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Supervised Machine learning is concerned with the study of algorithms that take

examples and their corresponding labels, and learn a general classification function

that can predict the label of future examples. For example, an algorithm may take

as input a set of molecules, each labeled “toxic” or “non-toxic” and try to predict

the toxicity of new molecules based on the function learned from the input. In the

astronomy domain, one might try to predict the type of a star given a series of

measurements of the star’s brightness, based on a set of known stars and measure-

ments of their brightness. The thesis investigates three aspects of machine learning

algorithms that use linear classification functions that work implicitly in feature

spaces by using similarity functions known as kernels. The first aspect is robustness

to noise, that is learning when some of the labels in the known examples are not

reliable. An extensive experimental evaluation reveals a surprising result, that the

Perceptron Algorithm with margin is an excellent algorithm in such contexts, and

it is competitive or better than more sophisticated alternatives. The second aspect

is producing estimates of the confidence of predictions from such classifiers, espe-

cially Support Vector Machines. We explore this topic by proposing new methods

and comparing them experimentally to existing approaches to this challenge. Fi-

nally we investigate kernels for the two applications mentioned above, time series

from astronomy and molecules from biochemistry, where the data are not initially
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expressed in Euclidean space. In each case we provide an efficiently computable

kernel function that captures a natural similarity between pairs of examples. An

experimental evaluation shows that our kernels lead to excellent performance when

used with Perceptron variants or Support Vector Machines. The contribution for

the astronomy application goes beyond machine learning, providing a complete sys-

tem for classifying stars from raw data taken in astronomy surveys, a task that

typically requires a large amount of domain expert time. In this context the thesis

investigates and evaluates several statistical tests and mechanisms for filtering and

processing time series data.
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Chapter 1

Introduction

This thesis presents research on supervised machine learning classification algo-

rithms. Machine learning refers to the science of designing and analyzing algorithms

that learn from experience. Supervised machine learning, the domain with which

this thesis is concerned, is the study of algorithms that have access to labeled data;

that is, the algorithms learn from experience by trying to label the data, and mak-

ing corrections based on whether they have done so correctly. Surveys of supervised

machine learning and the theory behind it can be found in Mitchell [1997], Kearns

and Vazirani [1994], and Bishop [2006]. Prior to presenting the contributions of the

thesis, we give a brief overview of the problem setting and associated algorithmic

machinery.

In the supervised machine learning classification setting, the task is to group

data into classes. For example, the data may be pictures of animals and we want to

group the pictures of tigers together in one class, and pictures of all other animals

into another class. The classification algorithm uses a set of examples, called a

training set, to build a classifier that takes as input an image, and gives as output

the predicted class. The examples in the training set are labeled according to their

class so that the classification algorithm can check the class it predicts against the

true class.
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Figure 1.1: Illustration of a 2-dimensional linear classifier

In this thesis we concentrate on a subset of classification algorithms called linear

classifiers. This is a class of functions that are linear in the instance space. In other

words, linear classifiers find a separation boundary in the instance space between

the examples from the training set that are in the target concept and those that

are not. From here on, instead of referring to a target concept, we will use the

term class. Unless otherwise noted, we assume that the dataset contains two classes

represented by the labels 1 and 0, respectively. This is equivalent to saying that an

example is either part of a concept (label 1) or not (label 0). In Figure 1 we show a

simple example of a linear classifier where the instance space is 2-dimensional, and

hence the separation boundary is a line. When the instance space is n-dimensional,

we call the separation boundary a hyperplane. In the figure, the dark circles are

members of one class, and the lighter circles are members of a second class (i.e., not

the first class). The striped circle represents a future un-labeled example that the

algorithm must classify.

The method a linear classifier uses to construct the separation boundary is the

key differentiation among algorithms. There are many linear classification algo-

rithms. One of the first, the Perceptron Algorithm [Rosenblatt, 1958], starts with

some default separation boundary. It then looks at each training example, and

assigns it a pre-determined label (i.e., 1) if it falls on one side of the separation

boundary, and 0 if it falls on the other side. If it makes a mistake on an example,

it moves the boundary towards the example, or past the example such that the

mis-classified example is now on the correct side of the boundary. Under certain
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conditions, the Perceptron is guaranteed to converge to a hyperplane that sepa-

rates the two classes of data in the training set. There are many variants of the

Perceptron Algorithm [Friess et al., 1998, Gentile, 2001, Li and Long, 2002, Cram-

mer et al., 2005, Kivinen et al., 2004, Shalev-Shwartz and Singer, 2005, Tsampouka

and Shawe-Taylor, 2005] that either change the updating criterion, or the update

itself, or both. Perceptron variants are generally fast and are still top-performing

algorithms.

Support Vector Machine (SVM) [Boser et al., 1992] is a linear classifier that

optimizes a quantity called margin. The margin of a separation boundary is the

distance between the boundary and the closest example in the training set. In Fig-

ure 1, one of the light circles is very close to the line. The margin of the boundary

would be the distance between the boundary and this circle. Several theoretical

results [Bartlett and Shawe-Taylor, 1999, Bartlett, 1998] show that by increasing

the margin on a training set, we can decrease the upper bound on the error rate of

the classifier.1 Intuitively, it seems like a good idea to find the separation boundary

that separates the two classes as much as possible; this is what SVM does. As

with Perceptron, there are many variants of SVM and it has steadily become com-

putationally faster since its adoption by the machine learning community through

algorithmic and implementation improvements.

Many other linear classification algorithms exist: Adatron [Friess et al., 1998],

Winnow [Littlestone, 1987], Naive Bayes, ALMA [Gentile, 2001], and ROMMA [Li

and Long, 2002], for example. ALMA and ROMMA attempt to approximate the

solution of SVM while using a Perceptron style implementation. Adatron actually

computes the optimal separation boundary like SVM, except that the algorithm is

now slower than most SVM implementations. Naive Bayes takes a loose probabilistic

approach and computes the label of each example by computing the probability of

its features based on how often those features occurred in the training set.

1For a summary of existing theoretical results see Cristianini and Shawe-Taylor [2000], Smola
et al. [1999], and Shawe-Taylor et al. [1998].
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Thus far in our discussion of linear classifiers we have only discussed classifying

training examples in the original instance space. It may be that no linear separation

boundary exists in this space, and hence the classification algorithm will perform

poorly. We can try to change the classification algorithm to explore non-linear sep-

aration boundaries (i.e., quadratic, logarithmic, etc.) but this is computationally

challenging. The other possibility is to embed the examples in a higher-dimensional

space and run the linear classifier in the new space. For example, if the best sepa-

ration boundary is a quadratic function in the original input space, we can embed

the training examples in a new space such that a quadratic function in the origi-

nal space is now a linear function. With this embedding no changes to the linear

classifier are necessary. By using kernel methods, we can accomplish this exactly,

but without incurring the cost of constructing the explicit feature space embed-

ding. Kernel methods allow linear classifiers to work in much higher-dimensional

(or even infinite-dimensional) spaces. Not all linear classifiers can take advantage of

kernel methods, but SVM and Perceptron can and these are the algorithms we use

primarily throughout this thesis.

It is often the case that the data are not linearly separable due to mis-labeled or

noisy examples, that is, there is no hyperplane that separates one class of examples

from the other. The problem of learning in a noisy setting has been a primary

driving force behind the development of classification algorithms. When data are

not noisy, optimal classification is possible, at least in principle. This is not the case

in most settings, and data noise is an ever-present challenge.

For the first main contribution of the thesis, in Chapter 3, we examine variants

of the Perceptron Algorithm in the setting where the data are not linearly separable.

We make a thorough comparison among the algorithms, explore the reasons why

certain algorithms fail or succeed, and present interesting questions arising from the

experimental results. Below we give a brief summary of our experimental setup and

main result.
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Perceptron with Margins (PAM) is a Perceptron variant that uses a conserva-

tive update rule such that the algorithm adjusts not only when a training example

is misclassified, but when it is almost misclassified. The notion of almost is cap-

tured formally in the algorithm and is explained in detail in Chapter 3. PAM is

actually not designed to handle noise, but we show in Chapter 3 that surprisingly

it out-performs all other methods. Another variant imposes an artificial separation

between examples, preventing the Perceptron from making repeated mistakes on the

same example, so as to avoid being dominated by noisy examples. A third variant,

longest survivor, uses the separation boundary that gave the most correct consecu-

tive responses during training (recall that each time the Perceptron makes a mistake,

it updates the separation boundary). Finally the voted perceptron keeps track of all

the separation boundaries computed during training and combines them to make a

final separation boundary. In addition to comparing all variants to one another, we

compare them to Support Vector Machines (SVM) [Boser et al., 1992]. SVM is a

good point of comparison as it has become the standard for linear classifiers. Our

conclusions are that PAM performs comparably to SVM and that it is a good choice

due to its simplicity and efficiency. We also introduce a concrete parameter setting

for PAM that leads to successful performance across different applications.

Our second main contribution is in Chapter 4, where we develop the first known

kernels for hypergraphs and explore and compare them to other similar kernels in

an experimental setting. The goal of this work is to address data that are described

most naturally using a graph or hypergraph structure. A graph is a set of nodes,

V , and edges, E, such that each edge (u, v) connects two nodes from V . Nodes and

edges can have labels. A hypergraph is a graph in which edges have more than two

nodes. A walk through the graph or hypergraph is a sequence of nodes and edges,

and the walk is described by the sequence of labels of the nodes and edges. Our

kernel computes the number of walks of length n that are shared by two graphs;

to do this directly is exponential in n, however by using a dynamic programming
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approach we can compute this in polynomial time (in n, |V |, and |E|).

A molecule is traditionally represented by a graph, and hence data naturally

represented as graphs are found throughout the chemistry and biology domain. In

the chemical setting, the labels on the nodes might be “carbon,” “hydrogen,” etc.

and the labels on the edges would be “single-bond” or “double-bond.” The classifi-

cation of chemical data alone is enough to justify the investigation of learning from

graphs, and is in fact the driving force behind much of the research on learning from

structured objects. Capturing useful information about the graph is an important

challenge, as much of what we may like to learn is intractable to compute [Gärtner

et al., 2003]. Recent work on graph kernels [Gärtner et al., 2003, Kashima et al.,

2003] makes use of labeled walks through two graphs as a basis for determining the

similarity between the graphs. That means that if two graphs share many walks

that have the same label sequence, they are considered similar.

Learning from graphs is a special case of learning from hypergraphs, a problem

studied in Inductive Logic Programming (ILP) under the name of learning from

interpretations [De Raedt and Dzeroski, 1994]. Ordered hypergraphs capture com-

plex relational structures and are a powerful representation tool. Our kernel is the

first kernel that is able to work directly on the hypergraph structure. We demon-

strate that it performs comparably or better than state-of-the-art ILP systems [e.g.,

Muggleton, 1995, Quinlan, 1990] on some traditional ILP benchmark datasets. We

also show that the ability to interpret hypergraphs directly improves performance

in some cases. When learning from graphs, we show that our kernel maps the data

into a significantly different feature space than previous graph kernels and gives

state-of-the-art performance.

Another type of structured data is a time series in which a data point is a

set of values, each with an associated time. In astronomy, a typical example is

brightness measurements taken from a star: here each brightness measurement has

an associated date indicating when the measurement was taken. The structure
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Figure 1.2: Typical astronomy time series for periodic stars.

inherent in a time series from the astronomy domain can be seen in Figure 1.2.

Previous work on classifying time series extracts features based on the Fourier or

Hermite basis representation [e.g., Vlachos et al., 2005, Osowski et al., 2004]. Other

approaches use probabilistic models like Hidden Markov Models to classify time

series [Ge and Smyth, 2000]. Finally, a similarity measure can be constructed that

is informative for time series, such as Dynamic Time Warping [Berndt and Clifford,

1994, Lu et al., 2008].

In Chapter 5 we present our third contribution: a completely automatic system

for classifying a certain type of astronomy data. The centerpiece of this contribu-

tion is a new kernel for classifying time series. We present theoretical insight into

a successful non-kernel similarity measure for time series, and develop our method

as an approximation. We show that our kernel performs as well or better than ex-

isting methods for periodic time series, in both the astronomy and shape-matching

domains. We then use our kernel as the basis for an automatic system for classifying

time series taken from stars. This work is among the first methods that can clas-

sify an astronomy survey completely automatically. We examine the various data

mining challenges involved in processing a large, unfiltered dataset, presenting new

algorithms, and we demonstrate our new system by classifying an entire astronomy

survey.

In our final contribution, we analyze the problem of generating measurements

of confidence of classifier output. As stated above, in the classification setting the

primary problem is to build a classifier that finds labels for unknown data points.

In many scenarios, however, we wish to know how confident the classifier is in its
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predicted label. Most classification algorithms are designed only to minimize ex-

pected classification error, and hence do not give such confidence estimates. An

open problem is whether it is possible to construct reliable confidences from the

output of a classifier, or even to be able to reliably rank the output of a classifier

in terms of confidence. A number of methods exist for estimating confidences from

classifier output. These methods typically take the output of a classifier and run an

optimization problem over the output that produces an estimate of the probabil-

ity that the label produced by the classifier for a particular example is correct. In

Chapter 6 we propose new solutions to this problem based on observed deficiencies

in existing methods. We show that some of our methods perform well in an exper-

imental setting, sometimes out-performing previous work. We analyze as well the

cases where our methods do not perform well. We conclude that two of our methods

show promise, and should be developed further.

To summarize, the thesis gives a thorough empirical analysis of variants of the

Perceptron Algorithm designed for noise-tolerance, drawing the unintuitive conclu-

sion that PAM is the best variant, comparable to SVM. We present the first kernel

methods for learning from hypergraphs and demonstrate their effectiveness in an

experimental setting. We give a new method for learning from periodic time series

and build the first system that automatically classifies certain astronomical objects.

Finally, we evaluate existing methods for estimating the confidence of a classifier

in a predicted label, and suggest new methods, showing their performance, and

suggesting new avenues for improvement.
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Chapter 2

Background and Preliminaries

In this chapter we explain in detail several concepts related to the general problem

of classification with kernel methods. The theory and concepts in this chapter are

not original results of this thesis. For a thorough review of the material below, see

Cristianini and Shawe-Taylor [2000], Bishop [2006], and Schölkopf and Smola [2002].

2.1 Kernel Functions

Definition 2.1.1. A kernel1 is a function k : X × X → R such that for all m ∈ N

and all x1 . . . xm ∈ X , k generates a positive semidefinite Gram Matrix G, where

Gij = k(xi, xj).

Theorem 2.1.2 (Mercer[Cristianini and Shawe-Taylor, 2000]). Let X be a compact

subset of R
n. Suppose K is a continuous symmetric function such that the integral

operator Tk : L2(X)→ L2(X),

(TKf)(·) =

∫

X
K(·, x)f(x)dx,

is positive, that is
∫

X×X
K(x, z)f(x)f(z)dxdz ≥ 0,

1we use the term “kernel” to refer to a positive semidefinite kernel.

9



for all f ∈ L2(X). Then we can expand K(x, z) in a uniformly convergent series

(on X×X) in terms of TK ’s eigen-functions φj ∈ L2(X), normalized in such a way

that ‖φj‖L2 = 1, and positive associated eigenvalues λj ≥ 0,

K(x, z) =
∞
∑

j=1

λjφj(x)φj(z).

By Mercer’s Theorem, stated formally above, a kernel is equivalent to taking

the inner product in some feature space Φ of two objects from a domain X . In our

notation we use Φ to represent the feature space as well as the function that maps

an object into the feature space. The explicit representation of an object x ∈ X is

denoted Φ(x).

We next examine the practical consequences of the fact that a kernel is equivalent

to taking an inner product. The first consequence is that we can take an inner

product of two objects x, y ∈ X in the feature space Φ without explicitly representing

Φ(x) or Φ(y); we need only compute the value K(x, y) = 〈Φ(x),Φ(y)〉. For example,

consider the Boolean Kernel [Khardon et al., 2001]

K(x, y) = 2〈x,y〉

where x, y ∈ {0, 1}n (i.e., x and y are binary feature vectors). It is easy to show

that this kernel computes the inner product of x and y in a feature space indexed by

all possible conjunctions. To represent this feature space explicitly, and to take an

inner product in this feature space explicitly, would require O(3n) space and time.

To compute K, on the other hand, takes O(n) space and time.

The second consequence of the equivalence of kernels and inner products is that

we can replace the inner product operator in an algorithm with a kernel function.

This means that an algorithm that relies only on taking inner products can now

work in a feature space without having to represent the data explicitly in that

feature space. In other words, kernels enable an algorithm that depends only on
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inner products to work in a feature space that would be intractable to represent

explicitly. We will give specific examples as we discuss individual kernel methods.

Previous work [e.g., Cumby and Roth, 2003, Khardon et al., 2001] show that

in certain cases, explicit representation of a feature space is sometimes preferable

to using a kernel function, even if the feature space is intractable to represent in

general. This stems from the trade-off between the “kernelization” of the classifica-

tion algorithms (illustrated with examples in section 2.2), which incurs a significant

performance penalty, and the explicit representation of a large feature space, which

can be intractable. If the feature space is exponentially-sized with respect to the

original data encoding but very sparse, for example, then it still may be possible

to represent the data efficiently using a sparse-vector representation. We do not

address optimizing run times in our experiments and hence we opt to use kernels

throughout our work as they are tractable in all cases. Nevertheless, the analy-

sis of whether kernels are the most efficient way to compute inner products in our

experiments is a worthwhile endeavor for future work.

2.2 Kernel Methods

Definition 2.2.1. A classifier or classification algorithm is an algorithm that maps

a objects from a domain X to a set of labels or classes Y ⊂ Z.

Definition 2.2.2. A kernel method is any classification algorithm that relies only

on inner products of examples to make a prediction.

Examples of kernel methods are the Perceptron Algorithm [Rosenblatt, 1958],

Support Vector Machine (SVM) [Boser et al., 1992], k-means, k-Nearest Neighbors,

logistic regression, and Fisher Discriminants. For more information on these algo-

rithms see Bishop [2006]. In the following we will describe in detail two classifiers,

Perceptron and SVM, and illustrate how they can be used with kernels.
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Input set of examples and their labels Z = ((x1, y1), . . . , (xm, ym)) ∈ (Rn×
{−1, 1})m, η, θInit

• Initialize w← 0 and θ ← θInit

• for every training epoch:

• for every xj ∈ X:

– ŷ ← sign(〈w, xj〉 − θ)

– if (ŷ 6= yj)

∗ w← w + ηyjxj

∗ θ ← θ + ηyjθInit

Figure 2.1: The basic Perceptron Algorithm

2.3 The Perceptron Algorithm

The Perceptron Algorithm [Rosenblatt, 1958] is an example of a linear classifier.

That is, using data represented as feature vectors in R
n, it constructs a hyperplane

that separates one class of data from another. Formally, the Perceptron takes as

input a set of training examples in R
n labeled {−1, 1}. Using a weight vector,

w ∈ R
n, initialized to 0, and a threshold (or bias), θ, it predicts the label of each

training example x to be y = sign(〈w,x〉 − θ). The algorithm adjusts w and θ on

each misclassified example by an additive factor. The algorithm is summarized in

Figure 2.1. The “learning rate” η controls the extent to which w can change on a

single update. The initial choice of θ is important as it can be significant in early

iterations of the algorithm.

The version of the algorithm as shown in Figure 2.1 is known as the primal form

of the algorithm. Note that w is a linear combination of the input vectors, and is

stored explicitly. Hence, in this setting it may be the case that we could not work

in a feature space that is very large, as we would have to represent each example in

the feature space. It is well known that the Perceptron can be re-written in “dual

form” whereby it can be used with kernel functions [Cristianini and Shawe-Taylor,

2000]. We now show how this is done and how this allows us to work in high- or
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Input as in primal form.

• Initialize α← 0m,k ← 0,w0 ← 0 and θ ← θInit

• for every training epoch:

• for every xj ∈ X:

– SUM ←∑

i|αi 6=0 ηαiyi(〈Φ(xi),Φ(xj)〉)
– ŷ ← sign(SUM − θ)

– if (ŷ 6= yj)

∗ αj ← αj + 1

∗ θ ← θ + ηCyj

Figure 2.2: The Perceptron Algorithm in dual form

infinite-dimensional feature spaces.

In Figure 2.2, we show the dual form of the Perceptron Algorithm. This is

exactly equivalent to the algorithm shown in Figure 2.1, and is based on the fact

that w is a linear combination of the input and can be written as

w =
m

∑

i=1

ηαiyixi

where αi is the number of mistakes that have been made on example i. Now re-

writing 〈w, z〉 with the alternate form of w we have

〈w, z〉 =

m
∑

i=1

ηαiyi〈xi, z〉 (2.1)

for any z.

The dual form of the algorithm relies only on taking inner products between

examples. Because we do not store w explicitly, but only the coefficients αi for each

example, the algorithm is no longer dependent on the size of the feature space in

which the inner products are taken. Using the results from Section 2.1 we replace
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inner products with kernel functions, and so we can replace the LHS of (2.1) with

m
∑

i=1

ηαiyiK(xi, z) (2.2)

using any kernel K. To summarize, we have “kernelized” the Perceptron Algorithm

by noting that its dual form relies only on inner products, and replacing those inner

products with kernels. We can now run the Perceptron in any feature space for

which we can efficiently compute the inner product, and we do not have to store the

examples in that feature space.

2.4 Support Vector Machines

The Support Vector Machine (SVM), like the Perceptron Algorithm, is a linear

classifier. Unlike the Perceptron, however, the SVM constructs a hyperplane that

is optimal according to some conditions. Specifically, SVM finds the hyperplane

that maximizes the margin of a hyperplane with respect to the training data. The

margin of w with respect to xi ∈ X is

yi〈w, xi〉+ θ

‖w‖ (2.3)

and the margin of w with respect to the dataset {x1, . . . , xm} is

min
i

yi〈w, xi〉+ θ

‖w‖ .

The margin quantifies the extent to which the two classes in the data are separated

by w, and in fact the margin over the dataset represents the minimum distance of

any point in the dataset to the separating hyperplane. The simple form of the SVM

is normally given by:
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Minimize ‖w‖2

Subject to yi(〈w, xi〉+ θ) ≥ 1, i = 1, . . . ,m.
(2.4)

Note that the problem is formulated to minimize the norm of w while bounding the

decision value from below. This makes sense by looking at (2.3), where we see that

just trying to increase the margin by scaling ‖w‖2 by a factor < 1, will also decrease

the numerator. Instead, the SVM problem looks to decrease the denominator in (2.3)

while fixing the numerator to be at least 1.

Thus far we have assumed that the data are linearly separable, that is, there

exists a hyperplane w such that yi(〈w, xi〉+ θ) > 0. In most cases, the data are not

linearly separable. The Perceptron can classify such data without any modification,

but SVM can not because the constraints in (2.4) can not be satisfied in the linearly

inseparable case. To address this problem, we introduce slack variables, denoted ξi.

In (2.4) we required yi(〈w, xi〉+θ) ≥ 1; now to account for data sets in which this is

not possible for all i, we change the requirement to yi(〈w, xi〉+ θ) ≥ 1− ξi. In other

words, ξi quantifies the extent to which xi violates the requirement yi(〈w, xi〉+θ) ≥

1. The new minimization problem is

Minimizew,ξ ‖w‖+ C
2

∑m
i=1 ξi

Subject to yi(〈w, xi〉+ θ) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

(2.5)

Here we minimize the L1-norm of ξ (the slack vector). An alternate formulation

minimized the L2-norm of ξ:

Minimizew,ξ ‖w‖+ C
2

∑m
i=1 ξ2

i

Subject to yi(〈w, xi〉+ θ) ≥ 1− ξi, i = 1, . . . ,m
(2.6)

Unless otherwise noted, we use the L1-norm version (2.5) throughout the remainder

of the thesis. Observe that in (2.6), ξi ≥ 0 ∀i because if ξi < 0 then no constraint is
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violated by setting ξi = 0, and this change will decrease the value of the objective

function. The parameter C quantifies the balance between the two terms in the

objective function. A high value of C means that separation of the data is prioritized,

since any change in the value of a ξi will have a large effect on the objective function.

Likewise, if C is small, then many mis-classifications are allowed, and the priority

shifts to the margin on the correctly classified examples.

As with the Perceptron, we can derive a dual form for (soft-margin) by calcu-

lating the dual of the optimization problem (2.5) which yields

Maximizeα
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyj〈xi, xj〉,

Subject to 0 ≤ αi ≤ C
2 , i = 1, . . . ,m

∑m
i=1 αiyi = 0, i = 1, . . . ,m.

(2.7)

In computing the dual form, θ is found to have the closed form:

θ =
1

m

m
∑

i=1



yi −
m

∑

j=1

yjαj〈xi, xj〉



 .

As with Perceptron, (2.7) depends only on inner products of examples, and hence

we can “kernelize” SVM using the dual by replacing 〈xi, xj〉 with K(xi, xj), where

K is a kernel. This gives:

Maximizeα
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyjK(xi, xj),

Subject to 0 ≤ αi ≤ C
2 , i = 1, . . . ,m

∑m
i=1 αiyi = 0, i = 1, . . . ,m.

(2.8)

We have reviewed SVM which we will use extensively throughout the thesis. We

explained how it can be used with kernels by using the dual form of the algorithm

and replacing the inner product operation with any kernel. As a consequence, we

can now use SVM to classify data in feature spaces that we could not tractably

represent explicitly.
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2.5 Binary to Multiclass

The classifiers we have discussed thus far are built for binary classification problems,

that is the case when the labels y can have two values. It is possible to extend any

binary classifier to the multiclass case where there are k ≥ 2 classes. A good

summary of these methods for multi-class extensions of binary classifiers can be

found in Allwein et al. [2000], Huang et al. [2006] and Wu et al. [2004]. The simplest

extension is one-versus-one, which learns k(k−1)/2 binary classifiers, one to separate

every pairing of labels. A simple decision rule for the one-versus-one extension is

argmax
i





∑

j:j 6=i

Irij>rji



 (2.9)

where the sum is over class labels, and the rij are derived from the raw classifier

output (or are simply the raw classifier output). This rule simply chooses as a label

the class that was chosen the most times by the binary classifiers.

Another classic binary-to-multiclass extension is known as one-versus-all . In

this setting k classifiers are learned, one to distinguish every class from the other

k − 1 classes. A simple decision rule in this case is to simply use the maximum

output of the k classifiers to make a decision in the multi-class cases.

There are many other possible decision rules for the one-versus-one case that are

motivated by a probabilistic interpretation of the classifier output. We will discuss

these in Chapter 6.

The binary-to-multiclass setting is generalized by Allwein et al. [2000] to any

set of binary classifiers, each of which distinguishes any two subsets of the labels.

The generalization of the setting in which the classifiers give probabilistic estimates

of class membership is given by Huang et al. [2006]. Har-Peled et al. [2002] give a

general framework that unifies binary-to-multiclass, ranking, and constraint classi-

fication.
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Chapter 3

Noise-Tolerant Variants of the

Perceptron Algorithm

The success of Support Vector Machines (SVMs) [Boser et al., 1992, Cristianini

and Shawe-Taylor, 2000] has led to increasing interest in the Perceptron Algo-

rithm [Rosenblatt, 1958]. Like SVM, the Perceptron Algorithm is a linear classifier

and can be used with kernels, but unlike SVM, it is simple and easy to implement.

Interestingly, despite a large number of theoretical developments, there is no result

that explains why SVM performs better than Perceptron, and similar convergence

bounds exist for both [Graepel et al., 2000, Cesa-Bianchi et al., 2004]. In prac-

tice, SVM is often observed to perform slightly better with significant cost in run

time. Several on-line algorithms have been proposed which iteratively construct

large margin hypotheses in the feature space, and therefore combine the advantages

of large margin hypotheses with the efficiency of the Perceptron Algorithm. Other

variants adapt the on-line algorithms to work in a batch setting choosing a more

robust hypothesis to be used instead of the last hypothesis from the on-line session.

There is no clear study in the literature, however, that compares the performance

of these variants or the possibility of combining them to obtain further performance

improvements. We believe that this is important as these algorithms have already

18



been used in applications with large datasets [e.g., Collins, 2002, Li et al., 2002,

Punyakanok et al., 2008] and a better understanding of what works and when can

have a direct implication for future use. This chapter provides such an experimen-

tal study where we focus on noisy data and more generally the “unrealizable case”

where the data is simply not linearly separable. We chose some of the basic Percep-

tron variants and experimented with them to explore their performance both with

hindsight knowledge and in a statistically robust setting.

More concretely, we study two families of variants. The first explicitly uses

the idea of hard and soft margin from SVM. The basic Perceptron algorithm is

mistake driven, that is, it only updates the hypothesis when it makes a mistake on

the current example. The Perceptron Algorithm with margin [Krauth and Mézard,

1987, Li et al., 2002, Grove and Roth, 1997] forces the hypothesis to have some

margin by making updates even when it does not make a mistake but where the

margin is too small. Adding to this idea, one can mimic soft-margin versions of

support vector machines within the Perceptron Algorithm that allow it to tolerate

noisy data [e.g., Li et al., 2002, Kowalczyk et al., 2001]. The algorithms that arise

from this idea constrain the update function of the Perceptron and limit the effect

of any single example on the final hypothesis. A number of other variants in this

family exist in the literature. Each of these performs margin based updates and

has other small differences motivated by various considerations. We discuss these

further in the concluding section of the chapter.

The second family of variants tackles the use of on-line learning algorithms in a

batch setting, where one trains the algorithm on a dataset and tests its performance

on a separate test set. In this case, because updates do not always improve the error

rate of the hypothesis (e.g., in the noisy setting), the final hypothesis from the on-line

session may not be the best to use. In particular, the longest survivor variant [Kearns

et al., 1987, Gallant, 1990] picks the “best” hypothesis on the sequential training

set. The Voted Perceptron variant [Freund and Schapire, 1999] takes a vote among
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hypotheses produced during training. Both of these have theoretical guarantees in

the PAC learning model [Valiant, 1984]. Again, other variants exist in the literature

which modify the notion of “best” or the voting scheme among hypotheses and these

are discussed in the concluding section of the chapter.

It is clear that each member of the first family can be combined with each member

of the second. In this chapter we report on experiments with a large number of such

variants that arise when combining some of margin, soft margin, and on-line to

batch conversions. In addition to real world data, we used artificial data to check

the performance in idealized situations across a spectrum of data types. Thus the

main contribution of this chapter is an empirical study comparing several variants

and their novel combinations and the resulting practical conclusions.

The experiments lead to the following conclusions: First, the Perceptron with

margin is the most successful variant. This is surprising as among the algorithms

experimented with it is only one not designed for noise tolerance. Second, the soft-

margin variants on their own are weaker than the Perceptron with margin, and

combining soft-margin with the regular margin variant does not provide additional

improvements.

The third conclusion is that in most cases the Voted Perceptron performs simi-

larly to the Perceptron with margin. The Voted Perceptron has the advantage that

it does not require parameter selection (for the margin) that can be costly in terms

of run time. Combining the two to get the Voted Perceptron with margin has the

potential for further improvements but this occasionally degrades performance. Fi-

nally, both the Voted Perceptron and the margin variant reduce the deviation in

accuracy in addition to improving the accuracy. This is an important property that

adds to the stability and robustness of the algorithms.

The rest of the chapter is organized as follows. The next section reviews all

the algorithms and our basic settings for them. Section 3.2 describes the experi-

mental evaluation. We performed two kinds of experiments. In “parameter search”
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we report the best results obtained with any parameter setting. This helps set the

scope and evaluate the potential of different algorithms to improve performance

and provides insight about their performance, but it does not give statistically re-

liable results. In “parameter optimization” the algorithms automatically select the

parameters and the performance can be interpreted statistically. The concluding

section further discusses the results and puts related work in its context leading to

directions for future work.

3.1 Algorithms

In this section we describe the algorithms used in our study. All these algorithms

have been previously introduced in the literature and citations are given throughout

the text. Some minor variants (α-variant below) and combinations of options are

new in this empirical study.

Recall from Section 2.3 that the Perceptron constructs a decision boundary pa-

rameterized by (w, θ). When the data are linearly separable via some hyperplane

(w, θ), the margin is defined as

γ = min
1≤i≤m

(yi(〈w, xi〉 − θ)). (3.1)

When ‖w‖ = 1, γ is the minimum Euclidean distance of any point in the dataset

to (w, θ). If the data are linearly separable, and θ is initialized to 0, the Perceptron

algorithm is guaranteed to converge in ≤ (R
γ )2 iterations [Novikoff, 1962, Cristianini

and Shawe-Taylor, 2000], where R = max1≤i≤m ‖xi‖.

In the case of non-separable data, the extent to which a data point fails to

have margin γ via the hyperplane w can be quantified by a slack variable ξi =

max(0, γ − yi(〈w,xi〉 + θ)). Observe that when ξi = 0, the example xi has margin

at least γ via the hyperplane defined by (w, θ). The Perceptron is guaranteed

to make no more than (2(R+D)
γ )2 mistakes on m examples, for any w, γ > 0 where
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D =
√

∑m
i=1 ξ2

i [Freund and Schapire, 1999, Shalev-Shwartz and Singer, 2005]. Thus

one can expect some robustness to noise.

All the Perceptron variants we discuss below have dual form representations.

However, the focus of this chapter is on noise tolerance and this is independent of

the use of primal or dual forms and the use of kernels. We therefore present all the

algorithms in primal form.

3.1.1 The λ-trick

The λ-trick [Kowalczyk et al., 2001, Li et al., 2002] attempts to minimize the effect

of noisy examples during training similar to the L2 soft margin technique used with

support vector machines [Cristianini and Shawe-Taylor, 2000]. We classify example

xj according to sign(SUM − θ) where

SUM = 〈w, xj〉+ Ijyjλ‖xj‖ (3.2)

and where Ij is an indicator variable such that

Ij =











1 if xj was previously classified incorrectly

0 otherwise
.

Thus during training, if a mistake has been made on xj then in future iterations

we increase SUM artificially by a factor of λ‖xj‖ when classifying xj but not when

classifying other examples. A high value of λ can make the term yjλ‖xj‖ dominate

the sum and make sure that xj does not lead to an update, hence it is effectively

ignored. In this way λ can help the algorithm avoid a large number of updates on

noisy (as well as other) examples limiting their effect.

We observe that this technique is typically presented using an additive λ instead

of λ‖xj‖. While there is no fundamental difference, adding λ‖xj‖ is more convenient

in the experiments as it allows us to use the same values of λ for all datasets (because
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the added term is scaled relative to the data).

3.1.2 The α-bound

This variant is motivated by the L1 soft margin technique used with support vector

machines [Cristianini and Shawe-Taylor, 2000]. The α-bound places a bound α on

the number of mistakes the algorithm can make on a particular example, such that

when the algorithm makes a mistake on some xi, it does not update w if more than

α mistakes have already been made on xi. As in the case of the λ-trick, the idea

behind this procedure is to limit the influence of any particular noisy example on

the hypothesis. Intuitively, a good setting for α is some fraction of the number of

training iterations. To see that, assume that the algorithm has made α mistakes on

a particular noisy example xk. In all subsequent training iterations, xk never forces

an update, whereas the algorithm may continue to increase the influence of other

non-noisy examples. If the ratio of non-noisy examples to noisy examples is high

enough the algorithm should be able to bound the effect of noisy examples in the

early training iterations while leaving sufficient un-bounded non-noisy examples to

form a good hypothesis in subsequent iterations. While this is a natural variant, we

are not aware of any experimental results using it. Observe that in order for the

α-bound to work effectively, the algorithm must perform a high enough number of

training iterations.

3.1.3 Perceptron Using Margins

The classical Perceptron attempts to separate the data but has no guarantees on the

separation margin obtained. The Perceptron Algorithm using Margins (PAM) [Krauth

and Mézard, 1987, Dagan et al., 1997, Grove and Roth, 1997, Li et al., 2002] at-

tempts to establish such a margin, τ , during the training process. Following work

on support vector machines [Boser et al., 1992, Cristianini and Shawe-Taylor, 2000]

one may expect that providing the Perceptron with higher margin will add to the
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stability and accuracy of the hypothesis produced, and in fact PAM has been shown

to perform well in experimental settings [Dagan et al., 1997, Grove and Roth, 1997,

Punyakanok et al., 2008, e.g.,].

To establish the margin, instead of only updating on examples for which the

classifier makes a mistake, PAM updates on xj if

yj(SUM − θ) < τ

where SUM is as in Equation (3.2). Notice that this includes the case of a mistake

where yj(SUM − θ) < 0 and the case of correct classification with low margin

when 0 ≤ yj(SUM − θ) < τ . In this way, the algorithm “establishes” some minimal

separation of the data. Notice that the weight vector w is not normalized during the

learning process and its norm can increase with updates. Therefore, the constraint

imposed by τ becomes less restrictive as learning progresses, and the normalized

margin is not τ . When the data are linearly separable and τ < γopt, PAM finds a

separating hyperplane with a margin that is guaranteed to be at least γopt
τ√

8(ηR2+τ)
,

where γopt is the maximum possible margin [Krauth and Mézard, 1987, Li et al.,

2002].1

As above, it is convenient to make the margin parameter dataset independent in

order that we can use the same values across datasets. To facilitate this we replace

the above and update if

yj(SUM − θ) < τθInit (3.3)

in order that τ can be measured in units of θInit.

A variant of PAM exists in which a different value of τ is chosen for positive

examples than for negative examples [Li et al., 2002]. This seems to be important

when the class distribution is skewed. We do not study that variant in this chapter.

1Other variants [e.g., Gentile, 2001, Tsampouka and Shawe-Taylor, 2005, Shalev-Shwartz and
Singer, 2005] do normalize the weight vector and thus have better margin guarantees.
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3.1.4 Longest Survivor and Voted Perceptron

The classical Perceptron returns the last weight vector w, i.e., the one obtained after

all training has been completed, but this may not always be useful especially if the

data is noisy. This is a general issue that has been studied in the context of using

on-line algorithms that expect one example at a time in a batch setting where a set

of examples is given for training and one hypothesis is used at the end to classify all

future instances. Several variants exist that handle this issue. In particular Kearns

et al. [1987] show that longest survivor hypothesis, i.e., the one who made the largest

number of correct predictions during training in the on-line setting, is a good choice

in the sense that one can provide guarantees on its performance in the PAC learning

model [Valiant, 1984]. Several variations of this idea were independently proposed

under the name of the pocket algorithm and empirical evidence for their usefulness

was provided [Gallant, 1990].

The Voted Perceptron [Freund and Schapire, 1999] assigns each vector a “vote”

based on the number of sequential correct classifications by that weight vector.

Whenever an example is misclassified, the Voted Perceptron records the number of

correct classifications made since the previous misclassification, assigns this number

to the current weight vector’s vote, saves the current weight vector, and then updates

as normal. After training, all the saved vectors are used to classify future examples

and their classifications are combined using their votes. At first sight the Voted

Perceptron seems to require expensive calculation for prediction. But as pointed

out by Freund and Schapire [1999], the output of the weight vector resulting from

the first k mistakes can be calculated from the output of the weight vector resulting

from the first k − 1 mistakes in constant time. Therefore when using the dual

Perceptron the prediction phase of the Voted Perceptron is not substantially more

expensive than the prediction phase of the classical Perceptron, although it is more

expensive in the primal form.

When the data are linearly separable and given enough iterations, both these
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variants will converge to a hypothesis that is very close to the simple Perceptron

Algorithm. The last hypothesis will predict correctly on all examples and indeed

its vote will be the largest vote among all hypotheses used. When the data are

not linearly separable the quality of the hypothesis may fluctuate during training as

noisy examples are encountered.

3.1.5 Algorithms Summary

Figure 3.1 summarizes the various algorithms and prediction strategies in primal

form. The algorithms have corresponding dual forms and kernelized versions that

we address in the experimental sections.

3.1.6 Multi-Class Data

Some of the datasets we experiment with have more than two labels. In such cases

we use the one-versus-all binary to multiclass extension explained in Section 2.5 on

page 17, due to its simplicity and good performance. During testing we calculate

the weight given by each classifier (before the sign function is applied) and choose

the label of the classifier with maximum weight.

3.2 Experimental Evaluation

We ran two sets of experiments with the algorithms described above. In one set

of experiments we searched through a pre-determined set of values of τ , α, and

λ by running each of the classical, longest survivor, and Voted Perceptron using

10-fold cross-validation and parameterized by each value of τ , α, and λ as well

as each combination of τ × α and τ × λ. This first set of experiments is called

parameter search. The purpose of the parameter search experiments was to give

us a comprehensive view of the effects of the various parameters. This can show

whether a method has any chance of improving performance since the experiments

give us hindsight knowledge. The experiments can also show general patterns and
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TRAINING: Input set of examples and their labels

Z = ((x1, y1), . . . , (xm, ym)) ∈ (Rn × {−1, 1})m, θInit, η, α-bound, λ, τ

• Initialize α ← 0m,k ← 0,w0 ← 0, tally ← 0, best tally ← 0, θ0 ←
θInit, θl.s. ← θInit

• for every training iteration

• for every zj ∈ Z:

– SUM ← 〈wk, xj〉+ I(αj 6=0) yjλ‖xj‖
– Predict:

∗ if SUM < θk − τ then ŷ = −1

∗ else if SUM > θk + τ then ŷ = 1

∗ else ŷ = 0 // This forces an update

– if (ŷ 6= yj) AND (αj < α-bound)

∗ wk+1 ← wk + ηyjxj

∗ αj ← αj + 1

∗ Update ‘‘mistakes’’ data structure

∗ θk+1 ← θk + ηyjθinit
∗ votek+1 ← 0

∗ k ← k + 1

∗ tally ← 0

– else if (ŷ = yj)

∗ votek ← votek + 1

∗ tally ← tally + 1

∗ if (tally > best tally)

· best tally ← tally

· wl.s. ← wk

· θl.s. ← θk

PREDICTION: To predict on a new example xm+1:

• CLASSICAL:

– SUM ← 〈wk, xm+1〉
– ŷ ← sign(SUM − θk)

• LONGEST SURVIVOR:

– SUM ← 〈wl.s., xm+1〉
– ŷ ← sign(SUM − θl.s.)

• VOTED:

– for i← 1 to k

∗ SUM ← 〈wi, xm+1〉
∗ ŷ ← sign(SUM − θi)

∗ VOTES ← VOTES +votei ŷ

– ŷfinal ← sign(VOTES)

Figure 3.1: Illustration of All Algorithm Variants
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trends in the parameter landscape again giving insight into the performance of the

methods. Notice that parameter search cannot be used to indicate good values

of parameters as this would be hand-tuning the algorithm based on the test data.

However, it can guide in developing methods for automatic selection of parameters.

In the second set of experiments, we used the same set of values as in the first

experiment, but using a method for automatic selection of parameters. In particular

we used a “double cross validation” where in each fold of the cross validation (1)

one uses parameter search on the training data only using another level of cross

validation, (2) picks values of parameters based on this search, (3) trains on the

complete training set for the fold using these values, and (4) evaluates on the test

set. We refer to this second set of experiments as parameter optimization. This

method is expensive to run as it requires running all combinations of parameter

values in each internal fold of the outer cross validation. Hence if both validations

use ten folds then we run the algorithm 100 times per parameter setting. This

sets a strong limitation on the number of parameter variations that can be tried.

Nonetheless this is a rigorous method of parameter selection.

Both sets of experiments were run on randomly-generated artificial data and real-

world data from the University of California at Irvine (UCI) repository [Asuncion

and Newman, 2007] and other sources. The purpose of the artificial data was to

simulate an ideal environment that would accentuate the strengths and weaknesses

of each algorithm variant. The other datasets explore the extent to which this

behavior is exhibited in real world problems.

For further comparison, we also ran SVM on the datasets using the L1-norm soft

margin and L2-norm soft margin. We used SVM Light [Joachims, 1999] and only

ran parameter search.
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Table 3.1: UCI and Other Natural Dataset Characteristics

Name # features* # examples Baseline

Adult 105 32561 75.9

Breast-cancer-wisconsin 9 699 65.5

Bupa 6 345 58

Crx 46 690 55.5

Ionosphere 34 351 64.4

MNIST 784 70,000 N/A

sonar.all-data 60 208 53.4

USPS 256 9298 N/A

Wdbc 30 569 62.7

Wpbc 33 198 76.3

*after preprocessing

3.2.1 Dataset Selection and Generation

We have experimented with ten real world datasets of varying size and 150 artificial

datasets composed of 600 examples each.

We first motivate the nature of artificial data used by discussing the following

four idealized scenarios. The simplest, type 1, is linearly separable data with very

small margin. Type 2 is linearly separable data with a larger, user-defined margin.

For type 3 we first generate data as in type 1, and then add random class noise by

randomly reversing the labels of a given fraction of examples. For type 4, we generate

data as in type 2, and then add random class noise. One might expect that the basic

Perceptron algorithm will do fine on type 1 data, the Perceptron using Margins will

do particularly well on type 2 data, that noise tolerant variants without margin will

do well on type 3, and that some combination of noise tolerant variant with margin

will be best for type 4 data. However, our experiments show that the picture is more

complex; preliminary experiments confirmed that the expected behavior is observed,

except that the Perceptron using Margins performed well on data of type 3 as well,

that is, when the “natural margin” was small and the data was not separable due

to noise. In the following, we report on experiments with artificial data where the

margin and noise levels are varied thus we effectively span all four different types.

Concretely the data was generated as follows. We first specify parameters for
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number of features, noise rate and the required margin size. Given these, each

example xi is generated independently and each attribute in an example is gen-

erated independently using an integer value in the range [−10, 10]. We generated

the weight vector, w, by flipping a coin for each example and adding it to the

weight vector on a head. We chose θ as the average of 1
2 |〈w, xi〉| over all xi. We

measured the actual margin of the examples with respect to the weight vector and

then discarded any examples xi such that |〈w, xi〉 − θ| < M ∗ θ where M is the

margin parameter specified. For the noisy settings, for each example we randomly

switched the label with probability equal to the desired noise rate. In the tables

of results presented below, f stands for number of features, M stands for the mar-

gin size, and N stands for the noise rate. We generated datasets with parameters

(f,M,N) ∈ {50, 200, 500} × {0.05, 0.1, 0.25, 0.5, 0.75} × {0, 0.05, 0.1, 0.15, 0.25}, and

for each parameter setting we generated two datasets, for a total 150 datasets.

For real world data we first selected two-class datasets from the UCI Machine

Learning Repository [Asuncion and Newman, 2007] that have been used in recent

comparative studies or in recent papers on linear classifiers [Cohen, 1995, Dietterich

et al., 1996, Dietterich, 2000, Garg and Roth, 2003]. Because we require numerical

attributes, any nominal attribute in these datasets was translated to a set of bi-

nary attributes each being an indicator function for one of the values. As all these

datasets have a relatively small number of examples we added three larger datasets to

strengthen our conclusions statistically: “Adult” from UCI [Newman et al., 1998],

and “MNIST”2 and “USPS”3, the 10-class character recognition datasets. Due

to their size, however, for the “USPS,” “MNIST,” and “Adult” datasets, there

is no outer cross-validation in parameter optimization. For ease of comparison to

other published results, we use the 7291/2007 training/test split for “USPS”, and a

60000/10000 split for “MNIST”.

The datasets used and their characteristics after the nominal-to-binary feature

2http://yann.lecun.com/exdb/mnist/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html
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Figure 3.2: Example Learning Curve for ‘UCI Dataset promoters

transformation are summarized in Table 3.1. The column labeled “Baseline” indi-

cates the percentage of the majority class.

3.2.2 Exploratory Experiments and General Setup

The algorithms described above have several parameters that can affect their per-

formance dramatically. In this chapter we are particularly interested in studying

the effect of parameters related to noise tolerance, and therefore we fix the value

of θInit, η, and the number of training iterations. Prior to fixing these values, we

ran preliminary experiments in which we varied these parameters. In addition we

ran experiments where we normalized the example vectors. The results showed that

while the performance of the algorithms overall was different in these settings, the

relationship between the performance of individual algorithms seems to be stable

across these variations.

We set θInit = avg(〈xi, xi〉), initializing the threshold at the same scale of inner

products. Combined with a choice of η = 0.1, this makes sure that a few iterations

should be able to guarantee that an example is classified correctly given no other

changes to the hypothesis.

As explained above, the number of iterations must be sufficiently high to allow

the α parameter to be effective, as well as to allow the weight vector to achieve
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some measure of stability. Typically a small number of iterations is sufficient, and

preliminary experiments illustrated by the curve in Figure 3.2 showed that 100

iterations are more than enough to allow all the algorithms to converge to a stable

error rate. Therefore, except where noted below, we report results for 100 iterations.

For the large datasets, we reduced the number of training iterations and increased

η accordingly in order to run the experiments in a reasonable amount of time; for

“Adult” we set η = 0.4 with 5 training iterations and for “MNIST” we set η = 1 with

1 training iteration. For “USPS,” we used η = 0.1 and 100 iterations for parameter

search, and η = 0.1 and 10 iterations for parameter optimization.

The parameters of interest in our experiments are τ, α, λ that control the mar-

gin and soft margin variants. Notice that we presented these so that their val-

ues can be fixed in a way that is dataset independent. We used values for τ ∈

{0, 0.125, 0.25, 0.5, 1, 2, 4}, α ∈ {∞, 80, 60, 40, 20, 10, 5}, and λ ∈ {0, 0.125, 0.25, 0.5, 1, 2, 4}.

Notice that the values as listed from left to right vary from no effect to a strong effect

for each parameter. We ran parameter search and parameter optimization over all

of these values, as well as all combinations τ × λ and τ × α. Since parameter opti-

mization over combined values is particularly expensive we have also experimented

with a variant that first searches for a good τ value and then searches for a value of

α (denoted τ → α) and a variant that does likewise with τ and λ (denoted τ → λ).

We did not perform any experiments involving α on “MNIST” or “Adult” as

their size required too few iterations to justify any reasonable α-bound.

Table 3.2: Noise Percentage vs. Dominance: V = Voted, C = Classical, LS =
Longest Survivor

V > C V > LS LS > C LS > V C > LS C > V V = LS = C

Noise = 0 0 0 0 0 0 0 30

Noise = 0.05 12 10 11 3 0 2 16

Noise = 0.1 15 15 14 3 3 3 12

Noise = 0.15 16 14 13 5 6 3 10

Noise = 0.25 16 12 13 8 7 4 10

Finally we performed a comparison of the classical Perceptron, the longest sur-
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vivor and the Voted Perceptron algorithms without the additional variants. Ta-

ble 3.2 shows a comparison of the accuracies obtained by the algorithms over the

artificial data. We ignore actual values but only report the number of times one

algorithm gives higher accuracy or whether they tie (the variance in actual results

is quite large). One can see that with higher noise rate the Voted Perceptron and

longest survivor improve the performance over the base algorithm. Over all 150 arti-

ficial datasets, the Voted Perceptron strictly improves performance over the classical

Perceptron in 59 cases, and ties or improves in 138 cases. Using the distribution over

our artificial datasets one can calculate a simple weak statistical test that supports

the hypothesis that using the voted algorithm does not hurt accuracy, and can often

improve it.

Except where noted, all the results reported below give average accuracy in 10-

fold cross-validation experiments. To avoid any ordering effects of the data, the

training set is randomly permuted before each run.

3.2.3 Parameter Search

The parameter search experiments reveal several interesting aspects. We observe

that in general the variants are indeed helpful on the artificial data as the per-

formance increases substantially from the basic version. The numerical results are

shown in Tables 3.3 and 3.4 and discussed below. Before showing these we discuss

the effects of single parameters. Figure 3.3 plots the effect of single parameters

for several datasets. For the artificial dataset shown, the accuracy is reasonably

well-behaved with respect to the parameters and good performance is obtained in

a non-negligible region; this is typical of the results from the artificial data. Data

obtained for the real world datasets show somewhat different characteristics. In

some datasets little improvement is obtained with any variant or parameter setting.

In others, improvement was obtained for some parameter values but the regions

were not as large implying that that automatic parameter selection may not be
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easy. Nonetheless it appears that when improvement is possible, τ on it own was

quite effective when used with the classical Perceptron. Notice that τ is consistently

effective across all datasets; λ and α do not help on all datasets and λ sometimes

leads to a drop in performance. As one might expect, our preliminary experiments

also showed that very large values of τ harm performance significantly. These are

not shown in the graphs as we have limited the range of τ in the experiments.

Tables 3.3 and 3.4 summarize the results of parameter search experiments on

the real world data and some of the artificial data, respectively. For each dataset

and algorithm the tables give the best accuracy that can be achieved with param-

eters in the range tested. This is useful as it can indicate whether an algorithm

has a potential for improvement, in that for some parameter setting it gives good

performance. In order to clarify the contribution of different parameters, each col-

umn with parameters among τ, α, λ includes all values for the parameter except the

non-active value. For example, any accuracy obtained in the τ column is necessarily

obtained with a value τ 6= 0. The column labeled “Nothing” shows results when all

parameters are inactive.

Several things can be observed in the tables. Consider first the margin parame-

ters. We can see that τ is useful even in datasets with noise; we see this both in the

noisy artificial datasets and in the real-world datasets, all of which are inseparable

in the native feature space. We can also see that α and λ do improve performance

in a number of cases. However, they are less effective in general than τ , and do not

provide additional improvement when combined with τ .

Looking next at the on-line to batch conversions we see that the differences

between the basic algorithm, the longest survivor and the Voted Perceptron are

noticeable without margin based variants. For the artificial datasets this only holds

for one group of datasets (f = 50), the one with highest ratio of number of examples

to number of features (12 : 1).4 The longest survivor seems less stable and degrades

4The results for data with f = {200, 500} are omitted from the table. In these cases these
was no difference between the basic, longest and voted versions except when combining with other

35



Table 3.3: Parameter Search on UCI and Other Datasets.

Baseline Nothing τ λ α τ × λ τ × α

breast-cancer-wisconsin Last 65.5 90.6 96.8 97.2 96.9 97.3 97.2

Longest 96.9 97.0 97.2 97.0 97.3 97.2

Voted 96.9 96.8 97.2 96.9 97.3 97.2

bupa Last 58 57.5 71.8 64.1 69.2 71.5 67.8

Longest 64.1 58.2 64.8 68.4 60.9 61.2

Voted 68.9 65.9 67.7 70.7 67.4 66.0

wdbc Last 62.7 92.4 93.2 92.8 93.3 93.9 92.6

Longest 92.4 93.2 92.6 92.4 92.8 92.8

Voted 92.3 92.0 93.2 92.4 93.2 92.4

crx Last 55.5 62.5 68.6 65.5 66.7 69.0 66.7

Longest 55.1 63.6 65.5 63.5 65.5 65.2

Voted 64.9 65.4 65.5 66.7 65.5 66.4

promoters Last 50 78.8 92.8 82.1 78.8 94.4 93.8

Longest 78.8 92.8 82.1 78.8 94.4 94.4

Voted 78.8 93.4 82.1 78.8 94.4 93.8

ionosphere Last 64.4 86.6 87.5 86.9 87.7 88.6 87.2

Longest 87.2 87.5 87.8 88.0 88.3 87.7

Voted 88.0 87.7 87.5 88.6 88.9 87.5

wpbc Last 76.3 77.3 76.4 80.6 76.9 79.0 76.4

Longest 77.2 76.4 77.4 78.5 76.9 76.4

Voted 78.8 76.4 80.6 77.4 78.5 76.4

sonar.all-data Last 53.4 71.9 74.6 72.5 77.1 75.8 79.1

Longest 75.3 77.1 73.3 77.2 77.7 78.7

Voted 75.1 77.2 73.8 77.1 78.7 77.7

USPS Last N/A 91.5 94.1 90.4 92.8 94.3 94.1

Longest N/A 86.9 93.9 90.4 92 93.9 93.9

Voted N/A 93.5 94.2 93.4 93.6 94.3 94.3

MNIST Last N/A 85.2 89.2 85.2 89.2

Longest N/A 81.7 88.6 81.7 88.6

Voted N/A 90.2 90.6 90.2 90.6
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Table 3.4: Parameter Search on Artificial Datasets with f = 50 and M = 0.05.

Noise Pctg. (N) Nothing τ λ α τ × λ τ × α

Last, N = 0 95.4 97 95.6 96.1 96.8 97

Longest 95.4 96.6 95.6 95.9 97.3 96.8

Voted 95.4 96.6 95.4 96.1 96.8 97

Last, N = 0.05 81.7 89.4 87 89.5 89.7 89.9

Longest 86.6 89.7 87 89.3 89.9 89.9

Voted 87.5 89.4 87 89.5 89.7 90.2

Last, N = 0.1 77.8 84.6 81.9 85.1 84.9 85.8

Longest 77.2 84.9 81.9 85.1 84.6 85.5

Voted 81.6 84.9 81.9 85.1 84.9 85.6

Last, N = 0.15 71.2 81.6 79.9 80.6 81.6 81.7

Longest 72.9 80.7 79.9 79.2 80.7 81.7

Voted 75.6 81.6 79.9 80.6 82.1 81.6

Last, N = 0.25 59.9 70.7 68.2 70.7 71.1 71.1

Longest 65 70.7 68.2 70.1 70.4 70.6

Voted 68 70.4 69.4 70.7 70.6 71.1

performance in some cases.

Finally compare the τ variant with Voted Perceptron and their combination.

For the artificial datasets using τ alone (with last hypothesis) gives higher accuracy

than using the Voted Perceptron alone. For the real-world datasets this trend is less

pronounced. Concerning their combination we see that while τ always helps the last

hypothesis, it only occasionally helps voted, and sometimes hurts it.

Table 3.5 gives detailed results for parameter search over τ on the adult dataset,

where we also parameterize the results by the number of examples in the training

set. We see that Voted Perceptron and the τ variant give similar performance on

this dataset as well. We also see that that in contrast with the performance on the

artificial data mentioned above, Voted Perceptron performs well even with small

training set size (and small ratio of examples to features).

The table adds another important observation about stability of the algorithms.

Note that because we report results for concrete values of τ , we can measure the

variants.
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Table 3.5: Performance on “Adult” dataset as a function of margin and training set
size.

# examples: 10 100 1000 5000 10000 20000

Accuracy Std. Dev.

τ = 0

Last 75.6 3.5 70.2 9.2 77.8 3.1 78.3 4.1 80.3 2.8 76.5 11.1

Longest 75.7 3.5 76.5 3.6 79.9 3.5 81.8 1.8 82.9 0.7 82.3 1.3

Voted 75.8 3.4 79.4 1.8 82.5 0.5 84 0.7 84.2 0.6 84.5 0.5

τ = 0.125

Last 72.7 4.6 73.3 8.9 79.7 3.7 80.8 2.7 82.7 1.4 80.4 3.9

Longest 73.1 4.6 76.6 3.9 81 2.1 81.1 2.4 81.8 1.5 82.1 1.7

Voted 74.1 4.4 79.6 1.4 82.7 0.5 83.9 0.7 84.2 0.6 84.3 0.4

τ = 0.25

Last 74.5 1.8 75.1 7.4 79.3 5.1 80.5 2.8 81.5 2.2 80.6 3.7

Longest 73.9 3.9 77.2 2.1 80.3 2.6 81.8 1.8 81.7 1.7 82.3 2.4

Voted 74.1 4.7 79.5 1.5 82.7 0.5 83.8 0.7 84.1 0.7 84.3 0.5

τ = 0.5

Last 71.8 6.3 75.5 1.9 80.4 3.4 82.6 1 82.7 1 82.8 1.5

Longest 74 5.7 77.2 7.5 80.4 2.3 82.1 1.6 82.5 1.6 80.8 2.9

Voted 73.6 5.6 78.3 0.8 82.6 0.6 83.7 0.7 84 0.7 84.2 0.5

τ = 1

Last 72.9 6.6 78.4 2.5 81.9 1.2 83 1.1 82.7 1.5 83.5 0.8

Longest 75.9 0.3 75.9 0.9 78.3 2.8 82.5 1.1 83 1 81.9 2.7

Voted 74.8 3.4 76.4 0.9 82.4 0.6 83.5 0.7 83.7 0.7 84.1 0.5

τ = 2

Last 75.5 1.2 75.8 2.6 82.4 0.4 83.2 0.9 82.8 1.2 83.6 0.8

Longest 70.7 15.6 75.9 0.9 77.8 2.7 81.4 2.9 82.5 2 81.9 2.8

Voted 70.7 15.6 76.4 1.8 81.8 1 83.2 0.7 83.5 0.6 83.8 0.6

τ = 4

Last 75.9 0.3 75.7 1.4 81.8 1 83.1 2.1 83.3 0.6 83.6 0.6

Longest 70.7 15.6 75.9 0.9 75.9 0.5 81.8 0.7 79.4 3.4 80.8 3.1

Voted 70.7 15.6 75.9 0.9 78.4 2.1 83 0.7 83.2 0.6 83.5 0.6

standard deviation in accuracy observed. One can see that both the τ variant

and the Voted Perceptron significantly reduce the variance in results. The longest

survivor does so most of the time but not always. The fact that the variants lead

to more stable results is also consistently true across the artificial and UCI datasets

discussed above and is an important feature of these algorithms.

Finally, recall that the Average Algorithm [Servedio, 1999], which updates ex-

actly once on each example, is known to tolerate classification noise for data dis-

tributed uniformly on the sphere and where the threshold is zero. For comparison,

we ran this algorithm on all the data reflected in the tables above and it was not
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competitive. Cursory experiments to investigate the differences show that, when

the data has a zero threshold separator and when Perceptron is run for just one

iteration, then (as reported in [Servedio, 1999]) Average performs better than basic

Perceptron. However, the margin-based Perceptron performs better and this be-

comes more pronounced with non-zero threshold and multiple iterations. Thus in

some sense the Perceptron variants are doing something non-trivial that is beyond

the scope of the simple Average Algorithm.

3.2.4 Parameter Optimization

We have run the parameter optimization on the real-world datasets and the artificial

datasets. Selected results are given in Tables 3.6 and 3.7. For these experiments

we report average accuracy across the outer cross-validation as well as a 95% T -

confidence interval around these, as suggested by Mitchell [1997].5 No confidence

interval is given for “USPS,” “MNIST,” or “Adult,” as the outer cross-validation

loop is not performed.

In contrast with the tables for parameter search, columns of parameter variants

in Tables 3.6 and 3.7 do include the inactive option. Hence the search in the τ

column includes the value of τ = 0 as well. This makes sense in the context of

parameter optimization because the algorithm can choose between different active

values and the inactive value. Notice that the standard deviation in accuracies is

high on these datasets. This highlights the difficulty of parameter selection and

algorithm comparison and suggests that results from single split into training and

test sets that appear in the literature may not be reliable.

Table 3.6 shows improvement over the basic algorithm in all datasets where

parameter search suggested a potential for improvement, and no decrease in perfor-

5In more detail, we use the maximum likelihood estimate of the standard deviation σ,

s =
q

1
k

P

i(yi − ȳ)2 where k is the number of folds (here k = 10), yi is the accuracy es-

timate in each fold and ȳ is the average accuracy. We then use the T confidence interval

y ∈ ŷ ± t(k−1),0.975

q

1
k(k−1)

P

(yi − ȳ)2. Notice that since t9,0.975 = 2.262 and k = 10 the con-

fidence interval is 0.754 of the standard deviation.
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Nothing τ λ α τ × α τ × λ τ → α τ → λ SVM L1 SVM L2

Breast-cancer-wisconsin

Last 90.6 +/- 2.3 95.2 +/- 2.1 95.2 +/- 3.1 94.7 +/- 3.3 95.3 +/- 2.6 96.3 +/- 2.1 95.1 +/- 2.3 96.9 +/- 1.3

Longest 96.9 +/- 1.2 96.8 +/- 1.7 97.2 +/- 1.4 96.3 +/- 1.9 96.8 +/- 1.6 97 +/- 1.6 96.8 +/- 1.7 96.9 +/- 1.8 96.8 +/- 2.2 96.7 +/- 1.7

Voted 96.9 +/- 1.3 96.8 +/- 1.4 97 +/- 1.4 96.6 +/- 1.6 97 +/- 1.6 97.2 +/- 1.4 96.8 +/- 1.4 96.9 +/- 1.5

Bupa

Last 57.5 +/- 7.8 69.8 +/- 6.5 61.5 +/- 6.3 68.9 +/- 4.1 69.9 +/- 5.7 69.8 +/- 5.8 69.8 +/- 6.5 70.9 +/- 5.9

Longest 64.1 +/- 7.1 64.1 +/- 7.1 64.1 +/- 6.6 65.3 +/- 4.3 65.3 +/- 4.3 64.1 +/- 6.6 65.3 +/- 4.3 64.1 +/- 6.6 66.5 +/- 8.6 63.2 +/- 5.2

Voted 68.9 +/- 5.8 68.9 +/- 5.8 67.5 +/- 6.4 68.9 +/- 6.3 68.9 +/- 6.3 67.5 +/- 6.2 68.9 +/- 6.3 67.2 +/- 6.0

Wdbc

Last 92.4 +/- 2.9 93 +/- 2.7 93.2 +/- 2.5 91.6 +/- 2.7 92.8 +/- 2.8 93.2 +/- 2.8 93 +/- 2.7 93.5 +/- 2.2

Longest 92.4 +/- 2.0 91.7 +/- 2.5 92.1 +/- 2.5 92.3 +/- 2.3 93.2 +/- 1.7 92.5 +/- 2.1 92.6 +/- 2.1 91.4 +/- 2.9 92.8 +/- 4.4 94.7 +/- 2.1

Voted 92.3 +/- 2.3 92.3 +/- 2.6 92.8 +/- 2.7 91.7 +/- 1.9 91.6 +/- 2.2 92.4 +/- 2.4 91.6 +/- 2.6 92.8 +/- 2.3

Crx

Last 62.5 +/- 5.1 68.7 +/- 2.9 64.5 +/- 4.1 65.8 +/- 4.1 68.1 +/- 3.5 68.7 +/- 2.2 68.7 +/- 2.9 67.8 +/- 2.8

Longest 55.1 +/- 7.3 60.4 +/- 6.5 62.6 +/- 4.8 62.6 +/- 4.4 64.5 +/- 4.9 60.9 +/- 5.7 62.9 +/- 4.6 59.4 +/- 6.7 76.6 +/- 13.7 65.9 +/- 22.8

Voted 64.9 +/- 4.0 64.2 +/- 2.7 65.4 +/- 3.2 66.2 +/- 3.8 66.4 +/- 3.7 64.9 +/- 2.6 65.7 +/- 3.3 64.3 +/- 3.1

Ionosphere

Last 86.6 +/- 3.8 87.2 +/- 3.4 86.3 +/- 3.5 85.7 +/- 4.8 86.9 +/- 3.4 86.9 +/- 2.6 86.6 +/- 3.0 86.6 +/- 2.6

Longest 87.2 +/- 3.8 86.9 +/- 2.6 87.8 +/- 3.6 87.5 +/- 3.5 86.9 +/- 4.0 87.2 +/- 3.2 86.9 +/- 3.4 87.7 +/- 2.9 87.1 +/- 7.1 86.9 +/- 4.2

Voted 88 +/- 3.7 86.3 +/- 4.3 86.6 +/- 3.5 87.7 +/- 3.2 87.5 +/- 3.2 87.7 +/- 3.1 86 +/- 4.9 86 +/- 3.9

Wpbc

Last 77.3 +/- 4.7 76.7 +/- 4.4 76.4 +/- 4.4 75.1 +/- 6.1 75.1 +/- 6.1 77 +/- 5.2 75.7 +/- 6.2 78.3 +/- 5.1

Longest 77.2 +/- 3.8 76.7 +/- 5.3 75.8 +/- 3.6 75.8 +/- 6.0 76.9 +/- 4.4 74.8 +/- 4.3 75.8 +/- 4.4 74.6 +/- 5.4 78.6 +/- 7.8 78.6 +/- 8.4

Voted 78.8 +/- 4.7 78.5 +/- 4.8 79 +/- 5.0 76.4 +/- 4.8 76.9 +/- 4.8 79 +/- 5.0 76.9 +/- 4.8 78.5 +/- 5.1

Sonar

Last 71.9 +/- 6.3 73.1 +/- 5.4 72.4 +/- 6.0 75.5 +/- 6.4 72.1 +/- 7.4 71.1 +/- 6.5 74.1 +/- 6.4 73.6 +/- 5.1

Longest 75.3 +/- 5.1 77.6 +/- 6.2 73.3 +/- 6.0 74.3 +/- 6.9 73.5 +/- 5.9 74.1 +/- 7.5 74 +/- 5.5 78.1 +/- 6.6 57.2 +/- 11.9 55 +/- 11.8

Voted 75.1 +/- 6.0 75.6 +/- 6.9 74.3 +/- 5.6 77.5 +/- 7.0 78.1 +/- 7.0 77.1 +/- 7.2 76.1 +/- 7.9 75.6 +/- 6.9

f=50,N=0.05,M=0.05

Last 81.7 +/- 6.5 87.7 +/- 6.1 84.6 +/- 6.6 87.2 +/- 5.2 88 +/- 5.2 89.4 +/- 4 89 +/- 4.6 89.5 +/- 4.2

Longest 86.6 +/- 4.3 88.2 +/- 4.2 85.6 +/- 4.7 87.3 +/- 6.1 89.4 +/- 4.5 88.2 +/- 3.9 89 +/- 5.4 88.8 +/- 3.6

Voted 87.5 +/- 3.3 88.8 +/- 4.8 86.3 +/- 3.9 88.3 +/- 4.2 88.2 +/- 4.9 88.8 +/- 4.8 88.7 +/- 4.9 88.8 +/- 4.8
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Table 3.7: Parameter Optimization Results for Large Datasets

Nothing τ λ τ × λ τ → λ

USPS

Last 87.4 90.7 87.4 90.3 90.2

Longest 87.5 89.9 87.4 90.3 89.9

Voted 89.7 90.9 89.6 90.9 90.9

Adult

Last 81.9 83.9 83 83.8 83.8

Longest 83.4 83.4 83.4 83.6 83.4

Voted 84.4 84.2 84.4 84.3 84.3

MNIST

Last 85.6 87.1 85.5 87.1 87.1

Longest 79.8 86.8 79.8 86.8 86.8

Voted 88 88.4 88 88.4 88.4

USPS,degree 4 poly kernel

Last 92.9 93.6

Longest 91.6 92.9

Voted 92.7 93.2

MNIST,degree 4 poly kernel

Last 95.2 95.4

Longest 93.2 94.9

Voted 94.8 95

mance in the other cases, hence the parameter selection indeed picks good values.

Both τ and the Voted Perceptron provide consistent improvement over the classical

Perceptron; the longest survivor provides improvement over the classical Perceptron

on its own, but a smaller one than voted or τ in most cases. Except for improve-

ments over the classical Perceptron, none of the differences between algorithms is

significant according to the T -intervals calculated. As observed above in parameter

search, the variants with α and λ offer improvements in some cases, but when they

do, τ and voted almost always offer a better improvement. Ignoring the intervals we

also see that neither the τ variant nor the voted Perceptron dominates the other.

Combining the two is sometimes better but may decrease performance in the high

variance cases.

For further comparison we also ran experiments with kernel based versions of

the algorithms. Typical results in the literature use higher degree polynomial kernel

on the “MNIST” and “USPS” datasets. Table 3.7 includes results using τ with a
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degree 4 polynomial kernel for these datasets. We can see that for “MNIST” the

variants make little difference in performance but that for “USPS” we get small

improvements and the usual pattern relating the variants is observed.

Finally, Table 3.6 also gives results for SVM. We have used SVMlight [Joachims,

1999] and ran with several values for the constants controlling the soft margin.

For L1 optimization the values used for the “-c” switch in SVMLight are {10−5,

10−4, 10−3, . . .,104}. For the L2 optimization, we used the following values for λ:

{10−4, 10−3, . . . , 103}. The results for SVM are given for the best parameters in a

range of parameters tried. Thus these are parameter search values and essentially

give upper bounds on the performance of SVM on these datasets. As can be seen

the Perceptron variants give similar accuracies and smaller variance and they are

therefore an excellent alternative for SVM.

3.3 Discussion and Conclusions

The chapter provides an experimental evaluation of several noise tolerant variants

of the Perceptron algorithm. The results are surprising because they suggest that

the Perceptron with Margin is the most successful variant although it is the only

one not designed for noise tolerance. The Voted Perceptron has similar performance

in most cases, and it has the advantage that no parameter selection is required for

it. The difference between voted and Perceptron with Margin are most noticeable

in the artificial datasets, and the two are indistinguishable in their performance

on the UCI data. The experiments also show that the soft-margin variants are

generally weaker than voted or margin based algorithms and they do not provide

additional improvement in performance when combined with these. Both the Voted

Perceptron and the margin variant reduced the deviation in accuracy in addition to

improving the accuracy. This is an important property that adds to the stability of

the algorithms. Combining voted and Perceptron with Margin has the potential for

further improvements but can harm performance in high variance cases. In terms
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of run time, the Voted Perceptron does not require parameter selection and can

therefore be faster to train. On the other hand its test time is slower especially if

one runs the primal version of the algorithm.

Overall, the results suggest that a good tradeoff is obtained by fixing a small

(relative to the average norm of the examples) value of τ . We suggest τ = 0.1; this

gives significant improvements in performance without the training time penalty for

parameter optimization or the penalty in test time for voting. In addition, because

we have ruled out the use of the soft margin α variant we no longer need to run the

algorithms for a large number of iterations. While in our experiments we used 100

iterations as the default for thoroughness, fewer iterations may well be sufficient.

We suggest at least 20 iterations with a learning rate of 0.1 (see Figure 3.2 and

discussion). For very large datasets, even 20 iterations may present a challenge in

terms of run-time, and in these cases we suggest scaling η inverse-proportionately

to the number of iterations as we do in Section 4.4.

Our results also highlight the problems involved with parameter selection. The

method of double cross-validation is time intensive and our experiments for the large

datasets were performed using the primal form of the algorithms as the dual form is

too slow. In practice, with a large dataset one can use a hold-out set for parameter

selection so that run time is more manageable. Such results must be accompanied

by estimates of the deviation to provide a meaningful interpretation.

As mentioned in the introduction a number of variants that perform margin

based updates exist in the literature [Friess et al., 1998, Gentile, 2001, Li and Long,

2002, Crammer et al., 2005, Kivinen et al., 2004, Shalev-Shwartz and Singer, 2005,

Tsampouka and Shawe-Taylor, 2005]. For example, aggressive ROMMA [Li and

Long, 2002] explicitly maximizes the margin on the new example, relative to an

approximation of the constraints from previous examples. NORMA [Kivinen et al.,

2004] performs gradient descent on the soft margin risk resulting in an algorithm that

rescales the old weight vector before the additive update. The Passive-Aggressive
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Algorithm [Crammer et al., 2005] adapts η on each example to guarantee it is imme-

diately separable with margin (although update size is limited per noisy data). The

Ballseptron [Shalev-Shwartz and Singer, 2005] establishes a normalized margin and

replaces margin updates with updates on hypothetical examples on which a mistake

would be made. ALMA [Gentile, 2001] renormalizes the weight vector in order to

establish a normalized margin. ALMA is distinguished by tuning its parameters

automatically during the on-line session, as well as having “p-norm variants” that

can lead to other tradeoffs improving performance, for instance when the target is

sparse. The algorithms of Tsampouka and Shawe-Taylor [2005] establish normal-

ized margin by different normalization schemes. Following Freund and Schapire

[1999] most of these algorithms come with mistake bound guarantees (or relative

loss bounds) for the unrealizable case, i.e., relative to the best hypothesis in a com-

parison class. Curiously, identical or similar bounds hold for the basic Perceptron

algorithm so that these results do not establish an advantage of the variants over

the basic Perceptron.

Another interesting algorithm, the Second Order Perceptron [Cesa-Bianchi et al.,

2005], does not perform margin updates but uses spectral properties of the data in

the updates in a way that can reduce mistakes in some cases.

Additional variants also exist for the on-line to batch conversions. Littlestone

[1989] picks the best hypothesis using cross validation on a separate validation set.

The Pocket algorithm with ratchet [Gallant, 1990] evaluates the hypotheses on the

entire training set and picks the best, and the scheme of Cesa-Bianchi et al. [2004]

evaluates each hypothesis on the remainder of the training set (after it made a

mistake and is replaced) and adjusts for the different validation set sizes. The

results in [Cesa-Bianchi et al., 2004] show that loss bounds for the on line setting

can be translated to error bounds in the batch setting even in the unrealizable case.

Finally, experiments with aggressive ROMMA [Li and Long, 2002, Li, 2000] have

shown that adding a Voted Perceptron scheme can harm performance, just as we

44



observed for the margin Perceptron. To avoid this, Li [2000] develops a scheme that

appears to work well where the voting is done on a tail of the sequence of hypotheses

which is chosen adaptively [see also Dekel and Singer, 2005, for more recent work].

Consider the noise tolerance guarantees for the unrealizable case. Ideally, one

would want to find a hypothesis whose error rate is only a small additive factor

away from the error rate of the best hypothesis in the class of hypotheses under

consideration. This is captured by the agnostic PAC learning model [Kearns et al.,

1994]. It may be worth pointing out here that, although we have relative loss bounds

for several variants and these can be translated to some error bounds in the batch

setting, the bounds are not sufficiently strong to provide significant guarantees in

the agnostic PAC model. Hence this remains a major open problem to be solved.

In light of the discussion above, several interesting questions arise from our ex-

perimental results. The first is whether the more sophisticated versions of margin

Perceptron add significant performance improvements. In particular it would be

useful to know what normalization scheme is useful and in what contexts in order

that they can be clearly applied. We have raised parameter tuning as an impor-

tant issue in terms of run time and the self tuning capacity of ALMA and related

algorithms seems promising as an effective solution. Given the failure of the simple

longest survivor it would be useful to evaluate the more robust versions of [Gallant,

1990, Cesa-Bianchi et al., 2004]. Notice, however that these methods have a cost

in training time. Alternatively, one could further investigate the tail variants of the

voting scheme [Li, 2000] or the “averaging” version of voting [Freund and Schapire,

1999, Gentile, 2001], explaining when they work with different variants and why.

Finally, as mentioned above, to our knowledge there is no theoretical explanation

to the fact that Perceptron with Margin performs better than the basic Perceptron

in the presence of noise. Resolving this is an important problem.
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Chapter 4

A New Kernel for Learning

from Hypergraphs

In this chapter we investigate kernels for learning from graphs and hypergraphs. This

is an example of learning from structured data, where the natural structure of the

data cannot be trivially captured by explicit features. In Chapter 3, we explored

the performance of several kernel methods in a general setting. Here we develop

kernels that make it possible for kernel methods to achieve excellent performance

when the input is a hypergraph.

There is significant recent work in the area of learning from graphs [Kramer and

De Raedt, 2001, Deshpande et al., 2003, Gärtner et al., 2003, Fröhlich et al., 2005]. A

prime application of this setting is learning to classify molecules. Here each molecule

is a separate example labeled according to some property (e.g., carcinogenicity) and

one would like to predict the labels of new examples. The atom-bond structure of

the molecule is typically used as the underlying graph structure of the example, and

the nodes and edges of the graph are annotated with atom and bond types.

Learning from graphs is a special case of a problem commonly studied in In-

ductive Logic Programming (ILP) under the name of Learning from Interpreta-

tions [De Raedt and Dzeroski, 1994]. Here each example is an interpretation from
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Figure 4.1: From left to right: H1,H2,H3, and R. The letters are the hyperedge
labels. The numbers represent each node’s position within a hyperedge.

logic programming, which can be seen as a labeled ordered hypergraph. For ex-

ample, the hypergraph H1 with nodes {n1, n2, n3, n4, n5}, hyperedge (n1, n2, n3)

labeled p, and hyperedge (n1, n3, n4) labeled q can be compactly described as H1 =

{p(n1, n2, n3), q(n1, n4, n5)}. This generalizes the usual notion of a directed graph,

in that edges have more than two endpoints and the order of nodes is important. A

graphical representation of H1 is given in Figure 4.1. Similarly hypergraphs H2 =

{p(n1, n2, n3), p(n1, n5, n6), q(n4, n3, n5)}, and H3 = {p(n1, n2, n3), q(n1, n3, n4)} could

be different examples in our problem domain. Typically ILP algorithms learn hy-

potheses represented as sets of first order logic rules and these are used to classify

the interpretations [Muggleton, 1995, Quinlan, 1990, Arias et al., 2007]. For ex-

ample, the rule R = [∃w, x, y, z, p(w, x, y)q(w, y, z) → Positive] classifies H3 as

positive and H1 and H2 as negative. As Figure 4.1 illustrates, a rule can be seen

as a “hypergraph pattern” and its coverage of examples corresponds to hypergraph

homomorphism. The search involved in ILP rule learning is complex and the match-

ing problem, that is, checking whether a rule covers an example, is computationally

hard. As a result such systems are typically slow and not easy to apply for large

datasets.

The use of kernel methods over discrete structures, and in our case ordered

hypergraphs, offers an attractive alternative. Recall from Section 2.1 that a kernel

function calculates an inner product over some implicit feature space, and typically

one uses a linear threshold classifier, such as Perceptron or SVM (see Section 2.2), to

classify examples. A natural goal would be to capture each first-order logic rule as
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one feature in order that the linear threshold function can combine the predictions

of different rules. Notice that each rule corresponds to a potential sub-structure

of the hypergraph. Therefore features in the implicit space correspond directly to

substructures. Indeed, variants of this idea have already been studied for the special

case of graphs, and are known as graph kernels [Gärtner et al., 2003, Kashima et al.,

2003].

In this chapter we introduce a new kernel for ordered hypergraphs. To our

knowledge this is the first kernel that applies to the general case of learning directly

from interpretations, i.e., hypergraphs. We therefore benefit from the data setup

of ILP and can use the kernel wherever learning from interpretations [De Raedt

and Dzeroski, 1994] can be used, easily supporting relational data and background

knowledge. The kernel generalizes graph kernels in that its features are based on

walks in the hypergraph. The walk-based feature space of our kernel captures a

large set of potential rules, so that our hypotheses can be seen as a weighted vote

of ILP rules. The analogy to ILP breaks on two issues. First, as we discuss later in

the chapter, not all ILP rules are expressible by walks, hence there is some trade-

off when using the kernel as opposed to an ILP system. Second, while the kernel

naturally takes input that is encoded as in ILP, the output of a kernel method

using the kernel will not produce explicit rules that are useful in some applications.

Despite these differences we show that the kernel does produce good results in terms

of accuracy and is therefore useful when explicit rules are not a requirement.

Our kernel differs in important ways from previous graph kernel constructions

and induces a new graph kernel when the data happen to be (non-hyper-)graphs.

First, our kernel can recognize larger sub-structures than other walk-based kernels

using the same length walk. This is a direct result of the way in which we extend

walks. Second, unlike previous walk-based methods we consider only finite-length

walks and therefore do not need to “discount” long walks in the kernel in order to

guarantee convergence. Third, we provide a dynamic programming algorithm to
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calculate the kernel, leading to reasonable run times even on large datasets.

In the experimental section we use real and artificial data. We use the Percep-

tron Algorithm with Margins [Krauth and Mézard, 1987] that has been shown in

Chapter 3 to be competitive with Support Vector Machines in terms of accuracy but

has a lower runtime. For real data, we choose several challenging chemical datasets:

the estrogen binding dataset [Fang et al., 2001, Blair et al., 2000, Branham et al.,

2002], the predictive toxicology challenge [Helma et al., 2001], and the HIV dataset

from NCI/NIH.1

Our results demonstrate that the kernel outperforms existing ILP methods, and

leads to performance comparable to other graph kernels when used on graph data.

In investigating previous work with ILP and graph kernels, we found that ILP papers

typically use a simple graph representation (we call this encoding 1 below) whereas

graph kernel papers typically use a richer representation (we call this encoding 3

below). Therefore when comparing to ILP methods, we also compare across these

representations. The results show that encoding 3 improves the performance of

the hypergraph kernel significantly, but does not help the performance of the ILP

methods tested.

We give insight into how the parameters of the kernel (walk length and discount-

ing, explained below) affect performance. We present evidence that discounting

walks as a function of their length, which is common in the literature, does not lead

to a significant difference in performance. On the other hand the walk length is

important and must be suitably chosen for every application.

We show that hyperedges lead to an improvement in performance using both

artificial and natural data. The artificial data highlight the advantage of using

the hypergraph representation directly in contrast with a translation capturing the

same data using a graph. The experiments show that transforming the hypergraph

into a graph has a direct negative impact on performance. We also show, using

1http://dtp.nci.nih.gov/docs/aids/aids data.html
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the Mutagenesis dataset, that incorporating background knowledge in the form of

hyperedges (that exist for this dataset [Srinivasan et al., 1996]) indeed leads to

performance improvements.

To summarize, the main contributions of this chapter is a new kernel suitable

for the general case of learning from interpretations. Experimental results show

that the kernel is effective both in terms of run time and in terms of classifica-

tion performance. The experiments also highlight the crucial role of data encoding

and identify an encoding that seems particularly suited to chemical applications.

Finally we show that using our kernel and working directly with the hypergraph

data can boost classification performance when compared to using a graph kernel

on transformed hypergraph data.

The rest of the chapter is organized as follows. Section 4.1 gives some basic

definitions and notation. In Section 4.2 we define our kernel and discuss potential

variants to the basic kernel. This is followed by a more in-depth discussion of related

work in Section 4.3. The experimental results are given in Section 4.4.

4.1 Definitions and Notation

Definition 4.1.1. A labeled directed graph, G = (V,E), is a set of nodes V , and a

set of edges E ⊆ V ×V . Every edge and every vertex is annotated with a label from

a fixed set of labels L.

Hypergraphs are normally defined as a generalization of undirected graphs but

here we define them as a generalization of directed graphs as follows.

Definition 4.1.2. A labeled ordered hypergraph, G = (V,E) has a set of vertices

V and a set of edges E. Each edge e ∈ E is a tuple of vertices, (v1, . . . , vn) where

n ≥ 1 is the arity of the edge. Every edge is labeled with a label from L. We do not

label vertices; instead we can use edges of arity 1. Furthermore, we allow parallel

edges, that is, the same tuple can exist in E multiple times, but with different labels.
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Example of ordered hypergraphs are given in the previous section (see Figure 4.1).

Definition 4.1.3. A walk in a directed graph is a sequence of vertices and edges

v1, e1, v2, . . . , en−1, vn such that ei = (vi, vi+1) ∈ E. We define a walk in an ordered

hypergraph as a sequence of hyperedges where every two consecutive edges have at

least one node in common, and no consecutive edges are identical. We represent a

walk by explicitly specifying indices of the nodes shared by two edges. In particular,

we use a string P = p1i1j1p2i2j2p3 . . . in−1jn−1pn where pl ∈ E, every ik represents

the exit position of pk and every jk represents the entry position of pk+1. For

example, P = p(n1, n2, n3), 1, 1, p(n1, n5, n6), 2, 3, q(n4, n3, n5) represents a walk in

H2. Notice that the ordering of edge arguments is important because we track entry

and exit positions for the nodes.

Definition 4.1.4. A walk type is specified by a string w = r1i1j1r2i2j2r3 . . . in−1jn−1rn

where rl is an edge label. For example, the walk type of P given above is w =

p, 1, 1, p, 2, 3, q. Thus a walk identifies individual edges, whereas a walk type gener-

alizes the walk and only includes edge labels. Although every walk in a hypergraph

is unique, walk types are not; two walks are of the same type iff the strings repre-

senting them are identical.

In the following we define a kernel whose features correspond to walk types.

Notice that walk types are less expressive than rules in that they make fewer dis-

tinctions. In our example, walk type w = p, 1, 1, q captures hypergraphs H1 and H3,

walk type w = p, 3, 2, q captures H2 and H3, but there is no walk type equivalent to

the rule R from the introduction which captures H3 but neither of H1,H2.

We need the following additional notation. For edge pi in hypergraph G, rel(pi)

denotes its label, and pj
i denotes the vertex at position j in the edge. The string x.y

denotes the string resulting from concatenating string y to x. Finally, for edge pi

in hypergraph G and walk type w we define #(G, pi, w) to be the number of walks

of type w starting at edge pi in G. Note that if #(G, pi, w) > 0 then w begins with

rel(pi).
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4.2 A Hypergraph Kernel

We first define a kernel operating on hypergraphs that are “rooted” at particular

edges. We then define a kernel operating on hypergraphs in general, and finally

discuss variants and extensions of these kernels.

4.2.1 A Kernel Rooted at Specific Edges

The following kernel Kn() operates on pairs of hypergraphs and edges so it should

be written as Kn((G1, p1), (G2, p2)) but to simplify the presentation we omit G1 and

G2 from the equations. We also omit the fact that p1 and p′1 are always in G1 and

p2 and p′2 are always in G2.

Definition 4.2.1. The kernel Kn() is defined recursively as follows:

K1(p1, p2) = 1 iff rel(p1) = rel(p2)

K1(p1, p2) = 0 otherwise

Kn(p1, p2) = K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

p′1:p
i
1=p′j1

∑

p′2:p
i
2=p′j2

Kn−1(p
′
1, p

′
2).

where in the sum above p′1 6= p1 and p′2 6= p2, k is the arity of p1 and max arity

refers to the maximum arity of any edge in G1 or G2. The expression p′1 : pi
1 = p′j1

means “an edge p′1 such that the ith vertex of p1 is the same as the jth vertex of

p′1.”

The definition immediately gives a dynamic programming algorithm to calculate

the kernel by incrementally calculating Kℓ() for ℓ = 2 to any desired n. It may seem

that we need (max arity)2|E|2 steps to calculate each individual kernel value. One

can do much better, however, for sparse hypergraphs (where the number of neighbors

is small) by appropriately encoding the neighbors of each node. We next prove that

Kn() is indeed a kernel by showing explicitly that it is an inner product for a feature
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space indexed by all walk types, and where the feature indexed by w takes value

#(G, p,w).

Theorem 4.2.2.

Kn(p1, p2) =
∑

walk type w
of length n

#(G1, p1, w) ·#(G2, p2, w).

Proof. By induction on n. Base case for n = 1. Note that walk types of length 1

are simply edge labels. Hence, we need to show that

K1(p1, p2) =
∑

edge
label w

#(G1, p1, w) ·#(G2, p2, w).

The sum is zero unless p1 and p2 have the same edge label and w is that label, in

which case the sum is 1. Assume the claim is true for n = ℓ− 1. Then

Kℓ(p1, p2) =K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

p′1:p
i
1=p′j1

∑

p′2:p
i
2=p′j2

Kℓ−1(p
′
1, p

′
2) (4.1)

=K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

p′1:p
i
1=p′j1

∑

p′2:p
i
2=p′j2

∑

w of
length ℓ−1

#(G1, p
′
1, w) ·#(G2, p

′
2, w)

(4.2)

=K1(p1, p2)

k
∑

i=1

max
arity
∑

j=1

∑

w of
length ℓ−1











∑

p′1:

pi
1=p′j1

#(G1, p
′
1, w)





















∑

p′2:

pi
2=p′j2

#(G2, p
′
2, w)











(4.3)

=K1(p1, p2)
k

∑

i=1

max
arity
∑

j=1

(4.4)

∑

w of
length ℓ−1

#(G1, p1, rel(p1).i.j.w) ·#(G2, p2, rel(p2).i.j.w).
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Where the transition from (4.1)-(4.2) is by the induction hypothesis; (4.2)-(4.3) by

reordering summations; (4.3)-(4.4) follows by definition of #(., ., .).

Consider a string w′ representing a walk type of length ℓ − 1. By adding

rel(p1).i1.j1 to the string we create a new walk type w of length ℓ. Now if we

consider an arbitrary walk type w of length ℓ, if w does not start with rel(p1) then

#(G1, p1, w) is 0. We can therefore replace (4.4) above with

K1(p1, p2)
∑

w of
length ℓ

#(G1, p1, w) ·#(G2, p2, w).

Finally, if p1, p2 do not have the same edge label then for every w at least one of

#(G1, p1, w), #(G2, p2, w) is 0 and therefore the sum is 0 thus we can omit K1 from

the expression. Similarly, if p1, p2 do have the same relation symbol K1 = 1 and we

can omit K1. Hence, as required, we have

Kℓ(p1, p2) =
∑

w of
length ℓ

#(G1, p1, w) ·#(G2, p2, w).

4.2.2 A Gappy Kernel for Hypergraphs

A modification to the hypergraph kernel allows us to compute the number of match-

ing walks up to a certain length, and with a certain number of gaps.

Definition 4.2.3 (Gap). Following Gärtner et al. [2003], we extend the alphabet of

walk types to include the symbol ‘###’. The symbol takes the place of an entire

segment of a walk (entry position, hyperedge label, and exit position). We say that

a walk type contains g gaps if the walk type uses the ### symbol g times. For

instance the walk 1e1(n1, n2, n3)12e2(n4, n1, n5), where rel(e1) = p and rel(e2) = r

does not match walk type 1p12q3 (since rel(e2) 6= q) but matches walk type 1p12r3,

walk types 1p1### and ###2r3 (that have one gap), and walk type ######

(that has two gaps).

The definition of a gap is motivated by the interpretation of a walk as a conjunc-
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tion of predicates. Using this definition, a gap is equivalent to a single mismatched

term in a conjunction of predicates. Because we are grouping walk types into seg-

ments of entry position, relation type, and exit position, we must think about what

the first entry position in a walk type means. It is simply the starting node of the

walk. Hence “1p2 . . .” means the walk type starts in position 1 of an edge labeled

p, and exits that edge through position 2.

The following notation is needed for the definition of the kernel. If a walk in the

hypergraph takes a step from p to q via node n, we call n’s position in p exit(p, q),

and n’s position in q entry(p, q). As hyperedges can have more than one node (or

occurrence of a node) in common, to simplify notation we define

∑

p′1
incident

≡
∑

p′1

∑

exit(p1,p′1)

∑

entry(p1,p′1)

.

Finally we use the previous kernel with n = 1:

K1(p1, p2) = as given in Definition 4.2.1.

The kernel is defined as follows:

Kn,g(p1, p2, I, J) = 0,∀g < 0 (4.5)

Kn,g(p1, p2, I, J) = Kn,n(p1, p2, I, J),∀g > n (4.6)

K1,0(p1, p2, I, J) = δ(I, J)K1(p1, p2)arity(p1) (4.7)

K1,1(p1, p2, I, J) = arity(p1) ∗ arity(p2) + K1,0(p1, p2, I, J) (4.8)

Kn,g(p1, p2, I, J) = δ(I, J)K1(p1, p2)

k
∑

i=1

∑

p′1:p
i
1=p

′j1
1

∑

p′2:p
i
2=p

′j2
2

Kn−1,g(p
′
1, p

′
2, j1, j2)

+
∑

p′1
incident

∑

p′2
incident

Kn−1,g−1(p
′
1, p

′
2, entry(p1, p

′
1), entry(p2, p

′
2)).

(4.9)
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The first line in (4.9) sums over all exit positions i in p1 and p2. For each such

position we consider all potential entry positions j1, j2 in p′1, p
′
2 respectively. Hence

the exit position from p1, p2 is the same and fixed to i; together with δ(I, J)K1(p1, p2)

we get a complete coordinated triple in a walk type. On the other hand the entry

positions for the next triple, j1, j2, are not forced to be the same. The second line

in (4.9) sums over all exit and entry positions and does not coordinate these for

p1, p2. As we show next this yields a kernel with features indexed by walk types

that include gaps:

Theorem 4.2.4. Let

gaps(w) = number of occurrences of ### in w,

#(G, p, i, w) = number of walks of type w in G starting at position i of hyperedge p,

then

Kn,g(p1, p2, I, J) =
∑

w|gaps(w)≤g,
length(w)=n

#(G1, p1, I, w)#(G2, p2, J, w) (4.10)

Proof. We show by induction on n that for all g ≥ 0, Kn,g satisfies (4.10). The base

case is for n = 1. To see that (4.7) is correct, note that the number of length one

walk types starting at p1 at position I is equal to the number of possible completions

of the length one walk type beginning I.rel(p1), i.e., any exit position in p1. If p1

and p2 are of the same type and I = J , then for every possible position i in p1 (or

p2 as they are the same type) there is a walk type I.rel(p1).i that occurs once in G1

starting at position I of p1 and once in G2 starting at position I of p2. Now to see

that (4.8) is correct, observe that for any p1 ∈ G1 and I, the length one walk type

### matches the walk Ip1i for any possible i, hence the total number of times that

### matches in G1 starting at p1 in position I is the arity of p1, and similarly for

p2. We add K1,0 to the product of the arities to account for length one walk types
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that are not ###. Because of (4.6), by showing (4.10) is true for n = 1, g = 0 and

n = 1, g = 1, we have shown it is true for n = 1 and any g ≥ 0.

Assume that for ℓ = n − 1, Kℓ,g satisfies (4.10) for all g ≥ 0. For the inductive

step consider first the case with ℓ = n and g ≥ 1:

Kn,g(p1, p2, I, J) =

δ(I, J)K1(p1, p2)

k
∑

i=1

∑

p′1:p
i
1=p

′j1
1

∑

p′2:p
i
2=p

′j2
2

Kn−1,g(p
′
1, p

′
2, j1, j2)

+
∑

p′1
incident

∑

p′2
incident

Kn−1,g−1(p
′
1, p

′
2, entry(p1, p

′
1), entry(p2, p

′
2)) (4.11)

=δ(I, J)K1(p1, p2)
k

∑

i=1

∑

p′1:p
i
1=p

′j1
1

∑

p′2:p
i
2=p

′j2
2

∑

w|gaps(w)≤g,
length(w)=n−1

#(G1, p
′
1, w, j1)#(G2, p

′
2, w, j2)

+
∑

p′1
incident

∑

p′2
incident

∑

w|gaps(w)≤g−1,
length(w)=n−1

#(G1, p
′
1, w, entry(p1, p

′
1))#(G2, p

′
2, w, entry(p2, p

′
2))

(4.12)

=δ(I, J)K1(p1, p2)
∑

w|gaps(w)≤g,
length(w)=n−1

k
∑

i=1







∑

p′1:p
i
1=p

′j1
1

#(G1, p
′
1, w, j1)













∑

p′2:p
i
2=p

′j2
2

#(G2, p
′
2, w, j2)







+
∑

w|gaps(w)≤g−1,
length(w)=n−1









∑

p′1
incident

#(G1, p
′
1, w, entry(p1, p

′
1))

















∑

p′2
incident

#(G2, p
′
2, w, entry(p2, p

′
2))









(4.13)

=δ(I, J)K1(p1, p2)
∑

w|gaps(w)≤g,
length(w)=n−1

k
∑

i=1

#(G1, p1, I.rel(p1).i.w, I)#(G2, p2, J.rel(p2).i.w, J)

+
∑

w|gaps(w)≤g−1,
length(w)=n−1

#(G1, p1,###.w, I)#(G2, p2,###.w, J) (4.14)
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=
∑

w|gaps(w)≤g,
length(w)=n
w[0] 6=###

#(G1, p1, w, I)#(G2, p2, w, J) +
∑

w|gaps(w)≤g,
length(w)=n
w[0]=###

#(G1, p1, w, I)#(G2, p2, w, J)

(4.15)

For the transition (4.11)-(4.12) we apply the inductive hypothesis and (4.13) is

obtained by rearranging the summations.

In the first line of (4.14) we extend each n−1 length walk type w by pre-pending

I.rel(p1).i for G1 and J.rel(p2).i for G2. The first triple of the resulting walk type,

I.rel(p1).i.w in G1, is not a gap. Therefore, this guarantees that every incidence

p′1 (and its entry position) via p1’s i’th node is counted exactly once for each walk

continuation, just like in (4.13).

Next consider the transition to the first term in (4.15). In (4.14) if the two

extensions to w are not of the same type, the expression δ(I, J)K1(p1, p2) = 0. In

the first term of (4.15) we sum over all walk types w of length n but require that

the first leg of w is not ###. We can omit δ(I, J)K1(p1, p2) because we specify

that the first leg of the walk is not a gap; hence if the walk type w does not begin

with I.rel(p1) then #(G1, p1, w, I) = 0 and similarly for G2. Their identity is forced

by the shared value in w. Similarly the joint exit position i is forced because the

expressions for the two graphs share the exit position value from w.

In the second line of (4.14), we express the extension of walk type w of length

n − 1 with ###.w. In this summation we are fixing the first leg of the length n

walk to be the gap symbol which will match the first leg of any walk. Hence we sum

over all possible first legs starting at p1 and p2, that is, all incident edges. Since the

walk type starts with a gap, we decrease the number of “available” gaps left in the

rest of the walk type w of length n − 1. This is equivalent to the second term in

(4.15), in which we sum over all walk types of length n with up to g gaps such that

the first leg of w is a gap.

As the two sums in (4.15) are over complementary walk types whose union is all
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walk types, we can replace (4.15) with

∑

w|gaps(w)≤g,
length(w)=n

#(G1, p1, w, I)#(G2, p2, w, J).

Finally consider the case where ℓ = n and g = 0. Notice that the second lines of

(4.11) - (4.14) and the second term of (4.15) are equal to 0 by (4.5). Hence the first

term in (4.15) is summing exactly over walk types with no gaps.

4.2.3 A General Kernel for Hypergraphs

We next define another kernel K ′
n() that extends the kernel from Definition 4.2.1,

operating over entire hypergraphs:

Definition 4.2.5.

K ′
n(G1, G2) =

∑

p1∈E1

∑

p2∈E2

Kn(p1, p2) (4.16)

One can show that (4.16) is a kernel by re-writing it as

∑

w of
length ℓ





∑

p1∈G1

#(G1, p1, w)









∑

p2∈G2

#(G2, p2, w)





The first inner sum is the total number of walks of type w in G1 and likewise the

second inner sum for G2. In this representation it is easy to see that every element

of the outer sum is the total number of walks of type w in G1 times the total number

of walks of type w in G2.

4.2.4 Discounting and Normalizing

A general idea in string and graph kernels, where we consider an infinite number

of features, is to discount the contribution of longer walks. Indeed, this discount

factor is necessary in order to achieve convergence when summing contributions of
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all possible walks on length 1 to ∞ [Gärtner et al., 2003]. Another standard variant

is to normalize the norm of the examples in the kernel feature space.

These are implemented using our kernel as follows.

Definition 4.2.6 (Discounted Kernel).

KD
n (G1, G2) =

n
∑

i=1

γiK ′
i(G1, G2) (4.17)

K
′D
n (G1, G2) =

KD
n (G1, G2)

√

KD
n (G1, G1)KD

n (G2, G2)
(4.18)

It follows from standard properties that (4.17) and (4.18) are kernels [Cristianini

and Shawe-Taylor, 2000]. Notice that with γ < 1 we get discounting. However, for

our kernel γ is not restricted in this way. In fact, we can emphasize the contribution

of longer walks by using γ > 1. This is intuitively appealing because longer walks

give more informative matches between the graphs.

4.3 Discussion and Related Work

Our work is closely related to graph kernels as well as several approaches in ILP and

relational data mining. In the following, we discuss the relations to these, placing

our work in context.

4.3.1 Kernels and Similarity functions for Graphs and Hypergraphs

The inspiration for our work comes largely from previous work on graph kernels [e.g.,

Gärtner et al., 2003, Kashima et al., 2003, Horváth et al., 2004] and the potential

to extend it to be applicable to the entire range of problems addressed by ILP. One

important basic result for graph kernels shows that it is computationally hard to

calculate a kernel whose feature space corresponds to all possible subgraphs unique

up to isomorphism, where each feature is binary-valued according to the existence

of that particular subgraph [Gärtner et al., 2003]. Therefore one must compromise
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and use a less expressive family of subgraphs as features. On the positive side,

recent work on graph kernels uses various properties to create a similarity measure

between two graphs: the number of labeled walks shared between graphs [Gärtner

et al., 2003]; the probability of a random walk in both graphs [Kashima et al., 2003];

the number of a certain type of sub-structure present in both graphs [Kramer and

De Raedt, 2001, Deshpande et al., 2003, Horváth et al., 2004, Ralaivola et al., 2005,

Tsuda and Kudo, 2006].

From the graph kernel perspective, our work is most closely related to the walk-

based kernels [Gärtner et al., 2003, Kashima et al., 2003]. The kernel of Gärtner et al.

[2003] computes the number of walks of any length (with identical label sequences)

that the two input graphs share. Kashima et al. [2003] present a marginalized graph

kernel that computes the similarity of two graphs based on the probability that a

random walk occurs in both graphs. Both kernels use walks of arbitrary length and

sum their contributions thus both have some form of discounting to guarantee that

the kernel value is not infinite. Both kernels are also expensive to compute; the

kernel by Gärtner et al. [2003] must invert or diagonalize a matrix that is quadratic

in the number of vertices of the direct product graph, and the kernel in Kashima

et al. [2003] must solve a system of linear equations described by a matrix quadratic

in the number of vertices in the direct product graph. Vishwanathan et al. [2006]

present an alternative method for calculating the graph kernels in Kashima et al.

[2003] and Gärtner et al. [2003] that is cubic in the size of the graph and show

experimental evidence that the actual speedup is significant.

Although our kernel is also based on walks there are several important differ-

ences. First, we focus on a fixed finite length of walks. This helps avoid unin-

tuitive discounting of the weights of long walks. We are not aware of a method

for capturing kernels based on arbitrary length walks with hypergraphs. Second,

we provide an efficient dynamic programming algorithm to calculate the kernel.

This extends previous dynamic programming approaches to kernels for strings and
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trees [e.g., Collins and Duffy, 2002]. Third, there are differences in the feature

space that make our kernel more compact than other walk-based kernels. This

is illustrated by the following example: consider a pattern capturing a star graph

with one center v0 and 4 outer nodes where each edges has a different label, i.e.,

{l1(v0, v1), l2(v0, v2), l3(v0, v3), l4(v0, v4)}. To capture this pattern with a walk one

must consider an edge in each direction and go back and forth on each edge (except

the first and last) thus we need a walk of length 6. In our case, because we match

positions but do not consider the directionality of the edge, this can be captured

by a walk of length 4 of type l1, 1, 1, l2, 1, 1, l3, 1, 1, l4 (hence we enter and exit the

edge in the same node). Thus our kernel can be more expressive, capturing complex

sub-graphs using shorter walks.

The only other work to give a kernel for multi-relational data we are aware of is

the kernel for relational algebra of Woznica et al. [2005]. This kernel can be seen to

take walks over the relations restricted by the notion of keys in the relational schema

and some tree representation of the data. Our work differs in general applicability to

interpretations, but more importantly in that our dynamic programming algorithm

provides a polynomial time calculation of the kernel for arbitrary depths. We also

explicitly provide the feature space of the kernel corresponding to walks (and rules)

which makes for simple semantics.

Our kernel is also related to similarity functions used in relational instance-based

learning (RIBL) [Horváth et al., 2001]. In particular, similarity in RIBL is calculated

recursively where the similarity between atoms is defined through the similarity of

each of the terms in its arguments, and the similarity of terms or objects can be

defined through the similarity of the atoms they appear in. Thus a similar “walk

based” similarity is defined. The emphasis in this work is on defining a similarity

function that makes sense intuitively and works well in different contexts, whereas

our focus is on a construction that yields an inner product kernel that can therefore

be used with kernel methods.
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4.3.2 Explicit Propositionalization for ILP

Relational representations are the natural data representations for ILP solvers. Two

benefits of ILP solvers are that they naturally work in an expressive first-order data

representation, and that they produce a set of rules that explain the hypothesis

in a human-readable format. SVM and other discriminative classifiers (e.g., kNN,

Perceptron) are generally computationally faster than ILP solvers while giving state

of the art classification performance, yet they do not naturally handle relational (i.e.,

non-propositional) data nor produce rules. Our kernel bridges some of this gap — it

enables discriminative classifiers to handle ILP data, including ease of incorporating

relational background knowledge2 but the final hypothesis is not human-readable.

Explicit propositionalization has been combined with SVM classifiers in re-

cent work [e.g., Muggleton et al., 2005, Landwehr et al., 2006]. In particular,

SVILP [Muggleton et al., 2005] and kFOIL [Landwehr et al., 2006] run an ILP

solver to generate rules and use these rules as features. SVILP runs Progol [Mug-

gleton, 1995] to statically generate rules in its search space, whereas kFOIL runs

FOIL [Quinlan, 1990] in a wrapper based approach to dynamically select a small

number of features for use with SVM. Cumby and Roth [2003] restrict the feature

space using a feature description language and then explicitly generate the features.

Our kernel can be seen as an implicit static propositionalization into the space syn-

tactically defined using walks. Any explicit propositionalization in the hypergraph

kernel’s feature space would be computationally intractable in general.

It is important to clarify that walks in the hypergraph are not as expressive

as rules in ILP. The example in Section 4.1 illustrates that we do not account

for multiple shared nodes between adjacent edges on a walk, therefore a walk with

multiple shared nodes will be represented in the features of more than one walk type.

Designing kernels that do capture such complexity is an important open problem.

2See [Muggleton and De Raedt, 1994, De Raedt, 1997, Arias et al., 2007] for a discussion on the
relationship between the normal ILP setting and learning from interpretations and how background
knowledge is handled in each case.
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Other approaches to propositionalization try to take advantage of specific sub-

structures that may be important to the application, and are not directly compara-

ble to the features of our kernel. Ralaivola et al. [2005] propose kernels that count

fixed length common subtrees. In Horváth et al. [2004], a graph is decomposed into

simple cycles and bridges connecting them and these correspond to the features in

the kernel. Finally, some works do not restrict the format of the sub-structures

corresponding to features. Instead informative sub-structures are computed auto-

matically by identifying frequent subgraphs in the dataset similar to itemset data

mining [Deshpande et al., 2003, Kramer and De Raedt, 2001].

Previous work [e.g., Cumby and Roth, 2003, Khardon et al., 2001] show that

in certain cases explicit representation of a feature space is sometimes preferable

to using a kernel function, even if the feature space is intractable to represent in

general. This stems from the tradeoff between the “kernelization” of the classifica-

tion algorithms (illustrated with examples in section 2.2), which incurs a significant

performance penalty, and the explicit representation of a large feature space, which

can be intractable. If the feature space is exponentially-sized with respect to the

original data encoding but very sparse, for example, then it still may be possible

to represent the data efficiently using a sparse-vector representation. We do not

address optimizing run times in our experiments and hence we opt to use kernels

throughout our work as they are tractable in all cases. Nevertheless, the analy-

sis of whether kernels are the most efficient way to compute inner products in our

experiments is a worthwhile endeavor for future work.

4.3.3 Translating Hypergraphs into Graphs

Due to the above restriction of our walks (linking one node at a time), one can

translate the hypergraph into a quadratic size directed graph and capture similar

walk-based information. This can be done by adding a new node for each hyperedge

and connecting the new node to the nodes belonging to the hyperedge. We label
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Figure 4.2: Left: target as a hypergraph. Right: target converted to a graph.

each edge with the original hyperedge label as well as the position of the node in

the original hyperedge. For example, the hyperedge p(a, b, c) becomes

p1(a, e1), p2(b, e1), p3(c, e1).

Figure 4.2 shows the hypergraph

{p(a, b, c)q(b, d, e)r(f, d, g)}

and its representation as a graph. Similarly, a single conjunction such as

p(a, b, c), q(b, d, e), r(f, d, g)

can be captured by a walk in the graph

p2(b, e1)q1(b, e2)q2(d, e2)r2(d, e3).

Hence we can simulate the hypergraph kernel using the graph representation though

perhaps at increased complexity as the graph is larger and the walks are longer. How-

ever, as our experiments below show, the hypergraph-to-graph translation results in

significantly reduced performance.
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Table 4.1: Datasets Used in Experiments

Dataset Examples # Atoms Majority Class

NCTRER 232 7-44 0.60

MUTAG 188 15-41 0.67

PTC(MM) 336 2-106 0.62

PTC(MR) 344 2-106 0.56

PTC(FM) 349 2-106 0.59

PTC(FR) 351 2-106 0.66

NCI-HIV 41606 2-438 0.99

4.4 Experiments and Results

We perform several sets of experiments using artificial data as well as real-world

datasets for molecule classification. The number of examples, number of hypergraph

nodes in examples, and label distribution in the chemical datasets are given in

Table 4.1.

In all of the experiments, we used the Perceptron with Margin [Krauth and

Mézard, 1987] as the learning algorithm (see Chapter 3). As we show in Chapter 3,

this algorithm gives similar accuracy to SVM with often reduced run time. The

algorithm has two parameters, the number of iterations used for training and the

margin value. We did not optimize the parameters. For margin we follow our

findings from Chapter 3 and use a small relative margin setting of 0.1. For iterations

we used two settings depending on dataset size. On the artificial datasets and small

chemical datasets (Mutagenesis, NCTRER, and PTC) we trained for 20 iterations

with a learning rate of 0.1, and on the larger dataset (NCI-HIV) we trained for 2

iterations with a learning rate of 0.5. We ran all experiments with 10-fold cross

validation. In all our experiments we used the kernel from Equation (4.18) with

γ = 1 (i.e., no discounting) except when explicitly stated otherwise.

In the first set of experiments we use the National Center for Toxicological

Research Estrogen Receptor Binding (NCTRER) dataset [Fang et al., 2001, Blair

et al., 2000, Branham et al., 2002] and we explore the effect of dataset encoding on
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performance. This dataset has been recently used in a study comparing several ILP

systems and is therefore appropriate to address our question.

The dataset contains chemicals that are labeled based on how well they bind to

estrogen receptors. We consider molecules labeled “active strong,” “active medium,”

and “active weak” to be positive, and molecules labeled “slight binder,” and “in-

active” to be negative.3 Each molecule in the dataset is represented as a set of

predicates. As in previous studies [e.g., Deshpande et al., 2003, Horváth et al.,

2004], we eliminate hydrogen atoms because this reduces the size of examples and

hydrogens are implicit in the reduced representation.

Previous work on graph kernels has demonstrated that enriching the edge labels

can help performance [Gärtner, 2005, Mahé et al., 2004]. We explore three methods

of encoding the datasets in this set of experiments. In the first encoding bonds

and their types are represented by edges: bondtype1(x, y), for example. Atom type

is encoded using unary edges with the type as the relation name. As bonds are

not directed, we store bond relations twice in this encoding, once with each vertex

ordering, as there is not enough information in the edge labels to imply the order;

for example, using edges (v1, v2) and (v2, v3), both labeled bondtype1, we find

the walk type “bondtype1,2,1,bondtype1” to be present. Two edges from another

graph, (w2, w1) and (w2, w3) should generate the same walk type, but they will

not unless we duplicate edges. In the second encoding we eliminate the original

“bondtype” labels and create bondXtoY predicates, where X is the type of the first

atom in the bond, and Y is the type of the second. To get a compact representation,

we impose an ordering on the bondXtoY relation such that X is lexicographically

smaller than Y . This ensures that bondXtoY and bondY toX will not appear in

the dataset together, avoiding the need to duplicate links (except in the case of

bondXtoX where we do duplicate). The final encoding follows the work of Gärtner

[2005] and Mahé et al. [2004] and encodes even more information about endpoints

3We used the version of the dataset entitled NCTRER v3b 232 10Apr2006.sdf.
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of bonds. In particular each argument of the bond predicates encodes the types

of its atom and the types of all its neighbors. This technique is also similar to

the neighborhood kernel discussed by Fröhlich et al. [2005], however we do not use

as detailed information, and we use the immediate neighborhood only. As in the

second encoding we lexicographically order the arguments and duplicate the bond

only if the arguments are identical.

The following example illustrates the three encodings. Consider a star graph

similar to the one given above with labels as follows {bond(v0, v1), bond(v0, v2),

bond(v0, v3), bond(v0, v4), A(v0), B(v1), B(v2), C(v3), D(v4)} (in the chemical do-

main A,B,C,D would be element names). Under encoding 1, the bond structure

of the graph would be encoded as

bond(v1, v0), bond(v0, v1), bond(v2, v0), bond(v0, v2),

bond(v3, v0), bond(v0, v3), bond(v4, v0), bond(v0, v4)

and we add the node types to this structure. Under encoding 2 we get:

bondAtoB(v0, v1), bondAtoB(v0, v2),

bondAtoC(v0, v3), bondAtoD(v0, v4).

In encoding 3 for each argument we represent the atom type first, followed by the

node types of its neighbors. Below we separate the node from its neighbors with a

vertical bar. This yields

bondA|BBCDtoB|A(v0, v1),

bondA|BBCDtoB|A(v0, v2),

bondA|BBCDtoC|A(v0, v3),

bondA|BBCDtoD|A(v0, v4).
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Table 4.2: Accuracy on the NCTRER dataset varying walk length and encoding.

Length Encoding 1 Encoding 2 Encoding 3

1 0.64 ± 0.08 0.67 ± 0.08 0.79 ± 0.08

2 0.64 ± 0.10 0.68 ± 0.10 0.83 ± 0.05

3 0.65 ± 0.10 0.67 ± 0.10 0.84 ± 0.07

4 0.66 ± 0.06 0.62 ± 0.06 0.85 ± 0.09

5 0.66 ± 0.10 0.64 ± 0.07 0.85 ± 0.06

6 0.64 ± 0.10 0.62 ± 0.10 0.83 ± 0.07

7 0.66 ± 0.08 0.62 ± 0.08 0.80 ± 0.08

8 0.66 ± 0.10 0.59 ± 0.10 0.75 ± 0.07

16 0.67 ± 0.09 0.66 ± 0.12 0.68 ± 0.11

nFOIL 0.78 ± 0.091 0.56 ± 0.10

kFOIL 0.776 ± 0.094

Encoding 3 will result in fewer walk matches between graphs, since a match

requires both that the vertices are of the same type, and that all of their neighbors

are of the same type. As a result the transfer between graphs is smaller and less

generalization is possible from one feature. Another important property of encoding

3 is that it makes for faster computation as fewer matches means fewer items added

in the dynamic programming formula.

Results are given in Table 4.2. Notice that for encoding 1 the kernel does not

perform well but with encoding 3 the results are significantly improved. Encoding

3 illustrates that a substructure more complex than walks may be needed. Further-

more, the results suggest that very long walks do not perform well. For comparison,

we give the best result (achieved using nFOIL) reported by Landwehr et al. [2006],

who compare state-of-the-art ILP solvers using encoding 1. For reference we also

show the result for kFOIL (reported by Landwehr et al. [2006]) whose representation

described above is closer to ours than nFOIL. The kernel method with encoding 3

yields better performance than nFOIL (and the other ILP systems in that study)

who use encoding 1.

While this is an interesting result and observation on previous work in this area,

it raises an important question: would encoding 3 help ILP solvers as well? It is
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Table 4.3: Accuracy on NCTRER varying walk length and discount factor γ.

Length γ = 0.1 0.5 0.8 1 2 10

2 0.82 0.81 0.82 0.83 0.81 0.82

3 0.82 0.84 0.84 0.84 0.84 0.83

4 0.82 0.85 0.84 0.85 0.84 0.85

5 0.83 0.84 0.84 0.85 0.85 0.85

6 0.82 0.84 0.82 0.83 0.82 0.81

16 0.84 0.69 0.68 0.68 0.67 0.68

32 0.84 0.64 0.62 0.62 0.62 0.62

not clear that there is a unique answer to all ILP solvers, and a full investigation

of this question is beyond the scope of this chapter. However, we performed some

exploratory experiments described below and these suggest that encoding 3 does

not help ILP solvers. In particular, we ran nFOIL with the settings4 reported

by Landwehr et al. [2007] using 10-fold cross validation. As can be seen in Table 4.2,

the performance of nFOIL on the NCTRER dataset decreased dramatically under

encoding 3. This may be due to the introduction of very specific features, which can

present problems in a näıve Bayesian model. We also ran CProgol [Muggleton, 1995]

and LogAn-H [Arias et al., 2007] using both encoding 1 and encoding 3. The results

were worse than those reported for nFOIL and there was no significant difference in

performance between encoding 1 and encoding 3.

Overall, the results show that encoding 3 improves the performance of the hy-

pergraph kernel significantly, but does not help the performance of the ILP methods

tested. When using encoding 3 the hypergraph kernel outperforms ILP solvers in

terms of accuracy on this dataset.

In the next set of experiments we explore the effect of the hypergraph kernel

parameters by varying the discount factor (γ) and walk length on the NCTRER

dataset. We use γ values of {0.1, 0.5, 0.9, 1, 2, 10} and walk lengths of {2, 3, 4, 5, 6, 16, 32}.

The results are given in Table 4.3. While some performance variation with dis-

4Beam search width of 5, 25 max clauses, and 10 max literals.
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Table 4.4: Accuracy on PTC and area under ROC curve for NCI-HIV. “HG” is the
hypergraph kernel.

Dataset HG short HG medium HG long OA MG

PTC(FM) 0.56± 0.09 0.64 ± .10 0.64 ± 0.10 0.64 ± .03 0.62 ± .03

PTC(FR) 0.62± 0.09 0.62 ± 0.06 0.67± .07 0.67 ± .02 0.67 ± .02

PTC(MM) 0.62± 0.12 0.64 ± .07 0.59 ± 0.08 0.68 ± .02 0.67 ± .02

PTC(MR) 0.52 ± .07 0.58 ± 0.10 0.60± .07 0.63 ± .02 0.58 ± .01

Dataset HG (l=5) CPK GK

NCI-HIV 0.94 ± 0.02 0.91 ± 0.01 0.94 ± .01

Table 4.5: Accuracy on NCTRER and Area under ROC for NCI-HIV in the Same
Experimental Conditions.

Dataset HG (l=5) CPK (Perceptron)

NCI-HIV 0.94 ± 0.02 0.92 ± 0.03

NCTRER 0.85 ± 0.06 0.80 ± 0.08

counting is noticeable it is statistically insignificant. Thus although incrementing

long walks is intuitively attractive, our experiments show that the effect on perfor-

mance is minimal, and it can be avoided. On the other hand, long walks can lead to

overfitting. The exception is with the extreme discount of 0.1, which eliminates the

overfitting caused by longer walks as they are scaled down so drastically. Neverthe-

less the walk length is a parameter that must be chosen carefully for each dataset.

We illustrate this point below as well.

Next we compare our kernel to other graph kernels on the challenging datasets

Predictive Toxicology Challenge (PTC)5 and the National Cancer Institute’s AIDS

Anti-viral Screen Program (NCI-HIV)6 that have been widely used in the litera-

ture. The PTC dataset contains 417 chemical descriptions labeled according to

their carcinogenicity to rodents. Each chemical is evaluated based on whether it

was carcinogenic to female rats, female mice, male rats and male mice. Following

Kashima et al. [2003] and others, we treat any molecule labeled “CE,” “SE,” or “P”

5http://www.predictive-toxicology.org/ptc/
6http://dtp.nci.nih.gov/docs/aids/aids data.html
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as positive, “NE” and “N” as negative, and ignore examples labeled “EE,” “IS,”

and “E” as these labels indicate an unsure classification. It is important to notice

that state-of-the-art performance on the PTC dataset is not far above the majority

class for the dataset. The NCI-HIV dataset contains chemical descriptions labeled

based on the ability of the chemical to inhibit HIV in a specific experimental con-

text. Each chemical is labeled “confirmed active” (CA), “confirmed inactive” (CI),

and “moderately active” (CM). In our experiments we ignore the moderately active

chemicals as their label is less reliable (these are compounds that yielded different

results in multiple measurements). Notice that this is a large dataset and its class

distribution is very skewed.

Given the conclusions from previous experiments we used encoding 3 and no

discount (γ = 1). On the PTC dataset, due to its small size we were able to

explore a short (2), medium (5), and long (16) walk length. The NCI-HIV dataset

is relatively large and it includes large molecules. To reduce learning time without

altering dataset statistics, in each fold we removed molecules with more than 200

atoms from the training set but kept the test set unmodified.7 Overall this means

we removed 4 positive and 79 negative molecules from the training data. The results

for walk lengths 2-5 are very similar and we report only the result for length 5.

Results are given in Table 4.4 and in each case we we include for reference the

best known results from the literature. On the PTC dataset, the results we give

are competitive with the best performance recorded in Fröhlich et al. [2005], which

is attained using their optimal assignment kernel (OA) and the marginalized graph

kernel Kashima et al. [2003] (MG). On the HIV dataset, in order to compare with

previously reported results we report the area under the ROC curve (although preci-

sion and recall may be more appropriate due to the skew in labels). Our results out-

perform the frequent substructure propositionalization approach [Deshpande et al.,

2003] and are competitive with the results reported for the Cyclic Pattern Kernel

7Because the kernel calculation time is dependent on the size of the hypergraph, a dataset with
many large molecules will take longer to classify than one with smaller molecules.
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(CPK) by Horváth et al. [2004] and the approximation of the infinite walk graph

kernel (GK) reported by Gärtner [2005].

The various comparisons show that the hypergraph kernel can be used to ob-

tain state of the art performance comparable to that of graph kernels when used

with graph data. We observe that these results are obtained by different learning

algorithms and parameter settings for each of the kernels (and papers they were

reported in). This is appropriate, however, as parameters are optimized separately

in each case. Nonetheless, we augment this comparison with experiments using the

CPK kernel [Horváth et al., 2004] and our hypergraph kernel in exactly the same

experimental conditions using the PAM algorithm and same settings as above. Re-

sults for NCTRER and NCI-HIV are given in Table 4.5. These too show that the

the kernels give comparable performance on these problems.

Finally we explore the effect of hyperedges on performance. We present two

related sets of experiments. In the first, we generated artificial data in order to

illustrate a specific case in which the target function of a dataset is much easier

to learn using a hypergraph representation as opposed to a graph representation.

In such an instance the hypergraph kernel has a distinct advantage over graph

kernels. The positive labeled examples in the artificial data are examples in which

a specific conjunction is true and negative examples do not satisfy the conjunction.

In the second experiment we show that the multi-arity background information in

the Mutagenesis dataset increases performance with the hypergraph kernel. This

demonstrates that the ability to handle high arity background knowledge as in ILP

is useful for kernel methods as well.

Our data-generation routine was parametrized by the number of hyperedges in

the graph, the maximum number of hyperedges incident with a single node, the

total number of intersections between hyperedges, and the number of nodes per

hyperedge. Since the number of hyperedges in the target conjunction is constant,

the number of hyperedges in the hypergraph partially determines what proportion
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of the hypergraph is irrelevant to the target; increasing the number of hyperedges

increases the number of irrelevant features in the feature space of the hypergraph

kernel. Likewise, increasing the total number of hyperedge intersections has a similar

effect, as this affects how much similarity between hypergraphs is unrelated to the

target sub-graph. Too low of a number of intersections (for example 1/2 the number

of total hyperedges) leads to graphs whose only sizable connected subgraph is the

target conjunction, hence rendering it trivial for the hypergraph kernel with walk

depth of 2 (less than that needed to traverse the target subgraph) to separate the

dataset.8 The maximum number of hyperedges incident to a single node helps

control the structure of the graph: by setting it low enough, we encourage the edge

intersections to be evenly dispersed as opposed to having many star-like topologies

in the graph.

Our data generation routine was as follows: we chose a simple target concept

composed of three hyperedges: p(a, b, c, d, e)q(b, f, g, h, i)r(j, f, k, l,m). This is sim-

ilar the target concept in Figure 4.2 except that each hyperedge is extended by two

nodes. To make the learning task non-trivial, we made sure that any two graphs,

regardless of label, would likely share many common walks. To accomplish this we

chose hypergraphs with 50 hyperedges, a maximum of 2 hyperedges incident to any

one node, 75 total intersections between hyperedges, and 5 nodes per hyperedge.

We restrict hyperedges from self-intersecting, and we do not allow one hyperedge

to intersect more than once with another hyperedge. These settings create hyper-

graphs that are fully connected or close so that there will be many matching walks

of non-trivial length between two graphs, regardless of their label. The final setting,

5 nodes per hyperedge, was simply to ensure enough nodes to accommodate the

total number of intersections with the restrictions, and to vary the types of walks.

To generate each example, we started with an empty hypergraph. Then we

8Consider for example if we allowed no other intersections between hyperedges other than those
in the target concept, leading to examples composed of lists of unconnected hyperedges. Despite
these irrelevant features, the target concept would be easily learnable as it would be the only walk
of length > 1.
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Table 4.6: Results for artificial data measured by accuracy.

Walk Length Hypergraph Encoding Graph Encoding

1 0.48 ± 0.04 0.47 ± 0.04

2 0.79 ± 0.04 0.65 ± 0.04

3 0.90 ± 0.03 0.75 ± 0.04

4 0.92 ± 0.02 0.73 ± 0.04

5 0.93 ± 0.02 0.77 ± 0.04

6 0.97 ± 0.02 0.80 ± 0.04

7 0.98 ± 0.01 0.80 ± 0.04

8 0.98 ± 0.01 0.80 ± 0.04

9 0.98 ± 0.01 0.84 ± 0.03

10 0.98 ± 0.01 0.82 ± 0.03

selected its class by flipping a fair coin. If it was positive, we added the target sub-

graph to the example. We then generated the remaining hyperedges (47 if it was a

positive example, 50 if negative) such that no hyperedges intersected, choosing each

hyperedge label randomly from {p, q, r, s}. For each of the remaining intersections,

we proceeded as follows until all 75 total intersections were in the hypergraph: we

randomly chose two hyperedges and a position on each hyperedge. If it was possible

for the two hyperedges to intersect at the selected positions, without violating any of

the above constraints or introducing another target sub-graph into the hypergraph,

the intersection was created by merging the nodes at the intersection positions.

In addition to the hypergraph dataset, we created the corresponding graph

dataset by transforming each hypergraph as discussed in Section 4.3.3.

We ran the hypergraph kernel from Equation (4.18) with walk length of 1−10 on

the hypergraph data and 1− 10 on the graph data. Table 4.6 shows the full results.

Using the hypergraph representation gives a clear performance benefit. In the table

we also see that the graph kernel improves as the walk length increases, however we

checked walk lengths of up to twenty and there was no improvement over length ten.

Thus, the experiments show that while it is possible to represent the hypergraph

as a graph, using the hypergraph representation directly is advantageous even in
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Table 4.7: Accuracy on Mutagenesis Dataset. The leftmost column shows walk
length. Top: encoding 1. Bottom: encoding 3.

Length AB AB+H AB+LC AB+H+LC

1 0.70 +/- 0.06 0.76 +/- 0.07 0.85 +/- 0.09 0.76 +/- 0.07

2 0.69 +/- 0.10 0.84 +/- 0.10 0.85 +/- 0.09 0.84 +/- 0.10

3 0.78 +/- 0.09 0.86 +/- 0.10 0.84 +/- 0.07 0.86 +/- 0.10

4 0.82 +/- 0.10 0.84 +/- 0.08 0.81 +/- 0.10 0.84 +/- 0.08

5 0.82 +/- 0.09 0.84 +/- 0.10 0.80 +/- 0.11 0.84 +/- 0.10

10 0.84 +/- 0.10 0.80 +/- 0.09 0.83 +/- 0.09 0.80 +/- 0.09

Length AB AB+H AB+LC AB+H+LC

1 0.85 +/- 0.09 0.86 +/- 0.08 0.89 +/- 0.09 0.90 +/- 0.10

2 0.84 +/- 0.10 0.84 +/- 0.13 0.89 +/- 0.10 0.87 +/- 0.09

3 0.83 +/- 0.08 0.86 +/- 0.13 0.89 +/- 0.10 0.86 +/- 0.10

4 0.85 +/- 0.10 0.85 +/- 0.13 0.87 +/- 0.10 0.86 +/- 0.10

5 0.85 +/- 0.09 0.82 +/- 0.12 0.87 +/- 0.11 0.84 +/- 0.10

10 0.86 +/- 0.08 0.74 +/- 0.10 0.86 +/- 0.09 0.73 +/- 0.12

simple cases as captured in the artificial data. As argued above the graph kernel

may be less efficient because both the graph size and walk size are larger than the

corresponding structures on the hypergraph.

To explore the performance benefit of hyperedges in real-world data we use the

Mutagenesis (MUTAG) dataset [Srinivasan et al., 1996] The dataset is widely used in

ILP literature and contains chemicals that are labeled based on their mutagenicity;

we used the 188 example “regression friendly” portion of the data. One of the

interesting points in the work of Srinivasan et al. [1996] is the inclusion of different

levels of background knowledge showing that more knowledge, and in particular

high-arity relational knowledge, can be used for classification. Therefore this dataset

is useful in exhibiting another case where we get a performance increase due to the

use of hyperedges.

We ran experiments using the Mutagenesis dataset under encodings 1 and 3,

and with various combinations of binary edges (atom-bond information), hyperedges

(ring structures, etc.), and discretized charge, lumo, and logp features encoded as
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unary edges. Only binary edges are affected by the encoding; we did not change

hyperedges or unary edges. Note that lumo and logp are global properties of the

molecule hence they translate to isolated nodes in the graph. Our kernel gives

flexibility to use the hyperedges and multiple unary predicates for the same node

(these correspond to multiple labels for a node). For example, we can label a node

with its type and its charge independently for this dataset. The results are reported

in Table 4.7; “AB” is atom-bond information, “H” is hyperedge information, and

“LC” is lumo, logp and charge information. Our results are competitive with the

best reported graph kernel for this dataset [Kashima et al., 2003]. When using

encoding 1, it is clear that adding the hyperedges to the dataset gives a substantial

gain in performance. Observe that the best length walk is shorter when using the

hyperedges. This may be due to the fact that larger substructure may be captured in

fewer edges. It may also explain the fact that, as a long enough walk in the graph can

capture a ring structure, these structures may not significantly increase performance.

When using encoding 3, the benefit of using hyperedges is less pronounced; this is

likely due to the fact that because binary edges under encoding 3 contain information

about their neighbors, they perform a similar function to that captured by rings as

in our hyperedges. Overall, these results show that high arity background knowledge

can improve the performance obtained by hypergraph kernel. If hyperedges capture

information that is not derived from the graph structure one might expect to attain

significant improvements in performance.

To summarize, the experiments demonstrate that our kernel can outperform ILP

methods, that high arity predicates are easily incorporated as hyperedges and that

this can be useful, and that the kernel is competitive with graph kernels when used

on graph data. Discounting of long paths appears to not have a large effect but walk

length must be chosen using parameter selection for each application separately.

The kernel can be implemented reasonably efficiently. On the NCTRER, PTC,

and Mutagenesis datasets, a typical run time for 10-fold cross validation was under
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a minute, and often less than 20 seconds on a dual 2.8 GHz Intel Xeon machine

with at most one other job scheduled on it. On the NCI-HIV dataset, the runtime

varied significantly by the walk length: for a length 3 walk, the average run time

per fold was about 11 hours, while for a length 5 walk the average run time per fold

was about 18 hours.

4.5 Conclusion

The main contribution of this chapter is a new kernel (and associated variants) that

is able to work directly with hypergraphs. Using artificial data, we showed that

the translation of hypergraphs to graphs degrades performance and we also demon-

strated that hyperedges are useful in real-world data. On chemical datasets we

showed that the hypergraph kernel performs competitively with other graph kernels

and ILP methods. As already noted, the hypergraph kernel is limited in that it can

only capture certain types of conjunctions. An important open question is whether

a hypergraph kernel can be designed to cover a larger subset of conjunctions, in par-

ticular, capturing multiple shared nodes between edges and nodes shared between

non-adjacent edges in a walk. Another interesting questions concerns the optimal

assignment similarity developed by Fröhlich et al. [2005]. In this work, instead of

taking a sum over all pairs of edges as in Equation (4.16), a “best” alignment of

the edges is used to calculate the similarity. In Chapter 5 we discuss a general con-

struction of approximations to maximum alignment kernels. It would be interesting

to investigate whether we can use a similar construction to formulate a kernel that

computes an approximation to the maximum alignment of two hypergraphs under

the kernel proposed in this chapter.
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Chapter 5

Kernels for Periodic Time

Series Arising in Astronomy

In this chapter we study another form of kernel methods for structured data. In

this case, the data are time series, vectors of pairs of real values and time values. In

the astronomy domain, the real values are brightness measurements of stars and the

time values are the date of the measurement. As with hypergraphs from Chapter 4,

time series data have an inherent structure that is informative. In astronomy, the

structure of the time series can be interpreted as a “shape” that is indicative of

star type. This shape is easy to see in Figure 5.1. The challenge in this domain

is to capture the intuitive notion of “shape” in a concrete mathematical form. We

accomplish this by defining and analyzing two useful similarity measures.

The concrete application motivating this research is the classification of stars

into meaningful categories from astronomy literature. A major effort in astronomy

research is devoted to sky surveys, where measurements of stars’ or other celestial

objects’ brightness are taken over a period of time. Classification as well as other

analyses of stars lead to insights into the nature of our universe, yet the rate at

which data are being collected by these surveys far outpaces current methods to

classify them. For example, microlensing surveys, such as MACHO [Alcock et al.,
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1993] and OGLE [Udalski et al., 1997] followed millions of stars for a decade taking

one observation per night. The next generation panoramic surveys, such as Pan-

STARRS [Hodapp et al., 2004] and LSST [Starr et al., 2002], will begin in 2009

and 2013, respectively, and will collect data on the order of hundreds of billions of

stars. It is unreasonable to attempt manual analysis of this data, and there is an

immediate need for robust, automatic classification methods.

In the data sets taken from star surveys, each example is represented by a time

series of brightness measurements. We are concerned with periodic variable stars,

that is, stars whose brightness varies as a periodic function of time. Different types of

periodic variables have different periodic patterns. Figure 5.1 shows several examples

of such time series generated from the three major types of periodic variable stars:

Cepheid, RR Lyrae, and Eclipsing Binary.

As our first contribution we present several insights into the use of the cross-

correlation function proposed by Protopapas et al. [2006] as a similarity function

for time series. Cross-correlation provides an intuitive mathematical analog of what

it means for two time series to look alike: we seek the best phase alignment of the

time series, where the notion of alignment can be captured by a simple Euclidean

distance or inner product. We show that cross-correlation is “almost” a kernel

in that it satisfies the Cauchy-Schwartz inequality and induces a distance function

satisfying the triangle inequality. Therefore, fast indexing methods can be used with

cross-correlation for example with the k-Nearest Neighbor algorithm [Elkan, 2003].

We further show that although every 3×3 similarity matrix is positive semidefinite,

some 4 × 4 matrices are not and therefore cross-correlation is not a kernel and not

generally applicable with kernel methods.

As our second contribution we introduce a positive semidefinite similarity func-

tion that has the same intuitive appeal as cross-correlation. We investigate the

performance of our kernel on real and artificial data sets, showing excellent perfor-

mance. We show instances where the kernel outperforms all other methods as well
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as instances where a simple universal phasing algorithm, which aligns every star to

some fixed phase, performs comparably. Our investigation reveals that our kernel

performs better than cross-correlation and that the ability to use Support Vector

Machines (SVM) [Boser et al., 1992] with our kernel can provide a significant in-

crease in performance.

As our final contribution, we build on the methods and findings of our first

two contributions and create a complete system that automatically processes an

entire survey. We explain the several tiers of processing prior to the classification

stage and show preliminary results on the entire MACHO survey, giving newly

discovered periodic variable stars. In the process we develop several techniques for

variability testing and period finding. In addition to classifying stars, we estimate

the confidence of the classification to place some stars into a group of unknown

periodic variables for further review. This part of the system motivates our research

into class-membership probabilities from Chapter 6 and uses some of the conclusions

therein.

The remainder of the chapter is organized as follows. Section 5.1 investigates

properties of cross-correlation, and Section 5.2 introduces the new kernel function.

Related work is discussed in Sections 5.3. We present our experiments and discuss

results in Section 5.4. In Section 5.5 we introduce our complete system for classifying

periodic variable stars and report our analysis of the MACHO Survey.

5.1 Cross-Correlation

Our examples are vectors in R
n but they represent an arbitrary shifts of periodic

time series. We use the following notation: y+s refers to the vector y shifted by s

positions, where positions are shifted modulo n. We then use the standard inner
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Figure 5.1: Examples of time series of periodic variable stars. Each column shows
two stars of the same type. Left: Cepheid, middle: RR Lyrae, right: eclipsing
binary. Examples of the same class have similar shapes but are not phase aligned.
Examples are a result of folding a long sequence of observations leading to a noisy
sample of one period of the light curve. The y-axis labels represent brightness in
magnitude units, which is an inverse logarithmic scale (this is the convention in
astronomy).

product between shifted examples

〈x, y+s〉 =
n

∑

i=1

xi(y+s)i.

We define the cross-correlation [Protopapas et al., 2006] between x, y ∈ R
n as

C(x, y) = max
s
〈x, y+s〉. (5.1)

In the context of time series, computing the cross-correlation corresponds to

aligning two time series such that their inner product, or similarity, is maximized.

5.1.1 Properties of Cross-Correlation

We first show that cross-correlation has some nice properties making it suitable as

a similarity function:

Theorem 5.1.1.

(P1) C(x, x) = 〈x, x〉 ≥ 0.
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(P2) C(x, y) = C(y, x).

(P3) The Cauchy-Schwartz Inequality holds, i.e., ∀x, y, C(x, y) ≤
√

C(x, x)C(y, y).

(P4) If we use the cross-correlation function to give a distance measure d such that

d(x, y)2 = C(x, x) + C(y, y)− 2C(x, y) = min
s
‖x− (y+s)‖2

then d satisfies the Triangle Inequality.

In other words cross-correlation has properties similar to an inner product, and

can be used intuitively as a similarity function. In particular, we can use metric

trees and other methods based only on the triangle inequality [Moore, 2000, Elkan,

2003] to speed up distance based algorithms using cross-correlation.

Proof. For (P1) observe that by definition C(x, x) ≥ 〈x, x〉. On the other hand,

C(x, x) =
∑

xixi+s, and by the Cauchy-Schwartz inequality,

∑

xixi+s ≤
√

∑

x2
i

√

∑

x2
i+s =

√

∑

x2
i

√

∑

x2
i = 〈x, x〉. (5.2)

Which means 〈x, x〉 ≥ C(x, x) ≥ 〈x, x〉 or C(x, x) =〈x, x〉 ≥ 0.

To prove (P2) observe that since

〈x, y+s〉 = 〈x−s, y〉 = 〈x+(n−s), y〉,

maximizing over the shift for y is the same as maximizing over the shift for x.

(P3) follows from K1 of Theorem 5.1.2 below (see Proposition 2.7 of Schölkopf

and Smola [2002]) but we give a direct argument here. Let

C(x, y) = 〈x, y+s〉 = 〈x, z〉

where s is the shift maximizing the correlation and where we denote z = y+s. Then
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by (P1),
√

C(x, x)C(y, y) =
√

〈x, x〉〈y, y〉 = ‖x‖‖y‖.

Therefore the claim is equivalent to ‖x‖‖y‖ ≥ 〈x, z〉, and because the norm does

not change under shifting the claim is equivalent to ‖x‖‖z‖ ≥ 〈x, z〉 = C(x, y). The

last inequality holds by the Cauchy-Schwartz inequality for normal inner products.

Finally, for (P4) let x, y, z ∈ R
n. Let τab be the shift that minimizes d(a, b).

d(x, y) + d(y, z) = ‖(x+τxy)− y‖+ ‖(y+τyz)− z‖ (5.3)

= ‖(x+τxy+τyz)− (y+τyz)‖+ ‖(y+τyz)− z)‖ (5.4)

≥ ‖(x+τxy+τyz)− (y+τyz) + (y+τyz)− z‖ (5.5)

= ‖(x+τxy+τyz)− z‖ (5.6)

≥ ‖(x+τxz )− z‖ (5.7)

= d(x, z) (5.8)

Where (5.4) holds because shifting x and y by the same amount does not change

the value of ‖x − y‖, (5.5) holds because of the triangle inequality, and (5.7) holds

because by definition τxz minimizes the distance between x and z.

Since cross-correlation shares many properties with inner products it is natural

to ask whether it is indeed a kernel function. We show that, although every 3x3

similarity matrix is positive semidefinite, the answer is negative.

Theorem 5.1.2.

(K1) Any 3× 3 Gram matrix of the cross-correlation is positive semidefinite.

(K2) The cross-correlation function is not positive semidefinite.

Proof. Let x1, x2, x3 ∈ R, G a 3× 3 matrix such that Gij = C(xi, xj), c1, c2, c3 ∈ R.

We prove K1 by showing Q =
∑3

i=1

∑3
j=1 cicjGij ≥ 0.

At least one of the products c1c2, c1c3, c2c3 is non-negative. Assume WLOG that

c2c3 ≥ 0 and shift x2 and x3 so that they obtain the maximum alignment with x1,
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calling the shifted versions x̃1, x̃2, x̃3 noting that x̃1 = x1. Now C(xi, xj) = 〈x̃i, x̃j〉

except possibly when (i, j) = (2, 3), thus

3
∑

i=1

3
∑

j=1

cicjGij =
3

∑

i=1

3
∑

j=1

cicj〈x̃i, x̃j〉+ 2c2c3(C(x̃2, x̃3)− 〈x̃2, x̃3〉)

≥
3

∑

i=1

3
∑

j=1

cicj〈xi, xj〉 ≥ 0

since c2c3 ≥ 0 and C(x̃2, x̃3) ≥ 〈x̃2, x̃3〉 by definition.

The negative result, K2, is proved is by giving a counter example. Consider the

matrix A and the row-normalized A′

A =



















0 1 2

1 0 0

2 1 2

0 2 1



















A′ =



















0 0.4472 0.8944

1 0 0

0.6667 0.3333 0.6667

0 0.8944 0.4472



















where each row is a vector of 3 dimensions. This illustrates a case where we have

4 time series, each with 3 samples and the time series are normalized. Using the

cross-correlation function on A′, we would get the following Gram matrix

G =



















1 0.8944 0.8944 0.8

0.8944 1 0.6667 0.8944

0.8944 0.6667 1 0.8944

0.8 0.8944 0.8944 1



















G has a negative eigenvalue of −0.0568 corresponding to the eigenvector

c = (−0.4906, 0.5092, 0.5092,−0.4906)
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and therefore G is not positive semidefinite. In other words

cGc′ =

4
∑

i=1

4
∑

j=1

cicjGij = −0.0568.

5.2 A Kernel for Periodic time Series

As the cross-correlation function is not positive semidefinite, we propose an alterna-

tive kernel function that can be used in place of the cross-correlation function with

kernel methods. To motivate our choice consider first the kernel

K(x, y) =

n
∑

i=1

n
∑

j=1

〈x+i, y+j〉.

Observe that here K iterates over all possible shifts, so that we no longer choose

the best alignment but instead aggregate the contribution of all possible alignments.

This seems to lose the basic intuition behind cross-correlation and it is indeed not

a good choice. On closer inspection we can see that

K(x, y) = (x+1 + x+2 + . . . + x+n)y+1 + . . . + (x+1 + x+2 + . . . + x+n)y+n

= (

n
∑

i=1

x+i)(

n
∑

j=1

y+j).

Hence K simply calculates the product of the sums of the shifted vectors. For

example, if the vectors are normalized to have a mean of 0, then K is identically 0.

Instead our kernel weights each shift with exponential function in order that

shifts with high correlation are highly weighted and shifts with low correlation have

smaller effect.

Definition 5.2.1. The kernel function K : R
n × R

n → R is defined as

K(x, y) =

n
∑

i=1

eγ〈x,y+i〉 (5.9)
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where γ > 0 is a constant.

Thus like cross-correlation the value of the kernel will be dominated by the max-

imizing alignment although the number of “good alignments” is also important. In

this way we get positive semidefinite kernel while having the same guiding intuition

as cross-correlation. Exponential weighting of various alignments of time series has

been proposed previously in Cuturi et al. [2007]. Despite the similarity in the con-

struction, the proof of positive semidefiniteness in Cuturi et al. [2007] does not cover

our case as their set of alignments is all possible time warpings under a fixed phase

and does not allow for circular shifting. Similar ideas to weight different matches ex-

ponentially have also been explored in kernels for multi-instance problems Gärtner

et al. [2002].

Theorem 5.2.2. K is a positive semidefinite kernel.

Proof. Consider the following function

K ′(x, y) =
n

∑

i=1

n
∑

j=1

eγ〈x+i,y+j〉.

It follows from results in Haussler [1999] that K ′(x, y) is a convolution kernel. This

can be directly shown as follows. First rewrite K ′ as

K ′(x, y) =
∑

a∈R−1(x)

∑

b∈R−1(y)

eγ〈a,b〉 (5.10)

where R−1(x) gives all shifts of x. It is well known that the exponential function

eγ〈x,y〉 is a kernel [Schölkopf and Smola, 2002]. Let Φ(x) be the underlying vector

representation of the this kernel so that eγ〈x,y〉 = 〈Φ(x),Φ(y)〉. Then

K ′(x, y) =
∑

a∈R−1(x)

∑

b∈R−1(y)

〈Φ(a),Φ(b)〉 = 〈(
∑

a∈R−1(x)

Φ(a)), (
∑

b∈R−1(y)

Φ(b))〉 (5.11)

Thus K ′ is an inner product in the same vector space captured by Φ with the map
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being the aggregate of all elements in R−1(x).

Observe that K ′(, ) iterates over all shifts of both x and y, hence effectively

counting each shift n times. For example, observe that for the identity shift, we

have 〈x, y〉 = 〈x+1, y+1〉 = . . . = 〈x+(n−1), y+(n−1)〉. Hence we need to scale K ′ by

1/n in order to count each shift exactly once. This gives us

K(x, y) =
1

n

n
∑

i=1

n
∑

j=1

eγ〈x+i,y+j〉.

Since scaling a kernel (i.e., K ′) is also a kernel, K is a kernel.

Protopapas et al. [2006] showed that cross-correlation can be calculated in time

O(n log n) where n is the length of the time series. In particular they show that

〈x, y+s〉 = F−1(X · Ŷ)[s]

where · indicates point-wise multiplication, X is the Discrete Fourier Transform

(DFT) of x, and Ŷ is the complex conjugate of the DFT of y. Therefore cross-

correlation can be calculated as

C(x, y) = max
s
F−1(X · Ŷ)[s]

and using the DFT we get the claimed time bound. This easily extends to our kernel

by calculating

K(x, y) =
∑

s

eF
−1(X·Ŷ)[s]

implying:

Proposition 5.2.3. K(x, y) can be calculated in time O(n log n).

Note that we need take the Fourier Transform of each example only once. This

gives a significant practical speedup over the näıve quadratic time implementation.
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5.3 Related Work

The current discoveries from the microlensing surveys such as OGLE and MACHO

are predominantly transient objects such as gravitational microlensing, supernovae

etc., and some periodic variable stars [Faccioli et al., 2007, Alcock et al., 1995].

Recent work on star surveys introduced the application of semi-automatic classifi-

cation techniques for periodic variable stars based on simple selection criteria over

the parameter space indexed by average brightness (magnitude), average difference

in brightness between two spectral regions or passbands, and period [e.g., Geha

et al., 2003, Howell et al., 2005]. We refer to these three parameters as explicit

features. The semi-automatic methods require significant human intervention and

hence pose an imperfect solution for a survey of even tens of millions of stars. An

automatic approach has been proposed in Debosscher et al. [2007]. This approach

extracts explicit features from the light curves and applies machine learning meth-

ods in the resulting parameter space. Despite the similarity in terms of automation,

our approach is unique in that we use the shape of the periodic time series to derive

a similarity measure. Furthermore our approach is not astronomy-specific and is

applicable across a range of domains.

There are many existing approaches for processing and classifying time series. A

classical approach is to extract features of the time series, such as the Fourier basis,

wavelets, or Hermite basis representation, and then work directly in the resulting

vector space, [e.g., Vlachos et al., 2005, Osowski et al., 2004]. Another major ap-

proach models the time series using a generative probabilistic model, such as Hidden

Markov Models (HMM), and classifies examples using maximum likelihood or MAP

estimates [Ge and Smyth, 2000]. Our work falls into a third category: using similar-

ity functions or distance measures for time series data [Berndt and Clifford, 1994,

Lu et al., 2008]. Various similarity functions for time series have been proposed. No-

tably, Dynamic Time Warping (DTW) has been shown to be very effective across

a large number of applications [Berndt and Clifford, 1994, Keogh et al., 2006]. For
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instance, a popular method for representing 2-d shapes is to create a time series

from the contour of the shape.1 Such similarity functions are not phase invariant,

hence they rely on a good universal phasing of the data.

Cross-correlation has been proposed precisely as an effective phase-invariant sim-

ilarity function for astronomy and has been used for anomaly detection [Protopapas

et al., 2006]. It is faster in runtime, O(n log n), than other methods that compute a

maximum phase-invariant alignment. The notion of phase-invariant similarity has

also been explored in the context of time series classification, specifically for time

series generated from 2-d shape contours. For example, Keogh et al. [2006] present a

method for applying any distance measure in a phase-invariant context. This allows

for the application of Dynamic Time Warping, for instance, to data that is phase-

invariant. While in general the run-time (O(n3)) is as bad as brute-force methods

such as in Adamek and O’Connor [2004], they give experimental evidence that their

heuristics lead to much faster run-times in practice. We extend the work in Pro-

topapas et al. [2006] by investigating theoretical properties of cross-correlation and

proposing a positive semidefinite alternative.

Several alternative approaches for working with non-positive semidefinite simi-

larity measures exist in the literature. The simplest approach is just to use the (non-

PSD) similarity function with SVM and hope for good results. Our experiments in

the next section show that this does not always yield the desired performance. An-

other common alternative is to add a diagonal term λI to the Gram Matrix in order

to render it positive semidefinite. More recent approaches reformulate the SVM

optimization to account for the potential non-PSD kernel [Luss and d’Aspremont,

2007, Ong et al., 2004]. Finally, Balcan et al. [2008] show that a similarity function

that meets some general requirements can be used to project examples into an ex-

plicit feature space indexed by their similarity to a fixed set of examples, and that

1Shape classification has its own domain-specific approaches and it is beyond the scope of this
paper to examine them. Nevertheless we observe that shape matching is an example of a phase-
invariant time series classification problem, and in fact we will present experiments from this domain.
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this preserves some learnability properties. Unlike these generic methods, our work

gives an explicit kernel construction that is particularly useful for the time series

domain.

The general issue of “maximizing alignment” appears repeatedly in work on

kernels for structured objects. Dynamic Time Warping is a classic (non-positive

semidefinite) example where we maximize alignment under legal potential warping

of the time axis. A general treatment of such alignments, characterizing when the

result is a kernel, is developed by Shin and Kuboyama [2008]. Their results do not

cover the case of cross-correlation, however. A similar alignment idea has been used

for graph kernels in the application of classifying molecules, where each molecule

can be seen as a graph of atoms and their bonds (see Chapter 4). Here a base

kernel is introduced between pairs of nodes in the two graphs. Then one can define

a convolution kernel between the graphs using an equation similar to (5.10) where

the sum ranges over all nodes in the graph, analogous to (4.16). This approach does

not maximize alignments, but sums over all possible alignments. A non-positive

semidefinite alternative is to maximally align the two molecules by pairing their

atoms in a one-to-one manner [Fröhlich et al., 2005]. A major question is whether

one could define an efficiently computable exponentially weighted version of such

a (non-maximizing but PSD) graph kernel (see Cuturi [2007]). One can show that

this problem is closely related to calculating the permanent, a problem well known

to be computationally hard [Valiant, 1979, Papadimitriou, 1993]. As it is a special

case of the permanent problem, however, where edge weights are related through

the kernel function, it may be possible to calculate efficiently.

5.4 Experiments

In this section we investigate the performance of our kernel as a general kernel for

periodic time series. In particular we explore whether it is useful for the astronomy

application, assuming appropriate pre-processing of the data. Once we have estab-
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lished excellent performance in the astronomy domain, in the next section we build

a fully automatic system for processing star surveys based on our kernel.

For real-world data we use time series from astronomy and time series generated

from contours of 2-d images. For artificial data, we generate examples that highlight

the importance of phase invariance in an intuitive fashion. We use the same pre-

processing for all time series, unless otherwise noted. The time series are smoothed

as in previous work [Protopapas et al., 2006, Gorry, 1990], linearly-interpolated to

1024 evenly spaced points, and normalized to have mean of 0 and standard deviation

of 1.

In all experiments we use the LIBSVM [Chang and Lin, 2001] implementation

of SVM [Boser et al., 1992] and k-Nearest Neighbors (k-NN) to perform classifica-

tion. For LIBSVM, we choose the one-versus-one multiclass setting, and we do not

optimize the soft-margin parameter, instead using the default setting. For k-NN,

we choose k = 1 following Keogh et al. [2006], who have published results on the

shape data used here.2 For some of the experiments in the astronomy domain, we

use explicit features. When we do so, we use a linear kernel. When we use cross-

correlation or our kernel in addition to explicit features, we simply add the result

of the inner product of the explicit features to the value of the cross-correlation or

kernel.3

We use five different similarity functions in our experiments: Euclidean Distance

(ED) returns the inner product of two time series. The Universal Phasing (UP)

similarity measure uses the method from Protopapas et al. [2006] to phase each

time series according to the sliding window on the time series with the maximum

mean, and then behaves exactly like Euclidean Distance. We use a sliding window

2We reproduce their experiments as opposed to reporting their results in order to account for
the different splits when cross-validating; our results do not differ significantly from those reported
by Keogh et al. [2006].

3Another approach would be to perform multiple kernel learning (see for example Sonnenburg
et al. [2006]) with one kernel being the cross-correlation and the other the inner product of the
explicit features. However, this issue is orthogonal to the topic of the chapter hence we use the
simple weighting.
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size of 5% of the number of original points; the phasing takes place after the pre-

processing explained above. In all experiments where we use K as in Equation 5.9,

we do parameter selection by performing 10-fold cross-validation on the training

set for each value of γ in (1, 5, 10, 15, 25, 50, 80), then re-train using the value of γ

that gave best average accuracy on the training set. When we use Dynamic Time

Warping (DTW), we use the standard algorithm and do not restrict the warping

window [Berndt and Clifford, 1994]. Finally we note that although cross-correlation

is not positive semidefinite, we can in practice use it on some data sets with SVM.

In the first set of experiments we run on the OGLEII dataset [Soszynski et al.,

2003]. This data set consists of 14087 time series (light curves) taken from the

OGLE astronomical survey. Periods of each star in the data set are given and were

selected by domain experts. For a more detailed description of this data set, see

Section 5.5.1 in this chapter. Each light curve is from one of three kinds of periodic

variable star : Cepheid, RR Lyrae (RRL), or Eclipsing Binary (EB). We run 10-fold

cross-validation over the entire data set, using the cross-correlation (CC), our kernel

(K), and Universal Phasing (UP). The results, shown in the left top three rows of

Table 5.1, illustrate the potential of the different similarities in this application. We

see significant improvements for both cross-correlation and the kernel over Universal

Phasing. We also see that the possibility to run SVM with our kernel leads to

significant improvement over cross-correlation.

While the results reported thus far on OGLEII are good, they are not sufficient

for the domain of periodic variable star classification. Thus we turn next to im-

provements that are specific to the astronomy domain. In particular, the astronomy

literature identifies three aggregate features that are helpful in variable star classifi-

cation: the average brightness (magnitude) of the star, the color of the star which is

the difference in average brightness between two different spectra, and the period of

the star, i.e., the length of time to complete one period of brightness variation [Geha

et al., 2003, Howell et al., 2005]. The right side of Table 5.1 gives the results when
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Table 5.1: Accuracies with standard deviation reported from 10-fold cross-validation
on OGLEII using various kernels and the cross-correlation

1-NN SVM 1-NN SVM
CC 0.844± 0.011 0.680± 0.011 features + CC 0.991± 0.002 0.998± 0.001
K 0.901± 0.008 0.947± 0.005 features + K 0.992± 0.002 0.998± 0.001
UP 0.827± 0.010 0.851± 0.006 features + UP 0.991± 0.002 0.997± 0.001

features 0.938± 0.006 0.974± 0.004

these features are added to the corresponding similarities. The features on their

own yield very high accuracy, but there is a significant improvement in performance

when we combine the features with cross-correlation or the kernel. Interestingly,

while Universal Phasing on its own is not strong enough, it provides improvement

over the features similar to our kernel and cross-correlation. Notice that a perfor-

mance gain of 2% is particularly significant in the domain of astronomy where our

goal is to publish such star catalogs with no errors or very few errors. The left

confusion matrix in Table 5.2 (for SVM with our kernel plus features) shows that

we can get very close to this goal on the OGLEII data. To our knowledge this is the

first such demonstration of the potential of applying a shape matching similarity

measure in order to automatically publish clean star catalogs from survey data.4 In

addition, based on our domain knowledge, some of the errors reported in the left of

Table 5.2 appear to be either mis-labeled or borderline cases whose label is difficult

to determine.

In addition to classification, we show in Table 5.2 that the confidences produced

by the classifier are well ordered. Here we do not perform any calibration (akin

to the normalization method from Section 6) and simply take the raw output of

each of the three hyperplanes learned by the SVM. While we investigated the use

of the methods from Section 6 here, in exploratory experiments we did not find the

probability estimates to be more reliable than simply ordering the classifications

4Wyrzykowski et al. [2004] uses a shape-based similarity measure but only for EBs and not in
an automatic classification setting.
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Table 5.2: Four confusion matrices for OGLEII, using SVM with K and features.
Left to right, top to bottom, we abstain from none, then the lowest 1%, 1.5% and
2%.

Ceph EB RRL

Cepheid 3416 1 13

EB 0 3389 0

RRL 9 0 7259

Ceph EB RRL

Cepheid 3382 1 3

EB 0 3364 0

RRL 1 0 7195

Ceph EB RRL

Cepheid 3363 1 3

EB 0 3342 0

RRL 0 0 7166

Ceph EB RRL

Cepheid 3352 1 0

EB 0 3312 0

RRL 0 0 7138

according to the raw output (also note that what we really want to do is rank the

output, not assign probabilities). To calculate the confidence in label 1, we add

the raw output of the 1v2 (the classifier separating class 1 from class 2) and 1v3

classifiers. To calculate the confidence in label 2 we add the negative output of the

1v2 hyperplane and the output of the 2v3 hyperplane, etc. We can then abstain

from the examples that received the lowest confidences and set them aside for review.

When we abstain from the lowest 1%, for example, we abstain from all but 5 errors,

showing that almost all of our errors have low confidences. We now have reason to

believe that, when we classify a new catalog, we can reliably abstain from a certain

percentage of the predictions that are most likely to be errors. The examples on

which we abstain can either be ignored or set aside for human review.

In the next set of experiments we use five shape data sets: Butterfly, Arrowhead,

Fish, Seashells introduced in Keogh et al. [2006], as well as the SwedishLeaf data

set from Söderkvist [2001].5 These data sets were created by taking pictures of

objects and creating a time series by plotting the radius of a line anchored in the

center of the object as it rotates around the image [Keogh et al., 2006]. As all of

the pictures have aligned each object more or less along a certain orientation, we

randomly permute each time series prior to classification in order to eliminate any

5Detailed Information available via www.cs.ucr.edu/~eamonn/shape/shape.htm
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Table 5.3: Number of examples in each data set. For those data sets that were
filtered to include 20 examples of each class, the number of examples post-filtering
appears after the ‘/’.

Num Examples Num Classes Majority Class

Arrowhead 558/474 9 0.19

Butterfly 754/312 5 0.39

Intershape 2511 4 0.30

SwedishLeaf 1125 15 0.07

bias of the orientation. The identification of objects from various orientations is now

cast as a phase-invariant time series problem.

A natural and relatively easy problem is to use a classifier to separate the dif-

ferent image types from each other. In this case we attempt to separate butterflies,

arrowheads, seashells, and fish. We refer to this data set as Intershape.6 We also in-

vestigate the potential to separate sub-classes of each shape type. The SwedishLeaf

data has already been labeled before, and hence the sub-classes are already identi-

fied. For the other data sets that have not been explicitly labeled by class before,

we generate labels as follows: for the Butterfly and Fish data set, we consider two

examples to be the same class if they are in the same genus. For the Arrowhead

data set, we consider two arrowheads to be the same type if they share the same

type name, such as “Agate Basin,” or “Cobbs.” In order to make the results more

statistically robust, we eliminate sub-types for which there exist fewer than 20 ex-

amples. Seashells and Fish have too few examples when processed in this way and

are therefore only used in the Intershape data set. A summary of the data sets,

including number of examples and majority class probability (that can be seen as a

baseline) are given in Table 5.3.

For these experiments we calculate no explicit features. We run 10-fold cross-

validation using 1-NN with cross-correlation (1-NN CC), the kernel (1-NN K), Dy-

namic Time Warping (1-NN DTW), Universal Phasing (1-NN UP) and SVM with

the kernel (SVM K), Universal Phasing (SVM UP), and Euclidean distance (SVM

6We treat the SwedishLeaf set differently because it has a different resolution and is not part of
the same overall shape data set.
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Table 5.4: Performance on various shape data sets. All results are cross-validated.
Data set names: A = arrowhead, B = butterfly, I = intershape, S = Swedish

1-NN CC 1-NN K 1-NN DTW 1-NN UP SVM ED SVM UP SVM K

A 0.54 ± 0.06 0.54 ± 0.08 0.33 ± 0.06 0.49 ± 0.05 0.2 ± 0.05 0.41 ± 0.05 0.63 ± 0.04

B 0.73 ± 0.04 0.73 ± 0.04 0.59 ± 0.08 0.70 ± 0.07 0.4 ± 0.1 0.65 ± 0.08 0.76 ± 0.08

I 0.98 ± 0.01 0.98 ± 0.01 0.84 ± 0.03 0.97 ± 0.02 0.47 ± 0.03 0.8 ± 0.02 0.91 ± 0.02

S 0.84 ± 0.03 0.82 ± 0.03 0.48 ± 0.06 0.78 ± 0.04 0.08 ± 0.03 0.18 ± 0.03 0.33 ± 0.04

ED). The results are given in Table 5.4. We also tried using 1-NN with Euclidean

Distance, but the performance was not competitive with any of the other methods

hence we do not include it in the comparison.

The results demonstrate that both cross-correlation and the kernel provide a

significant performance advantage. It is not surprising that DTW does not do well

because it only considers the one given random phasing of the data. Rather, it is

surprising that it does not perform worse on this data. The only way it can expect to

perform well with k-NN is if, by chance, for each example there is another example

of the same class that happens to share roughly the same phase. In a large enough

data set, this can happen, and this may explain why DTW does much better than

random guessing. It is interesting that SVM does not always dominate k-NN and

does very poorly on SwedishLeaf. It may be that the data are linearly inseparable

but there are are enough examples such that virtual duplicates appear in the data

allowing 1-NN to do well.

Another interesting observation is that while Universal Phasing never outper-

forms all methods it does reasonably well across the domains. Recall that this

method phases the time series according to the maximum average magnitude of a

sliding window. This finds a “maximum landmark” in the data for alignment and is

obviously not guaranteed to be informative of the class in every case. Nevertheless,

it works well on the Butterfly and Intershape data sets showing that this type of

landmark is useful for them.

As we show in the next set of experiments with artificial data, it is easy to
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construct examples where Universal Phasing will fail. We generate two classes of

time series. Each example contains 1024 points. Class 1 is a multi-step function

with one set of four steps beginning at time 0, as well as one spike placed randomly.

Class 2 is also a multi-step function but with two sets of two steps, the first at time

0 and the second at time 665 (roughly 65% of the entire time series) and one random

spike exactly as in class 1. We show two examples of each class in Figure 5.2. We

generate 10 disjoint training sets containing 70 examples and test sets containing

30 examples for cross-validation. We keep the training set small to avoid clobbering

the results by having near-identical examples. In these experiments we normalize

as above, however we do not perform smoothing as the data contains no noise.

For this type of data the random spike will always be in the center of the largest

magnitude sliding-window, and hence Universal Phasing will phase each time series

according to the random location of the spike. In a real world setting, the random

spike could be sufficiently wide noise period in the signal, or any irrelevant feature of

the time series. This is key to understanding the strength of our method: if it is easy

to find a global shifting such that each example is maximally correlated with every

other, our method performs identically to Universal Phasing. On the other hand,

when a global shift is not trivial to find, our method succeeds where a Universal

Phasing algorithm fails. To illustrate further the performance potential of the kernel

we create a second version of the data where we add noise to the labels by flipping

the label of each example with probability of 0.1. When the data are completely or

nearly separable, both k-NN and SVM should attain close to 100% accuracy. The

noise changes the domain to make it harder to get this level of performance.

The results are shown in Table 5.5. As expected, Universal Phasing does quite

poorly in this setting. With no noise, 1-NN with cross-correlation, 1-NN with our

kernel, and SVM with our kernel attain almost 100% accuracy. The results with

noisy data show that SVM with our kernel is more robust to noise than 1-NN with

cross-correlation or our kernel.
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Figure 5.2: Examples of artificial data. The left two examples are from class 1, the
right two example are from class 2.

To summarize, the experiments show that universal phasing and cross-correlation

are useful in some contexts, but that our kernel combined with SVM can yield

significant improvements in performance.

Table 5.5: Results on artificial data

1-NN CC 1-NN K 1-NN UP SVM UP SVM K

Artificial 0.99 ± 0.02 1.00 ± 0.00 0.65 ± 0.04 0.50 ± 0.07 0.997 ± 0.001

Artificial w/ Noise 0.84 ± 0.14 0.84 ± 0.12 0.61 ± 0.09 0.53 ± 0.12 0.90 ± 0.05

5.5 A Fully Automated System for Classifying Periodic

Variable Stars

Now that we have established a machine learning basis for classification of periodic

time series, we can address the entire problem of processing, filtering, and classifying

an astronomy catalog. This endeavor encompasses much more than just classifica-

tion: for example, from ∼ 25 million stars in the MACHO survey, we must eliminate

all but approximately 50 thousand stars of interest7 prior to running our classifi-

cation routine from Section 5.4. To process a survey our system combines various

statistical tests, machine learning algorithms, and signal-processing techniques. As

proof-of-concept we use our system to find new RRLs, Cepheids, and Eclipsing Bi-

naries in the MACHO survey, starting with no information other than the raw light

7Based on known distributions of periodic variable stars.
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curves (time series). In addition to identifying new periodic variables, our system

produces two useful categories of non-classified data: stars that are too much like

two or more of RRL, Cepheid, or EB to make a confident decision, and stars that are

periodic in some way but are not like any of RRL, Cepheid, or EB. The stars in the

first category can be further processed to determine the best category; the stars in

the second category serve as a reserve of potentially interesting astronomical events

that can be reviewed by a domain expert. For example, we have found several stars

whose period changes over time; this is a known astronomical phenomenon and a

catalog of such stars would be useful to astronomers.

Using the OGLEII survey as a training set, we classify fields 1-82, 206, 207,

208, 211, 212, 213, 301-311, 401-403 in the MACHO survey, containing 25, 309, 792

objects. Our system produces a list of 8, 045 new EBs, 6, 792 new Cepheids, 16, 876

new RRLs, and 3, 787 stars which may be one of the three types, and 24, 944 stars

that are not one of the three types, but are periodic variable events of interest.

To our knowledge, this is the first such system that is completely automatic. The

system of Debosscher et al. [2007], for example, automatically classifies periodic

variable stars, but only from among a set of known periodic variable stars; that is,

first work must be done to identify periodic variable stars from within the dataset.

Our system takes as input a complete, unfiltered survey, and automatically creates

a catalog of periodic variables.

In Section 5.5.1 we describe the MACHO and OGLEII data. In Section 5.5.2 we

define each part of our system and analyze its performance on the MACHO catalog.

Finally in Section 5.5.5 we discuss ideas for future improvements to the system based

on its performance on the MACHO catalog.
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Table 5.6: Details of OGLEII dataset

Num Stars in LMC Num Stars in SMC Total

Cepheid 1374 2051 3425

EB 2266 1124 3390

RRL 6812 460 7272

Total 10452 3635 14087

5.5.1 Description of Data & Initial Preprocessing

For each survey, we are given a time series for each star that was observed, in each

pass-band8 of that survey. As above, each time series consists of a list of magnitude

measurements, the time each measurement was taken, and an estimated error of the

measurement. Below, we refer to the magnitude measurement i of a time series as

xi, the associated time of the measurement as ti, and the associated error of the

measurement as σ2
i . Figure 5.3 shows an example time series and illustrates the

non-uniform sampling.

The OGLEII dataset [Soszynski et al., 2003] contains a total of 14087 light curves

from periodic variable stars sampled in the standard V,B, and I passbands, from

both the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC). There

are 3425 Cepheids, 3390 Eclipsing Binaries, and 7272 RRLs in all. See Table 5.6 for

details.

In the following we discuss some well-known characteristics of the explicit fea-

tures from Section 5.4: average magnitude,9 color,10 and period that show their

utility in predicting type of star, as well as the limitations in using only these fea-

tures. Figures 5.17, 5.18, and 5.19 (pages 128 – 130) show histograms of the period,

magnitude, and color for the OGLEII dataset. In Figure 5.17, we can see that there

is a noticeable difference between the distribution of the RRL periods and the dis-

8Passbands refer to ranges of visible light; measurements of a star are taken using different filters
on the telescope leading to measurements of brightness in different pass-bands.

9We use the standard V band for average magnitude, and subtract 0.52 from all magnitude
measurements for stars in the SMC according to standard astronomy practice.

10The difference between average magnitudes in two passbands.
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Figure 5.3: Unfolded time series from MACHO survey. Top: all data points. Bot-
tom: expanded subsection.
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tribution of the EB and Cepheid periods; while almost all of the RRL periods fall

between 0.2d (d is days) and 0.8d, the EB and Cepheid periods are spread out over

a much larger range.

In Figure 5.18 (page 129) we can see that there is a lot of overlap in all three

histograms. The peaks of the histograms are different, however, hence average

magnitude does give a clue as to the type of star.

In Figure 5.19 (page 130) we show that all three types of stars have well defined

narrow peaks, and there is some separation between EBs and Cepheids, with RRLs

falling somewhere in the middle.

The histograms show us that we can expect well-defined ranges for each star

type’s color, magnitude, and period. In general, no one feature can be used to

determine star type, but they do help to indicate which star type is more likely.

When taken together, the features are even more informative, as we discuss below.

In the top of Figure 5.4, we examine the color and magnitude features together.

There is a clear region for RRLs and Cepheids in this diagram, although the two

regions overlap significantly; this space is sufficient to delineate many Cepheids and

RRLs, but more information will be needed to distinguish those stars that fall in the

overlapping region. EBs appear throughout the diagram, virtually encompassing the

RRLs and Cepheids. Part of the EB region is distinct from the other two regions,

and thus this feature space would be useful for data points that fall in that region.

Overall, the color-magnitude space illustrates that the relationship between these

two features can be used in many cases to distinguish star type.

In the bottom of Figure 5.4 (Color vs. Period), we see more overlap between the

classes, but still there are autonomous regions for each star. The message here is

that in the feature space indexed by period, magnitude, and color, we can distinguish

star type for much of the data, however for the significant overlap regions we will

have to analyze more carefully our predictive model. Furthermore, we can expect

periodic variables to fall in a certain well-defined region of the feature space; this
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Figure 5.4: Top: Color-Magnitude diagram for OGLEII. Bottom: Color-Period
diagram for OGLEII

104



Figure 5.5: Top:Color-magnitude diagram for confirmed subset. The OGLEII ver-
sion and MACHO version of each is shown here. OGLEII uses V-I and MACHO
uses V-R; it is clear further calibration is warranted. Bottom: Calibrated color-
magnitude diagram for confirmed subset. The MACHO version is shown here on
top of the entire OGLEII dataset, after a regression model is learned and MACHO
is calibrated accordingly.

will help us when we try to eliminate non-periodic variables from the raw MACHO

data. As we illustrated above with the experiments on the OGLEII dataset, the

features we list here are sufficient to be able to classify periodic variable stars quite

well, although incorporating the shape of the time series improves performance.

To be able to use the shape information, we must know the correct period of the

star, which was determined for OGLEII by non-automatic methods. As we discuss

below, determining period automatically is non-trivial, and we know of no system

that accomplishes this task accurately.
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The MACHO survey [Alcock et al., 1993] is a microlensing survey conducted in

two non-standard passbands, “blue” and “red.” After filtering out stars that have

too many erroneous measurements, we are left with 25, 309, 792 stars. The non-

standard passbands present a challenge to making direct comparisons between stars

in MACHO to stars in OGLEII. We use the formula given to us by P. Protopapas

(2008, private communication) to convert the “blue” passband to Kron-Cousins V,

and “red” to Kron-Cousins R:

Vk = B + 24.22 − 0.1804(B −R) (5.12)

Rk = R + 23.08 + 0.1825(B −R) (5.13)

where Vk, Rk are the Kron-Cousins V and R bands, and B,R are the non-standard

MACHO bands. Additionally, we subtract 0.52 from the average magnitudes of

stars in the SMC, as we did with OGLEII.

In order to evaluate our methodology in various stages, we use a subset of stars

from the MACHO survey that also exist in the OGLEII catalog. We will refer to this

throughout the document as the confirmed subset. To find these stars, we compare

the RA and DEC11 of the stars in OGLEII with stars in MACHO, and select stars

such that:
√

(raM − raO)2 + (decM − decO)2 < 5s

where the units on the LHS are in seconds. Additionally, we require that the dif-

ference in V magnitude not exceed 0.5. This yields 3166 stars with 256 Cepheids,

1266 EBs and 1644 RRLs. These are very important because they allow us to track

and validate different stages of our processing pipeline.

Even after the application of (5.12) we found that the V magnitudes and V −R

color in the confirmed subset were still too far off the V magnitude and V − I

color of their OGLEII counterparts; this is illustrated in the top plot of Figure 5.5.

11Right ascension (RA) and declination (DEC) are used to measure the position of stars in the
sky.

106



We use a simple linear regression to map the MACHO V magnitudes to OGLEII V

magnitudes, and MACHO V −R colors to OGLEII V −I color. In the bottom plot of

Figure 5.5, we show the MACHO version of the confirmed subset on top of the entire

OGLEII dataset; it is clear that the calibrated confirmed subset now sits in the same

region as OGLEII in color-magnitude space. Note that we are not attempting for

exact mapping, we simply want to ensure that any classification learned on OGLEII

in color-magnitude space will transfer appropriately to the MACHO survey. As

Figure 5.5 demonstrates, the mapping we choose should satisfy this requirement.

5.5.2 Classification Methodology

In this section we describe how we extract from the unlabeled MACHO catalog a set

of labeled, periodic variable stars. We explain our methods and present experiments

to show their effectiveness.

Our methodology is a pipeline of separate modules which we order as follows:

A Eliminate non-variables

A1 sodset filter

A2 check for sufficient number of points

A3 check for sufficient variability

B Eliminate non-periodic variables

B1 find periods

B2 check for spurious periods due to sampling rate

B3 refine period estimates

B4 check for periodicity

B5 check for symmetry

C Eliminate stars not of type Cepheid, EB, or RRL
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C1 set aside based on nearest OGLEII star in C-M space

C2 set aside based on nearest OGLEII star using cross-correlation

D Classify

D1 train SVM on OGLEII dataset, classify remaining MACHO stars

D2 using confidences generated from the classifier output, abstain on any

stars for which classification is indefinite.

The pipeline is illustrated in Figure 5.6. We explain each step in detail in the

following sections.

SODSET (A1)

This is a pre-processing stage that does some basic filtering on the time series, elimi-

nating completely any time series that have measurements out of a range determined

by our collaborators.

Sufficient Number of Points (A2)

Before we perform any further testing, we eliminate light curves that have an insuf-

ficient number of observations. It is critical to eliminate light curves containing a

low number of points because our tests for variability and periodicity will not give

meaningful output for light curves that do not contain enough data to establish a

pattern.

We start by eliminating points that have reported error more than 3σ away from

the average error for that curve, i.e., if

ei − ē > 3σe,

where ei is the reported error of observation xi, ē is the average error of the time

series, and σe is the standard deviation of the errors, then we throw away xi. If the
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Figure 5.6: MACHO processing pipeline
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either the red or blue band of the time series ends up with fewer than 250 points, we

discard the star. This removes 3, 693, 958 stars for future processing. Automated

processing of stars with few and noisy measurements would require significantly

improved techniques.

Chi-squared Test for Variability (A3)

In the next step, we use the chi-squared test to filter out non-variable stars. Specif-

ically, we use a χ2 test on the light curve for fit to the mean.

χ2 =
1

n− 1

n
∑

i=1

(xi − x̄)2

e2
i

where

x̄ =

∑n
i=1(

xi

e2
i

)
∑n

i=1
1
e2
i

,

i.e., the error-weighted average magnitude. If a star is variable, it will have a higher

chi-squared value. We compute the χ2 value for both red and blue bands in MACHO

and use the maximum of the two for filtering purposes, that is, if only one of the

bands is variable we want to include the star.

By discarding any star with χ2 < 3, we remove more than 50% of the survey

which we believe are not variable. Furthermore, we do not eliminate any of the

stars in the confirmed subset, indicating that, as intended, this test does not remove

many variable stars. After this stage we have a total of 8, 172, 240 stars remaining.

Finding Periods (B1-B5)

At this stage in the pipeline, we have established that the remaining stars are vari-

able, however we have not yet determined if they are periodic. The problem of

finding the period of a periodic, non-uniformly sampled time series has been studied

extensively in general and in the astronomy literature [Reimann, 1994, Shin and

Byun, 2004]. Yet while there are multiple methods for identifying the periodic com-
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ponents of a light curve, there are no automatic methods for determining if a light

curve is periodic. For example, if we give a non-periodic star to a period-finding

algorithm, such as supersmoother [Friedman, 1984] or an analysis of variance (AoV)

technique [Schwarzenberg-Czerny, 1989], it will return some period corresponding

to a periodic component of the lightcurve. The fact that a periodic component

is returned is no more indicative that the signal is periodic than is the existence

of a Fourier decomposition of a uniformly sampled discrete signal. Methods must

use some goodness-of-fit function to determine how well a given period describes

the time series, however this is challenging in our context for the following reasons:

the difference in goodness-of-fit between one period and an integer multiple of that

period may be completely determined by scatter; the “true period” of an Eclips-

ing Binary may be impossible to describe mathematically with the data we have;

semi-regular sampling times lead to spurious periodic components. These points

and techniques to address them are discussed in detail below. The work of Reimann

[1994] gives a thorough comparative study of the period finding methods in use in

the context of periodic variable stars, and shows that while some perform better

than others in some cases, no one method is perfect.

To summarize, state-of-the-art performance requires a human to verify that the

star is in fact periodic, and that the period-finder has returned the true period;

no currently available method performs a truly automatic, reliable period-selection,

and as mentioned above, with EBs, such a method may not be possible with just the

time series as input. The method we use is also imperfect and it is not as accurate

as manual period selection, but it gives sufficient performance so that our classifier

can make accurate predictions.

Methodology The period methods we examined operate using the same basic

algorithm: for a given list of periods, use some statistic to rank the periods ac-

cording to how well they fit the data. The Analysis of Variance (AoV) based tech-

niques [Schwarzenberg-Czerny, 1989] bin the periodic signal and compare variance-
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like statistics within each bin to variance-like statistics over the whole signal. Phase

Dispersion Minimization (PDM) [Stellingwerf, 1978] reports the period minimizing

the variance (scatter) of the folded signal. The Supersmoother Algorithm [Fried-

man, 1984] uses a sliding window of variable width, and calculates the squared error

of each point with the average of the window around that point; the periods are

then ranked according to this error. The entropy minimization method [Cincotta

et al., 1995] forms a two-dimensional grid over the folded light curve, the resolution

of which is specified by the user. The number of points in each square of the grid

is used to estimate the “entropy” of the signal. In other words, if the signal is

pure noise, the entropy will be high because the points will be distributed uniformly

throughout the grid. If the signal is periodic, the entropy will be low because few

squares will contain all of the points. The method we describe uses as its center

the Lomb-Scargle (L-S) Periodogram [Lomb, 1976, Scargle, 1982]. The L-S Peri-

odogram rates periods based on the sum-of-squares error of a sine wave at the given

period. There are numerous studies comparing the period evaluation techniques we

describe here as well as many others [e.g., Schwarzenberg-Czerny, 1989, Reimann,

1994]. No one method works perfectly in every situation. We choose L-S because it

can be evaluated efficiently using the algorithm of Press and Rybicki [1989], and in

preliminary experiments it has shown to perform reliably.

In our method, we first calculate a Lomb-Scargle Periodogram [Lomb, 1976,

Scargle, 1982] (step B1 in Figure 5.6) for each light curve; we look for periods in

the range of 0.1d − 20d, where d is days, with an oversampling rate of 0.5, mean-

ing the range of periods is broken into even segments of 0.5 times the reciprocal

of the Nyquist frequency of an equivalent uniformly-sampled time series. The im-

plementation of the L-S Periodogram is that of Hartman et al. [2008], and makes

two important additions to the original algorithm. First, local maxima in the peri-

odogram are represented by the peak period. In other words, periods immediately

to the left and right of a local maxima will not be reported in the periodogram.
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Figure 5.7: Two stars with predicted periods close to 1d, shown folded and plotted
by phase. The left has a true period of about 1d, the right is not periodic but has
a strong 1d frequency component due to the sampling frequency.

Second, when a period is reported, simple rational number multiples of that period

are not reported. We use the highest power period as our first guess of the period

of a light curve. We refer to the period giving the highest peak in the periodogram

as the highest power period.

Many stars in the MACHO survey were observed with a sampling frequency

around 1d because some stars are observed at roughly the same time of day for each

observation. Therefore we expect these stars to have strong periodic components

around 1d. Looking at Figure 5.17, however, we expect many stars to have a true

period close to one day, hence we need to find a way to separate the spurious 1d

period guesses from the correct 1d period guesses (step B2 in Figure 5.6). We use a

simple method to accomplish this that we illustrate with an example. In Figure 5.7

we show two light curves that have been folded to a period of ∼ 1d, corresponding

to the highest power period given by the Lomb-Scargle periodogram. It is clear

that the right light curve has been folded to a sampling frequency by the gaps, or

discontinuities in the folded light curve, but the left light curve actually has a true

period close to 1d. Therefore, we need some way to figure out if our period guess is

the true period, or a result of the sampling frequency. To accomplish this, we first

check if the guessed period, p, is within 1% of 1d; if it is, we move a sliding window

of width 0.1p (remember that the light curves are first folded to the period p) along
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Figure 5.8: The same star folded according to low-resolution period search and
high-resolution period search. Note the reduction in scatter in the high-resolution
version.

the folded light curve, and record the number of points in each corresponding time

window of width 0.1p. We estimate the expected number of points in such a slice to

be 0.1n±
√

0.1n, where n is the total number of points. We say a light curve has been

folded to a period corresponding to the sampling frequency if the window with the

fewest number of points differs from 0.1n by more than 3
√

0.1n, i.e., if the number

of points in any window is more than 3 standard deviations from the expected mean.

If this test indicates that the current period guess is in fact due to the sampling

frequency, we check the next highest period given by the L-S Periodogram, and test

the folded light curve as with the first period guess, otherwise we leave the current

period guess as is. If we do test the second period and it also indicates it is a result

of the sampling frequency, we reject the light curve entirely, otherwise we record

the second frequency as the true frequency. This stage of processing eliminates

1, 341, 814 stars, leaving 6, 830, 426 (see Figure 5.6).

Now that we have filtered out erroneous periods derived from the sampling-

frequency, we re-run the L-S Periodogram using a higher oversampling rate of 0.05

and a range of p± 0.1p where p is the current period guess (step B3 in Figure 5.6).

This is to eliminate as much scatter in the folded light curves as possible, as a slightly

incorrect period guess can lead to a very noisy folded light curve. We could have

run with this resolution initially, however it would have been too resource intensive
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Figure 5.9: Histograms of variance ratios of MACHO stars.

to do so over the original period range. In Figure 5.8 we show the same light curve

folded once to the period found initially, and then to the period resulting from the

high-resolution period search. The right curve has significantly less scatter. As

scatter tends to obscure any shape, this will help us in the next stage when we try

to determine if a light curve has a “shape”, and later on when we try to determine

if two light curves have a similar shape.

The next challenge is determining if the light curve is actually periodic (step B4

in Figure 5.6). As we mentioned above, the L-S Periodogram will return a list of

periods for any light curve, regardless of whether it is periodic, and the p-values

(the probability that the signal is non-periodic) given by the L-S Periodogram for

periodicity have not proved to be reliable in this context. We use a statistic we

call the variance ratio as a method of determining whether a folded light curve is

periodic. This statistic is the same as the one used in Stellingwerf [1978] to determine

how well a period matches a given signal; hence we are using the L-S Periodogram

to find candidate periods, and a part of Phase Dispersion Minimization to evaluate

periodicity. The intuition is that if the folded light curve has a shape, the variance

of a small window of points should be small compared to the variance of the entire
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Figure 5.10: An Eclipsing Binary for which LS returns 1/2 the period, folded ac-
cording to the LS period and twice the LS period. Here is it difficult to formalize
that one is “better” than the other.

light curve, whereas if the light curve is just noise, the variance will be uniform

regardless of the size of the window. We fold each light curve to the current period

guess. We then calculate the average variance of a sliding window around the mean

of the sliding window. Finally, we divide the average variance by the variance of

the entire light curve. If this variance ratio is close to 1, we will tag the star as

non-periodic and throw it away because this means the local variance is the same

as the global variance. If this falls far enough below 1 we accept it as periodic.

Formally the variance ratio is defined as:

V R =

∑n
i=1(xi − xi)

2

∑n
i=1(xi − x)2

where n is the number of points in the folded light curve,

xi =
1

w

w/2
∑

j=1

xi−j mod n + xi+j mod n,

and w = min{10, 0.05n} is the window size. In Figure 5.9 we give a histogram of

the variance ratios of the MACHO stars that passed the previous filtering steps. By

using a threshold of 0.7, the variance ratio test removes 6, 767, 617 stars that we

believe are variable but not periodic.
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Figure 5.11: The same star folded first by using the output of the LS periodogram,
then by using our method of checking for symmetry in twice the reported period.

We have the remaining problem of determining if the guessed period is the “true”

period or a simple rational number multiple (harmonic). In our experience, the L-S

Periodogram almost always gives the correct period for RRLs and Cepheids, but

almost always gives 1/2 the true period for EBs. Finding the true period of an

EB is particularly challenging. First, it is impossible to distinguish mathematically

between the true period and half the true period of a symmetric Eclipsing Binary

(see Figure 5.10). Second, methods that are better able to identify the true period

of EBs, such as Supersmoother [Friedman, 1984], are prone to find periods that are

integer multiples of single bump stars like RRLs and Cepheids; methods that fold

RRLs and Cepheids correctly, such as the first period given by the Lomb-Scargle

Periodogram [Lomb, 1976, Scargle, 1982] often give 1/2 the “true” period of EBs.

We can compensate for this somewhat by using one extra check; this is step B5

of Figure 5.6. After the high-resolution period search, we fold each light curve to

double the current period guess, smooth it by replacing each point with the mean of

the 10 adjacent points, linearly interpolate the folded, smoothed curve to have 1024

equally spaced points, subtract the mean and divide by the standard deviation. We

then take the Euclidean Distance between the vector of the first 512 points and the

vector of the final 512 points. This is an estimate of how symmetric the curve is.

If the true period is the original guess, then folding the light curve to double this
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Table 5.7: Comparison of period finding methods on OGLEII. Here we assume
that the periods reported in OGLEII are correct and show performance of other
algorithms relative to the OGLEII periods.

Correct Integer Multiple Error

B3 10108 972 1175

B5 10637 660 958

period should give two almost exactly symmetric halves, and hence there will be a

very small distance between them. If the original guess was half the period of an

EB with one large bump and one small bump, then this test will show that there

is a significant distance between the two halves. By using this method we are able

to correct many of the original period guesses for EBs, while making few errors on

RRLs and Cepheids. In Figure 5.11 we show an example where the LS periodogram

gave 1/2 the true period of an EB, and our method was able to correct for that.

Observe that this method does not help when the EB is exactly symmetric, or when

the L-S Periodogram returns a multiple of the true period other than 1/2. It is these

cases in which our periods will be incorrect, yet as we show below our classification

system is still able to perform well.

We can immediately evaluate our period-finding method by comparing it against

the actual periods reported by OGLEII, and the periods we would use if we did not

check for symmetry. The OGLEII dataset is first filtered through steps A1-B5 of

the pipeline thus far, in order to remove any potentially noisy data. We denote

our method by B5 (according to its position in Figure 5.6), and the method that

does not check for symmetry by B3 (also see Figure 5.6). In Table 5.7 we report

discrepancies between the actual periods and the two automatic methods on the

OGLEII dataset. For each period reported, we check if it is within 1% of the actual

period and if so record it as “correct.” We then show two types of errors: if it is

within 1% of an integer multiple of the period, and otherwise. B5 makes fewer errors

than B3, and fewer mistakes between the true period and an integer multiple. This
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Figure 5.12: Color-magnitude diagram of stars in MACHO that have passed the
periodic-variability test with known periodic-variables from OGLEII

is a small but significant improvement in the quality of the reported periods.

Selection (C1-C2)

The 62, 809 remaining stars are periodic variables, and now we need to identify

stars that we do not believe to be one of RRL, Cepheid, or EB. This is important

because the classifier we use in the following section is trained to distinguish between

these three classes but has no model of unknown types and thus cannot make good

predictions on a star that is not Cepheid, EB or RRL. The stars that we identify

as non-Cepheid EB or RRL will be interesting astronomical events, such as period-

changing variable stars, and should be held for further review by a domain expert.

We identify stars for further review in two ways: first we set aside any stars that do

not have “near neighbors” from the OGLEII dataset in color-magnitude space (step

C1 in Figure 5.6); second we set aside stars that do not “look like” any stars in the

OGLEII dataset (step C2 in Figure 5.6).

In the first stage, (C1 in Figure 5.6), we simply embed each star in the two-

dimensional space of average magnitude (denoted V ), and color (denoted V − I),

where these features have been calibrated as mentioned in Section 5.5.1. Addition-

ally, we join the OGLEII and MACHO datasets and normalized the features such

119



Figure 5.13: Selected for review due to distance in C-M space

Figure 5.14: Selected for review due to cross-correlation
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that they have standard deviation of 1 and mean of 0. We then use the Euclidean

Distance of each star in MACHO to its nearest neighbor from the OGLEII dataset

to generate a similarity measurement, e−d, where d is the Euclidean Distance to

the nearest neighbor. We then set aside any stars that are far away from any star

in OGLEII, i.e., if e−d < 0.9. As can be seen in Figure 5.12, it is clear that a

large number of stars that have passed the periodic-variable test in MACHO are

well outside the normal range of color and magnitude for EBs, Cepheids, and RRLs,

as established by OGLEII. In this portion we remove an additional 18, 661 stars,

including 82 from the confirmed subset. In Figure 5.13 we show three stars that

are set aside in this phase; such stars are of interest but require future investigation

before they can be classified.

In stage C2 of Figure 5.6, we use the cross-correlation similarity measure from

Section 5.1 to quantify how “alike” two light curves are in shape. We first fold,

smooth, and interpolate each light curve to 1024 points as in Protopapas et al.

[2006], and scale each light curve to have a mean of 0 and standard deviation of

1. We then compute (5.1) for each light-curve in MACHO with each light curve

in OGLEII. If an unknown star does not “look like” any star in OGLEII, we set it

aside as it is most likely not a Cepheid, EB, or RRL.

In this phase we set aside star Y if C(X,Y ) < 0.97, where X is the star in

OGLEII giving the highest cross-correlation, C(, ) as in (5.1). In Figure 5.14 we

show typical examples of periodic-variable stars that were set aside in this phase;

these light curves clearly represent some event, but require a different method for

classification. In total we remove 13, 854 stars among which 98 are in the confirmed

subset.

Classification

With our classifier we wish to capture both the aggregate information about each

star using the explicit features from Section 5.4, as well as the shape of the folded
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Figure 5.15: A Cepheid and RRL with similar shape.

light curve. This shape is critical in identifying stars, as we have shown in Sec-

tion 5.4, and is one of the primary points of input for an astronomer. Recall the

typical shape of the three types of stars from Figure 5.1. It is clear that shape

can effectively delineate these prototypical examples of each class by shape. In

Figure 5.15, however, we see a Cepheid and RRL that look very similar — in this

case we would need to rely more on the explicit features in order to distinguish the

stars. We illustrate two clean-cut examples here, but in general the decision is much

harder and we use machine learning methods (primarily SVM) to induce a decision

function.

5.5.3 Background and Preliminary Tests of OGLEII

We use features + K from Section 5.4 as our similarity measure of light curves.

Recall this combines (5.9) from Section 5.2 with the explicit features.

We choose the value 15 for the constant γ in (5.9) by 10-fold cross-validating on

the OGLEII dataset with each value of γ in {1, 5, 15, 20, 25, 50, 80} and using the

value that gives the highest accuracy.

Because we are building an automatic system, we cannot rely on human inter-

vention to find periods. We can use the astronomer-found (OGLEII) periods on

the training set, and the periods found by method B5 on the test set, or we can

choose to use the B5 periods on both the training and test set. We evaluate both

options by cross-validating on the OGLEII dataset. We compare the results to the
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Table 5.8: Top Left: Cross validated results on OGLEII using known periods. Top
Right: Cross-validated results on OGLEII using periods determined by method B5.
Bottom: Cross-validated results on OGLEII, training on periods from OGLEII,
testing on periods from method B5. Actual labels are the columns, predicted labels
are the rows.

Ceph EB RRL

Ceph 3095 16 7

EB 22 2069 3

RRL 4 3 7036

Ceph EB RRL

Ceph 3078 64 13

EB 30 2018 6

RRL 13 6 7027

Ceph EB RRL

Ceph 3105 340 10

EB 2 1440 7

RRL 14 308 7029

“ideal” case, i.e., using the astronomer-found periods on both training and testing.

We show the results in Table 5.8. As expected, using the OGLEII periods for both

training and testing (this is an identical experiment to that reported in Section 5.4)

gives the best results but this method is not automatic. Using the method B5 on

both the training and test set performs much better than training on the OGLEII

periods and testing on the B5 periods, and almost as well as training and testing

on OGLEII.12 We will therefore use this method to classify MACHO.

Once we have classified each example, we would like to have some estimate of

the confidence in the prediction. In Chapter 6, we explore in depth several methods

that attempt to derive class-membership probabilities from classifier output. In this

case, we do not need probabilities but a ranking of confidence in each example,

nonetheless we can use a probability generating routine to give us this ranking.

Although we found the raw confidences to be sufficient in Section 5.4, by running

on the confirmed subset with our period estimates, we found that the method from

(6.7) in Section 6.1.2 gave better ordering of the output than the raw confidences and

thus we use that method here. It is possible that the less reliable period estimates

12Using the same uncertainty in both training and testing is related to Quinlan [1989], which
gives an empirical study supporting the use of unknown attributes in both the training and test
sets.
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Table 5.9: Cross-validation results on OGLEII using periods from B5. Left to right,
top to bottom: abstaining on none, lowest 1%, 5%, and 10%. The fourth row is the
number abstained by category.

Ceph EB RRL

Ceph 3078 64 13

EB 30 2018 6

RRL 13 6 7027

Abstain 0 0 0

Ceph EB RRL

Ceph 3041 60 4

RRL 21 1994 4

EB 4 5 6999

Abstain 55 29 39

Ceph EB RRL

Ceph 2823 49 1

RRL 18 1935 2

EB 0 1 6813

Abstain 280 103 230

Ceph EB RRL

Ceph 2562 38 0

RRL 17 1863 2

EB 0 0 6547

Abstain 542 187 497

are causing the simple normalization to perform more poorly, justifying the use of

a different method. We do not interpret the output directly as a probability, we

use the output of this method only to rank the predictions. We can now opt to

abstain from classifying the lowest, for example, 10% of examples. In Figure 5.9 we

show confusion matrices for cross-validation on OGLEII using the B5 period finding

method, and abstaining at various thresholds. The confusion matrices show that

we can tune the abstention threshold so that we eliminate some classification errors

without eliminating too many good classifications.

5.5.4 Classifying Stars from the MACHO survey

Prior to training the SVM on the OGLEII data, we filter it the same way we filtered

MACHO, except that we do not set aside any stars as in Section 5.5.2. This is to

ensure that we eliminate any noisy or potentially confusing data points, or stars

with periods outside of our period search range. After filtering, we are left with

12255 stars of the original 14087.

Finally we train the Support Vector Machine (SVM) [Boser et al., 1992] using

K(X,Y ) as in (5.9) and periods as determined by method B5 on the filtered OGLEII

dataset and test on the remaining 37, 865 MACHO data points.

In Table 5.10 we show the confusion matrices for several abstention thresholds.
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Table 5.10: Confusion Matrices for classification on MACHO using abstention
thresholds of 1 (none), 0.99, 0.95, 0.9 going left to right, up to down.

Cepheid EB RRL Unknown

Cepheid 247 8 2 8136

EB 0 1107 1 10586

RRL 0 4 1637 16075

Set aside 9 167 4 32335

Abstained 0 0 0 0

Cepheid EB RRL Unknown

Cepheid 247 8 2 7974

EB 0 1106 1 10455

RRL 0 4 1637 15990

Set aside 9 167 4 32335

Abstained 0 1 0 378

Cepheid EB RRL Unknown

Cepheid 247 5 2 7313

EB 0 1103 0 9869

RRL 0 3 1637 15733

Set aside 9 167 4 32335

Abstained 0 8 1 1882

Cepheid EB RRL Unknown

Cepheid 246 1 1 6512

EB 0 1097 0 9134

RRL 0 3 1637 15391

Set aside 9 167 4 32335

Abstained 1 18 2 3760
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Figure 5.16: Light Curves with lowest confidence prediction among stars that pass
all filtering stages.

The first three columns are the actual labels according to the confirmed subset;

the first three rows are the labels produced by our classifier; the fourth column is

the unknown MACHO stars; the fourth row is the number of stars we set aside in

Section 5.5.2; the fifth row is the number of stars on which we abstain from making

a prediction based on the given abstention threshold.

5.5.5 Discussion and Analysis of New MACHO Catalog

Through private communication with Dr. Protopapas at the Harvard-Smithsonian

Center for Astrophysics, we gained access to a subset of labeled stars in the MACHO

catalog. We do not present the details of the labels here, but claim the following

new discoveries which are not in the set of labels. We present 8045 new Eclipsing

Binaries, 6070 new Cepheids, and 5657 new RRLs. Because this is the first run

of our automatic system, we had our domain-expert verify the classifications by

examining each of the classified time series. His estimate was that our catalog is

approximately 95% correct. As there is no unambiguous method for determining the

true label, we cannot know the true error rate. To give an example of some of the
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lowest confidence predictions, in Figure 5.16 we show light curves from stars that

had the lowest confidence in their prediction among the stars that were classified

(i.e., made it through all prior filtering steps).

The discoveries presented here have significant implications for the astronomy

community. Our results are currently being investigated by astronomers and con-

clusions are forthcoming.

There are open problems originating in this research. It would be interesting to

explore new ways of finding period automatically. Whether it is possible to do this

as well as a domain expert in this context is unknown, and it would be useful to

formalize this mathematically.

Every step of the filtering pipeline rejects some known good stars, while including

some seemingly non-periodic variables. Future improvements to the various stages

should focus on improving the model that rejects stars as either non-periodic or

non-variable.

5.5.6 Additional Figures

This section includes large figures discussed previously in this chapter that have

been placed here to minimize disruption of the written material.
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Figure 5.17: Histograms of periods for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs.
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Figure 5.18: Histograms of V-mag for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs. Magnitudes for stars in the SMC have been corrected by
subtracting 0.52.
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Figure 5.19: Histograms of V-I for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs.
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Chapter 6

Generating Confidences from

Classifier Output

In the previous chapters, we have discussed various methods for classifying data,

specifically structured data, in a variety of settings. The primary focus there was

to overcome obstacles inherent in the classification process: capturing information

inherent in structure (Chapters 4 and 5), or overcoming noise in the data set (Chap-

ter 3). Now we turn to another problem related to classification that begins when

the classification is finished: how to estimate the reliability of classifier output.

In Chapter 5, during the “abstention” phase (Section 5.5.2), we were concerned

with finding a ranking of the output examples according to how confident the classi-

fier was with the predicted label. In that context, we used raw output in Section 5.4

and estimates of probabilities in Section 5.5.3 together with a cutoff based on the

training set. It is clear that it would be useful in such a setting to be able to estimate

accurately the probability that an unknown example belongs to a certain class, that

is, the probability that a data point x has the label i:

P (y = i|x) (6.1)
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where as in Chapter 1 we use y to indicate the label of a data point x. We will often

refer to (6.1) as class conditional probability or CCP. Then, instead of estimating

the threshold, we could simply reject examples based on a concrete estimate of the

reliability of the label.

Some classification algorithms, such as logistic regression [Bishop, 2006], Random

Forests [Breiman, 2001], and various forms of Boosting [Freund and Schapire, 1996],

do in fact produce estimates of class-conditional probabilities, that is a value for (6.1)

based on an assumed model. Others, such as Support Vector Machines [Boser et al.,

1992], Perceptron [Rosenblatt, 1958], and Winnow [Littlestone, 1987], estimate only

the decision boundary between to classes and do not provide probabilistic output.

There is ample recent work, however, that addresses the problem of estimating class-

conditional probability from, e.g., SVM output [Mease et al., 2007, Wu et al., 2004,

Platt, 1999, Niculescu-Mizil and Caruana, 2005]. For the remainder of this chapter

we will use SVM as the representative of classifiers not generating class-conditional

probabilities.

In this chapter we explore the effectiveness of several methods for generating

class-conditional probabilities in an experimental setting. We use logistic regression

as an example of a classifier naturally producing class-conditional probabilities. In

addition, we compare these to various methods, some new, for producing class-

conditional probabilities from SVM and kNN output. In our analysis we attempt

to discern what, if any, performance difference exists between different algorithms,

and in what settings. Finally, we highlight new avenues of research based on the

questions raised by the experimental results.
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6.1 Background and Related Work

6.1.1 Classifiers Giving Probabilistic Output

Probabilistic generative classifiers attempt to model all the aspects of the distribu-

tions governing the classification task namely P (x|y), the probability of an example

being generated by a specific class, and P (y), the probability that a given label

will occur. Using Bayes’ Rule, P (y|x) can be calculated, and hence we have our

class-conditional probabilities. Probabilistic discriminative classifiers, such as logis-

tic regression, attempt to model P (y|x) directly by specifying a parametric form of

P (y|x) and then finding a maximum likelihood or MAP solution (see for example

[Bishop, 2006]). In this chapter we discuss only probabilistic discriminative mod-

els, and leave a discussion of generative models and comparisons thereof for future

work.1

Logistic regression (LR) is a probabilistic discriminative classifier. That is, LR

does not attempt to build a full probabilistic model, but constructs a discriminative

classifier that has some probabilistic motivation or interpretation. In the case of

LR, the assumption is that

a = log
p(x|y = 1)p(y = 1)

p(x|y = 2)p(y = 2)

is a linear function in terms of the input data.2 As a linear function is equivalent to

a hyperplane in the input space, LR uses the same class of underlying functions to

assign class labels as SVM (and all other linear classifiers). The difference is in the

motivation governing how the hyperplanes are built.

The probabilistic interpretation does not always lead to the best classification

performance. In theory, perfect probabilistic knowledge would give optimal classi-

1For a detailed discussion of generative and probabilistic discriminative see Chapter 4 of Bishop
[2006].

2This follows from a the assumption that the P (x|y) are exponential in form. For a detailed
explanation see Chapter 4 of Bishop [2006].
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fication, but this is not the case in practice due to the assumptions made in the

probabilistic models. Hence in the rest of the thesis, we use SVM and kNN because

of their excellent classification ability. We would like to have the best of both worlds

and in this chapter we explore the possibility of generating good estimates of (6.1)

from SVM and kNN output. We will continue to use LR as a point of comparison,

but will focus on SVM and kNN.

6.1.2 Methods for Generating CCPs from SVM

In this section we describe various methods for generating class-conditional probabil-

ities from multi-class SVM output. In addition, we discuss some relevant theoretical

results pertaining to probabilistic interpretations of SVM output. We focus on SVM

here in the interest of keeping the discussion coherent and concrete, and because

most of the work we reference does likewise, yet it is easy to see that many of the

methods can be applied in general to other algorithms. We will use the notation in

Table 6.1 and we assume rij + rji = 1.

Table 6.1: Notation for probability discussion.

Variable Meaning

pi P (y = i|x)

p (pi)i=1...k

µij P (y = i|y = i ∨ y = j)

rij Estimate of µij

k Number of classes

Ie Indicator variable for event e

Methods for Binary Classification

We first review methods for binary classification problems that are not trivially

extensible to the multi-class case. In a later section of this chapter we discuss

various binary-to-multiclass extensions for probabilistic classifiers and show how to

apply the methods in this section in the multi-class setting.
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Platt Scaling [Platt, 1999], like logistic regression, is founded on the assump-

tion that the output of the classifier is the log-odds of class membership. In this

case, however, the output is from SVM, and the assumption is not theoretically

justified [Bartlett and Tewari, 2004, Hérault and Grandvalet, 2007].3 Platt [1999]

justifies the assumption in part based on empirical evidence that a parameterized

sigmoid of the form

1

1 + eAf(x)+B
(6.2)

where f(x) is the output of SVM on example x, fits the output of SVM well. This

method estimates A and B using a maximum likelihood solution where the true

p(y = 1|x) is estimated by 1, and p(y = −1|x) by 0. No multi-class extension is

given by Platt [1999], however as we discuss below it is still possible to apply Platt

Scaling in the multi-class setting.

Isotonic regression [Zadrozny and Elkan, 2002], like Platt Scaling, takes as in-

put the output of an already-learned classifier such as SVM. The output is sorted

according to the value of f(x) given by the SVM (i.e., the raw output), and each ex-

ample is given a preliminary value of 0 for p(y = 1|x) if y = 0, and 1 for p(y = 1|x)

if y = 1. The algorithm then looks for regions in which the p(y = 1|x) are not

sorted, and uses the average value of p(y = 1|x) in the un-sorted region as the new

value of p(y = 1|x) for all data in the region. New values of f(x) for an unknown

point are then estimated by binning the new value to the calibrated values. As with

Platt Scaling, isotonic regression is inherently a two-class method, however it can be

extended to the multi-class setting using the methods we discuss below. Zadrozny

and Elkan [2002] show that isotonic regression performs better than Platt Scaling

in some experimental contexts.

Caruana and Niculescu-Mizil [2006] gives an extensive empirical comparison of

Platt Scaling and Isotonic Regression applied to various types of classifiers in the

3Other work has shown that SVM makes accurate estimates of class membership only in the
region of the decision boundary [Bartlett and Tewari, 2004].
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binary classification setting. In their experiments both calibration methods work

well for some classifiers such as SVM and Naive Bayes, but not others such as neural

nets and logistic regression.

Methods Using One-versus-one Extension to Multiclass

Some methods [Hastie and Tibshirani, 1998, Refregier and Vallet, 1991, Wu et al.,

2004, Price et al., 1995] are concerned only with the one-versus-one multi-class

extension of a binary classifier. These methods assume that a probability estimate rij

already exists for each of the binary classifiers, and they do not concern themselves

with the initial creation of this probability estimate, only on combining the rij to

estimate pi. Although we are concerned with the generation of the probabilities,

it is worth discussing these algorithms for combining the probabilities; first, they

assume an estimate of the probability in question, not the true probability and hence

share a common thread with our methods which assume no knowledge of the true

probability. Second, the methods they use to combine probabilities introduce ideas

and mathematical machinery that can be adapted to our problem.

The probability-combining methods typically use properties of probabilities to

derive equations with pi, and then solve the equations either exactly or approxi-

mately. These equations express a relationship between µij and pi, and then using

estimates rij of µij , solve for pi. Wu et al. [2004] compare several existing methods

to their original methods. The methods differ significantly in how they estimate pi;

they are all similar in that they require that the rij be proper probability estimates.

This means that, in the case of SVM for example, the raw output of each binary

classifier needs to be processed somehow to generate the rij , such as by using Platt

Scaling or isotonic regression, prior to running any methods to solve for pi. This

processing is classifier-dependent and can have a significant effect on the output.
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The simplest method is to normalize (2.9):

pi =
2

k(k − 1)

∑

j 6=i

Irij>rji
. (6.3)

Note that in this case, the rij could be raw output from SVM and need not be

normalized, as we only want to know if rij > rji. In Hastie and Tibshirani [1998],

the authors wish to minimize the Kullback-Liebler (KL) distance between µij and

rij , the estimate of µij :
∑

i6=j

nijrij log
rij

µij
. (6.4)

Price et al. [1995] use the identity





∑

i6=j

P (y = i ∨ y = j|x)



 − (k − 2)P (y = j|x) =
k

∑

i=1

P (y = i|x) = 1 (6.5)

and then substituting rij for µij and noting that

µij =
P (y = i|x)

P (y = i ∨ y = j|x)
,

solve for pi directly:

pi =
1

∑

i6=j
1

rji
− (k − 2)

.

Refregier and Vallet [1991] use the following identity to create a system of equations:

µij

µji
=

pi

pj
. (6.6)

Then substituting the known value rij for µij , there are k(k − 1)/2 equations with

k unknowns (the pi). Because the system is overly constrained, it cannot be solved
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in general. Wu et al. [2004] suggest the following two minimization problems:

min
p

k
∑

i=1





∑

j 6=i

rjipi −
∑

j 6=i

rijpj





2

(6.7)

and

min
p

k
∑

i=1

∑

j 6=i

(rjipi − rijpj)
2. (6.8)

Wu et al. [2004] point out that (6.8) is similar in spirit to (6.6) except that it is

solvable. Both (6.7) and (6.8) are solvable using a linear system.

In their analysis of (6.7), (6.8), (6.5), and (6.3) using synthetic data (i.e., when

the true pi are known), Wu et al. [2004] show that in their specific artificial settings

all methods perform comparably, both in terms of MSE and accuracy, except (6.3)

which performs worse. In these settings they do not use an underlying classifier,

but generate the rij by perturbing the actual µij with Gaussian Noise. Wu et al.

[2004] give an additional analysis on real-world data, using SVM as the underlying

classifier. To generate the rij, however, they use Platt’s method [Platt, 1999]. The

results seem to show that with the exception of (6.3) which performs worse, the

methods perform comparably.

Other Methods

Huang et al. [2006] extend the method in Hastie and Tibshirani [1998] ( 6.4) to the

general binary-to-multiclass setting. In other words, this new method minimizes

an analog to (6.4) in the general setting of training binary classifiers to distinguish

any two subsets of classes (see Chapter 1) and combining the output to extract

class membership probabilities. This general setting includes both one-versus-one

and one-versus-rest. In their experimental analysis, Huang et al. [2006] show that

one-versus-one and one-versus-rest perform similarly in terms of MSE and accuracy

on real-world data. Their artificial data is generated according to a function that

is parameterized by the particular binary-to-multiclass setting, and the authors
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acknowledge that this may give an unfair advantage to one method or another. The

results on the artificial data are not conclusive as to whether performance differences

are due to the binary-to-multiclass setting or to the generation of the artificial data.

A study in Duan and Keerthi [2005] compares the classification accuracy of one-

versus-rest SVM using Platt Scaling and the method from Hastie and Tibshirani

[1998] (6.4), logistic-regression using the method from Hastie and Tibshirani [1998],4

one-versus-all SVM, and one-versus-rest SVM. They claim that one-versus-rest SVM

with Platt Scaling and the method from Hastie and Tibshirani [1998] are much better

than the rest, but the experimental results show that in general the accuracies of all

four methods are within standard deviations of one another and it is hard to draw

a firm conclusion.

6.2 New Methods

The methods we presented in Section 6.1.2 solve equations for each test example

separately, and do not directly preserve the structure inherent in the raw output

of the classifier. For instance, the ordering that a classifier gives to the examples

may be worth using as a constraint on the pij , or the fact that one classifier ranks

an example higher than another classifier may be worth preserving (this second

relationship is indeed preserved indirectly by several methods). In this section, we

develop several methods that are motivated by the desire to preserve the structure

given by the output of the classifier.

We present several new methods that attempt to estimate the pi from the raw

SVM output. In these methods, no assumption is made that the rij are known. No

algorithm to combine the rij is needed as the pi are estimated directly. The methods

are given by the following optimization problems which are explained next.

4Logistic regression can be used in the multi-class case and generates probabilities, hence it does
not require a probability-generating function or a binary-to-multiclass method.
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Minimize
∑n

i=1

∑k
j=1(p̂ij − pij)

2

subject to
∑k

j=1 p̂ij = 1, i = 1 . . . n

cij ≤ ci′j → p̂ij ≤ p̂i′j , i, i
′ = 1 . . . n, j = 1 . . . k

(6.9)

Minimize
∑n

i=1

∑k
j=1(p̂ij − pij)

2 + ‖ξ‖2

subject to
∑k

j=1 p̂ij = 1, i = 1 . . . n

cij ≤ ci′j → p̂ij ≤ p̂i′j − ξij, i, i
′ = 1 . . . n, j = 1 . . . k

(6.10)

Minimize
∑n

i=1

∑k
j=1(p̂ij − pij)

2

subject to
∑k

j=1 p̂ij = 1, i = 1 . . . n

cij ≤ cij′ → p̂ij ≤ p̂ij′ , i, i
′ = 1 . . . n, j = 1 . . . k

(6.11)

Minimize
∑n

i=1

∑k
j=1(p̂ij − pij)

2 + ‖ξ‖2

subject to
∑k

j=1 p̂ij = 1, i = 1 . . . n

cij ≤ cij′ → p̂ij ≤ p̂ij′ − ξij, i, i
′ = 1 . . . n, j = 1 . . . k

(6.12)

where pij = P (yi = j|xi) (as opposed to an analog of rij used above), p̂ij are the

(unknown) estimates of pij that we are solving for, and ξ is a vector of slack variables.

The value of pij is of course not known in general, hence for the training set we assign

pij = 1 if yi = j and 0 otherwise. The cij are generated from the raw output of the

SVM; in evaluating the methods we will use the one-versus-rest setting, and thus

the cij will be the output on example xi of the classifier distinguishing class j from

the rest. We defer the extension of these methods to the general multi-class setting

for future work.

These methods use the output of SVM to generate constraints on the p̂ij, and

then try to get the p̂ij as close to the idealized pij as possible under these constraints.
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In (6.9) we preserve column order. Imagine the matrices C,P ∈ Rn×k such that

Cij = cij , Pij = p̂ij. Then by preserving column order, we mean that if the classifier

distinguishing class 1 from the rest “ranks” example m higher than example m′

(that is the output of the classifier is higher on m than on m′), i.e., cm1 > cm′1, then

pm1 > pm′1. The intuition is that the ordering of the examples by each classifier

is worth preserving, and our estimates of class membership probabilities should be

constrained appropriately. In (6.10), we allow this constraint to be violated, with an

associated penalty term ξ. SVM is not a ranking algorithm, and in fact its only goal

is to estimate the decision boundary, hence it is not clear whether the constraint on

column order is a good one. To throw away column order however, is almost akin to

re-learning the classifier, as the cij represent the distance to the decision boundary

and if the pij do not respect column order, we are effectively ignoring the decision

boundary.

In (6.11) we use a different constraint imposed by the decision boundaries: row

order. By this we mean that if the classifier distinguishing class 1 from the rest gives

a higher score to example m than the classifier distinguishing class 2 from the rest,

i.e., cm1 > cm2, then p̂m1 > p̂m2. Like above, this is akin to preserving the row order

in the matrix C in P . Instead of trying to preserve the ordering of distances to the

decision boundary, we just want to make sure that the if an example is closer to one

decision boundary than another, the p̂ij are ordered accordingly. This means that

(6.11) will not change the labels of the SVM. Again we introduce a version with

slack variables in (6.12) that allows the constraint to be violated.

Notice that the process just described uses a training or validation set to provide

probability estimates for the same set. Therefore we still need to address how to

use the probabilities given by Methods 1-4 to assign probabilities to new examples.

We propose the following simple algorithm to address this:

• Split the training set into t training examples and c calibration examples.

• Train the binary classifiers on the t training examples.
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• Compute the raw output of the trained classifiers on the c calibration examples

and use the output as input to the quadratic program.

• Embed each of the c calibration examples in a k-dimensional feature space,

where feature j is the raw output of the binary classifier distinguishing class

j from all others.

• Embed any future test example in the same feature space and find its nearest

neighbor from the calibration examples in this space.

• Assign the test example the probability vector that was calculated for its

nearest neighbor.

6.3 Experiments and Results

In the following experiments we use Methods 1-4 with input from both SVM and

kNN. We compare these methods to normalization of the one-versus-rest SVM

(NORM-SVM), Normalization of k-NN output (NORM-kNN) and logistic regression

(LR).

The methods summarized in Wu et al. [2004] and in Section 6.1.2 are for combin-

ing existing probability estimates from a one-versus-one multi-class classifier. The

exception is Huang et al. [2006] who generalize the method from Hastie and Tibshi-

rani [1998] (6.7) to the general binary-to-multiclass extension [Allwein et al., 2000].

For reference we do compare the above methods to the generalized method of Huang

et al. [2006] (6.7), which uses Platt Scaling prior to applying the method. We refer to

this method as 1v1 when a one-versus-one SVM is used and 1vR when a one-versus-

rest SVM is used. This allows us to examine what, if any, performance difference

may be attributed to the particular binary-to-multiclass extension of SVM.

For every method that takes input from SVM, we run the SVM using a linear

kernel and a RBF kernel:

k(x, y) = e−C‖x−y‖2
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Figure 6.1: Training dataset of 3-classes each generated from a mixture of 2 Gaus-
sians

where C = 1/2. This gives us an additional point of comparison and allows us to

examine what performance differences may be due to the feature space.

To evaluate the quality of the probability estimates, we use the quantity

1

n

n
∑

i=1

1

k

k
∑

j=i

(pij − p̂ij)
2

which we refer to as MSE. Although we are concerned primarily with the ability

of the methods to estimate probabilities, we also examine how each method affects

classification accuracy. As a baseline we will use a constant probability estimate

of 1/k when computing MSE, and the mode of the labels in the training set when

computing accuracy.

To evaluate the methods we run on both real and artificial data. For real data, we

use the datasets dna and segment from the Statlog Collection [Michie et al., 1994],

waveform [Asuncion and Newman, 2007], USPS [Hull, 1994], and MNIST [LeCun
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Table 6.2: Description of Datasets
Number of Classes Number of Dimensions Number of Examples

dna 3 180 3186

waveform 3 21 5000

satimage 6 36 6435

segment 7 19 2310

MNIST 10 784 70000

et al., 1998]. We chose these datasets as they are used in other work on generating

probabilities from classifier output [Wu et al., 2004, Duan and Keerthi, 2005, Huang

et al., 2006]. We use the first 10 pre-determined cross-validation splits from Wu et al.

[2004].5 Table 6.2 shows information on the real-world data. For artificial data, we

create two 3-class datasets, each containing a fixed training and test set with 3000

examples. First a 2-dimensional dataset in which each class is generated from a

mixture of two Gaussians, class 1 with means (1, 1), (4, 0), class 2 with (4, 3), (8, 3)

and class 3 with (7, 0), (10, 0). The means form a triangle-like pattern with each

class having two means on a side, and each class having one mean close to a mean

from each of the other two classes (see Figure 6.1). Second, we generate another 2-

dimensional dataset, again generating each class according to two means, and again

in a triangle-like pattern, except that this time we separate the means even further

by scaling each mean by a factor of 2.

For Methods 1-4 the training process is as outlined above with 300 calibration

examples held out from the training set prior to training the classifiers. For example,

for a training set of size 3000 as for the artificial data, we train the classifier on

2700 examples, withholding 300 as input to the quadratic programs for Methods

1-4. We use the same training set on all examples, so methods that do not require

the calibration set will train on the 2700 examples and ignore the 300 calibration

examples.

We first run all methods on a subset of the real-world data: dna and segment.

5These were formed by randomly selecting 1000 testing and 800 training examples from the
entire dataset.
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Table 6.3: Accuracy for datasets dna and segment. Numbers are averages over 10-
fold cross-validation with standard deviations. No results were obtained for LR on
segment due to numerical precision issues with the software implementation.

dna segment

baseline 0.509100 ± 0.006437 0.151500 ± 0.003440

Method 1 0.509100 ± 0.006437 0.148100 ± 0.003604

Method 3 0.889600 ± 0.014841 0.920300 ± 0.008056

Method 4 0.888800 ± 0.015469 0.934700 ± 0.007243

Method 1 (RBF) 0.509100 ± 0.006437 0.148100 ± 0.003604

Method 3 (RBF) 0.897800 ± 0.010993 0.905000 ± 0.006912

Method 4 (RBF) 0.901000 ± 0.009718 0.924400 ± 0.007947

Method 1 (kNN) 0.745100 ± 0.023634 0.641900 ± 0.117678

Method 3 (kNN) 0.8955 ± 0.011919 0.6988 ± 0.063261

Method 4 (kNN) 0.755100 ± 0.017842 0.751500 ± 0.043887

1v1 0.897700 ± 0.008125 0.922900 ± 0.006064

1vR 0.890600 ± 0.012322 0.915700 ± 0.009661

1v1 (RBF) 0.908500 ± 0.007044 0.881500 ± 0.007261

1vR (RBF) 0.906200 ± 0.007465 0.898700 ± 0.010678

NORM 0.888700 ± 0.014103 0.894600 ± 0.010895

NORM (RBF) 0.893900 ± 0.011455 0.860100 ± 0.011259

NORM (kNN) 0.728900 ± 0.024164 0.678400 ± 0.063755

LR 0.895500 ± 0.011919 N/A
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Table 6.4: MSE for datasets dna and segment. Numbers are averages over 10-
fold cross-validation with standard deviations. If no kernel/algorithm is shown in
parenthesis, the classification method is SVM with a linear kernel. No results were
obtained for LR on segment due to numerical precision issues with the software
implementation.

dna segment

baseline 0.222222 ± 0.000000 0.122449 ± 0.000000

Method 1 0.228730 ± 0.007894 0.122400 ± 0.000000

Method 3 0.056320 ± 0.006139 0.015300 ± 0.001055

Method 4 0.056750 ± 0.006189 0.013200 ± 0.000799

Method 1 (RBF) 0.228770 ± 0.007910 0.122400 ± 0.000000

Method 3 (RBF) 0.050320 ± 0.003108 0.018530 ± 0.001013

Method 4 (RBF) 0.049330 ± 0.002591 0.015570 ± 0.000987

Method 1 (kNN) 0.123270 ± 0.011234 0.046440 ± 0.009484

Method 3 (kNN) 0.05672 ± 0.006228 0.053420 ± 0.008930

Method 4 (kNN) 0.117980 ± 0.008177 0.046190 ± 0.006578

1v1 0.052470 ± 0.003651 0.018385 ± 0.000360

1vR 0.055827 ± 0.004296 0.022013 ± 0.000900

1v1 (RBF) 0.044986 ± 0.002991 0.025856 ± 0.000952

1vR (RBF) 0.048177 ± 0.002134 0.021521 ± 0.001004

NORM 0.054601 ± 0.005239 0.030808 ± 0.001462

NORM (RBF) 0.081478 ± 0.003051 0.050608 ± 0.001102

NORM (kNN) 0.168180 ± 0.015340 0.089530 ± 0.018423

LR 0.056720 ± 0.006228 N/A
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Table 6.5: Accuracies on remaining datasets.

Dataset 1v1 Method 3 (RBF) Method 4 (RBF)

satimage 0.835200 ± 0.006356 0.800400 ± 0.009709 0.822800 ± 0.008108

waveform 0.849300 ± 0.009878 0.850800 ± 0.008791 0.852100 ± 0.010214

MNIST 0.833900 ± 0.007651 0.888900 ± 0.007937 0.824500 ± 0.016257

Table 6.6: MSE on remaining datasets.

Dataset 1v1 Method 3 (RBF) Method 4 (RBF)

satimage 0.037821 ± 0.001123 0.043820 ± 0.002287 0.039250 ± 0.002076

waveform 0.072216 ± 0.002977 0.071710 ± 0.003142 0.069700 ± 0.003106

MNIST 0.023295 ± 0.001542 0.016490 ± 0.000843 0.026750 ± 0.001921

This first round of experiments is meant to give a general idea of the performance of

the algorithms. In Tables 6.3 and 6.4 we notice that Method 1 performs poorly on

the data set. In fact, it appears Method 1 may be an ill-formed quadratic program

as it seems to be converging to the same solution regardless of input; it is easy to see

instances in which the constraints will be forced to equality. For example, consider

a two example dataset such that c11 > c21 and c12 > c22. The only way to satisfy

all constraints is to set c11 = c21 and c12 = c22. With a larger dataset and hence

more constraints the picture is not as simple, however the 2 example case gives some

insight as to why preserving column-order is not on its own sufficient. We do not

report results for Method 2 as they are equally bad. Methods 3 and 4, however,

perform quite well, in most cases comparably than 1v1 and 1vR, which seem to be

the overall best performing methods. On the segment data using the RBF kernel

Methods 3 and 4 are the best both in terms of accuracy and MSE. Interestingly,

Method 3 (no slack variable) has a slight drop in performance on the dna dataset

when using the RBF kernel instead of linear, but the RBF kernel gives an increase in

performance for Method 4 (with slack variables). In general, the RBF kernel helps

all methods.

Next we run on the remaining real-world datasets with the methods that did
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Table 6.7: Accuracy on artificial datasets. Art 2 is generated from the means of Art
1 scaled by a factor of 2.

Dataset 1v1 Method 3 (RBF) Method 4 (RBF)

Art 1 0.907 0.907 0.9063

Art 2 0.997 0.997 0.997

Table 6.8: MSE on artificial datasets. Art 2 is generated from the means of Art 1
scaled by a factor of 2.

Dataset 1v1 Method 3 (RBF) Method 4 (RBF)

Art 1 0.00023 0.00028 0.00028

Art 2 0.0045 0.007 0.0065

well in the experiments on dna and segment: we concentrate on Methods 3 and

4, and compare them to 1v1 (the overall best performer so far). The results for

accuracy are in Table 6.5 and for MSE in Table 6.6. We show clear wins on MNIST

for Methods 3 and 4, but the results in general are similar to the first round of

experiments: 1v1 and Method 3 and 4 are competitive, each one sometimes beating

the other, but there is no clear overall winner.

We show the results for the artificial data in Table 6.7 and Table 6.8. We see

that as in the experiments with the real-world data, Methods 3 and 4 perform

comparably to 1v1, with a slight edge going to 1v1. This setting gives us a better

idea of how good the probability estimates are, because we have actual values for

p(y = i|x) with which to evaluate the estimates. The MSE values are extremely low

for all algorithms, indicating that this setting may not be challenging enough. This

is a worthwhile issue to address in future experiments.

6.4 Conclusions and Future Work

We conclude the chapter with the following observations and ideas for future work.
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Observe that Methods 1-4 all have the following term in their objective functions:

n
∑

i=1

‖p̂i − pi‖2

where p̂i is the norm of the probability vector for example i. Expanding we have

n
∑

i=1

(

‖p̂i‖2 + ‖pi‖2 − 2〈p̂i, pi〉
)

and because pi is a constant, it can be eliminated from the objective function

n
∑

i=1

(

‖p̂i‖2 − 2〈p̂i, pi〉
)

Setting all pij = 1/k minimizes the term ‖p̂i‖2. It is possible that this term domi-

nates and we assign pij = 1/k in some cases leading to poor probability estimates.

The inner product term, −2〈p̂i, pi〉 pushes the p̂ij to be similar to the pij, which are

0 − 1 valued on the training set. This means that any value in p̂i in a dimension

other than the class label does not affect this term, as pij = 0 for all j other than

the class label. The inner product term and the norm term hence drive the pi to

1 in dimension j and to 1/k in all other dimensions. If we remove the norm term,

we end up with a linear program with an objective function similar to that in the

primal of SVM:

Maximize
∑n

i=1〈p̂i, pi〉

subject to
∑k

j=1 p̂ij = 1, i = 1 . . . n

and constraints on row/column ordering

(6.13)

Here we replace the minimization of the negative inner product with the maximiza-

tion of the inner product. This is similar to the SVM primal objective function

in a nm dimensional feature space with w set to the vector of all the p̂i, and each

training example pi has all 0-valued features except at indices (i−1)k+1 . . . ik. The
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constraints are similar to constraining the L1-norm of w, except it is a piecewise

constraint. This may present another way of looking at this problem and deserves

further investigation.

The inequality constraints in the objective functions are not strict, and hence

it is possible to set all pij (along a row or column) equal to each other and satisfy

the constraints. Future work should explore how to change these constraints or add

additional constraints so that such a trivial solution is not available.

Row and column ordering could be replaced by some other measure of how SVM

ranks examples. Perhaps a more complex relationship is useful, such as ensuring

that if ci > cj , then pi > pj where ci is the difference between the output of the

classifier giving the highest output on example i and the classifier giving the second

highest output on example i (and likewise for the pi).

The computational resources required by the quadratic program are substantial

and restrict the number of examples and classes in the calibration set. It may be

possible to formulate linear programs that accomplish the same or similar goals as

Methods 1-4.

Using the nearest-neighbor approach to map new examples to probability vectors

is a good start, however in future work we will want to explore other mapping

techniques.

Data generated by different distributions is a priority for future experiments, as

we failed to truly differentiate 1v1 and Methods 3 and 4 with our artificial data.

A good artificial setting will highlight strengths and weaknesses which we have not

done here.

Finally, it may be the case that SVM simply ranks examples poorly and the

methods presented here do as well as can be expected. It is not the objective of

SVM to rank examples, and theoretical results have shown that SVM (and other

classifiers) only estimates P (y|x) properly in the region immediately around the

decision boundary, i.e., when P (y|x) = 0.5 [Bartlett and Tewari, 2004]. A better
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source of input to the quadratic programs (and to other methods) might be the the

output of a ranking SVM or other ranking algorithm. These algorithms attempt only

to rank the examples according to how likely they are to be in a given class, but they

do not estimate probabilities. In future experiments, it would be interesting to see

if Methods 1-4 can perform well when combined with a ranking versus classification

algorithm.
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Chapter 7

Conclusion

We have presented several interesting results in both analyzing and developing ma-

chine learning classification algorithms. We gave a thorough empirical study of

Perceptron Algorithm variants in the noisy data setting, showing the surprising re-

sult that Perceptron with Margins outperforms variants specifically designed for the

noisy setting, and even performs comparably with SVM. We studied problems where

the data are graphs or hypergraphs, and designed a kernel that works directly on

hypergraphs; we showed that it performs as well as, and sometimes better than, ILP

systems on hypergraph data, and that it uses a different feature space than existing

graph kernels. We illustrated several interesting properties of the cross-correlation

function, showing that it is very useful for classifying periodic time series, but that

it is not positive semidefinite. As a solution, we developed a kernel that is an in-

tuitive analog to the cross-correlation and demonstrated its good performance. We

then built a completely automatic system for classifying periodic variable stars and

proved its performance by classifying the entire MACHO survey. Finally we studied

existing methods for generating classifier confidence estimates, and proposed several

new methods, comparing them in an experimental setting.

There are several avenues for future work that follow from the results of this

thesis. The automatic classification system for periodic variable stars has several
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steps in its pipeline that can be improved. Specifically period finding has shown to

be a very interesting problem. The hypergraph kernel we developed does not account

for certain types of conjunctions and it is not clear whether it is possible to compute

them with a similar kernel. The methods we developed for estimating confidence

are competitive, but leave room for improvement. The question of whether SVM

can generate better confidences remains a key component of that work.
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