Kernel Methods and Their Application to Structured
Data

A dissertation

submitted by

Gabriel Wachman

In partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in

Computer Science

TUFTS UNIVERSITY

November 2009

ADVISER: Roni Khardon

For my parents

Kernel Methods and Their Application to Structured
Data

Gabriel Wachman
ADVISER: Roni Khardon

Supervised Machine learning is concerned with the study of algorithms that take
examples and their corresponding labels, and learn a general classification function
that can predict the label of future examples. For example, an algorithm may take
as input a set of molecules, each labeled “toxic” or “non-toxic” and try to predict
the toxicity of new molecules based on the function learned from the input. In the
astronomy domain, one might try to predict the type of a star given a series of
measurements of the star’s brightness, based on a set of known stars and measure-
ments of their brightness. The thesis investigates three aspects of machine learning
algorithms that use linear classification functions that work implicitly in feature
spaces by using similarity functions known as kernels. The first aspect is robustness
to noise, that is learning when some of the labels in the known examples are not
reliable. An extensive experimental evaluation reveals a surprising result, that the
Perceptron Algorithm with margin is an excellent algorithm in such contexts, and
it is competitive or better than more sophisticated alternatives. The second aspect
is producing estimates of the confidence of predictions from such classifiers, espe-
cially Support Vector Machines. We explore this topic by proposing new methods
and comparing them experimentally to existing approaches to this challenge. Fi-
nally we investigate kernels for the two applications mentioned above, time series

from astronomy and molecules from biochemistry, where the data are not initially

iii

expressed in Euclidean space. In each case we provide an efficiently computable
kernel function that captures a natural similarity between pairs of examples. An
experimental evaluation shows that our kernels lead to excellent performance when
used with Perceptron variants or Support Vector Machines. The contribution for
the astronomy application goes beyond machine learning, providing a complete sys-
tem for classifying stars from raw data taken in astronomy surveys, a task that
typically requires a large amount of domain expert time. In this context the thesis
investigates and evaluates several statistical tests and mechanisms for filtering and

processing time series data.

v

Abstract

List of Tables

Contents

List of Figures

Bibliographic Note

Chapter 1 Introduction

Chapter 2 Background and Preliminaries

2.1 Kernel Functions e

2.2 Kernel Methods

2.3 The Perceptron Algorithm

2.4 Support Vector Machines

2.5 Binary to Multiclass L

Chapter 3 Noise-Tolerant Variants of the Perceptron Algorithm

3.1 Algorithms

3.1.1
3.1.2
3.1.3
3.14

The Ad-trick
The a-bound
Perceptron Using Margins

Longest Survivor and Voted Perceptron

iii

viii

xi

xiv

11
12
14
17

3.1.5 Algorithms Summary 26

3.1.6 Multi-Class Data, 26

3.2 Experimental Evaluation 26
3.2.1 Dataset Selection and Generation 29
3.2.2 Exploratory Experiments and General Setup 31
3.2.3 Parameter Search 33
3.2.4 Parameter Optimization 39

3.3 Discussion and Conclusions 42
Chapter 4 A New Kernel for Learning from Hypergraphs 46
4.1 Definitions and Notation 50
4.2 A Hypergraph Kernel 52
4.2.1 A Kernel Rooted at Specific Edges 52
4.2.2 A Gappy Kernel for Hypergraphs 54
4.2.3 A General Kernel for Hypergraphs 59
4.2.4 Discounting and Normalizing 59

4.3 Discussion and Related Work 60
4.3.1 Kernels and Similarity functions for Graphs and Hypergraphs 60
4.3.2 Explicit Propositionalization for ILP 63
4.3.3 Translating Hypergraphs into Graphs 64

4.4 Experimentsand Results. 66
4.5 Conclusion 78

Chapter 5 Kernels for Periodic Time Series Arising in Astronomy 79

5.1

5.2
5.3
5.4

Cross-Correlation L 81
5.1.1 Properties of Cross-Correlation 82
A Kernel for Periodic time Series 86
Related Work o 89
Experiments. 91

vi

5.5 A Fully Automated System for

Classifying Periodic Variable Stars

5.5.1 Description of Data & Initial Preprocessing

5.5.2 Classification Methodology

5.5.3 Background and Preliminary Tests of OGLEIl

5.5.4 Classifying Stars from the MACHO survey

5.5.5 Discussion and Analysis of New MACHO Catalog

5.5.6 Additional Figures . .

Chapter 6 Generating Confidences from Classifier Output

6.1 Background and Related Work

6.1.1 Classifiers Giving Probabilistic Output

6.1.2 Methods for Generating CCPs from SVM

6.2 New Methods
6.3 Experiments and Results. . .

6.4 Conclusions and Future Work

Chapter 7 Conclusion

Bibliography

vii

99
101
107
122
124
126
127

131
133
133
134
139
142
148

152

154

3.1
3.2

3.3
3.4
3.5

3.6
3.7

4.1
4.2
4.3
4.4

4.5

4.6
4.7

List of Tables

UCI and Other Natural Dataset Characteristics
Noise Percentage vs. Dominance: V = Voted, C = Classical, LS =
Longest Survivor
Parameter Search on UCI and Other Datasets.
Parameter Search on Artificial Datasets with f = 50 and M = 0.05.

Performance on “Adult” dataset as a function of margin and training
set Size.
Parameter Optimization Results for UCI and Artificial Datasets.

Parameter Optimization Results for Large Datasets

Datasets Used in Experiments

Accuracy on the NCTRER dataset varying walk length and encoding.

Accuracy on NCTRER varying walk length and discount factor +.

Accuracy on PTC and area under ROC curve for NCI-HIV. “HG” is
the hypergraph kernel. 0L
Accuracy on NCTRER and Area under ROC for NCI-HIV in the
Same Experimental Conditions.
Results for artificial data measured by accuracy.
Accuracy on Mutagenesis Dataset. The leftmost column shows walk

length. Top: encoding 1. Bottom: encoding 3.

viii

29

32
36
37

38
40
41

66

69

70

71

71
75

76

5.1

5.2

5.3

5.4

9.5
5.6
5.7

5.8

5.9

5.10

6.1
6.2

Accuracies with standard deviation reported from 10-fold cross-validation
on OGLEII using various kernels and the cross-correlation 94
Four confusion matrices for OGLEII, using SVM with K and features.

Left to right, top to bottom, we abstain from none, then the lowest

1%, 1.5% and 2%. 95
Number of examples in each data set. For those data sets that were
filtered to include 20 examples of each class, the number of examples
post-filtering appears after the </°. 96
Performance on various shape data sets. All results are cross-validated.

Data set names: A = arrowhead, B = butterfly, I = intershape, S =

Swedish 97
Results on artificial data oL 99
Details of OGLEII dataset 101

Comparison of period finding methods on OGLEII. Here we assume
that the periods reported in OGLEII are correct and show perfor-
mance of other algorithms relative to the OGLEII periods. 118
Top Left: Cross validated results on OGLEII using known periods.
Top Right: Cross-validated results on OGLEII using periods deter-
mined by method B5. Bottom: Cross-validated results on OGLEII,
training on periods from OGLEII, testing on periods from method
B5. Actual labels are the columns, predicted labels are the rows. . . 123
Cross-validation results on OGLEII using periods from B5. Left to
right, top to bottom: abstaining on none, lowest 1%, 5%, and 10%.
The fourth row is the number abstained by category. 124
Confusion Matrices for classification on MACHO using abstention

thresholds of 1 (none), 0.99, 0.95, 0.9 going left to right, up to down. 125

Notation for probability discussion. 134

Description of Datasets 144

X

6.3

6.4

6.5
6.6
6.7

6.8

Accuracy for datasets dna and segment. Numbers are averages over
10-fold cross-validation with standard deviations. No results were
obtained for LR on segment due to numerical precision issues with
the software implementation.
MSE for datasets dna and segment. Numbers are averages over 10-
fold cross-validation with standard deviations. If no kernel/algorithm
is shown in parenthesis, the classification method is SVM with a linear
kernel. No results were obtained for LR on segment due to numerical
precision issues with the software implementation.
Accuracies on remaining datasets.
MSE on remaining datasets.
Accuracy on artificial datasets. Art 2 is generated from the means of
Art 1 scaled by a factorof 2.
MSE on artificial datasets. Art 2 is generated from the means of Art

1scaled by afactorof 2.,

1.1
1.2

21
2.2

3.1
3.2
3.3

4.1

4.2

5.1

List of Figures

[lustration of a 2-dimensional linear classifier 2
Typical astronomy time series for periodic stars. 7
The basic Perceptron Algorithm 12
The Perceptron Algorithm in dual form 13
Mustration of All Algorithm Variants 27
Example Learning Curve for ‘UCI Dataset promoters 31
Parameter Search on Artificial and Real-world Data 34

From left to right: Hy,Hs,Hs, and R. The letters are the hyperedge
labels. The numbers represent each node’s position within a hyperedge. 47

Left: target as a hypergraph. Right: target converted to a graph. . . 65

Examples of time series of periodic variable stars. Each column shows
two stars of the same type. Left: Cepheid, middle: RR Lyrae, right:
eclipsing binary. Examples of the same class have similar shapes
but are not phase aligned. Examples are a result of folding a long
sequence of observations leading to a noisy sample of one period of
the light curve. The y-axis labels represent brightness in magnitude
units, which is an inverse logarithmic scale (this is the convention in

AStIONOMLY). . v v v v v v v e e e e e e e e e e e e e 82

xi

5.3

5.4

5.5

5.6
5.7

5.8

5.9
5.10

5.11

5.12

Unfolded time series from MACHO survey. Top: all data points.
Bottom: expanded subsection..
Top: Color-Magnitude diagram for OGLEII. Bottom: Color-Period
diagram for OGLEIL
Top:Color-magnitude diagram for confirmed subset. The OGLEII
version and MACHO version of each is shown here. OGLEII uses V-I
and MACHO uses V-R; it is clear further calibration is warranted.
Bottom: Calibrated color-magnitude diagram for confirmed subset.
The MACHO version is shown here on top of the entire OGLEIIL
dataset, after a regression model is learned and MACHO is calibrated
accordingly.o
MACHO processing pipeline
Two stars with predicted periods close to 1d, shown folded and plot-
ted by phase. The left has a true period of about 1d, the right is
not periodic but has a strong 1d frequency component due to the
sampling frequency.o Lo
The same star folded according to low-resolution period search and
high-resolution period search. Note the reduction in scatter in the
high-resolution version.
Histograms of variance ratios of MACHO stars.
An Eclipsing Binary for which LS returns 1/2 the period, folded ac-
cording to the LS period and twice the LS period. Here is it difficult
to formalize that one is “better” than the other.
The same star folded first by using the output of the LS periodogram,
then by using our method of checking for symmetry in twice the
reported period. e
Color-magnitude diagram of stars in MACHO that have passed the

periodic-variability test with known periodic-variables from OGLEII

xii

105

119

5.13

5.14

5.15

5.16

5.17

5.18

5.19

6.1

Selected for review due to distance in C-M space
Selected for review due to cross-correlation
A Cepheid and RRL with similar shape.
Light Curves with lowest confidence prediction among stars that pass
all filtering stages. Lo
Histograms of periods for stars in OGLEII dataset. From top to
bottom: Cepheids, EBs, RRLs.
Histograms of V-mag for stars in OGLEII dataset. From top to bot-
tom: Cepheids, EBs, RRLs. Magnitudes for stars in the SMC have
been corrected by subtracting 0.52.
Histograms of V-I for stars in OGLEII dataset. From top to bottom:

Cepheids, EBs, RRLs.

Training dataset of 3-classes each generated from a mixture of 2 Gaus-

xiii

128

Bibliographic Note

Significant portions of this thesis are from previously published work by the author.
Most of the material in Chapter 3 can be found in Khardon and Wachman [2007].
Chapter 4 uses all of the material from Wachman and Khardon [2007] and adds sig-
nificant new contributions. The material pertaining to kernel methods in Chapter 5

is published in Wachman et al. [2009].

Xiv

Chapter 1

Introduction

This thesis presents research on supervised machine learning classification algo-
rithms. Machine learning refers to the science of designing and analyzing algorithms
that learn from experience. Supervised machine learning, the domain with which
this thesis is concerned, is the study of algorithms that have access to labeled data;
that is, the algorithms learn from experience by trying to label the data, and mak-
ing corrections based on whether they have done so correctly. Surveys of supervised
machine learning and the theory behind it can be found in Mitchell [1997], Kearns
and Vazirani [1994], and Bishop [2006]. Prior to presenting the contributions of the
thesis, we give a brief overview of the problem setting and associated algorithmic
machinery.

In the supervised machine learning classification setting, the task is to group
data into classes. For example, the data may be pictures of animals and we want to
group the pictures of tigers together in one class, and pictures of all other animals
into another class. The classification algorithm uses a set of examples, called a
training set, to build a classifier that takes as input an image, and gives as output
the predicted class. The examples in the training set are labeled according to their
class so that the classification algorithm can check the class it predicts against the

true class.

@)
= o o
@)
@
@
@

Figure 1.1: Illustration of a 2-dimensional linear classifier

In this thesis we concentrate on a subset of classification algorithms called linear
classifiers. This is a class of functions that are linear in the instance space. In other
words, linear classifiers find a separation boundary in the instance space between
the examples from the training set that are in the target concept and those that
are not. From here on, instead of referring to a target concept, we will use the
term class. Unless otherwise noted, we assume that the dataset contains two classes
represented by the labels 1 and 0, respectively. This is equivalent to saying that an
example is either part of a concept (label 1) or not (label 0). In Figure 1 we show a
simple example of a linear classifier where the instance space is 2-dimensional, and
hence the separation boundary is a line. When the instance space is n-dimensional,
we call the separation boundary a hyperplane. In the figure, the dark circles are
members of one class, and the lighter circles are members of a second class (i.e., not
the first class). The striped circle represents a future un-labeled example that the
algorithm must classify.

The method a linear classifier uses to construct the separation boundary is the
key differentiation among algorithms. There are many linear classification algo-
rithms. One of the first, the Perceptron Algorithm [Rosenblatt, 1958], starts with
some default separation boundary. It then looks at each training example, and
assigns it a pre-determined label (i.e., 1) if it falls on one side of the separation
boundary, and 0 if it falls on the other side. If it makes a mistake on an example,
it moves the boundary towards the example, or past the example such that the

mis-classified example is now on the correct side of the boundary. Under certain

conditions, the Perceptron is guaranteed to converge to a hyperplane that sepa-
rates the two classes of data in the training set. There are many variants of the
Perceptron Algorithm [Friess et al., 1998, Gentile, 2001, Li and Long, 2002, Cram-
mer et al., 2005, Kivinen et al., 2004, Shalev-Shwartz and Singer, 2005, Tsampouka
and Shawe-Taylor, 2005] that either change the updating criterion, or the update
itself, or both. Perceptron variants are generally fast and are still top-performing
algorithms.

Support Vector Machine (SVM) [Boser et al., 1992] is a linear classifier that
optimizes a quantity called margin. The margin of a separation boundary is the
distance between the boundary and the closest example in the training set. In Fig-
ure 1, one of the light circles is very close to the line. The margin of the boundary
would be the distance between the boundary and this circle. Several theoretical
results [Bartlett and Shawe-Taylor, 1999, Bartlett, 1998] show that by increasing
the margin on a training set, we can decrease the upper bound on the error rate of
the classifier.! Intuitively, it seems like a good idea to find the separation boundary
that separates the two classes as much as possible; this is what SVM does. As
with Perceptron, there are many variants of SVM and it has steadily become com-
putationally faster since its adoption by the machine learning community through
algorithmic and implementation improvements.

Many other linear classification algorithms exist: Adatron [Friess et al., 1998],
Winnow [Littlestone, 1987], Naive Bayes, ALMA [Gentile, 2001], and ROMMA [Li
and Long, 2002], for example. ALMA and ROMMA attempt to approximate the
solution of SVM while using a Perceptron style implementation. Adatron actually
computes the optimal separation boundary like SVM, except that the algorithm is
now slower than most SVM implementations. Naive Bayes takes a loose probabilistic
approach and computes the label of each example by computing the probability of

its features based on how often those features occurred in the training set.

'For a summary of existing theoretical results see Cristianini and Shawe-Taylor [2000], Smola
et al. [1999], and Shawe-Taylor et al. [1998].

Thus far in our discussion of linear classifiers we have only discussed classifying
training examples in the original instance space. It may be that no linear separation
boundary exists in this space, and hence the classification algorithm will perform
poorly. We can try to change the classification algorithm to explore non-linear sep-
aration boundaries (i.e., quadratic, logarithmic, etc.) but this is computationally
challenging. The other possibility is to embed the examples in a higher-dimensional
space and run the linear classifier in the new space. For example, if the best sepa-
ration boundary is a quadratic function in the original input space, we can embed
the training examples in a new space such that a quadratic function in the origi-
nal space is now a linear function. With this embedding no changes to the linear
classifier are necessary. By using kernel methods, we can accomplish this exactly,
but without incurring the cost of constructing the explicit feature space embed-
ding. Kernel methods allow linear classifiers to work in much higher-dimensional
(or even infinite-dimensional) spaces. Not all linear classifiers can take advantage of
kernel methods, but SVM and Perceptron can and these are the algorithms we use
primarily throughout this thesis.

It is often the case that the data are not linearly separable due to mis-labeled or
noisy examples, that is, there is no hyperplane that separates one class of examples
from the other. The problem of learning in a noisy setting has been a primary
driving force behind the development of classification algorithms. When data are
not noisy, optimal classification is possible, at least in principle. This is not the case
in most settings, and data noise is an ever-present challenge.

For the first main contribution of the thesis, in Chapter 3, we examine variants
of the Perceptron Algorithm in the setting where the data are not linearly separable.
We make a thorough comparison among the algorithms, explore the reasons why
certain algorithms fail or succeed, and present interesting questions arising from the
experimental results. Below we give a brief summary of our experimental setup and

main result.

Perceptron with Margins (PAM) is a Perceptron variant that uses a conserva-
tive update rule such that the algorithm adjusts not only when a training example
is misclassified, but when it is almost misclassified. The notion of almost is cap-
tured formally in the algorithm and is explained in detail in Chapter 3. PAM is
actually not designed to handle noise, but we show in Chapter 3 that surprisingly
it out-performs all other methods. Another variant imposes an artificial separation
between examples, preventing the Perceptron from making repeated mistakes on the
same example, so as to avoid being dominated by noisy examples. A third variant,
longest survivor, uses the separation boundary that gave the most correct consecu-
tive responses during training (recall that each time the Perceptron makes a mistake,
it updates the separation boundary). Finally the voted perceptron keeps track of all
the separation boundaries computed during training and combines them to make a
final separation boundary. In addition to comparing all variants to one another, we
compare them to Support Vector Machines (SVM) [Boser et al., 1992]. SVM is a
good point of comparison as it has become the standard for linear classifiers. Our
conclusions are that PAM performs comparably to SVM and that it is a good choice
due to its simplicity and efficiency. We also introduce a concrete parameter setting
for PAM that leads to successful performance across different applications.

Our second main contribution is in Chapter 4, where we develop the first known
kernels for hypergraphs and explore and compare them to other similar kernels in
an experimental setting. The goal of this work is to address data that are described
most naturally using a graph or hypergraph structure. A graph is a set of nodes,
V', and edges, E, such that each edge (u,v) connects two nodes from V. Nodes and
edges can have labels. A hypergraph is a graph in which edges have more than two
nodes. A walk through the graph or hypergraph is a sequence of nodes and edges,
and the walk is described by the sequence of labels of the nodes and edges. Our
kernel computes the number of walks of length n that are shared by two graphs;

to do this directly is exponential in n, however by using a dynamic programming

approach we can compute this in polynomial time (in n, |V, and |E|).

A molecule is traditionally represented by a graph, and hence data naturally
represented as graphs are found throughout the chemistry and biology domain. In
the chemical setting, the labels on the nodes might be “carbon,” “hydrogen,” etc.
and the labels on the edges would be “single-bond” or “double-bond.” The classifi-
cation of chemical data alone is enough to justify the investigation of learning from
graphs, and is in fact the driving force behind much of the research on learning from
structured objects. Capturing useful information about the graph is an important
challenge, as much of what we may like to learn is intractable to compute [Gértner
et al., 2003]. Recent work on graph kernels [Gértner et al., 2003, Kashima et al.,
2003] makes use of labeled walks through two graphs as a basis for determining the
similarity between the graphs. That means that if two graphs share many walks
that have the same label sequence, they are considered similar.

Learning from graphs is a special case of learning from hypergraphs, a problem
studied in Inductive Logic Programming (ILP) under the name of learning from
interpretations [De Raedt and Dzeroski, 1994]. Ordered hypergraphs capture com-
plex relational structures and are a powerful representation tool. Our kernel is the
first kernel that is able to work directly on the hypergraph structure. We demon-
strate that it performs comparably or better than state-of-the-art ILP systems [e.g.,
Muggleton, 1995, Quinlan, 1990] on some traditional ILP benchmark datasets. We
also show that the ability to interpret hypergraphs directly improves performance
in some cases. When learning from graphs, we show that our kernel maps the data
into a significantly different feature space than previous graph kernels and gives
state-of-the-art performance.

Another type of structured data is a time series in which a data point is a
set of values, each with an associated time. In astronomy, a typical example is
brightness measurements taken from a star: here each brightness measurement has

an associated date indicating when the measurement was taken. The structure

Figure 1.2: Typical astronomy time series for periodic stars.

inherent in a time series from the astronomy domain can be seen in Figure 1.2.
Previous work on classifying time series extracts features based on the Fourier or
Hermite basis representation [e.g., Vlachos et al., 2005, Osowski et al., 2004]. Other
approaches use probabilistic models like Hidden Markov Models to classify time
series [Ge and Smyth, 2000]. Finally, a similarity measure can be constructed that
is informative for time series, such as Dynamic Time Warping [Berndt and Clifford,
1994, Lu et al., 2008].

In Chapter 5 we present our third contribution: a completely automatic system
for classifying a certain type of astronomy data. The centerpiece of this contribu-
tion is a new kernel for classifying time series. We present theoretical insight into
a successful non-kernel similarity measure for time series, and develop our method
as an approximation. We show that our kernel performs as well or better than ex-
isting methods for periodic time series, in both the astronomy and shape-matching
domains. We then use our kernel as the basis for an automatic system for classifying
time series taken from stars. This work is among the first methods that can clas-
sify an astronomy survey completely automatically. We examine the various data
mining challenges involved in processing a large, unfiltered dataset, presenting new
algorithms, and we demonstrate our new system by classifying an entire astronomy
survey.

In our final contribution, we analyze the problem of generating measurements
of confidence of classifier output. As stated above, in the classification setting the
primary problem is to build a classifier that finds labels for unknown data points.

In many scenarios, however, we wish to know how confident the classifier is in its

predicted label. Most classification algorithms are designed only to minimize ex-
pected classification error, and hence do not give such confidence estimates. An
open problem is whether it is possible to construct reliable confidences from the
output of a classifier, or even to be able to reliably rank the output of a classifier
in terms of confidence. A number of methods exist for estimating confidences from
classifier output. These methods typically take the output of a classifier and run an
optimization problem over the output that produces an estimate of the probabil-
ity that the label produced by the classifier for a particular example is correct. In
Chapter 6 we propose new solutions to this problem based on observed deficiencies
in existing methods. We show that some of our methods perform well in an exper-
imental setting, sometimes out-performing previous work. We analyze as well the
cases where our methods do not perform well. We conclude that two of our methods
show promise, and should be developed further.

To summarize, the thesis gives a thorough empirical analysis of variants of the
Perceptron Algorithm designed for noise-tolerance, drawing the unintuitive conclu-
sion that PAM is the best variant, comparable to SVM. We present the first kernel
methods for learning from hypergraphs and demonstrate their effectiveness in an
experimental setting. We give a new method for learning from periodic time series
and build the first system that automatically classifies certain astronomical objects.
Finally, we evaluate existing methods for estimating the confidence of a classifier
in a predicted label, and suggest new methods, showing their performance, and

suggesting new avenues for improvement.

Chapter 2

Background and Preliminaries

In this chapter we explain in detail several concepts related to the general problem
of classification with kernel methods. The theory and concepts in this chapter are
not original results of this thesis. For a thorough review of the material below, see

Cristianini and Shawe-Taylor [2000], Bishop [2006], and Schélkopf and Smola [2002].

2.1 Kernel Functions

Definition 2.1.1. A kernel' is a function k : X x X — R such that for all m € N
and all x1...x, € X, k generates a positive semidefinite Gram Matriz G, where

Gij =]{T(ZL'Z,J}J)

Theorem 2.1.2 (Mercer|Cristianini and Shawe-Taylor, 2000]). Let X be a compact

subset of R™. Suppose K is a continuous symmetric function such that the integral

operator Ty, : Lo(X) — Lo(X),

(T f)() = /X K(2)f(x)dz,

s positive, that is

/ K(z,2)f(z)f(z)dzdz > 0,
XxX

Lwe use the term “kernel” to refer to a positive semidefinite kernel.

for all f € Lo(X). Then we can expand K(x,z) in a uniformly convergent series
(on X x X) in terms of Tk ’s eigen-functions ¢; € La(X), normalized in such a way

that ||¢;||r, = 1, and positive associated eigenvalues Aj > 0,
K(z,2) =Y A\jd(2)¢5(2)-
j=1

By Mercer’s Theorem, stated formally above, a kernel is equivalent to taking
the inner product in some feature space ® of two objects from a domain X. In our
notation we use ® to represent the feature space as well as the function that maps
an object into the feature space. The explicit representation of an object x € X is
denoted ®(x).

We next examine the practical consequences of the fact that a kernel is equivalent
to taking an inner product. The first consequence is that we can take an inner
product of two objects z,y € X in the feature space ® without explicitly representing
®(z) or ®(y); we need only compute the value K (x,y) = (®(x), ®(y)). For example,

consider the Boolean Kernel [Khardon et al., 2001]
K(z,y) = 2

where z,y € {0,1}" (i.e., and y are binary feature vectors). It is easy to show
that this kernel computes the inner product of x and y in a feature space indexed by
all possible conjunctions. To represent this feature space explicitly, and to take an
inner product in this feature space explicitly, would require O(3™) space and time.
To compute K, on the other hand, takes O(n) space and time.

The second consequence of the equivalence of kernels and inner products is that
we can replace the inner product operator in an algorithm with a kernel function.
This means that an algorithm that relies only on taking inner products can now
work in a feature space without having to represent the data explicitly in that

feature space. In other words, kernels enable an algorithm that depends only on

10

inner products to work in a feature space that would be intractable to represent
explicitly. We will give specific examples as we discuss individual kernel methods.
Previous work [e.g., Cumby and Roth, 2003, Khardon et al., 2001] show that
in certain cases, explicit representation of a feature space is sometimes preferable
to using a kernel function, even if the feature space is intractable to represent in
general. This stems from the trade-off between the “kernelization” of the classifica-
tion algorithms (illustrated with examples in section 2.2), which incurs a significant
performance penalty, and the explicit representation of a large feature space, which
can be intractable. If the feature space is exponentially-sized with respect to the
original data encoding but very sparse, for example, then it still may be possible
to represent the data efficiently using a sparse-vector representation. We do not
address optimizing run times in our experiments and hence we opt to use kernels
throughout our work as they are tractable in all cases. Nevertheless, the analy-
sis of whether kernels are the most efficient way to compute inner products in our

experiments is a worthwhile endeavor for future work.

2.2 Kernel Methods

Definition 2.2.1. A classifier or classification algorithm is an algorithm that maps

a objects from a domain X to a set of labels or classes Y C Z.

Definition 2.2.2. A kernel method is any classification algorithm that relies only

on inner products of examples to make a prediction.

Examples of kernel methods are the Perceptron Algorithm [Rosenblatt, 1958],
Support Vector Machine (SVM) [Boser et al., 1992], k-means, k-Nearest Neighbors,
logistic regression, and Fisher Discriminants. For more information on these algo-
rithms see Bishop [2006]. In the following we will describe in detail two classifiers,

Perceptron and SVM, and illustrate how they can be used with kernels.

11

Input set of examples and their labels Z = ((z1,y1);--- (Tm,Ym)) € (R™ x
{_171})m’ m, elm't

e Initialize w «— 0 and 0 « O,
e for every training epoch:
e for every z; € X:

= sign((w,z;) —0)
—if (§ #y;)
* W — W+ NY;T;
* 0 — 0+ nyjelnit

Figure 2.1: The basic Perceptron Algorithm
2.3 The Perceptron Algorithm

The Perceptron Algorithm [Rosenblatt, 1958] is an example of a linear classifier.
That is, using data represented as feature vectors in R, it constructs a hyperplane
that separates one class of data from another. Formally, the Perceptron takes as
input a set of training examples in R™ labeled {—1,1}. Using a weight vector,
w € R", initialized to 0, and a threshold (or bias), 6, it predicts the label of each
training example x to be y = sign({w,x) — 6). The algorithm adjusts w and 6 on
each misclassified example by an additive factor. The algorithm is summarized in
Figure 2.1. The “learning rate” n controls the extent to which w can change on a
single update. The initial choice of # is important as it can be significant in early
iterations of the algorithm.

The version of the algorithm as shown in Figure 2.1 is known as the primal form
of the algorithm. Note that w is a linear combination of the input vectors, and is
stored explicitly. Hence, in this setting it may be the case that we could not work
in a feature space that is very large, as we would have to represent each example in
the feature space. It is well known that the Perceptron can be re-written in “dual
form” whereby it can be used with kernel functions [Cristianini and Shawe-Taylor,

2000]. We now show how this is done and how this allows us to work in high- or

12

Input as in primal form.
e Initialize a« 0™,k «— 0,wg <+ 0 and 0 <« O,
e for every training epoch:
e for every z; € X:
— SUM — Zﬂaﬁéo noyi (((), 2(z5)))
— g« sign(SUM — 0)
- if (9 #y5)
¥ o —a;+1
* 0 —0+nCy;

Figure 2.2: The Perceptron Algorithm in dual form

infinite-dimensional feature spaces.
In Figure 2.2, we show the dual form of the Perceptron Algorithm. This is
exactly equivalent to the algorithm shown in Figure 2.1, and is based on the fact

that w is a linear combination of the input and can be written as

m
W = E NGy T;
i=1

where «; is the number of mistakes that have been made on example i. Now re-

writing (w, z) with the alternate form of w we have

(w,2) =Y noyi(zi, 2) (2.1)
i=1

for any z.

The dual form of the algorithm relies only on taking inner products between
examples. Because we do not store w explicitly, but only the coefficients «; for each
example, the algorithm is no longer dependent on the size of the feature space in

which the inner products are taken. Using the results from Section 2.1 we replace

13

inner products with kernel functions, and so we can replace the LHS of (2.1) with

> naiyiK (s, 2) (22)
i=1

using any kernel K. To summarize, we have “kernelized” the Perceptron Algorithm
by noting that its dual form relies only on inner products, and replacing those inner
products with kernels. We can now run the Perceptron in any feature space for
which we can efficiently compute the inner product, and we do not have to store the

examples in that feature space.

2.4 Support Vector Machines

The Support Vector Machine (SVM), like the Perceptron Algorithm, is a linear
classifier. Unlike the Perceptron, however, the SVM constructs a hyperplane that
is optimal according to some conditions. Specifically, SVM finds the hyperplane
that maximizes the margin of a hyperplane with respect to the training data. The

margin of w with respect to x; € X is
and the margin of w with respect to the dataset {z1,...,zy,} is

The margin quantifies the extent to which the two classes in the data are separated
by w, and in fact the margin over the dataset represents the minimum distance of
any point in the dataset to the separating hyperplane. The simple form of the SVM

is normally given by:

14

Minimize ||w]?
(2.4)
Subject to y;((w,x;) +60)>1,i=1,...,m.

Note that the problem is formulated to minimize the norm of w while bounding the
decision value from below. This makes sense by looking at (2.3), where we see that
just trying to increase the margin by scaling ||w||? by a factor < 1, will also decrease
the numerator. Instead, the SVM problem looks to decrease the denominator in (2.3)
while fixing the numerator to be at least 1.

Thus far we have assumed that the data are linearly separable, that is, there
exists a hyperplane w such that y;((w,x;) +6) > 0. In most cases, the data are not
linearly separable. The Perceptron can classify such data without any modification,
but SVM can not because the constraints in (2.4) can not be satisfied in the linearly
inseparable case. To address this problem, we introduce slack variables, denoted &;.
In (2.4) we required y;((w, x;) +6) > 1; now to account for data sets in which this is
not possible for all i, we change the requirement to y;({(w,z;) +6) > 1—¢;. In other
words, &; quantifies the extent to which x; violates the requirement y;({(w, x;) +6) >

1. The new minimization problem is

Minimizey ¢ |[|W| + % S &
Subject to y;((w,z;) +6)>1—-¢,i=1,...,m (2.5)

&>04i=1,....m

Here we minimize the Li-norm of & (the slack vector). An alternate formulation

minimized the Lo-norm of &:

Minimize wl + &5 £2
we wl+3 258 (2.6)

Subject to y;((w,x;) +0)>1—-&,i=1,...,m

Unless otherwise noted, we use the L;-norm version (2.5) throughout the remainder

of the thesis. Observe that in (2.6), & > 0 Vi because if §; < 0 then no constraint is

15

violated by setting & = 0, and this change will decrease the value of the objective
function. The parameter C' quantifies the balance between the two terms in the
objective function. A high value of C' means that separation of the data is prioritized,
since any change in the value of a §; will have a large effect on the objective function.
Likewise, if C' is small, then many mis-classifications are allowed, and the priority
shifts to the margin on the correctly classified examples.

As with the Perceptron, we can derive a dual form for (soft-margin) by calcu-

lating the dual of the optimization problem (2.5) which yields

Maximize, D ;o o — % oy Z;”ZI @YY (T, i),
Subject to Ogaigg,izl,...,m (2.7)

Sy =0i=1,...,m.

In computing the dual form, € is found to have the closed form:

1 m
0=—> |vi—D_viajlwi)
i=1 j=1
As with Perceptron, (2.7) depends only on inner products of examples, and hence
we can “kernelize” SVM using the dual by replacing (z;,z;) with K(x;,2;), where

K is a kernel. This gives:

Maximize,, Zf;l o — % Z,nll Z;nzl OéiajyiyjK(xi, xj),
Subject to Ogaigg,izl,...,m (2.8)

Yoy =0,i=1,...,m.

We have reviewed SVM which we will use extensively throughout the thesis. We
explained how it can be used with kernels by using the dual form of the algorithm
and replacing the inner product operation with any kernel. As a consequence, we
can now use SVM to classify data in feature spaces that we could not tractably

represent explicitly.

16

2.5 Binary to Multiclass

The classifiers we have discussed thus far are built for binary classification problems,
that is the case when the labels y can have two values. It is possible to extend any
binary classifier to the multiclass case where there are k > 2 classes. A good
summary of these methods for multi-class extensions of binary classifiers can be
found in Allwein et al. [2000], Huang et al. [2006] and Wu et al. [2004]. The simplest
extension is one-versus-one, which learns k(k—1)/2 binary classifiers, one to separate

every pairing of labels. A simple decision rule for the one-versus-one extension is

argmax Z Lj>r; (2.9)
' Jit
where the sum is over class labels, and the r;; are derived from the raw classifier
output (or are simply the raw classifier output). This rule simply chooses as a label
the class that was chosen the most times by the binary classifiers.

Another classic binary-to-multiclass extension is known as one-versus-all. In
this setting k classifiers are learned, one to distinguish every class from the other
k — 1 classes. A simple decision rule in this case is to simply use the maximum
output of the k classifiers to make a decision in the multi-class cases.

There are many other possible decision rules for the one-versus-one case that are
motivated by a probabilistic interpretation of the classifier output. We will discuss
these in Chapter 6.

The binary-to-multiclass setting is generalized by Allwein et al. [2000] to any
set of binary classifiers, each of which distinguishes any two subsets of the labels.
The generalization of the setting in which the classifiers give probabilistic estimates
of class membership is given by Huang et al. [2006]. Har-Peled et al. [2002] give a
general framework that unifies binary-to-multiclass, ranking, and constraint classi-

fication.

17

Chapter 3

Noise-Tolerant Variants of the

Perceptron Algorithm

The success of Support Vector Machines (SVMs) [Boser et al., 1992, Cristianini
and Shawe-Taylor, 2000] has led to increasing interest in the Perceptron Algo-
rithm [Rosenblatt, 1958]. Like SVM, the Perceptron Algorithm is a linear classifier
and can be used with kernels, but unlike SVM, it is simple and easy to implement.
Interestingly, despite a large number of theoretical developments, there is no result
that explains why SVM performs better than Perceptron, and similar convergence
bounds exist for both [Graepel et al., 2000, Cesa-Bianchi et al., 2004]. In prac-
tice, SVM is often observed to perform slightly better with significant cost in run
time. Several on-line algorithms have been proposed which iteratively construct
large margin hypotheses in the feature space, and therefore combine the advantages
of large margin hypotheses with the efficiency of the Perceptron Algorithm. Other
variants adapt the on-line algorithms to work in a batch setting choosing a more
robust hypothesis to be used instead of the last hypothesis from the on-line session.
There is no clear study in the literature, however, that compares the performance
of these variants or the possibility of combining them to obtain further performance

improvements. We believe that this is important as these algorithms have already

18

been used in applications with large datasets [e.g., Collins, 2002, Li et al., 2002,
Punyakanok et al., 2008] and a better understanding of what works and when can
have a direct implication for future use. This chapter provides such an experimen-
tal study where we focus on noisy data and more generally the “unrealizable case”
where the data is simply not linearly separable. We chose some of the basic Percep-
tron variants and experimented with them to explore their performance both with
hindsight knowledge and in a statistically robust setting.

More concretely, we study two families of variants. The first explicitly uses
the idea of hard and soft margin from SVM. The basic Perceptron algorithm is
mistake driven, that is, it only updates the hypothesis when it makes a mistake on
the current example. The Perceptron Algorithm with margin [Krauth and Mézard,
1987, Li et al., 2002, Grove and Roth, 1997] forces the hypothesis to have some
margin by making updates even when it does not make a mistake but where the
margin is too small. Adding to this idea, one can mimic soft-margin versions of
support vector machines within the Perceptron Algorithm that allow it to tolerate
noisy data [e.g., Li et al., 2002, Kowalczyk et al., 2001]. The algorithms that arise
from this idea constrain the update function of the Perceptron and limit the effect
of any single example on the final hypothesis. A number of other variants in this
family exist in the literature. Each of these performs margin based updates and
has other small differences motivated by various considerations. We discuss these
further in the concluding section of the chapter.

The second family of variants tackles the use of on-line learning algorithms in a
batch setting, where one trains the algorithm on a dataset and tests its performance
on a separate test set. In this case, because updates do not always improve the error
rate of the hypothesis (e.g., in the noisy setting), the final hypothesis from the on-line
session may not be the best to use. In particular, the longest survivor variant [Kearns
et al., 1987, Gallant, 1990] picks the “best” hypothesis on the sequential training

set. The Voted Perceptron variant [Freund and Schapire, 1999] takes a vote among

19

hypotheses produced during training. Both of these have theoretical guarantees in
the PAC learning model [Valiant, 1984]. Again, other variants exist in the literature
which modify the notion of “best” or the voting scheme among hypotheses and these
are discussed in the concluding section of the chapter.

It is clear that each member of the first family can be combined with each member
of the second. In this chapter we report on experiments with a large number of such
variants that arise when combining some of margin, soft margin, and on-line to
batch conversions. In addition to real world data, we used artificial data to check
the performance in idealized situations across a spectrum of data types. Thus the
main contribution of this chapter is an empirical study comparing several variants
and their novel combinations and the resulting practical conclusions.

The experiments lead to the following conclusions: First, the Perceptron with
margin is the most successful variant. This is surprising as among the algorithms
experimented with it is only one not designed for noise tolerance. Second, the soft-
margin variants on their own are weaker than the Perceptron with margin, and
combining soft-margin with the regular margin variant does not provide additional
improvements.

The third conclusion is that in most cases the Voted Perceptron performs simi-
larly to the Perceptron with margin. The Voted Perceptron has the advantage that
it does not require parameter selection (for the margin) that can be costly in terms
of run time. Combining the two to get the Voted Perceptron with margin has the
potential for further improvements but this occasionally degrades performance. Fi-
nally, both the Voted Perceptron and the margin variant reduce the deviation in
accuracy in addition to improving the accuracy. This is an important property that
adds to the stability and robustness of the algorithms.

The rest of the chapter is organized as follows. The next section reviews all
the algorithms and our basic settings for them. Section 3.2 describes the experi-

mental evaluation. We performed two kinds of experiments. In “parameter search”

20

we report the best results obtained with any parameter setting. This helps set the
scope and evaluate the potential of different algorithms to improve performance
and provides insight about their performance, but it does not give statistically re-
liable results. In “parameter optimization” the algorithms automatically select the
parameters and the performance can be interpreted statistically. The concluding
section further discusses the results and puts related work in its context leading to

directions for future work.

3.1 Algorithms

In this section we describe the algorithms used in our study. All these algorithms
have been previously introduced in the literature and citations are given throughout
the text. Some minor variants (a-variant below) and combinations of options are
new in this empirical study.

Recall from Section 2.3 that the Perceptron constructs a decision boundary pa-
rameterized by (w,6). When the data are linearly separable via some hyperplane

(w,0), the margin is defined as

= mi ;) —0)). 3.1
v = min (y;({w,zi) —0)) (3.1)
When |w| = 1, v is the minimum Euclidean distance of any point in the dataset

to (w,0). If the data are linearly separable, and 6 is initialized to 0, the Perceptron
algorithm is guaranteed to converge in < (%)2 iterations [Novikoff, 1962, Cristianini
and Shawe-Taylor, 2000], where R = maxj<ij<pm, ||2i|.

In the case of non-separable data, the extent to which a data point fails to
have margin + via the hyperplane w can be quantified by a slack variable & =
max (0,7 — y;((w,x3) + €)). Observe that when & = 0, the example x; has margin

at least v via the hyperplane defined by (w,f). The Perceptron is guaranteed
2(R+D)

to make no more than ()2 mistakes on m examples, for any w,~y > 0 where

21

D = />, &2 [Freund and Schapire, 1999, Shalev-Shwartz and Singer, 2005]. Thus
one can expect some robustness to noise.

All the Perceptron variants we discuss below have dual form representations.
However, the focus of this chapter is on noise tolerance and this is independent of
the use of primal or dual forms and the use of kernels. We therefore present all the

algorithms in primal form.

3.1.1 The Mtrick

The M-trick [Kowalczyk et al., 2001, Li et al., 2002] attempts to minimize the effect
of noisy examples during training similar to the Lo soft margin technique used with
support vector machines [Cristianini and Shawe-Taylor, 2000]. We classify example

x;j according to sign(SUM —) where
SUM = (w,z;) + Liy; Az (3.2)
and where I; is an indicator variable such that

1 if z; was previously classified incorrectly

0 otherwise

Thus during training, if a mistake has been made on x; then in future iterations
we increase SUM artificially by a factor of A||z;|| when classifying 2; but not when
classifying other examples. A high value of A can make the term y;\||x;|| dominate
the sum and make sure that x; does not lead to an update, hence it is effectively
ignored. In this way A can help the algorithm avoid a large number of updates on
noisy (as well as other) examples limiting their effect.

We observe that this technique is typically presented using an additive A instead
of Al|z;||. While there is no fundamental difference, adding A||z;|| is more convenient

in the experiments as it allows us to use the same values of A for all datasets (because

22

the added term is scaled relative to the data).

3.1.2 The a-bound

This variant is motivated by the L1 soft margin technique used with support vector
machines [Cristianini and Shawe-Taylor, 2000]. The a-bound places a bound « on
the number of mistakes the algorithm can make on a particular example, such that
when the algorithm makes a mistake on some z;, it does not update w if more than
« mistakes have already been made on x;. As in the case of the A-trick, the idea
behind this procedure is to limit the influence of any particular noisy example on
the hypothesis. Intuitively, a good setting for « is some fraction of the number of
training iterations. To see that, assume that the algorithm has made « mistakes on
a particular noisy example x. In all subsequent training iterations, xj; never forces
an update, whereas the algorithm may continue to increase the influence of other
non-noisy examples. If the ratio of non-noisy examples to noisy examples is high
enough the algorithm should be able to bound the effect of noisy examples in the
early training iterations while leaving sufficient un-bounded non-noisy examples to
form a good hypothesis in subsequent iterations. While this is a natural variant, we
are not aware of any experimental results using it. Observe that in order for the
a-bound to work effectively, the algorithm must perform a high enough number of

training iterations.

3.1.3 Perceptron Using Margins

The classical Perceptron attempts to separate the data but has no guarantees on the
separation margin obtained. The Perceptron Algorithm using Margins (PAM) [Krauth
and Mézard, 1987, Dagan et al., 1997, Grove and Roth, 1997, Li et al., 2002] at-
tempts to establish such a margin, 7, during the training process. Following work
on support vector machines [Boser et al., 1992, Cristianini and Shawe-Taylor, 2000]

one may expect that providing the Perceptron with higher margin will add to the

23

stability and accuracy of the hypothesis produced, and in fact PAM has been shown
to perform well in experimental settings [Dagan et al., 1997, Grove and Roth, 1997,
Punyakanok et al., 2008, e.g.,].

To establish the margin, instead of only updating on examples for which the

classifier makes a mistake, PAM updates on z; if
yi(SUM —6) <1

where SUM is as in Equation (3.2). Notice that this includes the case of a mistake
where y;(SUM — 6) < 0 and the case of correct classification with low margin
when 0 < y;(SUM —6) < 7. In this way, the algorithm “establishes” some minimal
separation of the data. Notice that the weight vector w is not normalized during the
learning process and its norm can increase with updates. Therefore, the constraint
imposed by 7 becomes less restrictive as learning progresses, and the normalized
margin is not 7. When the data are linearly separable and 7 < 7, PAM finds a
separating hyperplane with a margin that is guaranteed to be at least V‘WW’
where 7o is the maximum possible margin [Krauth and Mézard, 1987, Li et al.,
2002].!

As above, it is convenient to make the margin parameter dataset independent in
order that we can use the same values across datasets. To facilitate this we replace

the above and update if
Y (SUM — 0) < 70151 (3.3)

in order that 7 can be measured in units of 61,,.
A variant of PAM exists in which a different value of 7 is chosen for positive
examples than for negative examples [Li et al., 2002]. This seems to be important

when the class distribution is skewed. We do not study that variant in this chapter.

!Other variants [e.g., Gentile, 2001, Tsampouka and Shawe-Taylor, 2005, Shalev-Shwartz and
Singer, 2005] do normalize the weight vector and thus have better margin guarantees.

24

3.1.4 Longest Survivor and Voted Perceptron

The classical Perceptron returns the last weight vector w, i.e., the one obtained after
all training has been completed, but this may not always be useful especially if the
data is noisy. This is a general issue that has been studied in the context of using
on-line algorithms that expect one example at a time in a batch setting where a set
of examples is given for training and one hypothesis is used at the end to classify all
future instances. Several variants exist that handle this issue. In particular Kearns
et al. [1987] show that longest survivor hypothesis, i.e., the one who made the largest
number of correct predictions during training in the on-line setting, is a good choice
in the sense that one can provide guarantees on its performance in the PAC learning
model [Valiant, 1984]. Several variations of this idea were independently proposed
under the name of the pocket algorithm and empirical evidence for their usefulness
was provided [Gallant, 1990].

The Voted Perceptron [Freund and Schapire, 1999] assigns each vector a “vote”
based on the number of sequential correct classifications by that weight vector.
Whenever an example is misclassified, the Voted Perceptron records the number of
correct classifications made since the previous misclassification, assigns this number
to the current weight vector’s vote, saves the current weight vector, and then updates
as normal. After training, all the saved vectors are used to classify future examples
and their classifications are combined using their votes. At first sight the Voted
Perceptron seems to require expensive calculation for prediction. But as pointed
out by Freund and Schapire [1999], the output of the weight vector resulting from
the first k mistakes can be calculated from the output of the weight vector resulting
from the first £k — 1 mistakes in constant time. Therefore when using the dual
Perceptron the prediction phase of the Voted Perceptron is not substantially more
expensive than the prediction phase of the classical Perceptron, although it is more
expensive in the primal form.

When the data are linearly separable and given enough iterations, both these

25

variants will converge to a hypothesis that is very close to the simple Perceptron
Algorithm. The last hypothesis will predict correctly on all examples and indeed
its vote will be the largest vote among all hypotheses used. When the data are
not linearly separable the quality of the hypothesis may fluctuate during training as

noisy examples are encountered.

3.1.5 Algorithms Summary

Figure 3.1 summarizes the various algorithms and prediction strategies in primal
form. The algorithms have corresponding dual forms and kernelized versions that

we address in the experimental sections.

3.1.6 Multi-Class Data

Some of the datasets we experiment with have more than two labels. In such cases
we use the one-versus-all binary to multiclass extension explained in Section 2.5 on
page 17, due to its simplicity and good performance. During testing we calculate
the weight given by each classifier (before the sign function is applied) and choose

the label of the classifier with maximum weight.

3.2 Experimental Evaluation

We ran two sets of experiments with the algorithms described above. In one set
of experiments we searched through a pre-determined set of values of 7, «, and
A by running each of the classical, longest survivor, and Voted Perceptron using
10-fold cross-validation and parameterized by each value of 7, a, and A as well
as each combination of 7 x a and 7 x A. This first set of experiments is called
parameter search. The purpose of the parameter search experiments was to give
us a comprehensive view of the effects of the various parameters. This can show
whether a method has any chance of improving performance since the experiments

give us hindsight knowledge. The experiments can also show general patterns and

26

TRAINING: Input set of examples and their labels
Z=z1,91),- s (@m,ym)) € R* x {=1,1})™, Ornit, 7, a-bound, A, T

e Initialize a «— 0™,k «— 0O,wg « O, tally «— 0, besttally «— 0, 6y «—
elnit; el.s. — elnit
e for every training iteration

e for every z; € Z:

= SUM « (wi,) + Lo, 20) YAzl
— Predict:
x if SUM < 6 —7 then §=—1
x else if SUM > 6+ 7 then =1
* else y =0 // This forces an update
— if (§ #y;) AND (a; < a~bound)
* Wh41 < Wk + NY;T;5
* aj —aj+1
* Update ‘‘mistakes’’ data structure
* Orr — Ok +1y;0init
* votegyr «— 0
* k—k+1
x tally — 0
— else if (§ =y;)
* wvotey «— voter + 1
* tally « tally + 1
x if (tally > best_tally)
- best_tally — tally
C Wy, — Wk

“ s — O
PREDICTION: To predict on a new example Zy,41:
e CLASSICAL:
— SUM «— (wg, Tm+1)
— g« sign(SUM — 0y)
e LONGEST SURVIVOR:
— SUM — (wi.s., Tm+1)
— g« sign(SUM — 0,.5))
e VOTED:

— for i1 to k

x SUM — (w;, Tymt1)

* § «— sign(SUM — 0;)

* VOTES « VOTES +wote; ¢
— §final < sign(VOTES)

Figure 3.1: Illustration o; All Algorithm Variants
2

trends in the parameter landscape again giving insight into the performance of the
methods. Notice that parameter search cannot be used to indicate good values
of parameters as this would be hand-tuning the algorithm based on the test data.
However, it can guide in developing methods for automatic selection of parameters.

In the second set of experiments, we used the same set of values as in the first
experiment, but using a method for automatic selection of parameters. In particular
we used a “double cross validation” where in each fold of the cross validation (1)
one uses parameter search on the training data only using another level of cross
validation, (2) picks values of parameters based on this search, (3) trains on the
complete training set for the fold using these values, and (4) evaluates on the test
set. We refer to this second set of experiments as parameter optimization. This
method is expensive to run as it requires running all combinations of parameter
values in each internal fold of the outer cross validation. Hence if both validations
use ten folds then we run the algorithm 100 times per parameter setting. This
sets a strong limitation on the number of parameter variations that can be tried.
Nonetheless this is a rigorous method of parameter selection.

Both sets of experiments were run on randomly-generated artificial data and real-
world data from the University of California at Irvine (UCI) repository [Asuncion
and Newman, 2007] and other sources. The purpose of the artificial data was to
simulate an ideal environment that would accentuate the strengths and weaknesses
of each algorithm variant. The other datasets explore the extent to which this
behavior is exhibited in real world problems.

For further comparison, we also ran SVM on the datasets using the L;-norm soft
margin and Le-norm soft margin. We used SVM Light [Joachims, 1999] and only

ran parameter search.

28

Table 3.1: UCI and Other Natural Dataset Characteristics

Name # features* | # examples | Baseline
Adult 105 32561 75.9
Breast-cancer-wisconsin 9 699 65.5
Bupa 6 345 58
Crx 46 690 55.5
Tonosphere 34 351 64.4
MNIST 784 70,000 N/A
sonar.all-data 60 208 53.4
USPS 256 9298 N/A
Wdbc 30 569 62.7
Wpbc 33 198 76.3
*after preprocessing

3.2.1 Dataset Selection and Generation

We have experimented with ten real world datasets of varying size and 150 artificial
datasets composed of 600 examples each.

We first motivate the nature of artificial data used by discussing the following
four idealized scenarios. The simplest, type 1, is linearly separable data with very
small margin. Type 2 is linearly separable data with a larger, user-defined margin.
For type 3 we first generate data as in type 1, and then add random class noise by
randomly reversing the labels of a given fraction of examples. For type 4, we generate
data as in type 2, and then add random class noise. One might expect that the basic
Perceptron algorithm will do fine on type 1 data, the Perceptron using Margins will
do particularly well on type 2 data, that noise tolerant variants without margin will
do well on type 3, and that some combination of noise tolerant variant with margin
will be best for type 4 data. However, our experiments show that the picture is more
complex; preliminary experiments confirmed that the expected behavior is observed,
except that the Perceptron using Margins performed well on data of type 3 as well,
that is, when the “natural margin” was small and the data was not separable due
to noise. In the following, we report on experiments with artificial data where the
margin and noise levels are varied thus we effectively span all four different types.

Concretely the data was generated as follows. We first specify parameters for

29

number of features, noise rate and the required margin size. Given these, each
example x; is generated independently and each attribute in an example is gen-
erated independently using an integer value in the range [—10,10]. We generated
the weight vector, w, by flipping a coin for each example and adding it to the
weight vector on a head. We chose 0 as the average of §|(w,z;)| over all z;. We
measured the actual margin of the examples with respect to the weight vector and
then discarded any examples x; such that [(w,z;) — 6| < M %6 where M is the
margin parameter specified. For the noisy settings, for each example we randomly
switched the label with probability equal to the desired noise rate. In the tables
of results presented below, f stands for number of features, M stands for the mar-
gin size, and N stands for the noise rate. We generated datasets with parameters
(f,M,N) € {50,200,500} x {0.05,0.1,0.25,0.5,0.75} x {0,0.05,0.1,0.15,0.25}, and
for each parameter setting we generated two datasets, for a total 150 datasets.

For real world data we first selected two-class datasets from the UCI Machine
Learning Repository [Asuncion and Newman, 2007] that have been used in recent
comparative studies or in recent papers on linear classifiers [Cohen, 1995, Dietterich
et al., 1996, Dietterich, 2000, Garg and Roth, 2003]. Because we require numerical
attributes, any nominal attribute in these datasets was translated to a set of bi-
nary attributes each being an indicator function for one of the values. As all these
datasets have a relatively small number of examples we added three larger datasets to
strengthen our conclusions statistically: “Adult” from UCI [Newman et al., 1998],
and “MNIST”?2 and “USPS”3, the 10-class character recognition datasets. Due
to their size, however, for the “USPS,” “MNIST,” and “Adult” datasets, there
is no outer cross-validation in parameter optimization. For ease of comparison to
other published results, we use the 7291/2007 training/test split for “USPS”, and a
60000/10000 split for “MNIST”.

The datasets used and their characteristics after the nominal-to-binary feature

“http://yann.lecun.com/exdb/mnist/
Shttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

30

Training Iterations vs. Accuracy: promoters

84 |- Voted —6— -
Last... ..
]9 I Longest —A— _|
2 -
> & & &
Q -
g
=
3 -
<
| |
100 1000

Training Iterations

Figure 3.2: Example Learning Curve for ‘UCI Dataset promoters

transformation are summarized in Table 3.1. The column labeled “Baseline” indi-

cates the percentage of the majority class.

3.2.2 Exploratory Experiments and General Setup

The algorithms described above have several parameters that can affect their per-
formance dramatically. In this chapter we are particularly interested in studying
the effect of parameters related to noise tolerance, and therefore we fix the value
of 01,4, m, and the number of training iterations. Prior to fixing these values, we
ran preliminary experiments in which we varied these parameters. In addition we
ran experiments where we normalized the example vectors. The results showed that
while the performance of the algorithms overall was different in these settings, the
relationship between the performance of individual algorithms seems to be stable
across these variations.

We set O = avg({(z;, x;)), initializing the threshold at the same scale of inner
products. Combined with a choice of n = 0.1, this makes sure that a few iterations
should be able to guarantee that an example is classified correctly given no other
changes to the hypothesis.

As explained above, the number of iterations must be sufficiently high to allow

the a parameter to be effective, as well as to allow the weight vector to achieve

31

some measure of stability. Typically a small number of iterations is sufficient, and
preliminary experiments illustrated by the curve in Figure 3.2 showed that 100
iterations are more than enough to allow all the algorithms to converge to a stable
error rate. Therefore, except where noted below, we report results for 100 iterations.

For the large datasets, we reduced the number of training iterations and increased
n accordingly in order to run the experiments in a reasonable amount of time; for
“Adult” we set n = 0.4 with 5 training iterations and for “MNIST” we set n = 1 with
1 training iteration. For “USPS.” we used n = 0.1 and 100 iterations for parameter
search, and n = 0.1 and 10 iterations for parameter optimization.

The parameters of interest in our experiments are 7, a, A that control the mar-
gin and soft margin variants. Notice that we presented these so that their val-
ues can be fixed in a way that is dataset independent. We used values for 7 €
{0,0.125,0.25,0.5,1,2,4}, o € {00, 80,60, 40, 20,10,5}, and A € {0,0.125,0.25,0.5,1,2,4}.
Notice that the values as listed from left to right vary from no effect to a strong effect
for each parameter. We ran parameter search and parameter optimization over all
of these values, as well as all combinations 7 x A and 7 X «. Since parameter opti-
mization over combined values is particularly expensive we have also experimented
with a variant that first searches for a good 7 value and then searches for a value of
a (denoted 7 — «) and a variant that does likewise with 7 and A\ (denoted 7 — X).

We did not perform any experiments involving o on “MNIST” or “Adult” as
their size required too few iterations to justify any reasonable a-bound.

Table 3.2: Noise Percentage vs. Dominance: V = Voted, C = Classical, LS =
Longest Survivor

V>C|V>LS|LS>C|LS>V |C>LS | C>V | V=LS=C
Noise = 0 0 0 0 0 0 0 30
Noise = 0.05 12 10 11 3 0 2 16
Noise = 0.1 15 15 14 3 3 3 12
Noise = 0.15 16 14 13 5 6 3 10
Noise = 0.25 16 12 13 8 7 4 10

Finally we performed a comparison of the classical Perceptron, the longest sur-

32

vivor and the Voted Perceptron algorithms without the additional variants. Ta-
ble 3.2 shows a comparison of the accuracies obtained by the algorithms over the
artificial data. We ignore actual values but only report the number of times one
algorithm gives higher accuracy or whether they tie (the variance in actual results
is quite large). One can see that with higher noise rate the Voted Perceptron and
longest survivor improve the performance over the base algorithm. Over all 150 arti-
ficial datasets, the Voted Perceptron strictly improves performance over the classical
Perceptron in 59 cases, and ties or improves in 138 cases. Using the distribution over
our artificial datasets one can calculate a simple weak statistical test that supports
the hypothesis that using the voted algorithm does not hurt accuracy, and can often
improve it.

Except where noted, all the results reported below give average accuracy in 10-
fold cross-validation experiments. To avoid any ordering effects of the data, the

training set is randomly permuted before each run.

3.2.3 Parameter Search

The parameter search experiments reveal several interesting aspects. We observe
that in general the variants are indeed helpful on the artificial data as the per-
formance increases substantially from the basic version. The numerical results are
shown in Tables 3.3 and 3.4 and discussed below. Before showing these we discuss
the effects of single parameters. Figure 3.3 plots the effect of single parameters
for several datasets. For the artificial dataset shown, the accuracy is reasonably
well-behaved with respect to the parameters and good performance is obtained in
a non-negligible region; this is typical of the results from the artificial data. Data
obtained for the real world datasets show somewhat different characteristics. In
some datasets little improvement is obtained with any variant or parameter setting.
In others, improvement was obtained for some parameter values but the regions

were not as large implying that that automatic parameter selection may not be

33

Parameter Search on a: f =50, N = 0.05, M = 0.05 Parameter Search on A: f =50, N = 0.05, M = 0.05

100 T T T T 100 T T T T T
Voted —— Voted —6—
Last - @ Last -~ o
95 Longest —A— | 90 - Longest —A— _|
4
xe
z
&
54
S
<
80 B 60 - B
75 I I I I 50 I I I I I
oo 80 60 40 20 10 5 274 273 272 21 20 2! 22
a A
Parameter Search on 7: f =50, N = 0.05, M = 0.05 Parameter Search on a: promoters
100 T T T T 100 T T T T T
Voted —6— Voted —6—
Last - e Last -~ @
95 Longest —A— _| 95 L Longest —A— _|
x
& A - 90 - B
g
3 B 85 - B
<
80 - 1 80 & o o o & !
75 | | | | 75 | | | | |
274 273 272 27t 20 2! 2? 00 80 60 40 20 105
T et
Parameter Search on A: promoters Parameter Search on 7: promoters
100 T T T 100 T T T T
Voted ——
Last -e
90 - Longest —A— |
I3
]
g
<
75 I I I I I
0 273 272 27! 20 2! 2
=
Parameter Search on a: USPS Parameter Search on A: USPS
100 T T T T 100 T T T T
Voted —6— Voted —6—
Last -~ Last -~ &
95 - Longest —A— | 95 |- Longest —&— |
e —
S = 3
s 90 il
ER
g 85 B
<
80 - B
75 I I I I 75 I I I I I
0 80 60 40 20 105 0 273 272 27! 20 2! 22
a A
Parameter Search on 7: USPS Parameter Search on \: MNIST
100 T T T 100 T T T T
Voted —— Voted —§—
ast - @ Last -~ @
95 - Longest —A— | 95 - Longest —A— _|
- d
X
90 > 90
4 :
85 L i g sne r
<
4
80 - q 80 - =
75 I I I I 75 I I I I I
0 273 272 27t 20 2! 2? 0 273 272 271 20 2! 22
T A
Parameter Search on 7: MNIST
100 T T T
Voted —6—
Last @
95 - Longest —A— |
I3
S — 9 ——%———_
g
g
<
7% I I I I I
0 9-3 9-2 9-1 20 91 92

Figure 3.3: Parameter Search opy Artificial and Real-world Data

easy. Nonetheless it appears that when improvement is possible, 7 on it own was
quite effective when used with the classical Perceptron. Notice that 7 is consistently
effective across all datasets; A and « do not help on all datasets and A sometimes
leads to a drop in performance. As one might expect, our preliminary experiments
also showed that very large values of 7 harm performance significantly. These are
not shown in the graphs as we have limited the range of 7 in the experiments.

Tables 3.3 and 3.4 summarize the results of parameter search experiments on
the real world data and some of the artificial data, respectively. For each dataset
and algorithm the tables give the best accuracy that can be achieved with param-
eters in the range tested. This is useful as it can indicate whether an algorithm
has a potential for improvement, in that for some parameter setting it gives good
performance. In order to clarify the contribution of different parameters, each col-
umn with parameters among 7, a;, A includes all values for the parameter except the
non-active value. For example, any accuracy obtained in the 7 column is necessarily
obtained with a value 7 # 0. The column labeled “Nothing” shows results when all
parameters are inactive.

Several things can be observed in the tables. Consider first the margin parame-
ters. We can see that 7 is useful even in datasets with noise; we see this both in the
noisy artificial datasets and in the real-world datasets, all of which are inseparable
in the native feature space. We can also see that a and A do improve performance
in a number of cases. However, they are less effective in general than 7, and do not
provide additional improvement when combined with 7.

Looking next at the on-line to batch conversions we see that the differences
between the basic algorithm, the longest survivor and the Voted Perceptron are
noticeable without margin based variants. For the artificial datasets this only holds
for one group of datasets (f = 50), the one with highest ratio of number of examples

to number of features (12 : 1).* The longest survivor seems less stable and degrades

“The results for data with f = {200,500} are omitted from the table. In these cases these
was no difference between the basic, longest and voted versions except when combining with other

35

Table 3.3:

Parameter Search on UCI and Other Datasets.

Baseline | Nothing | 7 A «@ TXAN| TX«
breast-cancer-wisconsin | Last 65.5 90.6 | 96.8 | 97.2 | 96.9 97.3 97.2
Longest 96.9 | 97.0 | 97.2 | 97.0 97.3 97.2
Voted 96.9 | 96.8 | 97.2 | 96.9 97.3 97.2
bupa Last 58 57.5 | 71.8 | 64.1 | 69.2 71.5 67.8
Longest 64.1 | 58.2 | 64.8 | 68.4 60.9 61.2
Voted 68.9 | 65.9 | 67.7 | 70.7 67.4 66.0
wdbc Last 62.7 924 | 93.2 | 92.8 | 93.3 93.9 92.6
Longest 924 | 93.2 | 92.6 | 924 92.8 92.8
Voted 92.3 | 92.0 | 93.2 | 924 93.2 92.4
crx Last 55.5 62.5 | 68.6 | 65.5 | 66.7 69.0 66.7
Longest 55.1 | 63.6 | 65.5 | 63.5 65.5 65.2
Voted 64.9 | 65.4 | 65.5 | 66.7 65.5 66.4
promoters Last 50 78.8 | 92.8 | 82.1 | 78.8 94.4 93.8
Longest 78.8 | 92.8 | 82.1 | 78.8 94.4 94.4
Voted 78.8 | 93.4 | 82.1 | 78.8 94.4 93.8
ionosphere Last 64.4 86.6 | 87.5 | 86.9 | 87.7 88.6 87.2
Longest 87.2 | 87.5 | 87.8 | 88.0 88.3 87.7
Voted 88.0 | 87.7 | 87.5 | 88.6 88.9 87.5
wpbc Last 76.3 773 | 76.4 | 80.6 | 76.9 79.0 76.4
Longest 772 | 764 | T7.4 | 785 76.9 76.4
Voted 78.8 | 76.4 | 80.6 | 774 78.5 76.4
sonar.all-data Last 53.4 71.9 | 746 | 725 | 77.1 75.8 79.1
Longest 753 | 77.1 | 73.3 | 77.2 777 78.7
Voted 75.1 | 77.2 | 73.8 | 77.1 78.7 7.7
USPS Last N/A 91.5 | 94.1 | 90.4 | 92.8 94.3 94.1
Longest | N/A 86.9 | 93.9 | 90.4 92 93.9 93.9
Voted N/A 93.5 | 94.2 | 93.4 | 93.6 94.3 94.3
MNIST Last N/A 85.2 | 89.2 | 85.2 89.2
Longest | N/A 81.7 | 88.6 | 81.7 88.6
Voted N/A 90.2 | 90.6 | 90.2 90.6

36

Table 3.4: Parameter Search on Artificial Datasets with f = 50 and M = 0.05.

Noise Pctg. (N) | Nothing | 7 A e TXAN| TXa
Last, N =0 95.4 97 | 95.6 | 96.1 96.8 97
Longest 95.4 | 96.6 | 95.6 | 95.9 | 97.3 96.8
Voted 95.4 | 96.6 | 95.4 | 96.1 96.8 97
Last, N = 0.05 81.7 | 89.4 87 | 89.5 89.7 89.9
Longest 86.6 | 89.7 87 | 89.3 89.9 89.9
Voted 87.5 | 89.4 87 | 89.5 89.7 90.2
Last, N =0.1 77.8 | 84.6 | 819 | 85.1 84.9 85.8
Longest 77.2 | 84.9 | 819 | 85.1 84.6 85.5
Voted 81.6 | 84.9 | 81.9 | 85.1 84.9 85.6
Last, N =0.15 71.2 | 81.6 | 79.9 | 80.6 81.6 81.7
Longest 72.9 | 80.7 | 79.9 | 79.2 80.7 81.7
Voted 75.6 | 81.6 | 79.9 | 80.6 82.1 81.6
Last, N =0.25 59.9 | 70.7 | 68.2 | 70.7 71.1 71.1
Longest 65 | 70.7 | 68.2 | 70.1 70.4 70.6
Voted 68 | 70.4 | 69.4 | 70.7 70.6 71.1

performance in some cases.

Finally compare the 7 variant with Voted Perceptron and their combination.
For the artificial datasets using 7 alone (with last hypothesis) gives higher accuracy
than using the Voted Perceptron alone. For the real-world datasets this trend is less
pronounced. Concerning their combination we see that while 7 always helps the last
hypothesis, it only occasionally helps voted, and sometimes hurts it.

Table 3.5 gives detailed results for parameter search over 7 on the adult dataset,
where we also parameterize the results by the number of examples in the training
set. We see that Voted Perceptron and the 7 variant give similar performance on
this dataset as well. We also see that that in contrast with the performance on the
artificial data mentioned above, Voted Perceptron performs well even with small
training set size (and small ratio of examples to features).

The table adds another important observation about stability of the algorithms.

Note that because we report results for concrete values of 7, we can measure the

variants.

37

Table 3.5: Performance on “Adult” dataset as a function of margin and training set
size.

examples: 10 100 1000 5000 10000 20000
Accuracy | Std. Dev.

T7T=0

Last 75.6 35702 92| 778 | 3.1 | 783 | 4.1 80.3 | 2.8 76.5 | 11.1

Longest 75.7 351|765 |36)| 7.9 | 35| 81.8 | 1.8 82.9 | 0.7 82.3 1.3

Voted 75.8 341|794 | 18| 8.5 |05 84 | 0.7 84.2 | 0.6 84.5 0.5

7=0.125

Last 2.7 4.6 | 73.3 | 89 | 79.7 | 3.7 | 80.8 | 2.7 82.7 | 1.4 80.4 3.9

Longest 73.1 4.6 | 76.6 | 3.9 81 | 21| 81.1 | 24 81.8 | 1.5 82.1 1.7

Voted 74.1 441796 | 14| 82.7 | 05| 839 | 0.7 84.2 | 0.6 84.3 0.4

7=0.25

Last 74.5 1.8 | 75.1 | 74 | 79.3 | 5.1 | 80.5 | 2.8 81.5 | 2.2 80.6 3.7

Longest 73.9 39 (772 21| 8.3 |26 | 8.8 |18 81.7 | 1.7 82.3 2.4

Voted 74.1 4.7 1795 | 1.5 | 8.7 |05 | 838 | 0.7 84.1 | 0.7 84.3 0.5

7=0.5

Last 71.8 6.3 755 |19 | 8.4 | 34| 826 1 82.7 1 82.8 1.5

Longest 74 5.7 772 | 75| 8.4 |23 | 8.1 | 1.6 82.5 | 1.6 80.8 2.9

Voted 73.6 56 | 78.3 | 0.8 | 82.6 | 0.6 | 83.7 | 0.7 84 | 0.7 84.2 0.5

T=1

Last 72.9 6.6 | 784 | 25 | 819 | 1.2 83 | 1.1 82.7 | 1.5 83.5 0.8

Longest 75.9 03759 (09| 783 |28 | 825 | 1.1 83 1 81.9 2.7

Voted 74.8 34 |74 |109| 84|06 | 8.5 0.7 83.7 | 0.7 84.1 0.5

T=2

Last 75.5 1.2 | 75.8 | 2.6 | 824 | 04 | 83.2 | 0.9 82.8 | 1.2 83.6 0.8

Longest 70.7 15.6 | 75.9 | 09 | 77.8 | 2.7 | 814 | 2.9 82.5 2 81.9 2.8

Voted 70.7 156 | 76.4 | 1.8 | 81.8 1| 8321 0.7 83.5 | 0.6 83.8 0.6

T=4

Last 75.9 0.3 | 75.7 | 1.4 | 81.8 1| 831 2.1 83.3 | 0.6 83.6 0.6

Longest 70.7 156 | 75.9 | 09 | 759 | 0.5 | 81.8 | 0.7 79.4 | 34 80.8 3.1

Voted 70.7 156 | 759 | 0.9 | 784 | 2.1 83 | 0.7 83.2 | 0.6 83.5 0.6

standard deviation in accuracy observed. One can see that both the 7 variant
and the Voted Perceptron significantly reduce the variance in results. The longest
survivor does so most of the time but not always. The fact that the variants lead
to more stable results is also consistently true across the artificial and UCI datasets
discussed above and is an important feature of these algorithms.

Finally, recall that the Average Algorithm [Servedio, 1999], which updates ex-
actly once on each example, is known to tolerate classification noise for data dis-
tributed uniformly on the sphere and where the threshold is zero. For comparison,

we ran this algorithm on all the data reflected in the tables above and it was not

38

competitive. Cursory experiments to investigate the differences show that, when
the data has a zero threshold separator and when Perceptron is run for just one
iteration, then (as reported in [Servedio, 1999]) Average performs better than basic
Perceptron. However, the margin-based Perceptron performs better and this be-
comes more pronounced with non-zero threshold and multiple iterations. Thus in
some sense the Perceptron variants are doing something non-trivial that is beyond

the scope of the simple Average Algorithm.

3.2.4 Parameter Optimization

We have run the parameter optimization on the real-world datasets and the artificial
datasets. Selected results are given in Tables 3.6 and 3.7. For these experiments
we report average accuracy across the outer cross-validation as well as a 95% T-
confidence interval around these, as suggested by Mitchell [1997].> No confidence
interval is given for “USPS,” “MNIST,” or “Adult,” as the outer cross-validation
loop is not performed.

In contrast with the tables for parameter search, columns of parameter variants
in Tables 3.6 and 3.7 do include the inactive option. Hence the search in the 7
column includes the value of 7 = 0 as well. This makes sense in the context of
parameter optimization because the algorithm can choose between different active
values and the inactive value. Notice that the standard deviation in accuracies is
high on these datasets. This highlights the difficulty of parameter selection and
algorithm comparison and suggests that results from single split into training and
test sets that appear in the literature may not be reliable.

Table 3.6 shows improvement over the basic algorithm in all datasets where

parameter search suggested a potential for improvement, and no decrease in perfor-

5In more detail, we use the maximum likelihood estimate of the standard deviation o,

s=4/7>.(yi —§)?> where k is the number of folds (here k = 10), y; is the accuracy es-

timate in each fold and y is the average accuracy. We then use the T confidence interval
y €9+ t(k—l),0.975\/ﬁ > (yi — §)?. Notice that since t9,0.975 = 2.262 and k = 10 the con-

fidence interval is 0.754 of the standard deviation.

39

0r

Nothing T A a TX T XA T T— A SVM L1 SVM L2
Breast-cancer-wisconsin
Last 90.6 +/-2.3 | 95.2 +/-2.1 | 952 +/-31 | 94.74+/-3.3 | 953 +/-2.6 | 96.3 +/-2.1 | 95.1 +/-2.3 | 96.9 +/- 1.3
Longest 96.9 +/-1.2 | 96.8 +/- 1.7 | 972 +/-1.4 | 963 4+/-1.9 | 96.8 +/- 1.6 | 97 +/- 1.6 96.8 +/- 1.7 | 96.9 +/- 1.8 | 96.8 +/- 2.2 96.7 +/- 1.7
Voted 96.9 +/- 1.3 | 96.8 +/- 1.4 | 97 +/- 1.4 96.6 +/-1.6 | 97 +/- 1.6 97.2 +/-1.4 | 968 +/-1.4 | 96.9 +/- 1.5
Bupa
Last 57.54/-7.8 | 69.8 +/-6.5 | 61.5 +/-6.3 | 68.9 +/-4.1 | 69.9 +/-5.7 | 69.8 +/- 5.8 | 69.8 +/- 6.5 | 70.9 +/- 5.9
Longest 64.14/-71|641+/-71] 641+/-66 | 66.34+/-43 | 653 +/-43 | 64.1+/-6.6 | 65.3 +/-43 | 641 +/-6.6 | 66.5 +/- 8.6 63.2 +/- 5.2
Voted 68.9 +/-5.8 | 68.9 +/-58 | 675 +/-6.4 | 689 +/-6.3 | 68.9 +/-6.3 | 675 +/-6.2 | 68.9 +/-6.3 | 67.2 +/- 6.0
Wdbc
Last 924 4/-29 | 93 +/-2.7 93.2 +/-25 | 91.6 +/-2.7 | 928 +/-28 | 93.2 +/-2.8 | 93 +/- 2.7 93.5 +/- 2.2
Longest 924 4+/-2.0 | 91.74+/-25 | 921 +/-25 | 923 4+/-23 | 93.2 4+/- 1.7 | 92.5 +/-2.1 | 92.6 +/-2.1 | 914 +/-2.9 | 92.8 +/- 44 94.7 +/- 2.1
Voted 923 4+/-23 | 923 +/-2.6 | 928 +/-2.7 | 91.74+/-1.9 | 91.6 +/-22 | 924 +/-2.4 | 91.6 +/- 2.6 | 92.8 +/- 2.3
Crx
Last 62.5 4+/-5.1 | 68.7 +/-2.9 | 645 +/-41 | 65.84+/-4.1 | 68.1 +/-35 | 68.7 +/-2.2 | 68.7+/-2.9 | 67.8 +/- 2.8
Longest 55.1 +/- 7.3 | 60.4 +/- 6.5 | 62.6 +/- 4.8 | 62.6 +/- 4.4 | 64.5 +/-4.9 | 60.9 +/- 5.7 | 62.9 +/- 4.6 | 59.4 +/- 6.7 | 76.6 +/- 13.7 | 65.9 +/- 22.8
Voted 64.9 +/-4.0 | 642 +/-2.7 | 65.4 +/-32 | 66.2 4+/-3.8 | 66.4 +/-3.7 | 64.9 +/-2.6 | 65.7 +/- 3.3 | 64.3 +/- 3.1
Tonosphere
Last 86.6 +/-3.8 | 87.2 +/-3.4 | 86.3 +/-35 | 85.7+/-4.8 | 86.9 +/-3.4 | 86.9 +/- 2.6 | 86.6 +/- 3.0 | 86.6 +/- 2.6
Longest 87.2+/-38 | 86.9 +/-2.6 | 87.8 +/-3.6 | 87.54+/-3.5 | 86.9 +/-4.0 | 872 +/-32 | 86.9 +/- 3.4 | 87.7 +/-29 | 87.1 +/- 7.1 86.9 +/- 4.2
Voted 88 +/- 3.7 86.3 +/- 4.3 | 86.6 +/-3.5 | 87.7 +/-3.2 | 875 +/-32 | 87.7 +/-3.1 | 86 +/- 4.9 86 +/- 3.9
Wpbc
Last 773 4/-4.7 | 767 +/-44 | 764 +/-44 | 5.1 +4/-6.1 | 751 +/-6.1 | 77 +/-5.2 75.7+/-6.2 | 783 +/-5.1
Longest 772 +/-38 | 76.7+/-53 | 75.8 +/-3.6 | 75.8 +/- 6.0 | 76.9 +/- 4.4 | 748 +/- 4.3 | 75.8 +/- 4.4 | 74.6 +/- 5.4 | 78.6 +/- 7.8 78.6 +/- 8.4
Voted 788 +/-4.7 | 785 +/- 4.8 | 79 +/- 5.0 76.4 +/-4.8 | 76.9 +/- 4.8 | 79 +/- 5.0 76.9 +/-4.8 | 785 +/- 5.1
Sonar
Last 71.9+4/-63 | 731 +/-54 | 724 +/-6.0 | 755 4+/-64 | 721 +/-74 | 71.1 +/- 6.5 | 741 +/-6.4 | 73.6 +/- 5.1
Longest 75.3 +/-5.1 | 77.6 +/-6.2 | 733 +/-6.0 | 743 +/-6.9 | 735 +/-59 | 741 +/-75 | 74 +/-5.5 781 +/- 6.6 | 57.2 +/-11.9 | 55 +/- 11.8
Voted 75.14/-6.0 | 75.6 +/-6.9 | 743 +/-56 | 77.54+/-7.0 | 781 +/-70 | 771 +/-72 | 76.1 +/-7.9 | 75.6 +/- 6.9
f=50,N=0.05,M=0.05
Last 81.7+/-6.5 | 87.7 +/-6.1 | 84.6 +/- 6.6 | 87.2 +/-52 | 88 +/- 5.2 89.4 +/- 4 89 +/- 4.6 89.5 +/- 4.2
Longest 86.6 +/-4.3 | 882 +/-4.2 | 85.6 +/-4.7 | 873 4+/-6.1 | 89.4 +/-45 | 88.2+/-39 | 89 +/- 5.4 88.8 +/- 3.6
Voted 87.5+/-33 | 888 +/-48 | 86.3 +/-39 | 883 +/-42 | 882 +/-49 | 88.8 +/-48 | 8.7 +/-4.9 | 888 +/- 4.8

‘sjeseje(] [RDYNLY pue [DH() 0] SHMSoY uorjeziurid() Ijppurered :9°¢ 9[qe],

Table 3.7: Parameter Optimization Results for Large Datasets

Nothing | 7 A TXAN| T— A
USPS
Last 87.4 | 90.7 | 87.4 90.3 90.2
Longest 87.5 | 89.9 | 874 90.3 89.9
Voted 89.7 | 90.9 | 89.6 90.9 90.9
Adult
Last 81.9 | 83.9 83 83.8 83.8
Longest 83.4 | 83.4 | 834 83.6 83.4
Voted 84.4 | 84.2 | 84.4 84.3 84.3
MNIST
Last 85.6 | 87.1 | 85.5 87.1 87.1
Longest 79.8 | 86.8 | 79.8 86.8 86.8
Voted 88 | 88.4 88 88.4 88.4
USPS,degree 4 poly kernel
Last 92.9 | 93.6
Longest 91.6 | 92.9
Voted 92.7 | 93.2
MNIST,degree 4 poly kernel
Last 95.2 | 95.4
Longest 93.2 | 94.9
Voted 94.8 95

mance in the other cases, hence the parameter selection indeed picks good values.
Both 7 and the Voted Perceptron provide consistent improvement over the classical
Perceptron; the longest survivor provides improvement over the classical Perceptron
on its own, but a smaller one than voted or 7 in most cases. Except for improve-
ments over the classical Perceptron, none of the differences between algorithms is
significant according to the T-intervals calculated. As observed above in parameter
search, the variants with o and A offer improvements in some cases, but when they
do, 7 and voted almost always offer a better improvement. Ignoring the intervals we
also see that neither the 7 variant nor the voted Perceptron dominates the other.
Combining the two is sometimes better but may decrease performance in the high
variance cases.

For further comparison we also ran experiments with kernel based versions of
the algorithms. Typical results in the literature use higher degree polynomial kernel

on the “MNIST” and “USPS” datasets. Table 3.7 includes results using 7 with a

41

degree 4 polynomial kernel for these datasets. We can see that for “MNIST” the
variants make little difference in performance but that for “USPS” we get small
improvements and the usual pattern relating the variants is observed.

Finally, Table 3.6 also gives results for SVM. We have used SVMlight [Joachims,
1999] and ran with several values for the constants controlling the soft margin.
For L; optimization the values used for the “-c” switch in SVMLight are {1077,
1074, 1073,...,10*}. For the Lo optimization, we used the following values for \:
{107%,1073,...,10%}. The results for SVM are given for the best parameters in a
range of parameters tried. Thus these are parameter search values and essentially
give upper bounds on the performance of SVM on these datasets. As can be seen
the Perceptron variants give similar accuracies and smaller variance and they are

therefore an excellent alternative for SVM.

3.3 Discussion and Conclusions

The chapter provides an experimental evaluation of several noise tolerant variants
of the Perceptron algorithm. The results are surprising because they suggest that
the Perceptron with Margin is the most successful variant although it is the only
one not designed for noise tolerance. The Voted Perceptron has similar performance
in most cases, and it has the advantage that no parameter selection is required for
it. The difference between voted and Perceptron with Margin are most noticeable
in the artificial datasets, and the two are indistinguishable in their performance
on the UCI data. The experiments also show that the soft-margin variants are
generally weaker than voted or margin based algorithms and they do not provide
additional improvement in performance when combined with these. Both the Voted
Perceptron and the margin variant reduced the deviation in accuracy in addition to
improving the accuracy. This is an important property that adds to the stability of
the algorithms. Combining voted and Perceptron with Margin has the potential for

further improvements but can harm performance in high variance cases. In terms

42

of run time, the Voted Perceptron does not require parameter selection and can
therefore be faster to train. On the other hand its test time is slower especially if
one runs the primal version of the algorithm.

Overall, the results suggest that a good tradeoff is obtained by fixing a small
(relative to the average norm of the examples) value of 7. We suggest 7 = 0.1; this
gives significant improvements in performance without the training time penalty for
parameter optimization or the penalty in test time for voting. In addition, because
we have ruled out the use of the soft margin « variant we no longer need to run the
algorithms for a large number of iterations. While in our experiments we used 100
iterations as the default for thoroughness, fewer iterations may well be sufficient.
We suggest at least 20 iterations with a learning rate of 0.1 (see Figure 3.2 and
discussion). For very large datasets, even 20 iterations may present a challenge in
terms of run-time, and in these cases we suggest scaling 7 inverse-proportionately
to the number of iterations as we do in Section 4.4.

Our results also highlight the problems involved with parameter selection. The
method of double cross-validation is time intensive and our experiments for the large
datasets were performed using the primal form of the algorithms as the dual form is
too slow. In practice, with a large dataset one can use a hold-out set for parameter
selection so that run time is more manageable. Such results must be accompanied
by estimates of the deviation to provide a meaningful interpretation.

As mentioned in the introduction a number of variants that perform margin
based updates exist in the literature [Friess et al., 1998, Gentile, 2001, Li and Long,
2002, Crammer et al., 2005, Kivinen et al., 2004, Shalev-Shwartz and Singer, 2005,
Tsampouka and Shawe-Taylor, 2005]. For example, aggressive ROMMA [Li and
Long, 2002] explicitly maximizes the margin on the new example, relative to an
approximation of the constraints from previous examples. NORMA [Kivinen et al.,
2004] performs gradient descent on the soft margin risk resulting in an algorithm that

rescales the old weight vector before the additive update. The Passive-Aggressive

43

Algorithm [Crammer et al., 2005] adapts 1 on each example to guarantee it is imme-
diately separable with margin (although update size is limited per noisy data). The
Ballseptron [Shalev-Shwartz and Singer, 2005] establishes a normalized margin and
replaces margin updates with updates on hypothetical examples on which a mistake
would be made. ALMA [Gentile, 2001] renormalizes the weight vector in order to
establish a normalized margin. ALMA is distinguished by tuning its parameters
automatically during the on-line session, as well as having “p-norm variants” that
can lead to other tradeoffs improving performance, for instance when the target is
sparse. The algorithms of Tsampouka and Shawe-Taylor [2005] establish normal-
ized margin by different normalization schemes. Following Freund and Schapire
[1999] most of these algorithms come with mistake bound guarantees (or relative
loss bounds) for the unrealizable case, i.e., relative to the best hypothesis in a com-
parison class. Curiously, identical or similar bounds hold for the basic Perceptron
algorithm so that these results do not establish an advantage of the variants over
the basic Perceptron.

Another interesting algorithm, the Second Order Perceptron [Cesa-Bianchi et al.,
2005], does not perform margin updates but uses spectral properties of the data in
the updates in a way that can reduce mistakes in some cases.

Additional variants also exist for the on-line to batch conversions. Littlestone
[1989] picks the best hypothesis using cross validation on a separate validation set.
The Pocket algorithm with ratchet [Gallant, 1990] evaluates the hypotheses on the
entire training set and picks the best, and the scheme of Cesa-Bianchi et al. [2004]
evaluates each hypothesis on the remainder of the training set (after it made a
mistake and is replaced) and adjusts for the different validation set sizes. The
results in [Cesa-Bianchi et al., 2004] show that loss bounds for the on line setting
can be translated to error bounds in the batch setting even in the unrealizable case.
Finally, experiments with aggressive ROMMA [Li and Long, 2002, Li, 2000] have

shown that adding a Voted Perceptron scheme can harm performance, just as we

44

observed for the margin Perceptron. To avoid this, Li [2000] develops a scheme that
appears to work well where the voting is done on a tail of the sequence of hypotheses
which is chosen adaptively [see also Dekel and Singer, 2005, for more recent work].
Consider the noise tolerance guarantees for the unrealizable case. Ideally, one
would want to find a hypothesis whose error rate is only a small additive factor
away from the error rate of the best hypothesis in the class of hypotheses under
consideration. This is captured by the agnostic PAC learning model [Kearns et al.,
1994]. It may be worth pointing out here that, although we have relative loss bounds
for several variants and these can be translated to some error bounds in the batch
setting, the bounds are not sufficiently strong to provide significant guarantees in
the agnostic PAC model. Hence this remains a major open problem to be solved.
In light of the discussion above, several interesting questions arise from our ex-
perimental results. The first is whether the more sophisticated versions of margin
Perceptron add significant performance improvements. In particular it would be
useful to know what normalization scheme is useful and in what contexts in order
that they can be clearly applied. We have raised parameter tuning as an impor-
tant issue in terms of run time and the self tuning capacity of ALMA and related
algorithms seems promising as an effective solution. Given the failure of the simple
longest survivor it would be useful to evaluate the more robust versions of [Gallant,
1990, Cesa-Bianchi et al., 2004]. Notice, however that these methods have a cost
in training time. Alternatively, one could further investigate the tail variants of the
voting scheme [Li, 2000] or the “averaging” version of voting [Freund and Schapire,
1999, Gentile, 2001], explaining when they work with different variants and why.
Finally, as mentioned above, to our knowledge there is no theoretical explanation
to the fact that Perceptron with Margin performs better than the basic Perceptron

in the presence of noise. Resolving this is an important problem.

45

Chapter 4

A New Kernel for Learning

from Hypergraphs

In this chapter we investigate kernels for learning from graphs and hypergraphs. This
is an example of learning from structured data, where the natural structure of the
data cannot be trivially captured by explicit features. In Chapter 3, we explored
the performance of several kernel methods in a general setting. Here we develop
kernels that make it possible for kernel methods to achieve excellent performance
when the input is a hypergraph.

There is significant recent work in the area of learning from graphs [Kramer and
De Raedt, 2001, Deshpande et al., 2003, Gartner et al., 2003, Frohlich et al., 2005]. A
prime application of this setting is learning to classify molecules. Here each molecule
is a separate example labeled according to some property (e.g., carcinogenicity) and
one would like to predict the labels of new examples. The atom-bond structure of
the molecule is typically used as the underlying graph structure of the example, and
the nodes and edges of the graph are annotated with atom and bond types.

Learning from graphs is a special case of a problem commonly studied in In-
ductive Logic Programming (ILP) under the name of Learning from Interpreta-

tions [De Raedt and Dzeroski, 1994]. Here each example is an interpretation from

46

Figure 4.1: From left to right: Hy,Hs,Hs, and R. The letters are the hyperedge
labels. The numbers represent each node’s position within a hyperedge.

logic programming, which can be seen as a labeled ordered hypergraph. For ex-
ample, the hypergraph H; with nodes {ni,no,ns,n4,ns}, hyperedge (ny,ng,ns3)
labeled p, and hyperedge (ni,ns,ny) labeled ¢ can be compactly described as H; =
{p(n1,n2,n3),q(n1,n4,ns5)}. This generalizes the usual notion of a directed graph,
in that edges have more than two endpoints and the order of nodes is important. A
graphical representation of Hj is given in Figure 4.1. Similarly hypergraphs Hy =
{p(n1,n2,n3),p(n1,ns5,n6), q(ng,n3,ns)}, and Hy = {p(n1,n2,n3), q(n1,ns,ng)} could
be different examples in our problem domain. Typically ILP algorithms learn hy-
potheses represented as sets of first order logic rules and these are used to classify
the interpretations [Muggleton, 1995, Quinlan, 1990, Arias et al., 2007]. For ex-
ample, the rule R = [Qw,x,y,z, p(w,z,y)q(w,y,z) — Positive] classifies Hj as
positive and H; and Hsy as negative. As Figure 4.1 illustrates, a rule can be seen
as a “hypergraph pattern” and its coverage of examples corresponds to hypergraph
homomorphism. The search involved in ILP rule learning is complex and the match-
ing problem, that is, checking whether a rule covers an example, is computationally
hard. As a result such systems are typically slow and not easy to apply for large
datasets.

The use of kernel methods over discrete structures, and in our case ordered
hypergraphs, offers an attractive alternative. Recall from Section 2.1 that a kernel
function calculates an inner product over some implicit feature space, and typically
one uses a linear threshold classifier, such as Perceptron or SVM (see Section 2.2), to

classify examples. A natural goal would be to capture each first-order logic rule as

47

one feature in order that the linear threshold function can combine the predictions
of different rules. Notice that each rule corresponds to a potential sub-structure
of the hypergraph. Therefore features in the implicit space correspond directly to
substructures. Indeed, variants of this idea have already been studied for the special
case of graphs, and are known as graph kernels [Gartner et al., 2003, Kashima et al.,
2003].

In this chapter we introduce a new kernel for ordered hypergraphs. To our
knowledge this is the first kernel that applies to the general case of learning directly
from interpretations, i.e., hypergraphs. We therefore benefit from the data setup
of ILP and can use the kernel wherever learning from interpretations [De Raedt
and Dzeroski, 1994] can be used, easily supporting relational data and background
knowledge. The kernel generalizes graph kernels in that its features are based on
walks in the hypergraph. The walk-based feature space of our kernel captures a
large set of potential rules, so that our hypotheses can be seen as a weighted vote
of ILP rules. The analogy to ILP breaks on two issues. First, as we discuss later in
the chapter, not all ILP rules are expressible by walks, hence there is some trade-
off when using the kernel as opposed to an ILP system. Second, while the kernel
naturally takes input that is encoded as in ILP, the output of a kernel method
using the kernel will not produce explicit rules that are useful in some applications.
Despite these differences we show that the kernel does produce good results in terms
of accuracy and is therefore useful when explicit rules are not a requirement.

Our kernel differs in important ways from previous graph kernel constructions
and induces a new graph kernel when the data happen to be (non-hyper-)graphs.
First, our kernel can recognize larger sub-structures than other walk-based kernels
using the same length walk. This is a direct result of the way in which we extend
walks. Second, unlike previous walk-based methods we consider only finite-length
walks and therefore do not need to “discount” long walks in the kernel in order to

guarantee convergence. Third, we provide a dynamic programming algorithm to

48

calculate the kernel, leading to reasonable run times even on large datasets.

In the experimental section we use real and artificial data. We use the Percep-
tron Algorithm with Margins [Krauth and Mézard, 1987] that has been shown in
Chapter 3 to be competitive with Support Vector Machines in terms of accuracy but
has a lower runtime. For real data, we choose several challenging chemical datasets:
the estrogen binding dataset [Fang et al., 2001, Blair et al., 2000, Branham et al.,
2002], the predictive toxicology challenge [Helma et al., 2001], and the HIV dataset
from NCI/NTH.!

Our results demonstrate that the kernel outperforms existing ILP methods, and
leads to performance comparable to other graph kernels when used on graph data.
In investigating previous work with ILP and graph kernels, we found that ILP papers
typically use a simple graph representation (we call this encoding 1 below) whereas
graph kernel papers typically use a richer representation (we call this encoding 3
below). Therefore when comparing to ILP methods, we also compare across these
representations. The results show that encoding 3 improves the performance of
the hypergraph kernel significantly, but does not help the performance of the ILP
methods tested.

We give insight into how the parameters of the kernel (walk length and discount-
ing, explained below) affect performance. We present evidence that discounting
walks as a function of their length, which is common in the literature, does not lead
to a significant difference in performance. On the other hand the walk length is
important and must be suitably chosen for every application.

We show that hyperedges lead to an improvement in performance using both
artificial and natural data. The artificial data highlight the advantage of using
the hypergraph representation directly in contrast with a translation capturing the
same data using a graph. The experiments show that transforming the hypergraph

into a graph has a direct negative impact on performance. We also show, using

"http://dtp.nci.nih.gov/docs/aids/aids_data.html

49

the Mutagenesis dataset, that incorporating background knowledge in the form of
hyperedges (that exist for this dataset [Srinivasan et al., 1996]) indeed leads to
performance improvements.

To summarize, the main contributions of this chapter is a new kernel suitable
for the general case of learning from interpretations. Experimental results show
that the kernel is effective both in terms of run time and in terms of classifica-
tion performance. The experiments also highlight the crucial role of data encoding
and identify an encoding that seems particularly suited to chemical applications.
Finally we show that using our kernel and working directly with the hypergraph
data can boost classification performance when compared to using a graph kernel
on transformed hypergraph data.

The rest of the chapter is organized as follows. Section 4.1 gives some basic
definitions and notation. In Section 4.2 we define our kernel and discuss potential
variants to the basic kernel. This is followed by a more in-depth discussion of related

work in Section 4.3. The experimental results are given in Section 4.4.

4.1 Definitions and Notation

Definition 4.1.1. A labeled directed graph, G = (V, E), is a set of nodes V, and a
set of edges F C V x V. Every edge and every vertex is annotated with a label from

a fixed set of labels L.

Hypergraphs are normally defined as a generalization of undirected graphs but

here we define them as a generalization of directed graphs as follows.

Definition 4.1.2. A labeled ordered hypergraph, G = (V, E) has a set of vertices
V and a set of edges E. Each edge e € E is a tuple of vertices, (v1,...,v,) where
n > 1 is the arity of the edge. Every edge is labeled with a label from L. We do not
label vertices; instead we can use edges of arity 1. Furthermore, we allow parallel

edges, that is, the same tuple can exist in £ multiple times, but with different labels.

50

Example of ordered hypergraphs are given in the previous section (see Figure 4.1).

Definition 4.1.3. A walk in a directed graph is a sequence of vertices and edges
V1,€1,V2,...,€n_1,U, such that e; = (v;,v;41) € E. We define a walk in an ordered
hypergraph as a sequence of hyperedges where every two consecutive edges have at
least one node in common, and no consecutive edges are identical. We represent a
walk by explicitly specifying indices of the nodes shared by two edges. In particular,
we use a string P = p1i1j1p2i2jopP3 . . . in—1Jn—1Pn Where p; € E, every iy represents
the exit position of p, and every ji represents the entry position of ppyi. For
example, P = p(n1,na,ns3),1,1,p(ny,ns,ne), 2,3, q(ng, n3, n5) represents a walk in
H>. Notice that the ordering of edge arguments is important because we track entry

and exit positions for the nodes.

Definition 4.1.4. A walk type is specified by a string w = r141j17212J273 - - - in_1Jn—1Tn
where r; is an edge label. For example, the walk type of P given above is w =
p,1,1,p,2,3,q. Thus a walk identifies individual edges, whereas a walk type gener-
alizes the walk and only includes edge labels. Although every walk in a hypergraph
is unique, walk types are not; two walks are of the same type iff the strings repre-

senting them are identical.

In the following we define a kernel whose features correspond to walk types.
Notice that walk types are less expressive than rules in that they make fewer dis-
tinctions. In our example, walk type w = p, 1, 1, ¢ captures hypergraphs H; and Hs,
walk type w = p, 3,2, g captures Ho and Hj, but there is no walk type equivalent to
the rule R from the introduction which captures H3 but neither of Hy, Hs.

We need the following additional notation. For edge p; in hypergraph G, rel(p;)
denotes its label, and p{ denotes the vertex at position j in the edge. The string z.y
denotes the string resulting from concatenating string y to z. Finally, for edge p;
in hypergraph G and walk type w we define #(G, p;, w) to be the number of walks

of type w starting at edge p; in G. Note that if #(G, p;, w) > 0 then w begins with

rel(p;).

o1

4.2 A Hypergraph Kernel

We first define a kernel operating on hypergraphs that are “rooted” at particular
edges. We then define a kernel operating on hypergraphs in general, and finally

discuss variants and extensions of these kernels.

4.2.1 A Kernel Rooted at Specific Edges

The following kernel K,() operates on pairs of hypergraphs and edges so it should
be written as K,,((G1,p1), (G2,p2)) but to simplify the presentation we omit G and
G from the equations. We also omit the fact that p; and p) are always in G; and

p2 and ph are always in Gs.

Definition 4.2.1. The kernel K,,() is defined recursively as follows:

Ki(pi,p2) = 1 iff rel(p1) = rel(p2)
Ki(p1,p2) = 0 otherwise
max
k arity

Kn(p1,p2) = K1(p1,p2)zz Z Z Kn—1(p, p).

(s Lt L L
=L I=1pl = phph=py

where in the sum above p| # p; and pl, # po, k is the arity of p; and maz arity
refers to the maximum arity of any edge in G7 or Ga. The expression p} : p} = p/lj

means “an edge p) such that the ith vertex of p; is the same as the jth vertex of

/9

p1-

The definition immediately gives a dynamic programming algorithm to calculate
the kernel by incrementally calculating K;() for £ = 2 to any desired n. It may seem
that we need (max arity)?|E|? steps to calculate each individual kernel value. One
can do much better, however, for sparse hypergraphs (where the number of neighbors
is small) by appropriately encoding the neighbors of each node. We next prove that

K,() is indeed a kernel by showing explicitly that it is an inner product for a feature

52

space indexed by all walk types, and where the feature indexed by w takes value

#(G,p,w).

Theorem 4.2.2.

Kn(p17p2) = Z #(G17p17w) : #(G27p27w)'

walk type w
of length n

Proof. By induction on n. Base case for n = 1. Note that walk types of length 1

are simply edge labels. Hence, we need to show that

1(p1,p2) = Y #(Gr,p1,w) - #(Ga, pa,w).

edge
label w

The sum is zero unless p; and py have the same edge label and w is that label, in

which case the sum is 1. Assume the claim is true for n = ¢ — 1. Then

max
k arity

Ko(pr,p2) =Ki(pi,p2) D> > > Kea(ph,ph) (4.1)

=1 =1 ptpi =pl plph=p§

max
k arity

=Ki(p1,p2) ZZ >y Z #(G1, P, w) - #(Ga, ph, w)

=1 —
' 7= plpl p1p2p2 p2lengthfl

(4.2)

max
k arity

=Ki(pp2) Y, Y. > #(Grphw) > #(Gayph,w

i=1 j=1 w of
length ¢—1

pi=p; L=py
(4.3)
k arity
=Ki(p1,p2) Y > (4.4)
i=1 j=1

Z #(G1,p1,rel(py).i.j.w) - #(Ga, p2, rel(p2).i.j.w).

w_of
length ¢—1

93

Where the transition from (4.1)-(4.2) is by the induction hypothesis; (4.2)-(4.3) by
reordering summations; (4.3)-(4.4) follows by definition of #(.,.,.).

Consider a string w’ representing a walk type of length ¢ — 1. By adding
rel(p1).i1.j1 to the string we create a new walk type w of length ¢. Now if we
consider an arbitrary walk type w of length ¢, if w does not start with rel(p;) then

#(G1,p1,w) is 0. We can therefore replace (4.4) above with

Ki(p,p2) Y #(G1,p1,w) - #(Ga, p2, w).
longth ¢
Finally, if p1, p2 do not have the same edge label then for every w at least one of
#(G1,p1,w), #(G2,p2,w) is 0 and therefore the sum is 0 thus we can omit K from
the expression. Similarly, if py, p2 do have the same relation symbol K; = 1 and we

can omit K7. Hence, as required, we have

Kf(p17p2) = Z #(Gl,pl,'IU) : #(GQ,])Q,'IU)- U

w of
length ¢

4.2.2 A Gappy Kernel for Hypergraphs

A modification to the hypergraph kernel allows us to compute the number of match-

ing walks up to a certain length, and with a certain number of gaps.

Definition 4.2.3 (Gap). Following Gértner et al. [2003], we extend the alphabet of
walk types to include the symbol ‘###’. The symbol takes the place of an entire
segment of a walk (entry position, hyperedge label, and exit position). We say that
a walk type contains g gaps if the walk type uses the ### symbol ¢ times. For
instance the walk lej(ni,ng2,n3)12e2(ng, nq,ns), where rel(e;) = p and rel(ey) = r
does not match walk type 1p12g3 (since rel(ez) # ¢) but matches walk type 1p1273,
walk types 1pl### and ###2r3 (that have one gap), and walk type #H#HH#HHH
(that has two gaps).

The definition of a gap is motivated by the interpretation of a walk as a conjunc-

54

tion of predicates. Using this definition, a gap is equivalent to a single mismatched
term in a conjunction of predicates. Because we are grouping walk types into seg-
ments of entry position, relation type, and exit position, we must think about what
the first entry position in a walk type means. It is simply the starting node of the

9

walk. Hence “1p2...” means the walk type starts in position 1 of an edge labeled

p, and exits that edge through position 2.

The following notation is needed for the definition of the kernel. If a walk in the
hypergraph takes a step from p to ¢ via node n, we call n’s position in p exit(p, q),
and n’s position in ¢ entry(p,q). As hyperedges can have more than one node (or

occurrence of a node) in common, to simplify notation we define

ZZZZ

P} exit(p1,p}) entry(p1,p})
1n01dont

Finally we use the previous kernel with n = 1:
K (p1,p2) = as given in Definition 4.2.1.

The kernel is defined as follows:

Ky g(p1,p2,1,J) =0,Vg <0 (4.5)
Kng(p1,p2,1,J) = Kyn(p1,p2,1,J),Yg >n (4.6)
Ki0(p1,p2,1,J) = 0(1, J) K1 (p1, pe)arity(p1) (4.7)
K11(p1,p2,1,J) = arity(p1) * arity(p2) + K1,0(p1,p2, 1, J) (4.8)

k
Kn,g(p17p2717 J) = 5(17 J)Kl(p17p2 Z Z Z Kn—l,g(p/17p/27j17j2)

=1yt pt =p'I1 plepi=p’32

+ Z Z Kn—l,g—l(pllup/27entry(plapll)aentry(p27p,2))’
124 DY
incident incident

(4.9)

95

The first line in (4.9) sums over all exit positions ¢ in p; and py. For each such
position we consider all potential entry positions ji, j2 in pj, p) respectively. Hence
the exit position from pq, po is the same and fixed to i; together with §(1, J) K7 (p1, p2)
we get a complete coordinated triple in a walk type. On the other hand the entry
positions for the next triple, ji, jo, are not forced to be the same. The second line
in (4.9) sums over all exit and entry positions and does not coordinate these for
p1,p2. As we show next this yields a kernel with features indexed by walk types

that include gaps:

Theorem 4.2.4. Let

gaps(w) = number of occurrences of ### in w,
#(G,p,i,w) = number of walks of type w in G starting at position i of hyperedge p,
then
Kn,g(p17p27[> J) = Z #(G17p17[>w)#(G27p27J7w) (410)

w|gaps(w)<g,
length(w)=n

Proof. We show by induction on n that for all g > 0, K, 4 satisfies (4.10). The base
case is for n = 1. To see that (4.7) is correct, note that the number of length one
walk types starting at p; at position [is equal to the number of possible completions
of the length one walk type beginning I.rel(p;), i.e., any exit position in p;. If p;
and py are of the same type and I = J, then for every possible position i in p; (or
p2 as they are the same type) there is a walk type I.rel(p1).i that occurs once in Gy
starting at position I of p; and once in G2 starting at position I of py. Now to see
that (4.8) is correct, observe that for any p; € Gy and I, the length one walk type
##4 matches the walk Ip;i for any possible i, hence the total number of times that
4 matches in G starting at py in position [is the arity of p;, and similarly for

p2. We add K o to the product of the arities to account for length one walk types

o6

that are not ###. Because of (4.6), by showing (4.10) is true for n = 1,9 = 0 and
n=1,g =1, we have shown it is true for n = 1 and any g > 0.
Assume that for £ =n — 1, Ky 4 satisfies (4.10) for all g > 0. For the inductive

step consider first the case with £ =n and g > 1:

Kn,g(p17p27 I> J) =
k

0(I,J)K1(p1,p2) Z Z Z Kon—1,4(P1, 13, 51, J2)

=1 prpi =p'7t phpi=piy

+ > Kuiga(ph, b, entry(p1, ph), entry(pa, ph)) (4.11)
I ph
incident incident
k

(S(I J)Kl pl,pg Z Z Z Z #(Glapllaw7jl)#(G27pl27w7j2)

=1 —p72 w|gaps(w)<g
phpt —p L phps P2 ’
1=y k= length(w)=n—1

+ Z Z Z #(lepllvw> entry(plvpll))#(G%p/%w? entry(p27p/2))

py wlgaps(w)<g—1,
1n01dont incident length(w)=n—1

(4.12)

=5(I,) EK1(p,p2) Y

N
I M»
5

Z #(lepllvw>j1) Z #(G27p/27w7j2)

lserelw<a, =L il
+ Z Z #(th,l’wventry(pl)p?l)) Z #(G27p/27w76ntry(p27p/2))
w|gaps(w)<g—1, P} D
length(w)=n—1 \incident incident
(4.13)
k
=6(1, J)K1(p1, p2) Z#(Gl,pl,I.rel(pl).i.w,l)#(Gg,pg,J.rel(pg).z'.w,J)
w|gaps(w)<g, =1
length(w)=n—
+ > (G py w0, DFE(Ga, pa, #A W, T) (4.14)
wl|gaps(w)<g—1,
length(w)=n—1

o7

= #(G17p17w71)#(G27p27w7‘]) + Z #(Gbpl)wvl)#(GQpr)wv‘])

w|gaps(w)<g, w|gaps(w)<g,
length(w)=n length(w)=n
w[O]A### w[0]=###

(4.15)

For the transition (4.11)-(4.12) we apply the inductive hypothesis and (4.13) is
obtained by rearranging the summations.

In the first line of (4.14) we extend each n—1 length walk type w by pre-pending
L.rel(py).i for G; and Jrel(py).i for Go. The first triple of the resulting walk type,
Lrel(py).i.w in Gq, is not a gap. Therefore, this guarantees that every incidence
P} (and its entry position) via p1’s ¢’th node is counted exactly once for each walk
continuation, just like in (4.13).

Next consider the transition to the first term in (4.15). In (4.14) if the two
extensions to w are not of the same type, the expression (I, J)K;(p1,p2) = 0. In
the first term of (4.15) we sum over all walk types w of length n but require that
the first leg of w is not ###. We can omit §(I, J)K;(p1,p2) because we specify
that the first leg of the walk is not a gap; hence if the walk type w does not begin
with I.rel(py) then #(G1,p1,w,I) = 0 and similarly for G5. Their identity is forced
by the shared value in w. Similarly the joint exit position i is forced because the
expressions for the two graphs share the exit position value from w.

In the second line of (4.14), we express the extension of walk type w of length
n — 1 with ###.w. In this summation we are fixing the first leg of the length n
walk to be the gap symbol which will match the first leg of any walk. Hence we sum
over all possible first legs starting at p; and po, that is, all incident edges. Since the
walk type starts with a gap, we decrease the number of “available” gaps left in the
rest of the walk type w of length n — 1. This is equivalent to the second term in
(4.15), in which we sum over all walk types of length n with up to g gaps such that
the first leg of w is a gap.

As the two sums in (4.15) are over complementary walk types whose union is all

o8

walk types, we can replace (4.15) with

Z #(G17p17w71)#(G27p27w7J)‘

w|gaps(w)<g,
length(w)=n

Finally consider the case where £ = n and g = 0. Notice that the second lines of
(4.11) - (4.14) and the second term of (4.15) are equal to 0 by (4.5). Hence the first

term in (4.15) is summing exactly over walk types with no gaps. O

4.2.3 A General Kernel for Hypergraphs

We next define another kernel K/ () that extends the kernel from Definition 4.2.1,

operating over entire hypergraphs:

Definition 4.2.5.

K)(G1,Gy) = > > Knlpip2) (4.16)

p1EE1 p2€F:

One can show that (4.16) is a kernel by re-writing it as

S| DD #(Giprw) > #(Ga,pa,w)

w of eG eG
longth ¢ p1€G1 p2eGa

The first inner sum is the total number of walks of type w in G; and likewise the
second inner sum for Go. In this representation it is easy to see that every element
of the outer sum is the total number of walks of type w in G times the total number

of walks of type w in Ga.

4.2.4 Discounting and Normalizing

A general idea in string and graph kernels, where we consider an infinite number
of features, is to discount the contribution of longer walks. Indeed, this discount

factor is necessary in order to achieve convergence when summing contributions of

99

all possible walks on length 1 to co [Gértner et al., 2003]. Another standard variant
is to normalize the norm of the examples in the kernel feature space.

These are implemented using our kernel as follows.

Definition 4.2.6 (Discounted Kernel).

KP(G1.Gy) = Y 4Kl(G1.Go) (4.17)

i=1

D
KP(G1,Gy) = Ko (61, 62) (4.18)

\/KP(GhGl)KP(Gzan)

It follows from standard properties that (4.17) and (4.18) are kernels [Cristianini
and Shawe-Taylor, 2000]. Notice that with v < 1 we get discounting. However, for
our kernel is not restricted in this way. In fact, we can emphasize the contribution
of longer walks by using v > 1. This is intuitively appealing because longer walks

give more informative matches between the graphs.

4.3 Discussion and Related Work

Our work is closely related to graph kernels as well as several approaches in ILP and
relational data mining. In the following, we discuss the relations to these, placing

our work in context.

4.3.1 Kernels and Similarity functions for Graphs and Hypergraphs

The inspiration for our work comes largely from previous work on graph kernels [e.g.,
Gértner et al., 2003, Kashima et al., 2003, Horvath et al., 2004] and the potential
to extend it to be applicable to the entire range of problems addressed by ILP. One
important basic result for graph kernels shows that it is computationally hard to
calculate a kernel whose feature space corresponds to all possible subgraphs unique
up to isomorphism, where each feature is binary-valued according to the existence

of that particular subgraph [Gértner et al., 2003]. Therefore one must compromise

60

and use a less expressive family of subgraphs as features. On the positive side,
recent work on graph kernels uses various properties to create a similarity measure
between two graphs: the number of labeled walks shared between graphs [Gértner
et al., 2003]; the probability of a random walk in both graphs [Kashima et al., 2003];
the number of a certain type of sub-structure present in both graphs [Kramer and
De Raedt, 2001, Deshpande et al., 2003, Horvath et al., 2004, Ralaivola et al., 2005,
Tsuda and Kudo, 2006].

From the graph kernel perspective, our work is most closely related to the walk-
based kernels [Gértner et al., 2003, Kashima et al., 2003]. The kernel of Gértner et al.
[2003] computes the number of walks of any length (with identical label sequences)
that the two input graphs share. Kashima et al. [2003] present a marginalized graph
kernel that computes the similarity of two graphs based on the probability that a
random walk occurs in both graphs. Both kernels use walks of arbitrary length and
sum their contributions thus both have some form of discounting to guarantee that
the kernel value is not infinite. Both kernels are also expensive to compute; the
kernel by Gértner et al. [2003] must invert or diagonalize a matrix that is quadratic
in the number of vertices of the direct product graph, and the kernel in Kashima
et al. [2003] must solve a system of linear equations described by a matrix quadratic
in the number of vertices in the direct product graph. Vishwanathan et al. [2006]
present an alternative method for calculating the graph kernels in Kashima et al.
[2003] and Gértner et al. [2003] that is cubic in the size of the graph and show
experimental evidence that the actual speedup is significant.

Although our kernel is also based on walks there are several important differ-
ences. First, we focus on a fixed finite length of walks. This helps avoid unin-
tuitive discounting of the weights of long walks. We are not aware of a method
for capturing kernels based on arbitrary length walks with hypergraphs. Second,
we provide an efficient dynamic programming algorithm to calculate the kernel.

This extends previous dynamic programming approaches to kernels for strings and

61

trees [e.g., Collins and Duffy, 2002]. Third, there are differences in the feature
space that make our kernel more compact than other walk-based kernels. This
is illustrated by the following example: consider a pattern capturing a star graph
with one center vy and 4 outer nodes where each edges has a different label, i.e.,
{l1(vg, v1), l2(vo,v2),l3(vo, v3), l4(vg,v4)}. To capture this pattern with a walk one
must consider an edge in each direction and go back and forth on each edge (except
the first and last) thus we need a walk of length 6. In our case, because we match
positions but do not consider the directionality of the edge, this can be captured
by a walk of length 4 of type l1,1,1,l2,1,1,13,1,1,14 (hence we enter and exit the
edge in the same node). Thus our kernel can be more expressive, capturing complex
sub-graphs using shorter walks.

The only other work to give a kernel for multi-relational data we are aware of is
the kernel for relational algebra of Woznica et al. [2005]. This kernel can be seen to
take walks over the relations restricted by the notion of keys in the relational schema
and some tree representation of the data. Our work differs in general applicability to
interpretations, but more importantly in that our dynamic programming algorithm
provides a polynomial time calculation of the kernel for arbitrary depths. We also
explicitly provide the feature space of the kernel corresponding to walks (and rules)
which makes for simple semantics.

Our kernel is also related to similarity functions used in relational instance-based
learning (RIBL) [Horvéth et al., 2001]. In particular, similarity in RIBL is calculated
recursively where the similarity between atoms is defined through the similarity of
each of the terms in its arguments, and the similarity of terms or objects can be

“walk

defined through the similarity of the atoms they appear in. Thus a similar
based” similarity is defined. The emphasis in this work is on defining a similarity
function that makes sense intuitively and works well in different contexts, whereas

our focus is on a construction that yields an inner product kernel that can therefore

be used with kernel methods.

62

4.3.2 Explicit Propositionalization for ILP

Relational representations are the natural data representations for ILP solvers. Two
benefits of ILP solvers are that they naturally work in an expressive first-order data
representation, and that they produce a set of rules that explain the hypothesis
in a human-readable format. SVM and other discriminative classifiers (e.g., kNN,
Perceptron) are generally computationally faster than ILP solvers while giving state
of the art classification performance, yet they do not naturally handle relational (i.e.,
non-propositional) data nor produce rules. Our kernel bridges some of this gap — it
enables discriminative classifiers to handle ILP data, including ease of incorporating
relational background knowledge? but the final hypothesis is not human-readable.

Explicit propositionalization has been combined with SVM classifiers in re-
cent work [e.g., Muggleton et al., 2005, Landwehr et al., 2006]. In particular,
SVILP [Muggleton et al., 2005] and kFOIL [Landwehr et al., 2006] run an ILP
solver to generate rules and use these rules as features. SVILP runs Progol [Mug-
gleton, 1995] to statically generate rules in its search space, whereas kFOIL runs
FOIL [Quinlan, 1990] in a wrapper based approach to dynamically select a small
number of features for use with SVM. Cumby and Roth [2003] restrict the feature
space using a feature description language and then explicitly generate the features.
Our kernel can be seen as an implicit static propositionalization into the space syn-
tactically defined using walks. Any explicit propositionalization in the hypergraph
kernel’s feature space would be computationally intractable in general.

It is important to clarify that walks in the hypergraph are not as expressive
as rules in ILP. The example in Section 4.1 illustrates that we do not account
for multiple shared nodes between adjacent edges on a walk, therefore a walk with
multiple shared nodes will be represented in the features of more than one walk type.

Designing kernels that do capture such complexity is an important open problem.

2See [Muggleton and De Raedt, 1994, De Raedt, 1997, Arias et al., 2007] for a discussion on the
relationship between the normal ILP setting and learning from interpretations and how background
knowledge is handled in each case.

63

Other approaches to propositionalization try to take advantage of specific sub-
structures that may be important to the application, and are not directly compara-
ble to the features of our kernel. Ralaivola et al. [2005] propose kernels that count
fixed length common subtrees. In Horvéth et al. [2004], a graph is decomposed into
simple cycles and bridges connecting them and these correspond to the features in
the kernel. Finally, some works do not restrict the format of the sub-structures
corresponding to features. Instead informative sub-structures are computed auto-
matically by identifying frequent subgraphs in the dataset similar to itemset data
mining [Deshpande et al., 2003, Kramer and De Raedt, 2001].

Previous work [e.g., Cumby and Roth, 2003, Khardon et al., 2001] show that
in certain cases explicit representation of a feature space is sometimes preferable
to using a kernel function, even if the feature space is intractable to represent in
general. This stems from the tradeoff between the “kernelization” of the classifica-
tion algorithms (illustrated with examples in section 2.2), which incurs a significant
performance penalty, and the explicit representation of a large feature space, which
can be intractable. If the feature space is exponentially-sized with respect to the
original data encoding but very sparse, for example, then it still may be possible
to represent the data efficiently using a sparse-vector representation. We do not
address optimizing run times in our experiments and hence we opt to use kernels
throughout our work as they are tractable in all cases. Nevertheless, the analy-
sis of whether kernels are the most efficient way to compute inner products in our

experiments is a worthwhile endeavor for future work.

4.3.3 Translating Hypergraphs into Graphs

Due to the above restriction of our walks (linking one node at a time), one can
translate the hypergraph into a quadratic size directed graph and capture similar
walk-based information. This can be done by adding a new node for each hyperedge

and connecting the new node to the nodes belonging to the hyperedge. We label

64

P r a b c

RO

Figure 4.2: Left: target as a hypergraph. Right: target converted to a graph.

e

3
&

f g

each edge with the original hyperedge label as well as the position of the node in

the original hyperedge. For example, the hyperedge p(a, b, c) becomes

pl(a,el),p2(b,el), p3(c, el).

Figure 4.2 shows the hypergraph

{p(a,b,¢)q(b,d,e)r(f,d,g)}

and its representation as a graph. Similarly, a single conjunction such as

p(a;b,¢),q(b,d;e),r(f,d,g)

can be captured by a walk in the graph

p2(b,el)ql(b, e2)q2(d, e2)r2(d, e3).

Hence we can simulate the hypergraph kernel using the graph representation though
perhaps at increased complexity as the graph is larger and the walks are longer. How-
ever, as our experiments below show, the hypergraph-to-graph translation results in

significantly reduced performance.

65

Table 4.1: Datasets Used in Experiments

Dataset Examples | # Atoms | Majority Class
NCTRER 232 7-44 0.60
MUTAG 188 15-41 0.67
PTC(MM) 336 2-106 0.62
PTC(MR) 344 2-106 0.56
PTC(FM) 349 2-106 0.59
PTC(FR) 351 2-106 0.66
NCI-HIV 41606 2-438 0.99

4.4 Experiments and Results

We perform several sets of experiments using artificial data as well as real-world
datasets for molecule classification. The number of examples, number of hypergraph
nodes in examples, and label distribution in the chemical datasets are given in
Table 4.1.

In all of the experiments, we used the Perceptron with Margin [Krauth and
Mézard, 1987] as the learning algorithm (see Chapter 3). As we show in Chapter 3,
this algorithm gives similar accuracy to SVM with often reduced run time. The
algorithm has two parameters, the number of iterations used for training and the
margin value. We did not optimize the parameters. For margin we follow our
findings from Chapter 3 and use a small relative margin setting of 0.1. For iterations
we used two settings depending on dataset size. On the artificial datasets and small
chemical datasets (Mutagenesis, NCTRER, and PTC) we trained for 20 iterations
with a learning rate of 0.1, and on the larger dataset (NCI-HIV) we trained for 2
iterations with a learning rate of 0.5. We ran all experiments with 10-fold cross
validation. In all our experiments we used the kernel from Equation (4.18) with
~v =1 (i.e., no discounting) except when explicitly stated otherwise.

In the first set of experiments we use the National Center for Toxicological
Research Estrogen Receptor Binding (NCTRER) dataset [Fang et al., 2001, Blair

et al., 2000, Branham et al., 2002] and we explore the effect of dataset encoding on

66

performance. This dataset has been recently used in a study comparing several ILP
systems and is therefore appropriate to address our question.
The dataset contains chemicals that are labeled based on how well they bind to

bYA43

estrogen receptors. We consider molecules labeled “active strong,” “active medium,”
and “active weak” to be positive, and molecules labeled “slight binder,” and “in-
active” to be negative.? Each molecule in the dataset is represented as a set of
predicates. As in previous studies [e.g., Deshpande et al., 2003, Horvath et al.,
2004], we eliminate hydrogen atoms because this reduces the size of examples and
hydrogens are implicit in the reduced representation.

Previous work on graph kernels has demonstrated that enriching the edge labels
can help performance [Gértner, 2005, Mahé et al., 2004]. We explore three methods
of encoding the datasets in this set of experiments. In the first encoding bonds
and their types are represented by edges: bondtypel(z,y), for example. Atom type
is encoded using unary edges with the type as the relation name. As bonds are
not directed, we store bond relations twice in this encoding, once with each vertex
ordering, as there is not enough information in the edge labels to imply the order;
for example, using edges (vl,v2) and (v2,v3), both labeled bondtypel, we find
the walk type “bondtypel,2,1,bondtypel” to be present. Two edges from another
graph, (w2,wl) and (w2,w3) should generate the same walk type, but they will
not unless we duplicate edges. In the second encoding we eliminate the original
“bondtype” labels and create bondXtoY predicates, where X is the type of the first
atom in the bond, and Y is the type of the second. To get a compact representation,
we impose an ordering on the bondXtoY relation such that X is lexicographically
smaller than Y. This ensures that bondXtoY and bondYtoX will not appear in
the dataset together, avoiding the need to duplicate links (except in the case of
bondXtoX where we do duplicate). The final encoding follows the work of Gértner

[2005] and Mahé et al. [2004] and encodes even more information about endpoints

3We used the version of the dataset entitled NCTRER_v3b_232_10Apr2006. sdf.

67

of bonds. In particular each argument of the bond predicates encodes the types
of its atom and the types of all its neighbors. This technique is also similar to
the neighborhood kernel discussed by Frohlich et al. [2005], however we do not use
as detailed information, and we use the immediate neighborhood only. As in the
second encoding we lexicographically order the arguments and duplicate the bond
only if the arguments are identical.

The following example illustrates the three encodings. Consider a star graph
similar to the one given above with labels as follows {bond(vg,v1), bond(vg,vs),
bond(vg, v3), bond(vy, vs), A(vy), B(v1), B(vae), C(vs), D(vs4)} (in the chemical do-
main A, B,C, D would be element names). Under encoding 1, the bond structure

of the graph would be encoded as

bond(vy,vg), bond(vg, v1), bond(va, vy), bond(vg, ve),

bond(vs,vg), bond(vg, v3), bond(vy, vg), bond(vy, v4)

and we add the node types to this structure. Under encoding 2 we get:

bondAtoB(vg, vy), bondAtoB(vg, v2),

bondAtoC (v, vs), bond AtoD(vy, v4).

In encoding 3 for each argument we represent the atom type first, followed by the
node types of its neighbors. Below we separate the node from its neighbors with a

vertical bar. This yields

bondA|BBC DtoB|A(vg, v1),

bondA|BBC DtoB|A(vg, v2),

bondA|BBC DtoC|A(vg, vs3),

bondA|BBC DtoD|A(vg, v4).

68

Table 4.2: Accuracy on the NCTRER dataset varying walk length and encoding.

Length Encoding 1 | Encoding 2 | Encoding 3
1 0.64 £ 0.08 | 0.67 £ 0.08 | 0.79 &+ 0.08
2 0.64 £ 0.10 | 0.68 £ 0.10 | 0.83 £ 0.05
3 0.65 £ 0.10 | 0.67 £ 0.10 | 0.84 £ 0.07
4 0.66 = 0.06 | 0.62 £ 0.06 | 0.85 = 0.09
5 0.66 = 0.10 | 0.64 £ 0.07 | 0.85 = 0.06
6 0.64 £ 0.10 | 0.62 £ 0.10 | 0.83 = 0.07
7 0.66 £ 0.08 | 0.62 £ 0.08 | 0.80 = 0.08
8 0.66 £ 0.10 | 0.59 £ 0.10 | 0.75 = 0.07
16 0.67 £0.09 | 0.66 £ 0.12 | 0.68 £ 0.11
nFOIL | 0.78 + 0.091 0.56 £ 0.10
kFOIL | 0.776 4+ 0.094

Encoding 3 will result in fewer walk matches between graphs, since a match
requires both that the vertices are of the same type, and that all of their neighbors
are of the same type. As a result the transfer between graphs is smaller and less
generalization is possible from one feature. Another important property of encoding
3 is that it makes for faster computation as fewer matches means fewer items added
in the dynamic programming formula.

Results are given in Table 4.2. Notice that for encoding 1 the kernel does not
perform well but with encoding 3 the results are significantly improved. Encoding
3 illustrates that a substructure more complex than walks may be needed. Further-
more, the results suggest that very long walks do not perform well. For comparison,
we give the best result (achieved using nFOIL) reported by Landwehr et al. [2006],
who compare state-of-the-art ILP solvers using encoding 1. For reference we also
show the result for kKFOIL (reported by Landwehr et al. [2006]) whose representation
described above is closer to ours than nFOIL. The kernel method with encoding 3
yields better performance than nFOIL (and the other ILP systems in that study)
who use encoding 1.

While this is an interesting result and observation on previous work in this area,

it raises an important question: would encoding 3 help ILP solvers as well? It is

69

Table 4.3: Accuracy on NCTRER varying walk length and discount factor ~.

Length | y=0.1| 05| 0.8 1 2 10
2 0.82] 0.81 | 0.82 | 0.83 | 0.81 | 0.82
3 0.8210.84 | 0.84 | 0.84 | 0.84 | 0.83
4 0.82 1 0.85|0.84 | 0.85 | 0.84 | 0.85
5
6

0.83]10.84 | 0.84 | 0.85| 0.85 | 0.85
0.8210.84 | 0.82 | 0.83 | 0.82 | 0.81
16 0.84 | 0.69 | 0.68 | 0.68 | 0.67 | 0.68
32 0.84 | 0.64 | 0.62 | 0.62 | 0.62 | 0.62

not clear that there is a unique answer to all ILP solvers, and a full investigation
of this question is beyond the scope of this chapter. However, we performed some
exploratory experiments described below and these suggest that encoding 3 does
not help ILP solvers. In particular, we ran nFOIL with the settings? reported
by Landwehr et al. [2007] using 10-fold cross validation. As can be seen in Table 4.2,
the performance of nFOIL on the NCTRER dataset decreased dramatically under
encoding 3. This may be due to the introduction of very specific features, which can
present problems in a naive Bayesian model. We also ran CProgol [Muggleton, 1995]
and LogAn-H [Arias et al., 2007] using both encoding 1 and encoding 3. The results
were worse than those reported for nFOIL and there was no significant difference in
performance between encoding 1 and encoding 3.

Overall, the results show that encoding 3 improves the performance of the hy-
pergraph kernel significantly, but does not help the performance of the ILP methods
tested. When using encoding 3 the hypergraph kernel outperforms ILP solvers in
terms of accuracy on this dataset.

In the next set of experiments we explore the effect of the hypergraph kernel
parameters by varying the discount factor (v) and walk length on the NCTRER
dataset. We use y values of {0.1,0.5,0.9, 1,2, 10} and walk lengths of {2, 3,4,5,6,16,32}.

The results are given in Table 4.3. While some performance variation with dis-

4Beam search width of 5, 25 max clauses, and 10 max literals.

70

Table 4.4: Accuracy on PTC and area under ROC curve for NCI-HIV. “HG” is the

hypergraph kernel.

Dataset HG short | HG medium HG long OA MG
PTC(FM) | 0.56 £+ 0.09 0.64 £.10 | 0.64 =0.10 | 0.64 £ .03 | 0.62 .03
PTC(FR) | 0.62+0.09 | 0.624+0.06 | 0.67+.07 | 0.67 £.02 | 0.67 .02
PTC(MM) | 0.62 +0.12 0.64 +.07 | 0.59 £0.08 | 0.68 +£.02 | 0.67 + .02
PTC(MR) | 0.52+.07 | 0.58+0.10 | 0.60+.07 | 0.63 +.02 | 0.58 +.01
Dataset HG (1=5) CPK GK

NCI-HIV 0.94 £0.02 | 0.91 £0.01 | 0.94 £+ .01

Table 4.5: Accuracy on NCTRER and Area under ROC for NCI-HIV in the Same
Experimental Conditions.

Dataset HG (1=5) | CPK (Perceptron)
NCI-HIV | 0.94 +0.02 0.92 £0.03
NCTRER | 0.85 4+ 0.06 0.80 £ 0.08

counting is noticeable it is statistically insignificant. Thus although incrementing
long walks is intuitively attractive, our experiments show that the effect on perfor-
mance is minimal, and it can be avoided. On the other hand, long walks can lead to
overfitting. The exception is with the extreme discount of 0.1, which eliminates the
overfitting caused by longer walks as they are scaled down so drastically. Neverthe-
less the walk length is a parameter that must be chosen carefully for each dataset.
We illustrate this point below as well.

Next we compare our kernel to other graph kernels on the challenging datasets
Predictive Toxicology Challenge (PTC)® and the National Cancer Institute’s AIDS
Anti-viral Screen Program (NCI-HIV)® that have been widely used in the litera-
ture. The PTC dataset contains 417 chemical descriptions labeled according to
their carcinogenicity to rodents. Each chemical is evaluated based on whether it

was carcinogenic to female rats, female mice, male rats and male mice. Following

Kashima et al. [2003] and others, we treat any molecule labeled “CE,” “SE,” or “P”

Shttp://www.predictive—toxicology.org/ptc/
Shttp://dtp.nci.nih.gov/docs/aids/aids_data.html

71

as positive, “NE” and “N” as negative, and ignore examples labeled “EE,” “IS,”
and “E” as these labels indicate an unsure classification. It is important to notice
that state-of-the-art performance on the PTC dataset is not far above the majority
class for the dataset. The NCI-HIV dataset contains chemical descriptions labeled
based on the ability of the chemical to inhibit HIV in a specific experimental con-
text. Each chemical is labeled “confirmed active” (CA), “confirmed inactive” (CI),
and “moderately active” (CM). In our experiments we ignore the moderately active
chemicals as their label is less reliable (these are compounds that yielded different
results in multiple measurements). Notice that this is a large dataset and its class
distribution is very skewed.

Given the conclusions from previous experiments we used encoding 3 and no
discount (y = 1). On the PTC dataset, due to its small size we were able to
explore a short (2), medium (5), and long (16) walk length. The NCI-HIV dataset
is relatively large and it includes large molecules. To reduce learning time without
altering dataset statistics, in each fold we removed molecules with more than 200
atoms from the training set but kept the test set unmodified.” Overall this means
we removed 4 positive and 79 negative molecules from the training data. The results
for walk lengths 2-5 are very similar and we report only the result for length 5.

Results are given in Table 4.4 and in each case we we include for reference the
best known results from the literature. On the PTC dataset, the results we give
are competitive with the best performance recorded in Frohlich et al. [2005], which
is attained using their optimal assignment kernel (OA) and the marginalized graph
kernel Kashima et al. [2003] (MG). On the HIV dataset, in order to compare with
previously reported results we report the area under the ROC curve (although preci-
sion and recall may be more appropriate due to the skew in labels). Our results out-
perform the frequent substructure propositionalization approach [Deshpande et al.,

2003] and are competitive with the results reported for the Cyclic Pattern Kernel

"Because the kernel calculation time is dependent on the size of the hypergraph, a dataset with
many large molecules will take longer to classify than one with smaller molecules.

72

(CPK) by Horvéth et al. [2004] and the approximation of the infinite walk graph
kernel (GK) reported by Gartner [2005].

The various comparisons show that the hypergraph kernel can be used to ob-
tain state of the art performance comparable to that of graph kernels when used
with graph data. We observe that these results are obtained by different learning
algorithms and parameter settings for each of the kernels (and papers they were
reported in). This is appropriate, however, as parameters are optimized separately
in each case. Nonetheless, we augment this comparison with experiments using the
CPK kernel [Horvéath et al., 2004] and our hypergraph kernel in exactly the same
experimental conditions using the PAM algorithm and same settings as above. Re-
sults for NCTRER and NCI-HIV are given in Table 4.5. These too show that the
the kernels give comparable performance on these problems.

Finally we explore the effect of hyperedges on performance. We present two
related sets of experiments. In the first, we generated artificial data in order to
illustrate a specific case in which the target function of a dataset is much easier
to learn using a hypergraph representation as opposed to a graph representation.
In such an instance the hypergraph kernel has a distinct advantage over graph
kernels. The positive labeled examples in the artificial data are examples in which
a specific conjunction is true and negative examples do not satisfy the conjunction.
In the second experiment we show that the multi-arity background information in
the Mutagenesis dataset increases performance with the hypergraph kernel. This
demonstrates that the ability to handle high arity background knowledge as in ILP
is useful for kernel methods as well.

Our data-generation routine was parametrized by the number of hyperedges in
the graph, the maximum number of hyperedges incident with a single node, the
total number of intersections between hyperedges, and the number of nodes per
hyperedge. Since the number of hyperedges in the target conjunction is constant,

the number of hyperedges in the hypergraph partially determines what proportion

73

of the hypergraph is irrelevant to the target; increasing the number of hyperedges
increases the number of irrelevant features in the feature space of the hypergraph
kernel. Likewise, increasing the total number of hyperedge intersections has a similar
effect, as this affects how much similarity between hypergraphs is unrelated to the
target sub-graph. Too low of a number of intersections (for example 1/2 the number
of total hyperedges) leads to graphs whose only sizable connected subgraph is the
target conjunction, hence rendering it trivial for the hypergraph kernel with walk
depth of 2 (less than that needed to traverse the target subgraph) to separate the
dataset.® The maximum number of hyperedges incident to a single node helps
control the structure of the graph: by setting it low enough, we encourage the edge
intersections to be evenly dispersed as opposed to having many star-like topologies
in the graph.

Our data generation routine was as follows: we chose a simple target concept
composed of three hyperedges: p(a,b,c,d,e)q(b, f,g,h,i)r(j, f,k,1,m). This is sim-
ilar the target concept in Figure 4.2 except that each hyperedge is extended by two
nodes. To make the learning task non-trivial, we made sure that any two graphs,
regardless of label, would likely share many common walks. To accomplish this we
chose hypergraphs with 50 hyperedges, a maximum of 2 hyperedges incident to any
one node, 75 total intersections between hyperedges, and 5 nodes per hyperedge.
We restrict hyperedges from self-intersecting, and we do not allow one hyperedge
to intersect more than once with another hyperedge. These settings create hyper-
graphs that are fully connected or close so that there will be many matching walks
of non-trivial length between two graphs, regardless of their label. The final setting,
5 nodes per hyperedge, was simply to ensure enough nodes to accommodate the
total number of intersections with the restrictions, and to vary the types of walks.

To generate each example, we started with an empty hypergraph. Then we

8Consider for example if we allowed no other intersections between hyperedges other than those
in the target concept, leading to examples composed of lists of unconnected hyperedges. Despite
these irrelevant features, the target concept would be easily learnable as it would be the only walk
of length > 1.

74

Table 4.6: Results for artificial data measured by accuracy.

Walk Length | Hypergraph Encoding | Graph Encoding
1 0.48 +£0.04 0.47 +£0.04
2 0.79 £ 0.04 0.65 £ 0.04
3 0.90 +0.03 0.75£0.04
4 0.92 £ 0.02 0.73 £0.04
5 0.93 £ 0.02 0.77+£0.04
6 0.97 £ 0.02 0.80 +0.04
7 0.98 £0.01 0.80 +0.04
8 0.98 £0.01 0.80 +0.04
9 0.98 £0.01 0.84 £0.03

10 0.98 £0.01 0.82 £0.03

selected its class by flipping a fair coin. If it was positive, we added the target sub-
graph to the example. We then generated the remaining hyperedges (47 if it was a
positive example, 50 if negative) such that no hyperedges intersected, choosing each
hyperedge label randomly from {p, q,r,s}. For each of the remaining intersections,
we proceeded as follows until all 75 total intersections were in the hypergraph: we
randomly chose two hyperedges and a position on each hyperedge. If it was possible
for the two hyperedges to intersect at the selected positions, without violating any of
the above constraints or introducing another target sub-graph into the hypergraph,
the intersection was created by merging the nodes at the intersection positions.

In addition to the hypergraph dataset, we created the corresponding graph
dataset by transforming each hypergraph as discussed in Section 4.3.3.

We ran the hypergraph kernel from Equation (4.18) with walk length of 1—10 on
the hypergraph data and 1 — 10 on the graph data. Table 4.6 shows the full results.
Using the hypergraph representation gives a clear performance benefit. In the table
we also see that the graph kernel improves as the walk length increases, however we
checked walk lengths of up to twenty and there was no improvement over length ten.
Thus, the experiments show that while it is possible to represent the hypergraph

as a graph, using the hypergraph representation directly is advantageous even in

75

Table 4.7: Accuracy on Mutagenesis Dataset. The leftmost column shows walk

length. Top: encoding 1. Bottom: encoding 3.

Length

AB

AB+H

AB+LC

AB+H+LC

0.70 +/- 0.06

0.76 +/- 0.07

0.85 +/- 0.09

0.76 +/- 0.07

0.69 +/- 0.10

0.84 +/- 0.10

0.85 +/- 0.09

0.84 +/- 0.10

0.78 +/- 0.09

0.86 +/- 0.10

0.84 +/- 0.07

0.86 +/- 0.10

0.82 +/- 0.10

0.84 +/- 0.08

0.81 +/- 0.10

0.84 +/- 0.08

Y | W N —

0.82 +/- 0.09

0.84 +/- 0.10

0.80 +/- 0.11

0.84 +/- 0.10

10

0.84 +/- 0.10

0.80 +/- 0.09

0.83 +/- 0.09

0.80 +/- 0.09

Length

AB

AB+H

AB+LC

AB+H+LC

0.85 +/- 0.09

0.86 +/- 0.08

0.89 +/- 0.09

0.90 +/- 0.10

0.84 +/- 0.10

0.84 +/- 0.13

0.89 +/- 0.10

0.87 +/- 0.09

0.83 +/- 0.08

0.86 +/- 0.13

0.89 +/- 0.10

0.86 +/- 0.10

0.85 +/- 0.10

0.85 +/- 0.13

0.87 +/- 0.10

0.86 +/- 0.10

QY x| W N —

0.85 +/- 0.09

0.82 +/- 0.12

0.87 +/- 0.11

0.84 /- 0.10

10

0.86 +/- 0.08

0.74 +/- 0.10

0.86 +/- 0.09

0.73 /- 0.12

simple cases as captured in the artificial data. As argued above the graph kernel
may be less efficient because both the graph size and walk size are larger than the
corresponding structures on the hypergraph.

To explore the performance benefit of hyperedges in real-world data we use the
Mutagenesis (MUTAG) dataset [Srinivasan et al., 1996] The dataset is widely used in
ILP literature and contains chemicals that are labeled based on their mutagenicity;
we used the 188 example “regression friendly” portion of the data. One of the
interesting points in the work of Srinivasan et al. [1996] is the inclusion of different
levels of background knowledge showing that more knowledge, and in particular
high-arity relational knowledge, can be used for classification. Therefore this dataset
is useful in exhibiting another case where we get a performance increase due to the
use of hyperedges.

We ran experiments using the Mutagenesis dataset under encodings 1 and 3,
and with various combinations of binary edges (atom-bond information), hyperedges

(ring structures, etc.), and discretized charge, lumo, and logp features encoded as

76

unary edges. Only binary edges are affected by the encoding; we did not change
hyperedges or unary edges. Note that lumo and logp are global properties of the
molecule hence they translate to isolated nodes in the graph. Our kernel gives
flexibility to use the hyperedges and multiple unary predicates for the same node
(these correspond to multiple labels for a node). For example, we can label a node
with its type and its charge independently for this dataset. The results are reported
in Table 4.7; “AB” is atom-bond information, “H” is hyperedge information, and
“LC” is lumo, logp and charge information. Our results are competitive with the
best reported graph kernel for this dataset [Kashima et al., 2003]. When using
encoding 1, it is clear that adding the hyperedges to the dataset gives a substantial
gain in performance. Observe that the best length walk is shorter when using the
hyperedges. This may be due to the fact that larger substructure may be captured in
fewer edges. It may also explain the fact that, as a long enough walk in the graph can
capture a ring structure, these structures may not significantly increase performance.
When using encoding 3, the benefit of using hyperedges is less pronounced; this is
likely due to the fact that because binary edges under encoding 3 contain information
about their neighbors, they perform a similar function to that captured by rings as
in our hyperedges. Overall, these results show that high arity background knowledge
can improve the performance obtained by hypergraph kernel. If hyperedges capture
information that is not derived from the graph structure one might expect to attain
significant improvements in performance.

To summarize, the experiments demonstrate that our kernel can outperform ILP
methods, that high arity predicates are easily incorporated as hyperedges and that
this can be useful, and that the kernel is competitive with graph kernels when used
on graph data. Discounting of long paths appears to not have a large effect but walk
length must be chosen using parameter selection for each application separately.

The kernel can be implemented reasonably efficiently. On the NCTRER, PTC,

and Mutagenesis datasets, a typical run time for 10-fold cross validation was under

7

a minute, and often less than 20 seconds on a dual 2.8 GHz Intel Xeon machine
with at most one other job scheduled on it. On the NCI-HIV dataset, the runtime
varied significantly by the walk length: for a length 3 walk, the average run time
per fold was about 11 hours, while for a length 5 walk the average run time per fold

was about 18 hours.

4.5 Conclusion

The main contribution of this chapter is a new kernel (and associated variants) that
is able to work directly with hypergraphs. Using artificial data, we showed that
the translation of hypergraphs to graphs degrades performance and we also demon-
strated that hyperedges are useful in real-world data. On chemical datasets we
showed that the hypergraph kernel performs competitively with other graph kernels
and ILP methods. As already noted, the hypergraph kernel is limited in that it can
only capture certain types of conjunctions. An important open question is whether
a hypergraph kernel can be designed to cover a larger subset of conjunctions, in par-
ticular, capturing multiple shared nodes between edges and nodes shared between
non-adjacent edges in a walk. Another interesting questions concerns the optimal
assignment similarity developed by Frohlich et al. [2005]. In this work, instead of
taking a sum over all pairs of edges as in Equation (4.16), a “best” alignment of
the edges is used to calculate the similarity. In Chapter 5 we discuss a general con-
struction of approximations to maximum alignment kernels. It would be interesting
to investigate whether we can use a similar construction to formulate a kernel that
computes an approximation to the maximum alignment of two hypergraphs under

the kernel proposed in this chapter.

78

Chapter 5

Kernels for Periodic Time

Series Arising in Astronomy

In this chapter we study another form of kernel methods for structured data. In
this case, the data are time series, vectors of pairs of real values and time values. In
the astronomy domain, the real values are brightness measurements of stars and the
time values are the date of the measurement. As with hypergraphs from Chapter 4,
time series data have an inherent structure that is informative. In astronomy, the
structure of the time series can be interpreted as a “shape” that is indicative of
star type. This shape is easy to see in Figure 5.1. The challenge in this domain
is to capture the intuitive notion of “shape” in a concrete mathematical form. We
accomplish this by defining and analyzing two useful similarity measures.

The concrete application motivating this research is the classification of stars
into meaningful categories from astronomy literature. A major effort in astronomy
research is devoted to sky surveys, where measurements of stars’ or other celestial
objects’ brightness are taken over a period of time. Classification as well as other
analyses of stars lead to insights into the nature of our universe, yet the rate at
which data are being collected by these surveys far outpaces current methods to

classify them. For example, microlensing surveys, such as MACHO [Alcock et al.,

79

1993] and OGLE [Udalski et al., 1997] followed millions of stars for a decade taking
one observation per night. The next generation panoramic surveys, such as Pan-
STARRS [Hodapp et al., 2004] and LSST [Starr et al., 2002], will begin in 2009
and 2013, respectively, and will collect data on the order of hundreds of billions of
stars. It is unreasonable to attempt manual analysis of this data, and there is an
immediate need for robust, automatic classification methods.

In the data sets taken from star surveys, each example is represented by a time
series of brightness measurements. We are concerned with periodic variable stars,
that is, stars whose brightness varies as a periodic function of time. Different types of
periodic variables have different periodic patterns. Figure 5.1 shows several examples
of such time series generated from the three major types of periodic variable stars:
Cepheid, RR Lyrae, and Eclipsing Binary.

As our first contribution we present several insights into the use of the cross-
correlation function proposed by Protopapas et al. [2006] as a similarity function
for time series. Cross-correlation provides an intuitive mathematical analog of what
it means for two time series to look alike: we seek the best phase alignment of the
time series, where the notion of alignment can be captured by a simple Euclidean
distance or inner product. We show that cross-correlation is “almost” a kernel
in that it satisfies the Cauchy-Schwartz inequality and induces a distance function
satisfying the triangle inequality. Therefore, fast indexing methods can be used with
cross-correlation for example with the k-Nearest Neighbor algorithm [Elkan, 2003].
We further show that although every 3 x 3 similarity matrix is positive semidefinite,
some 4 x 4 matrices are not and therefore cross-correlation is not a kernel and not
generally applicable with kernel methods.

As our second contribution we introduce a positive semidefinite similarity func-
tion that has the same intuitive appeal as cross-correlation. We investigate the
performance of our kernel on real and artificial data sets, showing excellent perfor-

mance. We show instances where the kernel outperforms all other methods as well

80

as instances where a simple universal phasing algorithm, which aligns every star to
some fixed phase, performs comparably. Our investigation reveals that our kernel
performs better than cross-correlation and that the ability to use Support Vector
Machines (SVM) [Boser et al., 1992] with our kernel can provide a significant in-
crease in performance.

As our final contribution, we build on the methods and findings of our first
two contributions and create a complete system that automatically processes an
entire survey. We explain the several tiers of processing prior to the classification
stage and show preliminary results on the entire MACHO survey, giving newly
discovered periodic variable stars. In the process we develop several techniques for
variability testing and period finding. In addition to classifying stars, we estimate
the confidence of the classification to place some stars into a group of unknown
periodic variables for further review. This part of the system motivates our research
into class-membership probabilities from Chapter 6 and uses some of the conclusions
therein.

The remainder of the chapter is organized as follows. Section 5.1 investigates
properties of cross-correlation, and Section 5.2 introduces the new kernel function.
Related work is discussed in Sections 5.3. We present our experiments and discuss
results in Section 5.4. In Section 5.5 we introduce our complete system for classifying

periodic variable stars and report our analysis of the MACHO Survey.

5.1 Cross-Correlation

Our examples are vectors in R™ but they represent an arbitrary shifts of periodic
time series. We use the following notation: y. refers to the vector y shifted by s

positions, where positions are shifted modulo n. We then use the standard inner

81

Figure 5.1: Examples of time series of periodic variable stars. Each column shows
two stars of the same type. Left: Cepheid, middle: RR Lyrae, right: eclipsing
binary. Examples of the same class have similar shapes but are not phase aligned.
Examples are a result of folding a long sequence of observations leading to a noisy
sample of one period of the light curve. The y-axis labels represent brightness in
magnitude units, which is an inverse logarithmic scale (this is the convention in
astronomy).

product between shifted examples
n
(@,y1s) = in(y-l-s)i-
i=1
We define the cross-correlation [Protopapas et al., 2006] between z,y € R™ as
C(z,y) = mgx(w,ers}. (5.1)

In the context of time series, computing the cross-correlation corresponds to
aligning two time series such that their inner product, or similarity, is maximized.
5.1.1 Properties of Cross-Correlation

We first show that cross-correlation has some nice properties making it suitable as

a similarity function:

Theorem 5.1.1.
(P1) C(z,x) = (z,z) > 0.

82

(P2) C(z,y) = C(y,x).
(P3) The Cauchy-Schwartz Inequality holds, i.e., Yx,y, C(z,y) < /C(z,2)C(y,y).

(P4) If we use the cross-correlation function to give a distance measure d such that
d(x7y)2 = C(.’L’,.’L‘) + C(y7y) - 20(.%,:1/) = Insin H‘T - (y+8)|’2

then d satisfies the Triangle Inequality.

In other words cross-correlation has properties similar to an inner product, and
can be used intuitively as a similarity function. In particular, we can use metric
trees and other methods based only on the triangle inequality [Moore, 2000, Elkan,

2003] to speed up distance based algorithms using cross-correlation.

Proof. For (P1) observe that by definition C(x,z) > (z,z). On the other hand,

C(z,x) = x;Ti1s, and by the Cauchy-Schwartz inequality,

Z:Ei:EHsg \/Z:E?\/Zxars:\/Zaj?\/Z:E?:(x,x). (5.2)

Which means (x,z) > C(z,z) > (x,z) or C(x,z) =(x,z) > 0.

To prove (P2) observe that since

<x7y+8> = <x—87y> = <x+(n—s)7y>7

maximizing over the shift for ¢ is the same as maximizing over the shift for x.
(P3) follows from K1 of Theorem 5.1.2 below (see Proposition 2.7 of Scholkopf

and Smola [2002]) but we give a direct argument here. Let

C(‘Tay) = (‘Tay+s> = (‘T?Z>

where s is the shift maximizing the correlation and where we denote z = y1 ;. Then

83

by (P1),

VC(z,2)Cly,y) = v (z,2)(y,y) = llz||ly].-

Therefore the claim is equivalent to ||z||||y|| > (z,z), and because the norm does
not change under shifting the claim is equivalent to ||z||||z]| > (x,2) = C(z,y). The
last inequality holds by the Cauchy-Schwartz inequality for normal inner products.

Finally, for (P4) let x,y,z € R™. Let 74, be the shift that minimizes d(a, b).

d(z,y) +d(y,2) = [[(@4r,) =yl + [(Y4r,.) — 2|l (5.3)
= N(@4rytr) = W)+ 1 (Ytr,.) = 2 (5.4)
> |(@traytrys) = W) + Ygr,.) — 2|l (5.5)
= [[(@4roytr.) — 2 (5.6)
> [[(@4r,.) — 2l (5.7)
= d(z,2) (5.8)

Where (5.4) holds because shifting and y by the same amount does not change
the value of ||z — y||, (5.5) holds because of the triangle inequality, and (5.7) holds

because by definition 7., minimizes the distance between = and z. O

Since cross-correlation shares many properties with inner products it is natural
to ask whether it is indeed a kernel function. We show that, although every 3x3

similarity matrix is positive semidefinite, the answer is negative.

Theorem 5.1.2.
(K1) Any 3 x 3 Gram matrixz of the cross-correlation is positive semidefinite.

(K2) The cross-correlation function is not positive semidefinite.

Proof. Let x1,22,23 € R, G a 3 x 3 matrix such that G;; = C (x4, x;), c1,¢2,¢c3 € R.
We prove K1 by showing Q) = Z‘Z’Zl 2?21 cic;Gi; > 0.
At least one of the products cjcg, ¢ic3, cacs is non-negative. Assume WLOG that

coc3 > 0 and shift x9 and z3 so that they obtain the maximum alignment with x1,

84

calling the shifted versions 7, 22, £3 noting that 27 = z1. Now C(z;,z;) = (@, Z;)

except possibly when (i,7) = (2,3), thus

3 3 3 3
YD ocieiGip = D0 cicld, @) + 2eae5(Ca2,) — (2, 3)

i=1 j=1 i=1 j=1

3 3
DY i) 20

i=1 j=1

v

since cac3 > 0 and C(%2, 23) > (@9, 2'3) by definition.
The negative result, K2, is proved is by giving a counter example. Consider the

matrix A and the row-normalized A’

0 1 2 0 0.4472 0.8944
1 0 O 1 0 0

A — A, =
2 1 2 0.6667 0.3333 0.6667
0 2 1 0 0.8944 0.4472

where each row is a vector of 3 dimensions. This illustrates a case where we have
4 time series, each with 3 samples and the time series are normalized. Using the

cross-correlation function on A’, we would get the following Gram matrix

1 0.8944 0.8944 0.8

o 0.8944 1 0.6667 0.8944
0.8944 0.6667 1 0.8944
0.8 0.8944 0.8944 1

G has a negative eigenvalue of —0.0568 corresponding to the eigenvector

¢ = (—0.4906, 0.5092, 0.5092, —0.4906)

85

and therefore GG is not positive semidefinite. In other words

4 4
G =) " cic;Gi; = —0.0568. O

i=1 j=1
5.2 A Kernel for Periodic time Series

As the cross-correlation function is not positive semidefinite, we propose an alterna-
tive kernel function that can be used in place of the cross-correlation function with

kernel methods. To motivate our choice consider first the kernel

K(z,y) =Y > (i yy)-

i=1 j=1

Observe that here K iterates over all possible shifts, so that we no longer choose
the best alignment but instead aggregate the contribution of all possible alignments.
This seems to lose the basic intuition behind cross-correlation and it is indeed not

a good choice. On closer inspection we can see that

K(z,y) = (za1+zp+. o)yt o+ @t a2+ o+ 240)Yin

= (Z $+i)(z Yj)-
i=1 j=1

Hence K simply calculates the product of the sums of the shifted vectors. For
example, if the vectors are normalized to have a mean of 0, then K is identically 0.

Instead our kernel weights each shift with exponential function in order that
shifts with high correlation are highly weighted and shifts with low correlation have

smaller effect.

Definition 5.2.1. The kernel function K : R" x R™ — R is defined as

K(z,y) =Y ertows) (5.9)
i=1

86

where v > 0 is a constant.

Thus like cross-correlation the value of the kernel will be dominated by the max-
imizing alignment although the number of “good alignments” is also important. In
this way we get positive semidefinite kernel while having the same guiding intuition
as cross-correlation. Exponential weighting of various alignments of time series has
been proposed previously in Cuturi et al. [2007]. Despite the similarity in the con-
struction, the proof of positive semidefiniteness in Cuturi et al. [2007] does not cover
our case as their set of alignments is all possible time warpings under a fixed phase
and does not allow for circular shifting. Similar ideas to weight different matches ex-
ponentially have also been explored in kernels for multi-instance problems Géartner

et al. [2002].
Theorem 5.2.2. K is a positive semidefinite kernel.

Proof. Consider the following function
n n
— Z Z eV Tiyrs)
i=1 j=1

It follows from results in Haussler [1999] that K'(z,y) is a convolution kernel. This

can be directly shown as follows. First rewrite K’ as

=) Z (5.10)

a€R~1(z) beR™

where R™!(z) gives all shifts of z. It is well known that the exponential function
V@) is a kernel [Scholkopf and Smola, 2002]. Let ®(z) be the underlying vector

representation of the this kernel so that €7 = (®(z), ®(y)). Then

= > Z O)=(> @) (Y, 20) (11

a€R~1(z) beR~ acR~1(x) beER~1(y)
Thus K’ is an inner product in the same vector space captured by ® with the map

87

being the aggregate of all elements in R~ (z).

Observe that K'(,) iterates over all shifts of both x and y, hence effectively
counting each shift n times. For example, observe that for the identity shift, we
have (z,y) = (x41,¥11) = -+ = (T4 (n-1), Y4(n—1))- Hence we need to scale K’ by

1/n in order to count each shift exactly once. This gives us

K(z,y) = % En:f: eV T ibi),

i=1 j=1
Since scaling a kernel (i.e., K') is also a kernel, K is a kernel. O

Protopapas et al. [2006] showed that cross-correlation can be calculated in time

O(nlogn) where n is the length of the time series. In particular they show that

A~

(@, y4s) = FH(X - D)[s]

where - indicates point-wise multiplication, X is the Discrete Fourier Transform
(DFT) of z, and Y is the complex conjugate of the DFT of y. Therefore cross-

correlation can be calculated as
C(z,y) = max F (X - V)[s]

and using the DFT we get the claimed time bound. This easily extends to our kernel

by calculating

K(w,y) =Yy e Il

implying:
Proposition 5.2.3. K(z,y) can be calculated in time O(nlogn).

Note that we need take the Fourier Transform of each example only once. This

gives a significant practical speedup over the naive quadratic time implementation.

88

5.3 Related Work

The current discoveries from the microlensing surveys such as OGLE and MACHO
are predominantly transient objects such as gravitational microlensing, supernovae
etc., and some periodic variable stars [Faccioli et al., 2007, Alcock et al., 1995].
Recent work on star surveys introduced the application of semi-automatic classifi-
cation techniques for periodic variable stars based on simple selection criteria over
the parameter space indexed by average brightness (magnitude), average difference
in brightness between two spectral regions or passbands, and period [e.g., Geha
et al., 2003, Howell et al., 2005]. We refer to these three parameters as explicit
features. The semi-automatic methods require significant human intervention and
hence pose an imperfect solution for a survey of even tens of millions of stars. An
automatic approach has been proposed in Debosscher et al. [2007]. This approach
extracts explicit features from the light curves and applies machine learning meth-
ods in the resulting parameter space. Despite the similarity in terms of automation,
our approach is unique in that we use the shape of the periodic time series to derive
a similarity measure. Furthermore our approach is not astronomy-specific and is
applicable across a range of domains.

There are many existing approaches for processing and classifying time series. A
classical approach is to extract features of the time series, such as the Fourier basis,
wavelets, or Hermite basis representation, and then work directly in the resulting
vector space, [e.g., Vlachos et al., 2005, Osowski et al., 2004]. Another major ap-
proach models the time series using a generative probabilistic model, such as Hidden
Markov Models (HMM), and classifies examples using maximum likelihood or MAP
estimates [Ge and Smyth, 2000]. Our work falls into a third category: using similar-
ity functions or distance measures for time series data [Berndt and Clifford, 1994,
Lu et al., 2008]. Various similarity functions for time series have been proposed. No-
tably, Dynamic Time Warping (DTW) has been shown to be very effective across

a large number of applications [Berndt and Clifford, 1994, Keogh et al., 2006]. For

89

instance, a popular method for representing 2-d shapes is to create a time series
from the contour of the shape.! Such similarity functions are not phase invariant,
hence they rely on a good universal phasing of the data.

Cross-correlation has been proposed precisely as an effective phase-invariant sim-
ilarity function for astronomy and has been used for anomaly detection [Protopapas
et al., 2006]. It is faster in runtime, O(nlogn), than other methods that compute a
maximum phase-invariant alignment. The notion of phase-invariant similarity has
also been explored in the context of time series classification, specifically for time
series generated from 2-d shape contours. For example, Keogh et al. [2006] present a
method for applying any distance measure in a phase-invariant context. This allows
for the application of Dynamic Time Warping, for instance, to data that is phase-
invariant. While in general the run-time (O(n3)) is as bad as brute-force methods
such as in Adamek and O’Connor [2004], they give experimental evidence that their
heuristics lead to much faster run-times in practice. We extend the work in Pro-
topapas et al. [2006] by investigating theoretical properties of cross-correlation and
proposing a positive semidefinite alternative.

Several alternative approaches for working with non-positive semidefinite simi-
larity measures exist in the literature. The simplest approach is just to use the (non-
PSD) similarity function with SVM and hope for good results. Our experiments in
the next section show that this does not always yield the desired performance. An-
other common alternative is to add a diagonal term Al to the Gram Matrix in order
to render it positive semidefinite. More recent approaches reformulate the SVM
optimization to account for the potential non-PSD kernel [Luss and d’Aspremont,
2007, Ong et al., 2004]. Finally, Balcan et al. [2008] show that a similarity function
that meets some general requirements can be used to project examples into an ex-

plicit feature space indexed by their similarity to a fixed set of examples, and that

!Shape classification has its own domain-specific approaches and it is beyond the scope of this
paper to examine them. Nevertheless we observe that shape matching is an example of a phase-
invariant time series classification problem, and in fact we will present experiments from this domain.

90

this preserves some learnability properties. Unlike these generic methods, our work
gives an explicit kernel construction that is particularly useful for the time series
domain.

The general issue of “maximizing alignment” appears repeatedly in work on
kernels for structured objects. Dynamic Time Warping is a classic (non-positive
semidefinite) example where we maximize alignment under legal potential warping
of the time axis. A general treatment of such alignments, characterizing when the
result is a kernel, is developed by Shin and Kuboyama [2008]. Their results do not
cover the case of cross-correlation, however. A similar alignment idea has been used
for graph kernels in the application of classifying molecules, where each molecule
can be seen as a graph of atoms and their bonds (see Chapter 4). Here a base
kernel is introduced between pairs of nodes in the two graphs. Then one can define
a convolution kernel between the graphs using an equation similar to (5.10) where
the sum ranges over all nodes in the graph, analogous to (4.16). This approach does
not maximize alignments, but sums over all possible alignments. A non-positive
semidefinite alternative is to maximally align the two molecules by pairing their
atoms in a one-to-one manner [Frohlich et al., 2005]. A major question is whether
one could define an efficiently computable exponentially weighted version of such
a (non-maximizing but PSD) graph kernel (see Cuturi [2007]). One can show that
this problem is closely related to calculating the permanent, a problem well known
to be computationally hard [Valiant, 1979, Papadimitriou, 1993]. As it is a special
case of the permanent problem, however, where edge weights are related through

the kernel function, it may be possible to calculate efficiently.

5.4 Experiments

In this section we investigate the performance of our kernel as a general kernel for
periodic time series. In particular we explore whether it is useful for the astronomy

application, assuming appropriate pre-processing of the data. Once we have estab-

91

lished excellent performance in the astronomy domain, in the next section we build
a fully automatic system for processing star surveys based on our kernel.

For real-world data we use time series from astronomy and time series generated
from contours of 2-d images. For artificial data, we generate examples that highlight
the importance of phase invariance in an intuitive fashion. We use the same pre-
processing for all time series, unless otherwise noted. The time series are smoothed
as in previous work [Protopapas et al., 2006, Gorry, 1990], linearly-interpolated to
1024 evenly spaced points, and normalized to have mean of 0 and standard deviation
of 1.

In all experiments we use the LIBSVM [Chang and Lin, 2001] implementation
of SVM [Boser et al., 1992] and k-Nearest Neighbors (k-NN) to perform classifica-
tion. For LIBSVM, we choose the one-versus-one multiclass setting, and we do not
optimize the soft-margin parameter, instead using the default setting. For k-NN,
we choose k = 1 following Keogh et al. [2006], who have published results on the
shape data used here.? For some of the experiments in the astronomy domain, we
use explicit features. When we do so, we use a linear kernel. When we use cross-
correlation or our kernel in addition to explicit features, we simply add the result
of the inner product of the explicit features to the value of the cross-correlation or
kernel.?

We use five different similarity functions in our experiments: Euclidean Distance
(ED) returns the inner product of two time series. The Universal Phasing (UP)
similarity measure uses the method from Protopapas et al. [2006] to phase each
time series according to the sliding window on the time series with the maximum

mean, and then behaves exactly like Euclidean Distance. We use a sliding window

2We reproduce their experiments as opposed to reporting their results in order to account for
the different splits when cross-validating; our results do not differ significantly from those reported
by Keogh et al. [2006].

3 Another approach would be to perform multiple kernel learning (see for example Sonnenburg
et al. [2006]) with one kernel being the cross-correlation and the other the inner product of the
explicit features. However, this issue is orthogonal to the topic of the chapter hence we use the
simple weighting.

92

size of 5% of the number of original points; the phasing takes place after the pre-
processing explained above. In all experiments where we use K as in Equation 5.9,
we do parameter selection by performing 10-fold cross-validation on the training
set for each value of v in (1,5,10, 15,25, 50,80), then re-train using the value of 7
that gave best average accuracy on the training set. When we use Dynamic Time
Warping (DTW), we use the standard algorithm and do not restrict the warping
window [Berndt and Clifford, 1994]. Finally we note that although cross-correlation
is not positive semidefinite, we can in practice use it on some data sets with SVM.

In the first set of experiments we run on the OGLEII dataset [Soszynski et al.,
2003]. This data set consists of 14087 time series (light curves) taken from the
OGLE astronomical survey. Periods of each star in the data set are given and were
selected by domain experts. For a more detailed description of this data set, see
Section 5.5.1 in this chapter. Each light curve is from one of three kinds of periodic
variable star: Cepheid, RR Lyrae (RRL), or Eclipsing Binary (EB). We run 10-fold
cross-validation over the entire data set, using the cross-correlation (CC), our kernel
(K), and Universal Phasing (UP). The results, shown in the left top three rows of
Table 5.1, illustrate the potential of the different similarities in this application. We
see significant improvements for both cross-correlation and the kernel over Universal
Phasing. We also see that the possibility to run SVM with our kernel leads to
significant improvement over cross-correlation.

While the results reported thus far on OGLEII are good, they are not sufficient
for the domain of periodic variable star classification. Thus we turn next to im-
provements that are specific to the astronomy domain. In particular, the astronomy
literature identifies three aggregate features that are helpful in variable star classifi-
cation: the average brightness (magnitude) of the star, the color of the star which is
the difference in average brightness between two different spectra, and the period of
the star, i.e., the length of time to complete one period of brightness variation [Geha

et al., 2003, Howell et al., 2005]. The right side of Table 5.1 gives the results when

93

Table 5.1: Accuracies with standard deviation reported from 10-fold cross-validation

on OGLEII using various kernels and the cross-correlation

1-NN SVM 1-NN SVM
CC | 0.8444+0.011 | 0.680 £0.011 || features + CC | 0.991 4+ 0.002 | 0.998 £ 0.001
K 0.901 £0.008 | 0.947 £ 0.005 || features + K 0.992 £ 0.002 | 0.998 £ 0.001
UP | 0.827+0.010 | 0.851 £ 0.006 || features + UP | 0.991 4+ 0.002 | 0.997 £ 0.001
features 0.938 £0.006 | 0.974 £ 0.004

these features are added to the corresponding similarities. The features on their
own yield very high accuracy, but there is a significant improvement in performance
when we combine the features with cross-correlation or the kernel. Interestingly,
while Universal Phasing on its own is not strong enough, it provides improvement
over the features similar to our kernel and cross-correlation. Notice that a perfor-
mance gain of 2% is particularly significant in the domain of astronomy where our
goal is to publish such star catalogs with no errors or very few errors. The left
confusion matrix in Table 5.2 (for SVM with our kernel plus features) shows that
we can get very close to this goal on the OGLEII data. To our knowledge this is the
first such demonstration of the potential of applying a shape matching similarity
measure in order to automatically publish clean star catalogs from survey data.? In
addition, based on our domain knowledge, some of the errors reported in the left of
Table 5.2 appear to be either mis-labeled or borderline cases whose label is difficult
to determine.

In addition to classification, we show in Table 5.2 that the confidences produced
by the classifier are well ordered. Here we do not perform any calibration (akin
to the normalization method from Section 6) and simply take the raw output of
each of the three hyperplanes learned by the SVM. While we investigated the use
of the methods from Section 6 here, in exploratory experiments we did not find the

probability estimates to be more reliable than simply ordering the classifications

4Wyrzykowski et al. [2004] uses a shape-based similarity measure but only for EBs and not in
an automatic classification setting.

94

Table 5.2: Four confusion matrices for OGLEII, using SVM with K and features.
Left to right, top to bottom, we abstain from none, then the lowest 1%, 1.5% and
2%.

Ceph | EB | RRL Ceph | EB | RRL
Cepheid || 3416 1 13 Cepheid || 3382 1 3
EB 0 3389 0 EB 0 3364 0
RRL 9 0 7259 RRL 1 0 7195

Ceph | EB | RRL Ceph | EB | RRL
Cepheid || 3363 1 3 Cepheid || 3352 1 0
EB 0 3342 0 EB 0 3312 0
RRL 0 0 7166 RRL 0 0 7138

according to the raw output (also note that what we really want to do is rank the
output, not assign probabilities). To calculate the confidence in label 1, we add
the raw output of the 1v2 (the classifier separating class 1 from class 2) and 1v3
classifiers. To calculate the confidence in label 2 we add the negative output of the
1v2 hyperplane and the output of the 2v3 hyperplane, etc. We can then abstain
from the examples that received the lowest confidences and set them aside for review.
When we abstain from the lowest 1%, for example, we abstain from all but 5 errors,
showing that almost all of our errors have low confidences. We now have reason to
believe that, when we classify a new catalog, we can reliably abstain from a certain
percentage of the predictions that are most likely to be errors. The examples on
which we abstain can either be ignored or set aside for human review.

In the next set of experiments we use five shape data sets: Butterfly, Arrowhead,
Fish, Seashells introduced in Keogh et al. [2006], as well as the SwedishLeaf data
set from Soderkvist [2001].> These data sets were created by taking pictures of
objects and creating a time series by plotting the radius of a line anchored in the
center of the object as it rotates around the image [Keogh et al., 2006]. As all of
the pictures have aligned each object more or less along a certain orientation, we

randomly permute each time series prior to classification in order to eliminate any

®Detailed Information available via www.cs.ucr.edu/~eamonn/shape/shape.htm

95

Table 5.3: Number of examples in each data set. For those data sets that were
filtered to include 20 examples of each class, the number of examples post-filtering
appears after the ¢/ .

Num Examples | Num Classes | Majority Class
Arrowhead 558/474 9 0.19
Butterfly 754/312 5 0.39
Intershape 2511 4 0.30
SwedishLeaf 1125 15 0.07

bias of the orientation. The identification of objects from various orientations is now
cast as a phase-invariant time series problem.

A natural and relatively easy problem is to use a classifier to separate the dif-
ferent image types from each other. In this case we attempt to separate butterflies,
arrowheads, seashells, and fish. We refer to this data set as Intershape.’ We also in-
vestigate the potential to separate sub-classes of each shape type. The SwedishLeaf
data has already been labeled before, and hence the sub-classes are already identi-
fied. For the other data sets that have not been explicitly labeled by class before,
we generate labels as follows: for the Butterfly and Fish data set, we consider two
examples to be the same class if they are in the same genus. For the Arrowhead
data set, we consider two arrowheads to be the same type if they share the same
type name, such as “Agate Basin,” or “Cobbs.” In order to make the results more
statistically robust, we eliminate sub-types for which there exist fewer than 20 ex-
amples. Seashells and Fish have too few examples when processed in this way and
are therefore only used in the Intershape data set. A summary of the data sets,
including number of examples and majority class probability (that can be seen as a
baseline) are given in Table 5.3.

For these experiments we calculate no explicit features. We run 10-fold cross-
validation using 1-NN with cross-correlation (1-NN CC), the kernel (1-NN K), Dy-
namic Time Warping (1-NN DTW), Universal Phasing (1-NN UP) and SVM with
the kernel (SVM K), Universal Phasing (SVM UP), and Euclidean distance (SVM

SWe treat the SwedishLeaf set differently because it has a different resolution and is not part of
the same overall shape data set.

96

Table 5.4: Performance on various shape data sets. All results are cross-validated.
Data set names: A = arrowhead, B = butterfly, I = intershape, S = Swedish

1-NN CC 1-NN K 1-NN DTW | 1-NN UP SVM ED SVM UP SVM K
A | 0.54£0.06 | 0.54+£0.08 | 0.33+0.06 | 0.49+0.05 | 0.2+£0.05 0.41 £0.05 | 0.63 £0.04
B | 073£0.04 | 0.73+£0.04 | 0.59£0.08 | 0.70£0.07 | 0.4+0.1 0.65 £ 0.08 | 0.76 £0.08
I 1098£0.01 | 098£0.01 | 0.84£0.03 | 0.97+0.02 | 0.47+0.03 | 0.8 £0.02 0.91 £0.02
S | 0.84+0.03 | 0.82+0.03 | 0.48+£0.06 | 0.78+£0.04 | 0.08 £0.03 | 0.18 £0.03 | 0.33 £0.04

ED). The results are given in Table 5.4. We also tried using 1-NN with Euclidean
Distance, but the performance was not competitive with any of the other methods
hence we do not include it in the comparison.

The results demonstrate that both cross-correlation and the kernel provide a
significant performance advantage. It is not surprising that DTW does not do well
because it only considers the one given random phasing of the data. Rather, it is
surprising that it does not perform worse on this data. The only way it can expect to
perform well with k-NN is if, by chance, for each example there is another example
of the same class that happens to share roughly the same phase. In a large enough
data set, this can happen, and this may explain why DTW does much better than
random guessing. It is interesting that SVM does not always dominate k-NN and
does very poorly on SwedishLeaf. It may be that the data are linearly inseparable
but there are are enough examples such that virtual duplicates appear in the data
allowing 1-NN to do well.

Another interesting observation is that while Universal Phasing never outper-
forms all methods it does reasonably well across the domains. Recall that this
method phases the time series according to the maximum average magnitude of a
sliding window. This finds a “maximum landmark” in the data for alignment and is
obviously not guaranteed to be informative of the class in every case. Nevertheless,
it works well on the Butterfly and Intershape data sets showing that this type of
landmark is useful for them.

As we show in the next set of experiments with artificial data, it is easy to

97

construct examples where Universal Phasing will fail. We generate two classes of
time series. Each example contains 1024 points. Class 1 is a multi-step function
with one set of four steps beginning at time 0, as well as one spike placed randomly.
Class 2 is also a multi-step function but with two sets of two steps, the first at time
0 and the second at time 665 (roughly 65% of the entire time series) and one random
spike exactly as in class 1. We show two examples of each class in Figure 5.2. We
generate 10 disjoint training sets containing 70 examples and test sets containing
30 examples for cross-validation. We keep the training set small to avoid clobbering
the results by having near-identical examples. In these experiments we normalize
as above, however we do not perform smoothing as the data contains no noise.

For this type of data the random spike will always be in the center of the largest
magnitude sliding-window, and hence Universal Phasing will phase each time series
according to the random location of the spike. In a real world setting, the random
spike could be sufficiently wide noise period in the signal, or any irrelevant feature of
the time series. This is key to understanding the strength of our method: if it is easy
to find a global shifting such that each example is maximally correlated with every
other, our method performs identically to Universal Phasing. On the other hand,
when a global shift is not trivial to find, our method succeeds where a Universal
Phasing algorithm fails. To illustrate further the performance potential of the kernel
we create a second version of the data where we add noise to the labels by flipping
the label of each example with probability of 0.1. When the data are completely or
nearly separable, both k-NN and SVM should attain close to 100% accuracy. The
noise changes the domain to make it harder to get this level of performance.

The results are shown in Table 5.5. As expected, Universal Phasing does quite
poorly in this setting. With no noise, 1-NN with cross-correlation, 1-NN with our
kernel, and SVM with our kernel attain almost 100% accuracy. The results with
noisy data show that SVM with our kernel is more robust to noise than 1-NN with

cross-correlation or our kernel.

98

L— -] s

Figure 5.2: Examples of artificial data. The left two examples are from class 1, the
right two example are from class 2.

To summarize, the experiments show that universal phasing and cross-correlation
are useful in some contexts, but that our kernel combined with SVM can yield

significant improvements in performance.

Table 5.5: Results on artificial data

1-NN CC 1-NN K 1-NN UP SVM UP SVM K

Artificial 0.99+£0.02 | 1.00 £0.00 | 0.65 £0.04 | 0.50 £0.07 | 0.997 £ 0.001

Artificial w/ Noise | 0.84 +0.14 | 0.84 £0.12 | 0.61 +£0.09 | 0.53 +0.12 | 0.90 £+ 0.05

5.5 A Fully Automated System for Classifying Periodic

Variable Stars

Now that we have established a machine learning basis for classification of periodic
time series, we can address the entire problem of processing, filtering, and classifying
an astronomy catalog. This endeavor encompasses much more than just classifica-
tion: for example, from ~ 25 million stars in the MACHO survey, we must eliminate
all but approximately 50 thousand stars of interest’ prior to running our classifi-
cation routine from Section 5.4. To process a survey our system combines various
statistical tests, machine learning algorithms, and signal-processing techniques. As
proof-of-concept we use our system to find new RRLs, Cepheids, and Eclipsing Bi-

naries in the MACHO survey, starting with no information other than the raw light

"Based on known distributions of periodic variable stars.

99

curves (time series). In addition to identifying new periodic variables, our system
produces two useful categories of non-classified data: stars that are too much like
two or more of RRL, Cepheid, or EB to make a confident decision, and stars that are
periodic in some way but are not like any of RRL, Cepheid, or EB. The stars in the
first category can be further processed to determine the best category; the stars in
the second category serve as a reserve of potentially interesting astronomical events
that can be reviewed by a domain expert. For example, we have found several stars
whose period changes over time; this is a known astronomical phenomenon and a
catalog of such stars would be useful to astronomers.

Using the OGLEII survey as a training set, we classify fields 1-82, 206, 207,
208, 211, 212, 213, 301-311, 401-403 in the MACHO survey, containing 25, 309, 792
objects. Our system produces a list of 8,045 new EBs, 6,792 new Cepheids, 16, 876
new RRLs, and 3,787 stars which may be one of the three types, and 24,944 stars
that are not one of the three types, but are periodic variable events of interest.
To our knowledge, this is the first such system that is completely automatic. The
system of Debosscher et al. [2007], for example, automatically classifies periodic
variable stars, but only from among a set of known periodic variable stars; that is,
first work must be done to identify periodic variable stars from within the dataset.
Our system takes as input a complete, unfiltered survey, and automatically creates
a catalog of periodic variables.

In Section 5.5.1 we describe the MACHO and OGLEII data. In Section 5.5.2 we
define each part of our system and analyze its performance on the MACHO catalog.
Finally in Section 5.5.5 we discuss ideas for future improvements to the system based

on its performance on the MACHO catalog.

100

Table 5.6: Details of OGLEII dataset

Num Stars in LMC | Num Stars in SMC | Total
Cepheid 1374 2051 3425
EB 2266 1124 3390
RRL 6812 460 7272
Total 10452 3635 14087

5.5.1 Description of Data & Initial Preprocessing

For each survey, we are given a time series for each star that was observed, in each
pass-band® of that survey. As above, each time series consists of a list of magnitude
measurements, the time each measurement was taken, and an estimated error of the
measurement. Below, we refer to the magnitude measurement i of a time series as
x;, the associated time of the measurement as ¢;, and the associated error of the
measurement as 2. Figure 5.3 shows an example time series and illustrates the
non-uniform sampling.

The OGLEII dataset [Soszynski et al., 2003] contains a total of 14087 light curves
from periodic variable stars sampled in the standard V,B, and I passbands, from
both the Small Magellanic Cloud (SMC) and Large Magellanic Cloud (LMC). There
are 3425 Cepheids, 3390 Eclipsing Binaries, and 7272 RRLs in all. See Table 5.6 for
details.

In the following we discuss some well-known characteristics of the explicit fea-
tures from Section 5.4: average magnitude,’ color,!? and period that show their
utility in predicting type of star, as well as the limitations in using only these fea-
tures. Figures 5.17, 5.18, and 5.19 (pages 128 — 130) show histograms of the period,
magnitude, and color for the OGLEII dataset. In Figure 5.17, we can see that there

is a noticeable difference between the distribution of the RRL periods and the dis-

8Passbands refer to ranges of visible light; measurements of a star are taken using different filters
on the telescope leading to measurements of brightness in different pass-bands.

9We use the standard V band for average magnitude, and subtract 0.52 from all magnitude
measurements for stars in the SMC according to standard astronomy practice.

10The difference between average magnitudes in two passbands.

101

18,3437.977 unfolded

-5.8
- + +
+ +
-5.6 + i
i + 4
N + 4
e + o+ + AR =
o fed Gl 7y + + 3 F
+ 4, F ++++$#++++++++$++ e &
LT, R T £ P Py g R +
L T TRt + S F+ 4
-5.2 g R + wt A i i
ottt W L RS T e
+++§¢W1++ (o SR Ay % a1\ *
Hobh,, o e H plw DATME, $We e FT
=5 A s i i, .
e L R T L e M
3 b + s *; +o+E b
t¥ i P T ol T & .
T - e By E + s A
iy + e + L +
Y S %fg# E i g gtk L
+ k- + 4 3 o+ * +
* R o +
s +#¢?+i+¢ :& i MO J'; +;++ i I ++++
+ *h o ++¢* LIERE T S o
-a,6 | .k T Fi¥: +
+ ++ + ® +
g +# S Toae + il
—a,4} B i ok & #
+ - +
+
_a.2 . . . \
7e+88 7.5e+88 Be+08 8.5e+08 o488 9.5e48
Date in Seconds
18.3437,977 unfolded zooned in
-5.6
@
-5.4 + +
4 *
+
=
”
-5.2 & +
+
+ & -
+
=5k
I +
-
-4.8 | +
¥ +
+
-4.6
i
oy

—4.4 L L L L L L L L
7.11e+88 7.12e+08 7.13e+08 7.14e+B8 7.15e+88 7.16e+88 7.17e+08 7.18e+BB 7.19e+88 7.Ze+B

Figure 5.3: Unfolded time series from MACHO survey. Top:

tom: expanded subsection.

Date in Seconds

102

all data points. Bot-

tribution of the EB and Cepheid periods; while almost all of the RRL periods fall
between 0.2d (d is days) and 0.8d, the EB and Cepheid periods are spread out over
a much larger range.

In Figure 5.18 (page 129) we can see that there is a lot of overlap in all three
histograms. The peaks of the histograms are different, however, hence average
magnitude does give a clue as to the type of star.

In Figure 5.19 (page 130) we show that all three types of stars have well defined
narrow peaks, and there is some separation between EBs and Cepheids, with RRLs
falling somewhere in the middle.

The histograms show us that we can expect well-defined ranges for each star
type’s color, magnitude, and period. In general, no one feature can be used to
determine star type, but they do help to indicate which star type is more likely.
When taken together, the features are even more informative, as we discuss below.

In the top of Figure 5.4, we examine the color and magnitude features together.
There is a clear region for RRLs and Cepheids in this diagram, although the two
regions overlap significantly; this space is sufficient to delineate many Cepheids and
RRLs, but more information will be needed to distinguish those stars that fall in the
overlapping region. EBs appear throughout the diagram, virtually encompassing the
RRLs and Cepheids. Part of the EB region is distinct from the other two regions,
and thus this feature space would be useful for data points that fall in that region.
Overall, the color-magnitude space illustrates that the relationship between these
two features can be used in many cases to distinguish star type.

In the bottom of Figure 5.4 (Color vs. Period), we see more overlap between the
classes, but still there are autonomous regions for each star. The message here is
that in the feature space indexed by period, magnitude, and color, we can distinguish
star type for much of the data, however for the significant overlap regions we will
have to analyze more carefully our predictive model. Furthermore, we can expect

periodic variables to fall in a certain well-defined region of the feature space; this

103

v-nagnitude

Period in Days

Figure 5.4: Top: Color-Magnitude diagram for OGLEII.

diagram for OGLEII

Color-Hagnitude Diagran for OGLE

12 .
Cepheids +
EBs
13 | RRLs %
14
15
16 2
17 xx% X
R
X
x X
18 ik
+
*
19 f wr *
K X
28
* x
21
95 . . .
-8.5 6.5 1 1.5 2
¥-1 nagnitude
Color-Period Diagran for OGLE
Cepheids +
EBs
RRLs %
X
%
-8.5 0.5 1 1.5 2 2.5 3 3.5 4

¥-I Hagnitude

104

Bottom: Color-Period

Conparison of OGLE V,U-T and HACHO ¥,V-R, prior to regression

12 -
OGLE version
HACHO version

4

§

13 -

= +£‘+
b
i+

14 A b +
et

15

186

17

v Hagnitude
X

18

19 ~ x

28 -

21 £
-8.5 a8 8.5 1 1.5 2

v-I for OGLE, V-R for MACHO

c-H Diagran of Confirned Subset and DGLE
12

0GLE
confirned

e+

13 -
14 F
15 -
16

: X
17 B
¥ H-

v Hagnitude

18

19 ~

28

21 -

22 L L
-1 -8.5 2] 8.5 1 1.5 2 2.5

V-I (0GLE}, ¥-R (confirmed) Magnitude

Figure 5.5: Top:Color-magnitude diagram for confirmed subset. The OGLEII ver-
sion and MACHO version of each is shown here. OGLEII uses V-I and MACHO
uses V-R; it is clear further calibration is warranted. Bottom: Calibrated color-
magnitude diagram for confirmed subset. The MACHO version is shown here on
top of the entire OGLEII dataset, after a regression model is learned and MACHO
is calibrated accordingly.

will help us when we try to eliminate non-periodic variables from the raw MACHO
data. As we illustrated above with the experiments on the OGLEII dataset, the
features we list here are sufficient to be able to classify periodic variable stars quite
well, although incorporating the shape of the time series improves performance.
To be able to use the shape information, we must know the correct period of the
star, which was determined for OGLEII by non-automatic methods. As we discuss
below, determining period automatically is non-trivial, and we know of no system

that accomplishes this task accurately.

105

The MACHO survey [Alcock et al., 1993] is a microlensing survey conducted in
two non-standard passbands, “blue” and “red.” After filtering out stars that have
too many erroneous measurements, we are left with 25,309,792 stars. The non-
standard passbands present a challenge to making direct comparisons between stars
in MACHO to stars in OGLEII. We use the formula given to us by P. Protopapas
(2008, private communication) to convert the “blue” passband to Kron-Cousins V,

and “red” to Kron-Cousins R:

Vi = B+24.22—0.1804(B — R) (5.12)

R, = R+23.08+0.1825(B — R) (5.13)

where Vi, R are the Kron-Cousins V' and R bands, and B, R are the non-standard
MACHO bands. Additionally, we subtract 0.52 from the average magnitudes of
stars in the SMC, as we did with OGLEIL.

In order to evaluate our methodology in various stages, we use a subset of stars
from the MACHO survey that also exist in the OGLEII catalog. We will refer to this
throughout the document as the confirmed subset. To find these stars, we compare
the RA and DEC! of the stars in OGLEII with stars in MACHO, and select stars

such that:

V/(raps —rap)? + (decys — decp)? < 5s

where the units on the LHS are in seconds. Additionally, we require that the dif-
ference in V magnitude not exceed 0.5. This yields 3166 stars with 256 Cepheids,
1266 EBs and 1644 RRLs. These are very important because they allow us to track
and validate different stages of our processing pipeline.

Even after the application of (5.12) we found that the V' magnitudes and V — R
color in the confirmed subset were still too far off the V' magnitude and V — I

color of their OGLEII counterparts; this is illustrated in the top plot of Figure 5.5.

" Right ascension (RA) and declination (DEC) are used to measure the position of stars in the
sky.

106

We use a simple linear regression to map the MACHO V magnitudes to OGLEIL V/
magnitudes, and MACHO V — R colors to OGLEIT V — I color. In the bottom plot of
Figure 5.5, we show the MACHO version of the confirmed subset on top of the entire
OGLEII dataset; it is clear that the calibrated confirmed subset now sits in the same
region as OGLEII in color-magnitude space. Note that we are not attempting for
exact mapping, we simply want to ensure that any classification learned on OGLEII
in color-magnitude space will transfer appropriately to the MACHO survey. As

Figure 5.5 demonstrates, the mapping we choose should satisfy this requirement.

5.5.2 Classification Methodology

In this section we describe how we extract from the unlabeled MACHO catalog a set
of labeled, periodic variable stars. We explain our methods and present experiments
to show their effectiveness.

Our methodology is a pipeline of separate modules which we order as follows:
A Eliminate non-variables

A1l sodset filter
A2 check for sufficient number of points

A3 check for sufficient variability
B Eliminate non-periodic variables

B1 find periods

B2 check for spurious periods due to sampling rate
B3 refine period estimates

B4 check for periodicity

B5 check for symmetry

C Eliminate stars not of type Cepheid, EB, or RRL

107

C1 set aside based on nearest OGLEII star in C-M space

C2 set aside based on nearest OGLEII star using cross-correlation
D Classify

D1 train SVM on OGLEII dataset, classify remaining MACHO stars

D2 using confidences generated from the classifier output, abstain on any

stars for which classification is indefinite.

The pipeline is illustrated in Figure 5.6. We explain each step in detail in the

following sections.

SODSET (A1)

This is a pre-processing stage that does some basic filtering on the time series, elimi-
nating completely any time series that have measurements out of a range determined

by our collaborators.

Sufficient Number of Points (A2)

Before we perform any further testing, we eliminate light curves that have an insuf-
ficient number of observations. It is critical to eliminate light curves containing a
low number of points because our tests for variability and periodicity will not give
meaningful output for light curves that do not contain enough data to establish a
pattern.

We start by eliminating points that have reported error more than 3o away from

the average error for that curve, i.e., if

e; — € > 30,

where e; is the reported error of observation z;, € is the average error of the time

series, and o, is the standard deviation of the errors, then we throw away x;. If the

108

Al so‘w—b

* 25,309,792

A2 na""&_Aijﬁﬁi958

*21,615,834

A3 ‘ 13,443,504

* 8,172,240

1,341,814

* 6,830,426

I
, a‘ 6,767,617
809

i
* 62

B3
B4
B5

classify

1704 1492 591 6792 10410 16876
CEPH EB RRL CEPH EB RRL

Figure 5.6: MACHO processing pipeline

109

either the red or blue band of the time series ends up with fewer than 250 points, we
discard the star. This removes 3,693,958 stars for future processing. Automated
processing of stars with few and noisy measurements would require significantly

improved techniques.

Chi-squared Test for Variability (A3)

In the next step, we use the chi-squared test to filter out non-variable stars. Specif-

ically, we use a x? test on the light curve for fit to the mean.

where

i.e., the error-weighted average magnitude. If a star is variable, it will have a higher
chi-squared value. We compute the y? value for both red and blue bands in MACHO
and use the maximum of the two for filtering purposes, that is, if only one of the
bands is variable we want to include the star.

By discarding any star with x? < 3, we remove more than 50% of the survey
which we believe are not variable. Furthermore, we do not eliminate any of the
stars in the confirmed subset, indicating that, as intended, this test does not remove

many variable stars. After this stage we have a total of 8,172,240 stars remaining,.

Finding Periods (B1-B5)

At this stage in the pipeline, we have established that the remaining stars are vari-
able, however we have not yet determined if they are periodic. The problem of
finding the period of a periodic, non-uniformly sampled time series has been studied
extensively in general and in the astronomy literature [Reimann, 1994, Shin and

Byun, 2004]. Yet while there are multiple methods for identifying the periodic com-

110

ponents of a light curve, there are no automatic methods for determining if a light
curve is periodic. For example, if we give a non-periodic star to a period-finding
algorithm, such as supersmoother [Friedman, 1984] or an analysis of variance (AoV)
technique [Schwarzenberg-Czerny, 1989], it will return some period corresponding
to a periodic component of the lightcurve. The fact that a periodic component
is returned is no more indicative that the signal is periodic than is the existence
of a Fourier decomposition of a uniformly sampled discrete signal. Methods must
use some goodness-of-fit function to determine how well a given period describes
the time series, however this is challenging in our context for the following reasons:
the difference in goodness-of-fit between one period and an integer multiple of that
period may be completely determined by scatter; the “true period” of an Eclips-
ing Binary may be impossible to describe mathematically with the data we have;
semi-regular sampling times lead to spurious periodic components. These points
and techniques to address them are discussed in detail below. The work of Reimann
[1994] gives a thorough comparative study of the period finding methods in use in
the context of periodic variable stars, and shows that while some perform better
than others in some cases, no one method is perfect.

To summarize, state-of-the-art performance requires a human to verify that the
star is in fact periodic, and that the period-finder has returned the true period;
no currently available method performs a truly automatic, reliable period-selection,
and as mentioned above, with EBs, such a method may not be possible with just the
time series as input. The method we use is also imperfect and it is not as accurate
as manual period selection, but it gives sufficient performance so that our classifier

can make accurate predictions.

Methodology The period methods we examined operate using the same basic
algorithm: for a given list of periods, use some statistic to rank the periods ac-
cording to how well they fit the data. The Analysis of Variance (AoV) based tech-

niques [Schwarzenberg-Czerny, 1989] bin the periodic signal and compare variance-

111

like statistics within each bin to variance-like statistics over the whole signal. Phase
Dispersion Minimization (PDM) [Stellingwerf, 1978] reports the period minimizing
the variance (scatter) of the folded signal. The Supersmoother Algorithm [Fried-
man, 1984] uses a sliding window of variable width, and calculates the squared error
of each point with the average of the window around that point; the periods are
then ranked according to this error. The entropy minimization method [Cincotta
et al., 1995] forms a two-dimensional grid over the folded light curve, the resolution
of which is specified by the user. The number of points in each square of the grid
is used to estimate the “entropy” of the signal. In other words, if the signal is
pure noise, the entropy will be high because the points will be distributed uniformly
throughout the grid. If the signal is periodic, the entropy will be low because few
squares will contain all of the points. The method we describe uses as its center
the Lomb-Scargle (L-S) Periodogram [Lomb, 1976, Scargle, 1982]. The L-S Peri-
odogram rates periods based on the sum-of-squares error of a sine wave at the given
period. There are numerous studies comparing the period evaluation techniques we
describe here as well as many others [e.g., Schwarzenberg-Czerny, 1989, Reimann,
1994]. No one method works perfectly in every situation. We choose L-S because it
can be evaluated efficiently using the algorithm of Press and Rybicki [1989], and in
preliminary experiments it has shown to perform reliably.

In our method, we first calculate a Lomb-Scargle Periodogram [Lomb, 1976,
Scargle, 1982] (step Bl in Figure 5.6) for each light curve; we look for periods in
the range of 0.1d — 20d, where d is days, with an oversampling rate of 0.5, mean-
ing the range of periods is broken into even segments of 0.5 times the reciprocal
of the Nyquist frequency of an equivalent uniformly-sampled time series. The im-
plementation of the L-S Periodogram is that of Hartman et al. [2008], and makes
two important additions to the original algorithm. First, local maxima in the peri-
odogram are represented by the peak period. In other words, periods immediately

to the left and right of a local maxima will not be reported in the periodogram.

112

27.10418.22 1332581

M

i

L et 4k ,/‘4'.
o £ }‘é’w‘: ’ s@;t‘“‘ sesk R
et LRt o W 5
$3 T el P PN R
' c Lo +

Magnitude

Magnitude
&

L L L L L L L L L L L L L L e L L L
0 01 02 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 07 08 09 1
Phase Phase

Figure 5.7: Two stars with predicted periods close to 1d, shown folded and plotted
by phase. The left has a true period of about 1d, the right is not periodic but has
a strong 1d frequency component due to the sampling frequency.

Second, when a period is reported, simple rational number multiples of that period
are not reported. We use the highest power period as our first guess of the period
of a light curve. We refer to the period giving the highest peak in the periodogram
as the highest power period.

Many stars in the MACHO survey were observed with a sampling frequency
around 1d because some stars are observed at roughly the same time of day for each
observation. Therefore we expect these stars to have strong periodic components
around 1d. Looking at Figure 5.17, however, we expect many stars to have a true
period close to one day, hence we need to find a way to separate the spurious 1d
period guesses from the correct 1d period guesses (step B2 in Figure 5.6). We use a
simple method to accomplish this that we illustrate with an example. In Figure 5.7
we show two light curves that have been folded to a period of ~ 1d, corresponding
to the highest power period given by the Lomb-Scargle periodogram. It is clear
that the right light curve has been folded to a sampling frequency by the gaps, or
discontinuities in the folded light curve, but the left light curve actually has a true
period close to 1d. Therefore, we need some way to figure out if our period guess is
the true period, or a result of the sampling frequency. To accomplish this, we first
check if the guessed period, p, is within 1% of 1d; if it is, we move a sliding window

of width 0.1p (remember that the light curves are first folded to the period p) along

113

1,3449,62 u period=1,11025d 1,3449.62 u period=1,11018d

Magni tude
Magnitude

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 : [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Phase Phase

Figure 5.8: The same star folded according to low-resolution period search and
high-resolution period search. Note the reduction in scatter in the high-resolution
version.

the folded light curve, and record the number of points in each corresponding time
window of width 0.1p. We estimate the expected number of points in such a slice to
be 0.1n++/0.1n, where n is the total number of points. We say a light curve has been
folded to a period corresponding to the sampling frequency if the window with the
fewest number of points differs from 0.1n by more than 3v/0.1n, i.e., if the number
of points in any window is more than 3 standard deviations from the expected mean.
If this test indicates that the current period guess is in fact due to the sampling
frequency, we check the next highest period given by the L-S Periodogram, and test
the folded light curve as with the first period guess, otherwise we leave the current
period guess as is. If we do test the second period and it also indicates it is a result
of the sampling frequency, we reject the light curve entirely, otherwise we record
the second frequency as the true frequency. This stage of processing eliminates
1,341,814 stars, leaving 6,830,426 (see Figure 5.6).

Now that we have filtered out erroneous periods derived from the sampling-
frequency, we re-run the L-S Periodogram using a higher oversampling rate of 0.05
and a range of p &+ 0.1p where p is the current period guess (step B3 in Figure 5.6).
This is to eliminate as much scatter in the folded light curves as possible, as a slightly
incorrect period guess can lead to a very noisy folded light curve. We could have

run with this resolution initially, however it would have been too resource intensive

114

60000 T T T T T T T T T

50000

T

40000 -

T

30000

Number of Examples

20000

T

10000

T

0 I L . L .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Variance Ratio

Figure 5.9: Histograms of variance ratios of MACHO stars.

to do so over the original period range. In Figure 5.8 we show the same light curve
folded once to the period found initially, and then to the period resulting from the
high-resolution period search. The right curve has significantly less scatter. As
scatter tends to obscure any shape, this will help us in the next stage when we try
to determine if a light curve has a “shape”, and later on when we try to determine
if two light curves have a similar shape.

The next challenge is determining if the light curve is actually periodic (step B4
in Figure 5.6). As we mentioned above, the L-S Periodogram will return a list of
periods for any light curve, regardless of whether it is periodic, and the p-values
(the probability that the signal is non-periodic) given by the L-S Periodogram for
periodicity have not proved to be reliable in this context. We use a statistic we
call the variance ratio as a method of determining whether a folded light curve is
periodic. This statistic is the same as the one used in Stellingwerf [1978] to determine
how well a period matches a given signal; hence we are using the L-S Periodogram
to find candidate periods, and a part of Phase Dispersion Minimization to evaluate
periodicity. The intuition is that if the folded light curve has a shape, the variance

of a small window of points should be small compared to the variance of the entire

115

1.3442,172 folded to 0,51029d 1,3442,172 folded to 1,02058d

-6.9 6.9
* + i %
6.8 & 6.8 +
B
- 4 i
5,7 L% o " 8.7 1% t . o s 5
f +*++++ t&ﬁ* T ¥ o e nt *+++*f o ™ .
by o3 o + €3 Ty
g SRR, T o o M e +*ﬂ»%¢+
$ 6.6 y?*m e + e £ 6.6 H PRI, # #4, RN 3 +
g L R - S s Eiginary 38 -
i T T ¥ T A = g 2 L B8 EY ¥ R
= o TEE TR, i = A5 PR e
? o5 Y 1 o e o ? 65 + 5 i Lo
* +
i ! =1 L = * o .
+ g LNy F 5o
6.4 F o -6.4 # T hy W
A + +$*"‘t B H: d}t i L .
ﬂfgq: " iy LI
HRE ot e
6.3 PSS A -6.3 £ et
- ghe g
Y o g
6.2 o -6.2 -
6 01 0.2 03 04 05 0.6 07 08 09 1 6 01 0.2 0.3 0.4 05 06 0.7 08 098 1

Figure 5.10: An Eclipsing Binary for which LS returns 1/2 the period, folded ac-
cording to the LS period and twice the LS period. Here is it difficult to formalize
that one is “better” than the other.

light curve, whereas if the light curve is just noise, the variance will be uniform
regardless of the size of the window. We fold each light curve to the current period
guess. We then calculate the average variance of a sliding window around the mean
of the sliding window. Finally, we divide the average variance by the variance of
the entire light curve. If this variance ratio is close to 1, we will tag the star as
non-periodic and throw it away because this means the local variance is the same
as the global variance. If this falls far enough below 1 we accept it as periodic.

Formally the variance ratio is defined as:

Y (i —T)?
V= > iy (v —7)?

where n is the number of points in the folded light curve,
w/2

E Ti—j mod n + Zit4 mod n>»
J=1

1

Ti=—
w

and w = min{10,0.05n} is the window size. In Figure 5.9 we give a histogram of
the variance ratios of the MACHO stars that passed the previous filtering steps. By
using a threshold of 0.7, the variance ratio test removes 6,767,617 stars that we

believe are variable but not periodic.

116

1,3442,233 1.3442,233

-6.8 -6.8

6.6 -6.6

o+
g b
e ot

-
G ¥ 4+ 4
+ # s
6.4 [L Ay Sy -6.4 [4 ;. + = v
e R b g 2 Tl R TR i
R R i {1 + e A T % T P
e S i Ty - A * g A AR ™ i
+ v i +
AL + . £ 2 b= g g
=

&

g AT,
% 6.2 g N 5 6.2 i o
2 6. # s Z -6, H oo
& AR L3R & - y
7 P £ "
E e ket £
T e g o
e + & g ¢
s
oz L
b +
L e, I
-5.8 + 3 Y A
- i ® . = &
i, = L
.03 f 2%
-5.6 -5.6
6 6.1 0.2 0.3 0.4 0.5 06 07 0.8 09 1 6 0.1 0.2 0.3 0.4 05 06 07 08 0.9 1

Phase Phase

Figure 5.11: The same star folded first by using the output of the LS periodogram,
then by using our method of checking for symmetry in twice the reported period.

We have the remaining problem of determining if the guessed period is the “true”
period or a simple rational number multiple (harmonic). In our experience, the L-S
Periodogram almost always gives the correct period for RRLs and Cepheids, but
almost always gives 1/2 the true period for EBs. Finding the true period of an
EB is particularly challenging. First, it is impossible to distinguish mathematically
between the true period and half the true period of a symmetric Eclipsing Binary
(see Figure 5.10). Second, methods that are better able to identify the true period
of EBs, such as Supersmoother [Friedman, 1984], are prone to find periods that are
integer multiples of single bump stars like RRLs and Cepheids; methods that fold
RRLs and Cepheids correctly, such as the first period given by the Lomb-Scargle
Periodogram [Lomb, 1976, Scargle, 1982] often give 1/2 the “true” period of EBs.
We can compensate for this somewhat by using one extra check; this is step B5
of Figure 5.6. After the high-resolution period search, we fold each light curve to
double the current period guess, smooth it by replacing each point with the mean of
the 10 adjacent points, linearly interpolate the folded, smoothed curve to have 1024
equally spaced points, subtract the mean and divide by the standard deviation. We
then take the Euclidean Distance between the vector of the first 512 points and the
vector of the final 512 points. This is an estimate of how symmetric the curve is.

If the true period is the original guess, then folding the light curve to double this

117

Table 5.7: Comparison of period finding methods on OGLEII. Here we assume
that the periods reported in OGLEII are correct and show performance of other
algorithms relative to the OGLEII periods.

Correct | Integer Multiple | Error
B3 | 10108 972 1175
B5 | 10637 660 958

period should give two almost exactly symmetric halves, and hence there will be a
very small distance between them. If the original guess was half the period of an
EB with one large bump and one small bump, then this test will show that there
is a significant distance between the two halves. By using this method we are able
to correct many of the original period guesses for EBs, while making few errors on
RRLs and Cepheids. In Figure 5.11 we show an example where the LS periodogram
gave 1/2 the true period of an EB, and our method was able to correct for that.
Observe that this method does not help when the EB is exactly symmetric, or when
the L-S Periodogram returns a multiple of the true period other than 1/2. It is these
cases in which our periods will be incorrect, yet as we show below our classification
system is still able to perform well.

We can immediately evaluate our period-finding method by comparing it against
the actual periods reported by OGLEII, and the periods we would use if we did not
check for symmetry. The OGLEII dataset is first filtered through steps A1-B5 of
the pipeline thus far, in order to remove any potentially noisy data. We denote
our method by B5 (according to its position in Figure 5.6), and the method that
does not check for symmetry by B3 (also see Figure 5.6). In Table 5.7 we report
discrepancies between the actual periods and the two automatic methods on the
OGLEII dataset. For each period reported, we check if it is within 1% of the actual
period and if so record it as “correct.” We then show two types of errors: if it is
within 1% of an integer multiple of the period, and otherwise. B5 makes fewer errors

than B3, and fewer mistakes between the true period and an integer multiple. This

118

v nagnitude, nornalized

Y-I for OGLE, ¥-R for MACHO, normalized

Figure 5.12: Color-magnitude diagram of stars in MACHO that have passed the
periodic-variability test with known periodic-variables from OGLEII

is a small but significant improvement in the quality of the reported periods.

Selection (C1-C2)

The 62,809 remaining stars are periodic variables, and now we need to identify
stars that we do not believe to be one of RRL, Cepheid, or EB. This is important
because the classifier we use in the following section is trained to distinguish between
these three classes but has no model of unknown types and thus cannot make good
predictions on a star that is not Cepheid, EB or RRL. The stars that we identify
as non-Cepheid EB or RRL will be interesting astronomical events, such as period-
changing variable stars, and should be held for further review by a domain expert.
We identify stars for further review in two ways: first we set aside any stars that do
not have “near neighbors” from the OGLEII dataset in color-magnitude space (step
C1 in Figure 5.6); second we set aside stars that do not “look like” any stars in the
OGLEII dataset (step C2 in Figure 5.6).

In the first stage, (C1 in Figure 5.6), we simply embed each star in the two-
dimensional space of average magnitude (denoted V), and color (denoted V — TI),
where these features have been calibrated as mentioned in Section 5.5.1. Addition-

ally, we join the OGLEITI and MACHO datasets and normalized the features such

119

Magnitude

Magnitude

F10,3187,11 F10,3194,14
. o -9.7
+ o,
“ TN
o ﬁﬁ# gt “9.8 T e +
4 F R T o+ +*+++*++**f 4
++:*+ 4 2 i s e 4y ey
ks + Fy % ¥ -9.5 B e "
+% P 5 4 * A T T R R
Fat . o , + s R g R o
e A e 7 * e, & + ¥ o Gaabyt o de £
enatiae i wyily gw i . o PR + + TR FR A L
Pl o, Lk o O P o by A A HETER R e et Yy
M o + A 2 W ERR T S L e £
Rt by ta % + 2 b T T gk S ot N ey S o R
W ¥ + i 393 gry Epet 3§ s fm\\r *ﬁtu};r Thew. T ERoe
3 + = & I B ¥ s+ g R
& & & T % o+ T
B kb, * +*%§f*~§§*¢ £ P lrabegm s, 3 .
e Y F G R A L Y
. g b EE i
[T w by g e Sy
L i 6. & F T
HRR g + . p P tah g
¥ + = g
o4+ = P T R
2 o+ oy
R S -9+ g
+
w3 4
* Hog -8.9
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Phase Phase
F10,3197,7
13.7
e
* ¥
@ ﬁt***‘
4 3
2 o b
g T
8 i,
t
i
i
+
"
%
0.9 1
Phase
F8.8786.373 F9.5480.8
~14.4
il = = + +
+ + -14.2 »
= + 4
*: + * +
o4 o+] -14
e & + +
e -13,8 ik
p
+ @
T -13.6 & % 5
ol y
b
& Bl
E i 3¢ 3 | +;+ +
+
Ty
-13.2 —
* +
#
R TR rE ek b b o Sl
PSR e o Y g s o
+ &
-12.8 - -
o 0.1 0.2 03 0.4 0.5 06 07 08 0.9 1 0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9
Phase Phase
F7,7542,1519
-6.6
-6.4 4 =
+ o . ®
2| * + +
T+ i . *
T I f S g
+ A O +
)2 + +
5.8 % " +
N + Ty
< +
Een e ¥ R +
A
§-5.41 . N6 +
= + Bk 4 Foim & %
5.2 e B 4y e b v oy
A L bl + & A A
HE +
e & *3%+}+**+# p TSR el ¥
3% 5 +
I | ¥ 0 Hy
-4.8
B
-4.6 + g ¥
A
-a.4
o o5 o2 o3 0.4 0.5 0.6 0.7 0.8 0.9 1
Phase

Figure 5.14: Selected for review due to cross-correlation

120

that they have standard deviation of 1 and mean of 0. We then use the Euclidean
Distance of each star in MACHO to its nearest neighbor from the OGLEII dataset
to generate a similarity measurement, e~¢, where d is the Euclidean Distance to
the nearest neighbor. We then set aside any stars that are far away from any star
in OGLEIL, i.e., if e=? < 0.9. As can be seen in Figure 5.12, it is clear that a
large number of stars that have passed the periodic-variable test in MACHO are
well outside the normal range of color and magnitude for EBs, Cepheids, and RRLs,
as established by OGLEII. In this portion we remove an additional 18,661 stars,
including 82 from the confirmed subset. In Figure 5.13 we show three stars that
are set aside in this phase; such stars are of interest but require future investigation
before they can be classified.

In stage C2 of Figure 5.6, we use the cross-correlation similarity measure from
Section 5.1 to quantify how “alike” two light curves are in shape. We first fold,
smooth, and interpolate each light curve to 1024 points as in Protopapas et al.
[2006], and scale each light curve to have a mean of 0 and standard deviation of
1. We then compute (5.1) for each light-curve in MACHO with each light curve
in OGLEII If an unknown star does not “look like” any star in OGLEII, we set it
aside as it is most likely not a Cepheid, EB, or RRL.

In this phase we set aside star Y if C'(X,Y) < 0.97, where X is the star in
OGLEII giving the highest cross-correlation, C'(,) as in (5.1). In Figure 5.14 we
show typical examples of periodic-variable stars that were set aside in this phase;
these light curves clearly represent some event, but require a different method for
classification. In total we remove 13,854 stars among which 98 are in the confirmed

subset.

Classification

With our classifier we wish to capture both the aggregate information about each

star using the explicit features from Section 5.4, as well as the shape of the folded

121

CEPH F10,4280,1392 RRL F10,4281.2246

8.5 -5.8

-8.4 -5.6

-8.3
5.4
-8.2
e 5.2

-8

Magnitude

-5

Magnitude

- i3
7.9 19 -4.8
7.8
-4.6 "

7.7
-4.4

7.6

-7.5 -4.2
o 01 02 03 04 05 06 07 08 09 1 © 01 02 03 04 05 06 07 08 09 1
Phase Phase

Figure 5.15: A Cepheid and RRL with similar shape.

light curve. This shape is critical in identifying stars, as we have shown in Sec-
tion 5.4, and is one of the primary points of input for an astronomer. Recall the
typical shape of the three types of stars from Figure 5.1. It is clear that shape
can effectively delineate these prototypical examples of each class by shape. In
Figure 5.15, however, we see a Cepheid and RRL that look very similar — in this
case we would need to rely more on the explicit features in order to distinguish the
stars. We illustrate two clean-cut examples here, but in general the decision is much
harder and we use machine learning methods (primarily SVM) to induce a decision

function.

5.5.3 Background and Preliminary Tests of OGLEII

We use features + K from Section 5.4 as our similarity measure of light curves.
Recall this combines (5.9) from Section 5.2 with the explicit features.

We choose the value 15 for the constant v in (5.9) by 10-fold cross-validating on
the OGLEII dataset with each value of « in {1,5,15,20,25,50,80} and using the
value that gives the highest accuracy.

Because we are building an automatic system, we cannot rely on human inter-
vention to find periods. We can use the astronomer-found (OGLEII) periods on
the training set, and the periods found by method B5 on the test set, or we can
choose to use the B5 periods on both the training and test set. We evaluate both

options by cross-validating on the OGLEII dataset. We compare the results to the

122

Table 5.8: Top Left: Cross validated results on OGLEII using known periods. Top
Right: Cross-validated results on OGLEII using periods determined by method B5.
Bottom: Cross-validated results on OGLEII, training on periods from OGLEII,
testing on periods from method B5. Actual labels are the columns, predicted labels
are the rows.

Ceph | EB | RRL Ceph | EB | RRL
Ceph | 3095 16 7 Ceph | 3078 | 64 13
EB 22 | 2069 3 EB 30 2018 6
RRL 4 3 7036 RRL 13 6 7027
Ceph | EB | RRL
Ceph | 3105 | 340 10
EB 2 1440 7
RRL 14 308 | 7029

“ideal” case, i.e., using the astronomer-found periods on both training and testing.
We show the results in Table 5.8. As expected, using the OGLEII periods for both
training and testing (this is an identical experiment to that reported in Section 5.4)
gives the best results but this method is not automatic. Using the method B5 on
both the training and test set performs much better than training on the OGLEII
periods and testing on the B5 periods, and almost as well as training and testing
on OGLEIL'? We will therefore use this method to classify MACHO.

Once we have classified each example, we would like to have some estimate of
the confidence in the prediction. In Chapter 6, we explore in depth several methods
that attempt to derive class-membership probabilities from classifier output. In this
case, we do not need probabilities but a ranking of confidence in each example,
nonetheless we can use a probability generating routine to give us this ranking.
Although we found the raw confidences to be sufficient in Section 5.4, by running
on the confirmed subset with our period estimates, we found that the method from
(6.7) in Section 6.1.2 gave better ordering of the output than the raw confidences and

thus we use that method here. It is possible that the less reliable period estimates

12Using the same uncertainty in both training and testing is related to Quinlan [1989], which
gives an empirical study supporting the use of unknown attributes in both the training and test
sets.

123

Table 5.9: Cross-validation results on OGLEII using periods from B5. Left to right,
top to bottom: abstaining on none, lowest 1%, 5%, and 10%. The fourth row is the
number abstained by category.

Ceph | EB | RRL Ceph | EB | RRL
Ceph 3078 | 64 13 Ceph 3041 60 4
EB 30 | 2018 6 RRL 21 1994 4
RRL 13 6 7027 EB 4 5 6999
Abstain 0 0 0 Abstain 55 29 39

Ceph | EB | RRL Ceph | EB | RRL
Ceph 2823 | 49 1 Ceph 2562 | 38 0
RRL 18 1935 2 RRL 17 1863 2
EB 0 1 6813 EB 0 0 6547
Abstain | 280 103 | 230 Abstain | 542 187 | 497

are causing the simple normalization to perform more poorly, justifying the use of
a different method. We do not interpret the output directly as a probability, we
use the output of this method only to rank the predictions. We can now opt to
abstain from classifying the lowest, for example, 10% of examples. In Figure 5.9 we
show confusion matrices for cross-validation on OGLEII using the B5 period finding
method, and abstaining at various thresholds. The confusion matrices show that
we can tune the abstention threshold so that we eliminate some classification errors

without eliminating too many good classifications.

5.5.4 Classifying Stars from the MACHO survey

Prior to training the SVM on the OGLEII data, we filter it the same way we filtered
MACHO, except that we do not set aside any stars as in Section 5.5.2. This is to
ensure that we eliminate any noisy or potentially confusing data points, or stars
with periods outside of our period search range. After filtering, we are left with
12255 stars of the original 14087.

Finally we train the Support Vector Machine (SVM) [Boser et al., 1992] using
K(X,Y) asin (5.9) and periods as determined by method B5 on the filtered OGLEII
dataset and test on the remaining 37,865 MACHO data points.

In Table 5.10 we show the confusion matrices for several abstention thresholds.

124

Table 5.10: Confusion Matrices for classification on MACHO using abstention
thresholds of 1 (none), 0.99, 0.95, 0.9 going left to right, up to down.

Cepheid | EB | RRL | Unknown
Cepheid 247 8 2 8136
EB 0 1107 1 10586
RRL 0 4 1637 16075
Set aside 9 167 4 32335
Abstained 0 0 0 0
Cepheid | EB | RRL | Unknown
Cepheid 247 8 2 7974
EB 0 1106 1 10455
RRL 0 4 1637 15990
Set aside 9 167 4 32335
Abstained 0 1 0 378
Cepheid | EB | RRL | Unknown
Cepheid 247 5 2 7313
EB 0 1103 0 9869
RRL 0 3 1637 15733
Set aside 9 167 4 32335
Abstained 0 8 1 1882
Cepheid | EB | RRL | Unknown
Cepheid 246 1 1 6512
EB 0 1097 0 9134
RRL 0 3 1637 15391
Set aside 9 167 4 32335
Abstained 1 18 2 3760

125

Magnitude
Magnitude

0 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1
Phase Phase

Magnitude

Figure 5.16: Light Curves with lowest confidence prediction among stars that pass
all filtering stages.

The first three columns are the actual labels according to the confirmed subset;
the first three rows are the labels produced by our classifier; the fourth column is
the unknown MACHO stars; the fourth row is the number of stars we set aside in
Section 5.5.2; the fifth row is the number of stars on which we abstain from making

a prediction based on the given abstention threshold.

5.5.5 Discussion and Analysis of New MACHO Catalog

Through private communication with Dr. Protopapas at the Harvard-Smithsonian
Center for Astrophysics, we gained access to a subset of labeled stars in the MACHO
catalog. We do not present the details of the labels here, but claim the following
new discoveries which are not in the set of labels. We present 8045 new Eclipsing
Binaries, 6070 new Cepheids, and 5657 new RRLs. Because this is the first run
of our automatic system, we had our domain-expert verify the classifications by
examining each of the classified time series. His estimate was that our catalog is
approximately 95% correct. As there is no unambiguous method for determining the

true label, we cannot know the true error rate. To give an example of some of the

126

lowest confidence predictions, in Figure 5.16 we show light curves from stars that
had the lowest confidence in their prediction among the stars that were classified
(i.e., made it through all prior filtering steps).

The discoveries presented here have significant implications for the astronomy
community. Our results are currently being investigated by astronomers and con-
clusions are forthcoming.

There are open problems originating in this research. It would be interesting to
explore new ways of finding period automatically. Whether it is possible to do this
as well as a domain expert in this context is unknown, and it would be useful to
formalize this mathematically.

Every step of the filtering pipeline rejects some known good stars, while including
some seemingly non-periodic variables. Future improvements to the various stages
should focus on improving the model that rejects stars as either non-periodic or

non-variable.

5.5.6 Additional Figures

This section includes large figures discussed previously in this chapter that have

been placed here to minimize disruption of the written material.

127

Partial histogran of Cepheids in OGLE

Number of stars

8 1 2 3 a 5
Period in days

Partial Histogran for Eclipsing Binaries

Number of Stars

Nunber of Stars

Figure 5.17: Histograms of periods for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs.

128

Partial Hagnitude Histogran for Cepheids in OGLE

Nusber of Stars

13 14 15 16 17 18 19 20
V-nagnitude

Hagnitude Histogran for Eclipsing Binaries in OGLE

Number of stars

12 13 14 15 16 17 18 19 20 21 2
V-nagnitude

Hagnitude Histogran for RRLs in 0GLE

Number of stars

b
16 1655 17 175 18 185 19 195 20 205 21
V-nagnitude

Figure 5.18: Histograms of V-mag for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs. Magnitudes for stars in the SMC have been corrected by
subtracting 0.52.

129

Color Histogran for Cepheids in OGLE

Munber of Stars
8

10

5

)

-8.2] 02 8.4 0.6 12 1.4 16 1.8 2
Color Histogran for Eclipsing Binaries in 0GLE

£

Number of Stars

0 s
0.5] 0.5 1 15 o 2.5 3 3.5 4
V-1 magnitude

Golor Histogran for RRLs in OGLE

Nunber of Stars
3

50

V=T nagnitude

Figure 5.19: Histograms of V-I for stars in OGLEII dataset. From top to bottom:
Cepheids, EBs, RRLs.

130

Chapter 6

Generating Confidences from

Classifier Output

In the previous chapters, we have discussed various methods for classifying data,
specifically structured data, in a variety of settings. The primary focus there was
to overcome obstacles inherent in the classification process: capturing information
inherent in structure (Chapters 4 and 5), or overcoming noise in the data set (Chap-
ter 3). Now we turn to another problem related to classification that begins when
the classification is finished: how to estimate the reliability of classifier output.

In Chapter 5, during the “abstention” phase (Section 5.5.2), we were concerned
with finding a ranking of the output examples according to how confident the classi-
fier was with the predicted label. In that context, we used raw output in Section 5.4
and estimates of probabilities in Section 5.5.3 together with a cutoff based on the
training set. It is clear that it would be useful in such a setting to be able to estimate
accurately the probability that an unknown example belongs to a certain class, that

is, the probability that a data point x has the label i:

Py = ila) (6.1)

131

where as in Chapter 1 we use y to indicate the label of a data point x. We will often
refer to (6.1) as class conditional probability or CCP. Then, instead of estimating
the threshold, we could simply reject examples based on a concrete estimate of the
reliability of the label.

Some classification algorithms, such as logistic regression [Bishop, 2006}, Random
Forests [Breiman, 2001], and various forms of Boosting [Freund and Schapire, 1996],
do in fact produce estimates of class-conditional probabilities, that is a value for (6.1)
based on an assumed model. Others, such as Support Vector Machines [Boser et al.,
1992], Perceptron [Rosenblatt, 1958], and Winnow [Littlestone, 1987], estimate only
the decision boundary between to classes and do not provide probabilistic output.
There is ample recent work, however, that addresses the problem of estimating class-
conditional probability from, e.g., SVM output [Mease et al., 2007, Wu et al., 2004,
Platt, 1999, Niculescu-Mizil and Caruana, 2005]. For the remainder of this chapter
we will use SVM as the representative of classifiers not generating class-conditional
probabilities.

In this chapter we explore the effectiveness of several methods for generating
class-conditional probabilities in an experimental setting. We use logistic regression
as an example of a classifier naturally producing class-conditional probabilities. In
addition, we compare these to various methods, some new, for producing class-
conditional probabilities from SVM and kNN output. In our analysis we attempt
to discern what, if any, performance difference exists between different algorithms,
and in what settings. Finally, we highlight new avenues of research based on the

questions raised by the experimental results.

132

6.1 Background and Related Work

6.1.1 Classifiers Giving Probabilistic Output

Probabilistic generative classifiers attempt to model all the aspects of the distribu-
tions governing the classification task namely P(z|y), the probability of an example
being generated by a specific class, and P(y), the probability that a given label
will occur. Using Bayes’ Rule, P(y|x) can be calculated, and hence we have our
class-conditional probabilities. Probabilistic discriminative classifiers, such as logis-
tic regression, attempt to model P(y|x) directly by specifying a parametric form of
P(y|z) and then finding a maximum likelihood or MAP solution (see for example
[Bishop, 2006]). In this chapter we discuss only probabilistic discriminative mod-
els, and leave a discussion of generative models and comparisons thereof for future
work.!

Logistic regression (LR) is a probabilistic discriminative classifier. That is, LR
does not attempt to build a full probabilistic model, but constructs a discriminative
classifier that has some probabilistic motivation or interpretation. In the case of

LR, the assumption is that

is a linear function in terms of the input data.? As a linear function is equivalent to
a hyperplane in the input space, LR uses the same class of underlying functions to
assign class labels as SVM (and all other linear classifiers). The difference is in the
motivation governing how the hyperplanes are built.

The probabilistic interpretation does not always lead to the best classification

performance. In theory, perfect probabilistic knowledge would give optimal classi-

'For a detailed discussion of generative and probabilistic discriminative see Chapter 4 of Bishop
[2006].

2This follows from a the assumption that the P(x|y) are exponential in form. For a detailed
explanation see Chapter 4 of Bishop [2006].

133

fication, but this is not the case in practice due to the assumptions made in the
probabilistic models. Hence in the rest of the thesis, we use SVM and kNN because
of their excellent classification ability. We would like to have the best of both worlds
and in this chapter we explore the possibility of generating good estimates of (6.1)
from SVM and kNN output. We will continue to use LR as a point of comparison,

but will focus on SVM and kNN.

6.1.2 Methods for Generating CCPs from SVM

In this section we describe various methods for generating class-conditional probabil-
ities from multi-class SVM output. In addition, we discuss some relevant theoretical
results pertaining to probabilistic interpretations of SVM output. We focus on SVM
here in the interest of keeping the discussion coherent and concrete, and because
most of the work we reference does likewise, yet it is easy to see that many of the
methods can be applied in general to other algorithms. We will use the notation in

Table 6.1 and we assume r;; +rj; = 1.

Table 6.1: Notation for probability discussion.

Variable Meaning

Di Py =i|z)

P (Pi)i=1..k

fhij Ply=ily=ivVy=j)
Tij Estimate of ;5

k Number of classes

1. Indicator variable for event e

Methods for Binary Classification

We first review methods for binary classification problems that are not trivially
extensible to the multi-class case. In a later section of this chapter we discuss
various binary-to-multiclass extensions for probabilistic classifiers and show how to

apply the methods in this section in the multi-class setting.

134

Platt Scaling [Platt, 1999], like logistic regression, is founded on the assump-
tion that the output of the classifier is the log-odds of class membership. In this
case, however, the output is from SVM, and the assumption is not theoretically
justified [Bartlett and Tewari, 2004, Hérault and Grandvalet, 2007].> Platt [1999]
justifies the assumption in part based on empirical evidence that a parameterized

sigmoid of the form
1

1+ Af(2)+B (6.2)

where f(x) is the output of SVM on example z, fits the output of SVM well. This
method estimates A and B using a maximum likelihood solution where the true
p(y = 1|z) is estimated by 1, and p(y = —1|x) by 0. No multi-class extension is
given by Platt [1999], however as we discuss below it is still possible to apply Platt
Scaling in the multi-class setting.

Isotonic regression [Zadrozny and Elkan, 2002], like Platt Scaling, takes as in-
put the output of an already-learned classifier such as SVM. The output is sorted
according to the value of f(z) given by the SVM (i.e., the raw output), and each ex-
ample is given a preliminary value of 0 for p(y = 1|z) if y = 0, and 1 for p(y = 1|x)
if y = 1. The algorithm then looks for regions in which the p(y = 1|x) are not
sorted, and uses the average value of p(y = 1|z) in the un-sorted region as the new
value of p(y = 1|x) for all data in the region. New values of f(x) for an unknown
point are then estimated by binning the new value to the calibrated values. As with
Platt Scaling, isotonic regression is inherently a two-class method, however it can be
extended to the multi-class setting using the methods we discuss below. Zadrozny
and Elkan [2002] show that isotonic regression performs better than Platt Scaling
in some experimental contexts.

Caruana and Niculescu-Mizil [2006] gives an extensive empirical comparison of

Platt Scaling and Isotonic Regression applied to various types of classifiers in the

30ther work has shown that SVM makes accurate estimates of class membership only in the
region of the decision boundary [Bartlett and Tewari, 2004].

135

binary classification setting. In their experiments both calibration methods work
well for some classifiers such as SVM and Naive Bayes, but not others such as neural

nets and logistic regression.

Methods Using One-versus-one Extension to Multiclass

Some methods [Hastie and Tibshirani, 1998, Refregier and Vallet, 1991, Wu et al.,
2004, Price et al., 1995] are concerned only with the one-versus-one multi-class
extension of a binary classifier. These methods assume that a probability estimate r;;
already exists for each of the binary classifiers, and they do not concern themselves
with the initial creation of this probability estimate, only on combining the r;; to
estimate p;. Although we are concerned with the generation of the probabilities,
it is worth discussing these algorithms for combining the probabilities; first, they
assume an estimate of the probability in question, not the true probability and hence
share a common thread with our methods which assume no knowledge of the true
probability. Second, the methods they use to combine probabilities introduce ideas
and mathematical machinery that can be adapted to our problem.

The probability-combining methods typically use properties of probabilities to
derive equations with p;, and then solve the equations either exactly or approxi-
mately. These equations express a relationship between p;; and p;, and then using
estimates 7; of 15, solve for p;. Wu et al. [2004] compare several existing methods
to their original methods. The methods differ significantly in how they estimate p;;
they are all similar in that they require that the r;; be proper probability estimates.
This means that, in the case of SVM for example, the raw output of each binary
classifier needs to be processed somehow to generate the r;;, such as by using Platt
Scaling or isotonic regression, prior to running any methods to solve for p;. This

processing is classifier-dependent and can have a significant effect on the output.

136

The simplest method is to normalize (2.9):

2
= S
p k(k—l); ’LJ> Je

(6.3)

Note that in this case, the r;; could be raw output from SVM and need not be

normalized, as we only want to know if 7;; > r;;. In Hastie and Tibshirani [1998],

the authors wish to minimize the Kullback-Liebler (KL) distance between p;; and

rij, the estimate of p;;:
.y
Z n;;rij log i
i Hij
Price et al. [1995] use the identity
k
Y Ply=ivy=ijlz) | —(k=2)P(y=jlz) =Y _ Ply=ilz) =1
i#j i=1

and then substituting 7;; for u;; and noting that

o Pl=il)
Y Ply=ivy=jz)’

solve for p; directly:
1

Zi;ﬁj%—(k—?)'

pi =

(6.4)

(6.5)

Refregier and Vallet [1991] use the following identity to create a system of equations:

Hij _ DPi

Hii pj.

(6.6)

Then substituting the known value 7;; for j;;, there are k(k — 1)/2 equations with

k unknowns (the p;). Because the system is overly constrained, it cannot be solved

137

in general. Wu et al. [2004] suggest the following two minimization problems:

2

k
mpin Z Z TjiPi — Z TiiDj (6.7)

i=1 \ j#i J#i

and

k
HEDZZ(TjZ’pZ’ - T‘Z'jpj)z. (68)

i=1 j#i
Wu et al. [2004] point out that (6.8) is similar in spirit to (6.6) except that it is
solvable. Both (6.7) and (6.8) are solvable using a linear system.

In their analysis of (6.7), (6.8), (6.5), and (6.3) using synthetic data (i.e., when
the true p; are known), Wu et al. [2004] show that in their specific artificial settings
all methods perform comparably, both in terms of MSE and accuracy, except (6.3)
which performs worse. In these settings they do not use an underlying classifier,
but generate the r;; by perturbing the actual p;; with Gaussian Noise. Wu et al.
[2004] give an additional analysis on real-world data, using SVM as the underlying
classifier. To generate the r;;, however, they use Platt’s method [Platt, 1999]. The
results seem to show that with the exception of (6.3) which performs worse, the

methods perform comparably.

Other Methods

Huang et al. [2006] extend the method in Hastie and Tibshirani [1998] (6.4) to the
general binary-to-multiclass setting. In other words, this new method minimizes
an analog to (6.4) in the general setting of training binary classifiers to distinguish
any two subsets of classes (see Chapter 1) and combining the output to extract
class membership probabilities. This general setting includes both one-versus-one
and one-versus-rest. In their experimental analysis, Huang et al. [2006] show that
one-versus-one and one-versus-rest perform similarly in terms of MSE and accuracy
on real-world data. Their artificial data is generated according to a function that

is parameterized by the particular binary-to-multiclass setting, and the authors

138

acknowledge that this may give an unfair advantage to one method or another. The
results on the artificial data are not conclusive as to whether performance differences
are due to the binary-to-multiclass setting or to the generation of the artificial data.

A study in Duan and Keerthi [2005] compares the classification accuracy of one-
versus-rest SVM using Platt Scaling and the method from Hastie and Tibshirani
[1998] (6.4), logistic-regression using the method from Hastie and Tibshirani [1998],*
one-versus-all SVM, and one-versus-rest SVM. They claim that one-versus-rest SVM
with Platt Scaling and the method from Hastie and Tibshirani [1998] are much better
than the rest, but the experimental results show that in general the accuracies of all
four methods are within standard deviations of one another and it is hard to draw

a firm conclusion.

6.2 New Methods

The methods we presented in Section 6.1.2 solve equations for each test example
separately, and do not directly preserve the structure inherent in the raw output
of the classifier. For instance, the ordering that a classifier gives to the examples
may be worth using as a constraint on the p;;, or the fact that one classifier ranks
an example higher than another classifier may be worth preserving (this second
relationship is indeed preserved indirectly by several methods). In this section, we
develop several methods that are motivated by the desire to preserve the structure
given by the output of the classifier.

We present several new methods that attempt to estimate the p; from the raw
SVM output. In these methods, no assumption is made that the r;; are known. No
algorithm to combine the r;; is needed as the p; are estimated directly. The methods

are given by the following optimization problems which are explained next.

4Logistic regression can be used in the multi-class case and generates probabilities, hence it does
not require a probability-generating function or a binary-to-multiclass method.

139

. ko4
Minimize i 327, (Bij — pij)?
subject to Z?:l piyj=Li=1...n (6.9)

Cijgci’j —>ﬁij Sﬁm,z,i’:ln,jzlk‘

o k /n
Minimize ZQ;I zjzl(pij - pij)2 + H§”2
subject to Z?:l piyj=Li=1...n (6.10)

cij < cij — Pij < Py —&ijy i, =1...n,j=1...k

Minimize 37, Y (i — pij)?
subject to Z?:lﬁij =li=1...n (6.11)

Cijgcij’ —>]3ij Sﬁij/,i,i/:1...n,j:1...]€

o koo
Minimize 37", >0 (Pij — pii)* +)12
subject to Z?:l piyj=Li=1...n (6.12)

cij < cijr — Pij < Pijr — &ijy i, =1..n,j=1...k

where p;; = P(y; = jlx;) (as opposed to an analog of r;; used above), p;; are the

(unknown) estimates of p;; that we are solving for, and is a vector of slack variables.

The value of p;; is of course not known in general, hence for the training set we assign

pij = 1 if y; = j and 0 otherwise. The ¢;; are generated from the raw output of the

SVM; in evaluating the methods we will use the one-versus-rest setting, and thus

the ¢;; will be the output on example z; of the classifier distinguishing class j from

the rest. We defer the extension of these methods to the general multi-class setting

for future work.

These methods use the output of SVM to generate constraints on the p;;, and

then try to get the p;; as close to the idealized p;; as possible under these constraints.

140

In (6.9) we preserve column order. Imagine the matrices C, P € R™** such that
Cij = ¢ij, Pjj = p;j. Then by preserving column order, we mean that if the classifier
distinguishing class 1 from the rest “ranks” example m higher than example m’
(that is the output of the classifier is higher on m than on m’), i.e., ¢;1 > ¢y, then
Pm1 > Pm/1- The intuition is that the ordering of the examples by each classifier
is worth preserving, and our estimates of class membership probabilities should be
constrained appropriately. In (6.10), we allow this constraint to be violated, with an
associated penalty term £&. SVM is not a ranking algorithm, and in fact its only goal
is to estimate the decision boundary, hence it is not clear whether the constraint on
column order is a good one. To throw away column order however, is almost akin to
re-learning the classifier, as the ¢;; represent the distance to the decision boundary
and if the p;; do not respect column order, we are effectively ignoring the decision
boundary.

In (6.11) we use a different constraint imposed by the decision boundaries: row
order. By this we mean that if the classifier distinguishing class 1 from the rest gives
a higher score to example m than the classifier distinguishing class 2 from the rest,
i.e., ¢m1 > Cmo, then P > Pme. Like above, this is akin to preserving the row order
in the matrix C' in P. Instead of trying to preserve the ordering of distances to the
decision boundary, we just want to make sure that the if an example is closer to one
decision boundary than another, the p;; are ordered accordingly. This means that
(6.11) will not change the labels of the SVM. Again we introduce a version with
slack variables in (6.12) that allows the constraint to be violated.

Notice that the process just described uses a training or validation set to provide
probability estimates for the same set. Therefore we still need to address how to
use the probabilities given by Methods 1-4 to assign probabilities to new examples.

We propose the following simple algorithm to address this:
e Split the training set into ¢ training examples and c calibration examples.
e Train the binary classifiers on the ¢ training examples.

141

e Compute the raw output of the trained classifiers on the ¢ calibration examples

and use the output as input to the quadratic program.

e Embed each of the c¢ calibration examples in a k-dimensional feature space,
where feature j is the raw output of the binary classifier distinguishing class

j from all others.

e Embed any future test example in the same feature space and find its nearest

neighbor from the calibration examples in this space.

e Assign the test example the probability vector that was calculated for its

nearest neighbor.

6.3 Experiments and Results

In the following experiments we use Methods 1-4 with input from both SVM and
kNN. We compare these methods to normalization of the one-versus-rest SVM
(NORM-SVM), Normalization of k-NN output (NORM-kNN) and logistic regression
(LR).

The methods summarized in Wu et al. [2004] and in Section 6.1.2 are for combin-
ing existing probability estimates from a one-versus-one multi-class classifier. The
exception is Huang et al. [2006] who generalize the method from Hastie and Tibshi-
rani [1998] (6.7) to the general binary-to-multiclass extension [Allwein et al., 2000].
For reference we do compare the above methods to the generalized method of Huang
et al. [2006] (6.7), which uses Platt Scaling prior to applying the method. We refer to
this method as 1v1l when a one-versus-one SVM is used and 1vR when a one-versus-
rest SVM is used. This allows us to examine what, if any, performance difference
may be attributed to the particular binary-to-multiclass extension of SVM.

For every method that takes input from SVM, we run the SVM using a linear
kernel and a RBF kernel:

142

Figure 6.1: Training dataset of 3-classes each generated from a mixture of 2 Gaus-
sians

where C' = 1/2. This gives us an additional point of comparison and allows us to
examine what performance differences may be due to the feature space.

To evaluate the quality of the probability estimates, we use the quantity

n k

- Z(pij — pij)?

S|
i\g
eI

which we refer to as MSE. Although we are concerned primarily with the ability
of the methods to estimate probabilities, we also examine how each method affects
classification accuracy. As a baseline we will use a constant probability estimate
of 1/k when computing MSE, and the mode of the labels in the training set when
computing accuracy.

To evaluate the methods we run on both real and artificial data. For real data, we
use the datasets dna and segment from the Statlog Collection [Michie et al., 1994],
waveform [Asuncion and Newman, 2007], USPS [Hull, 1994], and MNIST [LeCun

143

Table 6.2: Description of Datasets

Number of Classes | Number of Dimensions | Number of Examples
dna 3 180 3186
waveform 3 21 5000
satimage 6 36 6435
segment 7 19 2310
MNIST 10 784 70000

et al., 1998]. We chose these datasets as they are used in other work on generating
probabilities from classifier output [Wu et al., 2004, Duan and Keerthi, 2005, Huang
et al., 2006]. We use the first 10 pre-determined cross-validation splits from Wu et al.
[2004].5 Table 6.2 shows information on the real-world data. For artificial data, we
create two 3-class datasets, each containing a fixed training and test set with 3000
examples. First a 2-dimensional dataset in which each class is generated from a
mixture of two Gaussians, class 1 with means (1,1), (4,0), class 2 with (4, 3), (8,3)
and class 3 with (7,0),(10,0). The means form a triangle-like pattern with each
class having two means on a side, and each class having one mean close to a mean
from each of the other two classes (see Figure 6.1). Second, we generate another 2-
dimensional dataset, again generating each class according to two means, and again
in a triangle-like pattern, except that this time we separate the means even further
by scaling each mean by a factor of 2.

For Methods 1-4 the training process is as outlined above with 300 calibration
examples held out from the training set prior to training the classifiers. For example,
for a training set of size 3000 as for the artificial data, we train the classifier on
2700 examples, withholding 300 as input to the quadratic programs for Methods
1-4. We use the same training set on all examples, so methods that do not require
the calibration set will train on the 2700 examples and ignore the 300 calibration
examples.

We first run all methods on a subset of the real-world data: dna and segment.

5These were formed by randomly selecting 1000 testing and 800 training examples from the
entire dataset.

144

Table 6.3: Accuracy for datasets dna and segment. Numbers are averages over 10-
fold cross-validation with standard deviations. No results were obtained for LR on
segment due to numerical precision issues with the software implementation.

dna segment

baseline 0.509100 £ 0.006437 | 0.151500 £ 0.003440
Method 1 0.509100 £ 0.006437 | 0.148100 £ 0.003604
Method 3 0.889600 £ 0.014841 | 0.920300 £ 0.008056
Method 4 0.888800 £ 0.015469 | 0.934700 £ 0.007243
Method 1 (RBF) | 0.509100 £ 0.006437 | 0.148100 £ 0.003604
Method 3 (RBF) | 0.897800 £ 0.010993 | 0.905000 + 0.006912
Method 4 (RBF) | 0.901000 £ 0.009718 | 0.924400 £ 0.007947
Method 1 (kNN) | 0.745100 £ 0.023634 | 0.641900 + 0.117678
Method 3 (kNN) | 0.8955 + 0.011919 0.6988 4 0.063261
Method 4 (kNN) | 0.755100 £ 0.017842 | 0.751500 £ 0.043887
1vl 0.897700 £ 0.008125 | 0.922900 £ 0.006064
1vR 0.890600 £ 0.012322 | 0.915700 £ 0.009661
1vl (RBF) 0.908500 £ 0.007044 | 0.881500 £ 0.007261
1vR (RBF) 0.906200 £ 0.007465 | 0.898700 £ 0.010678
NORM 0.888700 £ 0.014103 | 0.894600 £ 0.010895
NORM (RBF) 0.893900 £ 0.011455 | 0.860100 £ 0.011259
NORM (kNN) 0.728900 £ 0.024164 | 0.678400 £ 0.063755
LR 0.895500 + 0.011919 | N/A

145

Table 6.4: MSE for datasets dna and segment. Numbers are averages over 10-
fold cross-validation with standard deviations. If no kernel/algorithm is shown in
parenthesis, the classification method is SVM with a linear kernel. No results were
obtained for LR on segment due to numerical precision issues with the software
implementation.

dna segment

baseline 0.222222 + 0.000000 | 0.122449 + 0.000000
Method 1 0.228730 £ 0.007894 | 0.122400 + 0.000000
Method 3 0.056320 £ 0.006139 | 0.015300 £ 0.001055
Method 4 0.056750 £ 0.006189 | 0.013200 £ 0.000799
Method 1 (RBF) | 0.228770 £ 0.007910 | 0.122400 + 0.000000
Method 3 (RBF) | 0.050320 £ 0.003108 | 0.018530 + 0.001013
Method 4 (RBF) | 0.049330 £ 0.002591 | 0.015570 £ 0.000987
Method 1 (kNN) | 0.123270 £ 0.011234 | 0.046440 + 0.009484
Method 3 (kNN) | 0.05672 + 0.006228 | 0.053420 + 0.008930
Method 4 (kNN) | 0.117980 £ 0.008177 | 0.046190 + 0.006578
1vl 0.052470 £ 0.003651 | 0.018385 + 0.000360
1vR 0.055827 £ 0.004296 | 0.022013 £ 0.000900
1vl (RBF) 0.044986 £ 0.002991 | 0.025856 £ 0.000952
1vR (RBF) 0.048177 £+ 0.002134 | 0.021521 + 0.001004
NORM 0.054601 £ 0.005239 | 0.030808 £ 0.001462
NORM (RBF) 0.081478 £ 0.003051 | 0.050608 + 0.001102
NORM (kNN) 0.168180 £ 0.015340 | 0.089530 + 0.018423
LR 0.056720 + 0.006228 | N/A

146

Table 6.5: Accuracies on remaining datasets.

Dataset 1vl Method 3 (RBF) Method 4 (RBF)
satimage | 0.835200 £ 0.006356 | 0.800400 £ 0.009709 | 0.822800 £ 0.008108
waveform | 0.849300 £ 0.009878 | 0.850800 4 0.008791 | 0.852100 4 0.010214
MNIST 0.833900 £ 0.007651 | 0.888900 £ 0.007937 | 0.824500 % 0.016257
Table 6.6: MSE on remaining datasets.
Dataset 1vl Method 3 (RBF) Method 4 (RBF)
satimage | 0.037821 £ 0.001123 | 0.043820 £ 0.002287 | 0.039250 £ 0.002076
waveform | 0.072216 + 0.002977 | 0.071710 = 0.003142 | 0.069700 £ 0.003106
MNIST 0.023295 £ 0.001542 | 0.016490 £ 0.000843 | 0.026750 £ 0.001921

This first round of experiments is meant to give a general idea of the performance of
the algorithms. In Tables 6.3 and 6.4 we notice that Method 1 performs poorly on
the data set. In fact, it appears Method 1 may be an ill-formed quadratic program
as it seems to be converging to the same solution regardless of input; it is easy to see
instances in which the constraints will be forced to equality. For example, consider
a two example dataset such that cq1 > co1 and c¢19 > c99. The only way to satisfy
all constraints is to set c11 = co1 and c¢13 = co9. With a larger dataset and hence
more constraints the picture is not as simple, however the 2 example case gives some
insight as to why preserving column-order is not on its own sufficient. We do not
report results for Method 2 as they are equally bad. Methods 3 and 4, however,
perform quite well, in most cases comparably than 1vl and 1vR, which seem to be
the overall best performing methods. On the segment data using the RBF kernel
Methods 3 and 4 are the best both in terms of accuracy and MSE. Interestingly,
Method 3 (no slack variable) has a slight drop in performance on the dna dataset
when using the RBF kernel instead of linear, but the RBF kernel gives an increase in
performance for Method 4 (with slack variables). In general, the RBF kernel helps
all methods.

Next we run on the remaining real-world datasets with the methods that did

147

Table 6.7: Accuracy on artificial datasets. Art 2 is generated from the means of Art
1 scaled by a factor of 2.

Dataset | 1vl | Method 3 (RBF) | Method 4 (RBF)
Art 1 0.907 0.907 0.9063
Art 2 0.997 0.997 0.997

Table 6.8: MSE on artificial datasets. Art 2 is generated from the means of Art 1
scaled by a factor of 2.

Dataset vl Method 3 (RBF) | Method 4 (RBF)
Art 1 0.00023 0.00028 0.00028
Art 2 0.0045 0.007 0.0065

well in the experiments on dna and segment: we concentrate on Methods 3 and
4, and compare them to 1vl (the overall best performer so far). The results for
accuracy are in Table 6.5 and for MSE in Table 6.6. We show clear wins on MNIST
for Methods 3 and 4, but the results in general are similar to the first round of
experiments: 1vl and Method 3 and 4 are competitive, each one sometimes beating
the other, but there is no clear overall winner.

We show the results for the artificial data in Table 6.7 and Table 6.8. We see
that as in the experiments with the real-world data, Methods 3 and 4 perform
comparably to 1vl, with a slight edge going to 1v1. This setting gives us a better
idea of how good the probability estimates are, because we have actual values for
p(y = i|x) with which to evaluate the estimates. The MSE values are extremely low
for all algorithms, indicating that this setting may not be challenging enough. This

is a worthwhile issue to address in future experiments.

6.4 Conclusions and Future Work

We conclude the chapter with the following observations and ideas for future work.

148

Observe that Methods 1-4 all have the following term in their objective functions:

n
> lIpi — pill?
i=1

where pP; is the norm of the probability vector for example 7. Expanding we have

n

> (sl + lIpil® = 2(pi, pi))

i=1
and because pj is a constant, it can be eliminated from the objective function

n

Z (I1Dsll* = 2(pi, pi))

i=1

Setting all p;; = 1/k minimizes the term ||p;[|?. It is possible that this term domi-
nates and we assign p;; = 1/k in some cases leading to poor probability estimates.
The inner product term, —2(p;, p;) pushes the p;; to be similar to the p;;, which are
0 — 1 valued on the training set. This means that any value in p; in a dimension
other than the class label does not affect this term, as p;; = 0 for all j other than
the class label. The inner product term and the norm term hence drive the p; to
1 in dimension j and to 1/k in all other dimensions. If we remove the norm term,
we end up with a linear program with an objective function similar to that in the

primal of SVM:

Maximize > . | (pi,pi)
subject to Z§:1 pij=1li=1...n (6.13)

and constraints on row/column ordering

Here we replace the minimization of the negative inner product with the maximiza-
tion of the inner product. This is similar to the SVM primal objective function
in a nm dimensional feature space with w set to the vector of all the p;, and each

training example p; has all O-valued features except at indices (i —1)k+1...ik. The

149

constraints are similar to constraining the L1-norm of w, except it is a piecewise
constraint. This may present another way of looking at this problem and deserves
further investigation.

The inequality constraints in the objective functions are not strict, and hence
it is possible to set all p;; (along a row or column) equal to each other and satisfy
the constraints. Future work should explore how to change these constraints or add
additional constraints so that such a trivial solution is not available.

Row and column ordering could be replaced by some other measure of how SVM
ranks examples. Perhaps a more complex relationship is useful, such as ensuring
that if ¢; > ¢;, then p; > p; where ¢; is the difference between the output of the
classifier giving the highest output on example ¢ and the classifier giving the second
highest output on example i (and likewise for the p;).

The computational resources required by the quadratic program are substantial
and restrict the number of examples and classes in the calibration set. It may be
possible to formulate linear programs that accomplish the same or similar goals as
Methods 1-4.

Using the nearest-neighbor approach to map new examples to probability vectors
is a good start, however in future work we will want to explore other mapping
techniques.

Data generated by different distributions is a priority for future experiments, as
we failed to truly differentiate 1v1l and Methods 3 and 4 with our artificial data.
A good artificial setting will highlight strengths and weaknesses which we have not
done here.

Finally, it may be the case that SVM simply ranks examples poorly and the
methods presented here do as well as can be expected. It is not the objective of
SVM to rank examples, and theoretical results have shown that SVM (and other
classifiers) only estimates P(y|z) properly in the region immediately around the

decision boundary, i.e., when P(y|x) = 0.5 [Bartlett and Tewari, 2004]. A better

150

source of input to the quadratic programs (and to other methods) might be the the
output of a ranking SVM or other ranking algorithm. These algorithms attempt only
to rank the examples according to how likely they are to be in a given class, but they
do not estimate probabilities. In future experiments, it would be interesting to see
if Methods 1-4 can perform well when combined with a ranking versus classification

algorithm.

151

Chapter 7

Conclusion

We have presented several interesting results in both analyzing and developing ma-
chine learning classification algorithms. We gave a thorough empirical study of
Perceptron Algorithm variants in the noisy data setting, showing the surprising re-
sult that Perceptron with Margins outperforms variants specifically designed for the
noisy setting, and even performs comparably with SVM. We studied problems where
the data are graphs or hypergraphs, and designed a kernel that works directly on
hypergraphs; we showed that it performs as well as, and sometimes better than, ILP
systems on hypergraph data, and that it uses a different feature space than existing
graph kernels. We illustrated several interesting properties of the cross-correlation
function, showing that it is very useful for classifying periodic time series, but that
it is not positive semidefinite. As a solution, we developed a kernel that is an in-
tuitive analog to the cross-correlation and demonstrated its good performance. We
then built a completely automatic system for classifying periodic variable stars and
proved its performance by classifying the entire MACHO survey. Finally we studied
existing methods for generating classifier confidence estimates, and proposed several
new methods, comparing them in an experimental setting.

There are several avenues for future work that follow from the results of this

thesis. The automatic classification system for periodic variable stars has several

152

steps in its pipeline that can be improved. Specifically period finding has shown to
be a very interesting problem. The hypergraph kernel we developed does not account
for certain types of conjunctions and it is not clear whether it is possible to compute
them with a similar kernel. The methods we developed for estimating confidence
are competitive, but leave room for improvement. The question of whether SVM

can generate better confidences remains a key component of that work.

153

Bibliography

T. Adamek and N. O’Connor. A multiscale representation method for nonrigid
shapes with a single closed contour. IEEE Trans. Circuits Syst. Video Techn., 14
(5):742-753, 2004.

C. Alcock et al. The MACHO Project - a Search for the Dark Matter in the Milky-
Way. In B. T. Soifer, editor, Sky Surveys. Protostars to Protogalaxies, volume 43
of Astronomical Society of the Pacific Conference Series, pages 291—, January
1993.

C. Alcock et al. The MACHO project LMC variable star inventory. 1: Beat
Cepheids-conclusive evidence for the excitation of the second overtone in classi-

cal Cepheids. Astronomy Journal, 109:1653—, April 1995. doi: 10.1086,/117392.

E.L. Allwein, R. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113-141,

2000.

M. Arias, R. Khardon, and J. Maloberti. Learning Horn expressions with logan-h.
Journal of Machine Learning Research, 8:549-587, 2007.

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL

http://www.ics.uci.edu/~mlearn/MLRepository.html.

M-F. Balcan, A. Blum, and N. Srebro. A theory of learning with similarity func-
tions. Machine Learning, 72(1-2):89-112, 2008.

154

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machines and other pattern classifiers. In B. Scholkopf, C.J.C. Burges, and A.J.
Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages 43—
54. MIT Press, Cambridge, MA, 1999.

P. Bartlett and A. Tewari. Sparseness versus estimating conditional probabilities:
Some asymptotic results. In J. Shawe-Taylor and Y. Singer, editors, COLT, volume
3120 of Lecture Notes in Computer Science, pages 564-578. Springer, 2004. ISBN

3-540-22282-0.

Peter L. Bartlett. The sample complexity of pattern classification with neural
networks: The size of the weights is more important than the size of the network.

IEEE Transactions on Information Theory, 44(2):525-536, 1998.

D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time

series. In Knowledge Discovery and Data Mining, pages 359-370, 1994.

C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
NY, 2006.

R.M. Blair, H. Fang, W.S. Branham, B.S. Hass, S.L. Dial, C.L. Moland, W. Tong,
L. Shi, R. Perkins, and D.M. Sheehan. The estrogen receptor relative binding

affinities of 188 natural and xenochemicals: Structural diversity of ligands. Toxicol.

Sci., 54:138-153, 2000.

B. Boser, I. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pages 144-152, 1992.

W.S. Branham, S.L. Dial, C.L. Moland, B.S. Hass, R.M. Blair, H. Fang, L. Shi,
W. Tong, R.G. Perkins, and D.M. Sheehan. Binding of phytoestrogens and my-

coestrogens to the rat uterine estrogen receptor. J. Nutr., 132:658-664, 2002.

155

L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning

algorithms. In Cohen and Moore [2006], pages 161-168. ISBN 1-59593-383-2.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the Generalization Ability of
On-line Learning Algorithms. Information Theory, IEEE Transactions on, 50(9):
20502057, 2004.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A Second-order Perceptron Algo-
rithm. SIAM Journal on Computing, 34(3):640-668, 2005.

C-C. Chang and C-J. Lin. LIBSVM: a library for support vector machines, 2001.

Software available at http://www.csie.ntu.edu.tw/~cjlin/1libsvm.

P. M. Cincotta, M. Mendez, and J. A. Nunez. Astronomical Time Series Analysis.
I. A Search for Periodicity Using Information Entropy. Astrophysical Journal, 449:
231—+, August 1995. doi: 10.1086/176050.

W. Cohen. Fast effective rule induction. In Proceedings of the Twelfth International

Conference on Machine Learning, pages 115-123, 1995.

W. Cohen and A. Moore, editors. Machine Learning, Proceedings of the Twenty-
Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA,
June 25-29, 2006, 2006. ACM. ISBN 1-59593-383-2.

M. Collins. Ranking algorithms for named entity extraction: Boosting and the
voted perceptron. In Proceedings of the 40th Annual Meeting of the Association

for Computational Linguistics, pages 489-496, 2002.

M. Collins and N. Duffy. New ranking algorithms for parsing and tagging: Kernels

over discrete structures, and the voted perceptron. In ACL, pages 263-270, 2002.

K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive

algorithms. Journal of Machine Learning Research, 7:551-585, 2005.

156

N. Cristianini and J. Shawe-Taylor. An introduction to support vector machines.

Cambridge University Press, 2000.

C. Cumby and D. Roth. On kernel methods for relational learning. In Fawcett and
Mishra [2003], pages 107-114. ISBN 1-57735-189-4.

M. Cuturi. Permanents, transport polytopes and positive definite kernels on his-

tograms. In M. Veloso, editor, IJCAI pages 732-737, 2007.

M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui. A kernel for time series based
on global alignments. IEEFE International Conference on Acoustics Speech and
Signal Processing (ICASSP) 2007., 2:413-416, April 2007. ISSN 1520-6149. doi:
10.1109/ICASSP.2007.366260.

I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization.

CoRR, cmp-lg/9706006, 1997.

L. De Raedt. Logical settings for concept learning. Artificial Intelligence, 95(1):

187-201, 1997. See also relevant Errata (forthcoming).

L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-learnable.

Artificial Intelligence, 70:375-392, 1994.

J. Debosscher, L. M. Sarro, C. Aerts, J. Cuypers, B. Vandenbussche, R. Garrido,
and E. Solano. Automated supervised classification of variable stars. i. methodol-

ogy. Astronomy and Astrophysics, 475:1159-1183, December 2007.

O. Dekel and Y. Singer. Data driven online to batch conversions. In Advances in

Neural Information Processing Systems 18 (Proceedings of NIPS 2005), 2005.

M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-based
approaches for classifying chemical compounds. In ICDM, pages 35-42. IEEE
Computer Society, 2003. ISBN 0-7695-1978-4.

157

T. Dietterich. An experimental comparison of three methods for constructing en-
sembles of decision trees: Bagging, boosting, and randomization. Machine Learn-

ing, 40:139-158, 2000.

T. Dietterich, M. Kearns, and Y. Mansour. Applying the weak learning framework
to understand and improve C4.5. In Proceedings of the International Conference

on Machine Learning, pages 96-104, 1996.

K. Duan and S. Keerthi. Which is the best multiclass SVM method? An empirical
study. In N. Oza, R. Polikar, J. Kittler, and F. Roli, editors, Multiple Classi-
fier Systems, volume 3541 of Lecture Notes in Computer Science, pages 278-285.
Springer, 2005. ISBN 3-540-26306-3.

C. Elkan. Using the triangle inequality to accelerate k-means. In Fawcett and

Mishra [2003], pages 147-153. ISBN 1-57735-189-4.

L. Faccioli, C. Alcock, K. Cook, G. E. Prochter, P. Protopapas, and D. Syphers.
Eclipsing Binary Stars in the Large and Small Magellanic Clouds from the MACHO
Project: The Sample. Astronomy Journal, 134:1963-1993, November 2007. doi:
10.1086/521579.

H. Fang, W. Tong, L.M. Shi, R. Blair, R. Perkins, W. Branham, B.S. Hass, Q. Xie,
S.L. Dial, C.L. Moland, and D.M. Sheehan. Structure-activity relationships for a

large diverse set of natural, synthetic, and environmental estrogens. Chem. Res.

Toz., 14(3):280-294, 2001.

T. Fawcett and N. Mishra, editors. Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC,
USA, 2003. ISBN 1-57735-189-4.

Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In ICML,
pages 148-156, 1996.

158

Y. Freund and R. Schapire. Large margin classification using the perceptron algo-

rithm. Machine Learning, 37:277-296, 1999.

J.H. Friedman. A variable span smoother. Technical report, Stanford University

CA Lab for Computational Statistics, 1984.

T. Friess, N. Cristianini, and C. Campbell. The kernel adatron algorithm: A fast
and simple learning procedure for support vector machines. In Proceedings of the

International Conference on Machine Learning, pages 188-196, 1998.

H. Frohlich, J. Wegner, F. Sieker, and A. Zell. Optimal assignment kernels for
attributed molecular graphs. In ICML, pages 225-232, 2005.

S. Gallant. Perceptron-based learning algorithms. IFEE Transactions on Neural

Networks, 1(2):179-191, 1990.

A. Garg and D. Roth. Margin distribution and learning algorithms. In Proc. of
the International Conference on Machine Learning (ICML), pages 210-217, 2003.

T. Gértner. Predictive graph mining with kernel methods. In Advanced Methods

for Knowledge Discovery from Complexr Data. Springer, 2005.

T. Géartner, P. Flach, A. Kowalczyk, and A.J. Smola. Multi-instance kernels. In

International Conference on Machine Learning, pages 179-186, 2002.

T. Gartner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and
efficient alternatives. In B. Schélkopf and M. Warmuth, editors, COLT, volume
2777 of Lecture Notes in Computer Science, pages 129-143. Springer, 2003. ISBN

3-540-40720-0.

X. Ge and P. Smyth. Deformable markov model templates for time-series pattern

matching. In Knowledge Discovery and Data Mining, pages 81-90, 2000.

M. Geha et al. Variability-selected Quasars in MACHO Project Magellanic Cloud
Fields. Astronomy Journal, 125:1-12, January 2003. doi: 10.1086,/344947.

159

C. Gentile. A new approximate maximal margin classification algorithm. Journal

of Machine Learning Research, 2:213-242, 2001.

7. Ghahramani, editor. Machine Learning, Proceedings of the Twenty-Fourth In-
ternational Conference (ICML 2007), Corvalis, Oregon, USA, June 20-24, 2007,
volume 227 of ACM International Conference Proceeding Series, 2007. ACM. ISBN
978-1-59593-793-3.

P. Gorry. General least-squares smoothing and differentiation by the con-
volution (savitzky-golay) method. Analytical Chemistry, 62(6):570-573, 1990.
doi: 10.1021/ac00205a007. URL \url{http://pubs.acs.org/doi/abs/10.1021/

ac00205a007}.

T. Graepel, R. Herbrich, and R. Williamson. From margin to sparsity. In Advances
in Neural Information Processing Systems 13 (Proceedings of NIPS 2000), pages
210-216, 2000.

A. Grove and D. Roth. Linear concepts and hidden variables: An empirical study.
In M. Jordan, M. Kearns, and S. Solla, editors, NIPS. The MIT Press, 1997. ISBN
0-262-10076-2.

S. Har-Peled, D. Roth, and D. Zimak. Constraint classification for multiclass
classification and ranking. In S. Becker, S. Thrun, and K. Obermayer, editors,

NIPS, pages 785-792. MIT Press, 2002. ISBN 0-262-02550-7.

J. D. Hartman, B. S. Gaudi, M. J. Holman, B. A. McLeod, K. Z. Stanek, J. A.
Barranco, M. H. Pinsonneault, and J. S. Kalirai. Deep MMT Transit Survey of
the Open Cluster M37. II. Variable Stars. Astrophysical Journal, 675:1254-1277,
March 2008. doi: 10.1086/527460.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. The Annals of
Statistics, 26(2):451-471, 1998.

160

D. Haussler. Convolution kernels for discrete structures. Technical Report UCSC-
CRL-99-10, Department of Computer Science, University of California at Santa
Cruz, July 1999.

C. Helma, R. King, S. Kramer, and A. Srinivasan. The predictive toxicology
challenge 2000-2001. Bioinformatics, 17(1):107-108, 2001.

R. Hérault and Y. Grandvalet. Sparse probabilistic classifiers. In Ghahramani

[2007], pages 337-344. ISBN 978-1-59593-793-3.

K. W. Hodapp et al. Design of the Pan-STARRS telescopes. Astronomische
Nachrichten, 325:636-642, October 2004. doi: 10.1002/asna.200410300.

T. Horvath, S. Wrobel, and U. Bohnebeck. Relational instance-based learning with
lists and terms. Machine Learning, 43(1/2):53-80, 2001.

T. Horvath, T. Géartner, and S. Wrobel. Cyclic pattern kernels for predictive graph
mining. In KDD, pages 158-167, 2004.

D. A. Howell et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy
Survey: Improving High-Redshift Supernova Selection and Classification. Astro-

physical Journal, 634:1190-1201, December 2005. doi: 10.1086/497119.

T-K. Huang, R.C. Weng, and C-J. Lin. Generalized Bradley-Terry models and
multi-class probability estimates. Journal of Machine Learning Research, 7:85—

115, 2006.

J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern
Anal. Mach. Intell., 16(5):550-554, 1994.

T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

161

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In ICML, pages 321-328, 2003.

M. Kearns and U. Vazirani. An Introduction to Computational Learning Theory.

The MIT Press, Cambridge, Massachusetts, 1994.

M. Kearns, M. Li, L. Pitt, and L. G. Valiant. Recent results on boolean con-
cept learning. In Proceedings of the Fourth International Workshop on Machine

Learning, pages 337-352, 1987.

M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine

Learning, 17(2/3):115-141, 1994.

E. Keogh, L. Wei, X. Xi, S-H. Lee, and M. Vlachos. Lb keogh supports exact
indexing of shapes under rotation invariance with arbitrary representations and
distance measures. In U. Dayal et al., editors, International Conference on Very

Large Databases, pages 882-893. ACM, 2006. ISBN 1-59593-385-9.

R. Khardon and G. Wachman. Noise tolerant variants of the perceptron algorithm.

Journal of Machine Learning Research, 8:227-248, 2007.

R. Khardon, D. Roth, and R.A. Servedio. Efficiency versus convergence of boolean
kernels for on-line learning algorithms. In T. Dietterich, S. Becker, and Z. Ghahra-

mani, editors, NIPS, pages 423-430. MIT Press, 2001.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online Learning with Kernels.

IEEE Transactions on Signal Processing, 52(8):2165-2176, 2004.

A. Kowalczyk, A. Smola, and R. Williamson. Kernel machines and boolean func-
tions. In Advances in Neural Information Processing Systems 14 (Proceedings of

NIPS 2001), pages 439-446, 2001.

S. Kramer and L. De Raedt. Feature construction with version spaces for biochem-

ical applications. In ICML, pages 258-265, 2001.

162

W. Krauth and M. Mézard. Learning algorithms with optimal stability in neural
networks. Journal of Physics A, 20(11):745-752, 1987.

N. Landwehr, A. Passerini, L. De Raedt, and P. Frasconi. kfoil: Learning simple
relational kernels. In AAAIL AAAI Press, 2006.

N. Landwehr, K. Kersting, and L. De Raedt. Integrating naive bayes and foil.
Journal of Machine Learning Research, 8:481-507, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEFE, volume 86, pages 2278-2324,
1998.

Y. Li. Selective voting for perception-like online learning. In ICML, pages 559-566,
2000.

Y. Li and P. Long. The relaxed online maximum margin algorithm. Machine

Learning, 46:361-387, 2002.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. Kandola. The perceptron
algorithm with uneven margins. In International Conference on Machine Learning,

pages 379-386, 2002.

N. Littlestone. From on-line to batch learning. In Proceedings of the Conference

on Computational Learning Theory, pages 269-284, 1989.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2(4):285-318, 1987.

N. R. Lomb. Least-squares frequency analysis of unequally spaced data. Astro-

physics and Space Science, 39:447-462, February 1976. doi: 10.1007/BF00648343.

Z. Lu, T.K. Leen, Y. Huang, and D. Erdogmus. A reproducing kernel hilbert

space framework for pairwise time series distances. In William W. Cohen, Andrew

163

McCallum, and Sam T. Roweis, editors, International Conference on Machine

Learning, pages 624631, 2008.

R. Luss and A. d’Aspremont. Support vector machine classification with indefi-
nite kernels. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Neural

Information Processing Systems. MIT Press, 2007.

P. Mahé, N. Ueda, T. Akutsu, J. Perret, and J. Vert. Extensions of marginalized
graph kernels. In ICML, 2004.

D. Mease, A. Wyner, and A. Buja. Boosted classification trees and class probabil-
ity /quantile estimation. JMLR, 8:409-439, 2007.

D. Michie, D.J. Spiegelhalter, and C.C. Taylor. Machine learning, neural and
statistical classification, 1994. URL http://www.amsta.leeds.ac.uk/~charles/

statlog/.
T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. Moore. The anchors hierarchy: Using the triangle inequality to survive high
dimensional data. In C. Boutilier and M. Goldszmidt, editors, Uncertainty in
Artificial Intelligence, pages 397-405. Morgan Kaufmann, 2000. ISBN 1-55860-
709-9.

S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13

(38&4):245-286, 1995.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 20:629-679, 1994.

S. Muggleton, H. Lodhi, A. Amini, and M. Sternberg. Support vector inductive
logic programming. In A. Hoffmann, H. Motoda, and T. Scheffer, editors, Discov-
ery Science, volume 3735 of Lecture Notes in Computer Science, pages 163—175.

Springer, 2005. ISBN 3-540-29230-6.

164

D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of ma-
chine learning databases, 1998. URL \url{http://www.ics.uci.edu/~mlearn/

MLRepository.html}.

A. Niculescu-Mizil and R. Caruana. Predicting good probabilities with supervised
learning. In L. De Raedt and S. Wrobel, editors, ICML, pages 625-632. ACM,
2005. ISBN 1-59593-180-5.

A. B. Novikoff. On convergence proofs on perceptrons. Symposium on the Mathe-

matical Theory of Automata, 12:615-622, 1962.

C.S. Ong, X. Mary, S. Canu, and A.J. Smola. Learning with non-positive kernels.

In C. Brodley, editor, International Conference on Machine Learning. ACM, 2004.

S. Osowski, L.T. Hoai, and T. Markiewicz. Support vector machine-based ex-
pert system for reliable heartbeat recognition. IEEE Transactions on Biomedical

Engineering, 51:582-589, 2004.
C.H. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

J.C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In A.J. Smola, P. Bartlett, B. Scholkopf, and
D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61-74. MIT
Press, Cambridge, MA, 1999.

W. H. Press and G. B. Rybicki. Fast algorithm for spectral analysis of unevenly
sampled data. Astrophysical Journal, 338:277-280, March 1989. doi: 10.1086/
167197.

D. Price, S. Knerr, L. Personnaz, and G. Dreyfus. Pairwise neural network classi-
fiers with probabilistic outputs. In G. Tesauro, D. Touretzky, and T. Leen, editors,
NIPS, pages 1109-1116. MIT Press, 1995.

165

P. Protopapas, J. M. Giammarco, L. Faccioli, M. F. Struble, R. Dave, and
C. Alcock. Finding outlier light curves in catalogues of periodic variable stars.
Monthly Notices of the Royal Astronomical Society, 369:677-696, June 2006. doi:
10.1111/j.1365-2966.2006.10327.x.

V. Punyakanok, D. Roth, and W-T. Yih. The importance of syntactic parsing
and inference in semantic role labeling. Computational Linguistics, 34(2):257-287,

2008.

J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:

239-266, 1990.

J. R. Quinlan. Unknown attribute values in induction. In Alberto Maria Segre,

editor, ML, pages 164-168. Morgan Kaufmann, 1989. ISBN 1-55860-036-1.

L. Ralaivola, S. J. Swamidass, H. Saigo, and P. Baldi. Graph kernels for chemical
informatics. Neural Networks, 18(8):1093-1110, 2005.

P. Refregier and F. Vallet. Probabilistic approaches for multiclass classification
with neural networks. In International Conference on Artificial Neural Networks,

pages 1003 — 1006, 1991.

J.D. Reimann. Frequency Estimation Using Unequally-Spaced Astronomical Data.

PhD thesis, University California at Berkeley, 1994.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65:386-407, 1958.

J. D. Scargle. Studies in astronomical time series analysis. I - Statistical aspects
of spectral analysis of unevenly spaced data. Astrophysical Journal, 263:835-853,
December 1982. doi: 10.1086/160554.

B. Scholkopf and A.J. Smola. Learning with Kernels. The MIT Press, 2002.

166

A. Schwarzenberg-Czerny. On the advantage of using analysis of variance for period

search. MNRAS, 241:153-165, November 1989.

R.A. Servedio. On PAC Learning Using Winnow, Perceptron, and a Perceptron-
like Algorithm. In Proceedings of the twelfth annual conference on Computational

learning theory, pages 296-307, 1999.

S. Shalev-Shwartz and Y. Singer. A new perspective on an old perceptron al-
gorithm. In Proceedings of the Sizteenth Annual Conference on Computational

Learning Theory, pages 264-278, 2005.

J. Shawe-Taylor, P. Bartlett, R. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information

Theory, 44(5):1926-1940, 1998.

K. Shin and T. Kuboyama. A generalization of Haussler’s convolution kernel:
mapping kernel. In W. Cohen, A. McCallum, and S. Roweis, editors, International

Conference on Machine Learning, pages 944-951, 2008.

M.-S. Shin and Y.-I. Byun. Efficient Period Search for Time Series Photometry.

Journal of Korean Astronomical Society, 37:79-85, June 2004.

A.J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans, editors. Advances in

Large Margin Classifiers. MIT Press, Cambridge, MA, 1999.

0. Soderkvist. Computer vision classification of leaves from Swedish trees. Master’s

thesis, Linkoping University, SE-581 83 Linkoping, Sweden, September 2001.

S. Sonnenburg, G. Ratsch, C. Schéfer, and B. Scholkopf. Large scale multiple

kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.

I. Soszynski, A. Udalski, M. Szymanski, M. Kubiak, G. Pietrzynski, P. Wozniak,

K. Zebrun, O. Szewczyk, and L. Wyrzykowski. The Optical Gravitational Lens-

167

ing Experiment. Catalog of RR Lyr Stars in the Large Magellanic Cloud. Acta
Astronomica, 53:93-116, June 2003.

A. Srinivasan, S. Muggleton, M. Sternberg, and R. King. Theories for mutagenicity:
A study in first-order and feature-based induction. Artificial Intelligence, 85(1-2):

277-299, 1996.

B. M. Starr et al. LSST Instrument Concept. In J. A. Tyson and S. Wolff,
editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, volume 4836 of Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, pages 228-239, December 2002. doi: 10.1117/12.457331.

R. F. Stellingwerf. Period determination using phase dispersion minimization.

Astrophysical Journal, 224:953-960, September 1978. doi: 10.1086/156444.

P. Tsampouka and J. Shawe-Taylor. Analysis of generic perceptron-like large mar-
gin classifiers. In Proceedings of the European Conference on Machine Learning,

pages 750-758, 2005.

K. Tsuda and T. Kudo. Clustering graphs by weighted substructure mining. In
Cohen and Moore [2006], pages 953-960. ISBN 1-59593-383-2.

A. Udalski, M. Szymanski, M. Kubiak, G. Pietrzynski, P. Wozniak, and Z. Ze-
brun. Optical gravitational lensing experiment. photometry of the macho-smc-1

microlensing candidate. Acta Astronomica, 47(431), 1997.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):
1134-1142, 1984.

L.G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189-201, 1979.

S. Vishwanathan, K. Borgwardt, and N. Schraudolph. Fast computation of graph
kernels. In NIPS 19, 2006.

168

M. Vlachos, Z. Vagena, P. Yu, and V. Athitsos. Rotation invariant indexing of
shapes and line drawings. In O. Herzog, H-J. Schek, N. Fuhr, A. Chowdhury, and
W. Teiken, editors, Conference on Information and Knowledge Management, pages

131-138. ACM, 2005. ISBN 1-59593-140-6.

G. Wachman and R. Khardon. Learning from interpretations: a rooted kernel for
ordered hypergraphs. In Ghahramani [2007], pages 943-950. ISBN 978-1-59593-
793-3.

G. Wachman, R. Khardon, P. Protopapas, and C. Alcock. Kernels for periodic
time series arising in astronomy. In European Conference on Machine Learning,

2009.

A. Woznica, A. Kalousis, and M. Hilario. Kernels over relational algebra structures.

In PAKDD, pages 588-598, 2005.

T-F. Wu, C-J. Lin, and R.C. Weng. Probability estimates for multi-class classifi-
cation by pairwise coupling. Journal of Machine Learning Research, 5:975-1005,
2004.

L. Wyrzykowski, A. Udalski, M. Kubiak, M. K. Szymanski, K. Zebrun, I. Soszyn-
ski, P. R. Wozniak, G. Pietrzynski, and O. Szewczyk. The Optical Gravitational
Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud. Acta
Astronomica, 54:1—, March 2004.

B. Zadrozny and C. Elkan. Transforming classifier scores into accurate multiclass

probability estimates. In KDD, pages 694-699. ACM, 2002. ISBN 1-58113-567-X.

169

