
A REGULARIZED GAUSS-NEWTON TRUST REGION APPROACH
TO IMAGING IN DIFFUSE OPTICAL TOMOGRAPHY∗

ERIC DE STURLER† AND MISHA E. KILMER‡

Abstract. We present a new algorithm for the solution of nonlinear least squares problems
arising from parameterized imaging problems using diffuse optical tomographic data [14]. Such
problems lead to Jacobians that have relatively few columns, are ill-conditioned, and have function
and Jacobian evaluations that are computationally expensive. Our algorithm is appropriate for
any inverse or imaging problem with those characteristics. In fact, we expect our algorithm to be
effective for more general problems with ill-conditioned Jacobians. The algorithm aims to minimize
the total number of function and Jacobian evaluations by analyzing which spectral components
of the Gauss-Newton direction should be discarded. The analysis considers for each component
the reduction of the objective function and the contribution to the search direction, restricting the
computed search direction to be within a trust-region. The result is a Truncated SVD-like approach
to choosing the search direction. However, we do not necessarily discard components in order of
decreasing singular value, and some components may be scaled to maintain fidelity to the trust-region
model. Our algorithm uses the basic trust-region algorithm from [5]. We prove that our algorithm is
globally convergent to a critical point. Our numerical results show that the new algorithm generally
outperforms competing methods applied to the DOT imaging problem, and regularly does so by a
significant factor.

Key words. Nonlinear Least Squares, Gauss-Newton, Levenberg-Marquardt, Optimization,
Regularization, Diffuse Optical Tomography

AMS subject classifications. 65K05, 65F22, 90C30, 90C90

1. Introduction. To solve an inverse problem for a given system, we must com-
pute the input that was responsible for generating a set of measured data. This
solution is based on an assumed model of the relationship between the input and
output of a system. Mathematically, this is represented as

y = h(p) + η, (1.1)

where the vector p denotes the input, y the output data vector, and η is the unknown
noise in the measured data. In this paper, we are interested in models h(p) that are
nonlinear in p.

A typical approach to estimating p is to solve the nonlinear least-squares problem

min
p

1
2
‖W (h(p)− y)‖22 = min

p

1
2
r(p)T r(p) = min

p
F (p), (1.2)

with r(p) = Wh(p) − Wy, using an iterative nonlinear solver and a discrepancy
principle-based stopping criterion. The discrepancy principle states that one should
stop iterating when the norm of the residual reaches the norm of the (weighted) noise
vector [10]. Here, W denotes a weighting matrix based on the characteristics of the
noise.

In this paper, we focus on solving problems of the form (1.2) where the unknown
p is of low to modest dimension, the Jacobian J(p) for r(p) is modestly to severely
ill-conditioned, evaluating h(p) and/or J(p) is computationally very expensive, and

∗The research of Eric de Sturler was supported by NSF grant DMR-0325939; preliminary research
by Misha Kilmer on this project was supported by NSF grants 0139968 and 0342559 .

†Mathematics Department, VA Tech, Blacksburg, VA. (sturler@vt.edu).
‡Department of Mathematics, Tufts University, Medford, MA, 20155.(misha.kilmer@tufts.edu).

1

2 E. de Sturler and M. Kilmer

computing the Hessian is either computationally intractable or not worth the cost.
Specifically, we concentrate on the problem of reconstructing parametric images from
diffuse optical tomographic (DOT) data. However, we stress that the methods intro-
duced here should be applicable to more general problems for which our assumptions
are satisfied.

Several, well-known, nonlinear iterative methods can be applied to solve (1.2).
The most popular are the Gauss-Newton (GN), damped Gauss-Newton (DGN), also
known as Gauss-Newton with a line search, and the Levenberg-Marquardt (LM) meth-
ods [6]. Since we assume that computing the Hessian is infeasible or intractable, a
standard Newton approach is not applicable here. Quasi-Newton methods are also
possible candidates, as are so-called ‘full Newton’ modifications to the standard Gauss-
Newton approach [6, 15] in which an extra term is added to JT J prior to computing
the search direction with either GN or LM.

In this paper, we illustrate why the standard GN, DGN, and LM methods tend
to be inefficient for (1.2) under the given assumptions. To produce a more efficient
algorithm, we combine the ideas underlying the truncated singular value decompo-
sition (TSVD) and generalized cross-validation (GCV) with a trust region approach
to significantly reduce function evaluations and often Jacobian evaluations as well.
Specifically, we analyze the expansion coefficients of the residual vector with respect
to the left singular vectors and derive a new method to determine which directions
should be taken into account, possibly filtered, and which should be discarded in com-
puting the next optimization step. We note that truncating the SVD of the Jacobian
to find a better search direction is not new (see, for example, [7, 2]). However, these
methods typically rely on truncating the singular values in order (i.e. traditional trun-
cation) to combat the ill-conditioning of J . In [7], for instance, the authors truncate
based on a measure of the so-called “grade” of J . Further, the methods of [7, 2] rely on
information from an estimate of H − JT J , where H denotes the Hessian, to improve
the search direction. Our technique is unique in that we analyze individual spectral
contributions of the residual to decide which components of the SVD are discarded
or kept (but possibly filtered). Additionally, unlike the methods of [7, 2], our method
is tailored for use with a trust region approach as opposed to a line search, and does
not require estimates of the ‘missing’ part of the Hessian.

This paper is organized as follows. In section 2, we give the DOT models of
interest. In section 3, we analyze the potential pitfalls of DGN, LM, and TSVD
for such problems. Our algorithm for determining the optimization step is given
in section 4. We give theoretical results of our algorithm in section 5, followed by
numerical results in section 6. Conclusions and future work are the subject of section
7.

2. DOT Models. In DOT imaging, near infrared light is shined into the body,
and 3D images of the diffusion and/or absorption of light inside the tissue are re-
constructed from the measured photon flux. We refer to the image of diffusion in
vector form as fd and the image of absorption as fa, where the vectors are obtained
by ordering the 3D images by column and across all slices. We use the vector f to
formally denote the vector of unknowns: if both absorption and diffusion images are
desired, then f = [fT

a , fT
d]T , otherwise, f = fa or f = fd, depending on the task.

Both the linear and the nonlinear forward models that describe the mapping
of image data to measurements on the surface have been used extensively in the
literature (for background, see [3, 4]). We consider both cases in this work. Note that
due to the parameterization we employ for the images, even the linear forward model

Regularized Gauss-Newton 3

leads to an optimization problem that is nonlinear in terms of the unknown parameter
vector. First, we describe briefly the parameterization of the image(s) in 3D. Then, we
describe the forward model problems and the corresponding optimization problems.

2.1. Image Parameterization. In DOT imaging, the physics dictates that the
spatial resolution of the imaging problem is limited [4]. However, one can recover
regions of large inhomogeneities in the absorption and/or diffusion coefficient, which
may reveal the presence of some physical disorder (e.g. cancer). Therefore, we often
use a parametric imaging model to target these regions for recovery [11, 13, 1], re-
ducing the number of unknowns from the (very large) number of pixels/voxels in the
image to the number of parameters. In this paper, we aim to recover images that are
almost piecewise constant, looking for anomalous regions of diffusion and absorption
on a possibly unknown constant background.

Our specific model is the parametric level set model, introduced in [11] for brain
imaging limited to the cortex (an essentially 2D projected problem), and expanded
to the fully 3D case (as presented in [1]). We describe the model, with some minor
modifications, for the 3D case.

Consider the nth degree polynomial, q(x, y, z) =
∑

i,j,k cijkxiyjzk, where i + j +
k ≤ n. We can evaluate this polynomial at discrete grid points using the matrix-vector
product Pc, where c is the vector of coefficients cijk under an appropriate ordering
and P is a matrix with corresponding entries xiyjzk, evaluated at grid points. We
define the diffusion image using the zero-level set of this function,

fd =
ν tanh(α(d))

2
(e + tanh(−βPc(d))) + γ(d)e, (2.1)

where c(d) is the vector of polynomial coefficients for diffusion, e is a vector of all
ones, γ(d) is the estimate of the background diffusion value, γ(d) + ν tanh(α(d)) is
the estimate of the diffusion coefficient inside the anomaly with ν an appropriately
chosen constant, and β is a known (constant) scaling parameter to make the transition
of the tanh function ‘sharp’. Similarly, we define the absorption image as fa =
ν tanh(α(a))

2 (e + tanh(−βPc(a))) + γ(a)e.

2.2. Linear Forward Model for DOT. In frequency domain imaging with a
linear model for both absorption and diffusion and using (for example) 2 frequencies,
we have Af + η = y (cf. (1.1)), where A has the following block structure:

A =

AR1a AR1d

AI1a AI1d

AR2a AR2d

AI2a AI2d

 =

[
Aa Ad

]
. (2.2)

The subscripts translate as follows: R stands for real-part, I stands for imaginary
part, 1 and 2 refer to 2 different modulation frequencies, a stands for absorption, and
d for diffusion Consequently, y = [yT

R1 yT
I1 yT

R2 yT
I2]

T . We note that A is dense, and for
most problems would have far more columns than rows (underdetermined problem).

In the linear model, we assume the background absorption and/or diffusion are
known, and that the images we wish to obtain are in fact images of the perturbation
of the absorption and diffusion on this known background, i.e., γ(a) and γ(d) are both
zero. Under the parametric model, the vector of unknowns is the parameter vector

p = [(c(a))T , α(a), (c(d))T , α(d)]T ,

4 E. de Sturler and M. Kilmer

and the imaging problem becomes of the form (1.2), with

h(p) = Af(p), (2.3)

where we have used the function notation f(p) to indicate that the entries of the
vector of pixel values in the two images depend on the parameter vector p.

It is well-known that Aa and Ad are ill-conditioned, and that the ill-conditioning
in these matrices results in J(p) being ill-conditioned as well1.

2.3. Nonlinear Forward Model for DOT. We assume that the region to be
imaged is a rectangular region with a limited number of sources, Ns, on the top and
a limited number of detectors, Nd, on the top or the bottom or both. We caution the
reader that, in this section only, r, x, y, and z, refer to spatial variables. We use the
diffusion model for photon flux/fluence φs,ω(r) given input gs(r) from [3]:

−∇ · (D(r)∇φs,ω(r)) + µa(r)φs,ω(r) + i
ω

ν
φs,ω(r) = 0,

for r = (x, y, z) and − a < x < a, −b < y < b, 0 < z < c,

φs,ω(r) = 0, for 0 ≤ z ≤ c

and either x = −a, x = a, y = −b, or y = b,

.25φs,ω(r) +
D(r)

2
∂φs,ω(r)

∂ξ
= gs(r), for z = 0 or z = c.

Here, D(r) and µa(r) denote the diffusion and absorption coefficients, ξ denotes the
outward unit normal, i =

√−1, ω represents the frequency modulation of light, and
ν is the speed of light in the medium. The integer subscript s indicates the model
with a single source at a known position. Knowing the source and the functions D(r)
and µa(r) (given by (2.1) and the analogous expression for the absorption), we can
compute the corresponding φs,ω(r) everywhere, in particular at the detectors, i.e., at
a subset of grid points where z = 0 or z = c.

For given fd, fa, and ω, the photon flux measured at the detectors due to source
s is estimated by

ψfd,fa,ω,s = Qdetφfd,fa,ω,s, where Afd,fa,ωφfd,fa,ω,s = gs, (2.4)

and where Qdet contains the rows of the identity matrix that correspond to detector
locations, and the linear system on the right represents the discretization of the PDE
for a fixed source. Therefore, for given fd and fa, the vector of computed measurements
for frequency ωj and source si is

h
(i)
j =

[
Re(ψfd,fa,ωj ,si)
Im(ψfd,fa,ωj ,si)

]
.

The images fd and fa are represented in terms of the parameter vector p, so if we
stack all data vectors for the ns sources and nω frequencies, we obtain the computed
results from (1.1):

h(p) = [h(1)T
1 , h

(2)T
1 , . . . , h

(ns)T
1 , h

(1)T
2 , . . . , h(ns)T

nω
]T .

1Clearly, if the polynomial degree is large, some of the ill-conditioning in J is attributable to the
choice of a monomial basis, and other polynomial bases may be used. However, the predominant
difficulty is the presence of the matrices Aa and Ad, and ill-conditioning in J is therefore unavoidable.

Regularized Gauss-Newton 5

Therefore, the computational cost associated with a single function evaluation
is the cost of solving the large, sparse system (2.4) for all sources and frequencies.
Although there are methods for solving multiple such systems efficiently during the
course of a nonlinear solve for the images [12], it is clear that any optimization routine
for solving (1.2) must minimize the number of function evaluations.

Furthermore, the cost of a Jacobian evaluation is similar to the cost of a function
evaluation. Constructing the Jacobian is usually done using a so-called adjoint-type
(or co-state) approach [16], which requires a solve with the adjoint (or transpose)
of Afd,fa,ωj for all detectors and frequencies. Assuming the number of sources and
detectors are equal, and the number of parameters is relatively small, the cost of a
Jacobian evaluation and function evaluation are roughly the same.

3. Background and Motivation. We now discuss the problems for nonlinear
least squares algorithms arising from ill-conditioned Jacobians (of the nonlinear resid-
ual) and motivate our new algorithm. In the application considered here, DOT, the
ill-conditioning of the Jacobians arises predominantly from the ill-posedness of the
problem.

In general, we use a local quadratic model of the objective function F (p) in
(1.2) to compute an update to the current iterate. This is based on the reasonable
assumption that there is a region around the current iterate in which such a local
model is sufficiently accurate to produce a useful update. We refer to this region as
the trust region2, and we want our update to lie inside the trust region.

Since the second derivatives of the nonlinear residual r(p) with respect to p are
usually hard or very expensive to compute, the full quadratic approximation to F (p)
is rarely used. Especially in the small residual case, when ‖r(p)‖ is small compared
with ‖∇r(p)‖ near the solution, this is warranted by the fact that near the solution
∇2F (p) ≈ ∇r(p)T∇r(p). Ignoring the term ∇2r(p) in the quadratic model leads to
the Gauss-Newton model at the current approximate solution pc [6], F (p) ≈ mGN(p):

mGN(p) =
1
2
rT r + rT J(p− pc) +

1
2
(p− pc)T JT J(p− pc), (3.1)

where r = r(pc) and J = ∇r(pc).
In the remainder of this section, we analyze three well-known approaches to ap-

proximately solve the Gauss-Newton model problem. The methods can be analyzed
in terms of how they approximate the solution of the model problem, or, alternatively,
how their updates are defined exactly by approximations to the model problem. In
particular, the update s computed by each of the three methods can be formally de-
scribed using the reduced SVD of J in (3.1) and a diagonal matrix of (positive) filter
factors Ψ. In the following, the dependence of r, J , and mGN(p) on the current iterate
pc is to be understood. Let the reduced SVD of the m × n current Jacobian J with
rank n̂ be

J = UΣV T =
n̂∑

i=1

σiuiv
T
i , (3.2)

where U ∈ Rm×n̂, Σ ∈ Rn̂×n̂ with ordered, positive, diagonal coefficients, σ1 ≥ σ2 ≥
. . . ≥ σn̂ > 0, and V ∈ Rn̂×n̂. The search direction or solution update for any of the

2In an actual algorithm, the trust region is the current estimate of such a region rather than the
region itself.

6 E. de Sturler and M. Kilmer

three methods can be expressed as

sΨ = −
n̂∑

i=1

vi
uT

i r

σi
· ψi = −V ΨΣ−1UT r, (3.3)

where Ψ = diag(ψ1, . . . , ψn̂). The methods differ only in the definition of these filter
factors ψi, which therefore provide a convenient tool for analysis. Next, we show that
the filter factors ψi for three standard approaches, DGN, LM, and TSVD3, can be less
effective for the problems we consider in this paper, and we argue that the method we
propose in section 4 follows a more effective strategy for filtering SVD components.
Observe that in terms of sΨ,

mGN(pc + sΨ) =
1
2

m∑

i=n̂+1

(uT
i r)2 +

1
2

n̂∑

i=1

(uT
i r)2(1− ψi)2. (3.4)

So, the update sΨ leads to a reduction in the GN model of

R(sΨ) = mGN(pc)−mGN(pc + sΨ) =
1
2

n̂∑

i=1

(uT
i r)2ψi(2− ψi). (3.5)

R(sΨ) gives the estimated reduction of the objective function, a notion that plays an
important role in the trust region method discussed later.

In the following, we discuss each of the methods DGN, LM, and TSVD, noting
the difficulties with each approach as it is applied to a problem with an ill-conditioned
Jacobian, J .

3.1. (Damped) Gauss Newton. Using the reduced SVD of J from (3.2), min-
imizing mGN with respect to p leads to

JT JsGN = −JT r ⇒ sGN = −
n̂∑

i=1

vi
uT

i r

σi
, (ψi = 1, for i = 1 . . . n̂), (3.6)

where sGN is the Gauss-Newton update. The estimated reduction of the objective
function from (3.5) is

R(sGN) =
1
2

n̂∑

i=1

(uT
i r)2. (3.7)

If J is ill-conditioned, with one or more very small singular values, σi, and the corre-
sponding components, uT

i r, are not comparably small, then the Gauss-Newton update
will be large and, in general, outside the trust region. A classical remedy is to use
the damped GN (DGN) method [6], where we replace the update p = pc + sGN by
p = pc +λsGN, and λ satisfies some line search criteria. Hence the ψi in (3.3) for sDGN

are given by ψi = λ, i = 1, . . . , n̂. However, in this case, the Gauss-Newton search
direction is often almost completely determined by the components corresponding to
the smallest singular values, and these lead to the least reliable improvements of the
(possibly highly) nonlinear objective function, as they are likely far outside the trust

3This refers to a truncated SVD approximation to the Gauss-Newton direction combined with a
trust region approach.

Regularized Gauss-Newton 7

region (i.e. the region where the model is reasonably accurate). Typically, a suffi-
ciently small line search parameter leads to an acceptable step, but it likely leads to
disproportionately small components in useful directions corresponding to the large
singular values. Hence the method may perform poorly, making many small steps.
Moreover, the line search leads to additional function evaluations per step.

To demonstrate this potential difficulty with DGN, consider the hypothetical case
of an ill-conditioned Jacobian with one very small singular value (σn̂) and components
uT

i r of roughly equal magnitude. The component vn̂(uT
n̂ r)/σn̂ is very large and (we

assume) outside the trust region. For the sake of argument, we assume that the re-
mainder of the update, s̃GN ≡

∑n̂−1
i=1 vi(uT

i r)/σi lies within the trust region. Replacing
sGN by sDGN = λsGN gives

mGN(pc + sDGN) =
1
2

m∑

n̂+1

(uT
i r)2 +

1
2

n̂∑

i=1

(uT
j r)2(1− λ)2, and

R(sDGN) =
1
2

n̂∑

i=1

(uT
j r)2λ(2− λ).

So, for very small λ, the reduction in mGN is very small. This example illustrates
why in applications like the one we consider here, where function evaluations may be
expensive and the Jacobians are ill-conditioned, DGN is typically not a good approach;
see also section 6 on numerical results.

3.2. Levenberg-Marquardt. The Levenberg-Marquardt approach replaces (3.6)
with the following problem.

(JT J + µI)sLM = −JT r, (3.8)

which is clearly well-defined for any µ > 0. LM corresponds to (3.1) with JT J replaced
by JT J + µI, which can be thought of as regularization. The choice of µ controls the
step size and corresponds to estimating the appropriate size of the trust region. To
make LM a globally convergent method, typically, an update is analyzed to determine
whether the estimated reduction of the objective function is sufficiently close to the
actual reduction, and µ is updated accordingly. Formally, LM is equivalent to the
trust region method,

min
s

mGN(pc + s) subject to ‖s‖2 ≤ δ, (3.9)

where δ is the (current) trust region radius.
Substituting (3.2) into (3.8) and solving for s, we see that the LM solution update

sLM satisfies

sLM = −
n̂∑

i=1

vi
uT

i r

σi
ψi, ψi =

σ2
i

σ2
i + µ

. (3.10)

LM works much better for our class of problems than damped GN, because it uses
a different filter factor for each singular value component, and the filtering strongly
favors the larger singular values. Yet it suffers from a potential problem in the context
of ill-conditioned Jacobian matrices. Since all damping factors depend on a single
parameter, LM cannot balance for individual components the relative size of |uT

i r|
and the reduction of the GN model with the corresponding contribution to the length

8 E. de Sturler and M. Kilmer

of sLM. Given the value for µ, all components with σ2
i near µ or smaller will be

damped significantly irrespective of whether this is required given the value of |uT
i r|,

potentially leading to a significantly diminished reduction of the (estimated) objective
function compared with a filter factor ψi close to 1. The use of a single parameter to
determine the filter factors means that singular values that are close have similar filter
factors irrespective of the relative lengths of the corresponding solution components.
Hence, LM cannot sufficiently tune individual filter factors to account for this case.

In short, in the LM method, the components corresponding to the larger singular
values (but typically not the largest few) can be overdamped. Moreover, relatively
large components in the residual corresponding to small singular values are almost
completely ignored (strongly overdamped).

3.3. Modified Truncated SVD. A popular approach to dealing with ill-conditioned
matrix equations is to use a truncated SVD (TSVD); see [7, 2] in the context of ill-
conditioned Jacobians and [10, chapter 3 and section 3.5] in the context of regular-
ization (both are relevant here). A straightforward extension to the current setting is
to modify the TSVD to comply with the trust region constraint. Using the reduced
SVD of J , this amounts to computing the TSVD update as

sTSVD = −
k−1∑

i=1

vi
uT

i r

σi
, (3.11)

where k is such that ‖sTSV D‖ ≤ δ but adding −vk(uT
k r/σk) would make sTSV D too

long. Since we want the approximate solution to lie on the trust region boundary
when the Gauss-Newton step falls outside the trust region, we include the direction
vk, but scale this direction such that the solution update has length δ:

sMTSVD = sTSVD − vkc
uT

k r

σk
(3.12)

where c is determined so that ‖sMTSVD‖ = δ. We compare this modified approach with
DGN, LM and our new method in the numerical results section. In our experiments,
k is typically quite small, i.e., only a few components are included, and hence quite a
few directions are excluded. For the update sMTSVD we have

mGN(sMTSVD) =
1
2

m∑

i=n̂+1

(uT
i r)2 +

1
2
(uT

k r)2(1− c)2 +
1
2

n̂∑

i=k+1

(uT
i r)2 (3.13)

which corresponds to ψi = 1 (no damping) for i = 1 . . . k− 1, ψk = c, and and ψi = 0
for i = k + 1 . . . n̂.

Clearly, both the TSVD and MTSVD approaches can suffer from a similar draw-
back as the LM method; components in the residual for which |uT

i r| is relatively large
but for which i > k do not contribute to the sum (3.5), and therefore the reduction
at a single step is not nearly as large as it could be. In general, the approach is too
greedy.

4. A More General TSVD-Trust Region Approach. The discussion in
the previous section illustrates that we need a method with more flexibility to vary
the filter factors by considering components more or less individually, except for the
overall step length constraint. We now discuss how to compute an effective choice of
filter factors ψi for the problems of interest to us, yielding an s satisfying (3.3) such

Regularized Gauss-Newton 9

that ‖s‖ ≤ δ. The key is to balance the relative importance of the components to
minimizing mGN (pc + s) with the contribution of these components to the (length of
the) solution update, which may only be partially related to the presence of noise.
Thus, the choice of the filter factors needs to take the following considerations into
account.

1. Emphasize the large singular values as they give a large reduction of the
objective function for a small change in the length of the update s.

2. Avoid adding terms which are less important in the sense that |uT
i r| is rela-

tively small, but whose contribution |uT
i r|/σi to the length of s would be un-

duly large and put us outside the trust region. Components with |uT
i r| larger

than some threshold εGCV (see section 4.2 for how εGCV is automatically de-
termined) are considered critical components; the remaining components are
considered noncritical components.

3. To ensure a sufficient reduction of the (presumably accurate) model (3.1)
and hence of the objective function, give priority to the critical components
and make at least a damped update for each critical component with priority
decreasing with decreasing singular value.

4. Make some (modest) update for noncritical components when there is some
trust left over, especially for those corresponding to large singular values.

5. If the GN step fits inside the current trust region, take the full GN step.

The remainder of this section is organized as follows. First, we give the algorithm
that implements this strategy for determining a solution update, s. The specifics
of the GCV-like criterion that we use to determine which components are critical is
described in detail in subsection 4.2. In subsection 4.3, we give a globally convergent
optimization algorithm that employs the proposed solution update within the Basic
Trust Region algorithm from [5].

4.1. Solution Update Algorithm. The algorithm first checks if the full Gauss-
Newton step would fit inside the trust region. If this is the case, the Gauss-Newton
step is chosen. If this is not the case, the algorithm computes the truncated SVD of
J (3.2) based on a parameter τ . The parameter τ > 0 serves mainly a theoretical
purpose and can be chosen arbitrarily small. This parameter is discussed in subsec-
tion 5.2; see (5.4) and below. Considering the (reduced) SVD in (3.2), let ĵ be such
that σi ≥ τ for i = 1 . . . ĵ and σi < τ for i > ĵ. We define Jτ , Uτ , Στ , and Vτ as
follows.

Jτ =
ĵ∑

i=1

σiuiv
T
i = UτΣτV T

τ . (4.1)

The special cases, ĵ = 0, all singular values are less than the threshold, and ĵ = n̂, all
singular values are larger than or equal to the threshold, are allowed. Components
with index i > ĵ will be ignored in the update (if the Gauss-Newton step is too large
for the trust region); ψi = 0 for i > ĵ.

Next, the algorithm partitions the terms in (3.6) for i = 1, . . . , ĵ into critical
components and noncritical components, according to their relative importance for
reducing mGN (3.1), using a GCV-like condition (described in section 4.2). We use
I to denote the set of indices for critical components and Ic for its complement. To
guarantee a sufficient reduction in all critical components, we divide the trust region
in two parts, trust region 1 (TR1) with radius δ1 < δ, and trust region 2 (TR2) with

10 E. de Sturler and M. Kilmer

radius δ2 ≡ δ. When adding a critical component would make the partial solution
update4 longer than δ1, we add all remaining critical components in an optimal fashion
such as to minimize mGN while remaining inside TR2.

The algorithm considers the update components in order of decreasing singular
value. If adding a component would not make the partial update longer than δ1, it is
added (critical or not). This helps guarantee we use the full GN step when possible.
However, if adding a component would put the (partial) update outside TR1, the
algorithm proceeds in one of the following two ways. If the component is critical,
the algorithm adds to the (partial) update a combined step in all remaining critical
components (including the current one) that minimizes mGN while keeping the length
of the update less than or equal to δ2. If the component is not critical we skip it, but
we keep track of the largest such component for possible (scaled) inclusion in the final
update. Once all ĵ indices have been visited, we consider the remaining noncritical
components. If the (partial) update does not fully exploit TR2 (the full trust region),
we first add the largest noncritical component that has not been added yet (scaled if
necessary) to the update. Finally, if any trust remains (we still have not reached the
border of TR2), we add the remaining noncritical components in order of decreasing
singular value. This leads to our solution update algorithm, Algorithm SU.

Algorithm SU(Input: SVD threshold: τ (5.5); reduced SVD of current J : U , Σ, V
(3.2); trust region radius: δ; current residual: r; Output: trial update s;)

Compute update coefficients tk = uT
k r/σk for k = 1, . . . , n̂;

if
∑n̂

k=1 t2k ≤ δ2, { Gauss-Newton update fits inside trust region }
do full Gauss-Newton update; ψk = 1 for k = 1, . . . , n̂;

else
discard components uk, σk, vk where σk < τ ; { work with Jτ = UτΣτV T

τ }
δ1 = νcritδ; δ2 = δ; { we use νcrit = 0.75; experimentation may lead to better values }
[I, Ic] = GCV(Uτ ,Στ ,Vτ ,r); { See section 4.2 GCV Partitioning }
s = 0; cmax = 0; cnt = 0; for k = 1 . . . n̂, ψk = 0; end
for k = 1 . . . ĵ,

if kth component not already included in partial update,
if ‖s− tkvk‖ ≤ δ1 and tk 6= 0, { update in TR1, so add component whether critical or not }

s = s− tkvk; ψk = 1; mark component k as included (add to index set J1)
else

if k ∈ I, { update outside TR1, but component is critical }
γ = (δ2

2 − ‖s‖2)1/2; { distance to boundary TR2 }
J2 = {j ≥ k, j ∈ I}; { index set of remaining critical components }
compute optimal ψj for all j ∈ J2 { LM step for remaining

critical components - See Optimal ψj below }
for all j ∈ J2,

s = s− vj
uT

j r

σj
ψj ; mark component j as included in update (add to index set J1)

end { for all }
else { update outside TR1 and component is not critical }

cnt=cnt+1; { save info on most important noncritical component }
if |uT

k r| > cmax, cmax = |uT
k r|; kmax = k; tkmax = tk; end

end { if component critical }

4The term partial solution update refers to the estimate of sΨ in (3.3) before all ĵ components
have been visited.

Regularized Gauss-Newton 11

end { if update in TR1 }
end { if component not already included }

end { for }
if cnt > 0, { some updates skipped }

γ = (δ2
2 − ‖s‖2)1/2; { distance to boundary TR2 }

if γ > 0, { consider adding the most important of noncritical components }
ψkmax = min(γ/tkmax , 1); s = s− ψkmaxtkmaxvkmax ;
mark component kmax as included (add to index set J1)

end
if trust left,

add skipped, noncritical components in order of decreasing singular value
taking the minimum of tk and distance to boundary of TR2

end { if noncritical components skipped }
end { if Gauss-Newton update fits }

Optimal ψj. The optimal filter factors, ψj , for all j ∈ J2, (see above) are
computed such that we minimize the Gauss-Newton model, mGN , over the remaining
critical components within the remaining length γ. If the algorithm reaches this step,
s = −∑

i∈J1

uT
i r
σi

vi has already been computed for all i ∈ J1, the indices of included
components5. We wish to update s so that it has the form

s = −
∑

i∈J1

uT
i r

σi
vi −

∑

i∈J2

ψi
uT

i r

σi
vi, (4.2)

where J2, defined above, denotes the set of remaining critical indices. The algorithm
first checks whether damping is needed. If s in (4.2) with ψi = 1 for all i ∈ J2 is
inside the trust region TR2, no damping is done. If s is outside TR2, ‖s‖2 > δ2, we
compute filter factors corresponding to J2 that minimize mGN over the distance to
the boundary of TR2. This is essentially a LM step, except that we use the distance
to the boundary, γ, in place of the trust region radius. Hence

ψi =
σ2

i

σ2
i + µ

, i ∈ J2, (4.3)

where µ satisfies

γ2 −
∑

i∈J2

ψ2
i

(uT
i r)2

σ2
i

= γ2 −
∑

i∈J2

σ2
i (uT

i r)2

(σ2
i + µ)2

= 0. (4.4)

We solve the latter equation using Matlab’s fzero routine. Note that it is easy to
find a bracket for this zero.

4.2. GCV Partitioning. Given the least-squares problem Jτs ≈ −r (where
Jτ = UτΣτV T

τ), the GCV functional [8, 9] is given by

G(ε) =
||Jτsε + r||2

m trace(I − JτJ†ε)
,

5Note that ψi = 1 for these components.

12 E. de Sturler and M. Kilmer

where ε is the cut-off value that defines the matrix J†ε ,

J†ε ≡
∑

i:|uT
i r|>ε

σ−1
i viu

T
i ,

in terms of the SVD of Jτ introduced in (4.1), so σi ≥ τ , and sε = J†ε (−r).
We use the GCV functional to balance the relative importance of components to

minimizing mGN(pc + s) with the contribution of these components to the solution
update, which may only be partially related to the presence of noise. As proposed
in [14], we use the values |uT

i r| sorted in descending order as the discrete set of
parameters εi.

The value εGCV = arg mini G(εi) determines our partitioning for the current
Jacobian and residual vector: the indices i, for which |uT

i r| > εGCV, belong to the set
of critical indices I. We note that the GCV condition is used only as a first step in
partitioning the indices; unlike traditional TSVD regularization for linear, discrete,
ill-posed problems, which would preclude terms below the GCV threshold from the
solution, our algorithm may include some terms corresponding to noncritical indices.
This allows noncritical components with large singular values (accurate reduction at
a small increase in the length of the solution update) to be included and provides
robustness if the GCV curve does not have a well-defined minimum (i.e. the curve is
flat).

4.3. Trust Region Algorithm. We combine the basic trust region algorithm
from [5] with Algorithm SU (above) to construct a globally convergent optimization
algorithm for solving (1.2). We call the resulting algorithm TREGS (pronounced as
the dinosaur acronym T. REX, indicating that our algorithm has “teeth.”), for Trust
region algorithm with REGularized model Solution. The global convergence proof is
given in the next section. Our algorithm avoids unnecessary function and Jacobian
evaluations. In addition, following [6], we reduce the number of Jacobian evaluations
and reduced SVD computations by doubling the trust region and trying a larger step
from the current solution iterate after a very successful step (ρ ≥ η2, see below). We
provide the pseudo-code for our algorithm below. The Boolean variable newSVD is set
to 1 when the SVD of the Jacobian should be calculated and to 0 otherwise. The
Boolean variable newJAC is set to 1 when a new Jacobian needs to be calculated and
to 0 otherwise. The last Boolean variable doublestep is set to 1 when the algorithm
doubles the size of the trust region and tries a larger step at the same solution iterate.
If doublestep = 1 and the new, larger, step fails, we accept the previous, smaller,
step from the same current iterate. As noted in [5], the parameters η1, η2, γ1, and γ2

must satisfy the following relations:

0 < η1 ≤ η2 < 1,

0 < γ1 ≤ γ2 < 1.

We use the default values suggested in [5, p. 117], η1 = 0.01, η2 = 0.9, and γ1 = γ2 =
0.5. Experimenting with these parameters may yield better results, but we have not
done so for this paper.

Algorithm: TREGS
Choose initial approximate solution pc; rc = r(pc); Fc = F (pc); mc = Fc; Jc = J(pc)
Choose starting δ
newSVD=1; newJAC=0; doublestep=0;

Regularized Gauss-Newton 13

while not converged,
if newSVD, [U, S, V] = red svd(Jc); newSVD = 0; end
compute trial solution update s using Algorithm SU with

input rc, U , Σ, V , τ , and δ
compute trial solution pt = pc + s, rt = r(pt), Ft = F (pt)
use SU output to compute (efficiently) mt = mGN(pt) from (3.1)
ρ = (Fc − Ft)/(mc −mt)
if ρ ≥ η2 and s is not a GN step, { very successful step }

double trust region, δ = 2δ, but continue to use pc, Fc, SVD of Jc, rc

save current trial solution values { in case larger step fails }
doublestep = 1;

elseif η1 ≤ ρ < η2 { successful step }
accept the trial solution: pc = pt; Fc = Ft, rc = rt

newSVD=1; newJAC=1;
elseif ρ < η1 { unsuccessful step }

reject the trial solution and reduce trust region: δ = γ1δ
if doublestep,

set pc, Jc, rc, Fc to saved trial solution values
newSVD=1; newJAC=1;

else
newJAC=0; newSVD=0;

end
elseif ρ ≥ η2 and s is the GN step, { no need to try a larger step }

accept trial solution: pc = pt; Fc = Ft; rc = rt;
newJAC=1; newSVD=1;

end
if newJAC,

Jc = J(pc);
newJAC=0;

end
end { while }

5. Theory. The major result in this section is a proof of global convergence to
a first-order critical point for our algorithm. The convergence proof is irrespective
of the noise that may or may not be present in the data, and therefore is valid
for nonlinear problems in general. The proof involves showing that the proposed
algorithm satisfies a set of sufficient conditions for global convergence given in [5]. In
addition, this involves proving that the objective function to be minimized satisfies
a set of sufficient conditions from [5]. We prove this result for the forward model in
section 2.2; for the PDE-based problem described in section 2.3 the latter step is too
involved for the present paper. Moreover, the main issue for this paper is that the
algorithm itself satisfies the required conditions for convergence.

We start by showing that the objective function, F (p), under the parametric
DOT representation and given the forward model in section 2.2 possesses the required
properties for global convergence.

5.1. Properties of the Parametric Imaging Model. For simplicity, we con-
sider the case where we optimize only for diffusion.

Lemma 5.1. When solving for a diffusion anomaly on a known background using
the forward model (2.3) with the assumptions given in section 2.2, F (p) is twice

14 E. de Sturler and M. Kilmer

continuously differentiable and F (p) ≥ 0.
Proof. The first property follows immediately from standard calculus applied

to the objective function, and the second property follows from the fact F (p) =
(1/2) r(p)T r(p).

Lemma 5.2. The Jacobian matrix corresponding to (2.3) is bounded in norm.
Proof. Let the parameter vector p = [c; α(d)] have T components with the last

component being α(d) and the first T − 1 components being the coefficients of the
polynomial as described in section 2.1. The ith component of the residual, ri, satisfies
ri =

∑n
j=1 Aijfj − yi where fj = ν tanh(α(d))

2 (1 + tanh(−βP (j, :)c)) (note γd = 0),
P ∈ Rn×(T−1) contains the values of the monomials over the grid, and c is the vector
of (polynomial) coefficients. Hence,

∂fj

∂pk
=

{
−ν tanh(α(d))

2 βP (j, k)sech2(−βP (j, :)c) for 1 ≤ k ≤ T − 1,
νsech2

(α(d))
2 (1 + tanh(−βP (j, :)c)) for k = T.

Because the functions sech2(x) and tanh(x) are bounded, and since ∂ri

∂pk
=

∑n
j=1 Aij

∂fj

∂pk
,

it follows that ‖J‖2 is bounded independent of α(d) and the entries in c.
Lemma 5.3. The Hessian matrix H(p) for (2.3) is bounded in the 2-norm inde-

pendent of p.
Proof. The proof follows from writing H = JT J + S, using the boundedness

of J , and showing that the coefficients of S, too, involve only bounded hyperbolic
trigonometric functions and values independent of α(d) and the entries in c. The
details are straightforward but tedious, and hence they are omitted here.

5.2. Global Convergence. Next, we show that our algorithm for computing a
trial solution update combined with the trust region algorithm produces a nonlinear
least squares solver that converges globally to a first order critical point. Our trust
region algorithm follows the basic trust region algorithm (BTR) in [5]. So, if we show
that our algorithm satisfies the requirements for convergence of BTR (see below), the
convergence proof in [5] applies.

We have three requirements on the objective function F (p) that are sufficient to
apply the convergence proof in [5]:
RQ 1: F is twice continuously differentiable,
RQ 2: F is bounded from below,
RQ 3: ‖∇ppF‖ (the norm of the Hessian of F) is bounded from above.
These three requirements, properties of the objective function, have been shown in
the previous subsection.

In addition, the convergence theory in [5] makes the following four requirements
on the local model mGN(p) (at iteration k). Note that our model is just the Gauss-
Newton model at iteration k; see (3.1). We give the requirements in terms of (3.1).
RQ 4: mGN(p) is twice differentiable on the trust region,
RQ 5: mGN(pc) = F (pc),
RQ 6: ∇pmGN(pc) = J(pc)T r(pc) = ∇pF (pc),
RQ 7: ‖∇ppmGN(p)‖ = ‖J(pc)T J(pc)‖ is bounded at every step k by a constant

(independent of k).
It follows from the definitions in section 2 that the residual r(p) is always well-defined
and bounded. In the previous subsection, we have shown that J(p) is well-defined
and bounded (in the 2-norm) for all p. Hence, requirements RQ 4, RQ 5, and RQ 6
follow immediately from the definition of the Gauss-Newton model. Observe that

Regularized Gauss-Newton 15

∇ppmGN (p) = J(pc)T J(pc) (independent of p), and this matrix is well-defined at
every iteration and bounded based on the properties of F discussed in the previous
subsection. Hence, requirement RQ 7 is satisfied.

The final requirement that our algorithm must satisfy in order to directly apply
the BTR convergence theory to our algorithm states that, for all iterations k, the trial
solution update s must satisfy

mGN(pc)−mGN(pc + s) ≥ κ(mGN(pc)−mGN(pM)), (5.1)

where κ ∈ (0, 1] is a constant (over all k) and pM is the minimizer of model mGN over
the trust region, the GN model at the k-th approximate solution, pc. In the notation
introduced in (3.1)-(3.5), we must have

R(sTREGS) ≥ κ(mGN(pc)−mGN(pM)), (5.2)

where sTREGS denotes the step produced by Algorithm SU at iteration k. In other
words, the improvement obtained in our proposed solution update must be a fixed
fraction (for all steps) of that obtained by the model minimizer (over the trust region).
Since we use the Gauss-Newton model, the Levenberg-Marquardt solution is the model
minimizer over the trust region (coinciding with the Gauss-Newton solution if it lies
inside the trust region). Hence, if the Gauss-Newton update is outside the trust
region, we must compare with the improvement obtained by the LM update. If the
Gauss-Newton step fits inside the trust region, Algorithm SU takes the full Gauss-
Newton step for J(pc), which is obviously the model minimizer in this case and so
(5.2) will hold. Hence, in the remainder of this section we tacitly assume that the
Gauss-Newton step does not fit inside the trust region, and we must show that

RQ 8: R(sTREGS) ≥ κR(sLM), (5.3)

for a fixed κ over all iterations, as long as the optimization has not converged.
The remainder of this section is devoted to proving that (5.3) and hence RQ

8 is satisfied for the update sTREGS computed in Algorithm SU, assuming that the
optimization has not converged, that is, ‖∇F (pc)‖2 > εg (gradient tolerance). Note
that given the background of our optimization problem, we will use the discrepancy
principle as an additional convergence criterion, but it plays no role in the convergence
proof.

The proof of (5.3) proceeds in two stages. First, we establish the inequality
R(s̃LM) ≥ κ1R(sLM), where s̃LM is the LM solution with Jτ replacing J . Second, we
show there exists κ̃ such that R(sTREGS) ≥ κ̃R(s̃LM). Together, these two results
prove (5.3) and RQ 8. The second inequality must be proved by considering several
special cases regarding the execution of Algorithm SU.

We assume that an appropriate tolerance, εg, is given such that the optimization
can stop if ‖∇F (pc)‖2 ≤ εg. Given an initial solution p0, we define F0 = F (p0) and
r0 = r(p0) according to (1.2). Next, we must choose the cut-off parameter τ for the
truncated SVD of J (4.1)6, such that

0 < τ <
εg√
2F0

. (5.4)

For convenience, we will use for our proofs

τ =
εg√
4F0

; (5.5)

6The parameter τ > 0 serves mainly a theoretical purpose and can be chosen arbitrarily small.

16 E. de Sturler and M. Kilmer

our choice for numerical experiments is given in section 6. Next, we define the τ -
truncated SVD of J , Jτ , and ĵ as in (4.1). The special cases, ĵ = 0, all singular values
are less than the threshold, and ĵ = n̂, all singular values are larger than or equal to
the threshold, are allowed. We define σ+ = supp ‖J(p)‖2. Lemma 5.2 guarantees that
a finite σ+ always exists.

Clearly, we cannot make an optimization step using Jτ if ĵ = 0. However, the
following Lemma shows that in that case we have converged.

Lemma 5.4. Let εg, τ , and J be defined as above, and let σ1 = ‖J‖2 < τ . Then,
‖∇F‖2 < εg.

Proof. Since ∇F = JT r = V ΣUT r and σ1 < τ , we have

‖∇F‖2 =

(
n̂∑

i=1

σ2
i (uT

i r)2
)1/2

≤ σ1

(
n̂∑

i=1

(uT
i r)2

)1/2

< τ

(
n̂∑

i=1

(uT
i r)2

)1/2

≤ τ‖r‖2.

Since the overall algorithm leads to strictly decreasing residuals (the model minimizer
must reduce the objective function unless the gradient is zero; see [5]), we also have
‖∇F‖2 < τ‖r0‖2 = τ

√
2F (p0) < εg, where r0 is the initial (nonlinear) residual.

Hence, the optimization has converged.
In the following, assume that the optimization algorithm has not yet converged;

hence, σ1 ≥ τ and Jτ 6= 0. Let s̃LM be the LM update for Jτ . The following lemma
provides a lower bound on the ratio R(s̃LM)/R(sLM).

Lemma 5.5. Let κ1 = ε2g
4F0σ2

+
and ‖∇F‖2 > εg. Then, R(s̃LM) ≥ κ1R(sLM).

Proof. We have from (3.5)

R(sLM) =
1
2

n̂∑

i=1

(uT
i r)2ψi(2− ψi), (5.6)

R(s̃LM) =
1
2

ĵ∑

i=1

(uT
i r)2ψ̃i(2− ψ̃i), (5.7)

where the ψ̃i = σ2
i /(σ2

i + µ̃) denote the filter coefficients corresponding to s̃LM with
µ̃ defined as follows. The LM parameters µ and µ̃ are defined by

n̂∑

i=1

(
uT

i r

σi

)2

ψ2
i =

n̂∑

i=1

(
uT

i r

σi

)2 (
σ2

i

σ2
i + µ

)2

= δ2. (5.8)

ĵ∑

i=1

(
uT

i r

σi

)2

ψ̃2
i =

ĵ∑

i=1

(
uT

i r

σi

)2 (
σ2

i

σ2
i + µ̃

)2

≤ δ2, (5.9)

where inequality holds in the latter equation only if µ̃ = 0, and hence ψ̃i = 1 for
i = 1 . . . ĵ. In this case s̃LM =

∑ĵ
i=1 vi(uT

i r/σi) is also the Gauss-Newton update for
Jτ . Obviously, we always have µ̃ ≤ µ, and hence ψ̃i ≥ ψi, which in turn implies that
ψ̃i(2− ψ̃i) ≥ ψi(2− ψi) (for ψ̃i, ψi ∈ (0, 1] and i = 1 . . . ĵ). Define

η =
n̂∑

i=1

(uT
i r)2 and ητ =

ĵ∑

i=1

(uT
i r)2.

Regularized Gauss-Newton 17

We complete the proof by contradiction. Assume that R(s̃LM) < κ1R(sLM), that is,

ĵ∑

i=1

(uT
i r)2ψ̃i(2− ψ̃i) < κ1

ĵ∑

i=1

(uT
i r)2ψi(2− ψi) + κ1

n̂∑

i=ĵ+1

(uT
i r)2ψi(2− ψi).

From
∑ĵ

i=1(u
T
i r)2ψi(2 − ψi) ≤

∑ĵ
i=1(u

T
i r)2ψ̃i(2 − ψ̃i) and the inequality above, we

derive

ĵ∑

i=1

(uT
i r)2ψi(2− ψi) < κ1

ĵ∑

i=1

(uT
i r)2ψi(2− ψi) + κ1

n̂∑

i=ĵ+1

(uT
i r)2ψi(2− ψi) ⇔

(1− κ1)
ĵ∑

i=1

(uT
i r)2ψi(2− ψi) < κ1

n̂∑

i=ĵ+1

(uT
i r)2ψi(2− ψi) ⇒

(1− κ1)ψĵ+1(2− ψĵ+1)
ĵ∑

i=1

(uT
i r)2 < κ1ψĵ+1(2− ψĵ+1)

n̂∑

i=ĵ+1

(uT
i r)2 ⇔

(1− κ1)η2
τ < κ1(η2 − η2

τ) ⇔
η2

τ < κ1η
2. (5.10)

Moreover,

‖∇F‖22 =
n̂∑

i=1

(uT
i r)2σ2

i =
ĵ∑

i=1

(uT
i r)2σ2

i +
n̂∑

i=ĵ+1

(uT
i r)2σ2

i

< σ2
+

ĵ∑

i=1

(uT
i r)2 + τ2

n̂∑

i=ĵ+1

(uT
i r)2 = σ2

+η2
τ + τ2(η2 − η2

τ) (and using (5.10))

< σ2
+κ1η

2 + τ2η2

< (σ2
+κ1 + τ2)‖r‖22

< (σ2
+κ1 + τ2)2F0 = ε2g.

Hence, R(s̃LM)/R(sLM) < κ1 ⇒ ‖∇F‖2 < εg. Since, by assumption ‖∇F‖2 > εg we
must have R(s̃LM) ≥ κ1R(sLM). Finally, note that σ+, F0, and εg are constant over
all the nonlinear iterations.

Next, we show that R(sTREGS) ≥ κ̃R(s̃LM) for some κ̃ > 0 independent of the
iteration, assuming the method has not converged.

Recall that Algorithm SU uses two trust region radii, the full trust region (TR2)
with radius δ and the smaller trust region (TR1) with radius νcritδ, where νcrit ∈ (0, 1).
First, we deal with the case that the Gauss-Newton step for Jτ fits inside TR2, that
is, s̃LM is the Gauss-Newton step for Jτ .

Lemma 5.6. Let s̃LM be the Gauss-Newton step for Jτ . Then R(sTREGS) =
κ2R(s̃LM) with κ2 = 1.

Proof. Algorithm SU produces the Gauss-Newton iterate for Jτ if this update fits
inside TR2. Therefore, sTREGS = s̃LM, and R(sTREGS) = R(s̃LM).

The next two lemmas deal with the case that the Gauss-Newton update for Jτ

does not fit inside the trust region TR2, so µ̃ > 0. Let I be the set of critical indices;

18 E. de Sturler and M. Kilmer

cf. section 4.1. We must consider two cases, I 6= ∅ and I = ∅. We consider the case
I 6= ∅ first.

Lemma 5.7. Let I 6= ∅ and µ̃ > 0. Then there exists κ3 such that R(sTREGS) ≥
κ3R(s̃LM)

Proof. The filter factors for sTREGS will be denoted by ψ̂i for i = 1, . . . , ĵ. We
can prove the required result in a straightforward fashion by introducing two judi-
ciously chosen LM updates with filter factors ϕi and ϕ̃i and LM parameters λ and
λ̃, respectively, such that ϕi ≥ ϕ̃i ≥ αψ̃i for i = 1 . . . ĵ, where the ψ̃i are the filter
factors for the LM step with Jτ and trust region radius δ introduced above, and α is
a constant (over all nonlinear iterations) to be determined. Subsequently, we prove
that ψ̂i ≥ ϕi ≥ αψ̃i for all i ∈ I.

Let the ϕi = σ2
i /(σ2

i + λ) be the filter factors for a LM step for Jτ with trust
region radius (1 − ν2

crit)
1/2δ, the minimum remaining distance for the update when

TR1 will be exceeded. So, λ satisfies

ĵ∑

i=1

(
uT

i r

σi

)2 (
σ2

i

σ2
i + λ

)2

= (1− ν2
crit)δ

2. (5.11)

Let the ϕ̃i = σ2
i /(σ2

i + λ̃) be the filter factors for a LM step for Jτ with parameter
λ̃ = (γ − 1)σ2

+ + γµ̃ with γ = (1− ν2
crit)

−1/2. First, we show that ϕi ≥ ϕ̃i ≥ αψ̃i for
i = 1 . . . ĵ. We have

ψ̃i

ϕ̃i
=

σ2
i

σ2
i + µ̃

· σ2
i + γµ̃ + (γ − 1)σ2

+

σ2
i

=
σ2

i + γµ̃ + (γ − 1)σ2
+

σ2
i + µ̃

=
σ2

i + µ̃ + (γ − 1)(σ2
+ + µ̃)

σ2
i + µ̃

= 1 + (γ − 1)
σ2

+ + µ̃

σ2
i + µ̃

.

Since τ ≤ σi ≤ σ+, we get

1 + (γ − 1)
σ2

+ + µ̃

σ2
i + µ̃

≥1 + (γ − 1)
σ2

+ + µ̃

σ2
+ + µ̃

= γ and hence

γ ≤ ψ̃i

ϕ̃i
≤ 1 + (γ − 1)

σ2
+ + µ̃

τ2 + µ̃
< 1 + (γ − 1)

σ2
+

τ2
. (5.12)

The left inequality implies ϕ̃i ≤ (1− ν2
crit)

1/2ψ̃i, which gives

ĵ∑

i=1

(
uT

i r

σi

)2

ϕ̃2
i ≤

ĵ∑

i=1

(
uT

i r

σi

)2

(1− ν2
crit)ψ̃

2
i = (1− ν2

crit)δ
2.

This, in turn, gives λ ≤ λ̃ and hence ϕi ≥ ϕ̃i. The right inequality in (5.12) implies

ϕ̃i ≥ αψ̃i with α = (1 + (γ − 1)σ2
+

τ2)−1.
Note that, by Algorithm SU, the remaining distance in the trust region for the

update is at least (1 − ν2
crit)

1/2δ. Moreover, some critical components may have
already been added to the update (with ψ̂i = 1), so that the length of (1− ν2

crit)
1/2δ,

Regularized Gauss-Newton 19

or more, is only for the remaining critical components. Hence, ψ̂i ≥ ϕi for i ∈ I, so
ψ̂i ≥ ϕi ≥ ϕ̃i ≥ αψ̃i for i ∈ I. Therefore,

R(sTREGS)
R(s̃LM)

≥
∑

i∈I(u
T
i r)2ψ̂i(2− ψ̂i)

∑ĵ
i=1(u

T
i r)2ψ̃i(2− ψ̃i)

≥
∑

i∈I(u
T
i r)2αψ̃i(2− αψ̃i)

∑ĵ
i=1(u

T
i r)2ψ̃i(2− ψ̃i)

≥ α
∑

i∈I(u
T
i r)2ψ̃i(2− ψ̃i)

∑ĵ
i=1(u

T
i r)2ψ̃i(2− ψ̃i)

=
α

∑
i∈I(u

T
i r)2ψ̃i(2− ψ̃i)∑

i∈I(u
T
i r)2ψ̃i(2− ψ̃i) +

∑
i∈Ic

(uT
i r)2ψ̃i(2− ψ̃i)

= α

(
1 +

∑
i∈Ic

(uT
i r)2ψ̃i(2− ψ̃i)∑

i∈I(u
T
i r)2ψ̃i(2− ψ̃i)

)−1

≥ α

(
1 +

ψ̃+(2− ψ̃+)
∑

i∈Ic
(uT

i r)2

ψ̃τ (2− ψ̃τ)
∑

i∈I(u
T
i r)2

)−1

,

where ψ̃+ = σ2
+/(σ2

+ + µ̃) and ψ̃τ = τ2/(τ2 + µ̃). In addition, |uT
i r| ≤ εGCV for

i ∈ Ic and |uT
i r| > εGCV for i ∈ I. Let ` = |I|, the number of elements in I. Then

|Ic| = ĵ − `. By assumption we have I 6= ∅, and hence ` ≥ 1. Therefore,

R(sTREGS)
R(s̃LM)

≥ α

(
1 +

ψ̃+(2− ψ̃+)
∑

i∈Ic
(uT

i r)2

ψ̃τ (2− ψ̃τ)
∑

i∈I(u
T
i r)2

)−1

≥ α

(
1 +

ψ̃+(2− ψ̃+)(ĵ − `)ε2
GCV

ψ̃τ (2− ψ̃τ)`ε2
GCV

)−1

≥ α

(
1 +

ψ̃+(2− ψ̃+)(ĵ − 1)
ψ̃τ (2− ψ̃τ)

)−1

≥ α

(
1 + (ĵ − 1)

2σ2
+

τ2

)−1

≥ α

(
1 + (n− 1)

2σ2
+

τ2

)−1

. (5.13)

The two last steps follow from

ψ̃+(2− ψ̃+)
ψ̃τ (2− ψ̃τ)

=
(τ2 + µ̃)2σ2

+(σ2
+ + 2µ̃)

(σ2
+ + µ̃)2τ2(τ2 + 2µ̃)

=

σ2
+

τ2
· τ2 + µ̃

τ2 + 2µ̃
· σ2

+ + 2µ̃

σ2
+ + µ̃

· τ2 + µ̃

σ2
+ + µ̃

≤ 2
σ2

+

τ2
, (5.14)

and ĵ ≤ n̂ ≤ n. Note that although εGCV changes from one optimization step to the
next, an appropriate value εGCV exists at every optimization step, and no assumption
is made on the cut-off index ĵ. So, the bound R(sTREGS) ≥ κ3R(s̃LM) holds indepen-
dent of iteration with κ3 = α

(
1 + 2(n− 1)σ2

+/τ2
)−1 (note that α, n, σ+, and τ are

all constant over the nonlinear iterations).
Next, we consider the second case.
Lemma 5.8. Let I = ∅. Then there exists a κ4 > 0, independent of iteration,

such that R(sTREGS) ≥ κ4R(s̃LM).
Proof. In phase I of the algorithm, some components might be added if the

updates fit inside TR1. Since we assume the Gauss-Newton update does not fit inside
TR2 (the larger trust region), not all components are added. We use the remainder of
TR2, which is at least (1− ν2

crit)
1/2δ, first for the maximum component, maxi |uT

i r|,
with index m, unless it has been added already, and possibly for other remaining
components. If the component with max |uT

i r| has been added in phase I or if the

20 E. de Sturler and M. Kilmer

update fits within TR2, we have ψ̂m = 1. Otherwise, the component fills the remaining
distance to the boundary of TR2, and we have 1 > ψ̂m ≥ σm

|uT
mr| (1− ν2

crit)
1/2δ.

If ψ̂m = 1, then

R(sTREGS)
R(s̃LM)

≥ (uT
mr)2

∑ĵ
i=1(u

T
i r)2ψ̃i(2− ψ̃i)

≥ (uT
mr)2

∑ĵ
i=1(uT

mr)2ψ̃i(2− ψ̃i)

=
1

∑ĵ
i=1 ψ̃i(2− ψ̃i)

≥ 1
ĵ
≥ 1

n
. (5.15)

If 1 > ψ̂m ≥ σm

|uT
mr| (1− ν2)1/2δ, then

R(sTREGS)
R(s̃LM)

≥ (uT
mr)2ψ̂m(2− ψ̂m)

∑ĵ
i=1(u

T
i r)2ψ̃i(2− ψ̃i)

≥ (uT
mr)2ψ̂m(2− ψ̂m)

∑ĵ
i=1(uT

mr)2ψ̃i(2− ψ̃i)

=
ψ̂m(2− ψ̂m)

∑ĵ
i=1 ψ̃i(2− ψ̃i)

≥ ψ̂m(2− ψ̂m)
ĵψ̃+(2− ψ̃+)

. (5.16)

Next we show that ψ̂m ≥ (1−ν2
crit)

1/2ψ̃τ , and therefore ψ̂m(2−ψ̂m) ≥ (1−ν2
crit)

1/2ψ̃τ (2−
(1− ν2

crit)
1/2ψ̃τ). Using (5.9) with equality (and µ̃ > 0), since we assume the Gauss-

Newton update does not fit inside TR2, and ψ̃τ ≤ ψ̃i for i = 1, . . . , ĵ we have

ĵ∑

i=1

(
uT

i r

σi

)2

ψ̃2
τ ≤ δ2,

whereas
ĵ∑

i=1

(
uT

i r

σi

)2

ψ̂2
m ≥

ĵ∑

i=1

(
uT

i r

σi

)2 (
σm

|uT
mr|

)2

(1− ν2
crit)δ

2 =
ĵ∑

i=1

(uT
i r)2

(uT
mr)2

σ2
m

σ2
i

(1− ν2
crit)δ

2 =

= (1− ν2
crit)δ

2

1 +

∑

i6=m

(uT
i r)2

(uT
mr)2

σ2
m

σ2
i

 ≥ (1− ν2

crit)δ
2.

Hence,

ĵ∑

i=1

(
uT

i r

σi

)2
ψ̂2

m

1− ν2
crit

≥ δ2,

and therefore

ψ̂m

(1− ν2
crit)1/2

≥ ψ̃τ ⇔

ψ̂m ≥ (1− ν2
crit)

1/2ψ̃τ . (5.17)

From (5.16) and (5.17) we derive

R(sTREGS)
R(s̃LM)

≥ ψ̂m(2− ψ̂m)
ĵψ̃+(2− ψ̃+)

≥ (1− ν2
crit)

1/2ψ̃t(2− (1− ν2
crit)

1/2ψ̃τ)
ĵψ̃+(2− ψ̃+)

≥ (1− ν2
crit)

1/2

ĵ

ψ̃t(2− ψ̃τ)
ψ̃+(2− ψ̃+)

≥ (1− ν2
crit)

1/2

n

τ2

2σ2
+

.

Regularized Gauss-Newton 21

The last step follows from (5.14). Finally, we have R(sTREGS) ≥ κ4R(s̃LM) with

κ4 = (1−ν2
crit)

1/2

n
τ2

2σ2
+

(again, note that all parameters are constant over the nonlinear

iteration).
This brings us to the main result of this subsection.
Theorem 5.9. If the requirements RQ 1 – RQ 7 on the objective function and

the local model are satisfied, then there exists a κ > 0, independent of the iteration k,
such that mk(pk)−mk(pk + sk) ≥ κ(mk(pk)−mk(pM

k)) is satisfied.
Proof. The proof follows from the previous lemmas and taking κ = κ1 min(κ2, κ3, κ4).

Corollary 5.10. Under the assumptions in the previous theorem, the algorithm
Trust Region Algorithm with Regularized Model Solution (TREGS) is guaranteed to
converge to a first order critical point.

Proof. Our algorithm satisfies all the requirements for the basic trust region
algorithm from [5] to converge to a first order critical point. For the remainder of the
proof we refer to [5, section 6.4].

6. Numerical Results. All numerical results were computed using Matlab in
double precision arithmetic. We split the numerical results into two subsections: those
dealing with the linear DOT model and those dealing with the nonlinear DOT model.
We present comparisons of our method with the LM and DGN implementations in
Matlab. In the first subsection of results, we also compare our approach with the
MTSVD algorithm described in section 3.3.

Our comparisons are in terms of the total number of function evaluations and
Jacobian evaluations until the discrepancy principle, our effective stopping criterion,
is reached or a gradient tolerance is satisfied. The gradient tolerance and the related
SVD cut-off τ were chosen as follows. Let εF be the tolerance from the discrepancy
principle, given below for each test problem. Then εg = 10−7εF , and τ = 0.1 εg

‖r0‖ .
Numbers are reported for various noise realizations, starting guesses, and configura-
tions of the absorption and diffusion anomalies. In addition, we give a qualitative
assessment of the final image reconstructions of diffusion and absorption in terms of
relative error.

6.1. Linear Forward Model. We tested our algorithm extensively on four
different test problems, varying the starting guesses and the noise realizations, to get
a complete picture of the behavior of our algorithm, TREGS, relative to LM, DGN,
and MTSVD. In each of the four test problems, we are inverting jointly for absorption
and diffusion perturbation images. The four test problems differ in the locations and
sizes of the anomalies, as well as the values inside those anomalies. We mimic the
setup in [11], where the goal is to locate anomalies on the cortex of the brain through
the use of a one-to-one mapping from a region in R2 to the cortical surface. Thus,
the 3D imaging problem becomes inherently 2D. We use polynomials of degree two
or less. Therefore, the total number of unknown parameters is 14, 7 to describe the
absorption image (6 polynomial parameters plus the value inside the anomaly) and 7
to describe the diffusion image.

In each of the four testproblems, the “true” data is created as ytrue = Af (see
section 2.2) using two modulation frequencies and splitting the real and imaginary
components as described. To compute a single noise realization, we first generate
four noise subvectors using the randn function – each subvector corresponding to the
conformal partitioning in (2.2) for the matrix A in (2.3). Each noise subvector was
then scaled so that the relative noise level (for that subvector) was 1 percent, and

22 E. de Sturler and M. Kilmer

TREGS LM
Config FEV JEV Err1 Err2 FEV JEV Err1 Err2

1,1,NR1 82 45 0.126 0.098 247 56 0.195 0.166
1,1,NR2 25 13 0.071 0.090 224 52 0.125 0.223
1,1,NR3 48 25 0.093 0.067 175 40 0.125 0.165
1,2,NR1 18 11 0.172 0.075 91 21 0.075 0.044
1,2,NR2 23 11 0.223 0.055 74 17 0.075 0.125
1,2,NR3 19 10 0.159 0.119 79 18 0.073 0.035

DGN MTSVD
Config FEV JEV Err1 Err2 FEV JEV Err1 Err2

1,1,NR1 202* 46 0.098 0.090 91 54 0.148 0.064
1,1,NR2 241* 54 0.098 0.218 103 60 0.172 0.083
1,1,NR3 233* 53 0.162 0.131 102 51 0.191 0.100
1,2,NR1 136* 32 0.221 0.116 52 32 0.080 0.036
1,2,NR2 324* 75 0.295 0.146 53 28 0.077 0.039
1,2,NR3 154* 37 0.120 0.116 94 47 0.100 0.039

Table 6.1
Comparison of our proposed method (TGRES) with LM, DGN, and MTSVD on the first test

problem, for two different starting guesses for each of three noise realizations. The ∗ in the DGN
column means that the method switched over to LM after a few iterations due to poor conditioning
of the gradient.

then that noise subvector was added to the corresponding true data subvector. We
generated three different noise realizations according to this method. The scaling
values were saved and used to define the matrix W in order to whiten the data. That
is, we use A ← WA, y ← Wy = W (ytrue + η). Hence, our stopping criterion, based
on the discrepancy principle, was

‖Af − y‖ < tol ≈ ‖Wη‖
where we used the same value for tol, tol = 10.5, for each noise realization. Of
course, the choice of the tolerance in the stopping criterion can have an effect on
the quality of the solution, since a value too small could allow noise to creep back
into the solution, and a value too large would mean that the solution would be over-
regularized. However, for the purpose of this paper, we assume that this value is
fairly well estimated in the lab – the choice of regularization parameters of this sort
for nonlinear regularization methods is a subject beyond the scope of this paper.

First, in Table 6.1, we compare the performance of LM, DGN, and MTSVD
with our algorithm (TREGS) for the first test problem, two starting guesses, and
three noise realizations. The first observation from Table 6.1 is that damped Gauss-
Newton is not effective in choosing an appropriate search direction. In fact, Matlab’s
DGN, implemented by the lsqnonlin routine, always switches to LM once it detects
an ill-conditioned gradient and slow progress (indicated by ∗ in Table 6.1).

In our implementation of the MTSVD approach, we used an algorithm from
Dennis and Schnabel, [6, Alg A.6.4.5], for updating the model trust region. Jacobian
updates were done only once a step was accepted. As discussed in section 3.3, this
approach is still too greedy to perform well on these test problems.

In fact, Table 6.1 shows that LM is really the only serious competitor in terms
of consistent performance (function evaluations and Jacobian evaluations). However,

Regularized Gauss-Newton 23

TREGS LM

Config FEV JEV Err1 Err2 FEV JEV Err1 Err2

2,1,NR1 71 29 0.141 0.024 127 30 0.072 0.027

2,1,NR2 78 35 0.110 0.120 131 31 0.128 0.108

2,1,NR3 132 61 0.187 0.134 121 29 0.123 0.051

2,2,NR1 144 74 0.172 0.058 137 33 0.107 0.050

2,2,NR2 50 25 0.116 0.138 137 33 0.185 0.146

2,2,NR3 46 24 0.196 0.092 125 30 0.123 0.096

3,1,NR1 31 20 0.062 0.040 143 33 0.056 0.015

3,1,NR2 37 23 0.041 0.036 140 32 0.046 0.014

3,1,NR3 29 16 0.076 0.012 138 32 0.051 0.012

3,2,NR1 34 17 0.057 0.034 130 30 0.046 0.023

3,2,NR2 40 20 0.040 0.020 120 28 0.053 0.048

3,2,NR3 43 22 0.051 0.013 112 26 0.042 0.049

4,1,NR1 16 9 0.426 0.268 84 20 0.284 0.219

4,1,NR2 19 10 0.271 0.399 89 21 0.460 0.395

4,1,NR3 29 12 0.392 0.224 41 10 0.253 0.177

4,2,NR1 40 9 0.413 0.250 32 8 0.486 0.329

4,2,NR2 48 8 0.366 0.561 41 10 0.317 0.205

4,2,NR3 43 9 0.365 0.245 41 10 0.240 0.182
Table 6.2

Comparison of our proposed method, TREGS, to LM for test problems 2-4, for two different
starting guesses for each of three noise realizations.

Table 6.1 also clearly shows that LM needs significantly more function evaluations
and generally more Jacobian evaluations (though not by a similar factor) than our
proposed method. The behavior of the four methods was, in this respect, consistent
across all experiments. Therefore, for the remaining experiments, we report only the
comparison of TREGS with LM. These results are presented in Table 6.2.

6.2. Nonlinear Forward Model. In this section, we give comparisons for two
configurations and two noise realizations. In both configurations, the region of interest
was 8cm×8cm×4cm, discretized into N×N×Nz gridpoints. We simulated data taken
at two frequencies, 0 and 50 MHz. Sources and detectors were located on the “top”
and “bottom” of the box, with sources in planar positions [3h:2h:8-3h] × [3h:2h:8-3h]
and detectors in positions [2h:2h:8-2h] × [2h:2h:8-2h] (note that sources and detectors
are not co-located). Therefore, the number of sources and detectors increased as the
discretization became finer; that is, the expense of function and Jacobian evaluations
increased with finer discretization. In both examples, we invert for the parameters of
the polynomials describing both the absorption and the diffusion anomalies, and we
invert for the interior and background parameters. Thus, the length of the parameter
vector was 24, giving a Jacobian that is still quite tall and skinny.

In the first experiment, the discretization had 21 × 21 × 16 grid points. In the
second experiment, the discretization had 25 × 25 × 16 grid points. The anomalies
were positioned more off center in the first experiment than in the second, and so we
expected them to be slightly more difficult to locate accurately. In both experiments,
the starting shapes for the diffusion and absorption anomalies were ellipsoids, with the
diffusion starting guess located at the center of the region and semiaxes long enough
to just fill the box; the absorption starting guess was located just off center with
semiaxes pulled back by .5cm. Noise was added to the simulated data so that the

24 E. de Sturler and M. Kilmer

TREGS LM

Example FEV JEV Err1 Err2 FEV JEV Err1 Err2

1, NR1 55 24 .049 .138 102+ 24 .206 .661
1, NR2 51 14 .073 .210 102+ 24 .209 .710
2, NR1 73 26 .033 .047 102+ 24 .066 .310
2, NR2 50 15 .039 .304 100 23 .064 .220

Table 6.3
The + indicates the maximum number of function evaluations (100) was exceeded prior to

convergence. LM terminated for the first optimization step after exceeding 100 function evaluations
– observe that in three of four runs LM did not converge before this failsafe was invoked.

noise level of the (weighted) problem was 1 percent in the first set of experiments and
2 percent in the second set (generated using a different seed for the randn command).
Thus, we expect more iterations until convergence for noise realizations 1 in both
tests, but convergence to better quality solutions, than for noise realizations 2. The
stopping criterion in each example was 1.01‖Wη‖, where η is the noise vector.

Table 6.3 gives the numerical comparisons for the two examples. We tested
our new method (TREGS), LM, and DGN. However, DGN never finished; Matlab’s
lsqnonlin always switched to LM, and the method always took more than the max-
imum number of function evaluations (100). Therefore, we do not give the results
in Table 6.3. In examining the actual convergence history more closely, we observed
that LM initially seems to do a good job converging, it stagnates as the residual norm
approaches the noise level. We note that while LM does an acceptable job (though not
always as good a job as TREGS) of determining the diffusion anomaly, the difficulty
seems to be with convergence to the absorption anomaly. Looking closely at the µ
value that was chosen by LM, it appeared relatively large and stagnant towards the
latter half of the iterations, indicating that the damping may have been preventing
LM from moving sufficiently in a search direction (e.g. one consistent with the small
singular values) appropriate for better approximating the absorption anomaly, or that
too much damping of important directions early in the optimization process directed
LM away from the desired minimum and into a very flat region.

7. Conclusions and Future Work. We have analyzed why several popular
nonlinear least squares solvers perform poorly for problems with ill-conditioned Ja-
cobians, in particular for problems arising in DOT, our problem of interest. Based
on this analysis we propose a new method, TREGS, that combines a trust region
approach with regularization for the local model (trust region) problem. In general,
we argue, this leads to to better optimization steps. Although, this is hard to prove
or analyze analytically, our extensive numerical experiments show that significant
performance improvements are achieved. Compared with LM, the closest competi-
tor, TREGS significantly reduces the number of function evaluations and generally
also reduces the number of Jacobian evaluations (though not by a similar factor).
For problems like the one we are interested in, a function evaluation corresponds to
an expensive (large) dense matrix-vector product, an integral transform, or multiple
solutions of a discretized, three-dimensional PDE. Moreover, the cost of a Jacobian
evaluation is about the same as the cost of a function evaluation.

Although further analysis of our proposed algorithm is needed, we show that
the algorithm is guaranteed to converge to a first order critical point, if standard
assumptions on the objective function hold.

Important future work remains. We need to do further theoretical analysis of our

Regularized Gauss-Newton 25

algorithm, and we would like to test and analyze the algorithm for other problems
that suffer from ill-conditioned Jacobians. We expect the algorithm to be competitive
for many other such problems, but at this point that is only conjecture.

REFERENCES

[1] A. Aghasi, E. Miller, and M. E. Kilmer, Parametric level set methods for inverse problems,
(anticipated June 2010). submitted to SIAM J. Sci. Comput.

[2] M. Al-Baali and R. Fletcher, Variational methods for non-linear least squares, The Journal
of Operational Research Society, 36 (1985), pp. 405–421.

[3] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, Vol. 16 (1999),
pp. R41–R93.

[4] D. Boas, D. Brooks, E. Miller, C. DiMarzio, M. Kilmer, R. Gaudette, and Q. Zhang,
Imaging the body with diffuse optical tomography, IEEE Signal Processing Magazine.

[5] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, SIAM, Philadelphia,
PA, 2000.

[6] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, no. 16 in Classics in Applied Mathematics, SIAM, Philadelphia, PA,
1996.

[7] P. E. Gill and W. Murray, Algorithms for the solution of the nonlinear least-squares problem,
SIAM J. Num. Anal., 15 (1978), pp. 977–992.

[8] G. Golub and C. V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore,
3rd edition ed., 1996.

[9] G. H. Golub, M. T. Heath, and G. Wahba, Generalized cross-validation as a method for
choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.

[10] P. C. Hansen, Rank-deficient and discrete ill-posed problems, SIAM, Philadelphia, PA, 1997.
[11] M. Kilmer, E. Miller, M. Enriquez, and D. Boas, Cortical constraint method for diffuse

optical brain imaging, SPIE Proceedings of the Annual Meeting, 5559 (2004), pp. 381–391.
[12] M. E. Kilmer and E. de Sturler, Recycling subspace information for diffuse optical tomog-

raphy, SIAM J. Sci. Comput., 27 (2006), pp. 2140–2166.
[13] M. E. Kilmer, E. Miller, A. Barbaro, and D. Boas, Three-dimensional shape-based imag-

ing of absorption perturbation for diffuse optical tomography, Applied Optics, 42 (2003),
pp. 3129–3144.

[14] M. E. Kilmer and D. P. O’Leary, Choosing regularization parameters in iterative methods
for ill-posed problems, SIAM J. Matrix Anal. Appl., (2001), pp. 1204–1221.

[15] J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations Re-
search, Springer, Berlin, Heidelber, New York, 1999.

[16] C. R. Vogel, Computational Methods for Inverse Problems, SIAM, Philadelphia, 2002.

