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Abstract 

This thesis presents Cognitive Description and Evaluation of Interaction 

(CoDeIn), a framework that allows one to describe, compare, and estimate 

completion times for tasks that are designed in a variety of interaction styles. 

Task time estimates based upon evaluations performed with CoDeIn are 

consistently more accurate than evaluations carried out using existing model-

based evaluation methods. This accuracy arises from several sources, including 

separating and distinguishing between different forms of knowledge necessary 

for performing the task. This distinction allows -- as not provided by other 

methods -- the ability to model non-expert task performance by estimating 

knowledge and its effect upon task completion time.  

The accuracy of the CoDeIn methodology is supported by several 

experiments that compare the predictions produced by CoDeIn to actual 

measurements and predictions from the GOMSL methodology. To utilize 

GOMSL, several sub-models must be created, including a model of grasping and 

a model for iterative shuffling of physical objects.  

I conclude that CoDeIn is in these circumstances more accurate and more 

expressive than GOMSL, due to the ability to account for and manipulate 

representations of knowledge.  
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Chapter 1 Introduction 

Today a revolution in the field of interaction design is in process. The 

computer has left its traditional setting, the office, and has entered daily life, by 

becoming smaller and more ubiquitous. Cell phones and Personal Digital 

Assistants have become ubiquitous. Even children, younger and younger, are 

becoming masters of this technology (Marcus, 2006).  This revolution is partly the 

product of a generation of interaction technologies that were brought together by 

Hutchins, Hollan and Norman (1986) and Shneiderman (1983). Shneiderman 

called the various technologies together Direct Manipulation (DM), and today 

they have also acquired the name WIMP, short for Windows, Icons, Menus, 

Pointer, because of the interaction styles’ based on them. This generation of 

technology made computer use easier and more widespread than before, and 

has become the nearly universal state of practice in user interface design. 

While Shneiderman recognized that the technologies could be brought 

together under a unified banner (Shneiderman, 1983), Hutchins, Hollan and 

Norman presented why direct manipulation user interfaces were easier to learn, 

were more user-friendly, and took less time for one to become an expert in using 

them (Hutchins et al., 1986). They compared the then fairly recent direct-

manipulation style to command-line interfaces, and claimed that because 

abstractions are depicted visually, and because manipulation of these 

abstractions is also done visually, the user feels more comfortable in 

understanding what is being manipulated, and how (Hutchins et al., 1986). 
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Hutchins et al. (1986) suggested that because the results are shown immediately 

as graphical representations and not in textual form, users feel a sense of 

directness in this interaction style.  

Today though, we see research that looks toward a new generation of 

Non-WIMP interaction styles (Jacob, Deligiannidis, & Morrison, 1999; Van Dam, 

1997). Non-WIMP interaction styles are based upon new input and output 

devices that leverage the user’s existing knowledge and skills to accomplish 

tasks (Jacob, 2004). Examples come from areas such as virtual reality (Foley, 

1987), augmented reality (Azuma, 1997), ubiquitous computing (Weiser, 1991), 

tangible user interfaces (Ishii & Ullmer, 1997), affective computing (Picard, 2000), 

pervasive and handheld interaction (Saha & Mukherjee, 2003; Satyanarayanan, 

2001), lightweight, tacit, or passive interaction (Nielsen, 1993), perceptual 

interfaces (Turk & Robertson, 2000), context-aware interfaces (Schilit, Adams, & 

Want, 1994), and speech and multi-modal interfaces (Waibel, Tue, Duchnowski, 

& Manke, 1996). We call this new class of interaction styles Reality-Based 

Interaction (RBI) styles (Jacob, 2004). 

Research on this front, though, is less unified than that for the previous 

generation of interaction styles. There is yet no common thread to connect these 

new interaction styles, which makes it difficult to compare designs employing two 

different interaction styles. Thus, when a design might be suited to a particular 

interaction style, there is no way that one can choose which style that should be, 

other than basing decisions on intuition and experience. 
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The general goal of the research described in this thesis, is to create a 

framework that allows the description of tasks and then categorize them, 

according to their easiness of performance. A task, for the purpose of this thesis, 

is a collection of actions put in chronological order, whose purport is to change 

the state of the world. This thesis is restricted to the study of tasks in user 

interfaces.  

The framework that is presented in this thesis, named Cognitive 

Description and Evaluation of Interaction (CoDeIn), is philosophically based upon 

pragmatic solipsism (Diaper & Stanton, 2004a), which states that the existence of 

the world is an assumption, so that anything that can be known about the world is 

a model. This creates the necessity for tools that support the creation of such 

models, so that understanding about the world can come about.  

CoDeIn is one such tool. CoDeIn allows task modeling, based on the 

knowledge that is required for the performance of the constituent actions of the 

task. Obviously, CoDeIn is not the only tool that allows the creation of task 

models (see Chapter 2). The need for using CoDeIn to model tasks will become 

apparent in the discussions that follow throughout this thesis.   

Through task modeling, CoDeIn tries to predict the completion time of the 

modeled task. But CoDeIn also provides a description of the task through which 

allows the evaluator to find places where errors may occur during the task’s 

performance. This places CoDeIn in the class of predictive task modeling 

methods used for the evaluation of user interfaces. The primary goal of CoDeIn, 

though, is to predict the aforementioned measure in the set of Reality-Based 
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Interaction (RBI) styles (Jacob, 2004; , 2006). The framework is interaction-style-

independent, so that it may cater to all interaction styles that fit under the RBI 

umbrella. The framework uses the knowledge required for the performance of a 

task to describe that task. This is done through a diagrammatic notation, which is 

presented in subsequent chapters of the thesis. The reasoning that guided the 

creation of this framework was to separate from the user’s intention to perform 

the task from the analysis, description, and evaluation of the task. Rather, the 

framework was designed to allow the task to be described without regard to a 

user’s desire to perform the task. This mindset brings the framework closer to 

Diaper and Stanton’s suggestion that “the whole concept of goals should be 

abandoned as unnecessary and thus one of the major sources of confusion 

about task analysis would be removed” (Diaper & Stanton, 2004b).  

Towards this end, Christou and Jacob presented an idea about how 

seemingly different interaction styles could be put on an equal footing by using 

task knowledge for evaluation (Christou & Jacob, 2003). The idea was based on 

the principle of comparing interaction styles based on what knowledge the user 

would need to possess to use these interaction styles effectively. The intuition 

behind this idea was that if the user needs to know fewer things in order to use 

an interaction style effectively, then that interaction style would be “better”, in the 

sense that the user would have to expend less effort in order to learn how to 

perform a task. Also, if the interaction is natural, then users should not feel that 

they are using a tool which will give them an answer; it would feel like an 
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extension of the user’s intention and natural tools, following Norman’s idea of the 

invisible computer (Norman, 1999b). 

1.1  Thesis Overview 

The argument of this thesis is that the presented framework allows the 

analysis of tasks, designed in different interaction styles, and yields quantitative 

evaluations and comparisons of these tasks that consistently outperform 

evaluations that are done using existing evaluation methods. The evaluation 

process is based on the fact that the framework provides structures that specify 

what is meant by “good” or “bad” interfaces and for specifying users according to 

their knowledge of task performance in some interface. 

The chapters in this thesis are organized as follows. Chapters 2, 3, and 4 

will present a review of relevant literature. Chapter 2 presents a discussion on 

interaction styles in general, followed by more discussion of the direct 

manipulation interaction style, along with a discussion and definition of RBIs. 

Because this work is based heavily on Tangible User Interfaces, these will be 

presented in some detail.  

Chapter 3 presents Task Analysis, and presents and contrasts several 

description and evaluation frameworks and theories to show relevancy to this 

work. Theories such as Goals, Operators, Methods, Selection rules (GOMS) 

(Card, Moran, & Newell, 1983) and Task Knowledge Structures (TKS) (P. 

Johnson, Johnson, Waddington, & Shouls, 1988) are reviewed to show how my 

work differs and builds upon them. Also cognitive architectures will be reviewed, 

such as ACT-R (Anderson & Lebiere, 1998) and Soar (Laird, Newell, & 
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Rosenbloom, 1987), to show how these relate to the description and evaluation 

of RBIs, as presented in this thesis.  

Chapter 4 provides an overview of the theory of affordances and 

constraints as was introduced in the Human-Computer Interaction field (Andre, 

Belz, McCreary, & Hartson, 2000; Gaver, 1991; Gibson, 1977; , 1979; Hartson, 

2003; Norman, 1999a; , 2002; Overbeeke & Wensveen, 2003; Steedman, 2002).  

Chapter 5 presents the definition of a “good” and “bad” interface. 

Interfaces are evaluated on many levels throughout the HCI literature and this 

chapter presents yet another way of defining which interfaces are “good” and 

which are “bad”, based on the knowledge required to use them. The thesis takes 

the view that a good interfaces may be defined using the amount of knowledge-

in-the-head and knowledge-in-the-world, vs. task knowledge required by the 

interface for users to perform a task. The goal of this chapter is to explicate this 

procedure, and provide examples of how interfaces may be categorized using 

these three knowledge sets. It also describes how the theory of affordances and 

constraints is applied in the described structures of the CoDeIn framework. 

Chapter 6 presents the definition of CoDeIn. The nomenclature used in 

the framework, as well as the constituents of the framework are presented, along 

with a long example, to show how CoDeIn describes interfaces in different 

interaction styles. Chapter 6 closes the first part of the thesis that summarizes 

the theoretical foundations of the framework. 

The second part of this thesis presents the description and evaluation 

power of the framework. Chapter 7 presents an experiment that provides 
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evidence for the framework’s capability in calculating the completion time of a 

task, and compares the framework’s performance to the performance of GOMSL 

(Kieras, 1999), a widely used model-based evaluation method.  

Chapter 8 presents another experiment that provides evidence to support 

the supposition that CoDeIn can model the performance of users ranging from 

novice to expert, and not just expert users as other model-based evaluation 

methods assume. Evidence is also provided to show that CoDeIn’s predictions 

about users that gradually become more versed in the experimental task conform 

to other established methods of performance prediction, such as the Power Law 

of Practice (Card et al., 1983). 

Finally, chapter 9 provides the conclusions of this dissertation and 

directions for future work. It summarizes the advantages and disadvantages of 

the framework and provides directions for further validation of this work. 

1.2 Background 

The goal of the thesis is to develop a cohesive framework for describing 

human-computer interaction that may be used as a descriptive and evaluative 

theoretical tool. This tool will allow the description and evaluation of tasks in a 

user interface that is created in any interaction style. Through a diagrammatic 

methodology it will allow the calculation of the task’s completion time by any level 

of user, from novice to expert, as well as the identification of steps in the task that 

may be more difficult for users to perform than others. Finally, the framework will 

provide a way to depict differences in task performance when a task is designed 

under different interaction styles. 
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The work presented in this thesis is multi-disciplinary in the fields of 

Human-Computer Interaction (HCI), Cognitive Science, Programming Language 

Theory, and Kinesiology. HCI is a relatively new field that was created out of the 

need to create better interfaces for users, and is a subset of Human Factors and 

Ergonomics. It is a multi-disciplinary field that includes such disciplines as 

cognitive psychology, human factors design, graphics design, and ergonomics. 

The goal of the field is to provide an understanding of how humans can 

communicate better with computers. The Association of Computing Machinery 

(ACM) Special Interest Group on Computer-Human Interaction (SIGCHI) 

Curriculum for HCI defines the field as ‘… a discipline concerned with the design, 

evaluation and implementation of interactive computing systems for human use 

and with the study of major phenomena surrounding them.’  

HCI has only recently become a major focus of research, because only 

recently have computers gained the capabilities that can support modes of 

interaction other than the command line. But HCI includes more than just 

research on how communication between humans and computers can become 

better. HCI research is also oriented towards understanding why and how the 

interaction between the computer and the user becomes easier and more 

efficient.  

Cognitive Science is another recently created field that studies the normal 

operation of the human mind. However, Psychology is the field that is usually 

associated with the study of the human mind, although this study occurs through 

the study of human behavior ("Psychology"). Cognitive Science, on the other 
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hand, tries to understand the details of how the human mind works not just 

through the study of human behavior, but by combining findings from different 

sciences. The Stanford Encyclopedia of Philosophy ("Stanford Encyclopedia of 

Philosophy: Cognitive Science") defines Cognitive Science as “… the 

interdisciplinary study of mind and intelligence, embracing philosophy, 

psychology, artificial intelligence, neuroscience, linguistics, and anthropology. 

The central hypothesis of cognitive science is that thinking can best be 

understood in terms of representational structures in the mind and computational 

procedures that operate on those structures.” Cognitive Science employs 

computer science and other sciences to understand the process of thinking, and 

not just traditional psychology.  This field provides several theories of how people 

gain knowledge, and how they gradually become experts. It also provides 

theories for the description and specification of knowledge, and how and in what 

forms this knowledge may exist in the world or the environment of a task. These 

theories have a direct impact on this thesis. 

Another field that has impacted the work in this thesis is the theory of 

Formal Grammars. Formal Grammars have been used to represent many 

computational problems in many fields, from the Theory of Computation (Sipser, 

2006), to Linguistics (Harrison, 1978), to Programming Languages (Sebesta, 

2006), to HCI (Payne & Green, 1986). Statecharts (Harel, 1987) and Augmented 

Transition Networks (ATNs) (Woods, 1970) have influenced the creation of a 

diagrammatic notation for the design of task models. ATNs are graph theoretic 

structures that are used in defining formal languages (Woods, 1970). Statecharts 
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are extensions to conventional state diagrams that allow representations of 

hierarchy, communication and concurrency. Statecharts also allow viewing 

descriptions at several levels of detail, which is part of what inspired the creation 

of the diagrammatic notation presented in this thesis. 

Kinesiology is the scientific study of human movement. While kinesiology 

mostly studies movement to understand its relation to health through scientific 

studies of human motion, this field provides models that can predict limb and 

body movement times very precisely. Kinesiology studies movement and function 

of the human body both at the behavioral level, as well as at the 

neurophysiological level. Work in this thesis studies human motion as it is 

performed for the completion of tasks in RBIs. Because RBIs allow the use real-

world actions, such as pointing and grasping, models developed to predict the 

completion time of these motions become particularly relevant during the 

prediction of completion times of task performance.  

1.3 Motivation 

The motivation for this thesis came from the study of Reality-Based 

Interaction (RBI) styles. So far, next generation interaction styles seem 

disconnected and more difficult to define than any previous interaction style. The 

diversity covered by Reality-Based Interaction styles is so great that there does 

not seem to be a unifying principle or a common theoretical basis with which to 

connect, for example, VR with TUI, even though both share many characteristics. 

VR provides a simulated world where users may act, and TUI provides physical 

manifestations of data in the real world. In both cases though, users act on 
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physical (or virtualizations of physical) artifacts to perform a task in a world. But 

even though users may perform the same actions in both interaction styles, there 

is only one explicit attempt (Jacob, 2004; , 2006) to find such cases and explain 

the phenomena that govern them.     

This attempt has identified some threads that may allow for the connection 

of these seemingly completely distinct interaction styles. First, all RBI styles are 

based on the fact that interaction should occur more naturally, using as a model 

the way interaction happens in the real world. Second, users seem to be able to 

use interfaces that are created in RBI styles more easily and without knowing 

much about how to work with a computer, than contemporary and previous 

generation interaction styles. Third, users seem to feel less afraid of the machine 

if the interaction style used to communicate provides actions that simulate real 

world actions (Shneiderman, 1998). 

Figure 1.1 summarizes the specific parts from each discipline that have 

been used in the creation of the theoretical basis of the CoDeIn framework. 

Cognitive Science has offered Cognitive Task Analysis (Chipman, Schraagen, & 

Shalin, 2000a), the study of the theory of knowledge transfer (Singley & 

Anderson, 1989), the theory of automatization (Logan, 1988), and the Model 

Human Processor (Card et al., 1983). These are used to provide a theoretical 

substratum for the use of task knowledge in building task models. Kinesiology 

offered theories of arm movement (Jones & Lederman, 2006; C. L. Mackenzie & 

Iberall, 1994), used to predict the completion time of pointing and grasping 

actions, common in RBI. Formal Grammars provided Statecharts (Harel, 1987) 
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and ATNs (Woods, 1970), used in the creation of the diagrammatic notation for 

creating task models. Last, Human-Computer Interaction provided the context of 

the problem. Existing evaluation methods in this field need to be extended to be 

able to evaluate RBI interfaces (Christou, 2007). 

 
Figure 1.1 Discipline Diagram 

1.4 Problem Refinement 

The questions that I address in this thesis are the following: 

• How can the informal understanding of the nature of a good interface be 

formalized? 

• If we define the nature of a good user interface, can we also define user 

categories in a formal way? 
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• Using the formal definition of interface and user, can we perform interface 

evaluation that provides quantitative data about task completion times and 

error-rates? 

A major hurdle to overcome is the non-existence of a common vocabulary 

of concepts that allows the description of different parts of the interfaces 

designed in RBIs. This lack of vocabulary makes it extremely difficult to discuss 

the advantages and disadvantages of each RBI and to compare parts of 

interfaces that perform the same function. 

CoDeIn provides a solution to this problem. The way that different 

interface components are named in the CoDeIn framework is designed so that 

the names are interaction-style-independent. Thus, it is easy to describe any 

structure in any interaction style, without referral to any interaction-style-specific 

structures, making the comparison and evaluation of tasks designed in different 

interaction styles easier. 

1.5 Contributions 

This thesis tackles a small part of the larger problem of task evaluation. 

Up to this point, user interfaces have been using a few allowable actions, which 

allowed a relatively small number of combinations between them. However, in 

RBIs this is not entirely true. RBIs mimic the real world, and this allows a large 

number of actions and their combinations, making the evaluation and comparison 

of RBIs very difficult. Also, the large differences between users’ experiences 

make pinpointing the exact type of user who would use Reality-Based interfaces 

to also be difficult. 
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Because RBIs use existing knowledge upon which to base their allowable 

interactions, the problem of knowledge transfer becomes extremely relevant. 

Also, because people have differing experiences with different things, some 

interactions may be more familiar to some people and less familiar to others. 

Thus, the difference between novice and expert is a second problem that 

becomes very relevant and may be wider in RBI than in WIMP.  

The presented framework deals with the prerequisites and effects of 

actions done by the user on the environment for the completion of a task. One 

may therefore presume that the frame problem ("Stanford Encyclopedia of 

Philosophy: The Frame Problem") is relevant. The frame problem refers to the 

fact that if an action in the world has specific consequences, the representation 

set of these consequences should also include all the non-consequences, or the 

things that remain constant after the action’s results in the world. The solution 

taken in this thesis for the frame problem is to treat each task as a closed world 

entity, where the knowledge and actions required for the performance of the task 

are the only things that exist. Therefore, there is no need to represent any of the 

non-effects, that is, things that do not change in the larger context of the 

environment in which the task is executed.  

As a solution to the questions mentioned in the previous section, I have 

created a framework that can formally define the user and the task, and based on 

these definitions, predict task completion times. Furthermore, this framework 

allows quantitative comparisons to be made between different task descriptions 

and different classes of users. The proposed framework has been tested in a 
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variety of situations on different interaction styles, to create a realistic view of its 

capabilities.  

The design of the framework proposes a shift in the mentality from goal-

based evaluation to task-based evaluation, as per the suggestion by Diaper and 

Stanton (2004b), who propose that “the whole concept of goals should be 

abandoned as unnecessary and thus one of the major sources of confusion 

about task analysis would be removed”. 

The contribution of this thesis can be summarized in the points below: 

• I have provided an extension to GOMSL to allow the modeling of grasping, 

by implementing a grasping operator. 

• I have explored how Fitts’ Law may be used to predict the completion time 

of grasping actions. I found that grasping actions may be described by a 

linear model, rather than a log model such as Fitts’ Law. 

• I have proposed a new way of specifying user performance according to 

their knowledge about the performance of tasks in an interface. 

• I have presented a measure for describing the expertise of users as a ratio 

of the rate of non-expert user performance and the rate of expert user 

performance of a particular task.  

• I have created a new task analysis approach that allows the description, 

comparison, and prediction of the completion time of tasks designed in 

different interaction styles. This approach has been developed and tested, 

and found to be more accurate in the context of new interaction styles or 

devices than GOMSL. 
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Chapter 2 Previous Work – Interaction 

Styles 

This chapter presents and defines various interaction styles and defines 

the term Reality-Based Interaction (Jacob, 2004; , 2006), a central concept in this 

thesis. The chapter concludes with the presentation and definition of various 

interaction styles.  

2.1 Interaction 

Interaction (as defined in the context of this thesis) is the set of the actions 

of users on a user interface to fulfill some task. This thesis is mostly concerned 

with two kinds of interaction styles that are most prevalent today: Direct 

Manipulation Interaction (DM) (Hutchins et al., 1986; Shneiderman, 1983) and 

Reality Based Interaction (RBI)  (Jacob, 2004; , 2006). 

The DM interaction style, also called the Windows, Icons, Menus, Pointer 

(WIMP) interaction style (Shneiderman, 1998), is most prevalent today in 

commercial applications; the keyboard and mouse necessary interaction devices 

for this interaction style. Non-WIMP (Jacob, 1995; Jacob et al., 1999) interaction 

styles or RBI (Jacob, 2004; , 2006) encompass many new ways of interacting 

with a computer, including tangible user interfaces (TUIs) (Ishii & Ullmer, 1997), 

virtual reality (VR) (Foley, 1987), augmented reality (Azuma, 1997), ubiquitous 

computing (Ubicomp) (Weiser, 1991), pervasive and handheld Interfaces (Saha 

& Mukherjee, 2003; Satyanarayanan, 2001), lightweight, tacit, or passive 
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interaction styles (Nielsen, 1993), perceptual user interfaces (Turk & Robertson, 

2000), affective computing (Picard, 2000), context aware interfaces (Schilit et al., 

1994), and speech and multi-modal interfaces (Waibel et al., 1996), and any 

other interaction styles that base interaction on real world actions, skills, and 

knowledge. 

2.2  Direct Manipulation 

WIMP or Direct Manipulation (Hutchins et al., 1986; Shneiderman, 1983) 

was developed through research at Xerox PARC, beginning with the Alto 

computer (Thacker, 1979) and followed by the Xerox Star interface (J. Johnson 

et al., 1989). These were the first interfaces that provided the user with the four 

ingredients that define this interaction style: Windows, Icons, Menus, and the 

Pointer. The Alto and Xerox Star were also the first computers that ran operating 

systems that used the desktop metaphor that has persisted in the modern DM 

interfaces of Microsoft Windows and the Mac OS.  

The desktop metaphor presents a virtual office on the screen of the 

computer. Almost every feature, from artifacts that represent data to artifacts that 

allow the user to interact with that data, has some sort of metaphorical 

connotation to a feature of a real office. This allows users to have a feeling of “I 

have done this before”, which may alleviate some mistrust between the user and 

the machine (Hall, 1994). The metaphor is also a means by which to make it 

easier for users to learn how to use the user interface, because the interface is 

based on a real-world office structure that is already known by users. 
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In cognitive psychology, it is widely theorized that people learn more easily 

if they base the new things they learn on things that they already know 

(Anderson, Reder, & Simon, 1996; Bransford, Brown, Cocking, & National 

Research Council (U. S.) Committee on Learning Research and Educational 

Practice, 2000; Singley & Anderson, 1989). This theory of learning is widely 

known as Constructivist Theory (Bruner, 1966). This theory states that learners 

construct new ideas or concepts based on what they already know (Bruner, 

1966). Because learning occurs on top of existing knowledge that the user 

already possesses, a smoother introduction to computer usage occurs than when 

introducing the user to the command line prompt that arose in early time-sharing 

systems and is still used in the UNIX operating system (Sweller, 1988). 

Hutchins, Hollan and Norman (1986) have proposed that DM is better than 

the Command-Line Interaction style, because of DM’s graphical nature and more 

direct way of interacting with data than Command-Line interaction. Still though, 

there is loss in flexibility and the ability to execute commands in batch scripts 

when using DM, as opposed to command-line interaction.  

DM bases all its interactions on some kind of pointing device, such as the 

mouse, the trackball, or even a touch-screen. While Hutchins, Hollan and 

Norman (1986) have argued that this interaction style allows the direct 

manipulation of the data on the computer, the manipulation of data is based on 

manipulating the pointer through the pointing device and understanding the 

symbolisms behind the desktop metaphor, and the different types of icons that 

this metaphor provides. The user needs to know how to perform all the 
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necessary actions like selection and dragging, and equate them to real world 

actions like grabbing and moving. This conceptual mapping happens more easily 

when one uses the DM style instead of previous generations of interaction styles, 

but it is still required if the user is to become an expert. But recent technological 

advances allow the creation of interaction styles that employ metaphors that are 

closer to the real world structures they try to mimic. For example, instead of using 

a “virtual office” metaphor, a “place item in box” metaphor may be employed. 

Such a metaphor may be more accessible to users, because it does not required 

them to be familiar to the office environment. However, the end goal is to create 

interfaces that will not need metaphors to show their function to their users. 

Rather, research on these interfaces tries to make them invisible to their users 

(Norman, 1999b; Weiser, 1991), either by completely enmeshing them into the 

real world to augment it for the benefit of the user or by creating a simulation that 

convinces users that the interface is the real world. These interaction styles are 

analyzed in the next section. 

2.3 Reality-Based Interaction 

Today, leaps in technology have allowed for the creation of Non-WIMP 

(Jacob et al., 1999) or Post-WIMP (Van Dam, 1997) interaction styles. These 

share the common characteristic that they try to leverage the knowledge and 

skills that users already possess, through interactions that are similar to real 

world interactions. This is facilitated by the use of novel input and output devices 

that either exist enmeshed in the real world, or perhaps simulate the real world. 
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Because they leverage real world interactions, skills and knowledge, they have 

also been called Reality-Based Interaction (RBI) (Jacob, 2004; , 2006). 

Various Reality-Based Interaction Styles (RBIs), though, do not seem to 

have any common threads between them, so researchers do not have much 

common ground upon which to view the whole landscape of these interaction 

styles. Now, however, there is an attempt to unify the different paths in RBI 

research (Jacob, 2004; , 2006). This effort also tries to overcome the problem 

that each interaction style uses its own ways of communication between the user 

and the computer. Jacob (2004) proposes that by unifying these different paths in 

research we may find “gaps or opportunities for future development; and perhaps 

… provide some explanatory power for understanding what makes them better or 

worse” (Jacob, 2004, p. 2). Jacob (2004) further proposes that the unification of 

RBIs should be done by using the fact that “the new interfaces increasingly 

leverage the user’s pre-existing abilities and expectations rather than trained 

skills” (Jacob, 2004, p. 2).  

As proposed by Norman (1986), there are two problems in learning to use 

an interface: the “Gulf of Execution” and the “Gulf of Evaluation”. The “Gulf of 

Execution” is the mental gulf that users must cross to turn their intentions into 

commands of the interface to perform a task. The “Gulf of Evaluation” is the 

mental gulf that users must cross to understand the state of the system from the 

interface’s feedback, after a task has been executed.  RBIs try to bridge the two 

gulfs by using natural interactions, interactions that occur in the real world in the 

same way that they occur in RBIs and have the same effects. Because users 



 

22 

know how to perform these interactions, they do not have to interpret their 

intentions into the interface’s language. Instead, they can perform these 

interactions automatically (Logan, 1988). Users also do not have to translate the 

system’s feedback to understand the system state, because they know what 

effect their actions have, and can thus evaluate the results based on their pre-

existing experience in the real world. 

The real power of RBIs, however, is that not only can they provide 

interactions similar to those in the real world, but they can also augment these 

interactions, to make them more powerful. For example, walking to move from 

point A to point B in a navigational interface may be augmented with flying, which 

is not a real world action for humans. Thus, there is a trade-off between the 

power of the RBI and how closely it models the real world. If the real world is 

modeled exactly, then there can be no augmented interactions, but if there are 

many augmented interactions, then the real world is not modeled closely, and the 

interface moves feels less real. Thus, one might ask: 

• How much augmentation is too much augmentation? 

• How does the interface communicate to the user the augmentation of a 

real world interaction?  

These questions are complex in their own right, and completely answering 

them is beyond the scope of this thesis. However, the thesis will touch upon 

these questions tangentially, as it tries to define a task modeling framework that 

allows task evaluation.  
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Because of the diversity and the apparent disparity between RBIs, there is 

no way for a researcher to use one solution for the description and the evaluation 

of distinct interfaces or even of tasks performed in these interfaces. This disparity 

is a hindering factor in the further improvement of the whole field, because 

solutions to what may be common problems cannot be communicated between 

sub-communities developing different RBI models. This thesis aims to provide 

solutions to some parts of this problem. The next sections present some of the 

most prevalent RBIs to which this thesis will refer in the following chapters. 

2.3.1 Virtual Reality 

The goal of VR interfaces (Foley, 1987) is to create a complete virtual a 

simulation of a world, and allows the user to interact with the virtual world, as one 

would with the real world. Thus, one major goal of VR is to make the experience 

of the simulated world feel as “real” or immersive to the user as the real world. 

According to Sutherland (1965) the main objectives that drive VR research are 

the following: the use of the display as a window to a virtual world through head-

mounted displays, the improvement of image generation until the picture looks 

real, the maintenance of the world model by the computer in real time, the direct 

and realistic manipulation of the virtual artifacts by the user, and making the 

virtual world feel and sound real. 

Today, VR employs devices that project images either directly in front of 

the user’s eyes with a head mounted display (HMD), devices that can project an 

image all around a user (such as immersive 3D environments), such as the one 

shown in (Arizona State University), or large displays that try to span the user’s 
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entire visual field (Patrick et al., 2000). The use of these devices tries to convince 

users that the world that the interfaces present is the real world and that the 

users are now in another (virtual) world that feels as real as the real world. This is 

the environment where interaction takes place. 

VR user interfaces provide the user with ways to interact that are more 

natural than those that are used in a DM user interface. This is because the user 

should be able to interact with the virtual world as if it were real. Through the use 

of augmented interactions, the interface also allows the user to use “super 

powers” such as flying or x-ray vision to perform certain tasks (Jacob, Leggett, 

Myers, & Pausch, 1993).  

However, even though interactions may be augmented, and new actions 

may be created that users cannot perform in real life, still the concept of RBI 

remains; using real-world interactions, or basing interactions on real-world 

interactions, allows one to create interfaces that seem as real as possible to the 

user. 

VR is mostly used in programs that can be enhanced if they provide a 

“real” feel to the user. For example, architectural walkthroughs allow clients to 

feel as if they are walking in the house, and see it the way it would look as if it 

were already built (Foley, Van Dam, Feiner, & Hughes, 1990). Another example 

would be in digital museums where users can directly interact with the exhibits, 

for example by manipulating a coin or a vase (Shiaw, 2003). This enhances the 

user’s ability to study the exhibits and unlike in a real museum-- the user can 

actually see the whole item and study it more carefully. Another application is for 
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collaborative work, where users meet in virtual spaces and interact to perform 

shared tasks (Deligiannidis, 2000). 

VR however still faces many challenges, including providing feedback that 

feels as real as in the real world, modeling worlds convincingly, and choosing an 

appropriate display type for each application. Other challenges have to do with 

current graphics technologies such as providing photo-realistic avatars (Brooks 

Jr., 1999), and haptic technologies, such as providing the real feeling of texture 

when users touch a surface in the virtual world (Brooks Jr., 1999). These are a 

few of the problems that need to be solved before VR is viable for mainstream 

use.  

2.3.2 Augmented Reality 

Augmented Reality (AR) is very similar to VR, but instead of trying to 

immerse the user in a simulated world, it superimposes virtual artifacts on the 

real world. Azuma defines AR as “an environment which includes both virtual 

reality and real world elements” (Azuma, 1997). AR is positioned as a technology 

between VR and Ubiquitous Computing, which is discussed in the next section. 

The goal of AR is to provide seamless interaction with the real world and 

with virtual objects that are superimposed on the real world, without requiring a 

user’s explicit understanding of the difference between the real and virtual 

objects. AR tries to create an illusion of an augmented world, which to users 

seems completely real.  AR use aims toward enhancing users’ perception of and 

interaction with the world, thus amplifying users’ abilities and interactions with the 

world, in order to make the performance of tasks easier (Azuma, 1997).  
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Because the object is to allow the user to interact in an environment, the 

most prevalent allowable action in AR is prehension, the action of reaching and 

grabbing an artifact. Prehension is one of the few ways that users can 

manipulate their real-world environment. Because AR provides a view of a 

computer-enhanced world, interaction with the world should not be extremely 

modified, as it can be in VR. Rather, it should be grounded on what the user can 

already do in the real-world environment.  

However, just like VR, AR also faces problems in implementation. One of 

the major problems is superimposing virtual objects correctly onto the real world, 

so that users do not notice the difference between the real and the virtual 

objects. Because AR uses cameras to capture the scene that the user sees, and 

then manipulates the captured images to find the user’s point of view, it is 

possible to mis-position virtual objects, especially if the point of view of the user 

changes abruptly. But despite problems such as this one, AR is used in many 

fields, most importantly in computer assisted surgeries, aiding doctors in 

navigating their instruments in difficult or delicate surgeries, and is very 

successful in doing so (Grimson et al., 1997). 

2.3.3 Ubiquitous Computing 

Ubiquitous Computing (Abowd, Mynatt, & Rodden, 2002; Chung et al., 

2004; Dey, Ljungstrand, & Schmidt, 2001; Want et al., 1995; Weiser, 1991; , 

1993) (Ubicomp, also known as Pervasive Computing) is actually a vision of how 

interaction with computers should be done, rather than a particular interaction 

style. Ubicomp, as defined by Weiser (Weiser, 1991), provides interactions with 
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computers with which users never come in direct contact. Ubicomp is the 

opposite of VR. Whereas VR puts the person inside a world built by a computer, 

Ubicomp forces the computer to live in the real world along with people. Weiser 

(1991) calls this the invisible computer, or a computer that the user does not 

know exists. Whereas VR tries to capture the user’s attention completely and 

create a virtual world in which the user feels completely immersed, UbiComp 

wants the computer to become completely unobtrusive, and to allow the user to 

not pay any attention whatsoever to any of the computer’s attributes. 

Most of the work in UbiComp has stemmed from projects at Xerox PARC, 

centered around ubiquitous devices “tabs”, “pads” and “boards” (Want et al., 

1995). These artifacts are created so that they blend in with today’s environment, 

so that the user would not recognize them as parts of a computer interface. 

Rather, the artifacts are built to seem as if they are part of the environment to 

which they can be found (Weiser, 1993). 

UbiComp relies heavily on the usage of wireless devices, which can 

communicate with a computer that holds information about the environment and 

responds to actions that a user might perform with them (Satyanarayanan, 2001).  

2.3.4 Tangible User Interfaces 

Tangible User Interfaces (TUIs) are an extension of the ideas presented 

by Fitzmaurice, Ishii and Buxton (Fitzmaurice, Ishii, & Buxton, 1995) and their 

graspable interfaces. Bricks (Fitzmaurice et al., 1995), employs actual artifacts to 

represent digital information. By manipulating these artifacts a user can control 

the digital information. Ishii and Ullmer (1997) extended the ideas of graspable 
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interfaces put forth in Fitzmaurice (1996) to describe TUIs as the interaction style 

that uses real artifacts (things that the user can touch) to represent and control 

digital information.   

The interaction model that TUIs use is based on physically represented 

digital information, like a spatially manipulable physical object, that is coupled to 

some non-graspable representation of digital information, such as graphics and 

audio (Cheung, 2002; Fitzmaurice et al., 1995; Ishii, Mazalek, & Lee, 2001; 

Jacob, Ishii, Pangaro, & Patten, 2002). This coupling is achieved by using four 

characteristics of TUIs: 1. Physical representations are computationally coupled 

to underlying digital information, 2. Physical representations embody 

mechanisms for interactive control, 3. Physical representations are perceptually 

coupled to actively mediated digital representations, and 4. Physical state of 

tangibles embodies key aspects of the digital state of a system (Ullmer & Ishii, 

2000). 

Using these four principles, one can create several different relationships 

between the artifacts that a user can manipulate and the non-graspable digital 

information. As Ullmer and Ishii (2000) explain, these relationships can be 

spatial, in the way that was explained previously. They could be constructive, for 

example, when the graspable artifacts can be put together to create a bigger 

structure that conveys meaning to the non-graspable information. They can also 

be associative, where each artifact has some association with non-graspable 

information, but the associations cannot be integrated into larger scale 

relationships. 
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Holmquist et al. (Holmquist, Redstrom, & Ljungstrand, 1999) suggest a 

taxonomy of artifacts that can be linked to digital information, including 

containers, tokens and tools. Containers are any artifacts that are used to move 

information from the physical realm to the digital realm and back. Tokens are 

artifacts that encapsulate digital information in their state, while tools are artifacts 

that allow the user to manipulate the information in the system. Shaer et al. 

(Shaer, Leland, Calvillo-Gamez, & Jacob, 2004) describe TUIs based on the 

interaction between the graspable artifacts tokens and the constraints on the 

tokens. This paradigm takes a step towards creating a high-level description 

language for understanding and specifying TUIs. 

2.4 Summary 

This chapter presented interaction styles and the two major currents of 

interaction in existence today, DM and RBIs. The major difference between these 

two trends in interaction is that the former presupposes that the computer is a 

multi-purpose artifact that can be used for the performance of tasks, while the 

latter supposes that the computer is not an artifact that deserves the user’s direct 

attention. Rather, it is an artifact that is better used when embedded somehow in 

the nature of the task, and enhances the physical properties of the environment 

in which the task will take place. 

This difference forces different types of physical interaction to be required 

by each interaction approach. DM assumes that there will be a pointing device 

and a keyboard, through which all interaction with the computer takes place. On 

the other hand, RBI assumes that users will interact with the environment, just 
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like they would interact with the real world, or that augmented interactions will be 

based on users’ natural abilities. This, in turn, suggests the study of motions 

used by humans to manipulate their real-world environment. One first obvious 

candidate for such study is the grasping action. Because the grasping action is 

one of the most frequent actions that people use to manipulate and act on their 

environment (Jones & Lederman, 2006; C. L. Mackenzie & Iberall, 1994), it is the 

action that has the most potential to be used in RBI as well. Therefore, any 

model-based evaluation method that tries to evaluate RBI should in turn have a 

modeling mechanism for this action. Evaluation methods, especially predictive 

model-based evaluation methods, are the subject of the next chapter. 
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Chapter 3 Previous Work – Task 

Analysis 

3.1 Task Analysis  

Task Analysis (TA) is the analysis of what some person, entity or agent is 

required to do to complete some task. TA is a structured process by which the 

major parts of a task are identified, and analyzed in order to understand the 

task’s properties. TA is based upon work by Taylor (1911) and Gilbreth (1911) 

who analyzed physical actions done by manual labor workers. Diaper (2004) 

defines TA as “the collective noun used in the field of ergonomics, which includes 

HCI, for all the methods of collecting, classifying and interpreting data on the 

performance of systems that include at least one person as a system 

component” (Diaper, 2004, p. 14). 

There are many kinds of TA with differing goals. Some TA methods aim to 

analyze the usability of a user interface (Annet, 2003; Annet & Duncan, 1967; 

Carroll & Rosson, 1992; P. Johnson et al., 1988; Turner & McEwan, 2004), while 

other methods create predictive models to test the efficiency of an interface 

(Baber & Stanton, 1994; Card et al., 1983; De Carolis, De Rosis, & Pizzutilo, 

1996; Gray & Altmann, 2001; Hamilton, 1996; Hartson, Andre, Williges, & Van 

Rens, 1999; Howes & Young, 1991).  

The basic methodology that must be followed to perform a TA is the same 

for most kinds of TA. First, the tasks that users perform are identified and/or 
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classified. This is usually accomplished either through directly observing users 

while they perform tasks, or by interviewing users about the tasks that they 

perform. Then three types of requirements analysis are performed: systems 

requirements analysis, user requirements analysis and task requirements 

analysis. The three requirements analyses try to match the system under design 

with the user types and task types that it will support. For example, an accounting 

system needs to allow an accountant to open the accounting books for a 

business, and a clerk to input sales data, but it should not allow the clerk to open 

accounting books for any business. However, the system may not be able to 

accommodate all tasks and users that a client may want (Greenburg, 2004). After 

one has determined the user and task types that will be supported by the system, 

scenarios or models are developed for each task to be supported. Finally, the 

designer performs a walkthrough of each scenario, and checks whether there are 

errors in the proposed task solution, while the modeler runs each task model and 

predicts the performance of each proposed task. 

This chapter presents various model-based TA approaches, major TA 

models, and theories, and provides the context for considering the CoDeIn 

framework as a TA method.   

3.2 Cognitive Task Analysis 

Cognitive Task Analysis (CTA) (Chipman et al., 2000a) is a subdiscipline 

of TA that focuses primarily on the cognitive aspects of a task, such as modeling 

the perception of an artifact before its use, instead of modeling only the action of 

its use. CTA is a set of methods used to identify the cognitive skills that are 
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needed to perform a task proficiently. The results of CTA provide information to 

designers about how to create systems that can be used easily and learned 

quickly. CTA techniques today have become much more sophisticated than their 

century old counterparts (Drury, Paramore, Van Cott, Grey, & Corlett, 1987).   

CTA is defined by Chipman, Schraagen and Shalin (2000b) as “the 

extension of traditional task analysis techniques to yield information about the 

knowledge, thought processes and goal structures that underlie observable task 

performance” (Chipman et al., 2000b, p. 3). CTA theories provide support for 

specific methodologies for gathering and analyzing task data. While both CTA 

and TA model a task in both cognitive and physical realms, TA methods focus 

more on the physical part of a task, while CTA methods tend to focus more on 

the cognitive requirements of a task.  

CTA begins with a study of the processes involved in the performance of a 

job, in order to determine the constituent tasks of that job that should be 

analyzed (Chipman et al., 2000a). This study involves reading material that 

pertains to the jobs to be analyzed, and interviewing people who perform the job, 

so that the CTA analyst understands as much as possible the nature of the job 

and the processes that comprise it. The second step in CTA is to identify 

knowledge representations that performers of these tasks have (Chipman et al., 

2000a). Knowledge representations are the collection of facts and skills that are 

required for the execution of a task, and they way these are grouped and 

processed by task performers. The identification of knowledge representations is 

also known as knowledge elicitation (Boose, 1989; Cook, 1994; Olson & Biolsi, 
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1991). There are many different types of knowledge elicitation, but the goal of all 

is to yield the knowledge representations required for the studied tasks. The final 

step in CTA is to use the knowledge elicitation techniques that apply, based on 

the chosen CTA theory to apply towards the analysis of the job (Diaper & 

Stanton, 2004a).  

CTA focuses on modeling procedural or “how to do it” knowledge, by 

focusing on mapping the task to the actions that constitute the task. More 

recently CTA techniques have focused upon “goal to task” mappings that require 

less formal analysis techniques. This analysis is done to describe what people 

already know about a specific task, and the class of tasks that include each 

specific task. In the following sections we describe two techniques that have 

influenced the design of the framework that is presented in this thesis. 

CTA models the internal representation and processing that occurs within 

a human agent for the purpose of designing tasks that can be undertaken more 

effectively by humans. It is based upon applying cognitive analysis techniques to 

understand which actions in tasks are cognitive in nature, and how the designer 

can help the user understand these actions and perform or learn them efficiently.  

Many CTA methodologies exist, including Goals, Operators, Methods, 

Selection Rules (GOMS) by Card, Moran and Newell (1983). GOMS is a model-

based CTA methodology that is primarily evaluative in nature and pertains to 

expert, error-free performance. Other CTA methodologies include Task 

Knowledge Structures (TKS) (H. Johnson & P. Johnson, 1991; P. Johnson & H. 

Johnson, 1991; P. Johnson et al., 1988), Cognitive Complexity Theory (CCT) 
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(Kieras & Polson, 1985) and Task-Action Grammars (TAGs) (Payne & Green, 

1986). 

The work described in this dissertation is positioned between TA and CTA. 

CoDeIn uses cognitive knowledge structures (CTA) to describe and predict the 

performance of a physical task (TA).  

3.3 Varieties of Task Analysis Methods 

Several TA and CTA methods have influenced CoDeIn or are directly 

used in CoDeIn. 

3.3.1 Fitts’ Law 

Fitts’ Law (Fitts, 1954; Fitts & Peterson, 1964) states that the reaction time 

required for a pointing movement is proportional to the Index of Difficulty (ID) of 

the movement. The ID is further defined to be the logarithm of the ratio of the 

amplitude of the movement to the width of the target, as in the following equation: 

ID = log(2A/W).  

Fitts’ Law has been used in many kinds of task analyses, and has always 

provided estimates closed to measured results. Various experiments show that 

have been performed have shown that Fitts’ Law not only holds for pointing 

movements with the hands, but also for pointing with other limbs, like the head 

(Andres & Hartung, 1989), the feet (Glasser & Halcomb, 1980), and even eye-

gaze (Miniotas, 2000). It also applies to pointing movements with interaction 

devices such as the mouse (I. S. MacKenzie, 1992a; , 1992b; I. S. MacKenzie & 

Buxton, 1994).  
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MacKenzie has provided a different version of ID, which he called the 

Shannon formulation: ID = log(A/W + 1) (I. S. MacKenzie, 1992a; , 1992b; I. S. 

MacKenzie & Buxton, 1994). According to MacKenzie this formulation is more 

accurate than the original definition, and it is always greater or equal to 1, 

whereas the original definition may be negative (I. S. MacKenzie & Buxton, 

1994). MacKenzie has also shown that Fitts’ Law also applies to drag-and-drop 

type movements using the mouse, and not only to pointing movements (I. S. 

MacKenzie, 1992a). Fitts’ Law is used in several predictive model-based 

approaches, including GOMS, and it is also used in the CoDeIn framework. 

While Fitts’ Law is one of the few predictive, hard engineering models that 

HCI has in its arsenal, it can only predict the completion time of target-

acquisition-type movements. However, Accot and Zhai (1997) derive a model for 

2-dimensional movements from Fitts’ Law that applies to 2-dimensional 

movements, called the Accot-Zhai steering law. This law can be used to model 

movements that require following a trajectory rather than target acquisition. 

Fitts’ Law also cannot be used to model grasping actions. Grasping 

movements are not at all like target-acquisition movements, but rather consist of 

three different movements, including one the target-acquisition or transport 

movement, then a hand shaping movement, and finally the actual grasping action 

(C. L. Mackenzie & Iberall, 1994). While there are multitudes of models of 

grasping in the existing literature (i.e. Jones & Lederman, 2006; C. L. Mackenzie 

& Iberall, 1994), there do not seem to be any straightforward models that predict 

the completion time of a grasping action based on amplitude of the movement, in 
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the manner that Fitts’ Law does with the pointing action. Grasping is a 

fundamental action in RBIs, so that any task analysis method that wants to model 

RBIs, should be able to model grasping actions as well.  

3.3.2 Norman’s Theory of Action 

Norman, in his introduction to Cognitive Engineering (Norman, 1986), 

presented a theory of action (NTOA) that includes the following seven stages: 

1. Establishing the Goal 

2. Forming the Intention 

3. Specifying the Action Sequence 

4. Executing the Action Sequence 

5. Perceiving the System State 

6. Interpreting the System State 

7. Evaluating the System State with respect to Goals and Intentions. 

Norman based these seven stages on two conceptual structures that the 

user needs to overcome in order to use a system: “The Gulf of Execution” and 

“The Gulf of Evaluation” (Norman, 1986). 

The two Gulfs are presented as explanations as to why users make 

mistakes when using an interface. The Gulf of Execution refers to the conceptual 

shift that users need to make in order to translate their goals and intentions into 

allowable actions of the interface, in order to perform the required task. This Gulf 

occurs between steps 2 and 3 of NTOA. When mapping from goals to actions, 

there is the possibility that a user will choose actions that do not match goals. 

Because users need to change their goals into specific actions in the language of 



 

38 

the interface, however small or large this change may be, it introduces the 

possibility of users erroneously choosing actions that are not appropriate for the 

specification of their goals in the interface language.  By contrast, the Gulf of 

Evaluation occurs in another conceptual shift, this time to interpret the system 

state, by perceiving the feedback of the system. In this case, the Gulf sits 

between steps 5 and 6 of NTOA.  This Gulf represents a different type of error; 

that of mistranslating the feedback of the system and understanding that 

something other than what really happened is the result of executing actions that 

the user chose. 

Norman argues that by realizing that these gulfs exist, and by consciously 

trying to design interfaces that minimize these gulfs, the interfaces become more 

useable and easier to learn. Hutchins et al. (1986), argue that the reason that DM 

interaction style is so much better than all of its predecessors is that it makes 

these gulfs smaller than before. RBIs also attempt to minimize these gulfs by  

allowing actions that either mimic or extend real-world actions that users already 

understand (Jacob, 2004; , 2006). 

While the problem with NTOA is that NTOA proposes a theoretical 

framework for treating actions and action sequences, it fails to define a formal 

framework within upon the action sequences of an interface may be defined and 

analyzed. NTOA also fails to predict how a “big” gulf may impact the usability of 

an interface vs. a “small” gulf, because there is no methodology by which to 

quantify these terms. Because it is a conceptual theory, it has limited use when 

one’s goal is to produce an evaluation theory with quantifiable, objective results.  
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3.3.3 GOMS and MHP 

Goals, Operators, Methods and Selection rules (GOMS) was developed 

by Card, Moran and Newell (1983) (CMN-GOMS), to describe expert, error-free 

performance in the context of a task. GOMS creates a model for a task that can 

be used for predicting the completion time of the modeled task. 

Goals in GOMS are the goals that a user has when trying to accomplish a 

task, as they would be described in layman’s terms. For example, a goal for 

GOMS could be “delete the word ‘they’ in the preceding sentence”. The 

operators in GOMS are the actions that one can do in the interface, in order to 

fulfill the goals, whereas methods are some well-learned actions or sequences of 

actions comprised of those aforementioned operators, in order to accomplish 

some goal. The selection rules are rules that a user would use to select between 

different operators and methods that would allow her to accomplish the same 

goal, or eventually reach the same goal. 

GOMS was created to model expert, error-free performance, and makes 

the assumption that the operators, methods and selection rules for some task 

have been learned by its users, have been memorized, and can be recalled and 

used automatically by users. Even though GOMS can find deficiencies in the 

design of a user interface or interaction device for the performance of the 

evaluated task by experts, it can only provide hints as to how to make it more 

efficient for the expert user. It cannot however, provide any information about the 

new, inexperienced user, because it does not allow adjustments to its predictions 
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based on the knowledge level of the user using the user interface or interaction 

device.  

GOMS bases the evaluation of a task upon the goals of the user. In 

contrast, CoDeIn focuses on the knowledge that a user has about how to 

accomplish a specific goal using a certain interface or device. This allows 

CoDeIn to be used to analyze and evaluate the behavior of even a new or 

average user, rather than only the expert user.  

GOMS encompasses task-analysis techniques that are related to models 

of human information processing. There are many different flavors of GOMS, 

with the simplest one being the Keystroke-Level Model (KLM) (Card & Moran, 

1980), CPM-GOMS (B. E.  John, 1988) and GOMSL (Kieras, 1999).  

KLM-GOMS (Keystroke Level Model) was an attempt by Card and Moran 

(1980) to create a predictive modeling method for user interface evaluation. It 

was created by measuring the performance of several “primitive operators”, such 

as how long it takes a user to press a key on the keyboard or how long it takes to 

move the mouse on the screen to point to a target. Each of these actions is 

associated with a time prediction, so that when a model is created using this 

method, the sum of all the time predictions equals the predicted performance of 

the whole task. KLM-GOMS operators are used in the more comprehensive 

CMN-GOMS, and two other variations, GOMSL and CPM-GOMS. 

GOMS Language (GOMSL) (Kieras, 1999) is the successor of Natural 

GOMS Language (NGOMSL) (Kieras, 1996), both created by Kieras. GOMSL 

defines a standard way that GOMS models are written, by creating a standard 
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notation for actions and a subroutine mechanism, so that a top level description 

of a task may use models of subtasks as method calls to model the top level 

task. All the GOMS models in this thesis are written in GOMSL, and use 

GOMSL’s rules for the calculation of predicted completion times of tasks, where 

possible. GOMSL models can also be compiled by a tool called GLEAN (Kieras, 

1999) that produces predictions about the completion times of the tasks 

described using GOMSL automatically.   

CPM-GOMS (Cognitive Perceptual Motor GOMS) was created by Bonnie 

John (1988). This variation distinguishes between the operators that are used in 

the performance of a task at a very low cognitive level. CPM-GOMS supports 

cognitive, perceptual, and motor operators, each of which needs to be initialized 

and then can be used in the modeling of a task. Because an operator may be 

initialized at the same time as some other operator is executed, the model of a 

task is described as a PERT-chart. That resultant chart shows the performance 

of the task over time through initialization and application of different operators.  

This variation is different than the others, because by design, it can 

accommodate actions that are performed in parallel, while the others cannot. 

Because of this added capability though, it is also a complex method to apply 

when modeling a task, therefore its creator suggests that it be used only when 

another GOMS method cannot be used (B. E. John, 2003; B. E. John & Kieras, 

1996a; , 1996b). The capability of modeling parallel actions however, is very 

important in the modeling of tasks performed in RBIs, because as was described 

in the previous chapter, RBIs allow the performance of actions just like they are 
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performed in the real world. The actions of walking and chewing gum at the same 

time, for example, would be impossible to model by GOMS methods other than 

CPM-GOMS. However, due to its complicated structure, John and Kieras 

(1996b) recommend not to use CPM-GOMS when modeling simple tasks. This 

creates a catch-22 situation for the modeler who needs to model simple, parallel 

tasks in a predictive task modeling method. 

Much has been written on the differences between the types of GOMS 

(Baskin & John, 1998; B. E. John & Kieras, 1996a). John and Kieras also 

suggest how to choose between GOMS methods for the task to be modeled (B. 

E. John & Kieras, 1996b). 

All of the aforementioned GOMS variations are based on the Model 

Human Processor (MHP) (Card et al., 1983). MHP is a psychological model of a 

user as an information processing system. The MHP includes a set of “principles 

of operation” (Card et al., 1983), which govern the operation of the models 

created in any GOMS technique. MHP provides a framework that allows one to 

compute a time estimate for many of the actions that a human may perform while 

executing a task. 

MHP makes parallels between the human brain and a processor, with 

three sub-processors and four types of memory. The processors are the 

Cognitive Processor, the Perceptual Processor, and the Motor Processor. The 

two main memory types are: Long-Term Memory and Working Memory, which 

includes the Visual Image Store and the Auditory Image Store. Figure 3.1 shows 

a depiction of MHP. 
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Figure 3.1 The MHP as depicted by Kieras (1999). Used by permission. 

There are 10 “principles of operation” proposed by MHP (Card et al., 

1983): 

1. Recognize-Act Cycle of the Cognitive Processor: during each cycle of 

this processor, working memory contents initiate actions from long term 

memory, linked to the contents of working memory. These actions, in turn, 

change the contents of working memory.  

2. Variable Perceptual Processor Rate: the perceptual processor’s cycle 

time varies inversely to the stimulus intensity, so that the more intense the 

stimulus, the less time is required to perceive it. 
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3. Encoding Specificity: encoding at the time of perception impacts what 

and how information is stored. Something that makes an impression is 

encoded stronger than something that does not. For example, a car 

accident is encoded with more intensity than a mundane drive on the 

highway. 

4. Discrimination Principle: the difficulty of memory retrieval depends on 

the number of viable candidates in memory that may fit the problem and 

that can be retrieved. 

5. Fitts’ Law as described previously. 

6. Variable Cognitive Processor Rate: the cycle time is shorter for more 

intense tasks, and the cycle time also diminishes with practice. 

7. Power Law of Practice: the time required for the performance of an 

action is exponentially proportional to the amount of times the action has 

been performed.  

8. Uncertainty Principle: the time to decide increases with the uncertainty 

about the judgment to be made. For example, choosing between two 

options that have the same probability to be selected is faster than 

choosing between 20 options.  

9. Problem Space Principle: the rational activity in which humans engage 

to solve a problem can be described in terms of (1) a set of states of 

knowledge, (2) operators for changing one state into another, (3) 

constraints on applying operators, and (4) control knowledge for deciding 

what to apply next.  
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10. Rationality Principle: people act to attain goals through rational action.  

3.3.4 Task Knowledge Structures 

Task Knowledge Structures (TKS) (H. Johnson & P. Johnson, 1991; P. 

Johnson & H. Johnson, 1991; P. Johnson et al., 1988) are a theoretical and 

methodological approach to modeling tasks. The TKS theory assumes that when 

people learn how to perform a task, the actions and methods used to perform 

that task are not stored in memory as stand-alone facts. Rather they are stored 

as grouped knowledge structures that can be remembered and recalled as a 

coherent whole. This knowledge about tasks is represented in conceptual 

structures in long term memory, as a coherent structure for each task, called a 

task knowledge structure. TKS assumes that all of the knowledge about some 

task is stored in a task knowledge structure, and that this knowledge can be 

activated when one starts performing a  task (H. Johnson & P. Johnson, 1991). 

TKS also assumes that as people learn to use a system, and while they use a 

system, they develop more complex knowledge structures. Therefore, users build 

an action vocabulary (of structures of increasing length) that becomes close to 

automatic to retrieve.  

The theoretical structures to which TKS refers are based upon a cognitive 

theory that states that the way people fulfill tasks is based on two things: that the 

task knowledge structures are action sequences that people store in their long 

term memory, and that people search long term memory to determine whether 

they know of any action sequence that fulfills the required task. These two 

assumptions, along with the belief that most behavior is goal-oriented, allow TKS 
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to describe a complete theory of how and why users try to fulfill a task the way 

that they would. 

TKS includes knowledge not only about how to perform a task, but also 

about objects that are used to accomplish that task. This knowledge allows 

people to recognize these objects and use them according to the requirements of 

the task and according to peoples’ experience with these objects. Knowledge 

about these objects then includes knowledge about their “affordances” and 

“constraints”, as explained in Chapter 4.  

Therefore, a TKS is a summary representation of the different types of 

knowledge that are recruited and used during task behavior. The way that TKS is 

used in usability evaluation is by first deciding upon the “role” to which a person 

is assigned for a particular task. For example, while one is writing a document on 

a word processor, one’s role could be secretary, student, project manager, etc. A 

person could also be in any of these roles at any given time; one could be a 

secretary for one task and a student for another. The theory of TKS assumes that 

people take many roles through their lives, and that the TKS that they create can 

be transferred from one role to another. There are tasks that are associated with 

these roles, and there will be a task knowledge structure for each task that a role 

may be required to perform (H. Johnson & P. Johnson, 1991; P. Johnson & H. 

Johnson, 1991).  

These TKS may be similar between tasks across roles. This occurs when 

a person performs a similar task under different roles. In the aforementioned 

example the person could be a secretary or a student, and in both roles the 
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person knows how to use a word processor. Thus the TKS for the task is similar 

under both role guises (Hamilton, 1996; H. Johnson & P. Johnson, 1991). In this 

way, TKS provides an argument for “near transfer of knowledge”, meaning that 

the knowledge required for a task in one role is very similar to the knowledge 

required for the task in a different role (Palumbo, 1990). 

Within each TKS there is an underlying goal structure that emphasizes the 

goals and subgoals that one must fulfill in order to successfully complete a task. 

A goal is the desired state that people must attain according to their 

conceptualization of the task world as they are performing under a certain role. 

TKS models were created as a tool to aid design generation. By modeling 

user knowledge and using the associated methodology, a designer can use the 

theory to generate design solutions for interactive systems (Hamilton, 1996). This 

is in contrast to other task analysis methodologies such as GOMS (Card et al., 

1983), which is purely an evaluative modeling method.  

TKS models are manipulated through two guiding principles: taxonomic 

categorization and sequential dependency. The taxonomic categorization 

principle is that objects that are similar are grouped together, and that users 

create higher level declarative knowledge structures that allow them to remember 

action for the group rather than specific objects. The sequential dependency 

principle is that if people are to carry out a task, after they perform the first action 

that will bring them closer to the completion of a task, they will not go through 

every possible action that they know in order to find the next best action to take. 

Rather, especially if they have performed the task before, they will have a group 
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of actions stored as a sequence that, when performed, will bring them to the 

desired result. Like taxonomic groupings, actions are grouped together in a 

meaningful sequence that allows for the creation of subgoals that will lead to the 

completion of the task (goal). 

These principles were tested and evidence was provided to show that they 

are indeed correct (Hamilton, Johnson, & Johnson, 1998). Even though Hamilton 

et al. (1998) talk about objects in TKS and hint at the affordances of objects, the 

object roles are not explicitly defined in terms of a user interface, nor are the 

affordances and constraints of these objects included in TKS.  

Superficially, TKS and GOMS seem to have much in common. There are 

theoretical differences, though, that distinguish one from the other. First, GOMS 

is an evaluative method, and not pertinent to direct design generation. TKS 

allows the designer to generate new designs to accomplish a task. Also, GOMS 

does not have a high level methodology with which to model user knowledge, 

although it is capable of modeling low-level knowledge, such as objects in 

various types of human memory (St. Amant, Freed, & Ritter, 2005). TKS models 

represent this knowledge, to better leverage it and allow designers to generate 

designs that fit better with the knowledge that task performers might have. 

Finally, for GOMS, usability is how long it takes an expert to complete a 

task with error free performance. All the elements of a task are considered 

additive and one can accommodate for “thinking time”. TKS usability is deemed 

to decrease depending on the level of support for task procedures (H. Johnson & 

P. Johnson, 1991; P. Johnson & H. Johnson, 1991). 
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3.4 Summary 

The usability evaluation methods that have been presented in this chapter, 

are the closest theoretically to CoDeIn. CoDeIn is based on the MHP (Card et 

al., 1983), and espouses the view of TKS that as action sequences are used, 

they in turn create stronger connections, which makes them more automatic in 

nature, until the user becomes an expert in performing them. 

However, all of these methods have problems that hinder them from 

modeling RBIs. One obvious problem with most of them is their inability to model 

parallel actions, which are common in RBIs and the real world. CPM-GOMS can 

model parallel actions, but it is very complex by nature, therefore discouraging 

evaluators from using it.  

Another problem with current GOMS-like evaluation methods is that they 

lack the means to model actions that deviate from DM-type tasks. While GOMS 

was built and was used to model real-life interactions (Gray, John, & Atwood, 

1993), not just DM interfaces, it still lacks several key primitive operators for 

modeling real-world interactions, such as a prehension operator.  

On the contrary, usability evaluation methods that deal with the knowledge 

of users are solely built for evaluating a different aspect of tasks than the 

efficiency part of the performance of a task. They model whether the steps taken 

to perform a task are in the correct order, according to the nature of the task, or 

whether the performance of the modeled tasks includes superfluous or unneeded 

steps. Therefore, these types of evaluation methods, such as TKS, are not built 

for the predictive evaluation of the performance of tasks. This means that while 
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these evaluation methods may model RBIs, they cannot provide any quantifiable 

performance measures, in order to compare different implementations of the 

same task. 
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Chapter 4 Previous Work – Affordance 

and Constraints 

This chapter provides descriptions for “affordance” and “constraint”, and 

explains how they are used in the context of this thesis. Affordance is defined 

first, according to its use in the field of HCI, and then constraint is defined and 

contrasted to affordance. 

4.1 Affordance 

The term “affordance” was coined by Gibson (1977; , 1979) to define 

properties of objects which allow an actor to act upon them. Norman expanded 

on this concept, and was essentially the first to present the concept of affordance 

to the field of Human Computer Interaction (Norman, 1988). 

Since then, affordance as a term has been used by many designers and 

researchers, but as Norman (1999a) explains, many of the uses of the term are 

vague or unclear, and which is what prompted his writing of his article in the 

Interactions periodical (Norman, 1999a). In fact, there have been many 

publications that try to elucidate the term (see Hartson, 2003; McGrenere & Ho, 

2002 for more).  

Many claim that affordance as was presented in the Psychology of 

Everyday Things (Norman, 1988), was not understood correctly by the HCI 

community. Gaver (1991), Hartson (2003), and McGrenere and Ho (2002) have 

also provided their own definitions and extensions of the term affordance, in 



 

52 

order to help designers design better user interfaces and interaction devices. For 

example, the user of a button-based user interface can easily read the labels 

(sensory affordance) to understand what the button does (cognitive affordance) 

in order to use it correctly (functional affordance) (Hartson, 2003).  

The short example shows how one could address the different types of 

affordances in Hartson’s definition to create a better interface. The concept of 

affordance is indeed useful in HCI because it forces designers to consider about 

the information that they impart to the user through the design of the user 

interface or interaction device they design. 

4.1.1 Gibson’s Affordance 

Gibson (1977) coined the term “affordance” to refer to the actionable 

properties between the world and an actor (whatever that actor may be) (as cited 

in Norman, 1999a)). Gibson did not intend the term to refer to any property that 

may be observable by the actor. Rather, he referred to affordances as all of the 

properties that allow the actor to manipulate the world, be they perceivable or 

not. Thus, an affordance is a characteristic of the environment that just happens 

to make environmental artifacts manipulable or otherwise actable upon by 

someone. Thus, saying that a designer has added an affordance to a device or 

an interface does not immediately imply that the device or the interface has 

become more useable, or that the user would be able to sense the affordance in 

any way that would help her understand the usage of that device or interface. In 

Gibson’s definition, an affordance is not there to be perceived; it just exists and it 

is up to the actor to discover the functionality that is offered by the affordance. 



 

53 

4.1.2 Norman’s Affordance 

Norman (1988) appropriated the term affordance from Gibson, but 

introduced the concept of “perceived affordance”, which defines the clues that a 

device or user interface gives to the user pertaining to the functionality of an 

object. Norman calls Gibson’s affordance “real affordance”. Consider a door that 

opens when pushed on a flat plate that takes the place of the door handle (Figure 

4.1b). The design of the flat plate door handle provides the clue that the door is 

supposed to be pushed on the flat plate to open it. Conversely, the door handle 

shown in Figure 4.1a presents the conundrum of where the user should push to 

open the door. While the affordance that hints towards pushing the door to open 

it is there, there is no affordance that provides a hint as to where to push to open 

it. Norman (1988) points out that while this is a design problem of the door 

handle, it results in people thinking that they cannot figure out how to open a 

door instead.  

 

Figure 4.1 Affordance use in two door handle designs 
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The difference between a perceived affordance and a real affordance 

(which is the name that Norman uses for Gibson’s definition of affordance) is that 

the door has the real affordance, which allows it to open in some way. The 

perceived affordance that the flat panel provides however, is that the door can be 

opened by pushing it, and therefore the actor receives the way of opening the 

door through perceiving something from the door’s design. This is the perceived 

affordance. Norman concludes that well-designed artifacts should have 

perceived affordances that present the correct clues as to the artifacts’ usage 

and functionality (Norman, 1988).  

4.1.3 Gaver’s Affordance 

Gaver (Gaver, 1991) defines affordance  by using four different categories 

instead of Norman’s two. Gaver defines perceptible affordances, false 

affordances, correct rejections, and hidden affordances, as shown in Figure 4.2. 

Perceptible affordances are all the affordances for which there is perceptual 

information for the actor to perceive. This type of affordance would fall under 

Norman’s perceived affordance definition. If there is information that suggests 

that an affordance is there when there is none, then that is a false affordance. A 

hidden affordance is an affordance for which no perceptual information exists. 

Finally, a correct rejection describes the case when there is no perceptual 

information and no affordance.  

In Gaver’s terms, affordances are a special configuration of properties so 

that the “physical attributes of the thing to be acted upon are compatible with 

those of an actor, that information about those attributes is available in a form 
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compatible with a perceptual system, and (implicitly) that these attributes and the 

action they make possible are relevant to a culture and a perceiver” (Gaver, 

1991). In fact, Gaver united the two concepts of a real and a perceived 

affordance, and named the whole system of the property of an object and the 

perceivability of that property as the affordance.  

 

Figure 4.2 Affordances as defined by Gaver (Gaver, 1991) 

4.1.4 Hartson’s Affordance 

Hartson used the concept of affordances to create the User Action 

Framework (UAF) (Hartson et al., 1999; Hartson, Siochi, & Hix, 1990). He used 

the concept by basing it on Norman’s definition but also redefining it, to make the 

distinction between each type of affordance that can be encountered more clear. 

Like Gaver (1991), he refers to four different types of affordances: Physical, 

Cognitive, Sensory, and Functional (Hartson, 2003).  

A physical affordance is a feature of the artifact that allows the actor to do 

something with it. A cognitive affordance is the information that allows the actor 
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to realize that the physical affordance is there. A sensory affordance is the 

information that the actor gets before it is processed at a cognitive level, and a 

functional affordance is the usefulness that the physical affordance gives to the 

actor (Hartson, 2003). The metal plate on the door from the previous example 

can be used to elucidate the differences between each affordance type that 

Hartson proposes. The physical affordance of the plate is the feature which 

allows the placement of the hand of the user on the door, so that the user can 

open the door. The cognitive affordance is the combination of information from 

the user’s knowledge and the appearance of the plate that allows the user to 

realize whether the door is opened by pulling or pushing. If we assume that the 

metal plate has “Push” engraved on it, then the clarity of the lettering, the size 

and shape of the letters that allow the user to clearly make them out is the 

sensory affordance. Finally, the functional affordance is the placement of the 

plate at the correct position on the door as to allow for the easiest opening of the 

door if the user pushes on the metal plate. 

Hartson goes on to propose the UAF, a framework for designing systems 

and artifacts based on the four types of affordances that he proposes (Andre et 

al., 2000; Andre, Hartson, Belz, & McCreary, 2001; Hartson et al., 1999; Hartson 

et al., 1990). The UAF allows a designer to describe a user’s actions in an 

interface, and the interface’s feedback to these actions. Thus, it allows for 

specification of interfaces, and evaluation of tasks performed in them, at the 

action level. It also provides mechanisms to describe tasks at a subtask level, 

rather than directly at an action level. However, the UAF was created specifically 
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for the description of DM interfaces, and therefore currently it lacks the ability to 

specify RBIs (Hartson et al., 1990).  

4.2 Constraints 

Constraints are mentioned in many places in the literature (Christou, 2005; 

Christou & Jacob, 2005; Norman, 1986; , 1988; , 1993; Shaer et al., 2004) as 

giving helpful clues to the user of an interaction artifact, about how the artifact 

may and may not be used (Norman, 2002). Constraints are attributes of artifacts 

that limit the way the artifacts can be used. Consider the example of an elevator 

button. When pushing the button, it can only be pressed so far. That constraint 

allows users to realize that they have completed the pressing action, because the 

full range of the pushing of the button has been reached. Hence, users can infer 

that they must release the button. In this way, the constraint that limits the range 

of forward/backward motion of a button also gives a very specific clue to the 

user; namely that the pushing action is completed. Therefore, the constraint of 

the button gives a hint to the user as to its usage.  

Viewed in this way, constraints are a way that a designer may use to 

provide knowledge in the world, knowledge that may guide the user to perform 

an action only in the boundaries that are acceptable for the designed interface. 

Constraints do not have to be only physical, like the one in the previous example. 

Norman (2002) mentions many different kinds of constraints, like physical, 

cognitive, and cultural.  

Cultural constraints are constraints that culture imposes on people. For 

example, red means stop or danger in many Western cultures. The brake lights 



 

58 

of all cars are red, and most people in the world realize that when a car’s brake 

lights are turned on, it means that the car is decelerating, which means that they, 

in turn, need to decelerate too, or face some kind of danger. This is a constraint 

that is imposed by culture or rules. Thus, a warning that is accompanied with 

some kind of red color will be understood more quickly, than if it was 

accompanied with a green color, which in many cultures is a color that has the 

exact opposite meaning of red. 

Another way to view constraints was proposed by Shaer et al. (2004). 

Even though their work for the Token and Constraint (TAC) paradigm only refers 

to TUI interactions, they present an interesting approach as to the view of 

physical constraints. Constraints in the paradigm are not only viewed as 

properties of the artifact. Rather, they are viewed as relations between artifacts, 

where one artifact restricts another artifact’s property in some predefined range. 

An example of this would be a sphere inside a cube. The cube is viewed as a 

constraint on the movement of the sphere. The relationship between the two 

artifacts is defined as a token and constraint (TAC) relationship (Shaer et al., 

2004).  

4.3 Summary 

The theory of affordances and constraints suggests that knowledge can 

exist not only in the user’s head, but also in the world. While an affordance based 

on Gibson’s definition is only an attribute of an artifact, all the other definitions of 

affordance that have been mentioned define affordance as knowledge in the 

world, which is there to indicate to the user the use of an artifact. This is mostly 
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embodied in Norman’s perceived affordance, which is defined as a hint or a clue 

in the world towards the use of the artifact that owns the perceived affordance. 

Therefore, when the user performs a task, the knowledge in the world that 

pertains to this task can be used to help the user. Unfortunately, as Gray and Fu 

(2001; , 2004)  have pointed out, users tend to disregard perfect knowledge in 

the world, in favor of knowledge that they have in the head, but which may not be 

perfect. Thus, users may not utilize knowledge embedded in the task 

environment when they think that they know how to perform a task, when in fact 

their knowledge may not be entirely correct. This means that any scheme that 

plans to evaluate interfaces based on user and world knowledge will have to 

eventually take this factor into account. 

In the following chapters, I present Cognitive Description and Evaluation of 

Interaction, a predictive, model-based evaluation framework for task analysis, 

which tries to provide a solution to some of the problems identified in this, as well 

as in previous chapters. 
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Chapter 5 Defining Interfaces using User 

and World Knowledge  

The methods described in the previous chapters account for user actions 

but do not consider user knowledge. Michel Beaudoin-Lafon states that we 

should strive towards designing interaction, not interfaces (Beaudouin-Lafon, 

2004) and this chapter presents a model of interaction based on the knowledge 

of the user (or knowledge-in-the-head), the presented knowledge in the interface 

(or knowledge-in-the-world), and the required knowledge for the performance of 

a task (or task knowledge).  

The theoretical basis of the presented model is that a user must have 

particular kinds of knowledge in order to effectively perform a task using some 

interface designed in a particular interaction style. Before the development of 

DM, when command line interfaces were commonly used, the user needed to 

learn most of the syntax of the interface in order to use it effectively and 

efficiently. DM introduced the concept of metaphors that allow the user to tap into 

knowledge already possessed from real world experiences, and understand 

certain aspects of an interface, without needing to learn everything from scratch 

(Hutchins et al., 1986). By its nature, however, DM limits the number of actions 

that a user can perform at a given point in time for a given task. In this way, once 

the user understands the allowable actions of a DM interface at a particular 

moment, the issue of effectively using an interface becomes a question of how to 
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put together the allowable actions at that particular moment in order to complete 

the task. 

Looking at this problem from a different angle, DM allows one to reduce 

the allowable sentences that can be created at any particular moment when 

using an interface, to those that pertain to the task at hand. This though, can be 

very limiting, because the user can only follow a certain order in performing a 

sequence of distinct actions, thereby limiting the flexibility of any interface built in 

DM. For this reason, hybrid interfaces that include both DM components and 

command-line components have been created.  

5.1  Natural, Simple, and Complex Actions 

Understanding what the user needs to learn and already knows requires 

first the decomposition of the specified task into its constituent actions. There are 

tasks that have no correspondence to any real world actions, meaning that their 

description cannot leverage the user’s existing knowledge. Thus, these actions 

must be learned from scratch. At the other extreme, there are “natural actions” 

that are performed exactly the same whether they are performed in the real world 

or in the context of a user interface, and that convey the same meaning in both 

cases. A RBI (Jacob, 2004) is one whose actions are based in reality, but that 

also leverages computing power to provide solutions to abstract tasks (hence the 

term reality-based and not reality-like). Therefore, to make something feel 

“natural” one has two options: either create a simulation of the real world in which 

to have the allowable actions in the simulation have the same semantics as in 
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the real world, or to actually use real world actions to carry out computer-based 

tasks.  

One example of a natural action is the “grab” action in Virtual Reality. It 

possesses the same meaning as in the real world, which is to bring something to 

the user so that it can be manipulated in some way, and is performed in the 

same way as in the real world, by reaching for the item in question and placing it 

in one’s hands. However, the VR grabbing action is based on the same 

semantics as is the real world grabbing action, but it requires special hardware in 

order to be performed. Even though the action is based on real-world mechanics, 

it is not entirely natural, because the user feels or senses the equipment needed 

to perform the action. A more natural action is the grabbing action in a Tangible 

User Interface, where the action is performed in the same way as in the real 

world, carries the same semantics as in the real world, and needs no extra 

hardware to be performed. In this sense, the TUI grabbing action is more natural 

than the VR grabbing action.  

By thinking about actions in the aforementioned manner, we can place 

them on a scale of “most natural” to “least natural”, where “most natural” actions 

mimic every aspect of a real-world action, without any augmentations, while  

“least natural” actions have no relation to any real-world action whatsoever. 

However, “most natural” actions, because they carry no augmentations, are not 

very powerful in conveying extra meaning to a computer interface. Conversely, 

“least natural” actions, such as script commands in a command line shell, can be 
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extremely powerful. Thus, it seems that the more natural an action, the less 

power it has in conveying extra meaning to the computer system (Jacob, 2004).  

Here I define action as the stimulus-response cycle that begins when the 

user provides a stimulus to the interface, the interface senses the stimulus, and 

provides an appropriate response. A “gesture” refers to any stimulus on the part 

of the user toward the interface that might or might not be perceived by the 

interface. There are two types of actions: “simple” and “complex”.  

Simple actions cannot be decomposed into other actions. For example, in 

DM, simple actions include a left-button click or a right-button click of the mouse. 

It could be argued that even these actions can be broken down further, e.g. by 

decomposing the button click into two actions of pushing down the button and 

then releasing the button, but these two separate events are seldom thought of 

as separate from each other. Simple actions, though, must have some meaning 

in the context of the interaction style, and trying to decompose them further might 

be likened to breaking down the act of writing a character with a pen on a piece 

of paper into the constituent movements of writing the character. It can be done, 

but it serves no purpose in the context of writing, because the actions that need 

to be considered are those that carry some meaning to the performer of the 

action.  

Complex actions, such as the drag-and-drop action in DM, are actions that 

consist of more than one simple action but are semantically atomic in the sense 

that only the completed action, with all of its constituents intact, means 

something to the interface and accomplishes a state change. Complex actions 
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can be considered as a single stimulus by the interface. In order to drag-and-

drop, a user needs to select and hold onto the data item that is to be dragged, 

move the pointer from the initial position to the desired position and then release 

the mouse button. While the action may be decomposed into the four pieces 

(select, hold, drag, and release), and each piece provides a perceivable stimulus 

to the interface, each stimulus by itself accomplishes no state change outside of 

the action’s context. 

Surprisingly, we cannot use simple actions to talk about complex actions, 

because complex actions are still semantically atomic; when their constituent 

gestures are taken one by one, the constituents carry no semantic meaning in 

the context of the task. Another example of a complex action is the grabbing 

action in a TUI. The grabbing action consists of a transport gesture, which takes 

the hand to the object to be grabbed, and then the fingers close around the target 

object, to complete the complex action (C. L. Mackenzie & Iberall, 1994). If they 

are considered by themselves, each constituent gesture in the context of the 

grabbing task could carry different semantic meaning than the whole complex 

action, when performed in its entirety. However, each constituent gesture in a 

different context may be considered a simple action.  

Actions can also be seen as productive, non-productive and counter-

productive. Productive actions are those stimulus-response pairs that move the 

user closer to the completion of the task. Non-productive actions have no effect 

to the performance of the current task, such as painting the case of a server 

green to fix a network-related problem. It is an action that can be performed but 
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that has no effect towards or against the performance of the fixing the network 

problem. Counter-productive actions hinder the user’s performance of the task. 

An example is when a system administrator believes that there exists a network 

problem, when there is none, and changes the network addresses to correct the 

problem, when that action makes the problem harder to solve. CoDeIn currently 

only models productive actions in describing tasks, similar to other model-based 

methodologies, such as GOMS. 

5.2 CoDeIn  Models 

Any model created using CoDeIn is a “designer’s model” in contrast to a 

“user’s model” of the task; it is intended to aid the designer in thinking clearly 

about the effects of design choices. Here, notation that was introduced by 

Nielsen (Nielsen, 1990) may be helpful to explain the difference between 

different types of models. Nielsen uses Rohr and Tauber’s (1984) definition of a 

relation between a model, a subject and an object R(M,S,O) and modifies it to be 

R(M,S,O,P) as follows: 

• M is the model 

• S is the subject who has this model (and who has it for a specific purpose, 
the ‘model function’) 

• O is the object to be modeled. 

• P is the purpose of the model (added by Nielsen). 

Nielsen then defines a notation for describing the taxonomy of models, by 

taking the combination SO above to mean the type of the model. Using this 

definition now, one can write the following: 
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• A’s model of B is type AB-model 

• A’s model of a type BC model is A(BC) model. 

• A’s model of both B and C is a type A(B+C) model. This is how A models 
the combination of B and C. 

The notation is recursive in that one can talk of a type ABC(D+E+F) model 

which is how A models B’s model of C’s model of the combination of D, E and F. 

Table 5.1 taken from Nielsen (1990) shows the summary of this notation.  

Table 5.1 Model Agents and Types using Nielsen’s Meta Model Notation 

Model Agents Explanation 

U User 

D Designer 

C Computer System 

R Software Ergonomics Researcher 

T Task of the user 

W Surrounding world in which user U performs task T 

M The manual (or other documentation) for C 

Model Types  

AB A’s model of B 

ABC A’s model of B’s model of C 

A+B A model having the combination of A and B as objects 

A(B+C) A’s model of the combination of B and C 

AB(C+D) A’s model of B’s model of the combination of C and D 

The letters A, B, and C should be replaced with the abbreviations of the actual actors 
involved with the given model. 
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Using this taxonomy, the models created by CoDeIn are of the form 

DU(T+W+C), which means that they are the designer’s model of the user’s 

model of the task, the environment of the task and the computer system.  

The difference between CoDeIn’s model and the actual user model can 

be demonstrated by an example. Suppose that a task is designed so that it can 

be executed by performing two parallel actions. Further suppose that the task 

can also be performed serially, albeit less efficiently. The user may perceive that 

the task can only be performed serially, thus not reaching optimum efficiency 

during the task’s execution. CoDeIn however, would model the task with parallel 

actions, reflecting the true nature of the task, and not serial sequencing that is 

the user’s perception of the execution of the task. The task model could also 

show the serial performance of the task, by considering that the parallel actions 

would be performed serially. The advantage to this approach is that one task 

model can model various task executions, thus saving time in the design and 

research of the task in question.  

Unlike models intended to evaluate existing interfaces or interaction 

devices, CoDeIn’s intended use is more for the evaluation of new or novel 

interaction devices and interfaces; this imposes certain limitations on the model 

creation process. First, there are no users of a new interaction device or 

interface, so that any model created must be based on the designer’s belief of 

what the user model will be. This, however, is a still designer model, and not a 

user model. Also, pragmatic solipsism states that even if there are users of the 

device or interface, their description of their model can only produce a designer’s 
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model of the user model. Even through knowledge elicitation (Cook, 1994), the 

user model cannot emerge completely and clearly.  

This however, is not necessarily an impediment, because for expert users, 

the designer model and the user model can eventually become virtually the 

same, because expert users learn how to perform the task as the designer 

envisioned that users would perform the task. The gradual understanding of the 

designer model by the users, leads to an increase in their performance, 

eventually allowing them to reach the optimal performance visualized by the 

designer (presuming that this is possible).   

5.3 Categorizing Task Presentations in User Interfaces 

CoDeIn models a task based on the amount of knowledge that users need 

to possess to perform that particular task. I assume that knowledge about a task 

can be described by using three sets of knowledge: “task knowledge”, 

“knowledge in the head” and “knowledge in the world”.  

The first knowledge set is the knowledge that is required for the 

completion of a task (task knowledge or Kn(t)). This knowledge is the 

requirement set, and it is not necessarily situated in the user’s head or in the 

environment. The set includes the facts and procedures that must be performed 

in order for anyone to perform the task in question.  

The second knowledge set is the knowledge that the user already 

possesses that is relevant to the completion of the task. This set only includes 

knowledge about productive actions. Using Norman’s terms (Norman, 2002), I 

call this set the “knowledge in the head” set, or Kn(h). This set could be empty in 
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the case of a new user who knows nothing about the performance of the task, or 

it could be equal to the task knowledge set in the case of an expert user, or more 

commonly, it is a subset of the task knowledge set, which means that the user 

knows some facts and procedures about the task, but not everything.  

The third knowledge set contains knowledge that is provided by the 

interface in the form of affordances and constraints that pertain to the task 

(Christou, Jacob, & Cheng, 2006; Gaver, 1991; Hartson, 2003; Norman, 1999a; , 

2002), and by the external representations that are created and are designed to 

hold knowledge for the users, so that users do not have to have every piece of 

knowledge in their head.  

For example, in a blind game of chess that is played with no chessboard 

and pieces, all the knowledge about the game is in the players’ heads. Nobody 

else can follow the game unless the players impart their knowledge of the game. 

However, in a normal game of chess, all the knowledge about that particular 

game is encoded in the positions of the different chess pieces on the 

chessboard. This knowledge exists in the environment, and it is there to be 

perceived by anyone who wishes to follow the game. Knowledge that is encoded 

in this way is placed in the “knowledge in the world” set, or Kn(w), following 

Norman’s terms (Norman, 2002). Kn(w) however, does not include knowledge 

that exists in the form of user manuals, or tutorials, or that may be gained from 

different forms of training on the device or the interface in question. Kn(w) only 

includes knowledge that exists in the immediate task environment of the users. 
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The basis for the definitions of these sets comes from Task Knowledge 

Structures (TKS) (P. Johnson & H. Johnson, 1991; P. Johnson et al., 1988), 

described in Chapter 3. As was explained, TKS assumes that people tend to 

group together all knowledge that pertains to a certain task, and keep this 

knowledge as one complete chunk. It further assumes that people know how to 

perform the task once they have working knowledge of the necessary constituent 

actions of the task. CoDeIn subscribes to this assumption insofar as that the 

constituent actions of a task are retrieved as one chunk as one becomes better 

at performing the particular task. Furthermore, one implication of the TKS 

assumptions is that if a task is performed enough times, it will eventually become 

automatic (Anderson, 1992; Logan, 1988).  

By viewing the task as the major entity and modeling the required 

knowledge for the task, and not trying to capture the user’s goals and intentions, 

CoDeIn moves away from the traditional approach involving goal-based 

evaluation methods, and takes a step closer to the suggestion made by Diaper 

and Stanton (2004b), who posit that “the whole concept of goals should be 

abandoned as unnecessary and thus one of the major sources of confusion 

about task analysis would be removed” (Diaper & Stanton, 2004b, p. 603). 

Through modeling knowledge required for the task, various conclusions can be 

drawn about what knowledge the user might be missing, and whether that 

knowledge exists in the environment. This methodology makes it possible to 

catch design errors very early in the design process.  
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In CoDeIn, a task is viewed as a molecular entity composed of atomic 

actions, either simple or complex. Each action has its own requirements in terms 

of knowledge, seen as the sole pre-conditions to the execution of the action, and 

consequences in terms of the state of the interface. Thus, if an action is to be 

performed, the user needs to know the pre-condition knowledge for the 

performance of the action. However, actions also create knowledge-in-the-head 

through their effects on the environment. These effects on the environment 

change the environment in ways that are perceived by the user, causing the user 

to change, revise or gather knowledge from the environment. These effects of an 

action become the action’s post-conditions that can be pre-conditions to another 

action. This idea drives the modeling mechanism that is presented in Chapter 6 

of this thesis. 

Usually, a combination of the Kn(h) and Kn(w) as perceived by the user, 

yields all the knowledge that is needed for the completion of the task, as shown 

in Figure 5.1. The set that represents Kn(t) is a subset of the union of Kn(w) and 

Kn(h), hence some of the task knowledge is inside the user’s head, and some of 

it is demonstrated in the environment. Also there may be some overlap between 

the user’s knowledge about the task and the environment-provided knowledge, 

as shown by the intersection of the two sets.  An example would be of a user of a 

word-processing application, who knows how to use the application, but does not 

remember everything about the task to be accomplished. Therefore, things like 

labels and icons on menus and buttons, which are perceived affordances of the 

provided tools, provide hints as to what each menu includes and what each 
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button does, or they even explicitly define specific knowledge that needs to be 

perceived for the task to be performed, as in the case of a chess game.  

Perceived affordances (Norman, 2002) of menus and buttons are one part 

of the Kn(w) set. Additional Kn(w) is given by the constraints on these items, 

such as the constraint that a button has two states, or that one menu can be 

visible at a time. A constraint of menus is that they give multiple choices of which 

only one can be selected. If the user knows how to perform some of the actions 

in the task for which there are hints in the environment, then that knowledge 

belongs in the intersection of the two sets, Kn(h) and Kn(w). Finally, if there are 

actions for which there are not any affordances in the environment, but the user 

knows how to perform, then that knowledge belongs to the Kn(h) set. Taking the 

two sets together, the Kn(t) set is created.  

 
Figure 5.1 Common Knowledge Case 1  

The combination of the knowledge-in-the-head set and the knowledge-in-the-world set have some 
common elements, but the user does not know everything about the world, nor every piece of 

knowledge that the user knows is described in the world. 
 

A second common case scenario is shown in Figure 5.2. The user has 

some knowledge about the interaction style, there exists some knowledge in the 

world (in the interface), and there is specific knowledge that describes how to 

perform a specific action in the interaction style.  

Knowledge 
In the Head 

Knowledge 
In the World 

Task Knowledge 
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Figure 5.2 Common Knowledge Case 2  
Not all the knowledge for the completion of the task is known by the user,  

or included in the environment 
 

In Figure 5.2, Part (a) represents the knowledge that the user has that 

pertains to the task that the user is called upon to perform. Part (b) is knowledge 

in the world (in the form of affordances and constraints) that the user does not 

have, but can perceive. Part (c) is knowledge that the user has and is also 

present as affordances and constraints in the world. Finally, part (d) is the task 

knowledge that the user does not possess, and it is not represented as 

affordances and constraints of the interface. This is the knowledge that the user 

must learn in order to bring the task to completion. It is evident that the goal of 

any design would be to make part (d) as small as possible or even non-existent, 

reaching knowledge case 1 as shown in Figure 5.1, where anything that the user 

does not know can be perceived from affordances and constraints in the 

interface. On the contrary, Figure 5.3 shows the worst case scenario, where the 

three knowledge sets that have been introduced are not at all connected with 

each other. 

Task Knowledge 
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Figure 5.3 Knowledge Case 3: Worst Case Scenario  
The user does not know how to perform the task, and the environment  

does not provide any clues about task performance. 
  

Table 5.2 Different cases of tasks in a user interface shown in set notation. 

 

In this case, the user does not know how to perform a task, and there are 

no hints or directions embedded in the environment to help the user gain any of 

Knowledge Case Explanation 

Kn(t) !  Kn(h) One of several best case scenarios, where 
the user knows everything about the 
performance of the task. 

Kn(t) !  Kn(w) One of several best case scenarios, where 
everything needed for the performance of 
the task is shown in the environment 

Kn(t) !  (Kn(h) U Kn(w)) One of several best case scenarios, where 
everything needed for the performance of 
the task is either known by the user, or is 
in shown in the world. 

(Kn(h) U Kn(w)) - Kn(t) !  ∅  Common case scenario, where the 
knowledge for task performance is not all 
known by the user, even in combination 
with the knowledge embedded in the 
environment. Thus, the need for user 
manuals and tutorials arises. 

(Kn(h) U Kn(w)) ∩ Kn(t) = ∅ Worst case scenario. The combination of 
the user’s knowledge about the task 
combined with the knowledge embedded 
in the environment say nothing about the 
performance of the task. 

Knowledge 
In the World 

Knowledge 
In the Head 

Task 
Knowledge 
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the task knowledge. Therefore, the three sets have no intersection, although 

each set may hold knowledge chunks about other things that pertain to the 

interface as a whole. Thus, some outside influence or intervention is necessary 

(such as a user manual) before progress can be made. While this case seems at 

first extreme, the case of the MS-DOS or the UNIX command-line interface 

exemplifies it. The prompt presents no information about the execution of any 

task, therefore Kn(w) is effectively empty for every task in this environment. If 

one considers the case of a novice user, then Kn(h) is also effectively empty, 

meaning that the Kn(t) must be gained from extraneous sources. However, there 

are several best case scenarios. Table 5.2 shows examples of cases of interface 

design. 

5.4 Defining the User 

The previous section defined the three knowledge sets, Kn(h), Kn(w) and 

Kn(t). Each can be decomposed further into two parts: declarative knowledge 

(Dkn), or knowledge of facts regarding the task, and procedural knowledge (Pkn), 

or knowledge regarding the way to perform the different actions that compose the 

task. Declarative knowledge is distinguished from procedural knowledge in like 

manner to that used in creating models in cognitive architectures (Gray & 

Altmann, 2001), such as ACT-R (Anderson & Lebiere, 1998), EPIC (Kieras & 

Meyer, 1997), or Soar (Laird et al., 1987). Any knowledge that is factual in nature 

is to be considered declarative, and any knowledge for which a production rule is 

written is considered to be procedural. A production rule is a piece of code that 

belongs to a model and captures the performance of an action or task, based on 
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the perceptual, cognitive, and motor abilities of the architecture and the 

declarative knowledge of the model. In this thesis, the distinction between 

declarative and procedural knowledge is the result of a knowledge elicitation 

process for the interface or interaction device under study. A further discussion of 

what is declarative knowledge and what is procedural knowledge however, is out 

of the scope of this thesis. 

I do not take into account any domain knowledge, because it is constant 

across interfaces, and I assume that the user already possesses the required 

domain knowledge for the task. Domain knowledge in this sense however, is 

knowledge that has nothing to do with how to perform the task using tools. For 

example, an accountant that knows how to keep accounting books for a 

company, and knows what accounts the company has but does not know how to 

use Microsoft Excel, has the required domain knowledge for keeping the books 

of the company, but does not have the Dkn and Pkn for using Excel to perform 

this task. Another example would be of a graphic designer, who understands the 

concept of merging two images to create a collage, but does not know who to 

perform this action within a specific application. 

The knowledge that is taken into account in the CoDeIn framework is 

interface-specific knowledge, and action-specific knowledge. For example, if the 

task is to move the pointer using the mouse from point A to point B, then one of 

the things the user needs to know is that the mouse is bound to the pointer 

(Christou et al., 2006). This is a declarative knowledge chunk without which the 

user would not be able to complete the task. The user would also need to know 
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how to move the pointer using the mouse. Because this is knowledge about the 

way that the task is performed, it is represented by a procedural knowledge 

chunk. 

Declarative knowledge can further be decomposed into three different 

types of knowledge. The first type is “What is it” knowledge. This type of fact 

refers to the objects that are manipulated in the context of an action or task. For 

example, in a folder-opening task, where the user is required to double-click the 

folder icon, the “what is it” knowledge needed would be that of what is the 

mouse, what is the pointer, and what is the folder icon.  

The second type of declarative knowledge is “meaning conveyed” 

knowledge. This type of knowledge allows the user to distinguish different 

meanings conveyed in different contexts, through the same action. In the case of 

the previous example, double-clicking on a folder icon opens the folder for 

viewing. Double clicking on an application icon on the other hand, starts the 

application. Thus the same action has different meanings in two different 

contexts.  

The last type of declarative knowledge in the framework is binding 

knowledge. Bindings are the “connections” between different objects in an 

interaction style, and the connections may be permanent or temporary. In the 

folder clicking example, the user needs to know that the mouse is bound to the 

pointer, and that the mouse movement translates to pointer movement. This 

would be an example of a permanent, or static binding. Such bindings cannot be 

broken by the user’s volition. On the other hand, in a drag-and-drop task, when 
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the user holds down the mouse button to drag an icon, the connection between 

the icon and the pointer is only transient. It exists only for the duration of the 

action. These bindings are temporary, or dynamic, because they can be created 

on the fly, during the execution of the task, usually when the user requests it. 

Table 5.3 summarizes the types of knowledge in the CoDeIn framework. 

Table 5.3 A summary of the four different types of knowledge in the CoDeIn  Framework. 

Type of Knowledge Description 

“How to do it” Procedural knowledge, or knowledge about how an action 
or a task is performed 

“What is it” Declarative knowledge about what is an object that is 
manipulated in the context of a task or action. 

“Meaning Conveyed” Declarative knowledge about what the action’s meaning is 
in the context of the task. 

Binding Declarative knowledge about how different objects of an 
interaction style are connected, as well as about the 
duration of this connection. 

 

The decomposition of task knowledge into declarative and procedural 

parts, allows the categorization of different types of users. Table 5.4 shows the 

categories of users created by knowledge classification. The categories in Table 

5.4 show a preliminary categorization, based on absolute categories. The first 

category defines the set of expert users of a task. These users know everything 

there is to know about a task, and can perform the task without any help from the 

environment. There are however, some interaction styles where such a user 

cannot exist. For example, consider the DM interaction style, where a user that 

knows exactly where all the menus and menu items are for the performance of a 

task. If one of the required menu items changes position for some reason, as 
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may happen during version changes of an interface, then the expert user will not 

be able to perform the task without searching for the updated knowledge in the 

environment. Conversely, in a command-line interface the user needs to have 

Kn(t) = Kn(h), as there is no way that the environment can give information about 

the execution of any task (excluding command completion), without the 

knowledge that there may be a help command, or searching for that knowledge 

in a user manual, because as mentioned earlier, these are not types of 

knowledge that belong in the Kn(w) set.  

Table 5.4 A categorization of users according to their knowledge about a task. 

Knowledge of the User User Category 

(DKn(h) = Dkn(t)) ∧ (PKn(h) = Pkn(t)) Expert user who knows everything 
about the performance of the task. 

(DKn(h) = Dkn(t)) ∧ ((PKn(h) ∪ Pkn(t)) = ∅) A user who knows the facts, or the 
theory behind performing some 
task, but does not know how to use 
the various interface tools to 
execute the task (knows which 
menu to use, but does not know 
how to use the mouse to choose 
the appropriate menu). 

((DKn(h) ∪ Dkn(t)) = ∅) ∧ (PKn(h) = Pkn(t))  A user who knows how to use 
interface tools, but does not know 
the facts about the performance of 
the task (knows how to use the 
mouse and how to operate menus, 
but does not know which menu to 
use). 

((DKn(h) ∪ Dkn(t)) = ∅) ∧ ((PKn(h) ∪ Pkn(t)) = ∅) A novice user who does not know 
anything about the task.  

 

The categories shown in Table 5.4 are absolute, in that they only allow a 

binary categorization of users. Either the user belongs to a category or not. Most 
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of the time though, a binary categorization is not sufficient, and this is the case 

here as well. The user may know something about a task, but not everything 

there is to know about it. Therefore one needs a way of representing the amount 

of knowledge of the user, compared to the sets of Table 5.4; one that reflects 

“how well” the user knows how to perform a task. 

One such measure is an efficiency rating (ER) that represent how a novice 

user compares to a hypothetical expert user. The efficiency of an agent versus 

another agent is a ratio of the rates with which the agents can complete tasks: 

novice rate / expert rate. A rate is the reciprocal of task time, so that this 

becomes (1/novice performance) / (1/expert performance) = expert performance / 

novice performance. For example, one could think of a user class relative to a 

task that is considered 50% expert if users belonging to this class can perform 

the task in twice the time of an expert user.  

The ER can also be applied to each of the knowledge chunks that users 

need to know to perform one of the actions that constitute the task, thus 

modifying the completion time of the action based on the ER of the modeled 

users. However, models created with CoDeIn are not intended for the evaluation 

of existing devices or interfaces, but rather of new or novel devices or interfaces. 

Therefore, one may not be able to find expert users that can be tested on the 

device and receive a measure of expert user completion time. To overcome this I 

suggest that non-expert users may be tested, and their performance be 

compared to a similar device, on which the tested users are experts. For 

example, if an ER is required for a virtual reality glove, one could test non-expert 
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users and yield a completion time estimate, and then use the tested users’ 

performance on the mouse as a lower bound for the possible performance on the 

virtual reality glove.  

I believe that using performance on existing devices may provide a good 

estimate for the purpose of approximating expert user performance on the new 

devices or interfaces. The ER may even be made up for the purposes of 

calculating preliminary estimates about the device or interface, to provide 

evidence to consider if further pursuing the designed artifact should be 

considered. Another benefit of having the freedom to create such profiles is that 

one model created for a task may provide estimates for different types of users, 

according to different ER estimates. 

5.5 Defining the Task and Design Generation 

Using the proposed method, the researcher or the designer of a task is 

able to recognize where in the design the task model may not fit the user model. 

This happens when the user may be missing knowledge for performing certain 

actions in the interface, with no Kn(w) to compensate. Thus, the conceptual 

model of the task can be examined, and may be corrected where necessary. It is 

well known that the researcher’s model of a task is different from the designer’s 

model of a task, and both are different from the user’s model of a task 

(Shneiderman, 1998). Using Nielsen’s meta-model (Nielsen, 1990) notation, 

U(T+C) is different from D(T+C) and R(T+C).  

Therefore, analyzing a task using the CoDeIn framework may provide 

evidence for further clarification and may even help in the generation of a new 
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design for an interface; one that requires less knowledge on the part of the user. 

One of the purposes of such an analysis is so that the designer or researcher 

can create a design whose proposed user population will need to learn as few 

things as possible to be able to use the proposed design. This occurs through 

analysis of the knowledge required to perform tasks using the proposed design. 

The analysis of the knowledge needed for the performance of the task and the 

specification of the model user have as a purpose to uncover the places where 

constraints and affordances may be placed to provide Kn(w), thus augmenting 

the user’s knowledge. Hence, while not the topic of investigation in this thesis, 

CoDeIn may provide evidence for alternative or new interface designs that fit a 

task better, given specific or generic user profiles (St. Amant et al., 2005). 

5.6 Summary 

This chapter presented the intended use of the CoDeIn framework, along 

with a categorization of user interfaces through the modeling of the required 

knowledge for performance of tasks in a user interface. Three different 

knowledge sets were defined, Kn(t), Kn(h) and Kn(w). These three sets are 

constituted from declarative and procedural facts, denoting a finer decomposition 

of the sets into Dkn(t) and Pkn(t), DKn(h) and PKn(h), and DKn(w) and PKn(w) 

respectively.  

A task is defined as a series of actions, where each action requires 

knowledge pre-conditions and generates knowledge post-conditions. Each of the 

pre- and post-conditions is a declarative or procedural knowledge chunk, and all 

of these knowledge chunks comprise the Kn(t) set. The Kn(h) set is composed of 
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chunks that the user knows, and the Kn(w) set is composed of chunks that are 

affordances, constraints, or embedded in structures in the environment of the 

task.  

Several user categories are defined in set notation. These user categories 

become more varied with the proposal of ER, a rating that allows the modeling of 

non-expert users according to their performance versus that of an expert user. 

The ER is defined as the ratio of the completion rate of an expert user over that 

of a non-expert user in the performance of a task. This allows predictive 

calculations that estimate the completion time of tasks by a defined user class. 

Finally some benefits for generating new interface or device designs are 

discussed. These benefits are gained by building models in CoDeIn that show 

the required knowledge for the performance of tasks with the proposed device or 

on the proposed interface, allowing the designer or researcher to consider further 

pursuing the proposed design..  

The next chapter will use these definitions to create a predictive task-

modeling method based on task knowledge.  
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Chapter 6 Modeling the Task: Definition 

of CoDeIn 

This chapter presents the nomenclature of the CoDeIn framework and the 

diagrammatic notation for description of tasks. The nomenclature is used to 

describe the constituents of an interface and their relationships, while the 

diagrammatic notation is used to describe interfaces in terms of the knowledge 

required to use them.  

Because RBIs are still researched and developed in isolation from each 

other, they suffer from the lack of a common language for their description, and 

each interaction style defines its constituent elements through different 

terminologies. Because one of the goals of the CoDeIn framework is to provide a 

stepping stone towards the unification of RBIs, this chapter attempts to provide 

nomenclature that is broad enough to allow for the description of most RBIs, and 

anchor the usage with common terms that are used in DM, to give a sense of 

cohesion to the field.  

6.1 Nomenclature 

Every interaction style has some sort of representation for data. Icons are 

the most prevalent in the direct manipulation interaction style, with more diverse 

representations in RBIs. Each interaction style also has its own ways that allow 

the user to interact and control the data. CoDeIn provides a common vocabulary 
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to researchers, which describes representations of data and the ways of 

interaction for all interaction styles that fall under the RBI banner. The following 

sections present the three categories of objects that may exist in a user interface: 

Data, Interaction, and Intermediary Objects. These concepts allow CoDeIn to 

express the constituent parts of different interaction styles via one unified 

terminology. 

6.1.1 Data Objects 

Every interaction style defines some sort of representation for the actual 

data that resides in the system. Even though all data is ultimately described by 

1’s and 0’s, each interaction style has some sort of representation of the logical 

groupings of that data, be that graphical, physical, textual or otherwise. The 

representations are used to represent distinct data entities such as files, folders, 

database tables, applications, etc. 

A Data Object (DO) is defined as the representation of a distinct data 

entity or group of entities in an interaction style. DOs may take many different 

forms and may be used under different guises, but their sole purpose is to allow 

the user to manipulate the data entities that they represent. DOs may be 

comprised of other DOs, and they can be combined to create more complex 

DOs.  

Examples of DOs in DM are the icons that represent files, folders, 

applications etc. In fact, a folder is a DO that includes other DOs (the file icons). 

The problem with icons though, is that the user needs to know, for example, that 

a folder has a specific icon, and that when double-clicked it will open and show 



 

86 

its contents in a window. Only after users acquire this knowledge they will be 

able to effectively use an interface that uses DOs such as in the DM interaction 

style. 

Another example of a more intuitive DO that is comprised by other DOs is 

a document page in Microsoft Word. The page can be considered a DO because 

it is the representation of the document data in a form that allows users to 

manipulate that data. A page is comprised by sections, paragraphs, sentences, 

words, and characters, which are also DOs themselves. 

Consider a VR application such as the digital library application created by 

Shiaw (2003). This application presents Greek vases from a certain era in 

various ways, one of these being a depiction of the vases on pedestals. The user 

may approach the vases, grab them and manipulate them in order to get a better 

sense of the exhibits than one would in a regular museum where manipulation of 

the artifacts is strictly forbidden.  

In this application, the DOs are the vases as depicted in VR, because 

these are the items that the user will manipulate. In this case, the interaction is 

smooth and intuitive because users may interact with the DOs as they would 

interact with the real artifacts in the real world. The easiness of the task comes 

from the ability of RBIs to take actions from the real world, actions that the user 

already knows how to perform, such as the grabbing action and head tilting 

actions, and incorporate them in the context of interfaces. Therefore, instead of 

users manipulating vases using the mouse, and trying to map two dimensional 

motions of the mouse to move three dimensional objects in 3-D space, users can 
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perform the actions they know to manipulate the vase and concentrate on 

studying the artifact rather than on the manipulation of the artifact. 

6.1.2 Interaction Objects 

In many interaction styles there are artifacts, real or virtual, that allow the 

user to interact with the DOs. For example, in DM the user may use the pointer to 

drag and drop a file from one folder to another. In this type of interaction, the user 

uses the pointer, which is the interaction object (IO) to manipulate the icon of a 

file, which is the DO. 

IOs are the objects that are perceived by the user to be the means of 

interaction with the DOs in an interaction style. They are the tools that are 

provided by the interaction style that allow the manipulation of properties, states 

and attributes of the DOs. IOs do not have to be manipulated directly by the 

users, although in many RBIs this is possible. 

IOs do not have to act on only one DO. They may act on a group of DOs, 

or on specific properties or attributes of a DO. IOs may only work on a particular 

type of DO as well. Also, more than one IOs may be used together to achieve a 

desired action.  

IOs are used when the user cannot directly control or manipulate the DOs, 

or their properties and attributes. IOs may also be used in the case when the 

interface wants to explicate to the user a specific way of manipulation, or an 

interaction with an attribute of a DO. 

In many RBIs the hands are the IOs of the interface. However, this 

statement is truer for some RBIs and not as true for others. In VR for example, 
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while the simulation tries to convince the user that the IOs are the hands, the 

actual IOs are the representations of the hands in the virtual environment and 

their quality influences the quality of the experience.  

In interfaces such as flight simulators, or even real environments such as 

those of an aircraft, the IOs are not software representations. Rather, the 

interfaces are controlled through the use of joysticks, and consoles. Each of the 

controls then, becomes an IO to the DO that it manipulates. For example, when 

pilots want to manipulate the course of an aircraft, they manipulate the rudder, 

which in turn manipulates the ailerons. Thus, the ailerons are the IOs, because 

those are responsible for the change of the course of the airplane. The rudder is 

an intermediary object, as explained below.   

6.1.3 Intermediary Objects 

Intermediary objects (INs) are the physical objects used by the user to 

manipulate the IOs. INs are usually physical artifacts in any interaction style. 

These artifacts are used to manipulate the IOs, when the IOs cannot be 

manipulated directly.  

INs are never virtual. They are always real physical objects that are 

always bound to some IO in the interface. Through this binding they allow the 

manipulation of the interaction object by the user. As mentioned in the previous 

section, the rudder of an airplane is the IN through which the pilot controls the 

INs, the ailerons, which allow the change in one of the DOs of the airplane, its 

course. 
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Having an IN control the IO that controls the DO adds a third level of 

abstraction to the system, which in turn presents the added challenge to the user 

of learning and understanding the various ways that the binding between the IN 

and the IO works. Even though this is a simple observation, it is a crucial one in 

CoDeIn, as the framework deals with the knowledge that the user needs to have 

to use an interaction style with some degree of efficiency and expertise. 

However, users may notice the use of some INs more than others.  

A different example of an IN is the mouse in DM, which is bound to the 

pointer. The mouse is the physical artifact manipulated by the user to control the 

pointer. The pointer in this case is the IO which allows the manipulation of the 

DOs. But any device that controls the pointer in DM is an IN, like track balls, the 

touchpad, or even the cursor keys on the keyboard. There are however, several 

devices that are not INs, because they do not control the pointer, but rather 

become the pointer themselves, like light pens, or they allow the user to 

manipulate the DOs directly, like the touch screen.  

In a TUI environment, usually there are no INs, because the DOs and IOs 

are manipulated directly by the user. In Virtual Reality, on the other hand, the INs 

take many forms. In the case of immersive Virtual Reality, the head-mounted 

display is an IN, which allows the immersion of the user into the virtual 

environment. Even though the user does not use it directly to manipulate 

anything, the head-mounted display will change the user’s view when the user 

moves around and turns her head left, right, up or down. Thus the head-mounted 

display is an integral part of the virtual experience and it is the IN through which 
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users orient themselves in the virtual environment. Another IN is the device 

which positions the user’s hand or hands in the virtual environment. This could 

be a data glove, a polhemus or some other tracking device, which also provides 

the user with the ability to act on the environment. In such cases, the mapping to 

the user is more direct, because in the case of a data glove, the user just feels 

the glove, and does not realize that the glove is an IN. Rather, the IN’s role is 

partially hidden from the user. 

One issue that emerges from the use of an IN to control the IO is how the 

manipulation of the IN affects the IO. Usually, the user learns by experience that 

a specific manipulation of the IN affects the IO in a specific way, and with enough 

experience the translation of IN manipulations to IO manipulations becomes 

automatic. This type of knowledge is called Binding knowledge, and it is 

described in the next section. 

6.1.4 Bindings 

Binding is another term that is used in CoDeIn that signifies the places 

where the IO and the DO directly connect in order to carry out an action by the 

user. When an IO touches or in some other way comes in contact with the DO, 

we say that the IO is bound to the DO.  

When an IO manipulates or controls one or more DOs, or one of a DO’s 

properties, the IO is said to be bound to the DO. Binding an IO to a DO means 

that the DO has the focus of the user, and it is going to be manipulated or it is 

being manipulated. Bindings are the points at where interaction happens 
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between the user and the computer interface, because only through these 

bindings can the user manipulate or control the DOs.  

There can be two types of bindings: static and dynamic. Static bindings 

are bindings that hold throughout the use of the particular interface between two 

objects, and dynamic bindings are created and destroyed according to user 

actions. Static bindings are usually found between INs and IOs, such as the 

binding of the mouse to the pointer. Dynamic bindings though, are usually found 

between IOs and DOs.  

A static binding example is of the mouse and the pointer. The IN (the 

mouse) allows the user to control the pointer, throughout the lifetime of an 

application. Dragging a file icon with the pointer though, creates a dynamic 

binding between the icon and the pointer. This binding is only persistent during 

the lifetime of the action.  

Static bindings do not stop existing because of a change in the attributes 

of the IO. Consider the case of a video game that changes the pointer shape. 

The pointer is still manipulated through its IN, therefore the binding still applies.  

6.1.5 Diagrammatic notation 

Using the previous definitions of the sets of knowledge and the knowledge 

distinction between declarative and procedural chunks in chapter 3, and the 

nomenclature in the previous section, we define a diagrammatic notation to 

describe and evaluate interaction tasks. This notation is inspired from several 

other diagrammatic notations, like Statecharts (Harel, 1987) and Augmented 

Transition Networks (ATNs). The notation uses an ATN to represent the flow of 
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the task from one action to the other, and allows zooming into task states to see 

how they are carried out. The full notation for the proposed method is shown in 

Figure 6.1, and an example model is shown in Figure 6.2. 

Description Symbol 

Knowledge State 
 

Procedural Knowledge Chunk 

 

Declarative Knowledge Chunk 

 

Action 
 

 
Figure 6.1 The diagrammatic components that make up the syntax of the  

proposed evaluation method 
  

 

Figure 6.2 An example model of a one-action task in CoDeIn  
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Figure 6.1 includes four symbols that make up the diagrammatic notation 

of CoDeIn. The first symbol, the rectangle, represents a knowledge state. 

Because I propose modeling of the task, and not modeling of the interface, the 

knowledge state does not represent a specific state of the interface. Rather, it 

represents a state in the process of the task, if the task is viewed as happening 

serially over time. Each knowledge state in a task encapsulates the knowledge 

that the user must have to perform the action that would allow the task execution 

to proceed. For example, in Figure 6.2 the first knowledge state of the task 

includes three different declarative and procedural knowledge chunks. These are 

required for the execution of the action, as shown by the arrow labeled “Executed 

Action”. 

A declarative knowledge chunk is represented by a circle, with the 

description of the chunk inside it. When a declarative chunk is included in a state, 

then that chunk is a precondition for any action coming out of the knowledge 

state.  

A procedural chunk represents the procedural knowledge that the user 

needs to possess, to be able to perform the action represented by the arrow 

coming out of the knowledge state. The procedural knowledge in the notation is 

not broken down into its how-to components, but it can be thought of as a 

procedure in a cognitive architecture, like ACT-R (Anderson & Lebiere, 1998) or 

Soar (Laird et al., 1987). Resolving procedural knowledge into its finer 

components is beyond the scope of the proposed method, as explained in 

Chapter 5. I consider that the required knowledge for each action is atomic, in 
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that it cannot be broken down any further. For this knowledge I propose using the 

ER (as defined in Chapter 5) that allows the attribution of a number that 

represent how well the user knows how to perform the action. 

The reason for using different symbols for declarative and procedural 

knowledge is because of how each type of knowledge is viewed in the context of 

CoDeIn. Declarative facts are things that the user either knows, or does not 

know. I assume that there are no gradations of how well the user knows a 

particular fact. For example, users either know that the mouse controls the 

pointer, or they do not. However, there are gradations on the time required for 

the recall of this type of knowledge. Expert users for example, may be able to 

recall everything that is required for the performance of a task almost 

automatically (Logan, 1988), whereas novice users may have to recall each fact 

independently from the others, or they may need to recall one fact more times 

than others.  

On the other hand, I claim that one can test how well a user can perform 

an action (Christou & Jacob, 2003). For example, one can administer a test to 

see how well users know how to move the mouse. Thus, procedural knowledge 

can be graded using a scale from 0 to 1, with 0 being no knowledge and 1 being 

expert error-free performance. This is the use of the ER as applied to allow the 

predictive calculations of estimates of task completion time.  

Finally, the arrow represents an action that the user performs. The name 

or the description of the action is written over the arrow and, if applicable, a 

condition is written under the arrow. The condition of the action represents when 
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the transition will be followed, and not when the action will be performed. In any 

knowledge state, when an arrow exists, it may be followed (that is, the action 

may be performed) as long as the condition below the arrow is satisfied, and the 

knowledge requirements of the knowledge state are satisfied from the set of 

knowledge in the head or knowledge in the world. The condition of the action is 

optional, and if it is not included, the action may be performed as soon as the 

user enters a state that allows the action.  Figure 6.2 shows how the action 

creates the declarative knowledge chunk that is required in the next knowledge 

state, by pointing directly at that knowledge chunk.  

6.1.6 Examples 

In this section I provide some examples of how the notation may be used 

to describe various cases of pre-requisite knowledge and consequent actions. 

Figure 6.3 demonstrates the case where an action may be performed as soon as 

the user has all the required knowledge about its performance.   

 

Figure 6.3 Pre-requisite knowledge and consequent action. 
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Figure 6.4 demonstrates the case where the action performed has a direct 

effect on a knowledge chunk, and Figure 6.5 demonstrates the case where the 

action has a direct effect on multiple knowledge chunks. This may happen when 

the user is moving the pointer. The user’s knowledge of where the pointer is, is 

updated by the performance of the action “moving the pointer”.  

 

Figure 6.4 Action performance modifies knowledge. 
 

 

Figure 6.5 Action affecting multiple knowledge chunks. 
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There are cases where the user may be able to perform two or more 

actions at the same time, such as when using a multi-modal interface. Figure 6.6 

displays a case where the performance of the two actions requires the same pre-

condition knowledge.  

 

Figure 6.6 Performance of two actions in parallel. 
 

Figure 6.7 displays the case of the performance of parallel actions that do 

not have the same preconditions, but must be performed together during the 

execution of a task. The actions performed are not required to lead users to the 

same knowledge state. Rather, users may be able to choose in which knowledge 

state they will be next, after they perform the parallel actions. 

6.2  Using the notation for description of a task 

The previous section presented the diagrammatic notation of CoDeIn. In 

this section I show various examples of how this notation can be used to 

describe a task. The task used here is that of moving a file from one folder to 

another, in the DM interaction style. The task is also presented in more detail in a 
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later chapter of this thesis, where the framework is used to not only describe it, 

but also evaluate it and compare it to a similar task in a different interaction style. 

 

Figure 6.7 Parallel actions requiring different knowledge and leading to  
different knowledge states. 

 
The framework assumes that some kind of knowledge acquisition and 

elicitation process has been followed, by employing any of the processes 

reviewed in Chapter 3. As the knowledge acquisition and elicitation part is 

outside the scope of this thesis, I assume that it has been done, and continue to 

the description of the task, using the results of the knowledge elicitation process. 

The first step in the evaluation of a task is to create a summary diagram. 

This diagram’s goal is to show a simplified view of the task, without all the 

knowledge chunks and action-condition pairs, and it represents the execution of 

a task over time. Figure 6.9 displays such a summary diagram for a “File move” 

task.  
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Figure 6.8 A summary diagram for a “File move” task. 

Each subtask can be analyzed and yield a diagram with its constituent 

knowledge and actions. Because of the hierarchical decomposition of tasks, the 

process resembles that of Hierarchical Task Analysis (Annet, 2003; Annet & 

Duncan, 1967). Figure 6.10 shows an enlargement of the “Open source folder” 

subtask.  

 
Figure 6.9 The "Open source folder" knowledge state from the summary diagram. 
Enlarged here to show the knowledge and constituent actions for its completion 

 
There are three knowledge states in Figure 6.10. The first one shows that 

the user performs a visual search to find where the source folder is on the 

screen, and is followed by the “Visual Search” action. Notice that the visual 

search action creates the required knowledge chunk in the second knowledge 
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state. Once the visual search action is completed, the user moves to the second 

knowledge state. The second one describes moving the pointer from its current 

position to over the source folder. This requires the user to know four chunks: the 

pointer’s position, the binding of the mouse device to the pointer, the source 

folder’s position (which are all shown as declarative knowledge), and how to 

move the pointer (which is procedural knowledge). If any of these four chunks is 

missing, then the user will not be able to perform the “Move pointer” action, which 

is denoted as arrows coming out of the subtask. 

There are two arrows that come out of the second knowledge state, both 

marked as the action “Move pointer”. The topmost arrow includes the condition 

that signifies that if the pointer’s position is over the source folder, then the user 

can move on to the next knowledge state to complete the task. The second 

(lowermost arrow) shows that while the pointer’s position is not inside the source 

folder’s position, then the user will need to continue moving the pointer. Notice 

how here too, the lowermost arrow points back to a specific knowledge chunk. 

This is because the move pointer action updates the position of the pointer, thus 

the action updates the specific knowledge chunk.  

The arrow that represents the double click action is the same as the arrow 

that is shown in the summary diagram, which takes the user from the “Open 

folder” state to the next state called “Cut Required File”. In the same way, the 

rest of the subtasks in the summary diagram are expanded and presented in 

Figures 6.11 – 6.14.  
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Figure 6.10 The analysis of the "Cut File" state in the summary diagram of Figure 6.3. 

 
Figure 6.11 Analysis of the “Move to Folder View” state in Figure 6.3 
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Figure 6.12 Analysis of the "Open Target Folder" state in Figure 6.3 

 
Figure 6.13 Analysis of the "Paste File" state in Figure 6.3 

 
As is evident from the figures, there are knowledge states that are 

repeated many times with very few differences. For example, the knowledge 

state of moving the mouse pointer is the same in all subtasks, their only 
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difference being the target of the motion. Such knowledge states may be 

considered design patterns (Gamma, Helm, Johnson, & Vlissides, 1994), and as 

such they can be reused without drawing their constituent knowledge, nor any 

actions that lead back to the same knowledge state. Complete tasks may also be 

considered design patters. For example, the whole “File move” task described in 

Figures 6.9 to 6.13 can be represented as a single knowledge state in a larger 

diagram that requires or allows the performance of this task. These knowledge 

states represent one coherent unit of knowledge that can be applied in many 

different situations. This is also supported by other task analysis theories, such 

as TKS (H. Johnson & P. Johnson, 1991; P. Johnson & H. Johnson, 1991; P. 

Johnson et al., 1988). TKS supports that knowledge that represents a coherent 

whole can be retrieved together as one chunk of knowledge, thus justifying the 

use of one knowledge state to represent the performance of a task. 

The knowledge chunks in Figures 6.10 to 6.13 mention specific IOs and 

INs, such as the pointer and the mouse. However, when expert users are 

presented with a touchpoint or a touchpad, they are immediately able to use 

these instead of the mouse to control the pointer. Also, the mouse may not 

control the pointer, as is frequently the case in first-person shooter games. 

Rather, the mouse controls the point-of-view of the user. But expert users are 

able to control point-of-view with the mouse in the same manner they control the 

pointer. Thus, instead of referring to bindings of mouse to pointer, and clicking on 

folders and files, I replace these with the generic terms DO, IO, and IN.  
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This generalization provides a graphical way of showing how users may 

create knowledge structures that apply to different situations with some 

similarities. As these structures become more general, they apply to more 

situations, showing that the user abstracts the knowledge required for the 

performance of a task, which many believe is a direct effect of experience 

(Anderson, 1992; Logan, 1988; Palumbo, 1990). The generalization is contrasted 

in Figures 6.14 and 6.15. While they are the same, Figure 6.15 uses the generic 

terms instead of the specific terms used in Figure 6.14.  

 
Figure 6.14 The Knowledge State representing the move pointer action, using a variable. 

Variable X is used to represent the target of the pointer movement, without being instantiated. 
 

 
Figure 6.15 The Knowledge state representing the ‘Move Pointer’ action with instantiated variables. 

All the references to specific interface elements have been replaced with generic references to Data, 
Interaction and Intermediary Objects to reflect the generic nature of the knowledge state. 

6.3 Chunking and Automatic Processes 

Considering the case of users who have some knowledge about the 

performance of a task but lack other knowledge, in CoDeIn the chunks that are 
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not known are considered to add infinite retrieval time to the model, and thus 

make the performance of the task impossible. Once users learn the chunks that 

they do not know, then they retrieve each chunk of knowledge from long-term 

memory. This retrieval is associated with a time cost. Users gain experience in 

the performance of the task by repeatedly performing it, and this leads to the 

increment of their ER and decreases the amount of time associated with the 

retrieval of knowledge from long-term memory. The explanation in the Cognitive 

Science literature for this process is that through this process the task becomes 

automatic, or close to automatic (Anderson, 1992; Logan, 1988; Palumbo, 1990; 

Ritter & Schooler, 2001). Chapter 8 of this thesis describes an experiment that 

demonstrates this effect, and shows how CoDeIn models it. 

Once these users know all the declarative chunks of knowledge that the 

task requires, their ability to perform the procedural aspects of the task is equal 

to that of an expert user, denoted by an efficiency rating equal to 1.  

The diagramming method of CoDeIn shows this process concretely by 

associating retrieval times to all the knowledge chunks that are independently 

retrieved from long-term memory, and as users gain expertise the retrieval time 

decreases, relative to the users’ increasing ER. Therefore, similar to other 

theories of cognition, CoDeIn utilizes the concepts of chunking and automatic 

performance. However, CoDeIn shows the components of the task and what is 

learned more fully than previous representations, because the description of 

tasks includes the knowledge required for the task’s performance. 
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6.4 Summary 

This chapter presented the nomenclature and notation used in the CoDeIn 

framework. The terms DO, IO, and IN were introduced to refer to the constituents 

of a user interface, without using interaction-style-specific notation. The concept 

of bindings was also introduced to mean the “connections” between DOs and IOs 

or IOs and INs.  

CoDeIn’s diagrammatic notation was presented with examples that 

demonstrate how the notation allows the creation of models of task performance. 

The primary difference between CoDeIn’s notation and the notation of other task 

analysis methods is that CoDeIn presents and bases models created with it on 

the presumed task-performance knowledge users are required to possess.  

A simple DM “File move” task is used to exemplify the procedure of 

describing a task using CoDeIn. The example is also used to show how general 

actions can be described using notation that is independent of interaction style.  

It was then suggested that knowledge states and task models may be 

used as design patterns (Gamma et al., 1994) allowing the creation of smaller, 

high-level models.  

Finally, the concepts of chunking and of task automatization are discussed 

and it is shown how CoDeIn explains the occurrence of this process. The next 

chapter uses these concepts for the evaluation of an experimental task.  
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Chapter 7  CoDeIn vs. GOMSL 

This chapter presents an example of CoDeIn’s task-completion-time 

prediction capabilities. An experiment is performed that times the completion of a 

task in a DM interface and a TUI interface. The experimental results then are 

compared to the completion time prediction of a GOMSL model (Kieras, 1999) 

and to the completion time prediction of CoDeIn.  

One objective of this experiment is to examine whether CoDeIn can model 

tasks performed in interfaces designed in different interaction styles. A second 

objective is to determine whether CoDeIn can estimate the completion time of 

modeled tasks with similar accuracy to estimates of existing evaluation methods, 

such as GOMSL (Kieras, 1999).  

The experimental task is the “file move” task described in Chapter 6. Here 

it is designed and tested in two different interaction styles, DM (Hutchins et al., 

1986; Shneiderman, 1983) and RBI (Jacob, 2004; , 2006). Because RBIs are a 

whole class of interaction styles as discussed in Chapter 2, I chose a Tangible 

User Interface (TUI) (Ishii & Ullmer, 1997; Ullmer & Ishii, 2000; , 2001) as a 

representative for RBIs. I analyze the two conditions by using GOMSL (B. E. 

John & Kieras, 1996a; Kieras, 1999) and Fitts’ Law (Fitts, 1954; Fitts & Peterson, 

1964). Then, I use the CoDeIn framework and compare its estimates for each 

interface to those of GOMSL (Kieras, 1999). CoDeIn provides better predictions 

for both the DM and the RBI conditions than GOMS and Fitts’ Law combined.   
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The rest of the chapter is organized as follows. First, I present the “file-

move” and introduce the two conditions of the experiment, DM and RBI, together 

with models of each condition’s task in GOMSL and CoDeIn. Two more 

experiments are then presented that provide additional information required for 

estimating the completion time of the task for each condition. Subsequently I 

discuss the findings of all three experiments and draw conclusions about the 

ability of CoDeIn to estimate the completion times of tasks, compared to the 

GOMSL’s same ability.  

7.1 Experiment 1 

The experiment consisted of having a group of 13 experienced MS 

Windows XP™ participants perform a file manipulation task in two conditions.  

7.1.1 Participants 

The 13 participants, 9 male and 4 female, were all undergraduate 

Computer Science Students at the Computer Science department of Cyprus 

College and their age varied between 19 to 30 years old.  All the participants 

were enrolled in an introductory Human-Computer Interaction course at the time 

of the experiment and participated in the study for course credit.  

7.1.2 Materials and Design 

The task was designed in two different interaction styles, as shown in 

Figures 7.1 and 7.2: one condition was based on MS Windows XP™ 

representing the DM interaction style (Figure 7.1), and the second condition was 
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designed as a TUI using a mockup of the actual interface (Figure 7.2). Because 

all that is of interest is the interaction with the interface, it was unnecessary to 

build the computer-supported tangible user interface to support the task. 

 
Figure 7.1 The WIMP condition layout of the experiment 

 
The TUI condition’s interface was built as a “Wizard of Oz” interface. The 

folders were represented by cardboard boxes, with 16cm length and 14cm width. 

The name of each folder was written on the front side of each box. Inside each 

box there were regular paper cutouts of file objects, measuring 7.2cm wide and 

5.4cm long. Each folder had a minimum of 3 and a maximum of 11 file objects. 

The file objects represented the files that were inside each folder; the name of 

each file they represented was printed in a box in the middle of the paper cutout. 

The file objects are shown in Figure 7.3.  

Each experimental condition had one task to be performed, and the 

song/album pairs were the same for all subjects, and for both conditions. All 

participants performed the task in both conditions, and performed the tasks in the 
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two conditions in random order. Each participant performed ten trials per 

condition. 

 Figure 7.2 The TUI condition layout of the experiment 
 

 

Figure 7.3 The regular paper cutout used in the TUI condition. 
 

7.1.3 Procedure  

Participants were asked to perform the following task: “Find the mp3 file 

called X, in folder Y and move it from folder Y to folder Z”, where the mp3 file X, 

the source folder Y and the target folder Z were disclosed to the participants prior 

to the beginning of each trial. For example, a participant might be asked: “Find 

Aerosmith – Hole in 

my soul 
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the mp3 file called ‘Cleaning my closet’ by Eminem, in folder ‘Sting’ (source 

folder), and move it to folder ‘Eminem’ (destination folder)”. 

Figure 7.1 shows the layout of the DM condition of the task. The 

participants began each trial with the pointer at the right side of the window, not 

shown in Figure 7.1. This was considered to be the pointer’s home position, and 

all subsequent Fitts’ Law calculations for the first movement of the condition’s 

task are calculated from that position. The participants proceed to move the 

pointer above the source folder, double-click it, position the pointer over the 

target file, right-click, and select cut from the popup menu. This completed the 

first subtask of selecting the target mp3 file. Then the participants had to move 

the pointer onto the “up folder” icon on the window toolbar, double-click on the 

destination folder icon, and right-click inside of the white-space area of the 

destination folder window, and select paste. This would signal the end of the trial. 

The task was modeled in GOMSL (Kieras, 1999), with the model shown in Table 

7.1. GOMSL was chosen from the various GOMS methods based on 

recommendations given by John and Kieras (1996b).  

The task was timed using a handheld stopwatch. The experimenter 

signaled the participant to start the trial by saying ‘Go!’, and at the same time 

began timing the task. The experimenter stopped the stopwatch when the icon of 

the target file appeared in the target folder. 

Figure 7.2 shows the layout that was used for the TUI condition of the 

experiment. The TUI condition’s task was performed in the following manner: the 

participants reached into the source folder, grabbed the file objects, and 
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physically searched through them. When they found the target mp3 file they 

placed it into the destination folder. This signaled the end of the trial. The TUI 

condition’s task is shown as a GOMSL model in Table 7.2. 

7.1.4 Results 

The results of the experiment are shown in Table 7.1. The results in the 

DM and TUI columns represent the task completion times in the DM and TUI 

conditions of the experiment, respectively.  

Table 7.1 Average completion times (in seconds) by participant 
 for the two experimental conditions 

Participant DM TUI 

1 8.00 1.80 

2 7.5 5.53 

3 13.35 4.03 

4 12.33 2.36 

5 7.37 4.02 

6 21.33 6.07 

7 31.22 8.05 

8 7.86 2.24 

9 9.12 3.01 

10 11.00 6.88 

11 24.00 5.68 

12 15.00 6.74 

13 7.00 7.16 

Average 13.47 4.89 

Std. Dev. 7.59 2.10 
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The first result we can note in Table 7.1 is that the TUI condition task can 

be completed faster than the DM condition, and the standard deviation of the 

completion time of the DM condition’s task is greater than that of the TUI 

condition. This was expected, because the tasks are not entirely equivalent. For 

example, the TUI condition’s folder representation was always open, whereas in 

the DM condition’s task the participants needed to perform actions to open the 

required folders.  

7.2 GOMSL Models 

Tables 7.2 and 7.3 show the GOMSL (Kieras, 1999) models for the tasks 

of the DM and TUI conditions, respectively. Each step and each method in the 

two tables has next to it, in parentheses, the estimated completion time for the 

task. The execution time for each GOMSL method is calculated by summing up 

all the execution times of the primitive operators and adding 0.05 seconds for 

each step in the method (Kieras, 1999) that represents the mental decision to 

execute that step.  

The primitive operators are “Keystroke Level Method” (KLM) operators as 

defined by Card et al. (1983). For each “method for accomplishing goal” step, 

0.05 seconds are added, and the same applies for each selection rule. Any 

‘Decide’ operators take 0.05 seconds to execute, regardless of the number of 

conditions. Next to each step in the GOMSL methods, the average time (in 

seconds) for the performance of the operator is given in parentheses as 

computed by Card et al. (1983). The total time needed for the performance of a 

method is in parentheses next to the beginning of the method. The time required 
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for a step in the method to be executed, as well as the time needed for calls to 

methods, is not shown, but is included in the total time calculated for each 

method.  

Table 7.2 The GOMSL model for the DM condition of experiment 1 

Top Level Method (16.15 s) 
Method for Goal: Move file from source folder to destination folder 
Step 1: Accomplish Goal Open Source Folder (1.70 s) 
Step 2: Accomplish Goal Cut Required File (4.20 s) 
Step 3: Accomplish Goal Go back to folder list (2.75 s) 
Step 4: Accomplish Goal Open Destination folder (3.00 s) 
Step 5: Accomplish Goal Paste file (4.15 s) 
Step 6: Return with goal accomplished 

Method for Goal: Open Source Folder (Total time = 1.70 s) 
Step 1: Point to Source Folder (P = 1.1 s) 
Step 2: Double-click mouse button  (BB = 0.4 s) 
Step 3: Return with goal accomplished 

Method for Goal: Cut Required File (Total time = 4.20 s) 
Step 1: Recall that required file is Y (negligible) 
Step 2: Locate Y on the screen (M = 1.2 s) 
Step 3: Point to Y (P = 1.1 s) 
Step 4: Click mouse button (B = 0.2 s) 
Step 5: Point to “Cut”. (P = 1.1 s) 
Step 6: Click mouse button (B = 0.2 s) 
Step 7: Return with goal accomplished 

Method for Goal: Go back to folder list (Total time = 2.75 s)  
Step 1: Locate “Up Folder” Button (M = 1.2 s)  
Step 2: Point to “Up Folder” (P = 1.1 s) 
Step 3: Click mouse button (BB = 0.2 s) 
Step 4: Return with goal accomplished 

Method for Goal: Open Destination Folder (Total time = 3.00 s) 
Step 1: Recall that the Target folder’s name is X (negligible) 
Step 2: Locate X on the screen (M = 1.2 s) 
Step 3: Point to X (P = 1.1 s) 
Step 4: Double-click mouse button (BB = 0.4 s) 
Step 5: Return with goal accomplished 

Method for Goal: Paste file (Total time = 4.15 s) 
Step 1: Point to white space (P = 1.1 s) 
Step 2: Click mouse button (B = 0.2 s) 
Step 3: Locate “Paste” Menu Item (M = 1.2 s) 
Step 4: Point to “Paste” (P = 1.1 s) 
Step 5: Click mouse button (B = 0.2 s) 
Step 6: Return with goal accomplished 
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The TUI condition’ task modeled in GOMSL, with three GOMS methods, 

shown in Table 7.3. The three methods capture the three parts of the task: 

(1) finding the source folder and grabbing the file objects, (2) searching through 

the pile of file objects to find the required one, and (3) placing the required file 

object in the target folder and the rest of the file objects back in the source folder. 

In the model shown in Table 7.2, there are two peculiarities. The first is 

that in two methods, “Find Folders and Grab File Objects”, and “Place File in 

Destination Folder”, I use a primitive operator that is not included in either the 

documentation of GOMSL (Kieras, 1999), nor in the KLM primitive operators 

(Card et al., 1983). This operator is signified with the letter R in step 2 of the first 

method and steps 2 and 3 of the second method, and it represents the 

prehension action that users perform when they reach and grasp an artifact. 

GOMS does not have any operators that represent hand or arm pointing actions, 

and the literature suggests that the prehension action cannot be modeled by 

Fitts’ Law (Jones & Lederman, 2006; C. L. Mackenzie & Iberall, 1994). However, 

the surveyed literature does not seem to provide a model that, like Fitts’ Law, 

allows the prediction of the prehension movement execution time based on some 

function of the distance of the actor from the target. Thus, another experiment 

was necessary in order to find a model that estimates the completion time of the 

prehension operator in step 2 of the ‘Move File from Source Folder to Destination 

Folder’ method, and step 2 of the ‘Place File in Destination Folder’ method in 

Table 7.2. I refer to this as Experiment 2. 
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Table 7.3 The GOMSL model for the TUI condition of Experiment 1 

Top Level Method (8.95 s): 
Method for Goal: Move file from source folder to destination folder 
Step 1: Accomplish Goal Find Folders and Grab File Objects (2.25 s) 
Step 2: Accomplish Goal Find Required File (3.5 s) 
Step 3: Accomplish Goal Place File in Destination Folder (2.95 s) 
Step 4: Return with Goal Accomplished 

Method for Goal: Find Folders and Grab File Objects (2.25 s) 
Step 1: Locate source and target folders (M = 1.2 s) 
Step 2: Reach into source folder and grab files (R = 0.75 s) 
Step 3: Examine the name of the file object on top of the file object pile (negligible) 
Step 4: Decide: If the filename matches the required filename Then Accomplish Goal: ‘Place File 
in Destination Folder’ (2.95 s) Else Accomplish Goal: ‘Find required file’ (3.5 s) (Step = 0.05 s) 
Step 5: Return with goal accomplished 

Method for Goal: Find Required File (3.5 s) 
Step 1: Move file object from top of file object file to bottom. 
Step 2: Examine the name of the file object on top of the file object pile 
Step 3: Decide: If the filename matches the required filename Then ‘Return with goal 
accomplished’ Else Accomplish Goal: ‘Find Required File’ 

Method for Goal: Place File in Destination Folder (2.95 s) 
Step 1: Locate destination folder (M = 1.2 s) 
Step 2: Place file in the destination folder (R = 0.75 s) 
Step 3: Place remaining files in source folder (R = 0.75 s) 
Step 4: Return with goal accomplished   

 

The second peculiarity is that GOMSL cannot compute the completion 

time of the method “Find Required File”, because there are no primitive operators 

defined for the steps of this method, and because of its iterative nature. 

Therefore, a third experiment was performed to calculate the completion time of 

this method. 

7.3 Experiment 2 

Experiment 2 was performed to find an average for the completion time for 

the grasping action in the TUI condition of the task.  
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7.3.1 Participants 

Experiment 2 involved 18 new participants, ages between 20 and 30 years 

old, 15 males and 3 females, all college students of the Department of Computer 

Science of Cyprus College. The participants were asked to perform the reaching 

action of the TUI condition of the first experiment. 

7.3.2 Materials and Design 

The participants were seated in front of a desk and were asked to place 

their dominant hand on the edge of the desk. The office was measured on its 

width, and we placed a scale with markings at every 5cm from the edge closest 

to the participant, to the other edge of the desk. The scale was marked from 5cm 

to 50cm. 

7.3.3 Procedure 

Each trial was performed as follows: a box that was the same as the one 

in experiment 1 was placed on one of the markings. Inside the box we placed a 

stack of 11 file objects, like the one shown in figure 3. The participant was asked 

to reach into the box as fast as they could on the verbal cue of the experimenter, 

and grab the stack of file objects. The experimenter timed the participant, using a 

stopwatch, and noted the completion time of the movement. The experimenter 

stopped the stopwatch when the participant had a firm grip on the stack of file 

objects. If the participant did not manage to grab the file objects, or did not grab 

all the file objects at once, the trial was performed again. Each participant 
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performed the task ten times, with the placement of the box being random for 

each trial. 

7.3.4 Results and Analysis 

The average completion times for each distance, along with the 

associated Index of Difficulty and task completion time are shown in Table 7.4. 

Table 7.4 Distance, average completion time and Index of Difficulty for Experiment 2. 
The distance is measured in centimeters and the time in seconds. 

Distance ID Time 
Standard 
Deviation 

5 0.39 0.68 0.12 

10 0.70 0.70 0.14 

15 0.95 0.72 0.28 

20 1.17 0.72 0.13 

25 1.36 0.69 0.12 

30 1.52 0.74 0.16 

35 1.67 0.74 0.15 

40 1.81 0.82 0.16 

45 1.93 0.82 0.22 

50 2.04 0.84 0.16 

Average 
Completion Time  0.75 0.16 

 

 Figure 7.4 shows the relationship between the ID and the completion time 

of the action, with the regressed line passing through the data. The results of the 

regression analysis on ID vs. time indicated a reliable relationship (R2 = .73, F = 

22.0, p < .005).  
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Figure 7.4 Experiment 2’s ID vs. Task Completion Time.   

The straight line represents the trend of the data, as calculated with 
regression analysis. 

 
Figure 7.5 shows the relationship between distance and time in graphical 

form, with a regressed line passing through the results. The regression analysis 

we performed on distance vs. time also indicates a more reliable relationship (R2 

= .82, F = 36.81, p < .0005) than that between the ID and the completion time.  

A curve estimation analysis was performed to investigate whether Fitts’ 

Law may explain the same results, using a logarithmic model in SPSS, on 

distance vs. time. However, the results were not statistically significant (R2 = .64, 

F = 14.21, p > .005). The logarithmic model is shown as a red line in Figure 7.5. 

The three regression models may seem to have similar R2 values (.73, .82 

and .64), but the fitness of the model of distance versus time is statistically 

significant at p < .0005, whereas the other two models are statistically significant 

at p < .005. The statistical significance of the linear model is greater than the 

other two by one order of magnitude.    
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Figure 7.5 Experiment 2’s Distance vs. Task Completion Time. 

The straight line represents the trend of the data, as calculated with 
regression analysis. 

 
Therefore, this experiment resulted in the corroboration of the literature 

about prehension motions (Jones & Lederman, 2006; C. L. Mackenzie & Iberall, 

1994) that posit that these motions are not as fast as Fitts’ Law would suggest. 

Rather, the prehension motion completion time is linearly correlated to the 

distance of the actor from the object. 

As confirmed in experiment 2, the assumption that the prehension motion 

cannot be modeled by Fitts’ Law. Hence, the experimental average of experiment 

2 was used for the calculation of the TUI condition completion time in the GOMS 

and CoDeIn models.   

 

7.4 Experiment 3 

Experiment 3 was performed to find an estimate for the search strategy 

that participants used during their performance of the TUI condition of experiment 

1. Because the file objects were represented by pieces of paper with the filename 
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printed on them, when the participants grabbed the files, they held all the objects 

like a stack. To find the target file object, the participants examined the topmost 

object, and if it was not the required one, then they moved the object to the 

bottom of the pile. They iteratively performed this procedure until they found the 

required object. 

Due to the iterative nature of the participants’ search, the search time 

seemed to be based on the number of objects they had to go through until they 

found the required object. Therefore, the hypothesis of this experiment is that the 

time to find the target object is directly proportional to the number of objects, as 

follows: ECT = constant * (Number of Objects), where the ECT is the Expected 

Completion Time of the experiment. In this formula, I assume that there exists a 

linear relationship between the completion time of the search and the number of 

file objects above the required file object in the pile. This is because of the 

increased number of times that the participant must move the other file objects to 

the bottom of the pile, until the target file object is reached. I also assume that the 

reading time of each filename is approximately constant, as is the time to move 

an object from the top of the pile to the bottom. 

7.4.1 Participants 

The supplementary experiment involved 10 new participants, ages from 

20 to 30, 7 males and 3 females, who were asked to only perform the search 

through the tangible file objects in the aforementioned way, until they found the 

target object. 
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7.4.2 Materials and Design 

The file objects that were used were identical to the ones used in the TUI 

condition of experiment 1, as shown in Figure 7.3. The time was measured using 

a handheld stopwatch, operated by the experimenter.  

7.4.3 Procedure 

Each participant was asked to find the required file object in a pile of 10 

other file objects, for a total of 11 file objects in the pile. The required file object 

was inserted at a specific position by the experimenter, from 2nd to 10th in the 

pile. The presentation order of the pile was random, to avoid order effects. For 

example, the participant would be presented first with a pile that had the required 

file object 4th, then 10th, then 6th, and so on. The experimenter made sure that the 

participants did not see where the required file object was placed before each 

trial. Each participant performed 10 searches at each of the 9 possible positions 

of the required file object in the pile. 

The participants started each trial with the stack of file objects in their 

hands, without knowing where the target object was in the pile. As soon as the 

experimenter gave the verbal cue to the participant to start, the participant would 

go through the stack of objects using the required search strategy described 

previously, and the participant would say “Stop” when they would find the 

required file object. At that point the experimenter would stop the stopwatch and 

record the time and the position of the target file object. 
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7.4.4 Results and Analysis 

The result of this experiment gave the average time for the search that is 

used in the GOMS method “Find Required File”, shown in Table 7.3. Additionally, 

Table 7.5 shows the average completion time vs. the position of the required file, 

and Figure 7.6 shows a graph with the relationship between the average time 

taken to find the required file object in the pile, against the required file object’s 

position in the pile. Figure 7.6 shows that the relationship appears to be linear on 

the position of the required file object in the pile. Also, linear regression analysis 

on the data, shown in Table 7.6, results in a very strong linear relationship, (R2 = 

.999, F = 15,434.05, p = 5.77x10-13).  

The linear regression equation that calculates the Completion Time (CT) 

from the experiment results is CT = -0.02 + 0.59 * (Position of target). The 

acquired formula for CT closely resembles the hypothesized formula (ECT) for 

the estimation of the completion time of the search. The formula has a very small 

error, in that the time taken for the task if there are no file objects cannot be 

negative, whereas the y-intercept of the equation is negative. However, the 

standard error of the experiment is 0.03. Using the standard error, the estimate 

for the y-intercept is found to be in the range of [-0.05, 0.01]. I operate under the 

assumption that if there are no file objects, then the subject will not need any 

time to search, which means the time for 0 objects should be 0 seconds, which is 

inside the range given for the intercept.  

I conclude that the relationship between the time and the position of the 

item in the pile is a linear one. 
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Table 7.5 Average Search Time vs. Required File Object Position in Pile 

Required File Object 
Position in Pile 

Average Completion Time 
(in seconds) 

2 1.1 

3 1.7 

4 2.3 

5 2.9 

6 3.5 

7 4.1 

8 4.6 

9 5.2 

10 5.8 

Average 3.5 
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Figure 7.6 Experiment 3’s Required file object's position vs. average search time. 
The times shown are  in seconds, and the line showed is the regressed line found using  

linear regression analysis. 
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7.5 Refinement of the GOMSL Models 

The results of the two experiments (experiment 2 and experiment 3) were 

used to refine the GOMSL model. The result of experiment 2 was used for the 

calculation of the R operator in Table 7.3, and the result of experiment 3 was 

used as the completion time for method “Find Required File” in Table 7.3.  

Fitts’ Law was also used to make the GOMSL model of the DM condition 

(Table 7.2) more accurate. The pointing form of Fitts’ Law was used as indicated 

by Mackenzie (1991): MT = 230 + 166*ID, because the task only involved 

pointing motions with the mouse. The participants were specifically asked not to 

use the drag-and-drop method of moving files in the Windows environment. 

In the above equation MT is the Movement Completion Time and ID is the 

index of difficulty for the task using the Shannon formulation (I. S. MacKenzie & 

Buxton, 1994), as was discussed in Chapter 3. Each movement’s ID was 

calculated independently, because each movement had different start and end 

points, and different targets. Using the distances of pointer travel on the screen, I 

computed the results shown in Table 7.6 that also delineates the GOMSL 

Method Steps of Table 7.2 whose times were replaced by the Fitts’ Law 

calculations. The total calculated time using Fitts’ Law and GOMSL combined is 

12.98 seconds.  

Table 7.6 DM Condition's Fitts' Law calculations. 

GOMSL Method Step Replaced Description of Fitts’ Law Result 

Method Open Source folder, step 1: 
from 1.1 to 0.80s 

Moving from the home position of the cursor to 
the source folder (ID = 3.46, MT = 0.80s). 

Method Cut Required File, step 3: from Moving from the current position of the cursor 
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1.1 to 0.82s to the required file (ID = 3.53, MT = 0.82s). 

Method Cut Required File, step 5: from 
1.1 to 0.63s 

Moving from the file icon to the “Cut” menu 
item (ID = 2.44, MT = 0.63s). 

Method Go Back to Folder List, step 2: 
from 1.1 to 0.72s 

Moving from the “Cut” menu item position to 
the “up hierarchy” button on the window toolbar 
(ID = 2.96, MT = 0.72s). 

Method Open Destination Folder, step 
3: from 1.1 to 0.52s 

Moving from the “up hierarchy” button to the 
destination folder (ID = 1.75, MT = 0.52s). 

Method Paste File, step 1: from 1.1 to 
0.52s 

Moving from the destination folder position to 
the unused area of the folder window (ID = 
1.75, MT = 0.52s). 

Method Paste File, step 4: from 1.1 to 
0.52s 

Moving from the current pointer position to the 
“Paste” menu item (ID = 1.75, MT = 0.52). 

 

7.6 CoDeIn Models 

The same Fitts’ Law calculations were used in the CoDeIn model, shown 

in Figures 7.7 – 7.10. As explained in the previous chapter, the model is built by 

first creating a summary diagram that shows the constituent subtasks of the task. 

This is shown in Figure 7.7. The summary diagram can be used like the top level 

method of the GOMSL model as well. By using it, one can calculate the time that 

the user spends at every state, and how long it takes for each transition from one 

state to the other. By the addition of all the calculated times, a prediction for the 

completion time of the task is found. Because this diagram has the same states 

as the steps of the top level method of the GOMSL model of Table 7.1, the time 

of each step can be assigned to each of the states, and reach the same 

completion time estimate as that of the GOMSL model.  
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Figure 7.7 A summary diagram of the DM condition of the experiment 
 

Figures 7.8 – 7.10 show refined views of the subtasks in Figure 7.7. These 

show generalized knowledge states, because the assumed user that performs 

the task is classified as an expert who has already built the abstract knowledge 

structures required for the experimental task. In Figure 7.8 there are two 

knowledge states that refer to the IO and IN of the DM condition (i.e., the pointer 

and the mouse). Because of the commonality of these devices the 

correspondence is assumed and therefore omitted. The variable X_DO used in 

Figures 7.8 to 7.10 is instantiated to the appropriate DO during the performance 

of each action. Figure 7.8, for example, may be used to represent both the “Open 

Source Folder” subtask and the “Open Target Folder subtask”; X_DO is bound 

either to the Source folder or the Target folder, according to which sub-task is 

being modeled. Because the task of opening folders is the same, the only 

difference being the target of the task, one may consider the performance of the 

opening any folder as a general procedure, with only the target of the procedure 

being different. This is captured in the model of Figure 7.8 by using the variable 

X_DO. Next to each binding of the X_DO variable, in parentheses, I include the 

time calculated (by Fitts’ Law) to execute the action that includes them as targets 

(in this case, the “Move IO” action).  
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Figure 7.8 The "Open source/target folder" knowledge state  

from the summary diagram of Figure 7.4, enlarged to show the knowledge  
and constituent actions for its completion 

 

 
Figure 7.9 The analysis of the "Cut/Paste File" states in the summary diagram of Figure 7.4. 
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There are two arrows that come out of the first knowledge state, both 

marked as the action “Move IO”. The topmost arrow includes the condition that 

signifies that if the IO’s position is over X_DO, then the user can move on to the 

next knowledge state to complete the task. The second (lowermost arrow) shows 

that while the IO’s position is not equivalent to the X_DO’s position (I use 

equivalent with a certain amount of freedom here), then the user needs to 

continue moving the IO. 

 
Figure 7.10 Analysis of the Move to Folder View state in Figure 7.4 

 
There is no search time for the position of X_DO when bound to the 

source folder, because the experiment began with the participants able to view 

all the folders. Therefore the participants knew the position of the source folder 



 

130 

before the beginning of the experiment, so visual search was not part of the 

completion time of the task.  

Figure 7.11 shows the CoDeIn model for the TUI condition’s task. 

Because this model was smaller than the one required for the DM condition’s 

task, the complete model is shown in one figure. 

 
Figure 7.11 The complete analysis of the task in the TUI condition 

 

7.7 Discussion 

In this section I compare the results taken from the experiment 1 with the 

estimates of the GOMSL and CoDeIn models for each condition. Table 7.7 

shows the results of each condition with the results of the two analyses. The 

predicted completion time by GOMS for the DM condition overshoots the actual 

experimental average by 2.63 seconds. When Fitts’ Law is used in the GOMSL 

model it more accurate: 0.49 seconds deviation less than the experimental 

average. CoDeIn though, yields the most accurate result for the DM condition, 

with a deviation from the experimental average of 0.06 seconds. 
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Table 7.7 Summary of the results of the two conditions of experiment 1. 
All times shown are in seconds. 

 DM Absolute 
Deviation TUI Absolute 

Deviation 

Experiment 1 
Average 13.47 - 4.89 - 

GOMSL 16.15 2.63 - - 

Refined 
GOMSL 12.98 -0.49 8.95 4.06 

CoDeIn 13.53 0.06 6.20 1.31 
 

Tables 7.8 and 7.9 show a method by method breakdown of the GOMSL 

model for each of the two conditions, and they are compared with the equivalent 

knowledge states of CoDeIn. Table 7.8 shows the differences between the two 

methods in the evaluation of the DM condition. There are several small 

differences that are evident in the table. The primary reason in the difference 

between the three models, the GOMSL model, the refined GOMSL model, and 

the CoDeIn model, is that when using CoDeIn there is no extra cost of execution 

for each action, whereas in the two GOMS models, each step in each method 

requires some decision time to be executed. The large differences between the 

GOMSL model and the other two models can be attributed to the fact that the 

GOMSL model uses the pointing operator P that averages short and large 

distances traveled with the pointer. By substituting the pointing operator’s 

estimated completion time of the pointing actions in the GOMSL model with the 

estimates using Fitts’ Law, the resultant estimate of the model becomes more 

accurate. 
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It is a well established fact that GOMS with Fitts’ Law can accurately 

model the performance of tasks designed in the DM interaction style. However, 

even in the DM environment, CoDeIn outperforms the prediction of GOMS by 

430 milliseconds. This result suggests that CoDeIn can model DM tasks and 

provide predictions with the same or better accuracy as GOMS. However, the 

CoDeIn model does not only provide a prediction; it also provides information 

about the knowledge requirements of the task, something that is not evident in 

the GOMS model. While the GOMS model delineates the procedure required for 

the performance of the task, the declarative knowledge required for the 

performance of the task is not shown. On the contrary, in the CoDeIn model, one 

may declare the procedure for the task as well as both the declarative and 

procedural knowledge requirements of the task. This allows comparative 

evaluations between different designs of the task, in the same interaction style, 

or in different interaction styles. For example, the comparison of the DM condition 

vs. the TUI condition can be performed on the basis of required knowledge 

instead of speed of performance using the CoDeIn model. Using GOMS, one 

would only be able to compare the two designs on the basis of number of steps 

required for the performance of the task, or on the basis of methods required for 

the performance of the task. These two measures however, may not be 

representative of the difficulty of the task, because more or less steps or methods 

for the performance of the task may not convey the fact that the user may need 

to learn many more facts in the design that requires fewer steps or methods for 
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its completion. Modeling the task in CoDeIn though, provides this information as 

well. 

Table 7.8 DM condition’s subtask breakdown of the analysis of each modeling method. 
All times shown are in seconds. 

Subtask CoDeIn 
Estimate 

GOMS 
Estimate 

GOMS with 
Fitts’ Law 

Open Source Folder 2.40 1.70 1.40 

Cut Target File 4.25 4.20 3.45 

Go Back to Folder List 2.12 2.75 2.37 

Open Destination Folder 2.12 3.00 2.42 

Paste File 2.64 4.15 2.99 

Top Level Method Execution - 0.35 0.35 

Total Completion Time 13.53 16.15 12.98 
 

Table 7.9 shows that the greatest difference in the two methods for the 

TUI condition’s models is that CoDeIn takes into account that replacing the file 

objects in the destination folder can be performed in parallel with the replacement 

of the rest of the file objects in the original folder. There also is a slight difference 

between each model’s estimate in the “Find Folders and Grab File Objects” 

subtask.  

Because GOMSL, the variant of GOMS used in this analysis, lacks the 

capability of modeling parallel actions, due to its step by step modeling of tasks, it 

cannot describe the TUI condition correctly. CPM-GOMS (Gray et al., 1993; B. E. 

John, 2003; B. E. John & Kieras, 1996a; , 1996b) may be more accurate than the 

GOMSL model shown here, because it can handle parallel actions. However, 

even the creators of CPM-GOMS suggest that when modeling simple tasks, such 
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as the experimental task here, one should not use CPM-GOMS because of the 

complexity of model creation, even for simple tasks. 

Table 7.9 TUI condition’s subtask breakdown of the analysis of each modeling method. 
All times shown are in seconds.  

Subtask CoDeIn 
Estimate 

GOMS 
Estimate 

Find Folders and Grab File 
Objects 1.95 2.25 

Find Required File 3.50 3.50 

Place File in Destination Folder 0.75 2.95 

Top Level Method Execution - 0.25 

Total Completion Time 6.40 8.95 
 

7.8 Proposal of the prehension operator in GOMSL 

As mentioned before, a corollary result that is worthy of mention is that 

GOMS does not have a prehension operator that would provide an estimate of 

the completion time of a reach-and-grasp action. This strongly hinders GOMS 

from modeling RBIs such as TUIs and VR interfaces, because these interfaces 

rely on or use extensively the prehension operation for the execution of several 

actions. As was shown in experiment 2, and posited in motor control literature, 

Fitts’ Law cannot be used to model prehension.    

 Through the study of other models, and evidence from experiment 2, I 

propose that a new operator be included in the primitive operator set of GOMSL 

that captures prehension actions, based on a straight line equation: CT = α + βD, 

where CT is the completion time, α and β are constants that have to be 
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calculated according to the task, and D is the distance of the actor from the 

target. 

Having an prehension operator based upon a linear equation also 

suggests that TUIs and VR interfaces may be slower to use than DM. TUI and 

VR use prehension as the main manipulation action, instead of pointing as DM 

does. Prehension’s completion time seems to be directly proportional to the 

distance of the actor from the target, and not logarithmically proportional as 

pointing is. Figure 7.12 shows this effect graphically. While at shorter distances 

prehension may be as fast, or even faster than pointing, as distance becomes 

greater, the time required for the completion of a prehension action becomes 

greater than that of a pointing action.   

I believe that this effect may not be as noticeable as expected, because 

TUIs and VR are not used in the same way as DM.  The study of this 

phenomenon is proposed as a future direction directly stemming from this work, 

because to establish the importance of speed of prehension vs. the importance 

of the speed of pointing, a survey of the TUI, VR and DM literature is required, to 

examine how each action is used and in what context each action is used. Then 

a comparison should be performed, if the situations where RBIs use the 

prehension action require the same speed of execution as the situations where 

DM interfaces use the pointing or drag-and-drop action that also obeys Fitts’ 

Law. Also, it would seem that this result applies less to VR than to TUIs, because 

VR does not completely rely on the prehension action, as TUI does. Hence a 
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more comprehensive examination is needed to draw conclusions about the 

comparative speed of execution of equivalent tasks in RBI and DM. 
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Figure 7.12 Example of linear vs. logarithmic operators. 
The black line represents a linear operator and the red line a logarithmic one. 

 

7.9 Conclusions  

This chapter presented three models of a task designed in two different 

interaction styles. First, models of the two conditions of the tasks in GOMS and 

CoDeIn were created, and then an experiment was performed to provide actual 

completion times for each condition, so that each model’s estimated completion 

time could be compared. Because of the lack of operators of GOMS that could 

be applied to the TUI condition’s task, two more experiments were performed. 

Those were used to identify average completion times for the two actions that the 

KLM model used by GOMS could not provide. 

The results of the models and the experimental average found through 

experiment 1 are shown in Table 7.7. The first notable result was that the 
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participants performed the TUI condition faster than the DM condition’s task. 

Also, there was less variability in execution time in the TUI condition’s task than 

in the DM condition’s.  

When GOMS was used to analyze the DM condition it estimated a slower 

completion time, overshooting the actual experimental average completion time. 

But when GOMS and Fitts’ Law were combined, a much stronger model 

emerged, which calculated a completion time that was closer to the actual 

experimental result than GOMS had originally calculated on its own. This is 

attributed to the fact that the KLM operator P, used to represent pointing actions, 

estimates a much larger time frame for pointing actions than required in the 

experimental task. Thus, the use of Fitts’ Law which modeled the pointing actions 

more accurately, allowed the better estimation. 

For the TUI condition GOMS needed an operator to describe prehension, 

and it also needed a way to calculate completion time of the iterative search in 

the pile of file objects. Two more experiments were performed to calculate the 

necessary completion times required for the GOMS model, but even when using 

the calculated times GOMSL calculated a completion time that was twice that of 

the experimental average. This is attributed mostly to the fact that GOMSL does 

not have a way to describe parallel actions, something that was already known, 

but the difference between the experimental and the calculated result was larger 

than expected. 

CoDeIn on the other hand, managed to estimate the completion time of 

the DM condition and the TUI condition with more accuracy than the GOMSL 
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model. This is attributed to three differences between GOMS and CoDeIn. The 

first difference is CoDeIn’s ability to model parallel actions, while GOMSL and 

CMN-GOMS (Card et al., 1983) (the original incarnation of GOMS) cannot. Even 

though CPM-GOMS (Gray et al., 1993; B. E.  John, 1988; B. E. John, 2003) 

would have been able to correctly model the parallelism in the TUI task, its 

complexity does not lend it to the development of models for such simple tasks 

(B. E. John & Kieras, 1996a; , 1996b). 

The second difference is that CoDeIn is designed specifically to handle 

RBI tasks. Therefore it includes operators that can handle real-world actions, 

such as prehension.  

 The third difference between GOMS and CoDeIn is a difference in the 

theoretical view of task performance. CoDeIn regards each action as an implicit 

part of the knowledge application process. It does not view each action as a 

separate step in the performance of a task. This assumption allows CoDeIn to 

remove step execution times as they are found in GOMSL models.  

Finally, through the procedure of experiment 2, I proposed a new operator 

for the description of prehension in GOMS, using a linear model with the 

completion time being directly proportional to the distance of the actor to the 

target. The implications of this finding may be more significant for TUIs in 

general, because if prehension is slower than pointing, and TUIs base interaction 

on prehension, then they are inherently less efficient than DM. This question is 

left open for future work, as a survey is needed to see in which situations TUIs 

are used, vs. the situations that DM is used. Then, a comparison should be made 



 

139 

to see whether these situations require such a fast performance as the pointing 

action would suggest, or if the prehension action would offer adequate 

performance as well.  

Also, as shown in Figure 7.12, prehension actions are inherently slower 

than pointing actions after some threshold distance is exceeded. This would not 

be an issue if, in the real world, actor-to-target distances were limited, like they 

are on a computer screen. On a screen the maximum distance of an artifact from 

the pointer is limited by the resolution of the screen and the translation of mouse 

movement to pointer movement. In the real world however, distances between 

the actor and an artifact may vary infinitely, and while users would probably not 

try to grab something that is infinitely far from them, there are no guarantees 

about the distance that an artifact may have from the user, and whether the user 

will decide to try to grab the artifact or to move towards the artifact (thereby 

decreasing the distance) and then grab it.  
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Chapter 8 Non-Expert User Modeling 

In previous chapters of this dissertation, I have discussed the basis of the 

CoDeIn framework and how it can be used to estimate the completion time of a 

task. In this chapter I attempt to show how CoDeIn may be used to predict the 

performance of non-expert users. The task presented in this chapter is a simple 

pointing task, but what is of interest is not the task itself; the task is only used to 

examine CoDeIn’s performance in modeling non-expert users. 

The pointing task is performed with two different interaction devices, the 

mouse and the virtual glove (Virtual Realities, 2006). The primary question of the 

experiment is whether CoDeIn can use the performance of one pointing device 

to predict the performance of another, using techniques that describe the users’ 

knowledge, as discussed in Chapter 5.  

A working hypothesis of the framework, as proposed in Chapter 5, is 

whether a user’s Efficiency Rating (ER) can be used to penalize the user’s 

estimated completion time. Because most contemporary model-based evaluation 

methods pre-suppose expert performance, it is very difficult to estimate the 

completion time of a task by a novice or other non-expert user. In the case of the 

pointing task, normally Fitts’ Law (Fitts, 1954; Fitts & Peterson, 1964) would have 

been used to predict the completion time of the movement. However, Fitts’ Law 

assumes expert performance of a fast, targeted movement towards a target, an 

assumption that is not true for one of the two conditions of the experiment. 

GOMS cannot be used here either, because it supposes expert, error-free 
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performance. Therefore, while GOMS and Fitts’ Law can be used to model the 

condition in which users are experts, they cannot be used to model the condition 

in which users do not have experience (Fitts & Peterson, 1964; B. E. John, 

2003).  

This is a general problem with contemporary model-based evaluation 

methods, because they base their evaluation on assumptions that may not be 

true anymore. RBIs use interaction devices that may not be familiar to users, 

such as walk-up-and-use interfaces that cannot expect expert performance. They 

also allow the use of computers to a large number of users who may never 

become experts, because they do not need to become experts. Thus, the 

assumption of model-based evaluation methods that require expert, error-free 

performance cannot be upheld most of the time. 

CoDeIn, however, tries to overcome this problem by modifying expert 

performance to predict non-expert performance. The way that modification takes 

place is by increasing the performance time of the non-expert users according to 

the non-expert users’ ER.  

However, this ability to do this stems from the assumption that users gain 

experience and skill from performing a task repeatedly, and their ER increases 

as they gain this experience. Thus, the second part of this chapter presents a 

continuation of the non-expert condition of the experiment to examine whether 

CoDeIn can actually model the results of such a gain in experience.  
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8.1 Background and Motivation 

Considerable research work has been devoted to the study of input 

devices (Buxton, 1983; Card, Mackinlay, & Robertson, 1991), especially on the 

differences between 3-D and 2-D interaction devices. Early in the investigation of 

these devices, Foley and Wallace (1974) proposed the distinction between the 

input task and the input device, and considered that the input task was 

independent of the input device.  This provided a first step towards the study of 

interaction tasks and devices, but formal experimentation (Jacob et al., 1993; 

Jacob & Sibert, 1992; Jacob, Sibert, McFarlane, & Mullen Jr., 1994) and 

experience showed that the task was indeed connected with the device used to 

perform it.  

Jacob and Sibert (1992) examined how task performance varies when the 

task is matched with the appropriate interaction device. They concluded that for 

best performance of a task, the task’s perceptual structure should be matched 

with the perceptual structure of the device.  

Hinckley, Tullio, Pausch, Proffitt and Kassell (1997) compared two 2-D 

interaction devices with two 3-D interaction devices on a 3-D rotation task. The 

object of the task was to rotate an object shown in 3-D on the computer’s display, 

so that it would match the desired orientation. They found that even though 

participants did not have any previous experience with the 3-D interaction 

devices, they finished the task faster than using the 2-D interaction devices, and 

with no statistically significant difference in accuracy between the two conditions.  
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Ware and Jessome (1988) compared the performance of a 6-D interaction 

device that they named the bat, with a conventional mouse in a 3-D object 

placement task. The object placement task consisted of using the interaction 

device to move an object shown in 3-D on a computer display from one position 

to another. They conclude that the 6-D interaction device allowed better 

performance than the conventional mouse for this task.  

From the aforementioned studies, it can be concluded that some devices 

are better suited to a certain task than others. However, these studies were 

performed to research how the device matches tasks, and not how users 

performed the tasks they were presented with the studied devices. The object of 

the study presented in this chapter is to examine whether CoDeIn can model the 

performance of users that perform a task using different interaction devices, and 

to study whether CoDeIn can capture how users learn to use an interaction 

device.  

8.2 Experiment – Phase I 

The purpose of this experiment is twofold. The first purpose is to test 

CoDeIn’s ability to model non-expert user performance in a task with an 

interaction device that participants have never used before, and the second is to 

show that the predictions of CoDeIn follow an established prediction model of 

performance according to gained experience, such as the Power Law of Practice 

(Card et al., 1983). 
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8.2.1  Participants 

Ten participants took part in the first phase of the experiment. They were 

all students of the department of Computer Science of Cyprus College, of ages 

between 19 and 25 years old. All the participants were taking a comparative 

programming languages course and were given extra credit in the course for 

their participation in the experiment. All of the participants had had substantial 

previous experience with the DM interaction style, and Microsoft Windows in 

particular. None of the participants had any experience in using the Virtual Glove 

prior to the experiment. 

8.2.2 Materials and Design 

The task was presented on a PC with a Philips 107E60 monitor and a 

Pentium 4, 3.00GHz CPU. The task was programmed using Java. The program 

presented a shape from a pool of three different shapes (a triangle, a square and 

a circle) and allowed the participants to drag that shape to one of three bins 

shown in the program’s window. The Java program window is shown in Figure 

8.1. The display resolution was set at 1024x768 pixels and the Java program 

window resolution at 800x600 pixels. The mouse that was used for the mouse 

condition was a Microsoft Wheel Optical Mouse. The glove that was used for the 

glove condition was a P5 Virtual Glove (Virtual Realities, 2006).  

The virtual glove is worn on the hand of the user like a normal glove, and 

through a sensor column allows the user to move the pointer on the screen. 

Users can left-click by bending and straightening the index finger of the hand in 

quick succession. Dragging an item is performed by placing the pointer on top of 
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the required item, bending the index finger, moving the pointer to the required 

position to drop the item, and straightening the index finger at that point. When 

the ring and pinky fingers of the hand are bent, the pointer’s position is locked on 

the screen, so that the user may reposition the hand to a more comfortable 

spatial location. This posed a problem to the participants, who would instinctively 

bend their two fingers, which would trigger this effect. 

The Java program measured the time taken by each participant to drag 

the shape from its initial position to the correctly labeled bin, and logged the 

coordinates of the pixels over which the pointer moved during the drag-and-drop 

action. The program also measured two error conditions: the number of times the 

shape was released in a different bin from the correctly labeled one, and 

performance of a single or double click of the mouse instead of the required 

drag-and-drop action.  

8.2.3 Procedure 

During the first phase of the experiment the participants were asked to 

carry out a basic drag-and-drop task, under two conditions. The first condition 

required the participants to use a mouse to drag the shape from the home 

position to the corresponding bin. In the second condition, the participants used a 

Virtual Reality glove (Virtual Realities, 2006) to drag the shape. The first 

condition of the experiment will be referred to from here onwards as the ‘mouse 

condition’, and to the second condition as the ‘glove condition’. All 10 participants 

performed the task in both experimental conditions. The order of presentation of 

the two conditions to each participant was randomized. 
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The Java program that implemented the task presented the participants 

with one of three shapes at random. The three shapes were a circle, a square or 

a triangle. Each participant performed twenty trials and each trial presented a 

new, random shape from the three available. The participants had to drag the 

presented shape to one of three bins, each labeled with the name of a shape. 

When the shape was dropped over any bin, the trial would end, and the result 

would be tabulated. The bin positions and the bin labels were held constant 

throughout the experiment. Figure 8.1 shows a screenshot of the Java program, 

where the shape presented is a circle.  

 

Figure 8.1 A screenshot of the Java program on which the task was executed. 
 

Each trial began with a message box that let the participant know that 

when they pressed the OK button the trial would begin. The message box always 

appeared at the same position to allow the calculation of pointer movement. Up 

to this point, the shape was invisible, to disallow any preprocessing of the 

trajectory required for the completion of the trial by the participants. Once the 
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participants pressed the OK button, the shape would appear. The participants 

would then have to navigate the pointer over the shape and drag-and-drop the 

shape over the bin of their choice. Timing of the trial would start when the 

participant would press the OK button, and would finish when the dragged shape 

was dropped over any bin, not just the correct bin.  

If the shape was dropped over an incorrect bin, the result was noted, but 

was flagged as an error. Erroneous results were kept for later analysis, but were 

not used during the calculation of the average completion time of the task. The 

only other error that was logged was the participants’ accidental single- or 

double-clicking instead of performing the drag-and-drop movement. This error 

never occurred in the mouse condition, but did occur during the glove condition. 

Any time measurements taken from a trial that resulted to one of the two error 

types was not used in the calculation of the average completion time of the task 

by the participant. 

8.2.4 Results and Analysis 

The time taken for each participant to move the shape from its initial 

location to the correct bin is shown in Table 8.1. There are two striking 

differences between the two conditions at first glance. The mouse condition is 

much faster than the glove condition, and there is much greater variation in 

completion times in the glove condition than in the mouse condition, as shown in 

Table 8.1. The first difference (i.e. the speed of execution) was expected, 

because the participants had never used the virtual glove before the experiment, 

while they all considered themselves experts in the use of the mouse.  
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The difference in variation of task completion using the glove may also be 

justified by the fact that the participants had for the first time used a device that 

allowed movement of the arm in 3-D space, and not in 2-D space. Therefore, the 

participants had to become accustomed to the fact that they should provide 

stabilization of the movements using their arm muscles, although in the second 

phase of the experiment, participants realized that they did not need to use their 

whole arm to move the glove, but just their forearm and wrist. However, this is 

something they could not have known nor been taught, but rather that they had 

to discover and learn through their experience with the glove.  

Table 8.1 Average Completion Times of the two conditions, shown by shape. 
The standard deviation for each condition is also shown. Times are in milliseconds. 

 Mouse Std. Dev. Glove Std. Dev 

Circle 1483 689 7457 5096 

Square 1338 470 6041 2678 

Triangle 1347 346 7044 2887 

Average 1389 501 6847 3553 
 
 

Given the experimental setup the circle shape had to be moved diagonally 

upwards on the screen; the square shape required a straight, left-to-right 

movement; the triangle required the participants to move the shape diagonally 

downwards. From the table, it can be noted that for the mouse condition, the 

straight line trajectory necessary for the placement of the square shape into the 

correct bin is the fastest motion on average, followed by the diagonally downward 

motion for the placement of the triangle shape. The slowest motion is the 

diagonal upward motion for the circle shape. What is interesting is that even 
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though the glove requires different movements than the mouse, the same speed 

pattern emerges. The fastest motion is that of the straight line, followed by the 

diagonal downward motion, and then the diagonal upward motion. 

One of the major differences in task performance of the two conditions is 

that the glove motions are performed while supporting the weight of the whole 

arm, whereas the mouse motions are performed on a flat surface, where the 

effects of gravity are less felt by the user. The motion to move the glove is done 

with the hand pointing towards the screen, with the arm slightly extended in front 

of the body. Hence, moving the arm requires the user to balance the weight of 

the whole arm, not just the hand. Also, the movements required to control the 

pointer through the glove are larger than those required when using the mouse. 

In fact, the arm movement is translated as one to one movement of the pointer. 

Therefore, to move the pointer from the leftmost part of the display to the 

rightmost part, users would need to move their arm in a line that covers the 

actual distance of their display. 

This is untrue when using the mouse. Relatively smaller motions of the 

mouse are translated as larger motions of the pointer on the display. Also, the 

motions of the mouse are constrained by the surface on which the mouse is 

placed, so the user need only perform motions that use the arm below the elbow, 

without supporting the weight of the arm.  

Table 8.2 shows the average completion time over all shapes for each 

participant in each of the two conditions. The performance of the mouse 

condition’s task is faster than that of the glove condition’s. The difference 
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between the faster and slower motions may be attributed to the different types of 

motion required for each interaction device, and the distances that have to be 

traveled by each device to produce the same resultant movement of the pointer 

on the display. The mouse condition’s standard deviation is also smaller than that 

of the glove condition’s. 

Table 8.2 The average completion time of the first phase's conditions. 
All times are in milliseconds. 

Participant Mouse Glove 

1 1665 7544 

2 1254 11206 

3 2308 6490 

4 1121 3788 

5 1097 10221 

6 1341 5305 

7 1221 8943 

8 1219 6806 

9 993 4612 

10 1096 5384 

Average 1332 7030 

Std. Dev. 389 1962 

8.2.5 Mouse Condition Models 

The GOMSL (Kieras, 1999) model of Table 8.3 estimates the completion 

time of the mouse condition to be 5400 ms. Compared to the actual experimental 

average, as shown in Table 8.2, the GOMSL model predicts an inaccurate 

completion time. The reason for the discrepancy is that the model uses two 
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default KLM operators, the pointing operator P and the mental time operator M 

(Kieras, 1999), that detract from the model’s accuracy. The P operator is 

inaccurate because the pointing actions in the experiment are shorter than those 

that the P operator considers to produce the average for the completion time of a 

generic pointing action. The visual search times required to find the shape and 

the correct bin for the shape during each trial are, again, shorter than the 

average value proposed by the M operator. To correct the first problem, Fitts’ 

Law is used to replace the P operator with a more accurate estimation of the 

pointing action’s completion time. 

Table 8.3 The GOMSL model for the first phase of the experiment. 

Top Level Method 
Method for Goal: Drag shape (Total time = 5.40 s) 
Step 1: Find Shape (M = 1.2 s) 
Step 2: Point to shape (P = 1.1 s) 
Step 3: Press the mouse button (B = 0.2 s) 
Step 4: Find correct bin (M = 1.2 s) 
Step 5: Drag to correct bin (P = 1.1 s) 
Step 6: Release mouse button (B = 0.2 s) 
Step 7: Return with goal accomplished 
 

The specific Fitts’ Law model used to express the pointing action’s 

movement completion time (MT) is taken from Mackenzie (1992a) and is 

calculated using two methods: the drag-select method, which states that MT = 

135 + 249*ID, and the point-select method which states that MT = 230 + 166*ID, 

where ID is the Index of Difficulty as calculated via the Shannon formulation: ID = 

log2(D/W + 1), where D is the distance of the manipulated object from the target, 

and W is the width of the target along the axis of motion. Therefore the MT of the 

pointing action consists of the two movements of the pointer: one movement from 
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the OK button to the shape, and one movement from the home position of the 

shape to the correct bin. However, while both are pointing actions, they are 

different; one is a point-select action, and the other is a drag-select action, as 

defined by Mackenzie (1992a). For the first action, the point-select version of 

Fitts’ Law proposed by Mackenzie (1992a) was used, and for the second, the 

drag-select version. Adding the two components of the motion yields the 

following equation:  

MT = 135 + 249 * log2(400/200+1) + 230+166* log2(200/200+1) = 926 ms 

Fitts’ Law predicts 926 milliseconds for the completion of both pointing 

actions. This prediction is very close to the real experimental average, but does 

not take into account the mental processing time of the participants when a 

shape is presented to them. The participants must first identify the shape, identify 

the correct bin, and then drag the shape to the correct bin. That is why there is 

approximately one half second of difference between the experimental average 

and Fitts’ Law’s prediction.  

By substituting step 2’s completion time in the GOMSL model of Table 8.2 

to be 396 milliseconds as calculated by the point-select version of Fitts’ Law (I. S. 

MacKenzie, 1992a), and step 4’s completion time to be 530 milliseconds as 

calculated by the drag-select version of Fitts’ Law (I. S. MacKenzie, 1992a), the 

resulting estimated time becomes 4126 milliseconds. This result is still far from 

the average completion time of the mouse condition of the experiment.  

To correct the second problem in the analysis, I applied the Model Human 

Processor’s (MHP) (Card et al., 1983) reaction time analysis. The participants 
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perceived the shape, processed it in visual store, and then initiated motion to 

move the pointer to the shape (TTshape). Then, they perceived the bins, 

processed them in visual store, decided which one is correct, and initiated motion 

towards the decided bin (TTbin). This results in the following analysis: 

TTshape = τp + τc +τm = 100 + 70 + 70 = 240 ms 

TTbin = τp + 2*τc +τm  = 100 + 2*70 + 70 = 310 ms 

TT = TTshape + TTbin = 240 + 310 = 550 ms 

where TT is the total mental processing time or thinking time required by 

the participants to perform the perception and recognition of the shape and the 

bin, and the decision of how the dragging motion will be performed. τp is one 

cycle of the perceptual processor of MHP, τc is one cycle of the cognitive 

processor of MHP, and τm is one cycle of the motor processor of MHP (Card et 

al., 1983).  

By substituting these findings into steps 1 and 4 of the GOMSL model in 

Table 8.2 and including the Fitts’ Law calculation, the resultant total time is 2276 

milliseconds, which is even closer to the experimental average.  

The same analysis was performed with CoDeIn, with the model shown in 

Figure 8.2. In this analysis, I only include the final results of Fitts’ Law and the 

MHP calculation, and the CoDeIn analysis yields a completion time of 1876 

milliseconds.  The results of the two models for the mouse condition are shown in 

Table 8.4. It is evident from Table 8.4 that the closest prediction comes from 

CoDeIn.  
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Table 8.4 The experimental average of the mouse condition and the models’ estimates. 

 Completion 
Time Deviation Percentage 

Deviation 

Experimental Result 1389 -  

GOMS 5400 4011 289% 

GOMS and Fitts’ Law 4126 2737 197% 

GOMS, Fitts’ and 
MHP 2276 887 64% 

CoDeIn 1876 487 35% 
 

However, none of the GOMS variations (Card et al., 1983; B. E. John & 

Kieras, 1996a; , 1996b; Kieras, 1999) nor Fitts’ Law can be used to evaluate the 

glove condition of the experiment. GOMS can only model expert, error-free 

performance (Card et al., 1983; B. E. John, 2003), and Fitts’ Law expects a fast, 

targeted motion towards the object of interest (I. S. MacKenzie, 1992a; , 1992b; I. 

S. MacKenzie & Buxton, 1994). The reason that GOMS is inappropriate for use is 

that the participants of the study are all novices in the use of the virtual glove, 

thus not fitting the profile of the user modeled by GOMS. As for Fitts’ Law, while 

at first it may seem that the motion performed by the glove’s users is a fast 

targeted motion, there are factors that may detract from the task’s performance 

with the requirements of Fitts’ Law. One reason that was observed by personal 

use and reported by participants in the experiment, is that the hand muscles tend 

to relax while performing the dragging motion, thereby bending the ring and pinky 

fingers of the hand that controls the glove. This however, leads to unbinding the 
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glove from the pointer, to accommodate changing the position of the hand and 

arm while keeping the pointer at the same position on the screen. 

 

Figure 8.2 The CoDeIn  analysis of the mouse condition of the experiment. 
The annotations in red are explanatory for the values shown in the model. They  

do not constitute part of the model. 
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As was later observed during the experimental trials, the novice users 

made this error frequently, leading to degraded performance. The degradation in 

performance is something that should be addressed by the novice user model, 

thus the following section describes how CoDeIn accommodates this 

performance degradation by using the user model method proposed in Chapter 5 

of this thesis. 

8.2.6 Glove Condition Model 

The participants of the study were novices in the use of the virtual glove. 

However, they understood the concepts of drag-and-drop, selection, and glove to 

pointer binding, based on their knowledge of the DM interaction style, and the 

use of the mouse in particular. Thus, the participants had the declarative 

knowledge required for the completion of the task. However, their knowledge of 

the binding between the glove and the pointer was flawed, because, based on 

their model of the how the mouse works, this binding is supposed to be static. 

For this reason, and because people often prefer to use knowledge-in-the-head, 

even if that knowledge is incomplete (Gray & Fu, 2001; , 2004), their knowledge 

of how to use the mouse transferred negatively to the use of the glove (Singley & 

Anderson, 1989), because the glove’s binding to the pointer is dynamic, requiring 

an action by the user to uphold the binding. Because the participants had the 

mouse knowledge, they needed to remind themselves that they were responsible 

for upholding the binding between the IN and IO in the case of the glove, a fact 

that led to degraded performance. Also, because the participants had never used 

the glove before, they did not know exactly how their arm movement would 
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translate into pointer movement. Further, because the glove is a multi-axis 

device, it behaves differently if used on- or off-axis. 

The two problems provide the basis for deciding what parts of the task 

should be penalized to predict the completion time of the glove movement. The 

procedural knowledge for the “Move” action and the procedural knowledge for 

the “Drag” action should be penalized in some way, as the movements’ 

performance was not at the level of an expert user. This is a basic difference 

between the CoDeIn framework and other model-based evaluation methods. 

Instead of assuming some kind of performance, like GOMS assumes expert, 

error-free performance, CoDeIn allows the creation of a model that may be used 

for expert, error-free performance, and then provides mechanisms to modify that 

performance to model non-expert users.  

There are three mechanisms that CoDeIn allows for the modification of 

performance of expert users to estimate the performance of non-expert users. 

The first mechanism is based on the assumption that a test may be used to 

gauge how well the user knows something. This assumption is based on the fact 

that all formal knowledge-imparting processes require some kind of testing to 

gauge the learner’s understanding of the imparted knowledge. Thus, one tests a 

sample of users on a particular piece of knowledge, and then uses that 

performance as the average performance for the whole population of users that 

belong in the same class as that of the tested users.  

The second way is to arbitrarily decide that the users who will perform the 

evaluated task have an ER with value X. Obviously, this arbitrary decision will be 
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based on analysis that leads the modeler to believe that the users do indeed 

have that X ER. This type of evaluation is more suited to tasks that do not require 

great precision.  

The third way, which is used in this analysis, is to perform a test, and then 

use the results of the test to calculate the ER of the users. In this instance, the 

completion times (CT) of the two conditions will be used for the penalization of 

the glove condition’s procedural knowledge. The resultant CT of the mouse 

condition will be considered expert performance, and the resultant CT of the 

glove condition is the deviation from expert performance. The result of their 

division is the ER of the tested users. While the two conditions may differ in 

several areas, such as the distance traveled by each IN, or the muscles used in 

each condition, the end result is that both are pointing tasks that are governed by 

Fitts’ Law. The distance traveled when applying Fitts’ Law is the distance 

between the pointer and the target bin on the display and not the distance 

traveled by the INs. That is the reason why the mouse condition’s result was 

chosen as an estimate of the virtual glove’s expert performance.  

In this experiment, the participants’ performance with the mouse was used 

as the lower bound of the glove performance (i.e. glove performance <= mouse 

performance). The participants’ mouse condition average completion time was 

used as the benchmark for their expert-performance average glove condition 

completion time (CT). Supposing that the glove condition’s CT could be the same 

as the mouse condition’s CT, if the participants were expert users of the virtual 

glove, then the ratio of the mouse condition’s CT over that of the glove 
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condition’s CT gives the ER of the participants. The average completion time of 

both conditions is shown in Table 8.1, yielding a ratio of 0.2. Thus the CT of the 

mouse condition is 0.2 times that of the glove condition. Thus, the ER can be 

used to modify the mouse CT (Texp) to calculate the glove condition’s CT (Tglove). 

The modification process can be performed by the formula: Tglove = Texp / ERglove. 

In this case there is only one chunk of knowledge affected by the modification, 

that of the first knowledge state’s ‘Binding IO to IN’ declarative chunk, of the 

model shown in Figure 8.3. 

Figure 8.3 shows the glove condition’s CoDeIn diagram, with the 

penalization percentage of the two actions, because of the penalization of their 

procedural knowledge. The M operator used in the first knowledge state’s 

‘Binding IO to IN’ knowledge chunk is relevant because the participants needed 

to remind themselves how to keep the binding, that, unlike when using the 

mouse, was dynamic and could have been broken by failing to keep their two last 

fingers straight. 

Because the participants’ ER is 20%, the framework’s method for 

calculating non-expert performance states that there should be a Texp / ERglove 

slowdown in the performance of the actions of the users. Earlier it was explained 

that while the users have all the declarative knowledge for the performance of the 

task, they do not have enough experience using the glove. Thus, they are not 

experts of the procedural knowledge required for the performance of the task. 

The slowdown is therefore aimed at the procedural aspect of the task, rather than 
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the declarative aspect. Therefore, the required completion time is multiplied by 

ER in the two pointer moving actions, to reflect this slowdown.  

 

Figure 8.3 The CoDeIn  diagram for the glove condition of the experiment. 
The red annotations are not part of the model; they are explanative  

of the values found in the model.  
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Also, the M operator is multiplied by 0.8, because the participants are 20% 

experts (= ER) and thus, 1-ER of the time the participants will not behave like 

experts, and therefore will need to remind themselves how to uphold the binding 

between the glove and the pointer.  

Table 8.4 shows the experimental completion time for both conditions of 

the experiment and the predictions of the CoDeIn models for each condition, as 

well as the deviation of the prediction from the actual result.  

Table 8.5 The two conditions' average completion time and the CoDeIn  predictions. 
Times shown are in milliseconds. 

 Experiment 
Completion 

Time 

CoDeIn 
Prediction 

Deviation GOMSL 
Prediction 

Deviation 

Mouse 
Condition 

1389 1876 487 (35%) 2276 887 
(64%) 

Glove 
Condition 

6847 6230 -517 
(7.5%) 

-- -- 

 

Taking the deviation as a percentage of the experimental completion time, 

CoDeIn erred 35% on the mouse condition, but only 7.5% on the glove condition. 

One possible explanation is that CoDeIn’s prediction of the mouse condition 

completion time is based on the theoretical structures of MHP (Card et al., 1983). 

On the contrary, the glove condition model is based on a test that provided the 

expert user completion time, and from there the model modifies the expert 

performance appropriately, coming up with a more accurate prediction. 
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8.3 Experimental Phase 2 

The second phase was performed to provide evidence towards the validity 

of two basic assumptions of the framework. The first assumption is that CoDeIn 

can use ER to model the performance of any type of user, as long as there exists 

some completion time for the task that can be used as an expert performance 

benchmark. This assumption was used in the first phase of the experiment to 

predict the completion time of the glove condition. The benchmark used in the 

first phase of the experiment was to calculate the expert performance time of the 

movements with Fitts’ Law, and then penalize them according to the ER of the 

participants relative to the expert user set. 

8.3.1 Using Efficiency Ratings in the Power Law of Practice 

In Chapter 3, the Power Law of Practice  (Card et al., 1983) was 

introduced as one of the principles of operation of MHP (Card et al., 1983). This 

law states that the logarithm of the completion time of a task decreases linearly 

with the logarithm of the number of times the task is performed. In formula form: 

Tn = Ts * (number of trials)-α, where Tn is the completion time of the task after 

(trial number) trials, Ts is the completion time of the task before any training was 

given, and α is the rate of learning. For MHP the rate of learning α is set in the 

range: α![.2, .6], with .4 taken as an average value.  

It was also mentioned that the law is also one of CoDeIn’s principles of 

skilled performance. Hence, this principle should be supported by showing that 
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CoDeIn’s predictions (as users gain more experience by performing the task 

more times) follow a power law as well. 

This assumption is intimately tied to the theory that knowledge or skill can 

be transferred from one context to another, either negatively or positively. 

Because there are arguments both for (Anderson et al., 1996; Bransford et al., 

2000; Palumbo, 1990; Singley & Anderson, 1989), and against (Greeno, Smith, & 

Moore, 1992; Lave & Wenger, 1991) this assumption, there was some need to 

provide some evidence towards the validity of the assumption, at least in the 

context of this framework. 

From the power law, a form can be derived that uses the ER instead of the 

number of trials to compute the completion time of a task. The proof follows: 

1. Let ERa = Texp / Ta, where ERa is the ER of a user relative to the 

expert user set that completes a task in time Ta, and Texp is the 

expert, error-free performance completion time. Thus: 

2. Ta = Texp / ERa , by exchanging the terms ERa and Ta in step 1.  

3. The Power Law can be stated as: Tb = Ta * (nb – na) -.α, where nb is 

the number of trials required for completion time Tb, when it is 

known that after na trials the completion time of the task is Ta.  

4. Therefore, by dividing both parts with Ta : Tb / Ta = (nb – na) -.α  

5. Substituting step 2 for Ta and Tb into step 4 yields: 

(nb – na) -.α = (Texp / ERb) / (Texp / ERa)  

       = ERa / ERb  

6. Substituting the result of step 5 into the Power law yields: 
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Tb = Ta * (ERa / ERb) 

Step (6) shows the final form of the derived power Law with ERs instead 

of number of trials for the calculation of new performance based on previous 

performance. 

8.3.2 Participants 

The second phase of the experiment only included 6 (2 female and 4 

male) out of the original 10 participants for phase 1; 4 of the participants could 

not commit to 3 weeks of the everyday training required. The participants 

volunteered to participate in the experiment without any reward to compensate 

for their time. 

8.3.3 Materials and Design 

The second phase of the experiment was performed on a computer with 

the same specifications as that of the first phase’s. A free version of a game 

“Beach Head 2002” (Atari Co.) was used to train the participants with the virtual 

glove (Virtual Realities, 2006). The object of the game is to destroy as many 

hostiles as possible, by controlling a machine gun, as shown in Figure 8.4.  

The machine gun is controlled by the motion of the glove, and the user 

shoots the machine gun by performing a single-click. The hostiles may come 

from any direction. The participants were tested at the beginning of every week, 

for three weeks, using the Java program used in the first phase of the 

experiment, and once before training started, as part of the first phase of the 

experiment. 
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Figure 8.4 A screenshot from "Beach Head 2002",  
the game used to train participants in the use of the virtual glove 

 

8.3.4 Procedure 

The participants played the game for 20 minutes every day, 5 days per 

week. On each Monday of every week that the experiment ran, the participants 

were tested on the drag-and-drop task, and then played the game for the 

required 20 minutes. This testing was performed to gauge whether there was any 

significant skill transfer from the game to the point-and-click task, and to examine 

whether there was any improvement in the completion time of the experimental 

task. 
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The game does not train the user on the drag-and-drop action, but rather 

on the point-and-click action. The null hypothesis for this experiment was that 

there would not be any significant transfer in the skill required for the point-and-

click task of the game to the drag-and-drop task of the experiment.  

8.3.5 Analysis 

Table 8.6 shows the results of the experimental testing that took part 

every week. Table 8.6 shows the average results of each participant’s completion 

time of the task. The mouse completion time is also shown for comparison. The 

average completion time of the participants is decreased every week, along with 

the standard deviation of their performance (except for an irregularity after 1 

week of training). However, the standard deviation after 3 weeks of training 

becomes similar to that of the mouse. Figure 8.5 shows this graphically. 

Table 8.6 The results of the second phase of the experiment by week. 
The results of the mouse condition are shown for reference.  

All times shown are  in milliseconds 

Participant Mouse Glove 
Week 0 

Glove 
Week 1 

Glove 
Week 2 

Glove 
Week 3 

1 1665 7544 5834 3934 3642 

2 1254 11206 6773 3148 3958 

3 2308 6490 10041 4709 4527 

4 1097 10221 4132 5212 4131 

5 1221 8943 7443 6895 3498 

6 1219 6806 4126 4126 3474 

Average 1461 8535 6392 4671 3872 

Std. Dev. 458 1913 2241 1296 413 
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Figure 8.5 Average Completion Time of the Glove Condition by week.   
Week 0 represents  the results of testing at the beginning of the first week,  

before any training had taken place, week 1 shows the results of testing after  
one week of training, etc. All times shown are in milliseconds. 

 
Figure 8.6 shows the amount of variation in the completion times of the 

participants, again by week. As the weeks go by and training progresses, it is 

evident that not only the participants become faster, but they also converge to 

very similar performance, as the variation becomes smaller every week. In fact, 

after three weeks of training, the variation in the completion time of the drag-and-

drop task becomes similar to that of the mouse condition.  

Figure 8.6 reveals another important characteristic of the performance of 

the participants, when combined with the trend shown in Figure 8.5. While the 

participants’ glove completion time variation becomes almost as low as that of 

their performance with the mouse, the same does not happen with the glove 

performance completion time. Rather, in Figure 8.5, the completion time starts 

plateauing after three weeks of training, possibly hinting to the fact that the virtual 

glove is inherently harder to control than the mouse. 
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Figure 8.6 Boxplots of the completion time for the glove condition of the experiment.  
The Mouse condition boxplot is included for reference as well. 

 
As was mentioned earlier, there is the possibility that because the mouse 

is a more constrained device than the glove, the task is easier to perform, 

because fewer variables need to be controlled by the user, compared to when 

performing the same task with the glove. Again, this is hinted at by the theoretical 

substratum of the framework that more affordances and constraints make a task 

easier to perform or a device easier to control.  
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What is immediately evident from the graph is that there is a decrease in 

the completion time of the drag-and-drop task, consistent with the Power Law of 

Practice (Card et al., 1983). This fact suggests that skill transfer has taken place. 

However, because there was no control group that did not practice on the game, 

it is hard to say how much of the decrease in the completion time of the 

participants is a result of the training on the game, and how much is a result of 

performing the experimental task multiple times. The same is true for the 

decrease in standard deviation. 

However, I believe that there was skill transfer from the training task to the 

experimental task, in that the participants learned to better understand the 

binding between the movements of the pointer according to the movements of 

the limb, and to keep the binding between the glove and the IO by keeping the 

last two fingers of the hand straight. These was reinforced by the requirement of 

the game to keep the machine gun in constant motion to dispose as many 

hostiles as possible, as fast as possible. Therefore, the better the participants 

became at using the glove, the better their performance on the game, and as 

they anecdotally suggested: “the better you get, the more fun [the game] is”. 

The movement of the limb required by the game is not in a straight line, 

from left to right. Rather, players must move the pointer all around the screen, in 

seemingly random ways. This fact seemed to inhibit the participants’ 

performance after one week of training, creating more variation in the completion 

time of the task as shown in Figure 8.6. But at the beginning of the second week, 

the effect disappeared. The way that the effect was gauged was by plotting the 



 

170 

participants’ trajectories using pixel points gathered by the experiment program. 

Figure 8.7 shows the trajectories that one participant had performed during the 

completion of the mouse condition of the experiment. Figures 8.8 to 8.11 show 

the trajectories of the glove condition of the experiment of each trial by the same 

participant for each week the participant was tested. All the graphs use the same 

scales for the x and y axes, to convey equivalent information. 

Figures 8.8 to 8.11 show how the trajectories become straighter and more 

concentrated together from the home position to the targets, as the participant 

gains more experience in the use of the glove. At the end of the third week of 

practice, the trajectories become very similar to those that the participant 

performed using the mouse. The trajectories towards the top of the graph were 

created from the presentation of the circle shape, the middle ones from the 

presentation of the square shape, and the bottom ones by the presentation of the 

triangle. 
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Figure 8.7 The mouse condition trajectories of the trials of the experiment.  
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Each line represents a different trial.  
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Figure 8.8 The initial test before any practice, of the Glove condition of the experiment. 

Each line represents a different trial. 
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Figure 8.9 The test after one week of practice, of the Glove condition of the experiment. 

Each line represents a different trial. 
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Figure 8.10 The test after two weeks of practice, of the Glove condition of the experiment. 
Each line represents a different trial. 
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Figure 8.11 The test after three weeks of practicing the Glove condition of the experiment. 
Each line represents a different trial. 

 
Summing up the evidence that is presented in Table 8.6 and Figures 8.5 

to 8.11, I conclude that while the participants improved their performance in the 

procedural part of the task, and the accuracy of their movement approached the 
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movement accuracy when using the mouse, the velocity of the movement still 

remained slower with the virtual glove than with the mouse. Because the 

experiment could not have been continued for longer than it did, the question that 

remains to be answered is whether the accuracy is what is acquired first in the 

evolution of such a skill, and then the speed of the movement is developed, or if 

indeed the virtual glove is inherently a slower pointing device than the mouse. It 

is not evident, though, that there is significant transfer from the performance of 

one task (that of playing the game) to the performance of the other (the drag-

and-drop task), because there was no control group to test for this.  

8.3.6 Models 

There are two ways that the completion time of the experiment can be 

predicted. The first way is by using the first performance of the task as the 

benchmark, and using CoDeIn’s version of the Power Law of Practice, as 

derived in section 8.3.1. This version of the Power Law of Practice uses the ER 

of the class of users whose performance needs to be predicted. The Power Law 

has one drawback, though, because it needs the ER for the benchmark 

completion time to predict any other completion times.  

To predict the performance of each week using the Power Law, I used as 

benchmark the first test completion time (Week 0 completion time), and then 

used two ways to validate the performance of the model. The first was to 

consider that the ER of the participants was 40% as calculated in the first phase 

of the experiment, and assumed that each week the participants’ ER had a 
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relative increase of 40%, calculated as ERweekB = 1.4 * ERweekA, where week A 

and week B are two consecutive weeks.  

The second was to use the Power Law directly into the glove condition 

model, shown in Figure 8.3, and modify the three values using different ERs. 

This was done again supposing a relative 40% increase in the ER per week.  

Table 8.7 shows the predicted values using the first way of calculation, and table 

8.8 shows the predicted values using the second way. In both Tables 8.7 and 8.8 

Ta and ERa are the initial completion time and ER of the participants. Tb is the 

predicted completion time.  

Table 8.7 Predictions of the derived Power Law of Practice 

 Experimental 
Result 

Power Law 
Prediction 

Deviation  Deviation 
Percentage 

Week 0 8535 Ta = 8535 
ERa = .2   

Week 1 6392 Tb = 8535 *    
(.2 / .28) =   

6096 

296 5% 

Week 2 4671 Tb = 8535 *    
(.2 / .39) =   

4377 

294 6% 

Week 3 3872 Tb = 8535 *    
(.2 / .55) = 

3104  

768 20% 

 

Table 8.7 shows the power law predictions that are on average 10% 

smaller than the experimental results. However, the predictions are based on 

assumptions about the nature of the users, and not on actual data gathered from 

the users. Therefore the results are expected to have some deviation, but even 
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with 10% deviation, they still show the learning trend, and thus capture the 

essence of the increase in experience as decrease in performance time well. 

This can be seen in Figure 8.12, where the predictions of the derived power law 

are the series labeled as ‘Power Law’. 

Table 8.8 shows the predicted results that are generated by penalizing the 

procedural knowledge areas of the CoDeIn model in Figure 8.3. The same 

results are shown graphically in Figure 8.12 as “CoDeIn” for comparison with the 

experimental results and the predicted results of the derived power law. 

Table 8.8 Predicted results by the application of the Derived Power Law in the model of Figure 8.4 

 Glove 
Week 0 

Glove 
Week 1 

Glove 
Week 2 

Glove 
Week 3 

 8535 6392 4671 3872 

Efficiency 
Rating 20% 28% 39% 55% 

CoDeIn Model Changes and Predictions 

‘Move IO’ 
action 

396 / .2 = 
1980 

396 / .28 = 
1414 

396 / .39 = 
1015 

396 / .55 = 
720 

‘Drag IO’ 
action 

530 / .2 = 
2650 

530 / .28 = 
1893 

530 / .39 = 
1359 

530 / .55 = 
963 

‘Binding IO to 
IN’ chunk 

1200 *.8 = 
960 

1200 *. 72 = 
864 

1200 *. 61 = 
732 

1200 * .45 
= 540 

Unchanged 
Parts 950 950 950 950 

CoDeIn 
Prediction 6540 5121 4056 3173 

Deviation  % 23% 20% 13% 18% 
 

Figure 8.12 shows the results of the two predictions and the experimental 

results. Power Law’s prediction of week 0 testing is the same as that of the 
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experimental result, because that is the benchmark for the application of the 

derived power law. CoDeIn’s week 0 result seems far from the average of the 

second phase of the experiment, but a fact that has to be considered is that the 

experiment was only performed with 6 participants. Had all 10 participants been 

used in the second phase, the initial experimental result would have been 6847 

milliseconds, as shown in Table 8.5; this changes the accuracy of the model from 

23% deviation to 7.5%. I believe that the same would have happened with the 

rest of the predicted results. An extrapolation such as this cannot be made for the 

derived power law, because the derived power law would have to use a different 

benchmark completion time for its calculations. However, I believe that the 

derived power law would hold in that case as well. 
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Figure 8.12 The actual and predicted results from the derived power law. 
All times shown are in milliseconds. 

 
The general form of the results though, corroborates the supposition that 

CoDeIn’s predictions follow an existing model of performance calculation, 

namely the Power Law of Practice (Card et al., 1983). Therefore, while the 
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predictions may seem inaccurate, because of a large difference between the 

predicted and the actual experimental values, the effect of decreasing completion 

time in a decreasing exponential fashion is evident. Also, as mentioned above, 

the deviation may be misleading due to the small sample size of participants in 

the second phase of the experiment. 

8.4 Conclusions 

This chapter presented the second experiment that was performed for the 

validation of the CoDeIn framework. The aims of the experiment were first to 

show that CoDeIn can handle the evaluation of different categories of users 

other than experts with error-free performance. The second aim was to show that 

CoDeIn’s predictions follow a decreasing exponential trend as suggested by 

existing models of performance prediction that take into account the effects of 

increased experience in a task, such as the Power Law of Practice (Card et al., 

1983).  

The first aim was accomplished by using one of the basic suppositions of 

the framework that tests may be performed on a sample of the population of 

interest, and the results used to model the performance of the larger population. 

The model utilized the ER of the participants to modify the procedural knowledge 

of the task. The results provided a close estimate to the actual performance of 

the participants. This finding is crucial to the CoDeIn framework, as one of the 

major differences of CoDeIn and other model-based evaluation methods is that 
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while CoDeIn can model expert performance, its main use is to model non-expert 

user performance. 

The second aim was accomplished by following up the glove condition of 

the experiment with supplementary training for some of the original participants 

of the experiment. The participants of the second phase of the experiment 

practiced the use of the virtual glove, and after each week of practice they were 

tested to examine whether that practice had affected their performance in the 

experimental task. The result was that there was indeed a decrease in the 

completion time of the task, hence an increase in the participants’ efficiency of 

performing the task, in a way that conforms to the Power Law of Practice (Card 

et al., 1983). However, whether this is owed to knowledge transfer from the game 

or it is owed to the performance of the experimental task many times cannot be 

determined, because there was no control group that would not perform the 

training, but only the tests. 

The results were then compared with the CoDeIn model’s predictions and 

assumption of rise in performance, occurring as a decrease in task completion 

time. The result of the comparison was that CoDeIn’s predictions did follow a 

decreasing exponential trend, as suggested by the Power Law of Practice (Card 

et al., 1983). However, the difference between the experimental results and the 

predicted results was larger than expected. This is attributed primarily to the 

small sample size for the second phase of the experiment. The initial average 

completion time of the sample used in the second phase of the experiment was 

significantly larger than that of the sample used in the first phase. However, the 
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results of the model converge to the actual performance of the sample as the 

effects of training become more evident towards the end of the training period. 

Obviously, a large scale study that applies CoDeIn to a real task with 

many participants is imperative, to validate the framework in real-world 

conditions. Such a study was outside the scope of this thesis, but it will be the 

subject of future research. 
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Chapter 9 Conclusions and Future Work 

This chapter presents a summary of the findings, results and conclusions 

of this work. This thesis deals with the problem of model-based evaluation of 

Reality-Based Interaction. RBIs present different challenges in predictive task 

evaluation than the previous generations of interaction styles because they 

leverage parallel actions and utilize a wider range of interaction devices than 

previous generations of interaction styles. Hence, it is imperative for an 

evaluation method (that is designed to evaluate tasks built in an RBI) to be able 

to accommodate the evaluation of expert and non-expert users alike. Also, 

because RBIs base their interactions on real-world interactions, and because 

real-world interactions can be parallel, a model-based evaluation method must 

have a mechanism that allows the modeling of such actions.  

9.1 Summary of Contributions 

In this thesis I have presented the following contributions: 

• In chapter 5 I proposed a way for modeling actions and specifying 

user performance according to the knowledge required for the 

performance of those actions. I have followed that with the proposal 

of the Efficiency Rating (ER), a measure of the expertise of a user, 

based on expert, error-free performance.  

• In chapters 6 to 8 I have designed, developed, tested, and 

validated a new task analysis framework, called CoDeIn, that 
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allows modeling of tasks and allows completion time estimates of 

expert and non-expert performance of these tasks. This approach 

has been found to be more accurate in the context of new 

interaction styles or devices than GOMSL. 

• In chapter 8 I have proposed that the reach-and-grasp action may 

be modeled similarly to Fitts’ Law, based on the distance of the 

actor to the object-to-be-grasped. Contrary to Fitts’ Law, the model 

that I propose for this action is a linear one. Based on this model, I 

proposed a new operator for GOMS that models this action. 

CoDeIn is based on the theory of the MHP (Card et al., 1983). It assumes 

that knowledge in the performance of one task may be transferred to the 

performance of another, either positively or negatively (Singley & Anderson, 

1989). It also assumes that through experience in the performance of a task, the 

performance eventually becomes automatic (Logan, 1988).  

CoDeIn leverages the level of knowledge of each user type (novice, 

expert, etc.) and bases task evaluation on models that reflect that level of 

knowledge. Thus, task evaluation is based on the knowledge that is required for 

the performance of a task, and the amount of knowledge that a particular class of 

users has. Because CoDeIn uses task knowledge to model a task, a formal 

method for the description of knowledge pertaining to the task in an interface was 

proposed. The knowledge of the users pertaining to the task, as well as the 

knowledge required for the performance of the task, and the knowledge that 

exists in the environment about the task, constitute the three sets that CoDeIn 
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uses to describe the level of the user. For example, if the user knows all the 

required knowledge for the performance of the task, then the user is classified as 

an expert in the performance of the task. This procedure is followed to define 

user categories. By measuring the ER of users, a way of modification of expert 

models was devised to allow the aforementioned claim that CoDeIn can model 

any type of user.  

The prediction of expert task performance occurs by the application of 

MHP’s primitive operators (Card et al., 1983). These operators provide a 

completion time for each action that is performed for the execution of a task. 

However, because MHP’s primitive operators were primarily created for the 

evaluation of DM interfaces (Card & Moran, 1980), work was performed to 

provide operators for actions that do not occur in the DM interaction style. I found 

that one of the more important actions for which there is no operator in MHP is 

the prehension operator.  

Experiment 1 in Chapter 7 was performed to examine whether CoDeIn’s 

predictions can compete with the predictions of an established model-based 

evaluation method. The task in experiment 1 compared CoDeIn’s predictions on 

a “file-move” task to GOMSL’s (Kieras, 1999) predictions. The task was 

performed in two interfaces, one designed using the DM interaction style, and 

another designed as a TUI.  The model of the TUI condition required the use of a 

prehension operator. Because no simple models were found in the surveyed 

literature (Jones & Lederman, 2006; C. L. Mackenzie & Iberall, 1994), experiment 

2 was performed that led to the creation of a model that predicts the completion 
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time of the grasping action based on the distance of the actor from the artifact to 

be grasped. This experiment yielded a reliable linear relationship between the 

distance of the actor from the artifact (R2 = .82, F = 36.81, p < .0005). With the 

help of this operator the task was modeled in both GOMSL and CoDeIn. CoDeIn 

had a prediction error of 60 milliseconds from the average experimental result in 

the DM condition, whereas GOMSL’s prediction had an error of 480 milliseconds. 

In the TUI condition, CoDeIn’ prediction error was 1.61 seconds, while GOMSL’s 

prediction had an error of 4.06 seconds. The results of the models in experiment 

1 provided evidence to support the initial claim that CoDeIn more accurately 

predicted the completion time of the task for both the TUI interface and the DM 

interface than GOMSL. 

Another assertion of this work is that CoDeIn may model any type of user, 

from novice to expert, making it more suitable for the evaluation of RBIs. As was 

argued RBI users exhibit more varied behavior than that of users of DM 

interfaces, because RBIs include interfaces that specifically target users who are 

not experts, such as walk-up-and-use interfaces.  

The experiment described in Chapter 8 was performed to test CoDeIn’s 

ability to perform such an evaluation. This experiment was performed in two 

phases. The first phase was used to study the performance of non-expert users, 

and the second phase to study non-expert user performance as users gained 

more experience in the experimental task.  

The experimental task for both phases of the experiment asked users to 

perform a drag-and-drop task, and was designed in the DM interaction style. The 
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experiment included two conditions: one where participants used a conventional 

mouse to perform the drag-and-drop task, and a second where participants used 

a virtual glove (Virtual Realities, 2006). The condition using the mouse was 

considered the expert performance condition, and the condition using the glove 

was considered the novice performance condition.  GOMSL was only used to 

model the expert condition of the experiment, because due to its assumption of 

expert, error-free performance of a task, it could model novice performance. 

However, CoDeIn again yielded a more accurate prediction than GOMSL in the 

mouse condition of the experiment, with an error of 487 milliseconds, while 

GOMSL’s error was 887 milliseconds. Also, CoDeIn had an error of 517 

milliseconds in its prediction of the glove condition average completion time. The 

importance in the result of the glove condition was that the prediction was found 

by using the mouse condition as a benchmark, and by penalizing the benchmark 

time through efficiency ratios, as was claimed in Chapter 5.  

The second phase of the experiment was performed to evaluate whether 

CoDeIn’s predictions during the increase in the expertise of a task follow an 

established prediction model, the Power Law of Practice (Card et al., 1983). The 

second phase involved a subset of the original participants to the experiment, 

and asked them to train for 3 weeks on a different task than that of the 

experiment, using the virtual glove. At the beginning of each week for the 

duration of the experiment, the participants were tested on the experimental task 

to examine whether there was any difference in their performance. 
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Several conclusions were reached from the second phase of the 

experiment. Following the implications of the Power Law of Practice the trend of 

learning that CoDeIn should predict should have a decreasing exponential form. 

Using the modification of expert performance techniques proposed in the first 

phase of the experiment, CoDeIn was able to capture the trend of learning that 

the participants exhibited as they gained experience with the task that followed 

the Power Law of Practice and was matched by the experimental findings. Also, 

a new form of the Power Law of Practice was derived from the original that uses 

CoDeIn’s ER of a class of users instead of the number of repetitions of the task 

that were performed by the users.  

The experiment presented in Chapter 8 also suggests that expertise may 

be demonstrated as a decrease in the standard deviation of the performance of a 

task. As shown in Figure 8.6, as users gained expertise in the performance of the 

task, the standard deviation of their completion time became smaller. However, 

this finding has not been investigated further, therefore no conclusions can be 

drawn about it yet. 

There are also some implications for the design of interaction devices that 

emanate from this thesis. The experiment performed in Chapter 7 demonstrates 

that the speed with which one may perform actions in a point-and-click 

environment follows a logarithmic law versus the amplitude of the motions 

performed, while in a reach-and-grasp environment, the completion time of 

actions may follow a linear law versus the amplitude of the motions. 
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Another implication is that actions may be associated with knowledge; 

knowledge that users are required to know in order to execute the action. This 

knowledge can be quantified and represented in a model, thus allowing 

designers to have a guide as to what their users will have to know in order to use 

the designers’ proposed design. This allows the comparison of proposed devices 

with existing devices before the building of prototypes, but only using the actions 

and tasks that the devices will be designed to accomplish. 

9.2 Future Validation Work 

The work in this thesis was done in a closed laboratory environment and 

therefore the results of the experiments may not generalize to large scale, real-

world tasks. Hence there is still the need for the validation of CoDeIn through the 

evaluation of a real-world, large scale task. This undertaking however, is left as a 

future research direction. The performance of a large scale experiment is also 

required to examine whether CoDeIn models scale well as tasks become larger, 

or they become large and unwieldy, making them unsuitable or inconvenient for 

complex task modeling. The supposition of this thesis is that the models will 

scale well because of the diagrammatic notation’s basis in Statecharts (Harel, 

1987), especially if summary diagrams are used to describe higher-level tasks. 

However, this cannot be investigated until CoDeIn is used in the predictive 

evaluation of more complex tasks than considered here. 

Further, the framework has only been tested in two interaction styles: DM 

and TUI. While I believe that the framework will be able to model tasks in other 

interaction styles, this still remains to be validated. As such, I suggest that more 
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validation work is required by modeling tasks designed in interaction styles other 

than the ones used in this thesis.  

The tasks that CoDeIn modeled in this thesis did not contain any decisions 

on the part of the user, in terms of choosing one of several possible paths of 

actions for the completion of a task. More work is required in this area, to 

demonstrate that CoDeIn can model choice between several paths of actions, 

and to demonstrate that CoDeIn can produce performance estimates based on 

such models. 

9.3 Future Research Directions 

Experiment 2 in Chapter 7 presented evidence that prehension is an 

action that cannot be modeled using Fitts’ Law (Fitts, 1954; Fitts & Peterson, 

1964). However, the kinesiology literature surveyed in this thesis does not 

provide a model of prehension that allows the calculation of the completion time 

of the action, even though there are models for the explanation of the three 

phases of prehension as discussed in Chapter 7. While the experiment 

performed provided a linear model for the prehension action based on the 

distance of the actor from the artifact, there is need for more experimentation 

with different reach-to-grasp directions, and with various objects of different 

weights and sizes to be grasped. Experiment 2 in Chapter 7 was performed to 

find a specific model for the task of experiment 1, and not a generally applicable 

model. Also, Figure 7.5 shows a dip between the 20 and 30 centimeter distances 

of the actor from the artifact. This may be a random event due to sample bias, or 

it may be a more general event that occurs because of the convenience of that 
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particular range in the execution of the grasping action. Again, more 

experimentation is needed to ascertain the source of this phenomenon.  

CoDeIn was able to predict the completion times of the tasks presented in 

Chapters 7 and 8 of this dissertation. However, the predictions only involved the 

prediction of error-free performance on the part of the users. The reality though is 

that users perform mistakes. It is my belief that CoDeIn’s knowledge model is 

capable of predicting the frequency of errors in the performance of tasks, but this 

is left as another future research direction. 

Another research direction that is left open, but is required for CoDeIn to 

be considered a complete task analysis framework, is to validate its predictions 

with tasks that involve choice or selection in the performance of a task. This may 

happen when a task consists of several sub-tasks where the performance of 

each sub-task is not a pre-condition in the performance of the others, such as in 

the case of programming a video player (Gray, 2000).  

Work done on the description of actions based on knowledge points to the 

possible creation of a theory of action independent of the environment in which 

the action is performed. Rather, the description of the action will only be based 

on the knowledge required for its performance. The underpinnings of such a 

theory have been proposed in Chapter 5, but more work is necessary to fully 

develop it. Using such a theory, CoDeIn could be extended to provide estimates 

for the performance of errors and counter-productive actions (as defined in 

Chapter 5). 
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Finally, CoDeIn can be extended to model tasks that are performed by 

more than one user in the context of Computer Supported Cooperative Work 

(CSCW).  Environments that support cooperative work may allow the same 

actions, but the knowledge for their performance does not belong to just one 

user. Therefore, I believe that CoDeIn may be extended to model and estimate 

cooperative tasks using work that investigates how knowledge structures are 

shared among cooperative users.  



 

190 

Bibliography 

Abowd, G. D., Mynatt, E. D., & Rodden, T. (2002). The Human Experience. IEEE 
Pervasive Computing, 1(1), 48-57. 

Accot, J., & Zhai, S. (1997). Beyond Fitts' Law: Models for Trajectory-Based HCI Tasks. 
Paper presented at the CHI'97 Conference on Human Factors in Computing 
Systems, Atlanta, GA. 

Anderson, J. R. (1992). Automaticity and the ACT* Theory. American Journal of 
Psychology, 105, 165-180. 

Anderson, J. R., & Lebiere, C. (1998). Atomic Components of Thought. Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated Learning and Education. 
Educational Researcher, 25(4), 5-11. 

Andre, T. S., Belz, S. M., McCreary, F. A., & Hartson, H. R. (2000). Testing a 
Framework for Reliable Classification of Usability Problems. Paper presented at 
the 44th Annual Meeting of the Human Factors and Ergonomics Society, San 
Francisco, CA. 

Andre, T. S., Hartson, H. R., Belz, S. M., & McCreary, F. A. (2001). The User Action 
Framework: A Reliable Foundation for Usability Engineering Support Tools. 
International Journal on Human-Computer Studies, 54(1), 107-136. 

Andres, R. O., & Hartung, K. J. (1989). Prediction of Head Movement Time Using Fitts' 
Law. Human Factors, 31(6), 703-714. 

Annet, J. (2003). Hierarchical Task Analysis. In D. Diaper & N. Stanton (Eds.), The 
Handbook of Task Analysis for Human Computer Interaction (pp. 67-82). 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Annet, J., & Duncan, K. D. (1967). Task Analysis and Training Design. Occupational 
Psychology, 41, 211-221. 

Arizona State University. Decision Theater. http://dt.asu.edu/index.php?cat=1&subcat=9: 
March 7th, 2007. 

Atari Co. Beach Head 2002. http://www.atari.com/us/games/beach2002/pc: 8th February 
2007. 

Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and 
Virtual Environments, 6, 355-385. 

Baber, C., & Stanton, N. (1994). Task Analysis for Error Identification. Ergonomics, 37, 
1923-1942. 

Baskin, J. D., & John, B. E. (1998). Comparison of GOMS Analysis Methods. Paper 
presented at the CHI 98 Conference on Human Factors in Computing Systems, 
Los Angeles, CA, USA. 

Beaudouin-Lafon, M. (2004). Designing Interaction, Not Interfaces. Paper presented at 
the Conference on Advanced Visual Interfaces, Gallipoli, Italy. 

Boose, J. H. (1989). A Survey of Knowledge Acquisition Techniques and Tools. 
Knowledge Acquisition, 1, 3-37. 

Bransford, J., Brown, A. L., Cocking, R. R., & National Research Council (U. S.) 
Committee on Learning Research and Educational Practice. (2000). How People 



 

191 

Learn: Brain, Mind, Experience, and School: Expanded Edition: National 
Academies Press. 

Brooks Jr., F. P. (1999). What's Real about Virtual Reality? IEEE Computer Graphics 
and Applications, 19(6), 16-27. 

Bruner, J. (1966). Toward a Theory of Instruction. Cambridge, MA: Harvard University 
Press. 

Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. Computer 
Graphics, 17(1), 31-37. 

Card, S. K., Mackinlay, J. D., & Robertson, G. G. (1991). A Morphological Analysis of 
the Design Spaces of Input Devices. ACM Transactions on Information Systems, 
9(2). 

Card, S. K., & Moran, T. P. (1980). The Keystroke Level Model for User Performance 
Time with Interactive Systems. Communications of the ACM, 23, 396-410. 

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of Human Computer 
Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Carroll, J. M., & Rosson, M. B. (1992). Getting Around the Task-Artefact Cycle: How to 
Make Claims and Design by Scenario. ACM Transactions on Information 
Systems, 10, 181-212. 

Cheung, P. (2002). Designing Sound Canvas: The Role of Expectation and 
Discrimination. Paper presented at the CHI '02 Extended Abstracts on Human 
Factors in Computing Systems, New York, NY. 

Chipman, S. F., Schraagen, J. M., & Shalin, V. L. (2000a). Cognitive Task Analysis. 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Chipman, S. F., Schraagen, J. M., & Shalin, V. L. (2000b). Introduction to Cognitive 
Task Analysis. In S. F. Chipman, J. M. Schraagen & V. L. Shalin (Eds.), 
Cognitive Task Analysis. Mahwah, NJ: Lawrence Erlbaum Associates. 

Christou, G. (2005). The Use and Evolution of Affordance in HCI. In C. Ghaoui (Ed.), 
The Encyclopedia of Human Computer Interaction (pp. 668-672). Hershey, PA: 
Idea Group Reference. 

Christou, G. (2007). Towards a New Method of Evaluation for Reality-Based Interaction 
Styles. Paper presented at the Extended Abstracts of CHI 07 Conference on 
Human Factor in Computing Systems, San Jose, CA. 

Christou, G., & Jacob, R. J. K. (2003). Evaluating and Comparing Interaction Styles. 
Paper presented at the DSV-IS 2003: 10th Workshop on the Design, Specification 
and Verification of Interactive Systems, Funchal, Portugal. 

Christou, G., & Jacob, R. J. K. (2005). Identifiability: A Predictive Quantitative Measure 
for the Comparison of a Task Designed in Different Interaction Styles. Paper 
presented at the HCI International, Las Vegas, NV. 

Christou, G., Jacob, R. J. K., & Cheng, P. L. (2006). Modeling the Task: Leveraging 
Knowledge-in-the-Head at Design Time. Paper presented at the ICEIS 06 8th 
International Conference on Enterprise Information Systems, Paphos, Cyprus. 

Chung, E. S., Hong, J. I., Lin, J., Prabaker, M. K., Landay, J. A., & Liu, A. L. (2004). 
Development and Evaluation of Emerging Design Patterns for Ubiquitous 
Computing. Paper presented at the Design of Interactive Systems 2004, 
Cambridge, MA, USA. 



 

192 

Cook, N. J. (1994). Varieties of Knowledge Elicitation Techniques. International Journal 
on Human-Computer Studies, 41(6), 801-849. 

De Carolis, F., De Rosis, F., & Pizzutilo, S. (1996). Formal Description and Evaluation 
of User Adapted Interfaces. International Journal on Human-Computer Studies, 
49, 95-120. 

Deligiannidis, L. (2000). DLoVe: A Specification Paradigm for Designing Distributed 
VR Applications for Single or Multiple Users: Tufts University. 

Dey, A. K., Ljungstrand, P., & Schmidt, A. (2001). Distributed and Disappearing User 
Interfaces in Ubiquitous Computing. Paper presented at the CHI 01 Conference 
on Human Factors in Computing Systems, Seattle, WA, USA. 

Diaper, D. (2004). Understanding Task Analysis for Human Computer Interaction. In D. 
Diaper & N. Stanton (Eds.), The Handbook of Task Analysis for Human 
Computer Interaction (pp. 5-47). Mahwah, NJ: Lawrence Erlbaum Associates. 

Diaper, D., & Stanton, N. (2004a). The Handbook of Task Analysis for Human-Computer 
Interaction. Mahwah, NJ: Lawrence Erlbaum Associates. 

Diaper, D., & Stanton, N. (2004b). Wishing on a sTAr: The Future of Task Analysis. In 
D. Diaper & N. Stanton (Eds.), The Handbook of Task Analysis for Human 
Computer Interaction (pp. 603-619). Mahwah, NJ: Lawrence Erlbaum Associates. 

Drury, C. G., Paramore, B., Van Cott, H. P., Grey, S. M., & Corlett, N. (1987). Task 
Analysis. In G. Salvendy (Ed.), Handbook of Human Factors (pp. 370-401). New 
York, NY: Wiley. 

Fitts, P. M. (1954). The Information Capacity of the Human Motor System in Controlling 
the Amplitude of Movement. Journal of Experimental Psychology, 47(6), 381-
391. 

Fitts, P. M., & Peterson, J. R. (1964). Information Capacity of Discrete Motor Responses. 
Journal of Experimental Psychology, 67(2), 103-112. 

Fitzmaurice, G. W. (1996). Graspable User Interfaces: Department of Computer Science, 
University of Toronto. 

Fitzmaurice, G. W., Ishii, H., & Buxton, W. (1995). Bricks: Laying the Foundations for 
Graspable User Interfaces. Paper presented at the CHI 95 Conference on Human 
Factors in Computing Systems, Denver, CO. 

Foley, J. D. (1987). Interfaces for Advanced Computing. Scientific American, 257(4), 
127-135. 

Foley, J. D., Van Dam, A., Feiner, S. K., & Hughes, J. F. (1990). Computer Graphics: 
Principles and Practice. Reading, MA: Addison Wesley. 

Foley, J. D., & Wallace, V. L. (1974). The Art of Natural Graphic Man-Machine 
Conversation. Proceedings of the IEEE, 62(4), 462-471. 

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of 
Reusable Object-Oriented Software. New York, NY: Addison-Wesley. 

Gaver, W. (1991). Technology Affordances. Paper presented at the Conference on Human 
factors in computing systems: Reaching through technology, New Orleans, 
Louisiana. 

Gibson, J. J. (1977). The Theory of Affordances. In R. E. Shaw & J. Bransford (Eds.), 
Perceiving, Acting and Knowing. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MA: 
Houghton Mifflin Co. 



 

193 

Gilbreth, F. (1911). Motion Study. New York, NY: D. Van Nostrand Company. 
Glasser, H. J., & Halcomb, C. G. (1980). Foot placement and response latency: A test of 

Fitts' law. Paper presented at the Human Factors Society 24th Annual Meeting, 
Santa Monica, CA. 

Gray, W. D. (2000). The Nature and Processing of Errors in Interactive Behavior. 
Cognitive Science, 24(2), 205-248. 

Gray, W. D., & Altmann, E. M. (2001). Cognitive Modeling and Human-Computer 
Interaction. In W. Karwowski (Ed.), International Encyclopedia of Ergonomics 
and Human Factors (Vol. 1, pp. 387-391). New York: Taylor & Francis, Ltd. 

Gray, W. D., & Fu, W. (2001). Ignoring Perfect Knowledge In-The-World for Imperfect 
Knowledge In-The-Head: Implications of Rational Analysis for Interface Design. 
Paper presented at the CHI Conferance on Human Factors of Computing Systems, 
Seattle, WA, USA. 

Gray, W. D., & Fu, W. (2004). Soft Constraints in Interactive Behavior: the Case of 
Ignoring Perfect Knowledge in-the-World for Imperfect Knowledge in-the-Head. 
Cognitive Science, 28, 359-382. 

Gray, W. D., John, B. E., & Atwood, M. E. (1993). Project Ernestine: Validating a 
GOMS Analysis for Predicting and Explaining Real-World Task Performance. 
Human Computer Interaction, 8(3), 237-309. 

Greenburg, S. (2004). Working Through Task Centered System Design. In D. Diaper & 
N. Stanton (Eds.), The Handbook of Task Analysis (pp. 49-65). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Greeno, J. G., Smith, D. R., & Moore, J. L. (1992). Transfer of Situated Learning. In D. 
Detterman & R. J. Sternberg (Eds.), Transfer on Trial: Intelligence, Cognition 
and Instruction (pp. 99-167). Norwood, NJ: Ablex. 

Grimson, W. E. L., Ettinger, G. J., Kapur, T., Leventon, M. E., Wells III, W. M., & 
Kikinis, R. (1997). Utilizing Segmented MRI Data in Image-Guided Surgery. 
International Journal of Pattern Recognition and Artificial Intelligence, 11, 1367-
1397. 

Hall, W. (1994). Ending the Tyranny of the Button. IEEE Multimedia, 1(1), 60-68. 
Hamilton, F. (1996). Predictive Evaluation using Task Knowledge Structures. Paper 

presented at the CHI Conference on Human Factors in Computing Systems, 
Vancuver, BC. 

Hamilton, F., Johnson, P., & Johnson, H. (1998). Task-Related Principles for User 
Interface Design. Paper presented at the Schaerding Workshop on Task Analysis, 
Schaerding, Austria. 

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of 
Computer Programming(8), 231-274. 

Harrison, M. A. (1978). Introduction to Formal Language Theory (First ed.). Boston, 
MA: Addison-Wesley Longman. 

Hartson, H. R. (2003). Cognitive, Physical, Sensory and Functional Affordances in 
Interaction Design. Behaviour & Information Technology, 22(5), 315-338. 

Hartson, H. R., Andre, T. S., Williges, R. C., & Van Rens, l. (1999). The User Action 
Framework: A Theory-Based Foundation for Inspection and Classification of 
Usability Problems. Paper presented at the HCI International '99 8th International 
Conference on Human Computer Interaction. 



 

194 

Hartson, H. R., Siochi, A. C., & Hix, D. (1990). The UAN: A User-Oriented 
Representation for Direct Manipulation. ACM Transactions on Information 
Systems, 8(3), 181-203. 

Hinckley, K., Tullio, J., Pausch, R., Proffitt, D., & Kassell, N. (1997). Usability Analysis 
of 3D Rotation Technique. Paper presented at the UIST '97 Symposium on User 
Interface Software and Technology, Banff, Alberta, Canada. 

Holmquist, L. E., Redstrom, J., & Ljungstrand, P. (1999). Token-Based Access to Digital 
Information. Paper presented at the Proceedings of the First International 
Symposium in Handheld and Ubiquitous Computing, Karlsruhe, Germany. 

Howes, A., & Young, R. M. (1991). Predicting the Learnability of Task-Action 
Mappings. Paper presented at the Conference on Human Factors in Computing 
Systems, New Orleans, LA, USA. 

Hutchins, E., Hollan, J., & Norman, D. (1986). Direct Manipulation Interfaces. In D. A. 
Norman & S. W. Draper (Eds.), User Centered System Design: New Perspectives 
in Human-Computer Interaction (pp. 87-124). Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Ishii, H., Mazalek, A., & Lee, J. (2001). Bottles as a Minimal Interface to Access Digital 
Information. Paper presented at the CHI '01 Extended Abstracts on Human 
Factors in Computing Systems, New York, NY. 

Ishii, H., & Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces between 
People, Bits and Atoms. Paper presented at the CHI Conference on Human 
Factors in Computing Systems, Atlanta, GA, USA. 

Jacob, R. J. K. (1995). Natural Dialogue in Modes Other Than Natural Language. In R. J. 
Beun, M. Baker & R. M. (Eds.), Dialogue and Instruction (pp. 289-301). Berlin, 
Germany: Springer-Verlag. 

Jacob, R. J. K. (2004, September 22, 2006). Reality-Based Interaction: Understanding the 
Next Generation of Human-Computer Interfaces. from 
http://www.cs.tufts.edu/~jacob/theory/ 

Jacob, R. J. K. (2006). CHI 2006 Workshop Proceedings: What is the Next Generation of 
Human Computer Interaction? Medford, MA: Tufts University. 

Jacob, R. J. K., Deligiannidis, L., & Morrison, S. (1999). A Software Model and 
Specification Language for Non-WIMP User Interfaces. ACM Transactions on 
Computer-Human Interaction, 6(1), 1-46. 

Jacob, R. J. K., Ishii, H., Pangaro, G., & Patten, J. (2002). A Tangible Interface for 
Organizing Information Using a Grid. Paper presented at the CHI 02 Conference 
on Human Factors in Computing Systems, Minneapolis, MS. 

Jacob, R. J. K., Leggett, J. J., Myers, B. A., & Pausch, R. (1993). Interaction Styles and 
Input/Output Devices. Behaviour & Information Technology, 12(2), 69-79. 

Jacob, R. J. K., & Sibert, L. E. (1992). The Perceptual Structure of Multidimensional 
Input Device Selection. Paper presented at the CHI'92 Conference on Human 
Factors in Computer Systems. 

Jacob, R. J. K., Sibert, L. E., McFarlane, D. C., & Mullen Jr., M. P. (1994). Integrality 
and Separability of Input Devices. ACM Transactions on Computer-Human 
Interaction, 1(1), 3-26. 

John, B. E. (1988). Contributions to engineering models of human-computer interaction. 
(volumes i and ii). Carnegie Mellon University, Pittsburgh, PA. 



 

195 

John, B. E. (2003). Information Processing and Skilled Behaviour. In J. M. Carroll (Ed.), 
HCI Models, Theories, and Frameworks (pp. 55-101). San Francisco, CA: 
Morgan Kaufmann. 

John, B. E., & Kieras, D. (1996a). The GOMS Family of User Interface Analysis 
Techniques: Comparison and Contrast. ACM Transactions on Computer-Human 
Interaction, 3(4), 320-351. 

John, B. E., & Kieras, D. (1996b). Using GOMS for User Interface Design and 
Evaluation: Which Technique? ACM Transactions on Computer-Human 
Interaction, 3(4), 287-319. 

Johnson, H., & Johnson, P. (1991). Task Knowledge Structures: Psychological basis and 
Integration into System Design. Acta Psychologica, 78, 3-26. 

Johnson, J., Roberts, T., Smith, D. C., Irby, C. H., Beard, M., & Mackey, K. (1989). The 
Xerox Star: A Retrospective. IEEE Computer, 22(9), 11-29. 

Johnson, P., & Johnson, H. (1991). Knowledge Analysis of Tasks: Task Analysis and 
Specification for Human-Computer Interaction. In A. Downton (Ed.), 
Engineering the Human-Computer Interface (pp. 117-144). London, U.K.: 
McGraw-Hill. 

Johnson, P., Johnson, H., Waddington, R., & Shouls, A. (1988). Task Related Knowledge 
Structures: Analysis, Modelling and Application. In D. M. Jones & R. Winder 
(Eds.), People and Computers: From research to implementation (pp. 35-62). 
Cambridge: Cambridge University Press. 

Jones, L. A., & Lederman, S. J. (2006). Human Hand Function. New York, NY, USA: 
Oxford University Press. 

Kieras, D. (1996). A Guide to GOMS Model Usability Evaluation Using NGOMSL.   
Retrieved September 18, 2006, 2006, from 
http://www.eecs.umich.edu/~kieras/goms.html 

Kieras, D. (1999). A Guide to GOMS Model Usability Evaluation using GOMSL and 
GLEAN3.   Retrieved September 20th, 2006, from 
http://citeseer.ist.psu.edu/kieras99guide.html 

Kieras, D., & Meyer, D. E. (1997). An Overview of the EPIC Architecture for Cognition 
and Performance with Application to Human-Computer Interaction. Human 
Computer Interaction, 12, 391-438. 

Kieras, D., & Polson, P. G. (1985). An Approach to the Formal Analysis of User 
Complexity. International Journal of Man-Machine Studies, 22, 365-394. 

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An Architecture for 
General Intelligence. Artificial Intelligence, 33(1), 1-64. 

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. 
Cambridge, MA: Cambridge University Press. 

Logan, G. D. (1988). Toward an Instance Theory of Automatization. Psychologoical 
Review, 95, 492-527. 

Mackenzie, C. L., & Iberall, T. (1994). Advances in Psychology: The Grasping Hand. 
Amsterdam: Elsevier Science BV. 

MacKenzie, I. S. (1991). Fitts' Law as a Performance Model in Human-Computer 
Interaction. Toronto, Ontario, Canada: Ph.D. Thesis, University of Toronto. 

MacKenzie, I. S. (1992a). Fitts' law as a research and design tool in human-computer 
interaction. Human Computer Interaction, 7, 91-139. 



 

196 

MacKenzie, I. S. (1992b). Movement time prediction in human-computer interfaces. 
Paper presented at the Graphics Interface '92, Toronto, Canada. 

MacKenzie, I. S., & Buxton, W. (1994). The prediction of pointing and dragging times in 
graphical user interfaces. Interacting with Computers, 6, 213-227. 

Marcus, A. (2006). From KidCHI to BabyCHI. Interactions, 13, 52-53. 
McGrenere, J., & Ho, W. (2002). Affordances: Clarifying and evolving a concept. Paper 

presented at the Graphics Interface 2000, Montreal. 
Miniotas, D. (2000). Application of Fitts' Law to Eye-Gaze Interaction. Paper presented 

at the CHI 00 Extended Abstracts on Human Factors in Computing Systems, The 
Hague, Netherlands. 

Nielsen, J. (1990). A Meta-Model for Interacting With Computers. Interacting with 
Computers, 2(2), 147-160. 

Nielsen, J. (1993). Noncommand User Interfaces. Communications of the ACM, 36(4), 83 
- 99. 

Norman, D. (1986). Cognitive Engineering. In D. Norman & S. W. Draper (Eds.), User 
Centered Systems Design: New Perspectives on Human-Computer Interaction 
(pp. 31-62). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Norman, D. (1988). The Psychology of Everyday Things: Basic Books. 
Norman, D. (1993). Things That Make Us Smart: Defending Human Attributes in the Age 

of the Machine. Cambridge, MA: Perseus Books. 
Norman, D. (1999a). Affordance, Conventions, and Design. Interactions, 6(3), 38-43. 
Norman, D. (1999b). The Invisible Computer: Why Good Products Can Fail, the 

Personal Computer Is So Complex, and Information Appliances Are the Solution. 
Cambridge, MA, USA: The MIT Press. 

Norman, D. (2002). The Design of Everyday Things. New York, NY: Basic Books. 
Olson, J. R., & Biolsi, K. J. (1991). Techniques for Representing Expert Knowledge. In 

K. A. Ericsson & J. Smith (Eds.), Toward a General Theory of Expertise. 
Cambridge, UK: Cambridge University Press. 

Overbeeke, K. C. J., & Wensveen, S. A. G. (2003). From perception to experience, from 
affordances to irresistibles. Paper presented at the DPPI 2003: International 
Conference on Designing Pleasurable Products and Interfaces, Pittsburgh, PA. 

Palumbo, D. (1990). Programming Language/Problem Solving Research: A Review of 
Relevant Isssues. Review of Educational Research, 60(1), 65-89. 

Patrick, E., Cosgrove, D., Slavkovic, A., Rode, J. A., Verratti, T., & Chiselko, G. (2000). 
Using a Large Projection Screen as an Alternative to Head-Mounted Displays for 
Virtual Environments. Paper presented at the CHI 00 Conference on Human 
Factors in Computing Systems, The Hague, Netherlands. 

Payne, S. J., & Green, T. R. G. (1986). Task Action Grammars: A Model of the Mental 
Representation of Task Languages. Human Computer Interaction, 2(2), 93-133. 

Picard, R. W. (2000). Affective Computing. Cambridge, MA: The MIT Press. 
Psychology. http://en.wikipedia.org/wiki/Psychology: April 21st, 2007. 
Ritter, F. E., & Schooler, L. J. (2001). The Learning Curve. In N. J. Smelser & P. B. 

Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences (pp. 
8602-8605). Amsterdam: Pergamon. 



 

197 

Rohr, G., & Tauber, M. J. (1984). Representational Frameworks and Models for Human-
Computer Interfaces. Paper presented at the 2nd European Conference on 
Cognitive Ergonomics, Gmunden, Austria. 

Saha, D., & Mukherjee, A. (2003). Pervasive computing: a paradigm for the 21st century. 
IEEE Computer, 36(3), 25 - 31. 

Satyanarayanan, M. (2001). Pervasive computing: vision and challenges. IEEE Personal 
Communications, 8(4), 10-17. 

Schilit, B. N., Adams, N. I., & Want, R. (1994). Context-Aware Computing Applications. 
Paper presented at the Proceedings of the Workshop on Mobile Computing 
Systems and Applications, Santa Cruz, CA. 

Sebesta, R. W. (2006). Concepts of Programming Languages (Seventh ed.). Boston, MA: 
Pearson Eductation. 

Shaer, O., Leland, N., Calvillo-Gamez, E. H., & Jacob, J. K. R. (2004). The TAC 
Paradigm: Specifying Tangible User Interfaces. Personal and Ubiquitous 
Computing, 8(5), 359-369. 

Shiaw, H. (2003). New Interaction Techniques for the Digital Library: 3D 
Focus+Context Interactive Visualization: Tufts University. 

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. 
IEEE Computer, 16(8). 

Shneiderman, B. (1998). Designing the User Interface: Strategies for Effective Human 
Computer Interaction: Addison Wesley. 

Singley, M. K., & Anderson, J. R. (1989). The Transfer of Cognitive Skill (Vol. 9). 
Cambridge, MA: Harvard University Press. 

Sipser, M. (2006). Introduction to the Theory of Computation (Second ed.). Boston, MA: 
Thomson Course Technology. 

St. Amant, R., Freed, A. R., & Ritter, F. E. (2005). Specifying ACT-R Models of User 
Interaction with a GOMS Language. Cognitive Systems Research, 6, 71-88. 

Stanford Encyclopedia of Philosophy: Cognitive Science. 
http://plato.stanford.edu/entries/cognitive-science/: April 2nd, 2007. 

Stanford Encyclopedia of Philosophy: The Frame Problem. 
http://plato.stanford.edu/entries/frame-problem/: April 2nd, 2007. 

Steedman, M. (2002). Formalizing Affordance. Paper presented at the 24th Annual 
Meeting of the Cognitive Science Society, Fairfax, VA. 

Sutherland, I. E. (1965). The Ultimate Display. Paper presented at the IFIP Congress 65. 
Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. 

Cognitive Science, 12, 257-285. 
Taylor, F. (1911). Scientific Management. New York, NY: Harper and Row. 
Thacker, C. P. (1979). Alto: A Personal Computer. Palo Alto, CA: Xerox Palo Alto 

Research Center. 
Turk, M., & Robertson, G. (2000). Perceptual User Interfaces. Communications of the 

ACM, 40(2), 63 - 67. 
Turner, P., & McEwan, T. (2004). Activity Theory: Another Perspective on Task 

Analysis. In D. Diaper & N. Stanton (Eds.), The Handbook of Task Analysis for 
Human-Computer Interaction (pp. 423-439). Mahwah, NJ: Lawrence Erlbaum 
Associates. 



 

198 

Ullmer, B., & Ishii, H. (2000). Emerging Frameworks for Tangible User Interfaces. IBM 
Systems Journal, 39(3&4), 915-931. 

Ullmer, B., & Ishii, H. (2001). Emerging Frameworks for Tangible User Interfaces. In J. 
M. Carroll (Ed.), Human Computer Interaction in the New Millenium (pp. 579-
601): Addison-Wesley. 

Van Dam, A. (1997). Post-WIMP User Interfaces. Communications of the ACM, 40, 63-
67. 

Virtual Realities. (2006). P5 Glove. http://www.vrealities.com/P5.html: 2nd February 
2007. 

Waibel, A., Tue, M., Duchnowski, P., & Manke, S. (1996). Multimodal Interfaces. 
Artificial Intelligence Review, 10(3-4), 299-319. 

Want, R., Schilit, B. N., Adams, N. I., Gold, R., Petersen, K., Goldberg, D., et al. (1995). 
An Overview of the PARCTAB Ubiquitous Computing Experiment. IEEE 
Personal Communications, 2(6), 28-43. 

Ware, C., & Jessome, D. R. (1988). Using the Bat: A Six-Dimensional Mouse for Object 
Placement. IEEE Computer Graphics and Applications, 8(6), 65-70. 

Weiser, M. (1991). The Computer for the 21st Century. Scientific American, 265, 94-104. 
Weiser, M. (1993). Some Computer Science Problems in Ubiquitous Computing. 

Communications of the ACM, 36(7), 74-83. 
Woods, W. A. (1970). Transition Network Grammars for Natural Language Analysis. 

Communications of the ACM, 13(10), 591-606. 
 
  


