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Abstract

Intracranial aneurysms are localized, abnormal, arterial dilations with a variable risk of rupture,

which can lead to subarachnoid hemorrhage (SAH), a condition associated with high morbidity and

mortality. The majority of non-traumatic SAH cases are caused by ruptured intracranial aneurysms.

Accurate detection can decrease a significant proportion of misdiagnosed cases. However, only

a small percent of all detected incidental aneurysms proceed to rupture and preventive treatment

carries risks of complications, thus creating a need for aneurysm rupture risk stratification tools to

help guide the treatment of these asymptomatic lesions.

This research investigates the two major areas of intracranial aneurysm analysis - aneurysm

detection and rupture risk classification. First a method for automatic detection of intracranial

aneurysms is proposed. Applied to the segmented cerebral vasculature, the method detects aneurysms

as suspect regions on the vascular tree and is designed to assist diagnosticians with their interpreta-

tions. The method is imaging modality independent and was tested on magnetic resonance imaging,

computed tomography and 3D angiography data. Second, a new approach to morphological analy-

sis of the 3D shape of an aneurysm is presented as a differentiator of rupture risk status in cerebral

aneurysms. The writhe number is introduced as a novel surface descriptor which proves useful in

both detection and classification studies. In addition to the writhe number, 3D shape descriptors

based on surface curvature and centroid-radii model are proposed and investigated for rupture risk

classification.

The combined use of these shape descriptors yields very promising results for predicting rupture

risk in intracranial aneurysms. In experiments, the aneurysm detection method achieved 100% sen-

sitivity, independent of modality. Depending on the imaging modality, there are between 0.66 and

5.7 false positives per study; the worst case performance is comparable to that of existing detection

research. The classification method resulted in a ∼20% increase in prediction accuracy, compared

to other commonly used shape indexes. These results support the utility of writhe number aneurysm

shape analysis as a high order descriptor with potential clinical use in intracranial aneurysm detec-

tion and rupture risk stratification.
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Chapter 1

Introduction

An intracranial cerebral aneurysm is a localized pathological dilatation of a blood

vessel in the brain. The origin, formation and evolution of cerebral aneurysms are

still not completely understood. It is clear that there is not one single factor involved

in aneurysmal development, but rather multiple risk factors which determine their

growth and eventual rupture [WBHT06]. Ruptured aneurysms may lead to sub-

arachnoid hemorrhage (SAH), a severe condition associated with high mortality

and morbidity. SAH is a form of stroke, with the main symptoms being severe

headache with rapid onset, vomiting, fever, and mild confusion [EMO08]. It is

estimated that 10 to 15% of patients with SAH die before reaching the hospital

[vGKR07]. SAH is a medical emergency and prompt diagnosis and treatment are

essential in improving patient outcomes.

The diagnosis and management of SAH represents a challenge to emergency

physicians, neuroradiologists, neurologists and neurosurgeons. Detecting symp-

tomatic intracranial aneurysms from imaging scans is an essential step in the pre-

vention of aneurysmal SAH and its attendant complications [WW00], as treatment

of aneurysms using endovascular or surgical methods carries a lower rate of com-

plication when performed in unruptured versus ruptured aneurysms [BSN06].
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While a severe condition, SAH accounts for only 5% of all strokes and only

a small fraction of all existing aneurysms progress to SAH. Recent studies sug-

gest that 6% of the general population may harbor unruptured cerebral aneurysms

[LeBB09, WBHT06]. These are asymptomatic aneurysms, the majority of which

remains undetected and are not a medical concern. However, advancement in

imaging technologies has led to an increased detection of these incidental, asymp-

tomatic unruptured intracranial aneurysms (UIA) during the routine evaluation of

headache patients in Emergency Department settings [WBHT06, KW07]. Once

discovered, the management of these asymptomatic UAI is controversial [WW00,

Wie05, Wei05]. It is not always obvious which particular aneurysmal lesions carry a

rupture risk significant enough to warrant intervention [ZD04]. Recent studies esti-

mate the annual rupture rate of a prospectively monitored patient population at only

0.1-0.2% [Wie03], so the relative low risk of rupture of incidental asymptomatic

UIA needs to be balanced against the risks of complications carried by preventive

treatment options.

This work investigates the two major areas of intracranial aneurysms analysis

- aneurysms detection and rupture status classification. The writhe number is in-

troduced as a novel 3D shape feature, which proves useful in both detection and

classification studies. As such our contribution is twofold. First, we concentrate on

our theoretical contribution by introducing the writhe number as a new 3D descrip-

tor used to characterize surfaces. Known in curve theory since its introduction by

Fuller in 1971 [Ful71], the writhe number is used to describe the global geometry

of a closed space curve or knot [AEW04, BP06]. To the best of our knowledge,

this research represents the first time the writhe number has been extended to sur-

faces. Second, writhe number-based methods are developed for both automatic

aneurysm detection and rupture status classification. Our experiments support the

usefulness of the writhe number aneurysm shape analysis as a 3D shape descriptor

2



with potential clinical use in both detection and rupture risk stratification. In addi-

tion to the writhe number, 3D shape descriptors based on surface curvature [Blo97]

and centroid-radii model [TOT00, Fan01] are proposed and investigated for rupture

classification. The Gaussian and mean curvatures are evaluated to describe local

changes on the surface of the aneurysms. In the centroid-radii model, the distances

between the centroid and the boundary of the aneurysms are computed in all direc-

tions. The resulting distribution of unnormalized distances describes both the size

and the shape of the aneurysms. The combined use of these shape descriptors yields

very promising results for predicting rupture status in intracranial aneurysms.

1.1 Overview of Automatic Detection

The detection of brain aneurysms plays a key role in reducing the incidence of

intracranial subarachnoid hemorrhage (SAH) which carries a high rate of morbidity

and mortality. The majority of non-traumatic SAH cases are caused by ruptured

intracranial aneurysms. Accurate detection can decrease a significant proportion of

misdiagnosed cases. Although aneurysm detection is currently performed visually

by experienced diagnosticians, there is an increasing interest in computed-aided

systems to assist clinicians, improve diagnostic accuracy and limit missed detection.

Existing aneurysm detection methods focus on magnetic resonance angiogra-

phy (MRA) data and are usually two-step processes [ALK+04, UAY+05, KKH06].

First, potential regions of interest (potential aneurysms) are detected from the in-

put 3D volume. Most detection methods start by searching for dot-like structures

on the segmented vasculature. This is performed by pre-processing the data and

using dot-enhancement filters [ALK+04], and/or by analyzing and comparing the

geometry of the vessels with a prior normal vessels model [KKH06]. This first step

typically returns a large number of possible aneurysmal regions, requiring the use
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of a false positive reduction scheme based on region properties such as image in-

tensity, shape, size, and relative position in the input volume. The complexity of the

false positive reduction scheme depends on the specificity of the detection method

used in the first step. Detection algorithms which return a large number of possible

aneurysmal regions after the first step, rely on the false positive reduction method

to prune the results and as such may require a more complex reduction scheme. In

comparison, algorithms which discriminate well between aneurysmal lesions and

healthy vessels during the first detection step may require a less complex false pos-

itive reduction scheme.

A scheme for automated detection of intracranial aneurysms is proposed in this

study [LMFM09]. The method detects aneurysms as suspect regions on the vascu-

lar tree, and is designed to assist diagnosticians with their interpretations and thus

reduce missed detections. In the current approach, the vessels are segmented from

background and surrounding brain tissue and their medial axis is computed, where

the medial axis is defined as the shape skeleton or centerline. Normal healthy ves-

sels are modeled as tubular structures. Using the medial axis as a positional guid-

ance, small regions along the vessels are inspected and the writhe number is used to

quantify how closely any given region approximates a tubular structure. Aneurysms

are detected as non-tubular regions of the vascular tree with non-zero writhe num-

bers. Once the suspected aneurysmal regions are highlighted, the method uses a

size-based false positive reduction scheme in which small regions are eliminated

from positive results. The detection method is tested on 3D-RA, MRA and CTA

patient data. Free-response operator characteristic (FROC) analysis is applied to

evaluate the performance of the proposed detection system.

The aneurysm detection method is tested on thirty unrelated patient datasets,

ten of each imaging modality: 3D-rotational angiography (3D-RA), magnetic reso-

nance angiography (MRA), and computed tomography angiography (CTA). In our

4



experiments, 100% sensitivity was achieved with false positives rates as low as 0.66

per study on 3D-RA data, 5.7 false positive rates per study on MRA data and 5.36

false positive rates per study on CTA data. The detection performance on 3D-RA

data, with high sensitivity and very few false positives, provides an initial proof of

concept of our processing scheme and supports the theoretical value of the algo-

rithm.

There is a direct relationship between the quality of vessel segmentation and

the accuracy of the detection method. 3D-RA data has high resolution, shows high

contrast between vasculature and surrounding tissue, and displays high signal-to-

noise ratio. Consequently, simple segmentation techniques yield good results on

3D-RA data. Segmentation is more challenging on MRA and CTA data which have

lower resolution and more artifacts. The performance of the proposed method is

comparable to that of existing methods on MRA data and will be discussed in more

detail in Chapter 4.

The ultimate clinical goal of this detection research is to offer an added safety

net to the diagnostician and to the patient, by making available a concordance check

protocol that would point the clinician to potential areas of concern that may have

been missed by the current method of visual inspection. The added value of such a

tool will need to be evaluated by prospective clinical trials.

1.2 Overview of Rupture Status Classification

Recent innovations in non-invasive vascular imaging have increased the detection

of incidental aneurysms, and created a need for aneurysm rupture risk stratification

tools to help guide the treatment of these asymptomatic lesions. Studies suggests

that at least 2% of the general population harbors aneurysms [RDAvG98]. Most

of these asymptomatic aneurysms will never rupture, but their incidental detection
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during routine evaluations raises ethical and medical questions about the best man-

agement strategies for these lesions.

Usually the clinical decision to treat is based on 2D geometrical features such

as aneurysm size [oUIAI98, Wie03], aspect ratio (aneurysm height/neck width)

[UTH+99, DTM+08, LeBB09] and height-width ratio [DTM+08]. However, many

large aneurysms appear stable and, conversely, small aneurysms often present with

rupture [JPP00, RMH05, NDM+05]. This incongruence has thrust morphological

analysis as a possible differentiator of rupture likelihood in cerebral aneurysms.

Some of the first morphological features proposed to characterize the 3D geome-

try of an aneurysm are global descriptors such as undulation, non-sphericity and

ellipticity indexes [MHR04, RMH05, HSF+07, DTM+08]. More complex 3D fea-

tures based on Fourier analysis [RLB+05], and geometrical and Zernike moments

[MDMP+07] have also been investigated. Initial results showed the potential of 3D

shape analysis and support the idea that, like size, geometry is likely to have an

impact on the rupture risk.

In this work, a novel set of morphological parameters, again based on the writhe

number but now used in a significantly different manner [LMBM10], are introduced

to describe the 3D shape of cerebral aneurysms and predict rupture status. In addi-

tion to the writhe number, 3D shape descriptors based on Gaussian and mean sur-

face curvature, and on the centroid-radii model are proposed and investigated for

rupture status classification. While the analysis of surface curvature and centroid-

radii model are established evaluation methods in image processing and shape rep-

resentation applications [TOT00, Fan01, HMM+03], to the best of our knowledge,

this is the first time statistics derived from local curvature and distance distributions

are used to predict rupture status in cerebral aneurysms.

The writhe number, surface curvature, and distance from the centroid, are de-

fined at each point on the surface of the aneurysm. The classification procedure is
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based on the analysis of measures derived from the distribution of these quantities,

through the use of histogram statistics. Parameters such as central moments, cumu-

lants and entropy of the histograms are analyzed to develop a better understanding

of aneurysm shape variation as measured by the writhe number, surface curvatures

and the centroid-radii model. These measures are used as classification attributes in

predicting rupture status in a dataset of cerebral aneurysms.

To provide some intuition concerning the morphological utility of the writhe

number of 3D surfaces, a novel analogy is proposed here between writhe number

of surfaces and mechanical torque [ST06]. Under this analogy, the writhe number

is viewed as a measure of how close the aneurysm is to mechanical equilibrium at

each point on its surface. In other words, the writhe number measures how much

”tension” there is on the surface of the aneurysm. Intuitively, the more spread out

and the stronger the ”tension” is on the surface, the greater is the likelihood for

rupture.

The analysis was performed on a database of 106 patients with 117 cerebral

saccular aneurysms (52 ruptured and 65 unruptured). Aneurysms were analyzed

both as completely isolated lesions and including a portion of their adjacent parent

vessels. The aneurysms were further labeled as sidewall (58 aneurysms) or bifur-

cation (59 aneurysms) according to their location with respect to the parent ves-

sels. Previous studies do not make a distinction between analysis on sidewall and

bifurcation aneurysms, but during this study it was found that sidewall and bifurca-

tion aneurysms were best described by disjoint sets of shape parameters, yielding a

morphological dichotomy between the two subtypes. This is consistent to similar

research in our lab which shows that most size and shape parameters predict rupture

status better on sidewall than on bifurcation aneurysms.

The morphological analysis prediction results were compared with established

size and shape indexes (e.g. aspect ratio, aneurysm size, height-width, non-sphericity,
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ellipticity and undulation indexes). Using these indexes resulted in 77.1% accuracy

for sidewall aneurysms and 64.2% accuracy for bifurcation aneurysms. Adding

morphological analysis based on writhe number analysis resulted in 86.7% predic-

tion accuracy for sidewall and 71.2% accuracy for bifurcation aneurysms; a signif-

icant increase in prediction accuracy for both aneurysm subtypes over the estab-

lished shape indexes.

In addition to the writhe number, this study also introduces the centroid-radii

model and the surface curvature for shape analysis. The entropy of the centroid-

radii distance distribution proved to be the most accurate single index associated

with rupture in sidewall aneurysms (accuracy 80.3%). When the writhe number-

based features are combined with other shape and size indexes, including surface

curvature and centroid-radii model, the prediction accuracy increases even further,

resulting in a stronger statistical model for rupture status prediction. More specif-

ically, the proposed methodology resulted in a prediction accuracy of 88.4% for

sidewall aneurysms (vs. 77.1% using established indexes) and 79.8% for bifurca-

tion aneurysms (vs. 64.2% using established indexes). Rupture status analysis is

discussed in detail in Chapters 5 and 6.

While the analysis was performed on a relatively large database and the results

are very encouraging, the eventual added value of the method remains to be de-

termined in the clinical setting and would require validation in prospective clinical

trials.

1.3 Outline of the Thesis

This thesis is structured as follows: background information and prior work de-

tails on aneurysm detection and classification, as well as on the proposed surface

analysis techniques are provided in Chapter 2. The main theoretical contribution
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describing the writhe number of surfaces is introduced in Chapter 3. The automatic

detection of intracranial aneurysms is presented in Chapter 4. Chapter 5 describes

the proposed methodology for analyzing rupture status in intracranial aneurysms us-

ing the writhe number. Both Chapter 4 and Chapter 5 represent comprehensive pre-

sentations of the proposed methods with details about corresponding testing data,

preprocessing procedures, reported results, and direction for future work. Rupture

status prediction analysis is continued in Chapter 6 with details about the use of 3D

descriptors derived from surface curvature and centroid-radii model. This work is

concluded in Chapter 7. Proofs involving the writhe number are demonstrated in

Appendix A.
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Chapter 2

Background and Related Work

This chapter provides an introduction to some basic differential geometry concepts

which are relevant to our use of surface curvature and writhe number. Related work

regarding aneurysm detection and rupture risk prediction is also presented here.

2.1 Geometry of Curves and Surfaces

2.1.1 Curves in the Plane

A curve in ℜ3 is a piecewise-differentiable function ® : I → ℜ3 defined on the open

interval I in ℜ. For every value t ∈ I , ® is described as ®(t) = (®1(t), ®2(t), ®3(t)),

where ®1, ®2 and ®3 are the Euclidean coordinate functions of ® [Gra93, O’N06].

The function ®
′
: I → ℜ3 given by ®(t)

′
= (®

′
1(t), ®

′
2(t), ®

′
3(t)) is called the veloc-

ity of curve. Note that ’ denotes differentiation with respect to t. The magnitude of

the velocity at each point gives the speed of the curve. Curve ® is said to be regular

if it is differentiable with non-zero velocity. The curve is said to have unit speed if

its speed is constant and equal to 1 at every point. The tangent vector at a point on

the curve is given by the velocity at that point.

Given a curve ® : I → ℜ3 and a function ℎ : J → I differentiable on the open
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interval J ∈ ℜ, then function ¯ = ®(ℎ) : J → ℜ3 is called a parametrization of ®

by ℎ. The parametrization of a curve is not unique.

To compute the length of a closed arc of a curve, let ® : I → ℜ3 be a curve

defined on the open interval I . Let ° : [a, b] → ℜ3 be a closed arc of curve

®, which means ° is defined on a closed interval [a, b] ∈ I , such that ° is de-

fined and differentiable at both a and b. The closed arc is said to be rectifiable

if it has finite length, which is defined as the line integral of the curve velocity

Lengtℎ(°) =
∫ b

a
∥°′

(t)∥dt. The length of the closed arc does not depend on the

curve parametrization. A curve is said to be rectifiable if any of its closed arcs

is also rectifiable. Rectifiable curves can be parameterized using the so-called arc

length or unit speed parameterization. If curve ® has an arc length parameterization

® = ®(t), then for every t1, t2 ∈ [a, b], the arc length function starting at t1 satisfies

s(t) =
∫ t2
t1

∥®′
(u)∥du = t2 − t1. It can be proved that any rectifiable curve admits

an arc length parameterization [O’N06].

2.1.2 Surfaces in 3-Dimensional Space

A coordinate patch x : D → ℜ3 is a one-to-one mapping of the open set D ∈ ℜ2

into ℜ3. If x is defined as x(u, v) = (u, v, f(u, v)), where f is any differentiable

real-value function on the set D ∈ ℜ2, then the image M = x(D) of patch D is

called a simple surface. Holding u or v constant in the function (u, v) → x(u, v)

results in two sets of curves. For a specific point (u0, v0) ∈ D, the curve u →
x(u, v0) is called the u-parameter curve of x and the curve v → x(u0, v) is called

the v-parameter curve of x. Surface M = x(D) is covered by these two families

of curves. If curve u and v are regular curves, x is called a parametrization of the

region x(D) in M [Gra93, O’N06].

Patch x can be described using its Euclidean coordinate functions x(u, v) =

(x1(u, v), x2(u, v), x3(u, v)). At each point (u0, v0) ∈ D, the velocity vector at u0
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of the u-parameter curve is denoted xu(u0, v0) and the velocity vector at v0 of the

v-parameter curve is denoted xv(u0, v0). Functions xu and xv are defined as

xu =
∂x

∂u
=

(
∂x1

∂u
,
∂x2

∂u
,
∂x3

∂u

)
(2.1)

xv =
∂x

∂v
=

(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v

)
(2.2)

Vectors xu(u0, v0) and xv(u0, v0) are tangents to surface M at point (u0, v0).

The two vectors define the tangent plane to surface M at point (u0, v0). The normal

vector to surface M at point (u0, v0) is given by the cross product xu(u0, v0) ×
xv(u0, v0). In general, the unit normal vector field or surface normal U of surface

M is defined as

U(u, v) =
xu × xv

∥xu × xv∥(u, v) (2.3)

at those points (u, v) ∈ D where xu × xv is non-zero [Gra93].

To compute metric properties of the surface such as arc length, surface area

and surface curvature, the first and second fundamental forms are defined. The

Riemannian metric or the first fundamental form is defined as

ds2 = Edu2 + 2Fdudv +Gdv2 (2.4)

where ds is the element of arc length, du, dv are parameterization elements, and

coefficients E,F,G are defined as E = ∥xu∥2, F = xu ⋅ xv, and G = ∥xv∥2. There

is also a second fundamental form, which can be expressed in quadratic form as

II = edu2 + 2fdudv + gdv2 (2.5)

where coefficients e, f, g are defined as e = U ⋅ xuu, f = U ⋅ xuv and g = U ⋅ xvv

given xuu = ∂xu

∂u
, xuv =

∂xu

∂v
, xvv =

∂xv

∂v
.
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2.1.3 Curvature

The curvature measures the extent to which a geometric object bends at each point.

For a regular curve parametrized by arc length, ® : (a, b) → ℜ3, and described as

®(t) = (®1(t), ®2(t), ®3(t)) with t ∈ (a, b), the curvature is a measure of the radius

of the unique circle which best approximates the curve at each point. Analytically,

the curvature k of curve ® can be computed from the first and second derivatives of

®(t) as

k(t) =
∥®′

(t)× ®”(t)∥
∥®′(t)∥3 . (2.6)

In the case of surfaces, given a regular surface M , for each arbitrary tangent

vector vp to M at point p, a normal curvature of M in the direction vp is defined as

a function of the first and second fundamental forms

k(vp) =
edu2 + 2fdudv + gdv2

Edu2 + 2Fdudv +Gdv2
. (2.7)

The minimum kmin and maximum kmax values of the normal curvature k of

M at p computed over all possible directions, are called principal curvatures. The

unit vectors at which these values occur are called principal directions [Gra93]. To

describe geometric and topological surface properties, the Gaussian (Kg), and mean

(Km) curvatures are defined as functions of the principal curvatures.

Kg = kminkmax (2.8)

Km =
[kmin + kmax]

2
(2.9)

In practice, the Gaussian and mean curvature can be computed directly from the
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coefficients of the first and second fundamental forms [Gra93].

Kg =
eg − f 2

EG− F 2
(2.10)

Km =
eG− 2fF + gE

2(EG− F 2)
. (2.11)

Intuitively, a flat piece of paper can only be bent in one direction, such that

at any point on the surface there is a straight line in at least one direction. This

means that the minimum curvature along the surface of the paper is zero regardless

of whether the paper lies flat or is bent into a cylinder or a cone. Consequently, the

Gaussian curvature of a cylinder or a cone is zero, equal to the Gaussian curvature

of a plane. Similarly, the skin of a sphere can never be completely flattened into a

plane without distortion. This phenomenon has to do with the intrinsic geometry of

surfaces.

The intrinsic geometry describes properties dependent on surface alone, without

considering the space around them. The Gaussian curvature is an intrinsic geomet-

ric property of the surface which describes mathematically if one surface can or

cannot be bent into another. The study of curved surfaces and their intrinsic proper-

ties are the topics of Riemannian geometry [Gra93]. In contrast, the mean curvature

is an extrinsic measure of curvature, describing the local curvature by taking the sur-

rounding space into account. As such, the mean curvature captures notions such as

the inside and the outside of the geometric object.

As shown in Fig. 2.1, regions with positive Gaussian curvature represent el-

liptical patches, which have positive mean curvature if they are locally convex and

negative mean curvature if they are locally concave. As illustrated in Fig. 2.2, re-

gions with negative Gaussian curvature represent hyperbolic patches, in which one

of the principal curvatures is positive and the other is negative. Points with zero

Gaussian curvature are either parabolic (one of the principal curvatures is zero) or
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planar (both principal curvatures are zero) [HL93]. Figure 2.3 illustrates the dif-

ferences between Gaussian and mean curvature on a more complex surface, where

the Gaussian curvature differentiates between elliptic and saddle points, while the

mean curvature further differentiates the elliptic points into convex or concave.

(a) (b)

Figure 2.1: Illustration of the curvature of elliptical surfaces. (a) The Gaussian
curvature of an elliptical surface is positive. (b) The mean curvature of an elliptical
surface is positive if the surface is locally convex and negative if the surface is
locally concave.

(a) (b)

Figure 2.2: Illustration of the curvature of hyperbolic surfaces. (a) The Gaussian
curvature of a hyperbolic surface is negative. (b) The mean curvature of a hyper-
bolic surface has both zero and non-zero values.

Many computer vision applications that make use of input data composed of tri-

angular meshes require an estimate of local surface curvature. However, curvature

is a continuous function of local surface behavior and triangle meshes are a discrete

approximation of a continuous surface that are only C0 continuous at triangle edges.

15



(a) (b)

Figure 2.3: Gaussian and mean curvature of a more complex surface. (a) Gaussian
curvature capture intrinsic geometric properties, i.e., whether a region is ellipti-
cal or hyperbolic. (b) mean curvature captures extrinsic geometric properties, i.e.,
whether an elliptical region is convex or concave.

Thus, estimating the curvature of a triangle mesh is an ongoing research problem.

Strategies for estimating surface curvature on meshes fall in one of three major

categories [GG06]. In the first category, the mesh around the vertex of interest is

locally approximated as a continuous, typically quadratic, parametric surface patch

[SW92, Ham93]. The curvature is determined by evaluating second order deriva-

tives from the parametric surface patch. However, this parametric approximation

does not guarantee that the vertex of interest sits on the parametric surface patch.

Thus, constraints can be used to guarantee that specific points are part of the result-

ing parametrization.

In the second category, curvature is approximated directly from the discrete

mesh, using only mesh connectivity information [MW00, DHKL01]. However, the

resulting curvature tends to be sensitive to noise and mesh resolution. Therefore, a

smoothing technique is applied to either the initial mesh or to the resulting curvature

field by averaging values over a small neighborhood.

In the third category, methods employ tensor evaluation directly on the mesh.

Tensors are mathematical concepts used to generalize algebraic notions such as

scalars, vectors and matrices. In the context of 3D surfaces, tensors describe a
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particular relationship between two vectors, thereby acting as maps transforming

one vector into another. In particular, a curvature tensor associates a point on the

3D surface to its corresponding principal curvatures. Using this approach, regions

on the mesh are locally associated with tensors, which converge to the theoretically

curvature tensor map of the smooth surface [Tau95, CSM03b, ACSD+03]. See

[GG06, MSR07] for a in-depth survey and accuracy comparison of the most recent

research in curvature estimation.

In this work, curvature estimation is performed using tensor evaluation, based

on the work described in [CSM03b, ACSD+03]. The method relies on the the-

ory of normal cycles [CSM03a, Mor08] to provide a way to define curvature for

both smooth and polyhedral surfaces. Given a surface represented as a polyhedron

P, a normal cycle of the surface associates particular offsets around the polyhe-

dron in the direction of the unit normal field of P . If the polyhedron is closely

inscribed in the offset manifold, with offsets bounded by some small positive con-

stant ², than a curvature measure of the polyhedron can be recovered from its nor-

mal cycle [CSM03b]. It can be proved that under certain continuity and differ-

entiability conditions, the normal cycle of P exists and is unique [Mor08]. Fig-

ure 2.1.3 shows a tubular neighborhood N²(P ) of a convex polygon P , defined as

N²(P ) = {x ∈ ℜn∣dist(x, P ) ≤ ²}, n = 2,3.

Figure 2.4: A tubular neighborhood of a polygon P , represented as an offset man-
ifold in the direction of the unit normal field of P . The offset distance is bounded
by constant ².
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For a convex polyhedron, the volume of the offset is a function of the mean and

Gaussian curvatures at each vertex of P . The volume is given by the formula

V ol²(P ) = ²Area(P ) +
1

2
²2
∫

v∈P
Kmdv +

1

3
²3
∫

v∈P
Kgdv. (2.12)

When instead of the whole volume, only a neighborhood B surrounding a vertex

v ∈ P is considered, B ∈ N²(P ), the volume of B is given by

V ol²(B) = ²Area(B) +
1

2
²2
∫

v∈B∩P
Kmdv +

1

3
²3
∫

v∈B∩P
Kgdv. (2.13)

In the non-convex case, normal cycles are decomposed into the convex com-

ponents of the offset, which are each classified as spherical, cylindrical and planar

parts. It is proved in [CSM03b] that, for both convex and non-convex cases, the dis-

crete Gaussian curvature associated with neighborhood B is a function of the angle

defect of P at vertices v ∈ B ∩P . The angle defect is defined as 2¼ minus the sum

of angles between consecutive edges incident on v. Similarly, the discrete mean

curvature is a function of the angles between incident faces, weighted by the length

of their edges in B. To capture these measurements, a piecewise linear curvature

tensor field, defined as 3x3 symmetrical bilinear forms, is built over the polyhedron

P . The curvature tensor is estimated at each vertex over a neighborhood B and

estimated tensor values are interpolated linearly across adjacent triangles. Given a

vertex v ∈ P , the curvature tensor at v is defined as

T (v) =
1

∣B∣
∑
e∈B

¯(e)∣e ∩B∣ēēt (2.14)

where, as shown in Fig. 2.5, B is a neighborhood surrounding vertex v, e is an edge
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of the mesh, ¯(e) is the signed angle between the normals of the two oriented

triangles incident to e, ∣e ∩ B∣ is the length of e ∩ B (between 0 and ∣e∣) and

ē is a the unit vector in the same direction as e [ACSD+03]. According to the

theory developed in [CSM03b], T (v) is a 3x3 matrix whose sorted eigenvalues

are associated with the normal at v, and with the minimum (kmin) and maximum

(kmax) curvatures at v, respectively. Given the principal curvatures, the Gaussian

(Kg = kminkmax) and mean (Km = [kmin+kmax]/2) curvatures are also computed

for each vertex along the surface.

(a) (b) (c)

Figure 2.5: Computing the curvature on aneurysms represented as triangular
meshes. (a) Complete model of an aneurysm represented as a triangular mesh.
(b) Detail on the mesh. The yellow disk surrounding vertex v represents the neigh-
borhood B over which the curvature at v is computed. (c) The angle between a pair
of adjacent faces sharing an edge e is computed as the angle between the normals
at the two triangles. ∣e ∩B∣ is the length of e ∩B (between 0 and ∣e∣).

While other studies [MHR04, RMH05] have investigated curvature-based in-

dexes for aneurysm surface analysis, they use only global measures of curvature.

For example, [MHR04] introduces four global shape indices based on Gaussian

and mean curvature: area-averaged Gaussian (GAA), area-averaged mean (MAA),
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L2-norm of Gaussian (GLN) and L2-norm of the mean (MLN).

GAA =
∑

△i

KgiSi/
∑

△i

Si (2.15)

MAA =
∑

△i

KmiSi/
∑

△i

Si (2.16)

GLN =
1

4¼

√∑

△i

K2
giSi

∑

△i

Si (2.17)

MLN =
1

4¼

√∑

△i

K2
miSi, (2.18)

where Kgi, Kmi and Si are the Gaussian curvature, the mean curvature and the

surface area associated with the ith triangular element of the triangle mesh model

of the aneurysm [MHR04]. GAA and MAA have units of inverse distance [L−2]

and [L−1] respectively, and therefore depends on the size as well as the shape of the

aneurysm. GLN and MLN are both non-dimensional and depend on surface shape

only [MHR04].

This thesis presents a set of new curvature-based shape descriptors for aneurysm

rupture status classification that go beyond the global curvature-based shape de-

scriptors of prior art which fail to capture subtle shape differences. The new shape

descriptors include variance, skewness, kurtosis, and entropy of surface curvature

distributions. Details about the use and the performance of these new curvature-

based shape descriptors for aneurysm rupture classification are provided in Chapter 6.

2.1.4 Writhe Number

The introduction of the writhe number as a novel 3D surface descriptor is a main

theoretical contribution of this research. The writhe number was introduced by

Fuller in 1971 [Ful71] and is used in curve theory to measure how much a curve

twists and coils. When a second curve is placed nearly parallel to the first one, the
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writhe number measures how much the second curve twists about the first [BP06].

While the application of the writhe number is usually confined to closed ribbons,

formulas for open ended curves were introduced in [Sta05, BP06]. In biomedical

engineering, the writhe number is used to study the shape and topology of DNA

[KL00, RM03] and to characterize the shape of curves on 3D surfaces, such as the

curves of sulci and gyri on the cortical surface [HGLS08].

Let C be a closed non-self-intersecting smooth curve C = r(s) : [0, L] → ℜ3,

parameterized by arclength s. It is assumed C has a natural orientation following

the direction of the arc coordinate [Sta05]. A two-dimensional unit sphere S2 is

used to represent the family of parallel projections in ℜ3. The projection of C in a

direction z ∈ S2 is an oriented, possibly self-intersecting, closed curve in a plane

normal to z. The directional writhe number of C in the direction of z, denoted

Dw(z), is defined as the number of positive crossings minus the number of negative

crossings [AEW04]. As shown in Fig. 2.6, a crossing is considered positive if, in

order to align two curve intervals, the upper interval is rotated counterclockwise

with an angle between 0 and ¼. A crossing is considered negative if, in order

to align two curve intervals, the upper interval is rotated clockwise with an angle

between 0 and ¼. The total writhe number of C is the averaged directional writhe

number taken over all directions z ∈ S2.

Wr(C) =
1

4Π

∑

z∈S2

Dw(z) (2.19)

Alternatively, the writhe number Wr can be computed from the tangents to the

curve as the double line integral:

Wr(C) =
1

4Π

∫ L

0

∫ L

0

(r(s1)− r(s2)) ∙ (t(s1)× t(s2))

∥r(s1)− r(s2)∥3 ds1ds2, (2.20)

where s1, s2 are arclengths and t = r
′
(s) is the tangent vector. Here ∥⋅ ∥ is the norm
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(a) (b)

Figure 2.6: (a) A curve crossing is considered positive if, in order to align two curve
intervals, the upper interval is rotated counterclockwise with an angle between 0
and ¼. (b) A curve crossing is considered negative if, in order to align two curve
intervals, the upper interval is rotated clockwise with an angle between 0 and ¼.

of a vector, ∙ denotes a dot product and × denotes a cross product. Note that the

writhe number depends exclusively on the shape of curve C and it is independent

of the direction of C. The writhe number is a signed integer, measuring the number

of crossings of the curve with itself, averaged over all possible projection angles

[Sta05, BP06]. Figure 2.7 shows the trefoil knot curve. The knot has a writhe

number of 3.

(a) (b) (c)

Figure 2.7: The trefoil knot curve has 3 crossings and a writhe number of 3. (a) 3D
view along x axis. (b) 3D view along the y axis. (c) 3D view along the z axis.

This research extends the use of the writhe number from 2D to 3D. The theory

behind the writhe number of curves and 3D surfaces and the geometric properties

of the writhe number of surfaces are discussed in detail in the next chapter. The

usefulness of the writhe number for both detection and classification of intracranial
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aneurysms is presented in Chapter 4 and Chapter 5, respectively.

2.2 Probability and Statistics

Quantitative histogram analysis through use of statistics, such as central moments,

cumulants and entropy, has been successfully used in biomedical imaging research

for classification and pattern recognition applications [APT+07, YM06, SJY+09,

CGR08, SUS09, SCH06].

In this thesis, shape descriptors such as the writhe number and surface curva-

tures are computed over the surface of an aneurysm model and are treated as sam-

ples of continuous density functions, which can be captured and analyzed using his-

tograms. A histogram is a non-smooth estimator of the underlying density function

showing discontinuities at its ends and at bins with zero value [MSW00, Wil97].

Because, such discontinuities may not reflect the continuous nature of the density

function, histogram smoothing is performed using kernel estimators.

Kernel smoothing approximates a regression curve p(x) by performing local

weighted averaging in a small neighborhood around the variable x [Har90]. The

kernel describes the shape of the weight function used in the local approximation.

Typically, the kernel is a continuous, bounded function which integrates to one.

The smoothness of the approximation is controlled by a parameter called band-

width, which describes the size of the local neighborhood around x. In this work,

the approximating function is given by the Nadaraya-Watson estimator with Gaus-

sian kernels [Har90], [Har91]. The optimal bandwidth is computed as described in

[BA97].

Statistics such as central moments, cumulants, and entropy are applied to the

smoothed histogram to describe and analyze the distributions. The central moments
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of a probability distribution function p(x) are defined as

¹i =

∫ ∞

−∞
(x− c)ip(x)dx. (2.21)

The first central moment is zero. The second central moment, ¹2, is the vari-

ance and describes the amount of variation within the values of xi. The third central

moment, ¹3, is the skew and describes the asymmetry of the shape around the mean

(Fig. 2.8). The fourth central moment, ¹4, is the kurtosis and describes the sharp-

ness of the distribution (Fig. 2.8).

(a) (b) (c) (d) (e)

Figure 2.8: Interpretation of third and fourth central moments. (a) Normal distri-
bution with mean ¹. (b) Distribution with positive skewness. The asymmetric tail
extends out toward positive x values. (c) Distribution with negative skewness. The
asymmetric tail extends toward negative x values. (d) Flat distribution with large
kurtosis is called platykurtic. (e) Sharp distribution with small kurtosis is called
laptokurtic.

The cumulants of a distribution are closely related to the moments of that dis-

tribution. The first five cumulants as functions of the central moments are: k1 = c,

k2 = ¹2, k3 = ¹3, k4 = ¹4−3¹2
2 and k5 = ¹5−10¹3¹2 [JKK05, TK03]. The fourth

order cumulant gives a measure of the non-Gaussianity of the variable x [TK03].

Distributions with sharp peeks and heavy tails have positive k4, whereas distribu-

tions with flatter shapes have negative k4. Gaussian distributions have k4 = 0.

The entropy of a continuous random variable x, with density p(x), is a measure

of the uncertainty associated with that variable and it is defined as

ℎ(x) = −
∫

x

p(x) log p(x)dx. (2.22)
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The entropy does not depend on the values of x but only on the probabilities that x

will occur [CT06].

Statistics describing writhe number, curvature and centroid-radii distributions

along the surface or aneurysms are computed from the their corresponding smoothed

histograms. The central moments, cumulants and entropy of these histograms are

analyzed to develop a better understanding of how shape variation influences rup-

ture status in cerebral aneurysms. Details about the use and performance of his-

togram statistics for rupture status prediction are provided in Chapters 5 and 6.

2.3 Aneurysm Detection and Characterization

In this thesis, surface analysis based on writhe number and surface curvature is

tested on two major areas in the field of neurovascular care - cerebral aneurysms

detection and rupture status classification.

2.3.1 Aneurysm Detection

Detecting intracranial aneurysms from imaging scans is an essential step in the pre-

vention of aneurysmal SAH and its attendant complications [WW00]. It is reported

that 1% of the patients presenting with headaches to Emergency Departments have

SAH and up to 10% of the patients presenting with severe, abrupt-onset headaches

complaints have SAH [EMO08]. Although aneurysm detection is currently per-

formed visually by experienced diagnosticians, there is an increasing interest in

computed-aided diagnostic (CAD) systems to assist diagnosticians and possibly

improve diagnostic accuracy and limit missed detection.

When interpreting scans and searching for aneurysms, it is important for clin-

icians to have access to the underlying 3D structures from the 2D studies. Be-

cause 3D-RA, CTA and MRA data provide vessel and aneurysm positions in cross-
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sectional images only, 3D structures are typically extracted from sets of 2D images

using segmentation. A great deal of research has been carried out in developing

algorithms for the segmentation of cerebral vasculature, including aneurysms, from

MRA and CTA studies [FPAB04, HF07, RP09]. Vessel segmentation remains a

challenging task and the research in this field remains active. Refer to [LZ05] for

a survey of algorithms for vessel segmentation from MRA data and [KQ03] for a

survey on vessel extraction techniques and algorithms applied to MRA, CTA and

3D-RA datasets.

In order to visually isolate aneurysms from segmented volumes, it is necessary

to study the entire vasculature. Small aneurysms are often visible only from specific

viewing directions and may go undetected, leading to misdiagnosis. In contrast,

CAD-based aneurysm detection methods highlight possible aneurysm areas and

may help improve diagnostic accuracy and ultimately, reduce diagnostic times.

Uchiyama et al. [UAY+05] detect potential aneurysms by measuring the degree

of convergence of the surface gradient vectors at each point on the segmented ves-

sels. Analysis of the size, shape, and image intensity of each potential aneurysm

is performed to eliminate false positive results. Kobashi et al. [KKH06] construct

“normal vasculature models” by dilating the vessel axes obtained by thinning the

segmented vasculature, such that the resulting vasculature model has circular cross-

sections. Aneurysm candidates are obtained by subtracting the “normal vasculature

model” from the segmented arteries. False positive reduction is based on evaluating

nine feature values with respect to the shape and intensity of the aneurysms can-

didates. In the method proposed by Arimura et al. [ALK+04], MRA images are

pre-processed using a dot-enhancement filter and potential aneurysms are detected

by grey level thresholding of the enhanced images. False positive reduction is per-

formed based on size, local structure and image intensity of potential aneurysms.

False positive rates are further reduced by finding short branches in the medial axis
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of the vessels and using that as a high likelihood of small aneurysms [ALK+05].

The method is improved using a shape-based image differencing approach which

extracts additional features based on local changes in vessel thickness; thin regions

have a higher likelihood of being false positives [ALK+06]. The differencing ap-

proach determines local changes in thickness using distance-transformed and skele-

ton images.

The detection methodology presented in this thesis is detailed in Chapter 4. The

work is similar to [KQ03] in that we evaluate the intracranial vasculature as a whole

and consider normal vessels to be approximated by tubular structures. However,

instead of constructing a global vasculature model we focus on local 3D vessel

geometry. Our detection method is based on the use of the writhe number. The

writhe number as used here describes the 3D geometry of both the parent vessels

and potential aneurysms, and proves to be very accurate in distinguishing between

healthy vessels and regions with potential aneurysms.

2.3.2 Rupture Analysis

Rupture of cerebral aneurysms is the leading cause of non-traumatic SAH, a condi-

tion still associated with 50% mortality despite optimal treatment and care. How-

ever, the majority of intracranial aneurysms are asymptomatic and remain unde-

tected. Recent advances in imaging technologies and the increasing use of less

invasive computed tomography (CT) and magnetic resonance (MR) imaging in out-

patient settings, has led to an increased detection of incidental, asymptomatic un-

ruptured intracranial aneurysms (UIA) during the routine evaluation of headache,

dizziness, and trauma [WBHT06, KW07].

With rare exceptions, the general recommendation for all unruptured symp-

tomatic aneurysms is treatment. However, the management of asymptomatic UIA

remains controversial [WW00, Wie05, Wei05]. On one hand, should an aneurysm
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rupture, the initial bleed is fatal in 10-20% of instances. Despite improvements in

patient management, the incidence of subarachnoid hemorrhage (SAH) has not de-

clined over time and the morbidity rate remains between 25% and 50% in patients

surviving initial aneurysm rupture [Sch97, WW00, Juv04, STS06]. On the other

hand, recent studies estimate the annual rupture rate of a prospectively monitored

patient population at only 0.1-0.2% [Wie03], in contrast with earlier data which

reported an annual rupture rate of 1-2% [WW00, JGP+01]. Preventive treatment

carries risks of complications which increase with age [Wie03], therefore the de-

cision to intervene and treat UIA needs to be balanced against the risk of rupture.

To this end, the International Study of Unruptured Intracranial Aneurysms (ISUIA)

released the conclusions of two studies in 1998 and 2003 with the goal of defining

an optimal treatment strategy of UIA [oUIAI98, Wie03].

These studies concluded that the size and location of the aneurysms play im-

portant roles in predicting rupture risk. A threshold of 7mm was proposed for the

largest diameter of the aneurysm which is a commonly used size index to predict

rupture (Fig. 2.9(a)). However, it is well known from measurements of ruptured

aneurysms that many small aneurysms rupture, whereas some large aneurysms

never do [JPP00, RMH05, NDM+05]. Ujiie et al. [UTH+99] proposed using the

aspect ratio (aneurysm height/neck width) as a potential size index used to esti-

mate the risk of rupture, especially for small aneurysms which might be missed

by the largest diameter measure (Fig. 2.9(b)). A threshold value of 1.6 was rec-

ommended for the aspect ratio to discriminate between unruptured and ruptured

aneurysms. While proving useful in many cases, some studies have failed to detect

a statistically significant difference in the aspect ratio of ruptured vs. unruptured

aneurysms [SOT+04, RMH05]. Other studies dispute how to best use the measure

[BReB+03]. Other commonly used 2D size indexes which were found to be as-

sociated with rupture risk are the height-width index, the bottleneck index and the
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aneurysm inclination angle [HSF+07]. As shown in Fig. 2.9, the height-width is

defined as the height of the aneurysm divided by its largest diameter. The bottle-

neck index is defined as the largest diameter of the aneurysm divided by its neck

diameter. The inclination angle defined as the angle between the aneurysm height

and its neck plane. Recent studies found the inclination angle to be a statistically

significant index for rupture risk in sidewall aneurysms ([BSH+10]).

(a) (b) (c) (d) (e)

Figure 2.9: Existing 2D size indexes (a) Largest diameter size. (b) Aspect ratio is
defined as the height H of the aneurysm divided by its neck diameter D1 (c) Height-
width index is defined as the height H of the aneurysm divided by its largest diame-
ter D. (d) The bottleneck factor is defined as the largest diameter D of the aneurysm
divided by its neck diameter D1. (e) Aneurysm inclination angle is defined as the
angle on inclination between the aneurysm and its neck plane.

Cerebral aneurysms present in various shapes and three-dimensional sizes and,

like size, shape is likely to have an impact on the rupture risk. With advances in

medical imaging, modalities such as 3D rotational angiography (3D-RA), computed

tomography angiography (CTA) and magnetic resonance angiography (MRA) can

capture the complexity of the volumetric shape and offer the possibility to analyze

aneurysms in a 3D environment. Still, the morphological characterization of brain

aneurysms remains an open research area. Ma et al. [MHR04] proposed some

of the first parameters to describe the 3D geometry of cerebral aneurysms. These

authors introduced global descriptors such as undulation, non-sphericity and ellip-

ticity indexes and analyzed their usefulness as rupture predictors in [RMH05].

The ellipticity index (EI) provides a measure of how close the shape of the
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aneurysm is to an ellipsoid. The ellipticity index is defined as EI = 1−(18¼)
1
3
V

2
3

CH

SCH
,

where VCH is the volume of the aneurysm convex hull and SCH is the surface of

the aneurysm convex hull. The EI varies from 0 to 1, being 0 for a sphere and

increasing with ellipticity.

The undulation index (UI) describes how irregular the surface of the aneurysm

is. The undulation index is defined as UI = 1 − V
VCH

, where VCH is the volume

of the aneurysm convex hull and V is the aneurysm volume. The UI varies from 0

to 1, being 0 for completely convex aneurysm and increasing with the presence of

surface irregularities and lobulations.

The non-sphericity index (NSI) measures how closely the shape of the aneurysm

resembles an ellipsoid. The non-sphericity index is defined as NSI = 1−(18¼)
1
3
V

2
3

S
,

where V is the aneurysm volume and S is the aneurysm surface. The NSI varies

from 0 to 1, being 0 for a hemisphere and increasing with deviation from a spherical

shape due to ellipticity or undulations in the surface [RMH05].

The EI, UI and NSI indexes are some of the first 3D shape descriptors to be as-

sociated with aneurysm rupture risk and to be included in relevant clinical research

studies [RMH05, HSF+07, DTM+08]. While the introduction of these indexes

showed the potential of 3D shape analysis, computing them requires significant

user interaction and does not fully captured the continuous quality of 3D geometry.

More complex 3D descriptors were introduced by Rohde et al. [RLB+05], who

applied Fourier analysis to capture the shape irregularities of intracranial aneurysms.

Their Fourier analysis was performed on 2D data sets. They evaluated manually

segmented contours of aneurysms defined on projection planes subjectively cho-

sen to best show the relationship between an aneurysm neck and its parent vessel.

As such, the work was dependent on the choice of projection planes and did not

take full advantage of 3D geometry of the aneurysmal lesions. Finally, Millan et al.

[MDMP+07] introduced 3D geometrical and Zernike moment invariants to describe
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the 3D shape of the aneurysms in an automatic fashion. The performance of Zernike

moments was superior to that of geometrical moments, and it was concluded that

Zernike moments show richer description properties and are more robust to small

perturbations of the models. While the work presented in [MDMP+07] gives an

idea of how rich and complex the 3D shape analysis can be, it fails to offer a medi-

cal intuition of how and why the proposed descriptors work in predicting aneurysm

rupture status.

The rupture status prediction methodology proposed and presented in this thesis

is detailed in Chapters 5 and 6. The purpose of the current work is to explore the

potential of geometrical characterization of cerebral aneurysms in differentiating

between ruptured and unruptured aneurysms. This work is similar to recent mor-

phological studies [MHR04, RMH05, HSF+07, RLB+05, MDMP+07] in that the

analysis is performed on a dataset of aneurysms that were classified as being rup-

tured or not at the time of detection. In contrast to ISUIA studies [oUIAI98, Wie03],

the evolution of these aneurysms was not followed clinically over a period of time.

As such, this study describes a method for rupture status prediction as opposed to

predicting rupture likelihood which would require prospective studies, where in-

vivo aneurysms are followed over long periods of time until they rupture or not.

From a technical point of view, this research is close to [MDMP+07] in that

it proposes an automatic method to characterize complex shapes, while taking full

advantage of the 3D information available in the input data, in this case 3D-RA.

In contrast to [MDMP+07], the proposed morphological parameters capture subtle

changes on the surface of the shape using the writhe number, surface curvature, and

the centroid-radii model.

The centroid-radii model for shape representation was proposed by Chang et al.

[CHB91] and refined by Tan et al. [TOT00]. The model uses the distances between

the center of mass (centroid) and the boundary of an object to represent the shape
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of the object. The original work describes 2D shapes and the intervals between

radii is measured in degrees and it is fixed (Fig. 2.10). As a result, each shape is

described by a vector of fixed length and the shape comparison is performed us-

ing a vector metric. Because the distances are computed from the centroid, the

model is translation invariant. The model can be normalized and made scale in-

variant by dividing all distances by the largest radius. Fan et al. [Fan01] made the

comparison rotation invariant by using distance histograms for shape representa-

tion. Because the distances are computed from the centroid to the boundary of the

shape, the model represents an object by its star-shaped envelope (Fig. 2.10) . An

object is said to be star-shaped if there exists a point C interior to the shape, in

this case the centroid, such that for every point P on the surface of the object, the

line segment PC lies entirely within the object. In other words, every point on the

surface of the object is visible from point C. When used to compare two similar

objects, the model captures the salient features of their shapes, while discarding

small shape variations. The centroid-radii model provides a compact representation

of a shape and is currently used in pattern recognition and shape retrieval appli-

cations [TOT00, Fan01, TOT03, KLZL07]. The centroid-radii model is similar to

the spherical extent function, a ray-based 3D descriptor used in database retrieval

applications [VS00, SV01], which captures the furthest intersection points between

rays emanating from the center of mass and the surface of the object.

Figure 2.10 shows that the star-shaped envelope of an object can be very differ-

ent from the original model. However, in our experiments 95% of the aneurysms

are star-shaped with respect to their centroids. For the remaining 5%, on average,

the star-shaped envelope overlaps the actual aneurysm on more than 98% of the

surface. This indicates that using the centroid radii model does not result in a loss

of shape information. It also suggests that centroid-radii computation can be further

simplified for this particular application and the distances between the centroid and
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sample points on the aneurysm surface can be considered directly without checking

for surface intersections.

(a) (b)

Figure 2.10: The centroid-radii model applied to a 2D shape. (a) The original shape.
(b) The corresponding star-shape envelope with respect to centroid C. The interval
between radii is fixed and the resulting distances are stored in a fixed-size vector.
Shapes are compared using a vector metric.

For aneurysm shape analysis, the surface distributions of the centroid-radii dis-

tances, of writhe numbers and surface curvatures are evaluated through use of his-

togram statistics. Parameters such as central moments, cumulants and entropy of

the histograms are analyzed to develop a better understanding of aneurysm shape

variation. These measures are used as classification attributes in predicting rupture

status in a dataset of cerebral aneurysms. While proposing some new mathemat-

ically sound shape descriptors, we also attempt to make these new indexes more

appealing to the medical community by offering the intuition behind their working

mechanisms.
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Chapter 3

The Writhe Number

3.1 The Writhe Number of Surfaces

In this thesis, the notion of the writhe number is extended from curves to surfaces

[LMFM09]. To the best of our knowledge, this is the first time the writhe number

is used to characterize surfaces. As in the case for a curve, the writhe number of a

surface represents a measure of the complexity of a shape.

Given two points p and p
′ on a surface S, we define a relationship w between

them as

w(p,p
′
) =

[
np,p

′ − p,np
′
]

np⋅ ∥p′ − p∥⋅np′
, (3.1)

where n̂p is the unit surface normal at point p, ∥⋅ ∥ is the norm of a vector and

[a,b, c] is the triple scalar product of vectors a, b and c. The triple scalar product

is defined as [a,b, c] = a ∙ (b× c), where a ∙ b denotes a dot product and a × b

denotes a cross product. The absolute value of the triple scalar product is the vol-

ume of the parallelipiped defined by vectors a, b and c [FPBJES03]. The product

supports circular permutation and its value remains the same as long as the three

vectors are permuted such that they maintain their initial counterclockwise order. It

follows that a ∙ (b× c) = b ∙ (c× a) = c ∙ (a× b) [FPBJES03].
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The entity w(p,p
′
) is a pseudoscalar, meaning that it behaves like a scalar but

changes sign under inversion. Indeed, it can be proven using linear algebra that

a ∙ (b× c) = −(−a) ∙ ((−b)× (−c)) [FPBJES03].

We define the writhe number of a point p, given a surface S with p ∈ S as

W (p, S) =

∫

p′∈S
w(p,p

′
) dS. (3.2)

It follows that the writhe number of a point as described by (3.2) depends on the

size of the surface and has units of Lengtℎ2. For our applications (aneurysms de-

tection and rupture classification) we use this measure of the writhe number which

is scale dependent. Note that scale independence can be obtained by dividing the

writhe of a point by the total area of surface S. This would result in a dimensionless

measure.

Upon discretization (3.2) becomes

W (p, S) =
∑

p′∈S
w(p,p

′
)Δp

′
(3.3)

where Δp
′ is the unit of surface area. If S is a triangular mesh, then Δp

′ is the

area associated with vertex p
′ . In this case, the differential surface area, Δp

′ , is

computed as one third of the sum area of all triangles defined by p
′ .

For our processing, we also require the notion of a local neighborhood, N(p),

about a point p on the surface of a vessel. Formally, a point p′ belongs to N(p)

if and only if the following two conditions are satisfied. First, the geodesic path

from p to p
′ belongs to N(p). This condition guarantees that N(p) is connected.

Second, ∥p′ − p∥ ≤ d, d ∈ ℝ+. This condition determines the size of the neigh-

borhood and ∥⋅ ∥ denotes the Euclindean norm. The writhe number of a point p,

given its local neighborhood N(p) is the surface integral
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W (p, N(p)) =

∫

p′∈N(p)

w(p,p
′
) dN(p). (3.4)

Upon discretization 3.4 becomes

W (p, N(p)) =
∑

p′∈N(p)

w(p,p
′
)Δp

′
. (3.5)

If N(p) is a collection of uniformly sampled image voxels, then Δp
′ has a fixed

value corresponding to the surface area of a voxel.

3.2 Writhe Number for Aneurysm Detection

For the detection problem it is assumed that healthy vessels can be modeled lo-

cally as cylinders or extruded parabolas. An extruded parabola is a tubular structure

whose medial axis is a parabola. The assumption that healthy vessels can be mod-

eled locally by cylinders and extruded parabolas is validated experimentally and

results are presented in Chapter 4. The 3D writhe number as defined in Section

3.1 is used to detect perturbations from cylinders and extruded parabolas along the

vasculature. We claim that if N(p) is a cylinder or an extruded surface along a

parabola then W (p,N(p)) = 0, i.e the writhe number is zero in regions of normal

vasculature. Consequently, regions with non-zero writhe numbers are reported as

possible aneurysms. The claim is discussed here and proven in Appendix A, using

the pseudoscalar quality of the writhe number.

Given a surface point p and its local neighborhood N(p) as defined in Section

3.1, the writhe number of p over N(p) is given by equation Eq. 3.5 and is a sum of

quantities w(p, p′
) for all p′ ∈ N(p).
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3.2.1 The Writhe of a Cylinder

If N(p) is a cylinder, we claim that for every point p1 ∈ N(p) there exists a sec-

ond point p2 ∈ N(p), such that the Euclidean distance ∣p1 − p∣ = ∣p2 − p∣ and the

line segment p1p2 lies on the cylinder surface (Fig. 3.1(a)). These two conditions

ensure that the pair (p1, p2) is unique. It can be proven that w(p, p1) = −w(p, p2)

(Appendix A.1). Such pairs of points (p1, p2) cancel each other out in the writhe

number summation and consequently W (p,N(p)) = 0.

(a) (b)

Figure 3.1: Examples of the writhe number for objects with symmetry. (a) The
writhe number of a cylinder is zero based on the symmetric nature of a cylinder. (b)
The points on the parabola that have zero writhe numbers are shown in red.

3.2.2 The Writhe of an Extruded Surface Along a Parabola

If N(p) is a non-self-intersecting extruded parabola, its medial axis is a parabola.

Let p correspond to the apex of the parabola. For every point p1 ∈ N(p) there ex-

ists a second point p2 ∈ N(p), such that the Euclidean distance ∣p1 − p∣ = ∣p2 − p∣
and p1, p2 lie on the extruded surface along a parabola parallel to the medial axis

(Fig. 3.1(b)). These two conditions ensure that the pair (p1, p2) is unique. It can be

proved that w(p, p1) = −w(p, p2) (Appendix A.2). Pairs of points (p1, p2) cancel

each other out in the writhe number summation and consequently W (p,N(p)) = 0.
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3.2.3 Generalization of Writhe Number

Intuitively, given a surface N and a point p ∈ N on the surface, W (p,N) = 0 if

N displays mirror symmetry about a mirror plane which passes through point p

and contains the normal at p. Mirror symmetry occurs when two halves of a whole

are each other’s mirror images [HH94]. Mirror symmetry guarantees that for every

point p1 ∈ N there exists a second point p2 ∈ N , at the opposite side of the mirror

plane, such that the Euclidean distance ∣p1 − p∣ = ∣p2 − p∣. A cylinder has an infi-

nite number of mirror planes passing through its axis. An extruded parabola has two

mirror planes, one which contains the medial axis and one which is perpendicular

to the medial axis (Fig. 3.1(b)). The usefulness of the writhe number in aneurysm

detection is discussed in Chapter 4.

3.3 Writhe Number for Rupture Status Prediction

This notion of symmetry captured by the writhe number is used for aneurysm de-

tection to distinguish between normal vessels and aneurysmal regions. Healthy

vessels are modeled locally as cylinders and the nominal behavior of the vascula-

ture results in writhe number being equal to zero for regions along normal vessels.

Consequently, those portions of the vessels where the writhe number is non-zero

are reported as possible aneurysms. In contrast, for aneurysm rupture status pre-

diction we make use of the statistics of the writhe number defined over the entire

aneurysmal surface to predict rupture status. Kernel density estimation methods are

used to represent the writhe number distribution and statistics computed from these

distributions form the basis for our classification methods.

38



3.3.1 A Physical Interpretation of Surface Writhe

To provide some intuition concerning the morphological utility of the writhe num-

ber in our analysis of 3D surfaces, we discuss here an analogy between the writhe

number of surfaces and the torque, as defined in mechanics [ST06].

The torque, also called the moment of force, describes the rotational effect of

an external force applied to a rigid body S. The torque ¿ acting on S under the

influence of an external force F is defined as ¿ = r × F. Vector r is the distance

vector between the origin of the torque, a point O, and the point where F is applied

[ST06, FPBJES03]. When the rigid body is defined as a system of points or parti-

cles, concurrent forces can be applied on different points on the surface of S. The

overall effect of these forces is measured by the net torque

¿ =
N∑
i=0

ri × Fi =
N∑
i=0

¿i, (3.6)

where N is the total number of concurrent forces, Fi is the force acting on a point

pi ∈ S and ri is the vector from point O to the point pi (Fig. 3.2(a)).

Similarly to 3D rotation, the notion of torque can be extended to measure the

rotational effect about an axis rather than a point. Let n be the unit vector along an

arbitrary axis OL. The torque ¿ about the axis defined by n, acting on S under the

influence of an external force F is defined as ¿ = n ∙ (r×F) [FPBJES03]. In other

words, ¿ = [n, r,F] is the triple scalar product of vectors n, r and F (Fig. 3.2(b)).

When concurrent forces are applied on S, the net torque about n is

¿ = n ∙
N∑
i=0

ri × Fi =
N∑
i=0

¿i. (3.7)

Using the distributive property of the dot product, the net torque about an axis

n can be expressed as
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¿ =
N∑
i=0

[n, ri,Fi] . (3.8)

(a) (b)

Figure 3.2: The torque ¿ of a rigid body under the effect of two concurrent forces,
F1 and F2. (a) The torque about the origin. (b) The torque about the x axis repre-
sents the projection of the torque about the origin on the axis.

The rigid body is said to be in equilibrium along an axis of rotation if its net

torque about that axis is zero [ST06, FPBJES03].

For the purposes of this work, S is the surface of an aneurysm described as a

collection of 3D vertices, pi ∈ S, with normals ni. Unit forces act at the vertices

of S in the direction of their surface normals, creating a discretized force field

surrounding the aneurysm. When computing the writhe of a particular point p, the

normal n at p is considered the rotational axis of the torque.

Returning to the writhe number, the writhe of a point p as defined in Eq. 3.5

can be expressed as a function of the torque about the normal at point p

W (p, S) =
N∑

pi∈S

¿i
∥np∥⋅ ∥pi − p∥⋅ ∥npi

∥Δpi (3.9)

which better reflects the relation between the writhe of a point and the torque along

the axis defined by the normal at that point. In effect, we are computing the torque

along the normals of all the points on the surface of the aneurysm. Using the anal-

ogy with the torque, it can be concluded that the writhe number of a point p is
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proportional to the tendency of the normals to impart to the aneurysm a motion of

rotation about the fixed axis n, where n is the normal at point p.

If the rigid body, in this case the aneurysm, were free to move, it would rotate

about n under the effect of the torque. If, however, we consider the rigid body fixed

in some way, the torque would not be able to move the aneurysm, and instead it will

create tension at point p on its surface. Throughout this work, the writhe number is

viewed as a measure of how close the aneurysm is to equilibrium at each point on its

surface. In other words, the writhe number measures how much ”tension” there is

on the surface of the aneurysm. Intuitively, the more spread out and the stronger the

”tension” is on the surface, the greater the likelihood is for rupture. The usefulness

of the writhe number in rupture prediction is discussed in Chapter 5.

41



Chapter 4

Automated Detection of Intracranial

Aneurysms using the Writhe

Number of Surfaces

In this chapter, the theory behind the writhe number of surfaces is applied to au-

tomatic detection of intracranial aneurysms. As described in Chapter 2, detecting

brain aneurysms from imaging scans is an important step towards the diagnosis,

treatment and management of aneurysmal SAH. Following the methodology de-

tailed in this chapter, the writhe number is used to describe the vasculature locally

and to determine the presence of possible aneurysmal lesions.

4.1 Method

4.1.1 Overview of the Detection Algorithm

The detection method takes as input a 3D volume in which the cerebral vascula-

ture has been segmented from the background. The medial axis of the vessels is

computed from the segmented volume. Similar to [ALK+05], we consider that
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aneurysms appear as short branches in the medial axis of the vasculature. Local

neighborhoods are determined for surface points along short branches such that they

satisfy the connectedness and size conditions described in Chapter 3, Section 3.1.

The writhe number is computed for each local neighborhood, and regions with non-

zero writhe numbers are reported as possible aneurysms. The size of each region is

determined and small regions are eliminated from results based on a thresholding

criteria. Details about each of these steps are presented below.

4.1.2 Segmentation

The detection method requires a segmented volume of the cerebral vasculature.

The appropriate segmentation method depends on the modality of the input data

(CTA, MRA, 3D-RA). Practical details about the preprocessing and segmentation

techniques used on our particular input data are provided in Sections 4.2. From the

segmented volume, the surface of the vessels is described as the set of voxels which

have at least one adjacent background voxel.

4.1.3 Medial Axis Detection

The medial axis of the vessels is computed using the method described by Bouix et

al. [BST05] and using a skeletonization algorithm which exploits the distance field

corresponding to the segmented vessels.

4.1.4 Short Branches Selection

The aneurysm detection method takes advantage of the fact that aneurysms appear

as small branches along the medial axis [ALK+05]. Once the medial axis is com-

puted, each voxel on the medial axis is labeled as an end point (the voxel has one

adjacent neighbor), a connecting point (the voxel has two adjacent neighbors) or
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a junction point (the voxel has three or more adjacent neighbors). Short branches

are paths between end points and junction points with a length smaller than a spec-

ified threshold value where the threshold is set using voxel dimensions to detect

aneurysms up to 50 mm long. In studies, 90% of the aneurysms are smaller than 25

mm in diameter and only 10% are giant aneurysms with sizes between 25-50 mm

[RS06]. It should be noted that most of the short branches determined this way are

actually noise on the medial axis and are only few voxels long. However, for our

detection algorithm, the medial axis provides vital information about aneurysms

locations and while reducing the sensitivity of the medial axis algorithm or smooth-

ing the result might reduce the number of short branches, it could also result in

misdetection of small aneurysms.

4.1.5 Local Neighborhood Model

Local neighborhoods are determined for the collection of points on the surface of

short branches. Given a surface point, p, we want to determine its local neighbor-

hood N(p). A second point, c, is found such that c belongs to the medial axis, c is

the closest point to p, and c was labeled as a short branch medial point in Section

4.1.4. In most of the cases, p is a point on the surface of a normal vessel and c is

a noise point on the medial axis sitting close to the true medial axis of the region

(Fig. 4.1(a) and 4.1(b)).

Let R be the Euclidean distance between points c and p. The local neighbor-

hood of point p is built around point c and is defined as the connected set of points

whose Euclidean distance is within R
√
2 from c (Fig. 4.1). Using this method, the

local neighborhood of p is a small segment of the vasculature. In the case of a

cylinder, the R
√
2 threshold guarantees a one-to-one length-diameter aspect ratio,

which works well in practice. Depending on the local bending of the vessels near

p, the medial axis of N(p) can be approximated by either a line segment (in this
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(a) (b) (c)

Figure 4.1: Local neighborhood of surface point p. c is the point on a short branch
closest to p. Most points c represent noise on the medial axis and sit close to the
true medial axis of the normal vessels. The local neighborhood of p is build around
c and is defined as the connected set of surface points whose Euclidean distance is
within R

√
2 from c (a) p is a point on the surface of normal vessels and c is a noise

point on the medial axis sitting close to the true medial axis of the region. (b) Detail
of local neighborhood on healthy vessels. (c) p belongs to an aneurysm.

case c is the midpoint of the segment) or by a parabola (in this case c is the apex

of the parabola). This will be verified experimentally in Section 4.2.3. For healthy

vessels, the construction guarantees that p sits on a mirror plane of N(p).

The local neighborhood of a surface point is determined as described above in-

dependent of the location of the point on the vasculature. Fig. 4.1(c) shows the local

neighborhood of a point on the surface of an aneurysm. The neighborhood contains

part of the aneurysm as well as a portion of the parent vessel. Because the points

on the surface of an aneurysm concentrate around the same medial axis points, they

share the same local neighborhood. Even in those cases where the aneurysm area

might display some symmetries, most surface points will not sit on mirror planes

and therefore will have non-zero writhe numbers. Exceptions might be fusiform

aneurysms which present as local dilatations of an artery, having perfectly circular

cross sections and showing symmetries similar to those of normal vessels. In prac-

tice, our method was able to detect certain biological fusiform aneurysms because

of their uneven dilatations in multiple directions perpendicular to the vessel axis.
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4.1.6 Writhe Number Computation

Writhe numbers are computed along the surface of each local neighborhood, ac-

cording to Eq. 3.5. To a very high degree of accuracy, the nominal behavior of the

vasculature results in the writhe number being equal to zero for the neighborhoods

along healthy vessels. This follows because locally normal vessels are shaped as

cylinders or extruded parabolas which in theory have a zero writhe number. The lo-

cal neighborhoods of points on the aneurysms do not display the same symmetries

as cylinders and extruded parabolas and as a result have non-zero writhe numbers.

4.1.7 False Positive Reduction

Adjacent voxels on the surface of the vessels having non-zero writhe numbers are

clustered in regions which are considered positive results and are highlighted as

possible aneurysms. The detection method based on writhe numbers shows high

specificity and as a result we are able to threshold positive results using simple

features related to the size of the candidate regions. Specifically, our source data

originated from multiple modalities, collected with different scanner models, and

having different voxel sizes, therefore, the number of voxels within each posi-

tive region is a poor indicator of the absolute physical size of the region. The

size of a voxel plays an important role in discriminating between true positives

and false positive based on region size, since the same number of image voxels

describe different physical sizes depending on the resolution of the data. For in-

stance, an image region of 100 voxels describe a larger physical region on a dataset

with voxel size 0.5 × 0.5 × 1.00 mm3 than is does on a dataset with voxel size

0.5 × 0.5 × 0.5 mm3. In order to analyze positive regions in a unique manner across

modalities and scanners, a region index [mm3] is defined as the product between the

size of the region in voxels and the volume of the voxel. Effectively, the volume

of all voxels on the surface of the positive region is summed. The region index is
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used as an alternative to the surface area of the positive regions in order to avoid

the triangulation of the surface. Under this definition, 100 voxels describe a re-

gion index of 25 mm3 on a dataset with voxel size 0.5 × 0.5 × 1.00 mm3. The

same 100 voxels describe a region index of 12.5 mm3 on a dataset with voxel size

0.5 × 0.5 × 0.5 mm3. The region index gives an intuition of the physical size of a

positive result independent of the resolution of the input data. True positives tend to

have a larger region index than false positives and therefore in this work we thresh-

old positive results based on their region index. In Section 4.3, under detection

results, it is shown how detection and false positive statistics change according to

the threshold value of the region index.

4.2 Clinical Data

4.2.1 3D-RA, MRA and CTA

The aneurysm detection method was tested on ten distinct 3D rotational angiogra-

phy (3D-RA), ten unrelated magnetic resonance angiography (MRA) and another

ten unrelated computed tomography angiography (CTA) patient-derived datasets.

The thirty studies contain thirty aneurysms, with two studies showing no aneurysms

and two studies having two aneurysms each. The aneurysms have diameters in the

range 3.2-9.8 mm (mean 5.52) and lengths in the range 3.5-8.3 mm (mean 5.65).

Among the aneurysms, twelve are sidewall aneurysms (dilatation of the artery in

one direction perpendicular to the vessel axis), thirteen are bifurcation aneurysms

(dilatation at the bifurcation of arteries) and five are a fusiform aneurysm (dilatation

of the artery in multiple directions more or less perpendicular to the vessel axis).

All aneurysms were identified a priori and classified by two independent operators.

3D-RA data were acquired using a biplane flat-detector digital subtraction an-

giography system (Axiom Artis, Siemens Medical Solutions, Malvern PA) at Tufts
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Medical Center, Department of Neurosurgery (Boston, MA). 3D-RA is a technique

employed to visualize blood vessels in a bony or dense soft tissue environment.

Contrast agent is injected through a catheter which is navigated from a percutaneous

femoral arterial access into a carotid or vertebral artery (i.e. one of the vessels lead-

ing to the brain vasculature). Images acquired in the presence of the contrast agent

are subtracted from images acquired pre-contrast. In the case of intracranial scan-

ning, 3D-RA produces images with very high contrast between vasculature and the

surrounding environment (Fig. 4.2(a)). In the current study, the size of each 3D-RA

data volume is 256 × 256 × 229, with 0.48 mm isotropic voxels.

MRA is a type of magnetic resonance imaging used to visualize the blood flow

and the conditions of the arteries (Fig. 4.2(b)). Most of the time, a contrast agent

is used to enhance the vessels. The MRA datasets were acquired on a variety of

scanners previous to the patient referral for specialized treatment to the Department

of Neurosurgery at Tufts Medial Center. The following scanners were used for ac-

quisition: 1.5T Magnetom Vision (Siemens Medical Solutions, Malvern PA; voxel

size 0.78 × 0.78 × 0.97 mm), 3T Achieva (Philips Medical Systems, Andover MA;

voxel size 0.39 × 0.39 × 1 mm), 1.5T Genesis Signa (GE Medical Systems, Sch-

enectady NY; voxel size 0.39 × 0.39 × 1.6 mm) and 1.5T Magnetom Symphony

(Siemens Medical Solutions; voxel size 0.89 × 0.89 × 1.6 mm).

CTA is a type of x-ray imaging used to visualize blood vessels. Images are

acquired in the presence of an iodine-based contrast agent injected as an intra-

venous solution (Fig. 4.2(c)). Two scanners were used for the acquisition of the

CTA datasets: Definition (Siemens Medical Solutions; voxel size 0.35 mm × 0.35 mm × 1 mm)

and LightSpeed Plus (GE Medical Systems; voxel size 0.40 mm × 0.40 mm × 1.25 mm).

Although catheter-based 3D-RA imaging remains the gold standard in cerebral

aneurysm imaging, MRA and CTA are less-invasive modalities with increasingly

improving sensitivity and specificity, which are being used more and more for cere-
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(a) (b) (c)

Figure 4.2: Images of vasculature obtained using different modalities. (a) 3D-RA
axial image (window 1000, level -200) displays high contrast between vasculature
and surrounding tissue. (b) MRA axial image (window 150, level 125). A contrast
agent is used to enhance the vessels. (c) CTA axial image (window 700, level
250). The contrast agent injected during CTA imaging increases the image contrast
between vessels and surrounding soft tissue, but lowers the contrast between vessels
and bone.

brovascular imaging and aneurysm detection ([EMO08]).

4.2.2 Preprocessing

Prior to segmenting the vasculature, CTA and MRA data volumes were resampled

to isotropic voxel size. Because of the high resolution of the data and high con-

trast between vasculature and surrounding tissue, vessel segmentation of 3D-RA

data is a relatively simple task (Fig. 4.2(a)). CTA and MRA images have lower

spatial resolution compared to 3D-RA and may show physical (partial volume,

beam hardening) and patient-related artifacts (metal, motion and ghosting effects)

[GJMP06, KE09]. The contrast agent injected during CTA imaging increases the

image contrast between vessels and surrounding soft tissue, but lowers the contrast

between vessels and bone, making cerebral vessel segmentation more challenging

(Fig. 4.2(c)). Furthermore, CTA data display venous contamination of the images

(i.e. contrast agent reaching the venous system and precluding adequate visualiza-

tion of arteries). In the case of CTA, the bone was removed from the images using
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a commercial 3D visualization and modeling system (Amira, Mercury Systems,

Chelmsford MA). Vessel segmentation was performed on all datasets using a com-

bination of thresholding and region-growing techniques [PXP00]. The resulting

segmented volumes were used as input to the aneurysm detection method.

4.2.3 Experimental Validation of Local Neighborhoods

The aneurysm detection method relies on the assumption that if the local neighbor-

hood of a surface point on a normal vessel is determined as described in Section

4.1.5, it can be approximated by either a cylinder, in which case the medial axis

is a line segment, or by an extruded parabola, in which case the medial axis is a

parabola. The assumption was tested experimentally on the ten 3D-RA patient-

derived datasets. Regression analysis was applied to each local neighborhood and

points on the medial axis were fit to both a line and a parabola. The smallest fitting

error between the two determined if the local neighborhood was best approximated

by a cylinder or by an extruded surface along a parabola.

Orthogonal linear regression [Ahn04] was applied to minimize the perpendic-

ular distances from the medial axis points to the fitting 3D line. As described in

[Ahn04], we fit a set {Xi}mi=1 of m points on the medial axis to a line described in

parametric form by the equation X0 + ur = 0, where X0 is a point on the line and

the centroid of the medial axis points, r is a direction vector, ∥r∥ = 1 and u ∈ ℝ.

The orthogonal fitting is achieved by finding r which minimizes the square sum of

the orthogonal distances from the points to the line

minr
∑m

i=1 ∥(Xi −X0)× r∥2.

Fig. 4.3 shows the histogram of line fitting errors. The horizontal axis represents

the corresponding root mean squared (RMS) errors defined as RMS =
√

1
m

∑m
i=1 ²

2,
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where ²i is the Euclidean distance from medial axis point i to the fitting line. The

vertical axis shows the number of local neighborhoods which can be approximated

by cylinders.

Figure 4.3: Histogram of line fitting errors.

In the case of parabola fitting, first orthogonal regression was applied to fit the

3D medial axis points to an arbitrary plane described by the equation (X −X0)
T ⋅ n = 0,

where X is an arbitrary point on the plane, X0 is a point on the plane and the cen-

troid of the medial axis points, n is the normal to the plane and ∥n∥ = 1 [Ahn04].

The orthogonal fitting is achieved by finding n which minimizes the square sum of

the orthogonal distances from the points to the plane

minn
∑m

i=1 ∥(Xi −X0)
T ⋅ n∥2.

Fig. 4.4 shows the histogram for plane fitting errors. It can be seen that the

medial axis points for each local neighborhood are very close to being coplanar.

The 3D points were then projected onto the fitting plane and represented as 2D

points in a local coordinate system. The set of 2D points, {(x′
i, y

′
i)}mi=1, were fit

to a 2D parabola described by equation (y − k)2 = 4a(x− ℎ), where (ℎ, k) is the
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Figure 4.4: Histogram of plane fitting errors.

vertex of the parabola and a ∈ ℝ, a ∕= 0. In addition to minimizing the distances

from each point to parabola, we constrained the system such that the apex of the

parabola was fixed to the center of the medial axis (point c from Fig. 4.1).

mina

∑m
i=1 ∥(yi − k)2 − 4a(xi − ℎ)∥2,

such that c = (ℎ, k).

The histogram for parabola fitting errors is shown in Fig. 4.5. On the horizontal

axis are the corresponding RMS errors from the medial axis points to the fitting

parabola. The vertical axis shows the number of local neighborhoods which can be

approximated by extruded surfaces along a parabola.

Note that the maximum fitting error in each of the three cases are smaller than

the voxel size, which is 0.48 × 0.48 × 0.48 mm3. This local neighborhood analysis

shows that it is reasonable to model small regions along normal vessels as cylinders

and extruded parabolas. Deviations from such geometries are captured by the writhe

number computations and provide a useful tool for finding aneurysms as abnormal

vessel regions.
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Figure 4.5: Histogram of parabola fitting errors.

4.3 Aneurysm Detection Results

All aneurysms were correctly identified by our detection method with 0.66 false

positives per study on 3D-RA data, 5.70 false positives per study on MRA and

5.36 false positives per study on CTA. These results were obtained as follows. As

discussed in Section 4.1.7, we start by clustering voxels whose writhe number is

non-zero. The region index associated with each cluster is then computed. Suspect

regions are taken as those whose region index exceeds a given threshold. The per-

formance analysis in this paper is evaluated by varying this threshold and examining

relevant statistics.

Specifically, for each threshold value, the following quantities were computed:

number of true positives (TP), number of false positives (FP), number of false neg-

atives (FN) and true positive fraction (TPF). The true positive fraction is defined

as

TPF =
TP

TP+FN
.

The sensitivity of the method is measured in percentage and is computed as

TPF × 100.
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Table 4.1: Statistics for aneurysm detection on 3D-RA.

Threshold Value TPF FN FP
(region index) (%/100) (avg per study) (avg per study)

0 1 0 3.66
5 1 0 1.33

7.5 1 0 1
10 1 0 0.66

12.5 0.87 0.11 0.44
15 0.50 0.33 0.22

17.5 0.35 0.33 0.22

Table 4.2: Statistics for aneurysm detection on MRA.

Threshold Value TPF FN FP
(region index) (%/100) (avg per study) (avg per study)

0 1 0 19.60
5 1 0 5.70

7.5 0.72 0.30 4
10 0.54 0.50 1.90

12.5 0.54 0.50 1.40
15 0.54 0.50 0.70

17.5 0.54 0.50 0.50

Tables 4.1, 4.2 and 4.3 show how detection statistics change as a function of

the region index threshold value applied on the detection results, for 3D-RA, MRA

and CTA respectively. It is apparent from the three tables that most false positive

results have very small region indexes. The purpose when applying the region index

threshold is to reduce the FP value, while maintaining a TPF value of 1. TPF equals

1 when all aneurysms are detected.

Table 4.3: Statistics for aneurysm detection on CTA.

Threshold Value TPF FN FP
(region index) (%/100) (avg per study) (avg per study)

0 1 0 28.80
5 1 0 5.36

7.5 0.90 0.10 3.27
10 0.81 0.18 2.27

12.5 0.81 0.18 1.54
15 0.81 0.18 1.36

17.5 0.63 0.36 1
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The method detected all aneurysms and resulted in 3.66 false positives for 3D-

RA data (Table 4.1), 19.60 for MRA data (Table 4.2) and 28.80 for CTA data (Table

4.3). These are detection results before any false positive reduction, which show

that the detection specificity is much higher on 3D-RA data than on MRA and

CTA. The first level of thresholding (with a region index of 5) reduces the MRA

false positives from 19.60 to 5.70, CTA false positives from 28.80 to 5.36 and the

3D-RA positive results from 3.66 to 1.33, showing that most false positives are very

small in size, especially for MRA and CTA data. The 3D-RA false positives can

be further thresholded for a region index up to 10 which corresponds to 0.66 false

positives per study.

To evaluate the performance of the proposed detection method, free-response

operator characteristic FROC analysis was applied as shown in Fig. 4.6. The hori-

zontal axis indicates the average number of false positives (FP) per study, while the

vertical axis indicates the true positive fraction (TPF), which is related to the sensi-

tivity of the detection. Specifically, the FROC curves were determined by plotting

TPF (second column from Tables 4.1, 4.2 and 4.3) as a function of FP (fourth col-

umn from tables) for all 3D-RA, MRA and CTA data. Figure 4.6 shows how many

false positive results are observed on average before one aneurysm is detected for

3D-RA (0.66 false positives), MRA (5.7 false positives) and CTA (5.36 false pos-

itives). The results correspond to thresholding positive results with a region index

of 10 for 3D-RA data and 5 for MRA and CTA data.

The relationship between the writhe numbers and the size of the suspected re-

gions is shown in Fig. 4.7. The horizontal axis holds the total writhe numbers for

each positive result, computed as the sum of writhe numbers of all surface points on

that positive result. On the vertical axis are the corresponding region indexes. True

positives are shown as red stars and false positives are shown as blue stars. The

analysis is done on the ten 3D-RA datasets. The figure shows that it is reasonable
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Figure 4.6: FROC analysis of the aneurysm detection algorithm on 3D-RA, MRA
and CTA data. The figure shows how many false positive results are observed on
average before one aneurysm is detected for 3D-RA, MRA and CTA.

to use the size of the positive regions as a threshold value. It also suggests that

both the size of the positive regions and the surface writhe number can be used to

classify true positives vs. false positives using linear discriminant analysis.

Figures 4.8 and 4.9 show the visual results of the detection algorithm after

thresholding positive results with region index smaller than 10.

4.4 Discussion

The proposed detection method was tested on thirty datasets from three imaging

modalities, acquired with seven different scanner models. Despite the data being

highly non-homogeneous, all aneurysms were detected correctly.

As shown by the FROC analysis, the detection algorithm performs very well

on 3D-RA data and results in few false positive results (0.66 per study). 3D-RA

images have high resolution and show high contrast between vasculature and sur-

rounding tissue and simple segmentation techniques result in accurately segmented
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Figure 4.7: Relationship between the writhe number and region index. The total
writhe number of a positive region is computed as the sum of writhe numbers of all
individual surface points. True positives are shown as red stars and false positives
are shown as blue stars. The analysis is done on the ten 3D-RA datasets.

Table 4.4: Performance comparison with existing detection methods on MRA data.

Method Total Aneurysms Sensitivity(%) FP per study
[ALK+04] 36 100 2.40
[ALK+05] 61 97 5.80
[ALK+06] 61 97 3.80
[UAY+05] 7 100 1.85
[KKH06] 19 100 6.43

Proposed Method 11 100 5.70

volumes. Segmentation is more challenging on MRA and CTA data which have

lower resolution, more artifacts and show venous contamination.

While the performance of the proposed method is comparable to that of existing

methods on MRA data (Table 4.4), there is a direct relationship between the quality

of vessel segmentation and the accuracy of the detection method. Because this study

focused on aneurysm detection, simple, readily available segmentation methods

were used to preprocess the image data. However, particularly for MRA and CTA

imaging, it is likely that better segmentation techniques [HF07, RP09, FPAB04]

would improve the detection accuracy.
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(a) (b) (c)

Figure 4.8: Aneurysm detection results on one patient study. (a) Original 3d-
rotational angiography. (b) Corresponding medial axis of the 3D-RA dataset. (c)
Detection results. Positive results are colored in red. Black arrows point to true
positives.

The clinical value of the algorithm depends on its performance on less-invasive

CTA and MRA modalities. The current method is intended to be eventually gener-

alized to include non-invasive cross-sectional imaging modalities and such studies

will require an in-depth analysis of the characteristics, shortcomings and strengths

of each imaging modality. The input modality will affect the choice of optimal

segmentation algorithms and the effect of the segmentation performance on the de-

tection results. While these complex issues were avoided by our use of 3D-RA data

in this initial report, they will be the basis of future studies.

The presence of noise in the medial axis calculation, especially for narrow ves-

sels (2-3 voxels in diameter) is the reason for a large portion of the false positive

results. The medial axis of the vessels is computed applying the method described

by [BST05], which in tests on synthetic data showed a high percentage of voxel

overlap between the computed medial axis and the ground truth medial axis. In

regions where the computed medial axis did not overlap the ground truth medial

axis, the average distance reported was half a voxel. The maximum reported dis-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.9: Aneurysm detection on six patient-derived datasets. Results shown after
thresholding positive results with a region index of 5. Positive results are colored
in red. The white arrow points to true positive. Orientation is chosen for the best
visualization of the aneurysms. (a-c) 3D-RA data. (d-f) MRA data. (g-i) CTA data

tance is one or two voxels, usually at the end points [BST05]. As it is expected

the presence of noise influences the accuracy of the medial axis [BST05]. Some

of the false positive detection results are located on peripheral vessels (2-3 voxels

in diameter). While 3D-RA has excellent signal-to-noise ratio, the signal intensity
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is weaker in regions with small vessels compared to regions with main arteries and

may influence the accuracy of the medial axis computation. At the same time, a half

voxel discrepancy in medial axis computation has little impact when computing lo-

cal neighborhoods in regions with wider vessels, but can result in incorrect local

neighborhoods and false positive results in regions with much narrow vessels. For

large, irregular aneurysms, the medial axis inside the aneurysm presents as a cluster

of small branches rather than one branch, thus resulting in patches of positive results

on the surface of the aneurysm as shown in Fig. 4.9(i). The algorithm would benefit

from an automated grouping of the positive results describing the same aneurysm.

This would yield larger region indexes for true positives and a more discriminant

false positive reduction. For future work we plan to study how smoothing of the

medial axis affects false positive rates. There is a risk that smoothing of the medial

axis might decrease the method sensitivity by removing small branches describing

true positives.

The detection method correctly identified the five fusiform aneurysms from the

test data. These are biological fusiform aneurysms which present as uneven di-

latations in multiple directions perpendicular to the vessel axis. These aneurysms

result in short branches on the vasculature centerline. The method is unlikely to

detect true radially symmetric fusiform aneurysms defined as local dilatations of an

artery and having perfectly circular cross sections.

For future work, on a larger single modality database, we intend to improve false

positive reduction using cross-validation for classification of the positive results

taking into account features such as region index, estimated diameter, location on

the vasculature and writhe number values.

Currently, the detection method requires an average of two minutes for a 3D-

RA dataset and an average of eight minutes for MRA and CTA data on a desktop

machine with an Intel Duo Core@2.66GHz CPU and 2GB of RAM. This excludes
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segmentation time since we assume a segmented volume is given as input. On

our particular data, we applied a combination of thresholding and region growing

segmentation techniques which take less than one minute for all data. Currently the

code contains no optimizations.

In terms of computational complexity, there is nothing inherently prohibitive

in the proposed analysis, as all steps composing the detection method are compu-

tationally tractable. The local analysis work is highly parallelizable, and as such,

is well suited to efficient implementation on advanced hardware such as multicore

processors, FPGAs, ASICS, and GPUs. We are confident that code optimization

and parallel programming will greatly decrease the required computation times and

render the algorithm suitable for on-line use in clinical applications.

To assess the performance and utility of the aneurysm detection method in a

clinical setting, we plan to perform a validation study, with and without computed-

aided diagnostic systems assistance, to investigate the effect of our method on di-

agnostic accuracy. The detection of intracranial aneurysms is fraught by multiple

confounding factors including the quality and age of the equipment available, the

acquisition technique, patient cooperation, and clinician’s expertise and state of

alertness. Each of these factors is difficult to control or optimize on an ongoing

basis. We believe an additional computational tool that would point the interpreting

clinician to possible aneurysmal dilatations may be useful in improving diagnostic

accuracy and reducing interpretation times.
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Chapter 5

Rupture Status Classification of

Intracranial Aneurysms using

the Writhe Number of Surfaces

In this chapter, the theory behind the writhe number of surfaces is applied for rup-

ture status classification of intracranial aneurysms. As described in Chapter 2, con-

stant advancements in medical imaging during the last decades resulted in wide

availability of imaging equipment and, as a consequence, increased patient access

to such technologies. Asymptomatic unruptured intracranial aneurysms are now

detected during routine evaluations, and the management and treatment of these

lesions depends on assessing their risk of rupture. Following the methodology de-

tailed in this chapter, the writhe number is used to describe and analyze the shape

of the aneurysms in order to predict their rupture status.
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5.1 Clinical Data

The clinical database used in this study consists of 117 cerebral aneurysms from

106 patient-derived 3D rotational angiography (3D-RA) datasets. Data were ac-

quired using a biplane flat-detector digital subtraction angiography system (Axiom

Artis, Siemens Medical Solutions, Malvern PA) at Tufts Medical Center, Depart-

ment of Neurosurgery (Boston, MA). 3D-RA is a technique employed to visualize

blood vessels in a bony or dense soft tissue environment. Contrast agent is injected

through a catheter which is navigated from a percutaneous femoral arterial access

into a carotid or vertebral artery (i.e. one of the vessels leading to the brain vas-

culature). Images acquired during the contrast agent are subtracted from images

acquired pre-contrast. In the case of intracranial scanning, 3D-RA produces images

with very high contrast between vasculature and the surrounding environment. In

the current study, the size of each 3D-RA data volume is 128× 128× 128 voxels

with 0.48 mm isotropic voxels.

All aneurysms in this study are saccular aneurysms, berrylike outpouchings

which appear mostly in the Circle of Willis and are dilatations of a vascular lumen

caused by weakness of the vessel wall layers. The distribution of the aneurysms ac-

cording to their specific location is shown in Table 5.1 together with the mean val-

ues of their largest diameter size derived from manual measurements in 3D space.

In the table, aneurysms are classified into posterior communicating (PComA), an-

terior communicating (AComA), internal carotid (ICA), middle cerebral (MCA),

ophthalmic artery (OpthA), internal carotid artery bifurcation (ICAB), basilar, ante-

rior choroidal artery(AChA), vertebral (VA) and posterior inferior cerebellar artery

(PICA). The average maximal size of the aneurysms in the database is 6.8±3.1 mm.

It was recorded a priori which patients presented with subarachnoid hemorrhage

(SAH) before the scan and the 117 aneurysms were classified as being ruptured (52

aneurysms) and unruptured (65 aneurysms).
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Table 5.1: Aneurysms are classified according to their location. N is the number of
aneurysms in each class. The mean value of the largest diameter size is presented
for each class with the associated standard deviation.

Location N size[mm]
PComA 31 8.4±3.8
AComA 22 5.4±2.0
ICA 18 7.1±3.6
MCA 17 5.9±1.9
OpthA 8 7.5±3.7
ICAB 6 5.8±2.3
Basilar 6 7.4±2.4
ACHA 5 5.2±2.0
VA 3 5.9±1.0
PICA 1 8.1

Table 5.2: The number of ruptured and unruptured aneurysms in the whole database
(SW+BF), and in sidewall (SW) and bifurcation (BF) subsets.

Type Total Ruptured Unruptured
SW+BF 117 52 65
SW 58 23 35
BF 59 29 30

The aneurysms were further classified according to their location with respect

to the parent vessels. The database contains 58 sidewall aneurysms (dilation of

the artery in one direction perpendicular to the vessel axis) and 59 bifurcation

aneurysms (dilation at the bifurcation of arteries). See Table 5.2 for details on the

number of ruptured and unruptured aneurysms in each dataset. Fusiform aneurysms

(dilation of the artery in multiple directions more or less perpendicular to the ves-

sel axis) are not considered in this study given how different their pathology and

morphology are from that of saccular aneurysms [BSN06, CCD+07].

64



5.2 Method

5.2.1 Overview of the Classification Algorithm

The following methodology is proposed to differentiate between ruptured and un-

ruptured cerebral aneurysms. First, the cerebral vasculature is segmented from the

3D-RA volume. For each aneurysm two separate 3D models are created, one in

which the aneurysm is completely separated from the parent vessels and one in

which parts of the adjacent vessels are included as shown in Fig. 5.1. These two

surface models are represented as triangular meshes. Writhe numbers are computed

along the surface of the models as described in Chapter 3, Section 3.1. As detailed

in Chapter 2, kernel density methods are applied to the histogram of writhe numbers

over each surface and statistics such as central moments, cumulants and entropy are

computed for the estimated density function. These descriptors are used as clas-

sification features in predicting the risk of rupture in cerebral aneurysms. Each of

these steps are presented below.

Figure 5.1: Aneurysm surfaces are analyzed both completely isolated from parent
vessels and taking into account a portion of their adjacent vessels. They are repre-
sented as triangular meshes. Both bifurcation and sidewall aneurysms are consid-
ered. The top row shows isolated aneurysms. The bottom row shows the aneurysm
attached to its corresponding parent vessels.
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5.2.2 Segmentation

The proposed method requires a segmented volume of the cerebral vasculature. The

appropriate segmentation method is highly dependent on the modality of the input

data. In our case, 3D-RA data have high resolution and show high contrast between

vasculature and the surrounding tissue (Fig. 5.2(a)). Segmentation is performed on

all 106 volumes using a combination of thresholding and region-growing techniques

[PXP00], applied with a commercial 3D visualization and modeling system (Amira,

Mercury Systems, Chelmsford MA) (Fig. 5.2(b)). From the segmented volume, the

surface of the vasculature is described as a triangular mesh (Fig. 5.2(c)).

As mentioned in Section 5.1, the voxel size of the image data is 0.48 mm,

whereas the average size on the aneurysms is 6.8±3.1 mm, thus guaranteeing a

a well sampled representation of the geometry of the aneurysms. However, vari-

ous segmentation methods may result in small shape variations and influence the

classification accuracy. In order to determine the sensitivity of the method to seg-

mentation, a second segmentation based on level sets [Set99, Whi98] is employed

on a subset of 58 sidewall aneurysms, using a different visualization system (ITK-

SNAP [YPC+06]). The results of this robustness analysis are described in Section

5.3.2.

5.2.3 Isolation of Aneurysms

To allow for morphologic analysis, the aneurysm geometry is manually separated

from the segmented vasculature. Each aneurysm is isolated from surrounding ves-

sels in two steps as shown in Fig. 5.3.

First, the aneurysm is cut in such a way that its neck and a portion of the adjacent

vessels are included in the model. The cut planes are empirically selected, the

emphasis being on capturing the whole attachment area (i.e. the region where the

aneurysm neck attaches to the parent vessels). Similarly to [MDMP+07], each
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parent vessel is cut at a distance approximately equal to its diameter, as measured

at the aneurysm neck. The sensitivity of the classification to the cutting planes

definition is discussed in Section 5.3.3.

Second, the aneurysm sac is completely isolated from all surrounding vessels as

shown in Fig. 5.3(c). The cut plane is selected at the location where the aneurysmal

sac pouched outward from the parent vessel [DTM+08]. The two resulting models

are represented as triangular meshes as shown in Fig. 5.2.

(a) (b) (c) (d) (e)

Figure 5.2: Segmentation and isolation of aneurysms. (a) Original 3D-RA data. (b)
Cerebral vessels are segmented from surrounding tissue. (c) Segmented vessels are
represented as a triangular mesh. (d) The aneurysm is separated from the vascu-
lature and part of the adjacent parent vessels is included. (e) The aneurysm sac is
completely separated from its parent vessels.

(a) (b) (c) (d)

Figure 5.3: Isolation of the aneurysm geometry from the segmented vasculature
(a) Cutting planes at parent vessels are selected and shown in dash lines. (b) The
aneurysm is cut in such a way that its neck and a portion of the adjacent vessels are
included in the model. Each parent vessel is cut at a distance approximately equal to
its diameter D. (c) Cutting plane at the neck of the aneurysm is selected and shown
in dash line. (d) The aneurysm sac is completely isolated from all surrounding
vessels.
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5.2.4 Writhe Number Computation

Given a triangular mesh representing an aneurysm, the writhe number is computed

for each vertex p ∈ S on the aneurysm surface according to Eq. 3.3.

5.2.5 Histogram Statistics

As detailed in Chapter 2, Section 2.2, writhe number values along the surface of

an aneurysm are represented using smoothed histograms. Statistics such as central

moments, cumulants, and entropy are applied to the smoothed histogram to describe

and analyze the distributions. Each aneurysm model is described by 10 attributes

related to the writhe number distribution: the entropy (wℎ), central moments 2

to 8 (w¹2 to w¹8) and, cumulants 4 and 5 (wk4 and wk5). Note that cumulants

order 1 to 3 are identical to the corresponding central moments. Consequently,

each natural aneurysm is associated with 20 attributes, 10 describing the aneurysm

sac and 10 describing the aneurysm with a portion of the parent vessels attached.

These descriptors are used as classification features in predicting the rupture status

in cerebral aneurysms.

5.2.6 Classification

The classification problem solved here involves 2 classes (ruptured vs. unruptured)

and 117 samples (the aneurysms), described by 20 features each. The method used

is logistic regression with 10-fold cross validation [FEH01]. The classification is

repeated 10 times with 10 different random seeds. This results in 100 different

splittings and the average performance is reported.

Classification is first performed on all 117 samples, then separately on 58 side-

wall aneurysms and 59 bifurcation aneurysms. In each of these cases, first the

aneurysm sac attributes are considered, then only the attributes from the aneurysm

68



with parent vessels attached are considered, and finally the total of 20 attributes are

considered. The results of these nine different scenarios are described under clas-

sification results in Sec.5.3.1. To the best of our knowledge, this is the first study

to perform morphological analysis on both aneurysm sac models and parent vessels

models and compare prediction results between the two groups.

The best ratio between the number of features and the number of training sam-

ples is a controversial issue. A long standing statistical rule-of-thumb suggests that

ten samples per feature are a minimum requirement for regression in order to avoid

overfitting [Har84, FEH01]. To reduce the dimensionality of the feature space,

sequential backward selection [SA04] was performed on the number of attributes

considered for each of the nine classification scenarios. Details about the most

significant attributes for each classification case are provided in Sec. 5.3.1.

5.3 Classification Results

5.3.1 Rupture Status Prediction

In this study, the rupture status prediction results obtained using writhe number

analysis are compared with the prediction performance of the size and shape in-

dexes described in Chapter 2, Section 2.3.2: aneurysm size, aspect ratio (AR),

height-width (HW), bottleneck factor (BFN) ellipticity index (EI) undulation in-

dex (UI), non-sphericity index (NSI), area-averaged Gaussian and mean curvature

(GAA, MAA), and L2 norm Gaussian and mean curvature (GLN, MLN).

Table 5.3 shows the accuracy for rupture prediction when these 11 size and

shape indexes are considered on the whole set of 117 aneurysms (SW+BF) and on

subsets of sidewall (SW) and bifurcation (BF) aneurysms respectively. All indexes

perform much better on sidewall than on bifurcation aneurysms. This is consistent

with recent research findings utilizing conventional aneurysm size and first-order
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shape analysis (A.M. Malek, in review), that most of the currently used shape and

size indexes give consistently better results predicting rupture in sidewall vs. bi-

furcation aneurysms. When each index is considered independently in univariate

analysis, the rupture in sidewall aneurysms is best captured by NSI, MAA and

GLN indexes (accuracy 77.1, 75.1, 69.3 respectively). Using similar analysis, the

rupture in bifurcation aneurysms is best described by EI, UI and AR indexes (accu-

racy 62.7, 62.6 and 62.1 respectively). It is interesting to note that when the whole

set of indexes is used to predict rupture status using multivariate analysis, the final

results are not significantly improved compared to the best univariate results, for

both sidewall and bifurcation subsets. Multivariate analysis results are also shown

in Table 5.3. For sidewall aneurysms, multivariate statistics identified size, NSI and

MAA as the best feature set associated with rupture. For bifurcation aneurysms,

multivariate statistics identified AR, HW and UI as the best feature set associated

with rupture. This suggests there is overlapping between indexes, with a number of

indexes describing the same size or shape quality.

Table 5.4 summarizes the central results of the chapter, when writhe number

analysis is applied to predict rupture status. Classification is performed on the three

subsets: 117 SW + BF, 58 SW, and 59 BF aneurysms. For each subset, rupture

status is predicted by considering first only aneurysm model (AM) features, sec-

ond considering only parent vessel model (PVM) features, and third considering

both AM and PVM features. These are the features previously detailed in Section

5.2.5. The sets of features taken into account for each particular classification case

are marked with an X in the corresponding columns of the table. We distinguish

between the features which are taken into consideration, and those which are ulti-

mately used for classification. More specifically, as indicated at the end of Section

5.2.6, sequential backward selection is applied on the features taken into consider-

ation to reduce the set to the five most significant features, which are the features
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used for classification. While we are considering at most five features, some models

may require less than five statistically significant features to completely describe the

dataset. Using at most five features guarantees a samples-to-features ratio greater

than ten. In turn, this reduces the risk that multivariate classification may overfit the

data [Har84, FEH01].

Best prediction results are obtained when the classification is performed sepa-

rately on sidewall and bifurcation aneurysms, respectively. The accuracy obtained

using morphological analysis based on writhe number is of 86.7% for sidewall

aneurysms and of 71.2% for bifurcation aneurysms. The results represent a sig-

nificant increase in prediction accuracy for both subtypes, compared to when as-

pect ratio index was considered. Adding parent vessel information increased the

prediction accuracy for sidewall aneurysms and proved essential for bifurcation

aneurysms. Using writhe number analysis results in a significant increase in pre-

diction accuracy when compared with the performance of any of the established

indexes for both sidewall and bifurcation subtypes.

In terms of features, the entropy is part of all best features sets and it seems

to be a significant quantity for both aneurysm subtypes. Ruptured aneurysms were

consistently characterized by a higher mean entropy of the writhe number compared

to unruptured aneurysms. Also, all best feature sets contain at least two of the

variance, skewness and kurtosis central moments.

The differences between ruptured and unruptured aneurysms are apparent in

Figures 5.5, 5.6, 5.7 and 5.8 which show analysis results on sidewall and bifurcation

aneurysms, respectively. In the figures, we show the writhe number values along the

surface of representative ruptured and unruptured aneurysms and their correspond-

ing histograms. For sidewall aneurysms the results are shown on aneurysm dome

models and for bifurcation aneurysms the results are illustrated on aneurysms with

adjacent parent vessels attached. It can be seen from the histograms that unruptured
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Table 5.3: Accuracy of rupture prediction when aspect ratio (AR), largest diameter
size, height-width and aneurysm angle are used. The prediction is performed on
three aneurysms sets: (1) 117 sidewall and bifurcation (SW+BF) aneurysms, (2) 58
sidewall (SW) aneurysms and (3) 59 bifurcation (BF) aneurysms

Type N Features Accuracy %
SW+BF 117 Size 55.9
SW+BF 117 AR 63.6
SW+BF 117 HW 64.7
SW+BF 117 BNF 60.7
SW+BF 117 angle 49.7
SW+BF 117 EI 62.5
SW+BF 117 UI 62.3
SW+BF 117 NSI 66.9
SW+BF 117 GAA 51.9
SW+BF 117 MAA 62.4
SW+BF 117 GLN 56.5
SW+BF 117 MLN 56.4
SW+BF 117 HW, NSI 68.3
SW 58 Size 70.6
SW 58 AR 69.2
SW 58 HW 67.2
SW 58 BNF 67.9
SW 58 angle 53.6
SW 58 EI 61.6
SW 58 UI 68.6
SW 58 NSI 77.1
SW 58 GAA 64.2
SW 58 MAA 75.1
SW 58 GLN 69.3
SW 58 MLN 66.4
SW 58 Size, NSI 77.1
BF 59 Size 47.7
BF 59 AR 62.1
BF 59 HW 64.0
BF 59 BNF 55.0
BF 59 angle 48.1
BF 59 EI 62.7
BF 59 UI 62.6
BF 59 NSI 60.2
BF 59 GAA 48.7
BF 59 MAA 60.0
BF 59 GLN 40.0
BF 59 MLN 48.2
BF 59 AR, HW, UI 64.2
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Table 5.4: Accuracy of rupture prediction when writhe number statistics are used.
The prediction is performed on three aneurysms sets: (1) 117 sidewall and bifur-
cation (SW+BF) aneurysms, (2) 58 sidewall (SW) aneurysms and (3) 59 bifurca-
tion (BF) aneurysms. For each set, rupture status is predicted by considering first
only aneurysm model (AM) features, second considering only parent vessel model
(PVM) features, and third considering both AM and PVM features. The set of fea-
tures taken into account for each particular classification case are marked with an
X. Sequential backward selection is applied to determine best features set.

Type AM PVM Best Features AM Best Features PVM Accuracy %
SW+BF X w¹2, w¹3, w¹4, w¹5, wℎ 67.9
SW+BF X w¹2, w¹7, w¹8, wk4, wℎ 68.3
SW+BF X X w¹2, w¹3 w¹5 w¹8, wℎ 64.3
SW X w¹2, w¹3, w¹8, wk5, wℎ 81.2
SW X w¹4, w¹6, w¹7, w¹8, wℎ 72.2
SW X X w¹2, w¹3, w¹8 wk5, wℎ 86.7
BF X w¹2, w¹3, wk4, wk5, wℎ 60.3
BF X w¹3, w¹4, w¹8, wk5, wℎ 71.2
BF X X w¹3, w¹4, w¹8, wk5, wℎ 71.2

aneurysms have small skewness and small kurtosis (sharp distribution), while rup-

tured aneurysms tend to have high positive skewness and high kurtosis (flat distri-

bution). Histograms with high positive skewness where the asymmetric tails extend

toward large writhe numbers indicate the presence of high torque-related tension

on the surface of the aneurysm as described in Section 3.3.1. The high tension re-

gions are shown as red patches in the corresponding aneurysm figures. In terms of

the mechanical interpretation of writhe in Section 3.3.1, ruptured aneurysms appar-

ently show visibly higher ”tension” on their surfaces and we conclude that higher

writhe number values are a predictor for rupture status.

Table 5.5 shows the prediction results when writhe number analysis and the

existing 11 indexes are use together in a multivariate statistics context. For the side-

wall subset only three features proved statistically significant: L2 norm of mean

curvature MLN, the order 5 cumulant k5 and the entropy ℎ of the parent model.

Using these three features resulted in 87.4 prediction accuracy. While there is not

a statistically significant accuracy increase compared to using only writhe number
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Table 5.5: Accuracy of rupture prediction when writhe number values are used
together with the other size and shape indexes. The prediction is performed on the
sidewall and bifurcation aneurysms sets. For each set, rupture status is predicted by
considering writhe number aneurysm model (AM) features, writhe number parent
vessel model (PVM) features, and the set of 11 size and shape indexes. The set of
features taken into account for each particular classification case are marked with
an X. Sequential backward selection is applied to determine best features set.

Type AM PVM 11 indexes Best Features Selection Accuracy %
SW X X X MLN, PVM: wk5, wℎ 87.3
BF X X X PVM: w¹3, w¹4, w¹8, wk5, wℎ 71.2

statistics, the best feature set has decreased from five features to three. This sim-

plifies the statistical model and makes it more intuitive. For the bifurcation subset,

adding the 11 indexes to writhe number analysis did not change the best feature

set and consequently, did not change the prediction accuracy. The results rein-

force the fact that parent vessel information is important when trying to understand

aneurysm rupture for both sidewall and bifurcation subtypes. Writhe-based statis-

tics have proved to be powerful features when compared to the more established

indexes.

5.3.2 Sensitivity to Segmentation

In order to determine the sensitivity of the classification to segmentation, a subset

of 58 sidewall aneurysms is segmented using two methods. As described in Section

5.2.2, the two methods used are region-growing thresholding [PXP00] and level-

sets [Set99]. For this analysis only isolated aneurysm models (aneurysms com-

pletely separated from surrounding vessels) are considered. As shown in Table 5.6,

the robustness analysis involves four classification cases: two in which the training

and the testing sets are segmented using the same method, and two in which the

training and the testing sets are segmented using different methods.

It is apparent from the table that the best results are obtained when both the
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Table 5.6: Sensitivity of the classification to segmentation. The two segmentation
methods used are region-growing thresholding and level sets. The study involves
four classification cases: two in which the training and the testing sets are seg-
mented using the same method, and two in which the training and the testing sets
are segmented using different methods.

Train set Test set Best Features Accuracy %
Threshold Threshold w¹2, w¹3, w¹8, wk5, wℎ 81.2
Threshold Level Sets w¹2, w¹3, w¹8, wk5, wℎ 76.8
Level Sets Level Sets w¹2, w¹3, w¹7,w¹8, wℎ 80.3
Level Sets Threshold w¹2, w¹3, w¹7, w¹8, wℎ 74.6

training and the testing sets are segmented using the same method. When this is the

case, both segmentation methods result in similar classification accuracy (∼80%),

which is reassuring. Equally encouraging is the fact that the best feature sets are

very similar in the two cases, with four overlapping features. Segmentation does

influence the result of classification when the training and the testing sets are seg-

mented differently. It is to be expected that depending on the different natures of

the various edge- and region-based segmentation algorithms, they may give some-

what different results and consequently different information. Furthermore, many

segmentation methods have one or more adjustable parameters which determine the

granularity of the segmentation and different tuning of these parameters may lead

sometimes to significantly different results [Zha97, ZFG05].

5.3.3 Sensitivity to Cutting Planes Definition

The sensitivity of the classification to cutting plane definition is investigated on

four aneurysms. The aneurysms types are sidewall ruptured, sidewall unruptured,

bifurcation ruptured, and bifurcation unruptured. All four aneurysms were correctly

classified previously in Section 5.3.1. For this analysis, only models of aneurysms

with attached parent vessels are considered, since these are the models affected by

cutting plane definition. For each aneurysm, several models are created by using

75



three different cutting planes per parent vessel cut. The planes are roughly chosen

at distances equal with 1.5, 1 and 0.5 of the vessel diameter as measured at the

aneurysm neck. Cutting planes choices are shown in Fig. 5.4(a) and 5.4(f) for

sidewall and bifurcation aneurysms respectively. A sidewall aneurysm results in

nine models and a bifurcation aneurysm with three branches results in twenty-seven

models. In the figure, the two most extreme models are shown for each aneurysm -

when all adjacent vessels are cut using the outermost planes, and then all adjacent

vessels are cut using the innermost planes. All other models fall between the two

extreme models shown here.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.4: Sensitivity of the classification to cutting plane definition. Four
aneurysms with parent vessels attached were cut using 3 different planes per parent
vessel cut. (a) Sidewall aneurysm. Cutting planes options are shown in black. Com-
bining the cutting planes result in 9 models. (b) SW ruptured: outermost planes
used. (c) SW ruptured: innermost planes used. (d) SW unruptured: outermost
planes used. (e) SW unruptured: innermost planes used.(f) Bifurcation aneurysm.
Cutting planes options are shown in black. Combining the cutting planes result in
27 models. (g) BF ruptured: outermost planes used. (h) BF ruptured: innermost
planes used. (i) BF unruptured: outermost planes used. (j) BF unruptured: inner-
most planes used.

The resulting aneurysm models were classified according to their type (SW or

BF) using the best features sets from Table 5.4. All 72 models were correctly clas-

sified regardless of the cutting plane choices (Table 5.7). The results suggest the
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Table 5.7: Sensitivity of the classification to cutting plane definition. Four
aneurysms with parent vessels attached were cut using 3 different planes per par-
ent vessel. N represents the resulting number of models for each aneurysm. The
models are classified according to their type (SW or BF).

Type Ruptured? N Correctly classified
SW yes 9 9
SW no 9 9
BF yes 27 27
BF no 27 27

classification based on writhe number analysis is not overly sensitive to cutting

plane definition.

5.3.4 Synthetic Data Analysis

To give a better understanding on how the writhe number captures changes in the

size and shape of aneurysms, writhe number analysis was performed on 11 synthetic

aneurysm models. The synthetic models were created using a commercial 3D me-

chanical CAD software (Dassault Systemes SolidWorks Corp, Concord MA). The

resulting mesh models were refined using the Harpoon automatic mesher (Sharc

Ltd, Manchester UK). More specifically, the following size and shape changes are

targeted: changes in the angle size between aneurysm and parent vessel (Fig. 5.9),

changes in the aneurysm height and aneurysm neck as reflected by the aspect ratio

index (Fig. 5.10) and changes in the aneurysm height and width as reflected by the

height-width index (Fig. 5.11).

Figure 5.9 shows how the writhe number captures changes in the size of the

inclination angle between aneurysm and parent vessel. Recent studies found the

inclination angle to be statistically significant in predicting rupture status in side-

wall aneurysms (A.M. Malek, in review). Figures 5.9(a) and 5.9(b) how aneurysms

having inclination angles of 90 and 70 degree, respectively. It is apparent from both

the writhe number values along the aneurysm surface and the corresponding his-

77



tograms that the writhe number values increase with deviations from the 90 degree

angle.

Figure 5.10 shows how the writhe number captures changes in the aneurysm

height and aneurysm neck as reflected by the aspect ratio index. The aspect ratio

was found to be statistically significant in predicting rupture status in intracranial

aneurysms [UTH+99]. Figures 5.10(a) and 5.10(b) have aspect ratio indexes of 15

and 27.5, respectively. It is apparent from both the writhe number values along the

aneurysm surface and the corresponding histograms that an increase in the aspect

ratio results in an increase of the writhe number values.

Figure 5.11 shows how the writhe number captures changes in the aneurysm

height and width as reflected by the height-width index. The aspect ratio was found

to be statistically significant in predicting rupture status in intracranial aneurysms

[DTM+08]. Figures 5.11(a) and 5.11(b) have height-width indexes of 1.6 and 3.6,

respectively. It is apparent from both the writhe number values along the aneurysm

surface and the corresponding histograms that the writhe number is inversely pro-

portional with the change in height-width ratio. This relation between the writhe

number and the HW index holds even when the angle between the aneurysm and

the parent vessel changes as shown in Fig. 5.11(e) and 5.11(f).

Synthetic data analysis suggests that size and shape changes described by aspect

ratio, height-width and the inclination angle can all be represented using features

based on writhe number. This may explain the very promising classification results

reported on clinical data in Section 5.3.1.

5.4 Discussion

Subarachnoid hemorrhage as a consequence of aneurysm rupture is a life-threatening

and debilitating event with high mortality and morbidity rates. While current clini-
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cal practice relies mostly on size of the aneurysms as the main indicator for rupture,

this study suggests that morphology is likely to play an important role in discrim-

inating between ruptured and unruptured cerebral aneurysms. The morphological

analysis in this work is based on writhe number distributions on the surface of

aneurysms. To the best of our knowledge this is the first study using 3D shape

descriptors derived from the writhe number statistics. The writhe number captures

subtle changes on the surface of the aneurysms and, through the analogy with the

torque, lends a a physically intuitive interpretation.

The results show that ruptured aneurysms tend to have regions of high torque-

related tension on their surface, which is indicated by writhe number distribution

spreading out over a larger writhe number range. We believe regions of high ten-

sion correspond to convoluted, highly asymmetrical surfaces. These qualities seem

to be captured by the writhe number and to play a role in predicting rupture status.

For future work, we plan to study how the writhe of surfaces can provide an ob-

jective, quantitative measure of these somewhat subjective qualities describing the

complexity of a shape.

This study is performed both on isolated aneurysmal dome models and on com-

bined models incorporating the attached adjacent parent vessel region. When only

the aneurysmal dome is considered, the accuracy of risk prediction yields encour-

aging results on the sidewall aneurysm subset but performs poorly on bifurcation

aneurysm subset (81.2% vs. 60.3% accuracy). Incorporating parent vessel infor-

mation into the prediction process results in a significant increase in accuracy. This

increase is especially apparent for bifurcation aneurysms, where the most important

classification features are derived from the combined dome and parent vessel mod-

els. This would suggest that the relation between the aneurysm and the adjacent

vessels is a better indicator of rupture compared to the shape of the aneurysm sac

in the bifurcation subset. Still, this morphological analysis captures the rupture risk
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of sidewall aneurysms much better than that of bifurcation aneurysms (86.7% vs.

71.2% accuracy). There seems to be a morphological split between sidewall and

bifurcation aneurysms which is supported by recent research in our lab using two-

dimensional shape descriptors such as the aspect ratio index, height-width ratio,

and inflow-angle into the aneurysm dome (A.M. Malek, unpublished data). These

findings suggest that the shape and size may not be enough to accurately predict

rupture in bifurcation aneurysms. Other patient-specific factors such as aneurysm

location, patient age and gender may need to be explored and incorporated into the

analysis.

Robustness analysis shows the classification to be insensitive to segmentation as

long as the same method is used on both the training and the testing sets (Table 5.6).

The classification is sensitive to segmentation when the training and testing sets are

segmented using different methods. Segmentation of cerebral vasculature is a chal-

lenging task and the research in the field remains active [FPAB04, HF07, RP09].

It is beyond the scope of this research to improve segmentation algorithms or to

compare the performance of the various methods. Currently, our recommendation

is to use compatible training and testing methods for rupture classification.

When creating aneurysm models with parent vessels attached, the cutting planes

are chosen somewhat arbitrary. We do not know of the existence of a comprehensive

study to recommend a methodology on how to create these models. The analysis

from Section 5.3.3 suggests the classification based on writhe number is relatively

impervious to cutting plane definitions. However, since incorporating parent vessel

information improves the prediction results, it would be worth exploring the effect

of cutting plane definition on a larger set of both correctly classified and misclassi-

fied aneurysms.

The isolation of the aneurysms is the only part of the method that is not com-

pletely automated. For future work, we plan to investigate how to incorporate into
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this current work the results presented in Chapter 4, where aneurysms are automat-

ically detected from the whole cerebral vasculature.

The prediction results obtained when using the writhe number together with

other indexes show that writhe number statistics are powerful tools, acting as ag-

gregate features which may encompass characteristics of other existing shape and

size indexes. This notion is supported by preliminary synthetic data analysis. Fu-

ture work should further the synthetic data analysis to determine how writhe number

statistics fit into the pool of existing morphological features describing intracranial

aneurysms.

Similar to previous morphological research, the current study premise is based

on an yet unproven assumption that aneurysms do not change shape and size upon

rupture [UTH+99, MHR04, RMH05, MDMP+07]. This is still a point of contention

and there is not enough information to decidedly settle the debate. Some studies re-

port no major change in size and shape after rupture [UTH+99, BReB+03], whereas

the ISUIA study [Wie03] contends that ruptured aneurysms data should not be used

to draw conclusions about unruptured aneurysms evolution.

Similar to previous morphological research, the current analysis is performed

on a dataset of aneurysms which were classified as being ruptured or not at the time

of detection. The evolution of these aneurysms was not followed clinically over a

period of time. As such we differentiate between predicting aneurysms rupture sta-

tus and predicting rupture likelihood. Prospective studies, where in-vivo aneurysms

are followed over long periods of time until they rupture or not, would determine

if the writhe number usefulness can be extended from predicting rupture status to

determining rupture likelihood.

While the analysis was performed on a relatively large database and the results

are very encouraging, the eventual added value of the method remains to be deter-

mined in the clinical setting and, as mentioned above, would require validation in
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prospective clinical trials.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Analysis results on four representative unruptured SIDEWALL
aneurysms. The results are shown on aneurysm dome models. (a),(b),(e),(f) Un-
ruptured aneurysms. Writhe number values along the surface. Low values are
interpreted as low surface tension. (c),(d),(g),(h) Corresponding histograms. The
approximating probability distribution is shown in red. Unruptured aneurysms have
sharp writhe number distributions, low entropy and low skewness.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Analysis results on four representative ruptured SIDEWALL
aneurysms. The results are shown on aneurysm dome models. (a),(b),(e),(f) Rup-
tured aneurysms. Writhe number values along the surface. High values are inter-
preted as high surface tension and are a predictor for rupture. (c),(d),(g),(h) Corre-
sponding histograms. The approximating probability distribution is shown in red.
Ruptured aneurysms have more spread writhe number distributions, high entropy
and high skewness. 84



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Analysis results on four representative unruptured BIFURCATION
aneurysms. The results are illustrated on aneurysms with adjacent parent vessels
attached. (a),(b),(e),(f) Unruptured aneurysms. Writhe number values along the
surface. Low values are interpreted as low surface tension. (c),(d),(g),(h) Corre-
sponding histograms. The approximating probability distribution is shown in red.
Unruptured aneurysms have sharp writhe number distributions, low entropy and
low skewness. 85



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Analysis results on four representative ruptured BIFURCATION
aneurysms. The results are illustrated on aneurysms with adjacent parent vessels
attached. (a),(b),(e),(f) Ruptured aneurysms. Writhe number values along the sur-
face. High values are interpreted as high surface tension and are a predictor for
rupture. (c),(d),(g),(h) Corresponding histograms. The approximating probability
distribution is shown in red. Ruptured aneurysms have more spread writhe number
distributions, high entropy and high skewness.
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(a) (b)

(c) (d)

Figure 5.9: Analyze how the writhe number captures changes in the size of the
angle between aneurysm and parent vessel. (a) The aneurysm makes a 90 degrees
angle with its parent vessel. (b) The aneurysm makes a 70 degrees angle with its
parent vessel. (c), (d) Corresponding histograms. It is apparent from both the writhe
number values along the aneurysm surface and the corresponding histograms that
the writhe number is proportional with deviations from the 90 degree angle.
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(a) (b)

(c) (d)

Figure 5.10: Analyze how the writhe number captures changes in the size of the
aneurysm height and the width neck as reflected by the aspect ratio index. (a)
The aneurysm has an aspect ratio of 15. (b) The aneurysm has an aspect ratio of
27.5. (c), (d) Corresponding histograms. It is apparent from both the writhe number
values along the aneurysm surface and the corresponding histograms that the writhe
number is proportional with the change in aspect ratio.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11: Analyze the relation between the writhe number and the aneurysm
hight-width ratio (HW). (a) HW = 1.6 (b) HW = 3.6 (c), (d) Corresponding his-
tograms. (e) HW = 1.6 and the inclination angle = 110 degrees. (f) HW = 3.6
and the inclination angle = 110 degrees. (g), (h) Corresponding histograms. It is
apparent from both the writhe number values along the aneurysm surface and the
corresponding histograms that the writhe number is inverse proportional with the
change in HW. This correlation is true even when the angle between the aneurysm
and the parent vessel changes.
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Chapter 6

Rupture Status Classification of

Intracranial Aneurysms using

Surface Curvature and the

Centroid-Radii Model

In this chapter, the usefulness of surface curvature and the centroid-radii model is

investigated for rupture status prediction of intracranial aneurysms. The analysis is

performed on the same aneurysm database described in Chapter 5.

6.1 Method

6.1.1 Overview of the Classification Algorithm

The methodology used in this chapter follows the steps detailed in Chapter 5. Cere-

bral vasculature is segmented and aneurysm models are created. Each aneurysm

is described by two triangular models, with and without inclusion of parent vessel.

Gaussian and mean curvatures, and centroid-radii distances are computed along the
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surface of the aneurysm models. Histogram statistics are computed from the his-

tograms representing distributions of curvatures and centroid-radii distances. Statis-

tics derived from surface curvature and centroid-radii models are used to differen-

tiate between ruptured and unruptured aneurysms first by themselves and then in

combination with writhe number and other previously introduced indexes.

6.1.2 Segmentation

Similar to Chapter 5, image segmentation is performed using a combination of

thresholding and region-growing techniques. In order to analyze the sensitivity

to segmentation of the classification based on curvature and centroid-radii model,

a second segmentation based on level-sets is employed on a subset of 58 sidewall

aneurysms. The results of the analysis are presented in Section 6.2.2.

6.1.3 Isolation of Aneurysms

The aneurysm geometry is separated manually form the segmented vasculature.

Two 3D models are created for each aneurysm. First, each parent vessel is cut at

a distance approximately equal to its diameter, as measured at the aneurysm neck.

Second, aneurysms are completely separated from adjacent parent vessels. The

sensitivity to the cutting planes definition of the classification based on curvature

and centroid-radii model is discussed in Section 6.2.3.

6.1.4 Surface Curvature and Centroid-Radii Computation

Gaussian and mean curvatures are computed along the surface of the models as

described in Chapter 2, Section 2.1.3. Similarly, centroid-radii distances are com-

puted as described in Chapter 2, Section 2.3.2. The centroid-radii distances are only

computed on models representing the aneurysm sac completely separated from the
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adjacent vessels.

6.1.5 Histogram Statistics

As detailed in Chapter 2, Section 2.2, Gaussian and mean curvatue values along

the surface of an aneurysm are represented using smoothed histograms. Similarly,

centroid-radii distances are computed for each point on the aneurysm surface and

are represented as smoothed histograms. For each aneurysm model is described by

the following attributes: 10 Gaussian curvature-related features (central moments

g¹2 to g¹8, cumulants gk4 and gk5, entropy gℎ), 10 mean curvature-related fea-

tures (central moments m¹2 to m¹8, cumulants mk4 and mk5, entropy mℎ) and 10

centroid-radii-related features (central moments c¹2 to c¹8, cumulants ck4 and ck5,

entropy cℎ). Given that centroid-radii distances are only computed on the aneurysm

sac model, each natural aneurysm is associated with 50 attributes, 30 describing the

aneurysm sac and 20 describing the aneurysm with portion of the parent vessels at-

tached. These descriptors are used as classification features in predicting the rupture

status in cerebral aneurysms.

6.1.6 Classification

The classification problem solved here involves two classes (ruptured vs. unrup-

tured) and 117 samples (the aneurysms), described by 50 features each. The method

used is logistic regression with 10-fold cross validation [FEH01]. The classification

is repeated 10 times with 10 different random seeds. This results in 100 different

splittings and the average performance is reported.

Classification is first performed on all 117 samples, then separately on 58 side-

wall aneurysms and 59 bifurcation aneurysms. In each of these cases, first the

aneurysm sac attributes are considered, then only the attributes from aneurysm with

parent vessels attached are considered, and finally the total of 50 attributes are con-
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sidered. The analysis is further divided according to the nature of the attributes

(curvature-based attributes and centroid-radii based attributes). The results of these

different scenarios are described under classification results in Sec.6.2.1.

To reduce the dimensionality of the feature space and to insure a good samples-

to-features ratio, sequential backward selection [SA04] was performed on the num-

ber of attributes considered for each of the nine classification scenarios. Details

about the most significant attributes for each classification case are provided in

Sec.6.2.1.

6.2 Classification Results

6.2.1 Rupture Status Prediction

Table 6.1 shows the classification results when centroid-radii analysis is applied to

predict rupture status. Classification is performed on the three subsets: 117 SW +

BF, 58 SW, and 59 BF aneurysms. Since centroid-radii distances are computed only

for aneurysm sac models, the aneurysm model (AM) features are marked with an X

in the corresponding columns of the table. These are the features previously detailed

in Section 6.1.5. In this study, the features which are taken into consideration are

distinguished those which are ultimately used for classification. More specifically,

sequential backward selection is applied on the features taken into consideration

to reduce the set to the five most significant features, which are the features used

for classification. Using at most five features guarantees a samples-to-features ratio

greater than ten. In turn, this reduces the risk that multivariate classification may

overfit the data [Har84, FEH01]. Note that while we are considering at most five

features, some models may require less than five statistically significant features

that completely describe the dataset. The centroid-radii statistics model works very

well on sidewall aneurysms (80.3% accuracy) using only one feature, namely the

93



entropy of the centroid-radii distance distribution. On the bifurcation subset, the

accuracy is 70.0% using the entropy and the variance of the centroid-radii distance

distribution. While lower than the prediction accuracy for sidewall aneurysms, this

result is still better than when using any of the existing 11 indexes (Table 5.3) and

comparable to the results when using writhe number statistics (Table 5.4). The

morphological dichotomy between sidewall and bifurcation, which was mentioned

in the previous chapter, it is also apparent from these results.

Table 6.2 shows the classification results when curvature analysis is applied to

predict rupture status. For sidewall aneurysms, best prediction results are obtained

when curvature features from both aneurysm and parent vessel models are consid-

ered (accuracy 77.1%). For bifurcation aneurysms, using parent vessel information

results in a big accuracy increase compared to when using only aneurysm model

data (55% to 73.5%).

Table 6.3 shows the prediction results when the analysis takes into account all

features described in this study - writhe number, mean and Gaussian curvature,

centroid-radii model and the 11 existing indexes. Groups of features taken into ac-

count are marked with an X in the corresponding columns. For sidewall aneurysms,

the entropy of the centroid-radii model remains a strong feature and best accu-

racy results are obtain when combining centroid-radii entropy with writhe number

statistics (88.4%). For bifurcation aneurysms, combining mean curvature derived

statistics with centroid-radii statistics results in 79.8% accuracy. This represents a

25% accuracy improvement compared to using the 11 established size and shape

indexes described in Chapter 2, Section 2.3.2. It is obvious from Table 6.3 that

the entropy of a distribution is an important statistical measure regardless of the

surface property (writhe number, mean curvature or centroid-radii distances). The

entropy is part of all best features sets and it seems to be a significant quantity for

both aneurysm subtypes. Ruptured aneurysms were consistently characterized by
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Table 6.1: Accuracy of rupture prediction when centroid-radii statistics are used.
The prediction is performed on three aneurysms sets: (1) 117 sidewall and bifurca-
tion (SW+BF) aneurysms, (2) 58 sidewall (SW) aneurysms and (3) 59 bifurcation
(BF) aneurysms. Rupture status is predicted by considering only aneurysm model
(AM) features. Sequential backward selection is applied to determine best features
set.

Type N AM Best AM Accuracy %
SW+BF 117 X c¹2, cℎ 66.6
SW 58 X cℎ 80.3
BF 59 X c¹2, cℎ 70.0

Table 6.2: Accuracy of rupture prediction when centroid-radii statistics are used.
The prediction is performed on three aneurysms sets: (1) 117 sidewall and bifurca-
tion (SW+BF) aneurysms, (2) 58 sidewall (SW) aneurysms and (3) 59 bifurcation
(BF) aneurysms. Rupture status is predicted by considering only aneurysm model
(AM) features. Sequential backward selection is applied to determine best features
set.

Type AM PVM Best AM Best PVM Accuracy %
SW+BF X gk4, gk5, gℎ, m¹5, m¹8 58.9
SW+BF X g¹3, gℎ, m¹2, m¹6, mℎ 64.5
SW+BF X X g¹3, gℎ, m¹2, m¹6, mℎ 64.5
SW X g¹5, g¹6, m¹2, m¹5, mk4 75.4
SW X g¹2, g¹8, m¹2, m¹4 73.6
SW X X g¹5 g¹2, m¹2, m¹4 77.1
BF X gk4, gk5, gℎ, m¹2, m¹3 55.0
BF X g¹5, p¹3, m¹6, m¹7, mℎ 73.3
BF X X g¹5, p¹3, m¹6, m¹7, mℎ 73.3

a higher mean entropy of both the mean curvature and the centroid-radii distances

compared to unruptured aneurysms.

The differences between ruptured and unruptured aneurysms as captured by the

centroid-radii model are apparent in Figures 6.1 and 6.2 which show analysis results

on sidewall aneurysms. In the figures, we show the centroid-radii distances along

the surface of representative ruptured and unruptured aneurysms and their corre-

sponding histograms. The results are shown on aneurysm dome models. It can be

seen from the histograms that unruptured aneurysms have small skewness and small

kurtosis (sharp distribution), while ruptured aneurysms tend to have high positive

95



Table 6.3: Accuracy of rupture prediction when all size and shape aneurysm
attributes are taken into account: curvature statistics, centroid-radii model
statistics(CR-M), writhe number statistics and the 11 established size and shape
indexes. The prediction is performed on the sidewall and bifurcation aneurysms
sets. The statistical model takes into account both aneurysm model (AM) features
and parent vessel model (PVM) features. The set of features taken into account
for each particular classification case are marked with an X. Sequential backward
selection is applied to determine best features set.

Type Curvature CR-M 11 indexes writhe Best Features Selection Accuracy %
SW X X cℎ 80.3
SW X X X cℎ 80.3
SW X X X X cℎ, PVM: wk5, wℎ 88.4
BF X X c¹2, cℎ, PVM: mℎ 78.3
BF X X X MAA, c¹2, PVM: mℎ 79.8
BF X X X X MAA, c¹2, PVM: mℎ 79.8

skewness and high kurtosis (flat distribution). Ruptured aneurysms have signifi-

cantly higher entropy of the centroid-radii distance distribution, when compared to

unruptured aneurysms. Note from the two figures that some of the ruptured and

unruptured aneurysms have very similar sizes, but the entropy of the centroid-radii

model captures information about both the size and the shape of the aneurysms, and

as such, it can differentiate rupture status among similar size aneurysms.

Figures 6.3 and 6.4 show the differences between ruptured and unruptured bi-

furcation aneurysms as captured by the mean curvature. In the figures, we show

the mean curvature along the surface of representative ruptured and unruptured bi-

furcation aneurysms and their corresponding histograms. The results are shown

on aneurysms with adjacent parent vessels attached. It can be seen from the his-

tograms that unruptured aneurysms have small skewness and small kurtosis (sharp

distribution), while ruptured aneurysms tend to have high positive skewness and

high kurtosis (flat distribution). Rupture aneurysms have significantly higher en-

tropy of the mean curvature distribution, when compared to unruptured aneurysms.
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6.2.2 Sensitivity to Segmentation

In order to determine the sensitivity of the classification to segmentation, a subset

of 58 sidewall aneurysms is segmented using two methods, region-growing thresh-

olding [PXP00] and level-sets [Set99]. For this analysis only isolated aneurysm

models (aneurysms completely separated from surrounding vessels) are considered.

The robustness analysis involves four classification cases: two in which the training

and the testing sets are segmented using the same method, and two in which the

training and the testing sets are segmented using different methods.

Table 6.4 shows the robustness analysis when classification is based on statistics

derived from the centroid-radii model. It is apparent from the table that the entropy

of the centroid-radii distances distribution is very robust to segmentation and similar

results are obtained regardless of the segmentation method used on training and

testing data (∼80%). Distances from centroid to the surface of the aneurysms are

less sensitive to the small variation between segmentation methods and are more

robust to different degrees of smoothness of the surface.

Table 6.5 shows the robustness analysis when classification is based on statistics

derived from surface curvature. As expected surface curvature is very sensitive to

the segmentation method. Accuracy results between the two segmentation methods

are similar when both the training and the testing data sets are segmented using the

same method (∼72%). However, the accuracy decreases dramatically when the two

set are segmented using different methods (∼57%). Because both the Gaussian and

the mean curvatures are computed over a small local neighborhood on the surface

of the aneurysm, they are very sensitive to changes in the smoothness of the surface.

It is to be expected that depending on the different natures of the various edge- and

region-based segmentation algorithms, they may give somewhat different results

and the surface curvature seems to be sensitive to these differences. Furthermore,

many segmentation methods have one or more adjustable parameters which deter-
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Table 6.4: Sensitivity of the classification based on centroid-radii model to segmen-
tation. The study involves only sidewall aneurysms and takes into account features
derived from aneurysm models (AM) only. The two segmentation methods used are
region-growing thresholding and level sets. The study involves four classification
cases: two in which the training and the testing sets are segmented using the same
method, and two in which the training and the testing sets are segmented using
different methods.

Train set Test set Best Features AM Accuracy %
Threshold Threshold cℎ 80.3
Threshold Level Sets cℎ 79.7
Level Sets Level Sets cℎ 81.7
Level Sets Threshold cℎ 80.7

Table 6.5: Sensitivity of the classification based on surface curvature to segmenta-
tion. The study involves only sidewall aneurysms and takes into account features
derived from aneurysm models (AM) only. The two segmentation methods used are
region-growing thresholding and level sets. The study involves four classification
cases: two in which the training and the testing sets are segmented using the same
method, and two in which the training and the testing sets are segmented using
different methods.

Train set Test set Best Features AM Accuracy %
Threshold Threshold g¹5, g¹6, m¹2, m¹5, mk4 75.4
Threshold Level Sets g¹5, g¹6, m¹2, m¹5, mk4 59.6
Level Sets Level Sets g¹5, g¹7, m¹6, m¹7, m¹8 71.9
Level Sets Threshold g¹5, g¹7, m¹6, m¹7, m¹8 56.14

mine the granularity of the segmentation and different tuning of these parameters

may lead sometimes to significantly different results [Zha97, ZFG05].

6.2.3 Sensitivity to Cutting Planes Definition

Similar to Chapter 5, the sensitivity of the classification to cutting plane definition is

investigated on four aneurysms. The aneurysm types are sidewall ruptured, sidewall

unruptured, bifurcation ruptured, and bifurcation unruptured. All four aneurysms

were correctly classified previously in Section 6.2.1. For this analysis, only models

of aneurysms with attached parent vessels are considered, since these are the mod-
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Table 6.6: Sensitivity of the classification to cutting plane definition. Four
aneurysms with parent vessels attached were cut using 3 different planes per par-
ent vessel. N represents the resulting number of models for each aneurysm. The
models are classified according to their type (SW or BF).

Type Ruptured? N Best Features Correctly classified
SW yes 9 cℎ 9
SW no 9 cℎ 9
BF yes 27 c¹2, cℎ, PVM: mℎ 27
BF no 27 c¹2, cℎ, PVM: mℎ 27

els affected by cutting plane definition. Similar to our analysis from the previous

chapter, for each aneurysm, several models are created by using three different cut-

ting planes per parent vessel cut. The planes are roughly chosen at distances equal

with 1.5, 1 and 0.5 of the vessel diameter as measured at the aneurysm neck. A side-

wall aneurysm results in 9 models and a bifurcation aneurysm with three branches

results in 27 models. In the figure, the two most extreme models are shown for

each aneurysm - when all adjacent vessels are cut using the outermost planes, and

then all adjacent vessels are cut using the innermost planes. All other models fall

between the two extreme models shown here.

The resulting aneurysm models were classified according to their type (SW or

BF) using corresponding best features sets from Table 6.3. All 72 models were

correctly classified regardless of the cutting plane choices (Table 6.6). The results

suggest the classification based on centroid-radii model and surface curvature is not

overly sensitive to cutting plane definition.

6.2.4 Synthetic Data Analysis

To give a better understanding on how the centroid-radii model captures changes

in the size and shape of aneurysms, centroid-radii analysis was performed on 4

synthetic aneurysm models. The synthetic models were created using a commer-

cial 3D mechanical CAD software (Dassault Systemes SolidWorks Corp, Concord
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MA). The resulting mesh models were refined using the Harpoon automatic mesher

(Sharc Ltd, Manchester UK). The results of the analysis are shown in Fig. 6.5. The

entropy of the models increases with the model complexity. This is consistent to the

findings from Section 6.1.6 that high entropy values of the centroid-radii distance

distribution are associated with rupture.

6.3 Discussion

The morphological analysis of intracranial aneurysms started in Chapter 5 is con-

tinued in this chapter with the introduction of some novel shape features based on

the centroid-radii model and on surface curvatures.

The centroid-radii model is applied on the isolated aneurysmal dome models

and describes both the side and the shape of the aneurysms. The entropy of the re-

sulting distribution proved to be strongly associated to rupture, especially for side-

wall aneurysms. To the best of our knowledge, the entropy of the centroid-radii

model seems to be the most accurate single index for rupture in sidewall aneurysms

(80.3%). The centroid-radii model is very easy to use, it is completely automatic

and very robust to segmentation.

The surface curvature analysis was performed both on isolated aneurysmal dome

models and on combined models incorporating the attached adjacent parent vessel

region. Using the entropy of the mean curvature distributions increased the pre-

diction accuracy on bifurcation aneurysms to 79.8%. This represents a significant

accuracy improvement compared to when some more established indexes are used.

However, the classification based on surface curvature proved to be sensitive to the

segmentation method and accuracy results decreased dramatically when the train-

ing and testing sets were segmented using different methods. Our recommendation

is to use compatible training and testing methods for rupture classification.
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The analysis based on the centroid-radii model and surface curvature, used

both separately and combined, supports the morphological findings from Chap-

ter 5. Namely, including parent vessel information improves rupture prediction for

both sidewall and bifurcation aneurysms and it is vital for bifurcation aneurysms.

While using the new features proposed in this current study increased the accuracy

performance for bifurcation aneurysms, predicting rupture status on this subset re-

mains a challenging task when compared to the results on sidewall aneurysms. The

results support the idea of a clear morphological dichotomy between sidewall and

bifurcation aneurysms and this current study is one of the first to describe this mor-

phological split. We believe future research on aneurysm rupture status and risk

analysis would greatly benefit from taking these inherent shape differences into ac-

count.

While the analysis was performed on a relatively large database and the results

are very encouraging, the eventual added value of this new introduced morphologi-

cal features has to be determined in the clinical setting and would require validation

in prospective clinical trials.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.1: Analysis results based on the centroid-radii model on four representa-
tive unruptured SIDEWALL aneurysms. The results are shown on aneurysm dome
models. (a),(b),(e),(f) Unruptured aneurysms. (c),(d),(g),(h) Corresponding his-
tograms. The approximating probability distribution of centroid-radii distances is
shown in red. Unruptured aneurysms have sharp centroid-radii distributions, low
entropy and low variance. 102



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: Analysis results based on the centroid-radii model on four representative
ruptured SIDEWALL aneurysms. The results are shown on aneurysm dome mod-
els. (a),(b),(e),(f) Ruptured aneurysms. (c),(d),(g),(h) Corresponding histograms.
The approximating probability distribution is shown in red. Ruptured aneurysms
have more spread centroid-radii distributions, high entropy and high variance.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: Analysis results based on mean curvature statistics on four rep-
resentative unruptured BIFURCATION aneurysms. The results are illustrated
on aneurysms with adjacent parent vessels attached. (a),(b),(e),(f) Unruptured
aneurysms. Mean curvature values along the surface. (c),(d),(g),(h) Corresponding
histograms. The approximating probability distribution is shown in red. Mean cur-
vature distribution for unruptured aneurysms have lower entropy, variance, skew-
ness and kurtosis compared with ruptured aneurysms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.4: Analysis results based on mean curvature statistics on four representa-
tive ruptured BIFURCATION aneurysms. The results are illustrated on aneurysms
with adjacent parent vessels attached. (a),(b),(e),(f) Ruptured aneurysms. Mean
curvature values along the surface. (c),(d),(g),(h) Corresponding histograms. The
approximating probability distribution is shown in red. Mean curvature distribu-
tion for ruptured aneurysms have higher entropy, variance, skewness and kurtosis
compared with unruptured aneurysms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.5: Centroid-radii model analysis on four synthetic models. (a),(b),(e),(f)
Centroid-radii distance values along the surface of the models. (c),(d),(g),(h) Cor-
responding histograms. Models entropy values increase from (c) to (h). Higher
entropy values are associated with rupture.
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Chapter 7

Conclusions and Future Work

This thesis presents solutions for two major areas of intracranial aneurysm analysis,

namely aneurysm detection and rupture risk prediction. For both applications, the

proposed solutions are based on the writhe number theory introduced in this work.

Here, the writhe number was extended from 2D curve theory to 3D surfaces and it

was described as a new 3D surface and shape descriptor. From this theory, writhe

number-based methods were developed for both automatic detection of aneurysms

and rupture status classification.

First, a new method for automated detection of intracranial aneurysms, based

on the local 3D shape of the parent vessels, was reported. Surface and shape anal-

ysis based on the writhe number was applied to distinguish between tubular and

non-tubular regions along the vessels, using the symmetric property of the writhe

number. The detection algorithm required only a segmented volume of cerebral

vasculature and is otherwise independent of the imaging modality. The method was

tested on 3D-RA and CTA patient data. The robustness of the method was inves-

tigated analytically and validated experimentally. The method returned few false

positive results and did not involve a complex false positive reduction scheme. In

our experiments on patient-derived data, the sensitivity of the detection method was
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close to 100%.

Second, the writhe number of surfaces was used to analyze the complex shape

of intracranial aneurysms and predict their rupture status. A novel analogy was

proposed between the writhe number of surfaces and torque. Under this analogy,

high writhe number values were interpreted as regions of tension on the surface

of the aneurysms, and were an indicator of rupture. A morphological dichotomy

was reported between sidewall and bifurcation aneurysms, and the two subtypes

were analyzed separately. The analysis was performed both with and without adja-

cent parent vessels information and leaded us to conclude that the relation between

the aneurysmal sac and surrounding vessels was relevant for rupture status pre-

diction. The prediction accuracy obtained using morphological analysis based on

writhe number was of 86±2% for sidewall aneurysms and of 71±3% for bifurcation

aneurysms.

Rupture status prediction was further researched by evaluating the utility of the

centroid-radii model and surface curvature in discriminating between ruptured and

unruptured aneurysms. Statistics derived from the centroid-radii model proved to

be highly correlated with rupture, especially in sidewall aneurysms. Combining

all the features introduced in this work resulted in a strong statistical model for

rupture status prediction. More specifically, the proposed methodology resulted in

a prediction accuracy of 88.4% for sidewall aneurysms (vs. 77.1% using estab-

lished indexes) and 79.8% for bifurcation aneurysms (vs. 64.2% using established

indexes).

7.1 Ongoing Research

Ongoing work is focused on improving the results and the methodology for rupture

risk prediction. More specifically, we are currently investigating rupture risk pre-
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diction in bifurcation aneurysms, which proved to be a more challenging task when

compared to the analysis of sidewall aneurysms. One of the findings of this research

was that the relationship between an aneurysm and its adjacent parent vessels is es-

sential for the morphological analysis of bifurcation aneurysms. We are currently

working to extend the use of the centroid-radii model from aneurysm models to

models including parent vessels.

The classification analysis presented here was performed on aneurysms from

patient-derived 3D rotational angiography (3D-RA) datasets. 3D-RA imaging is

the gold standard in cerebral aneurysm imaging and provides high resolution, high

contrast, high signal-to-noise ratio data. However, due to constant improvements in

sensitivity and specificity of less-invasive imaging modalities, magnetic resonance

angiography (MRA) and computed tomography angiography (CTA) are more and

more used for cerebrovascular imaging. To assess the robustness to image modality

of the morphological parameters introduced in this work, we are currently perform-

ing rupture status prediction on a large database of aneurysms from patient derived

CTA datasets.

7.2 Future Work

Although tested on three imaging modalities, the detection method was applied to

a relatively small number of datasets (10 for each modality). A larger one modal-

ity detection study needs to be performed to better analyze the performance of our

method. Detection methods usually fail on small aneurysms, especially on MRA

and CTA data. A size analysis of the method needs to be performed on both syn-

thetic data, and on aneurysms of various sizes from patient-derived data.

Each of the detection steps (image reconstruction, segmentation, medial-axis

computation, writhe-number analysis) influences the detection accuracy and espe-
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cially the false positive rates. At the same time, each of these steps represents an

active research field. Improving the segmentation and medial-axis computation will

likely improve the specificity of the detection method, and work in this area is one

of our main future work directions.

Improving vasculature segmentation will also have a positive impact on increas-

ing the robustness of the prediction method, since some of the morphological pa-

rameters presented here, especially curvature, are somewhat sensitive to variations

between segmentation methods.

While aneurysm detection and aneurysm rupture status prediction can be used

independently, we plan to investigate how the two methods can be combined. This

would require an intermediate step, in which the aneurysms are detached from

the vasculature using writhe number analysis and taken into account their local

neighborhood. This approach could potentially result in automatic isolation of the

aneurysms which would completely automate the classification process. It would

also provide a unified diagnostic protocol for cerebral aneurysm detection and man-

agement.

Both methods require clinical validation studies to assess their effect and poten-

tial added value on diagnostic accuracy. We believe the methods introduced in this

thesis have the potential to provide additional objective tools, designed to comple-

ment the experience and expertize of the clinicians.
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A Writhe Number Analysis

A.1 Writhe Number of a Cylinder

If N(p) is a cylinder of radius R and length L and points c0 and c1 are the centers

of the base and the top of the cylinder respectively, then the medial axis of N(p) is

a line segment described by the parametric equation m(t) = c0(1− t) + c1t, where

t ∈ [0, 1]. Without loss of generality, we assume that c0 is the origin of the local

coordinate system, c1 lies on the x axis and the normal np at point p is parallel to

the y axis (Fig. A.1). Points p1, p2 are chosen as discussed in Section 3.2.1.

Figure A.1: Computing the writhe number of a cylinder.

Let (px, py, pz) be the Cartesian coordinates of point p. Point p1 sits on the

circumference of a circle C(p1) parallel to the base of N(p). Let ¯ be the angle

between y axis and the vector from the origin of C(p1) to point p1 (Fig. A.1). The

same holds for point p2. For any pair of points (p1, p2) the following are true:

(px, py, pz) = (
L

2
, R, 0),

(p1x, p1y, p1z) = (Lt,R cos ¯,R sin ¯), t ∈ [0, 1],

(p2x, p2y, p2z) = (L(1− t), R cos ¯,R sin ¯), t ∈ [0, 1],
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(p1 − p) = (Lt− L

2
, R(cos ¯ − 1), R sin ¯), t ∈ [0, 1],

(p2 − p) = (−Lt+
L

2
, R(cos ¯ − 1), R sin ¯), t ∈ [0, 1],

np = (0, 1, 0),

np1 = (0, cos ¯, sin ¯),

np2 = (0, cos ¯, sin ¯),

np × np1 = (sin ¯, 0, 0),

np × np2 = (sin ¯, 0, 0),

w(p, p1) = (p1 − p) ⋅ (np × np1) = (Lt− L

2
) sin ¯,

w(p, p2) = (p2 − p) ⋅ (np × np2) = −(Lt− L

2
) sin ¯,

w(p, p1) = −w(p, p2).

A.2 Writhe Number of an Extruded Surface Along a Parabola

An arbitrary parabola H , with the apex in the origin of the coordinate system, is

defined by the parametric equations x = at2, y = 2at, t ∈ ℝ. A point ℎ on H has

coordinates (at2, 2at) and the tangent to H at ℎ is given by equation ty = x+ at2.

Given a surface point p, let N(p) be an extruded surface along H , having H as

its medial axis. Point p lies on the circumference of a circle C(p), with center c and

perpendicular to H . Note that all the points on C(p) have the same local neighbor-

hood as p and implicitly the same writhe number. Without loss of generality, we

assume that H lies in the xy plane, c is the apex of H and p is the apex of the largest

parabola on the extruded surface, such that the normal np to the surface is parallel

to the x axis (Fig. A.2). Points p1, p2 are chosen as discussed in Section 3.2.2.

Let (px, py, pz) be the Cartesian coordinates of point p and tp be the tangent to

the surface at point p. Point p1 sits on the circumference of a circle C(p1) with cen-

ter c1 and perpendicular to H . C(p1) intersects the largest parabola on the extruded
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Figure A.2: Computing the writhe number of an extruded parabola.

surface in a point p′ , with normal np′ to the surface. Let ¯ be the angle between

np′ and the vector from c1 to point p1 (Fig. A.1). The same holds for point p2. For

any pair of points (p1, p2) the following are true:

(cx, cy, cz) = (0, 0, 0),

(c1x, c1y, c1z) = (at2, 2at, 0), t ∈ ℝ,

(c2x, c2y, c2z) = (at2,−2at, 0), t ∈ ℝ,

nc = (−1, 0, 0),

nc1 = (−
1
t√

1 + 1
t2

,
1√

1 + 1
t2

, 0), t ∈ ℝ,

nc2 = (−
1
t√

1 + 1
t2

,− 1√
1 + 1

t2

, 0), t ∈ ℝ,

tc1 = (
1√

1 + 1
t2

,
1
t√

1 + 1
t2

, 0), t ∈ ℝ,

tc2 = (
1√

1 + 1
t2

,−
1
t√

1 + 1
t2

, 0), t ∈ ℝ

The tuple (tc1, nc1, tc1 × nc1) is the basis of a 3D-RA orthogonal coordinate

system local to C(p1). Similarly, (tc2, nc2, tc2 × nc2) is the basis of an orthogonal

coordinate system local to C(p2). We will express p1 and p2 locally in terms of the
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new bases.

(px, py, pz) = (−R, 0, 0),

p1x = at2 −
R
t√

1 + 1
t2

cos ¯, t ∈ ℝ,

p1y = 2at+
R√
1 + 1

t2

cos ¯, t ∈ ℝ,

p1z = R sin ¯,

p2x = at2 −
R
t√

1 + 1
t2

cos ¯, t ∈ ℝ,

p2y = −2at+
R√
1 + 1

t2

cos ¯, t ∈ ℝ,

p2z = R sin ¯,

(p1 − p)x = at2 +R(1−
R
t√

1 + 1
t2

cos ¯), t ∈ ℝ,

(p1 − p)y = 2at− R√
1− 1

t2

cos ¯, t ∈ ℝ,

(p1 − p)z = R sin ¯,

(p2 − p)x = at2 +R(1−
R
t√

1 + 1
t2

cos ¯), t ∈ ℝ,
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(p2 − p)y = −2at+
R√
1 + 1

t2

cos ¯, t ∈ ℝ,

(p2 − p)z = R sin ¯,

np = (−1, 0, 0),

nc1 = (−
1
t√

1 + 1
t2

,
1√

1 + 1
t2

, sin ¯), t ∈ ℝ,

nc2 = (−
1
t√

1 + 1
t2

,− 1√
1 + 1

t2

, sin ¯), t ∈ ℝ,

np × np1 = (0,− sin ¯,− 1√
1 + 1

t2

), t ∈ ℝ,

np × np2 = (0,− sin ¯,
1√

1 + 1
t2

), t ∈ ℝ,

w(p, p1) = (p1 − p) ⋅ (np × np1)

= −(2at− R cos ¯√
1− 1

t2

) sin ¯ − R√
1 + 1

t2

sin ¯,

w(p, p2) = (p2 − p) ⋅ (np × np2)

= −(−2at+
R cos ¯√
1− 1

t2

) sin ¯ +
R√
1 + 1

t2

sin ¯,

w(p, p1) = −w(p, p2).
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