
A THIRD-ORDER GENERALIZATION OF THE MATRIX SVD AS A

PRODUCT OF THIRD-ORDER TENSORS ∗

MISHA E. KILMER† , CARLA D. MARTIN‡ , AND LISA PERRONE§

Abstract. Traditionally, extending the Singular Value Decomposition (SVD) to third-order
tensors (multiway arrays) has involved a representation using the outer product of vectors. These
outer products can be written in terms of the n-mode product, which can also be used to describe a
type of multiplication between two tensors. In this paper, we present a different type of third-order
generalization of the SVD where an order-3 tensor is instead decomposed as a product of order-3
tensors. In order to define this new notion, we define tensor-tensor multiplication in such a way so
that it is closed under this operation. This results in new definitions for tensors such as the tensor
transpose, inverse, and identity. These definitions have the advantage they can be extended, though
in a non-trivial way, to the order-p (p > 3) case [31]. A major motivation for considering this new type
of tensor multiplication is to devise new types of factorizations for tensors which could then be used
in applications such as data compression. We therefore present two strategies for compressing third-
order tensors which make use of our new SVD generalization and give some numerical comparisons
to existing algorithms on synthetic data.
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1. Introduction. The Singular Value Decomposition (SVD) of a matrix gives
us important information about a matrix such as its rank, an orthonormal basis for
the column or row space, and reduction to diagonal form. In applications, especially
those involving multiway data analysis, information about the rank and reduction of
tensors to have fewer nonzero entries are useful concepts to try to extend to higher
dimensions. However, many of the powerful tools of linear algebra such as the SVD
do not, unfortunately, extend in a straight-forward way to tensors of order three or
higher. There have been several such extensions of the matrix SVD to tensors in the
literature, many of which are used in a variety of applications such as chemometrics
[39], psychometrics [27], signal processing [10, 38, 8], computer vision [42, 43, 44],
data mining [37, 2], graph analysis [25], neuroscience [6, 33, 34], and more. The
models used most often in these areas include the CANDECOMP/PARAFAC (CP)
model [7, 17] and the TUCKER model [41] or Higher-Order SVD (HOSVD) [11]. A
thorough treatment of these models, other SVD extensions to tensors, special cases,
applications, and additional references can be found in [26].

In this paper, we present a new way of extending the matrix SVD to tensors.
Specifically, we define a new type of tensor multiplication that allows a third-order
tensor to be written as a product of third-order tensors (as opposed to a linear combi-
nation of outer product of vectors). This new decomposition is analogous to the SVD
in the matrix case (i.e. the case when the third dimension of the tensor is one). Al-
though it is possible to extend our method to higher-order tensors through recursion,
we do not discuss that work here, as it is beyond the scope of the present work.
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We use the accepted notation where an order-p tensor is indexed by p indices
and can be represented as a multidimensional array of data [22]. That is, an order-p
tensor, A, can be written as

A = (ai1i2...ip
) ∈ IRn1×n2×···×np .

Thus, a matrix is considered a second-order tensor, and a vector is a first-order tensor.
A third-order tensor can be pictured as a “cube” of data (see Figure 1.1). While the
orientation of higher-order tensors is not unique, it is convenient to refer to the “faces”
of the tensor as the tensor formed by holding the last index constant. For example,
if A = (ai1i2i3) is a third-order tensor, the k-th face is denoted using the Matlab

notation A(:, :, k).

A = =
Fig. 1.1. Illustration of a 2× 2× 2 tensor as a cube of data

The entries of a tensor A can also be rearranged to correspond to viewing the
multiway array in different ways (see Figure 1.2 for an illustration of a 2×2×2 tensor).
“Flattening” the different orientations shown in Figure 1.2 correspond to unfolding
matrices or matricization described in [26].

1. Front-back =

2. Left-right =

3. Top-bottom =

Fig. 1.2. Three ways to cut a cube of data for a third-order tensor

In order to define our new tensor factorization, we first define a notion of tensor-
tensor multiplication that is closed under multiplication, and address the issue of
invertibility. Similar to matrices, we formulate a definition such that the product
of two n × n × n tensors yields an n × n × n tensor. We can show the operation



A Third-order Generalization of the Matrix SVD as a Product of Third-order Tensors 3

is associative, identify the notion of an identity operator and give properties for an
inverse. It follows that the set of all such invertible n × n × n tensors under this
operation forms a group. We expand our list of definitions to include the concepts of
transpose and orthogonality.

Our presentation is organized as follows. In Section 2, we describe the existing
outer product representation that is traditionally used to extend the matrix SVD and
briefly describe some of its properties. We use Section 3 to introduce some notation
that will allow us to easily describe our new tensor operations. In Section 4 we define
a new notion of tensor-tensor multiplication with the properties noted above. We
also provide definitions of a tensor inverse, transpose, and orthogonality, and prove
some properties based on these definitions. In Section 5, we use our new definitions to
derive a tensor factorization that is a product of third-order tensors and show that it
has some desirable features. We present some possible tensor compression strategies
in 6, and we give a qualitative assessment and a quantitative comparison between the
most promising of the two strategies and existing compression methods in 7. Finally,
in Section 8, we discuss how our new definitions can also lead to the extension of other
well-known matrix factorizations, such as the QR factorization, and give concluding
remarks in 9.

2. Tensor Background. There are multiple ways to extend the matrix SVD
to higher dimensions. In this section, we describe the most widely used model that
involves an outer product representation.

In two dimensions, if the SVD of a matrix, A ∈ IRn1×n2 , is given by A = UΣV T ,
then A can be written as

A =

r
∑

i=1

σi(u
(i) ◦ v(i)), (2.1)

where u(i) and v(i) are the i-th columns of orthogonal matrices U ∈ IRn1×n1 , V ∈
IRn2×n2 , respectively, σi is the i-th diagonal of the diagonal matrix, Σ, r is the rank
of A, and “◦” denotes the outer product. Since u(i) ◦v(i) is a rank-1 matrix, the SVD
can be thought of as decomposing a matrix as a sum of rank-1 matrices. Extending
the SVD to three-dimensions, therefore, involves a sum of rank-1, third-order tensors.
There are two widely used SVD extensions of this type. We briefly describe each
below for the third order case.

2.1. The CP model. If A ∈ IRn1×n2×n3 is a third-order tensor, the goal is to
find matrices U ∈ IRn1×n1 , V ∈ IRn2×n2 , and W ∈ IRn3×n3 so that

A =

r
∑

i=1

σi(u
(i) ◦ v(i) ◦ w(i)), (2.2)

and σi is the i-th super-diagonal from a diagonal tensor Σ ∈ IRn1×n2×n3 . The vectors
u(i), v(i), and w(i) are the i-th columns from matrices U, V, W, respectively. The outer
product

u(i) ◦ v(i) ◦ w(i)

is known as a rank-1 tensor. Ideally, r in (2.2) is minimal. The minimum such r so
that (2.2) holds is known as the tensor rank.

A decomposition of the form (2.2) is called a CANDECOMP-PARAFAC (CP)
decomposition (CANonical DECOMPosition or PARAllel FACtors model), and was
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independently proposed in [7] and [17]. The CP decomposition is used widely in
psychometrics [27] and chemometrics [39], where the data follow a tri-linear model.
We emphasize several differences between the matrix SVD and (2.2).

1. The matrices U, V, W in (2.2) are not constrained to be orthogonal. Further-
more, an orthogonal decomposition of this form may not exist for higher-order
tensors [15].

2. There is no known closed-form solution to determine the rank of a tensor a
priori. Rank determination in practice is a trial-and-error approach based on
known information about the data [26].

3. The best rank-K (K < r) approximation to a tensor may not always exist
[14], whereas the best rank-K approximation to a matrix is given directly by
the SVD [16, p.72].

Rank determination of a tensor is a widely-studied problem [26]. It is known
that the maximum possible rank of a tensor is not given directly from the dimen-
sions, as is the case with matrices (the maximum possible rank of an n1 × n2 ma-
trix is min(n1, n2)). However, loose upper bounds do exist for higher-order tensors.
Specifically, the maximum possible rank of an n1 × n2 × n3 tensor is bounded by
min(n1n2, n1n3, n2n3) [28]. In the special case of n×n×2 tensors, it has been shown
that the maximum possible rank is ⌊3n/2⌋ (see [19, 28, 30, 40]).

Despite these differences, (2.2), is very important in explaining interactions in
multi-way data. This model also extends in a straight-forward way to order-p tensors.

2.2. The TUCKER3 model and the HOSVD. While some applications use
the nonorthogonal decomposition (2.2), other applications need orthogonality of the
matrices for better interpretation of the data [35, 37, 42, 43, 44]. Therefore, a more
general form is often used to guarantee existence of an orthogonal decomposition as
well as to better model certain data. If A is a third order, n1 × n2 × n3 tensor, its
TUCKER3 decomposition [41] has the form

A =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

σijk(u(i) ◦ v(j) ◦ w(k)), (2.3)

where u(i) ∈ IRn1 , v(i) ∈ IRn2 , and w(i) ∈ IRn3 . Orthogonality constraints are not
required in the general TUCKER3 decomposition. The tensor Σ = (σijk) is called
the core tensor. In general, the core tensor Σ is dense and the decomposition (2.3)
does not reveal the rank. In the special case where Σ is diagonal (i.e., σijk = 0 unless
i = j = k) then (2.3) reduces to (2.2).

If u(i), v(j), w(k) are columns of the orthogonal matrices U, V, W (i.e. orthgonality
constraints are added to 2.3), then (2.3) is referred to as the Higher-Order Singular
Value Decomposition (HOSVD), [11]. Just as in the general TUCKER3 decomposi-
tion, it is usually the case that the core tensor is dense and not diagonal.

The HOSVD can be computed directly by computing the SVD of three matrices
which are obtained by flattening the tensor in various ways, using the results to
assemble the core. However, an alternating least squares (ALS) approach is most often
used for the general TUCKER3 model [26]. The state-of-the-art has been implemented
in a Matlab toolbox [3, 4] that allows the user to specify orthogonality constraints
as well as the amount of compression desired, as specified below.

By choosing k1 < n1, k2 < n2, k3 < n3, one obtains the approximate TUCKER3
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factorization

A ≈

k1
∑

i=1

k2
∑

j=1

k3
∑

k=1

σijk(u(i) ◦ v(j) ◦ w(k)) ≡ A(k1,k2,k3). (2.4)

When we specify orthogonality constraints, we refer to the resulting factorization as
the truncated-HOSVD (THOSVD). There are two ways to compute a THOSVD, and
they do not necessarily give the same factorization. One is to compute the HOSVD,
which is a direct factorization method, and truncate terms, keeping the terms for
which the core entries are largest in magnitude. This approach was taken in [35] and
we refer to it later as THOSVD-1. Another is to determine the solution, using an
alternating least squares algorithm [26], to

min
σijk , ui, vj , wk;

i=1,...,k1,j=1,...,k2,k=1,...,k3

‖A−A(k1,k2,k3)‖F , (2.5)

subject to orthogonality constraints. We refer to this method later as THOSVD-2.

Other types of compressed representations of the TUCKER3 model have been
used. These include, for example, maximum variance of squares [18], maximum sums
of squares of the diagonals of each face of a tensor [27]., and maximum sums of
squares of the diagonals of a third-order tensor [21, 13, 32]. A greedy algorithm to
compute an orthogonal tensor decomposition has been proposed by [24]. Algorithms
have also been developed to compute the nearest rank-1 tensor to a given tensor (see
[12, 23, 24, 46]).

In Section 7 we compare our compression algorithm with THOSVD-2. We give an
approximate flop comparison among the factorization and approximate factorization
strategies later in Table 6.3.

2.3. Tensor multiplication using the contracted product. Multiplication
between tensors and matrices has been defined using the n-mode product [5, 11, 22].
While we do not go into detail here, the n-mode product can also be used to describe a
type of multiplication between two tensors. While there are multiple ways to multiply
tensors, the most common method is the contracted product. The name “contracted
product” can be a little misleading: indeed, the contracted product of an ℓ× n2 × n3

tensor and an ℓ × m2 × m3 tensor in the first mode is an n2 × n3 × m2 × m3 tensor.
However, the contracted product of an ℓ1 × ℓ2 × n with an ℓ1 × ℓ2 × m tensor in the
first two modes, results in a n × m tensor (matrix). In summary, the order of the
resulting tensor depends on the modes where the multiplication takes place. We refer
the reader to the explanation in [5] for details. We emphasize that the contracted
product of two order-p tensors does not necessarily result in an order-p tensor, and
hence does not preserve order.

Unfortunately, since the dimensions are not preserved under the contracted prod-
uct, it implies that the set of all third-order tensors is not closed under this type of
operation. Furthermore, this type of operation does not allow us to specify a notion
of inverse, since the operation is not invertible.

3. Notation. We use circulant matrices extensively in our new definitions. Re-
call that if

v =
[

v0 v1 v2 v3

]T
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then

circ(v) =









v0 v3 v2 v1

v1 v0 v3 v2

v2 v1 v0 v3

v3 v2 v1 v0









is a circulant matrix. Note that all the matrix entries are defined once the first column
is specified. Therefore, we adopt the convention that circ(v) refers to the circulant
matrix obtained with the vector v as the first column.

Circulant matrices can be diagonalized with the normalized Discrete Fourier
Transform (DFT) matrix [16, p.202], which is unitary. In particular, if v is n × 1
and Fn is the n × n DFT matrix, then

Fn circ(v)F−1
n

is diagonal. The following, well-known, simple fact ([1]) is used to compute this
diagonal using the fast Fourier transform (FFT):
Fact 1 The diagonal of Fn circ(v)F−1

n = fft(v), where fft(v) denotes the Fast
Fourier Transform of v.

We also make use of the fold and unfold operators. Suppose that A ∈ IRn1×n2×n3 ,
and that each frontal face of the tensor is defined by n1 × n2 matrices A(:, :, 1), . . .,
A(:, :, n3). Then unfold is defined by

unfold(A, 1) =











A(:, :, 1)
A(:, :, 2)

...
A(:, :, n3)











∈ IRn1n3×n2 .

The second argument of unfold specifies which orientation of the tensor to unfold
(see Figure 1.2). For example, unfold(A, 1) unstacks the tensor according to its
front-back faces. Similarly, unfold(A, 2) refers to unstacking by faces defined by
slicing the tensor side to side and unfold(A, 3) unstacks by slicing top to bottom.
See Figure 3.1 for an example.

An optional third index argument can be made to indicate unfolding in a different
ordering. For example, for a 3 × 3 × 3 tensor, unfold(A, 1, [1, 3, 2]) would stack the
first face first, then the last face, followed by the middle face. The operation that
folds back into a tensor in the same ordering is given by fold(A, i), i = 1, 2, or 3.
We point out that [11] defines a matrix unfolding of a tensor in a slightly different
way than unfold. We refer the reader to [11] for details. We use unfold so that our
new definition of tensor multiplication, defined in the next section, is easily explained.

It is possible to create a block-circulant matrix from the slices of a tensor. For
example, if A ∈ IRn1×n2×n3 with n1 × n2 frontal faces A1 = A(:, :, 1), . . ., An3

= A(:
, :, n3) then

circ( unfold(A, 1)) =













A1 An3
An3−1 . . . A2

A2 A1 An3
. . . A3

...
. . .

. . .
. . .

...

An3
An3−1

. . . A2 A1













.
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A = =
unfold(A, 1) =









a111 a121

a211 a221

a112 a122

a212 a222









unfold(A, 2) =









a111 a112

a211 a212

a121 a122

a221 a222









unfold(A, 3) =









a111 a121

a112 a122

a211 a221

a212 a222









Fig. 3.1. The unfold operator applied to a 2× 2× 2 tensor

Just as circulant matrices can be diagonalized by the DFT, block-circulant ma-
trices can be block-diagonalized. Suppose A is n1 × n2 × n3 and Fn3

is the n3 × n3

DFT matrix. Then

(Fn3
⊗ In1

) · circ( unfold(A, 1)) · (F ∗
n3

⊗ In2
) =











D1

D2

. . .

Dn3











where “⊗” denotes the Kronecker product and F ∗ denotes the conjugate transpose
of F and “·” means standard matrix product. Note that each Di could be dense and
furthermore most will be complex unless certain symmetry conditions hold.

To compute the product in the preceding paragraph, assuming n3 is a power of
2, can be done in O(n1n2n3log2(n3)) flops using the FFT and Fact 1. Indeed, using
stride permutations and Fact 1, it is straightforward to show that there is no need to
lay out the data in order to compute the matrices Di, and we arrive at the following
fact:
Fact 2 The Di are the faces of the tensor D, where D is computed by applying FFT’s
along each “fiber” of A and a fiber is a column vector obtained by holding i, j fixed
and taking A(i, j, :).

4. New Tensor Definitions. We now extend several concepts from linear al-
gebra to tensors. In particular, we define tensor multiplication, tensor transpose,
a tensor identity, and tensor inverse. We use these definitions to define orthogonal
tensors. Note that our definition of tensor multiplication preserves size. While we
present our definitions and algorithms with third-order tensors, all concepts in this
paper can be extended for general order-p tensors in a recursive manner [31]. Fur-
thermore, all definitions collapse to the standard linear algebra definitions when the



8 M.E. Kilmer, C.D. Martin, L. Perrone

tensor is order-2.
Definition 4.1. Let A be n1 × n2 × n3 and B be n2 × ℓ × n3. Then the product

A ∗ B is the n1 × ℓ × n3 tensor

A ∗ B = fold (circ( unfold(A, 1)) · unfold(B, 1), 1) .

Example 4.2. Suppose A ∈ IRn1×n2×3 and B ∈ IRn2×ℓ×3. Then

A ∗ B = fold









A1 A3 A2

A2 A1 A3

A3 A2 A1









B1

B2

B3



 , 1



 ∈ IRn1×ℓ×3.

Tensors and matrices can be multiplied in various modes using the contracted
product, provided the dimensions agree. For example, when a tensor is multiplied by
a matrix in say, mode 1, it means that each face of the tensor is multiplied by that
matrix. However, notice there is no interaction among the resulting faces of the new
tensor. Our motivation in using Definition 4.1 was to ensure that all possible pairs
of faces (i.e. slices in mode 1) from the two tensors being multiplied were computed,
but that there was also an interaction among those results in the third dimension as
well. So although the result of the multiplication will depend on the orientation of the
two tensors involved, it is inherently more “three-dimensional” in nature than other
options described in the literature. Further, as we show momentarily, this definition
possesses many desirable properties as well.

Before we describe the theoretical properties of this product, we mention a word
about the computation of this product. If the tensors are sparse, we may choose to
compute this product as it is written. If the tensors are dense, naively computing
this product would cost O(ℓn1n2n

2
3) flops. However, since circ( unfold(A, 1)) can be

block diagonalized, we can choose to compute this product as

(F ∗
n3
⊗In1

)
(

(Fn3
⊗ In1

) · circ( unfold(A, 1)) · (F ∗
n3

⊗ In2
)
)

(Fn3
⊗In2

) unfold(B, 1), 1).

It is readily shown that (Fn3
⊗In2

) unfold(B, 1) can be computed in O(ℓn2n3 log2(n3))
flops by applying FFTs along the fibers of B: we call the result B̃. If we take the FFT
of each fiber of A, using Fact 2, we obtain D. Thus, it remains to multiply each face
of D with each face of B̃, then take an inverse FFT along the fibers of the result. We
arrive at the following fact regarding this multiplication.
Fact 3 The product in Definition 4.1 can be computed in at most O(n1n2ℓn3) flops
by making use of the FFT along mode 3.

If n3 is not a power of two, we may still employ FFTs in the multiplication by
noting that the block circulant matrix can be embedded in a larger block circulant
matrix where the number of blocks in a block row can be increased to the next largest
power of two greater than 2n3 − 1 by the addition of zero blocks and repetition of
previous blocks in an appropriate fashion. Likewise, once B is unfolded, it can be
conformally extended by zero blocks. The product is computed using FFTs, and
the result is then truncated appropriately. This is a commonly used trick in the
literature for fast multiplication with Toeplitz or block Toeplitz matrices, and will
not be described further here.

Now we discuss some of the desirable theoretical properties of this definition of
tensor multiplication. First, tensor multiplication as we have defined it, is associative,
as the next lemma shows.
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Lemma 4.3. A ∗ (B ∗ C) = (A ∗ B) ∗ C.
Proof. The proof follows naturally from the definition of ∗ and the fact that

matrix-matrix multiplication is associative.
We also define the concept of an identity tensor.
Definition 4.4. The n × n × ℓ identity tensor Innℓ is the tensor whose front

face is the n × n identity matrix, and whose other faces are all zeros. That is,

unfold(Innℓ, 1) =











In

0
...
0











.

We can now define the tensor inverse.
Definition 4.5. An n × n × n tensor A has an inverse B provided that

A ∗ B = I, and B ∗ A = I.

From Definitions 4.1, 4.4, 4.5 and Lemma 4.3, we have the following lemma.
Lemma 4.6. The set of all invertible n × n × n tensors form a group under the

∗ operation.
It is also true that the set of invertible n×n×n tensors forms a ring under standard

tensor addition (component-wise addition) and ∗. The motivation for developing an
operation that is closed under multiplication was to develop a new way of representing
tensor factorizations reminiscent of matrix factorizations.

Next, it is convenient to give the notion of the transpose operation for tensors
Definition 4.7. If A is n1×n2×n3, then AT is the n2×n1×n3 tensor obtained

by transposing each of the front-back faces and then reversing the order of transposed
faces 2 through n3. In other words

AT = fold( unfold(A, 1, [1, n3 : −1 : 2]), 1).

Example 4.8. If A ∈ IRn1×n2×4 and its frontal faces are given by the n1 × n2

matrices A1, A2, A3, A4, then

AT = fold

















AT
1

AT
4

AT
3

AT
2









, 1









.

The tensor transpose has the same property as the matrix transpose.
Lemma 4.9. Suppose A,B are two tensors such that A∗B and BT ∗AT is defined.

Then (A ∗ B)T = BT ∗ AT .
Proof. Follows directly from Definitions 4.1 and 4.7
Next we define permutation tensors.
Definition 4.10. A permutation tensor is an n × n × ℓ tensor P = (pijk) with

exactly n entries of unity, such that if pijk = 1, it is the only non-zero entry in row
i, column j, and slice k.
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Example 4.11. A permutation tensor P ∈ IR3×3×2:

P = fold















1 0 0
0 0 0
0 0 1



 ,





0 0 0
0 1 0
0 0 0











, 1





Before we define the notion of orthogonality for tensors, we present the definition
of the Frobenius norm of a tensor, previously defined in [11].

Definition 4.12. Suppose A = (aijk) is size n1 × n2 × n3. Then

‖A‖F =

√

√

√

√

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

a2
ijk.

We are now ready to define orthogonality for tensors.
Definition 4.13. An n × n × ℓ real-valued tensor Q is orthogonal if QT ∗ Q =

Q ∗ QT = I.
It follows that the identity tensor and permutation tensors are orthogonal. Note

that if Q is an orthogonal tensor, then it does not follow that each face of Q is nec-
essarily orthogonal. Another nice feature of orthogonal tensors is that they preserve
the Frobenius norm:

Lemma 4.14. If Q is an orthogonal tensor,

‖Q ∗ A‖F = ‖A‖F .

Proof. From definitions 4.1, 4.7, and 4.12, it follows that

‖A‖2
F = trace((A ∗ AT )(:,:,1)) = trace((AT ∗ A)(:,:,1)),

where (A ∗AT )(:,:,1) is the front face of A ∗AT and (AT ∗ A)(:,:,1) is the front face of
AT ∗ A. Therefore,

‖Q ∗ A‖2
F = trace([(Q ∗ A)T ∗ (Q ∗ A)](:,:,1))

= trace([AT ∗ QT ∗ Q ∗ A](:,:,1))

= ‖A‖2
F .

We can also define a notion of partial orthogonality, similar to saying that a tall,
thin matrix has orthogonal columns. In this case if Q is p × q × n and partially

orthogonal, we mean QT ∗ Q is well defined and equal to the a q × q × n identity.
If the tensor is two-dimensional (i.e. n3 = 1, so the tensor is a matrix), Defini-

tions 4.1, 4.4, 4.5, 4.10, 4.12, and 4.13 are consistent with standard matrix algebra
operations and terminology.

5. New Higher-order Extension of the SVD. We say a tensor is “f-diagonal”
if each front-back face is diagonal. Likewise, a tensor is f-upper triangular or f-lower
triangular if each front-back face is upper or lower triangular, respectively.

Theorem 5.1. Let A be an n1 × n2 × n3 real-valued tensor. Then A can be
factored as

A = U ∗ S ∗ VT , (5.1)
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where U ,V are orthogonal n1 × n1 × n3 and n2 × n2 × n3 respectively, and S is a
n1 × n2 × n3 f-diagonal tensor.

Proof. The proof is by construction. Recall that

(Fn3
⊗ In1

) · circ( unfold(A, 1)) · (F ∗
n3

⊗ In2
) =











D1

D2

. . .

Dn3











Next, we compute the SVD of each Di as Di = UiΣiV
T
i . Then

[

D1

. . .

Dn3

]

=

[

U1

. . .

Un3

][ Σ1

. . .

Σn3

]





V T
1

. . .

V T
n3



 . (5.2)

Since

(F ∗
n3

⊗ In1
)







U1

. . .

Un3






(Fn3

⊗ In1
),

(F ∗
n3

⊗ In1
)







Σ1

. . .

Σn3






(Fn3

⊗ In2
),

and

(F ∗
n3

⊗ In2
)







V T
1

. . .

V T
n3






(Fn3

⊗ In2
),

are circulant matrices, we can obtain an expression for unfold(A, 1), by applying
the appropriate matrix (F ∗

n3
⊗ I) to the left and the appropriate matrix (Fn3

⊗ I)
to the right of each of the matrices in (5.2), and folding up the result. This gives a
decomposition of the form U ∗ S ∗ VT .

It remains to show that U and V are orthogonal. However, this is easily proved by
forming the necessary products (e.g. UT ∗ U) and using the same forward, backward
matrix transformation to the Fourier domain as was used to compute the factorization,
and the proof is complete.

This decomposition can be computed using the fast Fourier transform utilizing
Fact 1 from above. One version of Matlab psuedocode to compute this decomposition
is provided below.

Algorithm T-SVD

Input: n1 × n2 × n3 tensor A
D = fft(A,[ ],3);
for i = 1 . . . n3

[u, s, v]=svd(D(:,:,i));
U(:, :, i) = u; V(:, :, i) = v; S(:, :, i) = s

U=ifft(U ,[ ],3); V=ifft(V ,[ ],3);S=ifft(S,[ ],3);
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The number of flops to compute this tensor SVD is given in Table 6.3 and com-
pared to the cost of computing a full HOSVD, under the assumption that n1 = n2 =
n3 = n. The dominant cost for our algorithm on an n× n× n cube is the n SVD’s of
the Di, so the tensor SVD computation costs O(n4) flops, although the step involving
the FFT along each fiber is reduced when n is a power of 2. Note that algorithm
T-SVD for computing our tensor SVD is a direct algorithm, and is decidedly cheaper
to compute than the full HOSVD1.

Note that if A is real, the decomposition (5.1) is composed of real tensors even
though the proof of Theorem 5.1 involves computations over the complex field. The
complex computations result when computing the Di matrices in (5.2). In particular,
these Di matrices will be complex unless there are very specific symmetry conditions
imposed on the original tensor.

Furthermore, by Lemma 4.14 we have

‖A‖F = ‖S‖F .

Due to the nature of the construction of this factorization, it is also possible to
form “reduced” factorizations (where f-diagonal tensor is a cube) by using partially
orthogonal tensors.

There are some perhaps surprising relations between the factorization defined this
way and a matrix counterpart of A. If A1, . . . , An3

are the front faces of A, we have

the following relationship between our tensor SVD and

n3
∑

k=1

Ak.

Lemma 5.2. Suppose A = U ∗ S ∗ VT . Then

n3
∑

k=1

Ak =

(

n3
∑

k=1

Uk

)(

n3
∑

k=1

Sk

)(

n3
∑

k=1

V T
k

)

, (5.3)

where Uk, Sk, and V T
k are the k-th frontal faces of U , S, and VT , respectively.

Furthermore, (5.3) gives an SVD for
∑

Ak in the sense that
∑

Uk,
∑

Vk are
orthogonal and

∑

Sk is diagonal).
Proof. Clearly

∑

Sk is a diagonal matrix (the entries can be made positive by an
appropriate scaling) and

∑

Rk is an upper-triangular matrix. Now, all the remains
to show is that if U is an orthogonal tensor, then

∑

Uk is an orthogonal matrix.
Suppose U is orthogonal. Then we have that

U ∗ UT = In1n1n3

which means that
n3
∑

k=1

UkUT
k = In3

and
∑

i6=j

UiU
T
j = 0n3

. (5.4)

Equation (5.4) means that

(

n3
∑

k=1

Uk

)(

n3
∑

k=1

Uk

)T

= In3

which completes the proof.

1The full HOSVD is computed using a direct algorithm whereas the low rank truncated approx-
imation we refer to as THOSVD-2 is computed using ALS.
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6. Tensor Compression Strategies. In this section, we consider two possible
strategies for data compression. While the first choice is perhaps the obvious choice,
given our new SVD generalization, the second choice is shown to be more practical,
for several reasons, and is therefore explored in some level of detail.

6.1. Strategy 1. Suppose that A ∈ IRn1×n2×n3 . If its T-SVD is given by A =
U ∗ S ∗ VT , then it is easy to show that

A =

min(n1,n2)
∑

i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T . (6.1)

A straightforward way to compress the tensor is to choose some k < min(n1, n2) and
compute

A ≈

k
∑

i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)T . (6.2)

This is justified since

||S(1, 1, :)||F ≥ ||S(2, 2, :)||F ≥ · · · ≥ ||S(min(n1, n2), min(n1, n2), :)||F .

In general (6.2) is not useful in determining tensor rank, since the rank of A is
likely larger than min(n1, n2). Furthermore, (6.2) is limited in that the number of
terms used in the approximation is restricted by min(n1, n2) (see discussion below).

6.2. Strategy 2. Suppose that A ∈ IRn1×n2×n3 and its T-SVD is given by
A = U ∗ S ∗ VT . The idea in this section is to use Lemma 5.2 for compression. First
we sum the faces of each tensor in our decomposition. That is, set

A =

n3
∑

k=1

A(:, :, k) (6.3)

and analogously for U , S, and V :

U =

n3
∑

k=1

U(:, :, k) S =

n3
∑

k=1

S(:, :, k) V =

n3
∑

k=1

V(:, :, k).

From Lemma 5.2 we have that A = USV T . Now choose k1 << n1 and k2 << n2

and compute the truncated matrix SVD Ã = Ũ S̃Ṽ T where Ũ = U(:, 1 : k1), S̃ = S(1 :
k1, 1 : k2), Ṽ = V (:, 1 : k2). To compress A, we can now pre- and post-multiply each
face, A(:, :, k) for k = 1, . . . , n3 by ŨT and Ṽ . In other words, set T ∈ IRk1×k2×n3 as

T (:, :, k) = ŨTA(:, :, k)Ṽ (6.4)

for k = 1, . . . , n3. The compressed tensor, Acompressed can be computed with

A ≈ Acompressed =

k1
∑

i=1

k2
∑

j=1

Ũ(:, i) ◦ Ṽ (:, j) ◦ T (i, j, :). (6.5)

The interesting feature of Strategy 2 is that although it is based on compressing
this new SVD generalization, we do not need to run algorithm T-SVD to compute
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CP full HOSVD THOSVD-2 full tensor SVD Strat2
O(nitn

6) O(n6) O(nitn
6) O(n4) O(n3k)

Table 6.1

Comparison of flop count in terms of parameters that define each decomposition for an n×n×n

tensor. In compression strategy two, we use k1 = k2 = k and assume that a full SVD of the
n × n matrix is computed first, although that could be replaced with the computation of a rank-k
approximation at this phase. Note that both CP and THOSVD-2 also depend on the number of
iterations, nit, required to reach some user-defined convergence tolerance.

full HOSVD THOSVD-2 full tensor SVD Strat1 Strat 2
O(n3) O(k2n + 2nk + n2) O(n3) O(n2k) O(k2n + 2nk)

Table 6.2

Comparison in terms of floating point numbers required to store the final representation, in
terms of the parameters that define each decomposition, for an n1×n2×n3 tensor. In compression
strategy two, we use k1 = k2 = k. For the closest comparsion, in the THSOVD-2, we used k3 = n,
k1 = k2 = k, where k is assumed to be known a-priori.

the approximation, provided the truncation parameters have been decided on a priori.
Indeed, in light of Lemma 5.2, we can first compute A as the sum across the faces
of A, then compute its SVD, form Ũ , Ṽ by truncating U, V , respectively, and form
the core tensor with n3 triple matrix products as given in (6.4). The algorithm to
generate the Ũ , Ṽ and T is given in Matlab psuedo-code as follows.

T-SVD Compression 2

Given n1 × n2 × n3 array A, cutoffs k1, k2

A = sum(A, 3)
[U, S, V ] = svd(A, 0)

Ũ = U(:, 1 : k1); Ṽ = V (:, 1 : k2)
for k = 1 : n3

T (:, :, k) = ŨTA(:, :, k)Ṽ

6.3. Discussion. In Table 6.3, we give the flop counts for various methods. We
highlight the flop counts for the direct methods for computing the full T-SVD and the
HOSVD. These two methods are easily compared, since the dimensions are known in
advance. In contrast, as the tensor rank r is usually unknown, it is not possible to
give a definitive cost associated with computing the decomposition (2.2). Similarly, we
need to be careful when comparing the flops for the compression strategies. While the
two strategies we propose are both direct methods, as is THOSVD-1, THOSVD-2 and
CP approximations are computed using alternating-least-squares. Thus, we report
their respective flop count in terms of the number of iterations until convergence.

Storage is compared in Table 6.3 in terms of the various parameters that define
the approximate factorizations. Note that our compression strategy 2 requires the
storage of a k1 × k2 × n3 core tensor, along with a n1 × k1 orthogonal matrix and
a n2 × k2 orthogonal matrix. Strategy 1 requires storage of an n1 × k × n3 tensor,
a n2 × k × n3 tensor, and kn3 numbers from S. Hence, it is possible to achieve
better compression from Strategy 2, and therefore we consider only this strategy in
our numerical results.

7. Interpretation and Analysis. A limitation of decomposing a third-order
tensor into a product of third-order tensors as in Theorem 5.1 is that the decom-
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position is directly dependent on the orientation of the tensor. In contrast, the CP
and TUCKER/HOSVD decompositions are not dependent on a specific orientation,
a priori. This would suggest that such models are more suited towards data that is
not orientation-specific, such as data arising in chemometrics or psychometrics.

However, there are other applications based on time series data, where the orien-
tation of the tensor is fixed. One such example is video compression. Analogous to
compressing a two-dimensional image using the matrix SVD (a classic linear algebra
example, with detailed writeup in [20]), the compression strategy in (6.2) can be used
to compress several images in time, such as a movie. Since the images of a movie do
not change substantially from frame to frame, we expect our compression strategies
to have better results than performing a matrix SVD on each separate image frame
to compress the movie since our strategies take into account the tensor as a whole.2

7.1. Comparison with Existing Models. Given an n1 × n2 × n3, the com-
pression ratio for strategy 2 in (6.5) is

CR = ((k1 × k2 × n3) + (n1 × k1) + (n2 × k2))/n1n2n3

The compression ratio for the same tensor using the truncated HOSVD (see (2.4)) is

CR = (n1k1 + n2k2 + n3k3 + k1k2k3)/n1n2n3.

Thus, to adequately compare the performance between these two methods, we set
k3 = n3 for the THOSVD approach, in which case the ratios of both are similar since
the dominant term in the numerator for both corresponds to storage of the core tensor.
Note that this comparison is also reasonable in that with k3 = n3, it corresponds to
compression in only the first two tensor modes, similar to what we do in strategy
2. Furthermore, both compression strategies feature outer products of vectors with
orthogonality properties. Therefore, it seems reasonable to numerically compare these
two compression strategies: both now have some orientation dependence (compression
is only in the first two modes) and both enforce a type of orthogonality constraint on
the vectors involved. The CP model, as noted above, is not orientation dependent.
Further, orthogonality constraints are not enforced. In fact, in many applications,
such as the data arising in chemometrics, it is undesirable to enforce orthogonality
conditions on the vectors, as doing so would compromise the qualities one is searching
for in the data. Given these considerations, it did not seem appropriate to compare
our compression strategy with CP in this work.

As mentioned, (6.5) is analogous to compressing a tensor in the first two dimen-
sions, which has been a useful tool in data mining. For example, in [37], classifica-
tion of handwritten digits was performed in (2.4) with the THOSVD-1 algorithm,
by compressing the digit tensor of handwritten digits in the pixel (first) and varia-
tions (second) dimensions. Thus, we believe our strategy 2 approach will likely have
applications in compressing certain types of data.

While the the THOSVD-2 (2.4) and (6.5) have similar expressions, they do not
give the same compressed tensor when k3 = n3 and when using the same values of
k1, k2 in both algorithms. Recall that when the THOSVD-2 representation of (2.4) is
generated, it is computed iteratively using alternating least squares to solve optimiza-
tion problem (2.5), while (6.5) is computed directly using the algorithm defined by

2Examples of video compression using Strategy 1 can be found at http://www.math.jmu.edu/

~carlam/research/videocompression.html.
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strategy 2. Therefore, one might expect for the THOSVD-2 algorithm to give better
compression over a collection of randomly generated, third order tensors. However,
we compared the relative errors of the approximations generated by each of the two
algorithms on large numbers of randomly generated, third order tensors of various size
using various truncation parameters. We found that uniformly, the two algorithms
give comparable relative error in the Frobenius norm and that the THOSVD-2 al-
gorithm usually wins in this measure by only a small margin, perhaps small enough
that the extra work and slightly higher storage content for THOSVD-2 may not be
justified. It also suggests that even when the THOSVD-2 is preferred, the number
of iterations of the TUCKER algorithm might be reduced by initially running the
compression strategy in algorithm T-SVD Compression 2. As noted previously, there
is no significance to the dimensions of the tensors chosen in the two displayed results,
as the results are similar across tensors of different dimensions in the sense that the
margin of difference between the two methods is consistently quite small.
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(a) 25× 50× 100 tensor with k1 = k2 = 10
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(b) 75× 75× 10 tensor with k1 = k2 = 20

Fig. 7.1. Relative Error (in Frobenius norm) of compression using THOSVD-2 and Strategy
2. Fifty trials were run on each size.

7.2. Weighting. While THOSVD-2 has lower relative error for randomly gen-
erated tensors, our Strategy 2 algorithm can be easily adjusted if there is a known
dependence of certain faces of the tensor a priori. In particular, the first step in (6.3)
of summing over the faces of the tensor can be modified slightly. Consider a situation,
such as medical time series data, where emphasis is needed in some faces. The advan-
tage to this new type of SVD extension is that appropriating weighting can be easily
performed in the compression. That is, if A represents the n1 × n2 × n3 raw data,
and d is a length-n3 vector containing the weights associated with each (front-back)
data slice, we simply replace (6.3) with

A =

n3
∑

k=1

d(k)A(:, :, k),

and proceed with the rest of the compression as we did before.

8. Extending other matrix factorizations. Using the definitions in Section
4, other matrix factorizations can be extended in a similar way as the matrix SVD.
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The proofs are very similar to the proofs in Section 5 and are therefore omitted. First,
we give a higher-order generalization of the QR factorization.

Theorem 8.1. Let A be a real, n1 × n2 × n3 tensor. Then A can be factored as

A = Q ∗R,

where Q is orthogonal n1 × n1 and R is a n1 × n2 f-upper triangular tensor.
Analogous to Lemma 5.2, we have a similar result for the QR factorization.
Lemma 8.2. Suppose A = Q ∗R. Then

n3
∑

k=1

Ak =

(

n3
∑

k=1

Qk

)(

n3
∑

k=1

Rk

)

(8.1)

where Qk and Rk are the k-th frontal faces of Q and R, respectively.
Furthermore, (8.1) gives a QR for

∑

Ak in the sense that
∑

Qk is orthogonal
and

∑

Rk is upper triangular.
Given a square matrix A, QR iteration can be used to find the eigenvalues of A

[16, p.352]. Using Theorem 8.1, a similar algorithm can be used to obtain a third-order
generalization of an eigenvalue decomposition.

Theorem 8.3. Let A be an n × n × n tensor. Then A can be factored as

A = Q ∗ B ∗ QT

where Q is an n×n×n orthogonal tensor and B is an n×n×n f-upper quasitriangular
tensor.

Summing the faces of A gives the expected result.
Lemma 8.4. Suppose A = Q ∗ B ∗ QT . Then

n
∑

k=1

Ak =

(

n
∑

k=1

Qk

)(

n
∑

k=1

Bk

)(

n
∑

k=1

QT
k

)

(8.2)

where Qk and Bk are the k-th frontal faces of Q and B, respectively.
Furthermore, (8.2) gives an eigendecomposition for

∑

Ak in the sense that
∑

Qk

is orthogonal and
∑

Bk is upper quasitriangular and has the same eigenvalues as
∑

Ak.

9. Concluding Remarks. In this paper we have presented new notions of ten-
sor factorizations based on different ideas of multiplication, orthogonality and diago-
nalizability of tensors. The new definitions have allowed greater flexibility in designing
algorithms that do not rely on so-called tensor “flattening” in the traditional sense,
and we have presented several algorithms to compress a tensor and compared those
with existing methods. The result was a new way to generalize the matrix SVD to
third-order tensors, in that a third-order tensor can now be written as a product of
third-order tensors. The algorithm to compute the new decomposition is based on
the fast Fourier transform and is computationally efficient. Extensions to the matrix
QR decomposition and eigenvalue decomposition were also presented.

A restriction in the presented algorithms is that they are dependent on the ori-
entation of the tensor. While this is not ideal in many applications, we mentioned
several applications (time series data, video compression, handwritten digit classifi-
cation) in which the orientation of the tensor is fixed and where our method should
therefore be applicable. Furthermore, the compression strategies presented can also
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be viewed as a compression in the first two dimensions. We explained how one of the
compression strategies can be modified slightly to allow for weighting of the various
faces of the tensor as might be relevant in certain applications.

In the discussion following the definition, we noted that the idea of using the fast
Fourier transform to actually perform the product of two tensors is not particularly
efficient from a computational point of view if there is special structure in one of the
data tensors such as sparsity. However, by the definition, we can compute the product
without invoking the FFT and capitalize on the sparsity of the corresponding block
matrices instead. Furthermore, for the second compression strategy, such transforms
are not needed explicitly, and we can take advantage of some of the sparsity here,
using iterative methods to compute approximate rank-k factorizations of the matrix
A that appears in the algorithm. In future work, we will investigate alternatives to
the T-SVD when the tensors themselves are sparse or otherwise structured.
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