. 707–716).

Zubek, V., & Dietterich, T. (2000). A POMDP approximation algorithm that anticipates

the need to observe. Pacific Rim International Conferences on Artificial Intelligence

(pp. 521–532).

Zubek, V., & Dietterich, T. (2001). Two heuristics for solving POMDPs having a delayed

need to observe. IJCAI Workshop on Planning under Uncertainty and Incomplete

Information.

149

