
FIRST ORDER DECISION DIAGRAMS FOR DECISION THEORETIC

PLANNING

A Dissertation

submitted by

Saket Joshi

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in

COMPUTER SCIENCE

TUFTS UNIVERSITY

August 2010

c© Saket Joshi 2010

ADVISER: Professor Roni Khardon

ii

Abstract

Compact representations of complex knowledge form the coreof solutions to many prob-

lems in Artificial Intelligence. Sequential decision making under uncertainty is one such

important problem and Decision Theoretic Planning (DTP) has been one of the most suc-

cessful frameworks for this task. Recent advances in DTP have focused on generating

efficient solutions for Relational Markov Decision Processes (RMDP), a formulation that

models problems that are naturally described using objectsand relations among them. The

core contribution of this thesis is the introduction of compact representation schemes for

functions over relational structures, and associated algorithms that together lead to effi-

cient solutions of RMDPs. Our First Order Decision Diagrams(FODD) representation

captures an expressive class of functions generalizing existential quantification in logic to

real valued functions, and the Generalized FODDs (GFODDs) capture both existential and

universal quantification. The thesis develops several algorithms for composition and logi-

cal simplification of functions represented by FODDs and GFODDs using theorem proving

and model-checking methods. We prove various theoretical properties on their correctness

and their applicability in the context of solutions for RMDPs. Through implementation,

experimentation and empirical evidence we demonstrate thesuccess of FODD-based algo-

rithms to solve RMDPs, by applying them to solve stochastic planning problems that have

been used as challenge benchmarks in planning research.

iii

Acknowledgements

It has been my good fortune to have Roni Khardon as my Ph.D. adviser. Working with him

has been a great learning experience for me. His expert guidance not only made this work

possible but also shaped my thinking process and my approachtowards research problems.

While continually striving to match his abilities, I will miss his gifted intellect, his unique

talent in formalizing ideas, his patience, and his encouragement in my future endeavors.

I am very grateful to my committee members, Carla Brodley, Anselm Blumer, Prasad

Tadepalli and Eric Miller for the time and effort they spent reviewing my thesis; especially

to Carla Brodley for the most effective words of encouragement during a time of crisis and

to Prasad Tadepalli for his unconditional help and support throughout my graduate student

life.

I owe big thanks to Scott Sanner and Kristian Kersting for their not infrequent men-

toring and for invaluable aid in the form of ideas, insights,discussions, suggestions and

software.

Finally, my gratitude goes to my family and friends; especially to Avi kaka, without

whom I might never have had an interest in science, and to Udaykaka and Manik mavshi

whose presence made me feel like I have parents in Boston.

iv

Dedication

To Aai and Baba, whose undying love and sacrifice has made me all that I am today; and to

Tai who has been not only the most loving elder sister but alsoa great source of inspiration.

v

Contents

Acknowledgements iv

Dedication v

1 Introduction 1

1.1 The Logistics Domain . 3

1.2 Our Approach . 3

1.3 Major Contributions .5

1.4 Thesis Overview . 7

2 Background 9

2.1 Planning Under Uncertainty .. 9

2.2 Markov Decision Processes .. 10

2.2.1 Value Iteration . 12

2.2.2 Policy Iteration . 12

2.2.3 Modified Policy Iteration . 13

2.2.4 Linear Programming . 13

2.2.5 Search . 14

2.2.6 Asynchronous Value Updates . 15

2.2.7 Reinforcement Learning . 16

2.3 Factored MDPs . 16

2.4 Relational MDPs . 20

vi

3 First Order Decision Diagrams 27

3.1 Syntax of First Order Decision Diagrams 27

3.2 Semantics of First Order Decision Diagrams 29

3.3 Basic Reduction of FODDs . 31

3.4 Combining FODDs . 32

3.5 Order of Labels . 35

3.6 Reduction Operators . 36

3.6.1 (R5) Strong Reduction for Implied Branches 36

3.6.2 (R7) Weak Reduction Removing Dominated Edges 37

3.7 Decision Diagrams for MDPs .41

3.7.1 Example Domain . 42

3.7.2 The Domain Dynamics . 42

3.7.3 Probabilistic Action Choice .44

3.7.4 Reward and Value Functions . 45

3.8 Value Iteration with FODDs .45

3.8.1 Regressing Deterministic Action Alternatives 47

3.8.2 Regressing Probabilistic Actions 49

3.8.3 Object Maximization . 51

3.8.4 Maximizing Over Actions . 52

3.8.5 Order Over Argument Types . 52

3.8.6 Convergence and Complexity . 53

3.8.7 A Comprehensive Example of Value Iteration 55

3.8.8 Extracting Optimal Policies .58

3.9 Summary and Concluding Remarks .59

4 Theorem Proving Reductions 60

4.1 (R9) Equality Reduction .62

4.2 The R10 Reduction . 65

4.3 The R11 Reduction . 69

4.4 Further Speedup of Theorem Proving Reductions 71

4.4.1 Subtracting Apart - Improving applicability of R7 71

vii

4.4.2 Not Standardizing Apart . 75

4.5 Discussion . 76

5 Stochastic Planning with FODDs 78

5.1 Introduction . 78

5.2 FODD-PLANNER . 79

5.2.1 Value Approximation . 79

5.2.2 Extensions to the VI Algorithm 81

5.2.3 The FODD-Planner System . 83

5.3 Experimental Results .84

5.3.1 Merits of Reduction Operators .85

5.3.2 The Logistics Benchmark Problem87

5.3.3 Conjunctive Goals and Goal Ordering 87

5.3.4 The Fileworld Domain . 88

5.3.5 The Tireworld Domain . 89

5.3.6 Boxworld . 92

5.3.7 Blocksworld . 94

5.4 Summary and Concluding Remarks .96

6 Model-Checking Reductions 98

6.1 R12: The Model Checking Reduction for FODDs 99

6.1.1 Generalized Aggregation Function and the R12 Reduction 102

6.1.2 Proof of Correctness . 106

6.2 Practical Model-Checking Reductions 109

6.2.1 Edge Removal by Model Checking 109

6.2.2 Node Removal with Model Checking 111

6.3 Discussion . 112

7 Self-Taught Decision Theoretic Planning with FODDs 113

7.1 Bootstrapping: Example Generation 114

7.2 Experiments on Planning Domains .. . 116

7.2.1 Timeout Mechanism . 117

viii

7.2.2 (Q1) System Characteristics .120

7.2.3 (Q2) Tireworld . 121

7.2.4 Blocksworld . 124

7.2.5 Boxworld . 127

7.3 Summary and Concluding Remarks .129

8 Generalized First Order Decision Diagrams 130

8.1 Generalized FODDs: Syntax and semantics 131

8.1.1 Semantics of GFODDs . 131

8.1.2 Combining GFODDs . 134

8.2 Model Checking Reductions for GFODDs 139

8.2.1 R12 for min aggregation . 139

8.2.2 Model Checking Reduction formax∗min∗ Aggregation 140

8.3 An Application of GFODDs for Value Iteration in Relational MDPs 153

8.3.1 The VI-GFODD Algorithm . 154

8.4 Summary and Concluding Remarks .157

9 Conclusions 158

9.1 Summary of Contributions .159

9.2 Future Directions . 161

Bibliography 166

ix

List of Tables

5.1 Fileworld domain results. .. . 88

5.2 Percentage average reduction in planning time, execution time, coverage

and plan length, for tireworld under the merging of leaves approximation

for varying leaf precision values. .. . 91

7.1 Number of subsumption calls made during VI using ST-FODD-ER with

given number of examples (Ex). 118

7.2 Tireworld: Planning time taken in CPU seconds (C) by methods (M) FODD-

PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for

various number of iterations (I). .. 121

7.3 Blocksworld: Planning time taken in CPU seconds (C) by methods (M)

FODD-PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR)

run for various number of iterations (I). 126

7.4 Boxworld: Planning time taken in CPU seconds (C) by methods (M) FODD-

PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for

various number of iterations (I). .. 127

8.1 List of safe and unsafe pairs for operators. 135

x

List of Figures

2.1 Propagation of value in the MDP by (a) forward search and (b) dynamic

programming. 14

2.2 Dynamic Bayesian Networks for Factored MDPs. 18

3.1 A simple FODD. 28

3.2 Examples illustrating weakness of normal form. 33

3.3 A simple example of adding two FODDs. 34

3.4 An example illustrating the subtraction condition in R7. 39

3.5 An example illustrating the condition for removing a node in R7. 40

3.6 An example illustrating that the minimal set of variables for subtraction is

not unique. 41

3.7 A template for the TVD. 43

3.8 FODDs for the logistics domain: TVDs, action choice, andreward function. 44

3.9 An example showing that the choice probability can depend on action pa-

rameters. 45

3.10 An example illustrating why variables are not allowed in TVDs. 49

3.11 An example illustrating the need to standardize apart.. 50

3.12 An example illustrating the necessity to maintain multiple TVDs. 53

3.13 An example of value iteration in the Logistics Domain. 56

4.1 Example illustrating the need for a DPO. 61

4.2 An example of the equality reduction. 63

4.3 Example of R10 reduction. .67

4.4 Example where R7 is applicable but R10 is not. 68

xi

4.5 Example of R11 reduction. .69

4.6 Sub-Apart. 72

5.1 Example where the AGD heuristic awards equal value to theoptimal and

suboptimal actions. 82

5.2 A comparison of planning time taken by various settings of reduction op-

erators over varying number of iterations. 85

5.3 A comparison of the merits of R9 and R11 in the presence of R10. 86

5.4 WGO Heuristic vs. AGD Heuristic. .. 87

5.5 Coverage result of tireworld experiments. 89

5.6 Timing result of tireworld experiments. 90

5.7 Plan length result of tireworld experiments. 90

5.8 Coverage results of boxworld experiments. 92

5.9 Plan length results of boxworld experiments. 93

5.10 Average reward results of boxworld experiments. 93

5.11 Blocksworld Coverage Results. 95

5.12 Blocksworld Plan Length Results. 95

6.1 An example of reduction operator R12 for FODDs. 100

6.2 Example where R12 can reduce the diagram but previous reductions fail . . 108

6.3 Example ofR12edge andR12node. 109

7.1 Subsumption Call Statistics. 118

7.2 Tireworld Learning Curve: Average Percentage of Problems solved by ST-

FODD-ER vs. Number of examples in the training set. 119

7.3 Tireworld: Planning time in cpu seconds by ST-FODD-ER vs. Number

of examples in the training set. .120

7.4 Tireworld: Planning time in cpu seconds vs. Number of iterations of VI. . . 121

7.5 Tireworld Coverage Results. .. . 122

7.6 Tireworld Plan Length Results. 123

7.7 Tireworld Challenge Problem. .. . 123

7.8 Blocksworld Challenge Problem. 124

xii

7.9 Blocksworld Coverage Results. 125

7.10 Blocksworld Plan Length Results. 125

7.11 Boxworld Coverage Results. .. . 127

7.12 Boxworld Plan Length Results. 128

7.13 Boxworld Plan Length Results. 128

8.1 A Generalized FODD Example. 133

8.2 An example of reduction operatorR12d for GFODDs withmax∗min∗ Ag-

gregation. 141

8.3 An example of reduction operatorR120 for GFODDs withmax∗min∗ Ag-

gregation. 149

8.4 Example of GFODD Regression and Object Maximization. 154

9.1 Reward and Value function for the goalcl(a) in the blocksworld domain. . . 163

xiii

xiv

Chapter 1

Introduction

Many problems in Artificial Intelligence (AI) can benefit from compact representations of

complex knowledge. One such problem is that of building agents that interact optimally

with an environment in order to achieve a certain objective.More formally, starting with

some knowledge about the environment such agents either search, reason or learn to take

actions (or build a policy) in the world while optimizing some reward criterion. Various

forms of this problem have been studied in the literature. For instance,

• The world could be fully observable, partially observable or unobservable.

• The dynamics of the world could be deterministic, probabilistic or adversarial.

• The objective could be to reach a goal state or to achieve maximum reward.

• The state and action spaces could be discrete or continuous.

Classical planning (e.g., (Fikes & Nilsson, 1971)) addresses one of the simplest versions of

this problem where the world is observable, the domain dynamics are deterministic, state

and action spaces are discrete and the objective of the agentis to start from a concrete state

and reach a concrete goal state. In this thesis we focus on theversion where the world is

fully observable, the domain dynamics are probabilistic but known in advance, the state

and action spaces are discrete and the agents objective is described by a reward function.

This problem is, therefore, that of sequential decision making under uncertainty and is

more general than classical planning. Markov Decision Processes (MDP) have become the

1

2 CHAPTER 1. INTRODUCTION

de-facto standard model for such problems. Some concrete examples of such problems are

as follows.

• Planning in Logistics Applications: The agent must maximize goods delivered while

minimizing resource consumption.

• Emergency Response Services: A fire response scheduling system must minimize

the time and resources required per emergency.

• Robot Navigation: A robot must take the right course of action to get to its destination

from the source.

As the examples illustrate, the domains of interest are bestdescribed using objects and

relations among them. For example, in the logistics application we have packages, vehicles

and locations and their corresponding configuration. MDPs respecting such structured state

and action spaces are known as Relational MDPs (RMDP). The following are some typical

aspects of such real world sequential decision making problems.

• The agent’s state space can be very large. For example there could be numerous

vehicles to transport numerous parcels between numerous destinations in the logistics

application. Each configuration of these objects is a possible state of the world.

• The effect of the agent’s actions on the environment can be uncertain. Robots can

slip and skid on a smooth floor. Time taken to deliver packagescan vary. The returns

on investments can be uncertain.

• The agent’s objective can be complex. In the logistics world, the objective could

be to maximize the total number of packages delivered while minimizing time and

resources. The robot’s objective could be to minimize average energy consumption

per route.

Research on such problems has progressed by solving simplerversions that are gen-

erated by restricting the setting and abstracting away certain parts of the problem. As

an example we will explain a simplified logistics domain in some detail here. Following

Veloso (1992) and Boutilier, Reiter, and Price (2001), thistoy domain has been used by

1.1. THE LOGISTICS DOMAIN 3

several authors (Kersting, van Otterlo, & De Raedt, 2004; Sanner & Boutilier, 2009; Wang,

Joshi, & Khardon, 2008) to demonstrate ideas and methods. This domain will also be used

as a running example to explain many ideas in this thesis.

1.1 The Logistics Domain

In the logistics domain the world consists of three types of objects, namely boxes, trucks

and cities. A box can be either in a city or on a truck. The agent’s objective is to transport

boxes from their source cities to their destination cities.The trucks can be used for trans-

portation. A world state is described by specifying the location of every box (in a city or

on a truck), the location of every truck, and whether it is raining or not. There are three

actions available to the agent. At any time step, the agent can either load a box from a city

onto a truck, unload a box from a truck into a city, or drive a truck from one city to another.

In this simplified domain, every city is reachable from everyother city in one time step. A

truck can carry any number of boxes. Common sense domain constraints apply, e.g., a box

or truck cannot be in two places at once.

The drive action is deterministic. The load and unload actions are probabilistic and

in this simplified domain they either succeed leading to their expected outcomes or fail

where nothing in the world changes. The load action succeedswith probability0.99 and

fails with probability0.01. The probabilities of success and failure of the unload action are

conditioned on whether it is raining or not. If it is raining,unload succeeds with probability

0.7 and fails with probability0.3. If it is not raining, unload succeeds with probability0.9

and fails with probability0.1.

1.2 Our Approach

Notice that even in such abstracted worlds, the typical aspects of real world problems listed

above are preserved. Therefore solution algorithms for such problems must handle large

state spaces with uncertain action effects and rich representations for complex objectives.

The problem of solving MDPs has been a widely studied in Operations Research and Com-

puter Science. Most solution methods, however, represent the state space either as a flat set

4 CHAPTER 1. INTRODUCTION

of monolithic world states or as defined by values assigned tostate feature variables. Al-

though there are dynamic programming algorithms that solvethe MDP in time polynomial

in the size of the state space, the size of the state space itself is exponential in the number of

state feature variables. Hence even for small problems, theMDP can be prohibitively ex-

pensive to solve by state space enumeration. This is known asthe curse of dimensionality

(Bellman, 1957). Recent work has addressed this problem by taking advantage of internal

structure in the problem definition (Boutilier, Dearden, & Goldszmidt, 1995, 1999; Hoey,

St-Aubin, Hu, & Boutilier, 1999). However even these algorithms cannot handle very large

problem instances. In addition, a solution for every problem instance (e.g., one with five

boxes and one with ten boxes) has to be generated separately and these algorithms cannot

take advantage of similarities in problem instances to use the solution of one problem in

solving another. All is not lost, however, and there is potential in the observation that for

domains like logistics, the world is naturally representedby objects and relations among

them rather than as a set of state feature variables. Thus there exists rich relational structure

in these problems that can be exploited to further counter the curse of dimensionality.

In this thesis we follow the approach of Boutilier et al. (2001), who developed the

Symbolic Dynamic Programming (SDP) algorithm to solve problems of sequential deci-

sion making under uncertainty. The main idea in SDP is to abstract the relational structure

of the underlying domain and generate a solution in terms of the relational structure rather

than actual domain objects. Such a solution is independent of the actual problem instance

and is valid for all domain sizes. Given an abstract form of the objective, such a solution

has to generated only once. For example, in the logistics world our objective could be to

transport at least one box to Paris. Once SDP generates a solution for this problem, the

same solution is valid for all problems with the same objective independent of the number

of boxes, cities and trucks in the domain. Our main contribution is the introduction and

use of a new compact knowledge representation to capture complex objectives and domain

dynamics under the SDP algorithm. We develop algorithmic tools for this knowledge rep-

resentation and make a case for the applicability of this approach through theoretical results

and empirical evidence. In the next section we present our contributions in more detail.

1.3. MAJOR CONTRIBUTIONS 5

1.3 Major Contributions

Following are the main contributions of this work. Most of this work has been published

in conference and journal papers (Wang, Joshi, & Khardon, 2007; Wang et al., 2008; Joshi

& Khardon, 2008; Joshi, Kersting, & Khardon, 2009, 2010).

1. First Order Decision Diagrams: A First Order Decision Diagram (FODD) is a

compact knowledge representation for real valued functions over relational struc-

tures. That is, FODDs map every possible world state to a realvalue. Such func-

tions are very useful in defining utilities and probabilities of world states in an MDP.

We modify and extend the approach of Groote and Tveretina (2003) to develop the

FODD representation and algorithms to manipulate them. FODDs can be viewed

as a relational extension of Algebraic Decision Diagrams (Bryant, 1992; McMil-

lan, 1993; Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi, 1993). When

restricted to Boolean valued leaves, FODDs represent function free First Order for-

mulas with existentially quantified variables. We demonstrate the use of FODDs to

represent MDPs and develop an SDP algorithm for the FODD representation.

2. Theorem Proving Reductions:SDP based algorithms (Boutilier et al., 2001; Kerst-

ing et al., 2004; Sanner & Boutilier, 2009) have to perform reasoning in First-Order

logic in order to represent and manipulate partitions of thestate space. Therefore all

such algorithms require the need for logical simplificationof relational formulas for

practical implementation. Similarly, logical reasoning with FODDs creates redun-

dancies in the diagrams. Special operators are needed to identify and remove these

redundancies. Although the removal of redundancies or lackthereof does not affect

correctness of the representation, these operators are required for any practical appli-

cation of FODDs. We present new reduction operators for FODDs based on theorem

proving of First Order formulas. The idea is to use logical implication to identify

redundant parts of the diagram and remove them.

3. Model Checking Reductions:Theorem proving reductions have a few drawbacks.

Proving logical implication is an expensive operation. In addition, domain con-

straints have to be explicitly specified as background knowledge. To mitigate these

6 CHAPTER 1. INTRODUCTION

issues, we introduce a new paradigm for reduction of FODDs based on model-

checking and prove its superiority over theorem proving reductions. We present

theoretical and practical versions of model-checking reductions and provide proofs

of correctness and completeness.

4. Weighted Goal Ordering Heuristic: SDP based algorithms have been motivated

by problems in probabilistic planning. Planning problems pose the task of reaching

a concrete goal state from a concrete start state in the world. SDP based algorithms,

however, are designed to solve the domain at the abstract level and planning for a

concrete domain instance will lose the benefits of abstraction. Therefore Sanner and

Boutilier (2009) introduced a method to plan for generic goals at the abstract level,

and given a concrete instance and goal, use a goal decomposition to put together

solutions to sub-problems. However, their solution makes an assumption that the

decomposed parts of the goal are independent of each other. This assumption is

unrealistic in some domains. We present a new heuristic for goal decomposition that

is not dependent on this assumption. We show evidence of its superiority over the

heuristic of Sanner and Boutilier (2009) in domains where goal serializability is a

crucial factor.

5. FODD-Planner: We incorporate all the above ideas for FODD manipulation and

present a prolog based software system that implements the SDP algorithm with

the FODD representation. We demonstrate this system by solving stochastic plan-

ning problems and showing performance comparable to top ranking systems from

the International Planning Competitions. This shows that abstraction through com-

pact representation is a promising approach for solving sequential decision making

problems. The results make a very good case for the use of FODDs in representing

functions over relational structures (which are importantfor many applications like

Statistical Relational Learning) and demonstrate their efficient manipulability.

6. Self-Taught Planning: Inspired by the efficiency of model-checking reductions we

develop a new paradigm for planning by learning. The idea is to provide FODD-

PLANNER with a small “training set” of world states of interest, but no indication of

optimal actions in any states. The FODD-PLANNER uses this training set to “focus”

1.4. THESIS OVERVIEW 7

its logical simplification in model-checking reductions toinclude only formulas rele-

vant for these states. We also show that such training examples can be constructed on

the fly from a description of the planning problem. Thus we canbootstrap our plan-

ner to get a self-taught planning system. We show drastic improvements in planning

efficiency on a variety of IPC domains. Although we employ theFODD-PLANNER

to demonstrate the self-taught planning paradigm we believe that this technique is

applicable with any SDP based system.

7. Generalized FODDs:FODDs are compact and expressive but when considered as

logical formulas they are limited to existential quantification. We present Gener-

alized FODDs (GFODD), where we extend the representation power to arbitrary

aggregation where aggregation is a generalization of quantification. Every FODD

is also a GFODD. GFODDs are thus very expressive structures that share the same

compactness advantages as FODDs. We discuss several properties of GFODDs and

present reductions for an important subset of GFODDs. We also identify conditions

under which GFODDs can be composed or combined by a simple procedure.

8. VI-GFODD: GFODDs can represent complex functions over relational structures

and can thus be employed instead of FODDs in applications such as sequential de-

cision making to enhance expressive power of representation. We show that the

same FODD-based SDP algorithm used above is valid when GFODDs are used as

the underlying representation. Finally we prove the correctness of this algorithm,

VI-GFODD, for a very expressive subset of GFODDs. Within this representation

we can capture objectives liketransport at least one box to Paris and all trucks to

Londonin the logistics domain. This was not possible with FODDs.

1.4 Thesis Overview

The thesis proceeds as follows. We start by providing technical background in Chapter

2. This includes an overview of the literature on planning under uncertainty and solution

techniques for MDPs, factored MDPs and Relational MDPs.

In Chapter3 we introduce First Order Decision Diagrams (FODD) and discuss many

8 CHAPTER 1. INTRODUCTION

of their properties. We also discuss the process of reasoning with FODDs and present

some operators to reduce FODDs. The results in Chapter3 have previously appeared in

the thesis of Wang (2008). Chapter4 addresses the deficiencies of the set of reduction

operators presented in Chapter3 by introducing new reduction operators for FODDs. In

Chapter5 we demonstrate the first empirical evidence and practical applicability of FODDs

by presenting our SDP based MDP solver, FODD-PLANNER, and results of experiments of

the application of FODD-PLANNER to stochastic planning problems from the International

Planning Competition. FODD-PLANNER implements the FODD manipulation algorithms

presented in Chapters3 and4.

In Chapter6 we introduce a new paradigm for reduction of FODDs based on model-

checking and prove that it gives much stronger reduction guarantees than the theorem prov-

ing reductions of Chapters3 and4. We also present practical versions of this reduction

that can be easily implemented. Then in Chapter7 we incorporate the new reductions of

Chapter6 in FODD-PLANNER and develop a new paradigm for planning. We also show

empirical evidence of drastic improvements in planning efficiency of FODD-PLANNER by

shifting focus to the new reductions.

In Chapter8 we present Generalized FODDs (GFODDs), discuss their properties (com-

bination and reduction) and prove correctness of a GFODD based SDP algorithm, VI-

GFODD.

We conclude in Chapter9 with a discussion and perspective for future work.

Chapter 2

Background

In this chapter we provide the basic background and the context for the thesis. In the

process we also elaborate on related work.

2.1 Planning Under Uncertainty

Planning is the problem of getting from a start state to a state satisfying some goal con-

ditions using actions which move the agent according to known transition dynamics. In

classical planning the dynamics are deterministic. Therefore, the problem can be seen as

a search for a sequence of actions that achieves the goal. With uncertainty the dynamics

are non-deterministic and there are several formalisms capturing planning under uncer-

tainty. In our work action dynamics are probabilistic, a formalism known as stochastic

planning. Deterministic Planning is a relatively mature field with a number of planning

formalisms and systems developed over the years. The STRIPSplanning system (Fikes &

Nilsson, 1971) led a generation of automated planning research and produced a number

of successful systems for deterministic planning using various paradigms like partial order

planning (Penberthy & Weld, 1992), planning based on planning graphs (Blum & Furst,

1997), planning by satisfiability (Kautz & Selman, 1996) andheuristic search (Bonet &

Geffner, 2001).

These ideas were later employed in solving the problem of stochastic planning (Blum &

Langford, 1998; Weld, Anderson, & Smith, 1998; Majercik & Littman, 2003; Yoon, Fern,

9

10 CHAPTER 2. BACKGROUND

& Givan, 2007; Teichteil-Koenigsbuch, Infantes, & Kuter, 2008). Of these, approaches

using forward heuristic search with a heuristic function based on the planning graph (Blum

& Furst, 1997) have been very successful at the recent International Planning Competitions

(Yoon et al., 2007; Teichteil-Koenigsbuch et al., 2008). A deeper overview of the different

approaches to planning is beyond the scope of this thesis. Anup to date overview is given

by Russel and Norvig (2010).

In the case of planning under uncertainty, straight line plans do not guarantee achieve-

ment of the goal due to the stochastic nature of the underlying world. A Markov decision

process is a natural formalism for optimizing actions understochastic dynamics and its ap-

plication to planning is known as known as Decision Theoretic Planning (DTP) (Boutilier,

Dean, & Hanks, 1999). A number of the algorithms and systems for DTP mentioned in this

chapter have been motivated by and employed in solving stochastic planning problems.

In recent years, the International Planning Competition (IPC) has been instrumental in

the development of efficient algorithms and systems for planning. There have been six

competitions so far since the AIPS competition in 1998 (McDermott, 1998). The last three

IPCs since ICAPS 2004 promoted a separate track for planningunder uncertainty (Littman

& Younas, 2004; Gerevini, Bonet, & Givan, 2006; Bryce & Buffet, 2008).

2.2 Markov Decision Processes

A Markov decision process (MDP) is a mathematical model of the interaction between an

agent and its environment. The environment can be dynamic and stochastic. The agent’s

objective is to act optimally (or near optimally) in the environment. Puterman (1994) pro-

vides a comprehensive discussion of MDPs. Formally an MDP isa 5-tuple〈S, A, T, R, γ〉

defining

• A set of fully observable statesS.

• A setA of actions available to the agent.

• A state transition function defining the probabilityP (s′|s, a) of getting to states′

from states on taking actiona.

2.2. MARKOV DECISION PROCESSES 11

• A reward functionR(s, a) defining the immediate reward received by the agent for

being in states and taking actiona. To simplify notation we assume throughout

this thesis that the reward is independent ofa so thatR(s, a) = R(s). However the

general case does not lead to significant difficulties.

• A discount factor0 ≤ γ ≤ 1.

The reward function provides a mathematical way of encodingthe agent’s objective in

the environment. Informally the agent’s goal is to take actions that help accumulate as

much reward as possible. For problems that do not have a finitehorizon, the total reward

achieved can be infinite. Thus to help quantify distinctionsbetween policies either the

average per-step reward model or a discounted reward model is considered. In this thesis

we use the discounted model which is described next. For episodic tasks such as planning

it provides an incentive to find short solutions. Another alternative in this case uses an

“absorbing state” when the goal is achieved so that the reward can only be obtained once

in any episode. We discuss this model later in the thesis.

In the discounted model, the objective of solving an MDP is togenerate a policy (a

mapping from states to actions)π∗ that maximizes the agent’s total, expected, discounted

reward. The value (or utility) of a stateV π(s) under a policyπ is the total, expected,

discounted reward achieved by the agent starting froms and followingπ. That is,V π(s) =
∑∞

0 γiR(si) | s0 = s. Intuitively the expected utility or value of a state under the optimal

policy is equal to the reward obtained in the state plus the discounted value of the state

reached by the best action in the state. This is captured by the Bellman equation as

V ∗(s) = Maxa[R(s) + γΣs′P (s′ | s, a)V ∗(s′)] (2.1)

that is well known to define the optimal value functionV ∗. For tasks such as planning where

the objective is to reach a set of goal states, the value function V (s) encodes the “distance”

from the states to the goal. The optimal value function and the transition function together

define the optimal policy. Therefore solving an MDP can be reduced to solving the Bellman

equation. This has been a very productive approach over several decades. Next we will look

at some standard algorithms for solving MDPs.

12 CHAPTER 2. BACKGROUND

2.2.1 Value Iteration

Value Iteration (VI) (Bellman, 1957) is a dynamic programming algorithm that treats the

Bellman equation as an update rule. Starting from an arbitrary value functionV 0(s), the

value of every state is iteratively updated until convergence using the rule

V t(s)← Maxa[R(s) + γΣs′P (s′ | s, a)V t−1(s′)]. (2.2)

For practical solutions, convergence is usually defined asǫ-optimality meaning that conver-

gence is obtained when the difference between the current and the optimal value function

is less thanǫ i.e. | V t+1(s) − V ∗(s) | ≤ ǫ (Puterman, 1994). Algorithmically the test

| V t+1(s) − V t(s) | ≤ ǫ(1−γ)
2γ

guaranteesǫ-optimality. Once the optimal value function

is known, a policy can be generated by assigning to each statethe action that maximizes

expected value. VI, therefore, ignores policies altogether until theǫ-optimal value function

is discovered.

The update is generally performed in two steps. The back-up or regression step calcu-

lates theQ-function for every state-action pair.

Qt(s, a)← R(s) + γΣs′P (s′ | a, s)V t−1(s′) (2.3)

The maximization step calculates thet-step-to-go value function.

V t(s)←MaxaQ
t(s, a) (2.4)

Figure 2.1(b) shows an illustration of dynamic programmingmethods for calculating

the value function. The current value function estimate (V i(s) depicted by the squares) is

backed up over actions using the Bellman update to give the next value function estimate

(V i+1(s)).

2.2.2 Policy Iteration

Policy iteration (PI) (Howard, 1960) is another dynamic programming solution, but unlike

VI it starts with an arbitrary policyπ and “improves” it until convergence to the optimal

2.2. MARKOV DECISION PROCESSES 13

policy. Given an initial policyπ0, the algorithm iterates over two steps:

1. Policy Evaluation: Calculate the valueV πi

, of policy πi. This is done by solving the

Bellman equation for the fixed policyπi.

V πi

(s) = R(s) + γΣs′P (s′ | s, πi(s))V πi

(s′) (2.5)

2. Policy Improvement: Find a new policyπi+1 that is greedy with respect toV πi

Convergence is reached whenπi+1 = πi. One advantage of policy iteration is that the policy

evaluation step consists of solving simultaneous linear equations. Hence for moderate size

state spaces one can utilize off-the-shelf linear algebra solvers to perform this step.

2.2.3 Modified Policy Iteration

PI calculatesV πi

exactly before improving the policy. For policy improvement, however,

a close estimate ofV πi

is not necessary. The idea behind Modified Policy Iteration (MPI)

(Puterman & Shin, 1978) is to generate a rough estimate ofV πi

and run the policy improve-

ment step beforeV πi

converges. This is done by a sequence of “policy restricted”value

backups using the Bellman update but fixing the actions according to πi. MPI can thus

be viewed as covering the entire space between PI at one end and VI at the other (every

update of VI implicitly defines a policy). While PI takes bigger steps through policy space

towards the optimal policy than MPI, each step of MPI is cheaper to calculate. Overall,

MPI is often more efficient than either VI or PI when suitably optimized.

2.2.4 Linear Programming

The problem of solving for the value function can be cast as a linear programming problem

(Puterman, 1994) in the following way

Variables:V (s) ∀s ∈ S

Minimize: Σs∈SV (s)

Subject to:V (s) ≥ R(s) + γΣs′∈SP (s′ | s, a)V (s′) ∀s ∈ S, a ∈ A

14 CHAPTER 2. BACKGROUND

Figure 2.1: Propagation of value in the MDP by (a) forward search and (b) dynamic pro-
gramming

The constraints impose a lower bound on the value function. The intuition is that the

total, expected discounted reward obtained by starting in states and following the optimal

policy is at least as much asR(s) plus the total, expected, discounted reward obtained by

taking some action ins and following the optimal policy from there on. The linear program,

thus finds the smallest value assignment that is at least as large as the total, expected,

discounted reward it guarantees.

2.2.5 Search

V ∗(s) can also be calculated by forward search from states up to a prespecified depth.

Forward search with depth equal to the MDP horizon calculates V ∗(s) exactly. If the

depth is smaller than the MDP horizon, the error of the value function can be bounded.

This method, therefore always produces an approximate value function for infinite horizon

2.2. MARKOV DECISION PROCESSES 15

MDPs. As shown in Figure 2.1(a), the search tree is an AND-OR tree consisting of alternate

levels of states and actions. The value is propagated upwards from the leaves, summing

over the state levels and maximizing over the action levels.Forward search, however,

requires exponential time in the depth to calculate the value of every state. Hence practical

search based solvers employ some heuristic to prune the search space. AO∗ (Nilsson, 1971;

Martelli & Montanari, 1973) is such a heuristic search algorithm. However, AO∗ enters

an infinite search expansion loop when the AND-OR graph is cyclic, which is often the

case with MDPs. In order to handle this case Hansen and Zilberstein (2002) combined

AO∗ search with dynamic programming and introduced LAO∗ - an AO∗ that can handle

loops in the AND-OR graph. Since value updates are performedby dynamic programming,

the presence of loops in the AND-OR graph does not preclude convergence of the policy.

Unlike VI and PI, however dynamic programming is performed only on the states along

the best solution path to recently expanded nodes in the AND-OR graph.

2.2.6 Asynchronous Value Updates

The Bellman update does not have to be applied to all states atonce. By choosing a useful

subset of the state space to apply the updates one can hope forfaster convergence. There

have been some important advances based on this idea.

Real Time Dynamic Programming (RTDP) (Barto, Bradtke, & Singh, 1995), is an ex-

tension of the search algorithm Learning Real Time A∗ (LRTA) (Krof, 1990) to stochastic

problems. RTDP solves the MDP by combining dynamic programming and search. Start-

ing with an admissible value function, RTDP runs episodes ortrials simulating the MDP.

Each trial starts with a randomly selected state from a set ofinitial states and proceeds

by choosing actions according a policy that is greedy with respect to the current value

function. The episode ends when the goal is reached or the step limit is exceeded. The

value function is updated by executing the Bellman backup for all states encountered in the

episode. When the initial value function is admissible, RTDP eventually converges to the

optimal value function (Barto et al., 1995). The advantage of RTDP is apparent when only

few states are reachable from the initial state as the algorithm does not waste resources

updating values of other states.

16 CHAPTER 2. BACKGROUND

Prioritized Sweeping (Moore & Atkeson, 1993) is based on theintuition that states

with the largest value update have the most effect on the value function and hence should

be given priority during a round of Bellman backups. In this algorithm an explicit priority

queue is maintained according to which states are scheduledfor backup. The priority of

a state in the queue is in direct proportion to the amount of value change incurred in the

backup of the state’s successors.

Another approach to simulation based planning is the UCT algorithm (Kocsis & Szepes-

vari, 2006). UCT is a Monte-Carlo value estimation technique where action selection in the

simulated trials is dependent on the upper confidence bound of the action value. UCT has

shown success in planning to play the game of GO (Gelly & Wang,2006; Gelly & Silver,

2007) and real time strategy games (Balla & Fern, 2009).

2.2.7 Reinforcement Learning

The MDP solutions we have looked at so far assume that the fulldescription of the MDP is

available to the solver. However, in many real world tasks (e.g. robot soccer) it is difficult

for an expert to specify the reward function or the transition function precisely. Thus the

agent interacts with the environment and must learn to act from the observed transitions and

rewards. This discipline is known as Reinforcement Learning (RL) (Sutton & Barto, 1998).

There is a vast literature on RL which is a very active area of research and it is beyond the

scope of this thesis to give a deeper overview. An excellent introduction is given by Sutton

and Barto (1998). However, when the agent does have a model ofthe world, either learned

or given, the planning problem, that is identifying an optimal policy is the same as the one

studied in this thesis.

2.3 Factored MDPs

Early solutions to MDPs required enumeration of the state space. Although VI and PI run

in time polynomial in|S| and|A|, owing to the curse of dimensionality (Bellman, 1957),

even for reasonably small problems, the state space can be very large. This can be seen

easily for propositionally factored domains when the stateis defined byN binary variables

2.3. FACTORED MDPS 17

and the number of possible states is2N . A logistics problem with as few as ten cities, ten

boxes and five trucks would be prohibitively expensive to solve by state space enumeration.

Factored MDP solvers address this problem by taking advantage of structure in the domain.

One source of domain structure is the representation of states using state feature variables.

Structure in the domain can be implicitly leveraged by representing state values as functions

of state features rather than states themselves.

Domain structure can also be expressed explicitly through the transition function. Dy-

namic Bayesian Networks (DBN) (Dean & Kanazawa, 1990) and probabilistic STRIPS

(Hanks & McDermott, 1993; Kushmerick, Hanks, & Weld, 1995; Boutilier, Dean, &

Hanks, 1996) are useful representations for expressing thetransition function in factored

MDPs. Although both representations have their strengths (DBNs are better than proba-

bilistic STRIPS when actions have non-correlated effects and vice-versa (Boutilier et al.,

1999)) Littman (1997) showed the two to be representationally equivalent in the sense that

every STRIPS representation can be converted to a polynomially larger DBN representa-

tion.

Figure 2.2 shows an example of a DBN representation for the action unload(b, tr, c1)

from the logistics domain with1 box, 1 truck and2 cities. There is a2-time step DBN

fragment for every action in the domain. The network describes how the state (probabilis-

tically) changes from time slicet to time slicet + 1. Conditional probability tables (CPT)

are associated with every variable in time slicet + 1. The CPT associated with the variable

bin(b, c1) in time slicet+1 is shown in the diagram. The DBN structure allows us to model

dependencies while reducing the number of parameters required. The CPTs are much more

memory efficient than the flat transition matrix for this problem which enumerates the state

space. Also notice the presence of synchronic arcs (dependencies among variables in the

same time slice). These are typical when action effects are correlated.

The probabilistic dependence of the variables from time slicet+1 on the variables from

time slicet is given by the CPTs. For instance in the CPT forbin(b, c1) shown, each row

of the CPT corresponds to a variable from time slicet except for the last (highlighted) row

which refers to the variablebin(b, c1) from time slicet + 1. Each column depicts the truth

values of the variables in time slicet and the entry in the final row defines the probability

with with bin(b, c1) is true in time slicet + 1 given the truth values of the variables in the

18 CHAPTER 2. BACKGROUND

Figure 2.2: Dynamic Bayesian Networks for Factored MDPs. The figure shows the transi-
tion function relative to the actionunload(b, tr, c1) in the logistics domain.

column. For example, the first column shows that ifbin(b, c1) is true in time slicet, then

bin(b, c1) is true in time slicet + 1 irrespective of the truth values of other variables. The

last column shows that ifbin(b, c1), andtin(tr, c1) are false in time slicet, then irrespec-

tive of the truth value ofon(b, tr) andrain, bin(b, c1) is true in time slicet + 1 with 0

probability (always false). The predicateon(b, tr) is true at timet+1 only when the box is

in neither of the cities. This dependency has been shown by the synchronic arcs. The truth

value of other variables can only persist under the actionunload(b, tr, c1). Synchronic arcs

cannot be handled by some factored MDP solvers. One could usejoint variables to replace

2.3. FACTORED MDPS 19

variables connected by synchronic arcs. This would cause a blow up exponential in the

number of variables joined. But by doing so we could convert aDBN with synchronic arcs

to one without synchronic arcs. The equivalent representation in probabilistic STRIPS is

as follows:

Action: unload(box, truck, city):

Preconditions: on(box, truck), tin(truck, city)

Outcome1: [Probabilityrain→ 0.7, ¬rain→ 0.9] bin(box, city),¬on(box, truck)

Outcome2: [Probabilityrain→ 0.3, ¬rain→ 0.1] nothing changes.

Unfortunately the factoring of the transition function itself does not guarantee a com-

pact value function. This is because the state variables interact through parent-child rela-

tionships in the DBN. Therefore then-step-to-go value function that captures interactions

overn actions could depend on the combinations of all values of allvariables, thus elimi-

nating the advantage of factoring.

An approach that solves factored MDPs effectively and exactly is based on the observa-

tion that in the CPTs, the values of some variables could makeother variables unimportant.

This phenomenon, known as context specific independence (Boutilier, Friedman, Gold-

szmidt, & Koller, 1996), enables the use of compact data structures like decision trees and

Algebraic Decision Diagrams (Bahar et al., 1993) to represent the CPTs. Boutilier et al.

(1995, 1999) showed that using decision trees to represent the CPTs, and the reward func-

tion, optimal policies and value functions can be generatedby a structured version of VI

and PI. Dearden (2001) presented a structured prioritized sweeping algorithm based on this

idea. Although decision trees leverage context specific independence they could be expo-

nentially larger than ADDs. Noticing this Hoey et al. (1999)replaced the decision trees

by ADDs in their decision theoretic planning system SPUDD. SPUDD showed a gain up

to 30 times in memory efficiency over the decision tree representation. Extensions of this

work using approximations in the ADDs (St-Aubin, Hoey, & Boutilier, 2000) displayed

further improvement in efficiency. Following this work, ADDs have been used in several

algorithms to represent and solve MDPs. Feng and Hansen (2002) combined the SPUDD

approach with forward search to extend LAO* to factored MDP.The SPUDD variant of

20 CHAPTER 2. BACKGROUND

Teichteil-Koenigsbuch and Fabiani (2006) participated inthe International Planning Com-

petition. Sanner, Uther, and Delgado (2010) showed furthergains in efficiency by shifting

focus from ADDs to Affine ADDs (Sanner & McAllester, 2005).

Another effective approach has been to combine dynamic programming with function

approximation. The value function is described using a parametric representation such as

a neural network (Tesauro, 1992) or a linear function of a basis derived from state feature

variables (Schweitzer & Seidmann, 1985; Tsitsiklis & Van Roy, 1996). Value function

approximations were also used in solutions not based on dynamic programming. One such

approach to generating a compact solution restricts the form of the value function. Once

again linear value functions are attractive because of their mathematical properties (Koller

& Parr, 1999, 2000; Schuurmans & Patrascu, 2001; Guestrin, Koller, Parr, & Venkatara-

man, 2003b). Since the value function might not be representable by a linear combination

of basis functions derived from state feature variables, these approaches are necessarily

approximate. But their advantage is that they are not dependent on context specific inde-

pendence to generate a compact solution.

2.4 Relational MDPs

Propositionally factored representations show an impressive speedup by taking advantage

of the propositional domain structure. However, they do notbenefit from the structure that

exists with objects and relations. A Relational MDP (RMDP) is an MDP where the world

is represented by objects and relations among them. A RMDP isspecified by

1. A set of world predicates. Each atom, formed by instantiating a predicate using

objects from the domain, can be eithertrue or false in a given state. For

example in the logistics domain, world atoms are bin(box, city) (box is in city),

on(box, truck) (box is ontruck), and tin(truck, city) (truck is in city).

2. A set of action predicates. Each action atom formed by instantiating an action

predicate using objects from the domain defines a concrete action. For example

in the logistics domain, action atoms are of the form load(box, truck, city) (load

2.4. RELATIONAL MDPS 21

box on to truck in city), unload(box, truck, city) (unloadbox from truck in city),

drive(truck, source.city, dest.city) (drivetruck from source.city todest.city), etc.

3. A state transition function that provides an abstract description of the probabilistic

move from one state to another. For example, using probabilistic STRIPS notation,

the transition defined by the action load can be described as

Action: load(box, truck, city)

Preconditions: bin(box, city), tin(truck, city)

Outcome1: [Probability0.99] on(box, truck),¬bin(box, city)

Outcome2: [Probability0.01] nothing changes.

If the preconditions of the action bin(box, city), tin(truck, city) are satisfied, then

with probability0.99, the action will succeed generating the effect on(box, truck),

¬ bin(box, city). The state remains unchanged with probability0.01. The effects of

actions in RMDPs are usually correlated and cannot be considered to occur indepen-

dent of one another. Therefore Probabilistic STRIPS is a better representation for the

transition function.

4. An abstract reward function describing conditions underwhich rewards are obtained.

For example in the logistics domain, the reward function canbe ∃x, bin(x, paris)

constructed so as to capture the goal of transporting at least one box from its source

city to Paris.

Work on RMDPs has been largely motivated by and applied to theproblem of stochastic

planning. In fact, the languages that have been popular in defining planning domains,

e.g. STRIPS (Fikes & Nilsson, 1971), ADL (Pednault, 1989), PDDL (Ghallab, Howe,

Knoblock, McDermott, Ram, Veloso, Weld, & Wilkins, 1998; Fox & Long, 2003; Younes,

Littman, Weissman, & Asmuth, 2005) have all exploited relational structure of the planning

domains. Hence, in a way, it is more natural to think of solving probabilistic planning

problems using RMDP solvers. However, RMDP solvers solve entire classes of problems

given the planning domain. This might generate an unnecessary overhead when solving

simple problems but can be a huge advantage when the domain isvery large. This thesis

presents one such RMDP solver that has found success in solving probabilistic planning

22 CHAPTER 2. BACKGROUND

problems.

Boutilier et al. (2001) developed the first VI method for solving RMDPs and pro-

vided the Symbolic Dynamic Programming (SDP) algorithm in the context of the situa-

tion calculus. This algorithm provided a framework for dynamic programming solutions to

RMDPs that was later employed in several formalisms and systems (Kersting et al., 2004;

Hölldobler & Skvortsova, 2004; Sanner, 2008; Sanner & Boutilier, 2009). The main ad-

vantage of SDP is that state and action predicates are not grounded or enumerated and the

MDP is solved to the extent possible at the abstract level making distinctions among states

only when the value function requires it. One of the important ideas in SDP was to rep-

resent stochastic actions as a finite set of deterministic alternatives under nature’s control.

This helps separate regression over deterministic action alternatives from the probabilities

of action effects. This separation is necessary when transition functions are represented as

relational schemas abstracting over the structure of the states. Recall the Bellman update

step of the VI algorithm.

V t(s)←Maxa[R(s) + γΣs′P (s′ | s, a)V t−1(s′)] (2.6)

The SDP algorithm implements this for all states simultaneously at the abstract level. Intu-

itively, eachV t partitions the state space into “abstract states” where allstates in an abstract

state have the same value and are thus “equivalent”. The basic outline of the relational value

iteration algorithm is as follows:

1. Regression:Thet-step-to-go value functionV t is regressed over every deterministic

variantAj(~x) of every actionA(~x) to produceRegr(V t, A(~x)). At the first iteration

V 0 is assigned the reward function. This is not necessary for correctness of the

algorithm but is a convenient starting point for VI.Regr(V t, A(~x)) describes the

conditions under which the action alternativeAj(~x) causes the state to transition to

some abstract state description inV t.

2. Add Action Variants: The Q-function for each actionA(~x) is generated,QA(~x)
V t = R

⊕ [γ ⊗ ⊕j(prob(Aj(~x)) ⊗ Regr(V t, Aj(~x)))]. In this step the different alternatives

of an action are combined. Each alternativeAj(~x) produces aRegr(V t, A(~x)) from

the regression step. All theRegr(V t, A(~x))s are added, and each is weighted by the

2.4. RELATIONAL MDPS 23

probability ofAj(~x). This produces the parametrized functionQ
A(~x)
V t which describes

the utility of being in a state and taking a concrete actionA(~x) and being rewarded

according toV t in the next step. In the formula above we use⊕ and⊗ to indicate that

the addition and multiplication operations are performed on functions over relational

structures. Each such function defines a partition over the state space as described

above and assigns a value or probability to states in the state space.

3. Object Maximization: Maximize over the action parameters ofQ
A(~x)
V t to produce

QA
V t for each actionA(~x), thus obtaining the value achievable by the best ground

instantiation ofA(~x).

4. Maximize over Actions: Thet + 1-step-to-go value function is generated by maxi-

mizing over all actions,V t+1 = maxA QA
V t.

In this description of RMDPs all intermediate constructs (R, P , V etc.) are represented

in some compact form and they capture a mapping from states tovalues or probabilities.

The operations of the Bellman update are performed over these functions while maintaining

the compact form.

The advantage of the relational representation is abstraction. One can plan at the ab-

stract level without grounding the domain, potentially leading to more efficient algorithms.

In addition, the solution at the abstract level is optimal for every instantiation of the domain

and can be reused for multiple problems. However, this approach raises some difficult com-

putational issues because one must use theorem proving to reason at the abstract level, and

because for some problems optimal solutions at the abstractlevel can be infinite in size.

Following Boutilier et al. (2001) several abstract versions of the value iteration (VI) al-

gorithm have been developed using different representation schemes. Großmann, Hölldobler,

and Skvortsova (2002) developed a SDP algorithm in the context of the fluent calculus.

Later Hölldobler and Skvortsova (2004) improved this firstorder VI algorithm (FOVIA) by

employing normalization procedures to remove redundancies from formulas in the fluent

calculus. FCPLANNER, a planning system based on FOVIA participated in the Interna-

tional Planning Competition. Kersting et al. (2004) invented a relational Bellman operator

based on SDP. Their system, REBEL however, represented the RMDP in a simpler language

24 CHAPTER 2. BACKGROUND

restricted to existential quantification. This change greatly improved the logical simplifi-

cation step and hence the planning efficiency. Further REBEL used decision lists (Rivest,

1987) to represent value functions. Since a decision list implicitly encodes an ordering on

the rules in the list, the object maximization step in REBEL was reduced to sorting the

decision list. The REBEL paper demonstrated that abstract value functions as generated by

SDP based algorithms can be infinite in size. REBEL exhibited excellent performance in

solving some case studies. The work of Sanner (2008) and the research presented in this

thesis were motivated by the success of ADDs in solving propositional MDPs. While both

approaches invent relational versions of ADDs, Sanner (2008) reports on an implementa-

tion that does not scale well to large problems. In subsequent chapters we will present a

full description of our SDP based RMDP solver along with an implementation that scales

to problems from the International Planning Competition.

There are many similarities between the SDP method and previous work on explanation

based learning (EBL) (Mitchell, Keller, & Kedar-Cabelli, 1986; DeJong & Mooney, 1986;

Laird, Rosenbloom, & Newell, 1986). In the EBL setting the learner has access to posi-

tive training examples for a particular concept and a domaintheory. The domain theory is

sufficient to explain the training examples by itself. The objective of the learner is to gen-

erate such explanations for the given training examples andgeneralize each explanation to

produce a hypothesis that can be later used to explain similar examples. Generalization is

performed using the same process of regression we discussedin the context of SDP. Since

the domain theory already classifies the training examples correctly, the hypotheses gener-

ated by EBL does not add any new information but simply compiles existing knowledge

into a more readily usable form. Thus the objective of EBL is to speed up the process of

classification. This line of research has, therefore, come to be known as speedup learning.

EBL developed as an alternative to inductive learning with the advantage that the generated

hypotheses are completely justified by the domain theory andhence the error and sample

complexity bounds for inductive learning do not apply to EBL.

In deterministic planning domains, the domain theory can beexpressed as the descrip-

tion of operators or actions. In such domains the domain theory is guaranteed to be correct

and complete and EBL systems can be employed to learn search control rules. Minton

(1988) presented such an EBL based system, PRODIGY. PRODIGY was designed to learn

2.4. RELATIONAL MDPS 25

a variety of search control rules. These not only included rules about which operators to

apply but also rules about ordering parts of the goal. One interesting aspect of PRODIGY

was the ability, similar to SDP, to directly reason backwards from the target concept (using

regression) without generalizing concrete examples.

Difficult issues that arose in the work on EBL are also seen in SDP based systems. EBL

systems faced what is known as the utility problem. In non-trivial domains, the number and

complexity of rules learned can be large enough that searching for a solution becomes inef-

ficient. In such cases speedup learning can actually slow down the problem solving process.

Minton (1988) addressed this issue by removing rules for which the cost of applying the

rule outweighed the benefit of using the rule. Similarly in SDP the value function can be-

coome prohibitively complex and logical simplification becomes necessary. On the other

hand more prunning may be possible for RMDPs because abstract states are associated

with values in RMDPs and because allt-step-to-go abstract states are developed simul-

taneously. Another problem encountered by EBL was known as the generalization to N

problem (Shavlik, 1989). Often times hypotheses learned byEBL are specific to some nu-

merical property of the domain (e.g., its size) whereas a solution that generalizes over all

values of that numerical property is desired. A similar issue arises in SDP in the form of

domains where the value function can be infinite in size. Thusall SDP based solutions to

RMDPs encounter these issues.

In the literature there are numerous other representationsand solution formalisms for

RMDPs. These include approaches that combine dynamic programming with linear func-

tion approximation (Sanner & Boutilier, 2009), forward search (Hölldobler, Karabaev, &

Skvortsova, 2006) and machine learning (Fern, Yoon, & Givan, 2006; Gretton & Thiebaux,

2004). Sanner and Boutilier (2009), in particular, developa relational extension of linear

function approximation techniques for factored MDPs discussed above. The value function

is represented as a weighted sum of basis functions, each denoting a partition of the state

space. The difference from the work on factored MDPs is that these basis functions are

first order formulas and thus the value function is valid for any domain size (this is the

same fundamental advantage that RMDP solvers have over ground MDP solvers). They

develop methods for automatic generation of first order constraints in a linear program and

automatic generation of basis functions that shows promisein solving some domains from

26 CHAPTER 2. BACKGROUND

the IPC. The work of Sanner and Boutilier (2009) is thus an extension of the work on linear

programming based MDP solvers that takes advantage of relational structure in the domain.

In a similar view the work in this thesis is a relational extension of the work on ADD based

MDP solvers.

There are also approaches that do not resort to dynamic programming at all. For in-

stance Guestrin, Koller, Gearhart, and Kanodia (2003a) present an approach based on ad-

ditive value functions based on object classes and employ linear programming to solve the

RMDP. Mausam and Weld (2003)’s approach is to employ SPUDD tosolve ground in-

stances of an RMDP, generate training data from the solutions and learn a lifted value func-

tion from the training data using a relational tree learner.Gardiol and Kaelbling (2003)

apply methods from probabilistic planning to solve the RMDP. Yet other RMDP solvers

are based on using reinforcement learning techniques. Relational Reinforcement Learning

(RRL) (Tadepalli, Givan, & Driessens, 2004) is an active area of research. RRL followed

from the seminal work of Dzeroski, De Raedt, and Driessens (2001) whose algorithm in-

volved generating state-action or state-value pairs by state space exploration (biased in

favor of state-action pairs with high estimated value) and learning a relational value func-

tion tree from the collected data. There have been several approaches to RRL in recent

years (Driessens & Dzeroski, 2004; Kersting & De Raedt, 2004; Walker, Torrey, Shavlik,

& Maclin, 2007; Croonenborghs, Ramon, Blockeel, & Bruynooghe, 2007). van Otterlo

(2008) provides an excellent overview of the various solutions methods to RMDPs.

In the rest of the thesis we present our FODD representation,algorithms for it and its use

in solving RMDPs through a relational VI algorithm. To our knowledge, apart from Sanner

and Boutilier (2009) and Hölldobler et al. (2006), this is the only dynamic programming

based approach to RMDPs that has been shown to scale to problems of the size used in the

recent IPCs.

Chapter 3

First Order Decision Diagrams

First Order Decision Diagrams (FODD) are the fundamental unit and underlying thread

connecting all the research in this thesis. In this chapter we will describe FODDs and

their application in representing and solving relational MDPs. The research presented in

this chapter is joint work with Chenggang Wang and has previously appeared in her Ph.D.

thesis (Wang, 2008).

This chapter is organised as follows. Sections 3.1 and 3.2 describe the syntax and

semantics of FODDs. Sections 3.3 to 3.6 discuss properties of FODDs. Finally Sections

3.7 and 3.8 present an application of FODDs in solving RMDPs.

3.1 Syntax of First Order Decision Diagrams

A decision diagram is a graphical representation for functions over propositional (Boolean)

variables. The function is represented as a labeled rooted directed acyclic graph where

each non-leaf node is labeled with a propositional variableand has exactly two children.

The outgoing edges are marked with valuestrue andfalse. Leaves are labeled with

numerical values. Given an assignment of truth values to thepropositional variables, we

can traverse the graph where in each node we follow the outgoing edge corresponding to

its truth value. This gives a mapping from any assignment to aleaf of the diagram and in

turn to its value. If the leaves are marked with values in{0, 1} then we can interpret the

graph as representing a Boolean function over the propositional variables. Equivalently, the

27

28 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

p (x)
 q (x)

h (y)
 1

0

 1

0

Figure 3.1: A simple FODD.

graph can be seen as representing a logical expression whichis satisfied if and only if the1

leaf is reached. The case with{0, 1} leaves is known as Binary Decision Diagrams (BDD)

and the case with numerical leaves (or more general algebraic expressions) is known as

Algebraic Decision Diagrams (ADD). Decision Diagrams are particularly interesting if we

impose an order over propositional variables and require that node labels respect this order

on every path in the diagram; this case is known as Ordered Decision Diagrams (ODD). In

this case every function has a unique canonical representation that serves as a normal form

for the function. This property means that propositional theorem proving is easy for ODD

representations. For example, if a formula is contradictory then this fact is evident when

we represent it as an ODD, since the normal form for a contradiction is a single leaf valued

0. This property together with efficient manipulation algorithms for ODD representations

have led to successful applications, e.g., in VLSI design and verification (Bryant, 1992;

McMillan, 1993; Bahar et al., 1993) as well as MDPs (Hoey et al., 1999; St-Aubin et al.,

2000). In the following we generalize this representation for relational problems.

There are various ways to generalize ADDs to capture relational structure. One could

use closed or open formulas in the nodes, and in the latter case we must interpret the quan-

tification over the variables. In the process of developing the ideas here we have considered

several possibilities including explicit quantifiers but these did not lead to useful solutions

because of the complexity of manipulating the resultant representations. We therefore fo-

cus on the following syntactic definition which does not haveany explicit quantifiers. We

use standard terminology from first order logic (Lloyd, 1987).

For this representation, we assume a fixed set of predicates and constant symbols, and

an enumerable set of variables. We also allow using an equality between any pair of terms

(constants or variables).

Definition 1 First Order Decision Diagram

3.2. SEMANTICS OF FIRST ORDER DECISION DIAGRAMS 29

1. A First Order Decision Diagram (FODD) is a labeled rooted directed acyclic graph,

where each non-leaf node has exactly two children. The outgoing edges are marked

with valuestrue andfalse.

2. Each non-leaf node is labeled with: an atomP (t1, . . . , tn) or an equalityt1 = t2

where eachti is a variable or a constant.

3. Leaves are labeled with numerical values.

Figure 3.1 shows a FODD with binary leaves. Left going edges representtrue branches.

To simplify diagrams in the thesis we draw multiple copies ofthe leaves0 and1 (and oc-

casionally other values or small sub-diagrams) but they represent the same node in the

FODD.

We use the following notation: for a noden, n↓t denotes thetrue branch ofn, and

n↓f thefalse branch ofn; n↓a is an outgoing edge fromn, wherea can betrue or

false. For an edgee, source(e) is the node that edgee issues from, andtarget(e) is

the node that edgee points to. Lete1 ande2 be two edges, we havee1 = sibling(e2) iff

source(e1) = source(e2).

In the following we will slightly abuse the notation and letn↓a mean either an edge or

the sub-FODD this edge points to. We will also usen↓a andtarget(e1) interchangeably

wheren = source(e1) anda can betrue orfalse depending on whethere1 lies in the

true or false branch ofn.

3.2 Semantics of First Order Decision Diagrams

We use a FODD to represent a function that assigns values to states in a relational MDP.

For example, in the logistics domain, we might want to assignvalues to different states in

such a way that if there is a box in Paris, then the state is assigned a value of 19; if there

is no box in Paris but there is a box on a truck that is in Paris and it is raining, this state is

assigned a value of 6.31. The question is how to define the semantics of FODDs in order to

have the intended meaning.

1This is a result of regression in the logistics domain; cf. Figure 3.13(l).

30 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

The semantics of first order formulas are given relative to interpretations. An interpre-

tation has a domain of elements, a mapping of constants to domain elements and, for each

predicate, a relation over the domain elements which specifies when the predicate is true.

There is more than one way to define the meaning of FODDB on interpretationI.

We build on work by Groote and Tveretina (2003) who defined semantics based on

multiple paths. Following this work, we define the semanticsfirst relative to a variable

valuationζ . Given a FODDB over variables~x and an interpretationI, a valuationζ

maps each variable in~x to a domain element inI. Once this is done, each node predicate

evaluates either totrue orfalse and we can traverse a single path to a leaf. The value

of this leaf is denoted by MAPB(I, ζ).

Different valuations may give different values; but recallthat we use FODDs to repre-

sent a function over states, and each state must be assigned asingle value. Therefore, we

next define

MAPB(I) = aggregateζ{MAPB(I, ζ)}

for some aggregation function. That is, we consider all possible valuationsζ , and for each

valuation we calculate MAPB(I, ζ). We then aggregate over all these values. In the special

case of Groote and Tveretina (2003) leaf labels are in{0, 1} and variables are universally

quantified; this is easily captured in our formulation by using minimum as the aggregation

function. For FODDs, we use maximum as the aggregation function.

MAPB(I) = max
ζ
{MAPB(I, ζ)}.

This corresponds to existential quantification in the binary case (if there is a valuation

leading to value1, then the value assigned will be1) and gives useful maximization for

value functions in the general case. Using this definitionB assigns everyI a unique value

v = MAPB(I) soB defines a function from interpretations to real values. We later refer to

this function asthe map ofB.

Consider evaluating the diagram in Figure 3.1 on the interpretationI1 where the only

true atoms are{p(1), q(2), h(3)}. The valuation wherex is mapped to2 andy is mapped

to 3 denoted{x/2, y/3} leads to a leaf with value1. Because there exists a valuations

reaching the1 leaf, the maximum over the values of leaves reached by all valuations is1.

3.3. BASIC REDUCTION OF FODDS 31

When leaf labels are in{0, 1}, we can interpret the diagram as a logical formula. When

MAPB(I) = 1, as in our example, we say thatI satisfiesB and when MAPB(I) = 0 we

say thatI falsifiesB.

3.3 Basic Reduction of FODDs

Groote and Tveretina (2003) define several operators that reduce a diagram into normal

form. A total order over node labels is assumed. We describe these operators briefly and

give their main properties.

(R1) Neglect operator: if both children of a nodep in the FODD lead to the same nodeq

then we removep and link all parents ofp to q directly.

(R2) Join operator: if two nodesp, q have the same label and point to the same two children

then we can joinp andq (removeq and linkq’s parents top).

(R3) Merge operator: if a node and its child have the same label then the parent can point

directly to the grandchild of the parent.

(R4) Sort operator: If a nodep is a parent ofq but the label ordering is violated (l(q) ≺

l(p)) then we can reorder the nodes locally using two copies ofp andq such that

labels of the nodes do not violate the ordering.

Define a FODD to be reduced if none of the four operators can be applied. Groote and

Tveretina (2003) have shown the following:

Theorem 1 (Groote & Tveretina, 2003)

(1) LetO ∈ {Neglect, Join, Merge, Sort} be an operator andO(B) the result of applying

O to FODDB, then for anyB, I, andζ , MAPB(I, ζ) = MAPO(B)(I, ζ).

(2) If B1, B2 are reduced and satisfy∀ζ, MAPB1(I, ζ) = MAPB2(I, ζ) then they are identi-

cal.

Property (1) gives soundness, and property (2) shows that reducing a FODD gives a normal

form. However, this only holds if the maps are identical for every ζ and this condition is

32 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

stronger than equivalence of the maps. This normal form suffices for Groote and Tveretina

(2003) who use it to provide a theorem prover for first order logic, but it is not strong

enough for our purposes. Figure 3.2 shows two pairs of reduced FODDs (with respect

to R1-R4) such that MAPB1(I) = MAPB2(I) but ∃ζ, MAPB1(I, ζ) 6= MAPB2(I, ζ). In

this case although the maps are the same the FODDs are not reduced to the same form.

Consider first the pair in the upper part of the figure. An interpretation wherep(a) is false

butp(b) is true and and a substitution{x/a, y/b} leads to value of 0 inB1 while B2 always

evaluates to 1. But the diagrams are equivalent. For any interpretation, ifp(c) is true for

any objectc then MAPB1(I) = 1 through the substitution{x/c}; if p(c) is false for any

objectc then MAPB1(I) = 1 through the substitution{x/c, y/c}. Thus the map is always

1 for B1 as well. In Section 3.6.2 we show that with the additional reduction operators

we have developed,B1 in the first pair is reduced to1. Thus the diagrams in the upper

part have the same form after reduction. However, our reductions do not resolve the pair

given in the lower part of the figure. Notice that both functions capture a path of two

edges labeledp in a graph (we just change the order of two nodes and rename variables)

so the diagrams evaluate to 1 if and only if the interpretation has such a path. Even though

B1 andB2 are logically equivalent, they cannot be reduced to the sameform using R1-

R4 or our new operators. To identify a unique minimal syntactic form one may have to

consider all possible renamings of variables and the sorteddiagrams they produce, but this

is an expensive operation. A discussion of normal form for conjunctions that uses such an

operation is given by Garriga, Khardon, and De Raedt (2007).

3.4 Combining FODDs

Given two algebraic diagrams we may need to add the corresponding functions, take the

maximum or use any other binary operation,op, over the values represented by the func-

tions. Here we adopt the solution from the propositional case (Bryant, 1986) in the form of

the procedureApply(B1,B2,op) defined as follows.

Definition 2 Let B = Apply(B1,B2,op) and letp andq be the roots ofB1 andB2 respec-

tively.

3.4. COMBINING FODDS 33

p (x)
 p (y)

 1
 0

1

B1 B2

1

p (x, y)
 p (y, z)

 1

 0

0

p (x, y)
 p (z, x)

 1

 0

0

Figure 3.2: Examples illustrating weakness of normal form.

1. If p andq are both leaves,B = p op q.

2. If p preceedsq according to the order of the labels, thenp is the root ofB, the left

sub-diagram ofB is given by Apply(p↓t,B2,op) and the right sub-diagram ofB is

given by Apply(p↓f ,B2,op).

3. If q preceedsp according to the order of the labels, thenq is the root ofB, the left

sub-diagram ofB is given by Apply(B1,q↓t,op) and the right sub-diagram ofB is

given by Apply(B1,q↓f ,op).

4. If p = q, then p (or q) is the root ofB, the left sub-diagram ofB is given by

Apply(p↓t,q↓t,op) and the right sub-diagram ofB is given by Apply(p↓f ,q↓f ,op).

This procedure chooses a new root label (the lower among labels ofp, q) and recursively

combines the corresponding sub-diagrams, according to therelation between the two labels

(≺, =, or ≻). In order to make sure the result is reduced in the propositional sense one

can use dynamic programming to avoid generating nodes for which either neglect or join

operators ((R1) and (R2) above) would be applicable.

Figure 3.3 illustrates this process. In this example, we assume predicate ordering as

p1 ≺ p2, and parameter orderingx1 ≺ x2. Non-leaf nodes are annotated with numbers and

numerical leaves are underlined for identification during the execution trace. For example,

the top level call adds the functions corresponding to nodes1 and 3. Sincep1(x1) is the

smaller label it is picked as the label for the root of the result. Then we must add both left

34 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

0

p1 (x1)

 p2 (x1)

10

1

2

3

0

 p2 (x2)
 9

⊕ =

p1 (x1)

 p2 (x1)

1+3

2+3

10+3

10

 p2 (x2)
 19

0

 p2 (x2)
 9

0+3

Figure 3.3: A simple example of adding two FODDs.

and right child of node 1 to node 3. These calls are performed recursively. It is easy to see

that the size of the result may be the product of sizes of inputdiagrams. However, pruning

will occur with shared variables and further pruning is madepossible by weak reductions

presented later.

Since for any interpretationI and any fixed valuationζ the FODD is propositional, we

have the following. We later refer to this property as thecorrectness ofApply .

Lemma 1 LetC = Apply(A, B, op), then for anyI andζ , MAPA(I, ζ) op MAPB(I, ζ) =

MAPC(I, ζ).

Proof: First we introduce some terminology. Let#nodes(X) refer to the set of all

nodes in a FODDX. Let the root nodes ofA andB beAroot andBroot respectively. Let the

FODDs rooted atAroot↓t
, Aroot↓f

, Broot↓t
, Broot↓f

, Croot↓t
, andCroot↓f

beAl, Ar, Bl, Br, C l

andCr respectively.

The proof is by induction onn = |#nodes(A)|+ |#nodes(B)|. The lemma is true for

n = 2, because in this case bothAroot andBroot have to be single leaves and an operation

on them is the same as an operation on two real numbers. For theinductive step we need

to consider two cases.

Case 1:Aroot = Broot. Since the root nodes are equal, if a valuationζ reachesAl, then

it will also reachBl and if ζ reachesAr, then it will also reachBr. Also, by the definition

of Apply, in this caseC l = Apply(Al, Bl, op) andCr = Apply(Ar, Br, op). Therefore

the statement of the lemma is true if MAPAl(I, ζ) op MAPBl(I, ζ) = MAPCl(I, ζ) and

3.5. ORDER OF LABELS 35

MAPAr(I, ζ) op MAPBr(I, ζ) = MAPCr(I, ζ) for anyζ andI. Now, since|#nodes(Al)+

#nodes(Bl)| < n and|#nodes(Ar) + #nodes(Br)| < n, this is guaranteed by the induc-

tion hypothesis.

Case 2:Aroot 6= Broot. Without loss of generality let us assume thatAroot ≺ Broot. By

the definition of Apply,C l = Apply(Al, B, op) andCr = Apply(Ar, B, op). Therefore

the statement of the lemma is true if MAPAl(I, ζ) op MAPB(I, ζ) = MAPCl(I, ζ) and

MAPAr(I, ζ) op MAPB(I, ζ) = MAPCr(I, ζ) for anyζ andI. Again this is guaranteed by

the induction hypothesis.

3.5 Order of Labels

The syntax of FODDs allows for two “types” of objects: constants and variables. Any

argument of a predicate can be a constant or a variable. We assume a complete ordering

on predicates, constants, and variables. The ordering≺ between two labels is given by the

following rules.

1. P (x1, ..., xn) ≺ P ′(x′
1, ..., x

′
m) if P ≺ P ′

2. P (x1, ..., xn) ≺ P (x′
1, ..., x

′
n) if there existsi such thatxj = x′

j for all j < i,

andtype(xi) ≺ type(x′
i) (where “type” can be constant or variable) ortype(xi) =

type(x′
i) andxi ≺ x′

i.

While the predicate order can be set arbitrarily it appears useful to assign the equality

predicate as the first in the predicate ordering so that equalities are at the top of the dia-

grams. During reductions we often encounter situations where one side of the equality can

be completely removed leading to substantial space savings. It may also be useful to order

the argument types so that constant≺ variables. This ordering may be helpful for reduc-

tions. Intuitively, a variable appearing lower in the diagram can be bound to the value of

a constant that appears above it. These are only heuristic guidelines and the best ordering

may well be problem dependent. We later introduce other forms of arguments:predicate

parametersandaction parameters. The ordering for these is discussed in Section 3.8.

36 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

3.6 Reduction Operators

In our context, especially for algebraic FODDs, we may want to reduce the diagrams be-

yond the compression achieved by R1-R4. We distinguish betweenstrong reductionsthat

preserve MAPB(I, ζ) for all ζ andweak reductionsthat only preserve MAPB(I). Theo-

rem 1 shows that R1-R4 given above are strong reductions. In the following we present

the details of R5 and R7 that are used in our implementation. These details are relevant

in Chapter4 where some improvements are presented. For a discussion of R6 and R8 see

Wang (2008).

All the reduction operators below can incorporate existingknowledge on relationships

between predicates in the domain. We denote this backgroundknowledge byB. For exam-

ple in the Blocks World we may know that if there is a block on blocky then it is not clear:

∀x, y, [on(x, y)→ ¬clear(y)].

When we define conditions for reduction operators, there aretwo types of conditions:

the reachability condition and the value condition. We namereachability conditions by

starting with P (for Path Condition) and the reduction operator number. We name condi-

tions on values by starting with V and the reduction operatornumber.

In the following we define node formulas (NF) and edge formulas (EF) recursively

as follows. For a noden labeledl(n) with incoming edgese1, . . . , ek, the node formula

NF(n) = (∨iEF(ei)). The edge formula for thetrue outgoing edge ofn is EF(n↓t) =

NF(n)∧ l(n). The edge formula for thefalse outgoing edge ofn is EF(n↓f) = NF(n)∧

¬l(n). These formulas, where all variables are existentially quantified, capture the condi-

tions under which a node or edge are reached.

3.6.1 (R5) Strong Reduction for Implied Branches

Consider any noden such that whenevern is reached then thetrue branch is followed.

In this case we can removen and connect its parents directly to thetrue branch. We first

present the condition, followed by the lemma regarding thisoperator.

(P5) : B |= ∀~x, [NF(n)→ l(n)] where~x are the variables in EF(n↓t).

Let R5(n) denote the operator that removes noden and connects its parents directly

to thetrue branch. Notice that this is a generalization of R3. It is easyto see that the

3.6. REDUCTION OPERATORS 37

following lemma is true:

Lemma 2 (Wang, 2008) LetB be a FODD,n a node for which condition P5 holds,

and B′ the result of R5(n). Then for any interpretationI and any valuationζ we have

MAPB(I, ζ) = MAPB′(I, ζ).

A similar reduction can be formulated for thefalse branch, i.e., ifB |= ∀~x, [NF(n)→

¬l(n)] then whenever noden is reached then thefalse branch is followed. In this case

we can removen and connect its parents directly to thefalse branch.

Implied branches may simply be a result of equalities along apath. For example(x =

y)∧ p(x)→ p(y) so we may prunep(y) if (x = y) andp(x) are known to be true. Implied

branches may also be a result of background knowledge. For example in the Blocks World

if on(x, y) is guaranteed to be true when we reach a node labeledclear(y) then we can

removeclear(y) and connect its parent toclear(y)↓f .

3.6.2 (R7) Weak Reduction Removing Dominated Edges

Consider any two edgese1 ande2 in a FODD whose formulas satisfy the condition that if

we can followe2 using some valuation then we can also followe1 using a possibly different

valuation. Ife1 gives better value thane2 then intuitivelye2 never determines the value of

the diagram and is therefore redundant. We formalize this asreduction operator R7.

Let p = source(e1), q = source(e2), e1 = p↓a, ande2 = q↓b, wherea andb can be

true or false. We first present all the conditions for the operator and thenfollow with

the definition of the operator.

(P7.1) : B |= [∃~x, EF(e2)] → [∃~y, EF(e1)] where~x are the variables in EF(e2) and~y the

variables in EF(e1).

(P7.2) : B |= ∀~u, [[∃~w, EF(e2)] → [∃~v, EF(e1)]] where~u are the variables that appear in

bothtarget(e1) andtarget(e2), ~v the variables that appear in EF(e1) but are not in~u, and

~w the variables that appear in EF(e2) but are not in~u. This condition requires that for every

valuationζ1 that reachese2 there is a valuationζ2 that reachese1 such thatζ1 andζ2 agree

on all variables that appear in bothtarget(e1) andtarget(e2).

(P7.3): B |= ∀~r, [[∃~s, EF(e2)]→ [∃~t, EF(e1)]] where~r are the variables that appear in both

target(e1) andtarget(sibling(e2)), ~t the variables that appear in EF(e1) but are not in~r,

38 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

and~s the variables that appear in EF(e2) but are not in~r. This condition requires that for

every valuationζ1 that reachese2 there is a valuationζ2 that reachese1 such thatζ1 andζ2

agree on all variables that appear in bothtarget(e1) andtarget(sibling(e2)).

(V7.1) : min(target(e1)) ≥ max(target(e2)) wheremin(target(e1)) is the minimum leaf

value intarget(e1), andmax(target(e2)) the maximum leaf value intarget(e2). In this

case regardless of the valuation we know that it is better to follow e1 and note2.

(V7.2) : min(target(e1)) ≥ max(target(sibling(e2))).

(V7.3) : all leaves inD = target(e1) ⊖ target(e2) have non-negative values, denoted as

D ≥ 0. In this case for any fixed valuation it is better to followe1 instead ofe2.

(V7.4) : all leaves inG = target(e1)⊖ target(sibling(e2)) have non-negative values.

We define the operators R7-replace(b, e1, e2) as replacingtarget(e2) with a constantb

that is between 0 andmin(target(e1)) (we may write it as R7-replace(e1, e2) if b = 0),

and R7-drop(e1, e2) as dropping the nodeq = source(e2) and connecting its parents to

target(sibling(e2)).

We need one more “safety” condition to guarantee that the reduction is correct:

(S1) : NF(source(e1)) and the sub-FODD oftarget(e1) remain the same before and after

R7-replace and R7-drop. This condition says that we must notharm the value promised

by target(e1). In other words, we must guarantee thatp = source(e1) is reachable just

as before and the sub-FODD oftarget(e1) is not modified after replacing a branch with0.

The condition is violated ifq is in the sub-FODD ofp↓a, or if p is in the sub-FODD ofq↓b.

But it holds in all other cases, that is whenp andq are unrelated (one is not the descendant

of the other), orq is in the sub-FODD ofp↓a, or p is in the sub-FODD ofq↓b, wherea, b

stand for negation. The following results guarantee correctness of the reduction.

Lemma 3 (Wang, 2008) LetB be a FODD,e1 and e2 edges for which conditions P7.1,

V7.1, and S1 hold, andB′ the result of R7-replace(b, e1, e2), where0 ≤ b ≤ min(target(e1)),

then for any interpretationI we have MAPB(I) = MAPB′(I).

Lemma 4 (Wang, 2008) LetB be a FODD,e1 and e2 edges for which conditions P7.2,

V7.3, and S1 hold, andB′ the result of R7-replace(b, e1, e2), where0 ≤ b ≤ min(target(e1)),

then for any interpretationI we have MAPB(I) = MAPB′(I).

3.6. REDUCTION OPERATORS 39

h(z,y)

 0

q(x,y)

 0

p(y)

 5

q(x,y)

 0

p(y)

 5

 0

 0
 3

 B1

 B2

p(y)
 0

 3

Figure 3.4: An example illustrating the subtraction condition in R7.

Note that the conditions in the previous two lemmas are not comparable since P7.2→

P7.1 and V7.1→ V7.3. Intuitively when we relax the conditions on values, weneed to

strengthen the conditions on reachability. The subtraction operationD = target(e1) ⊖

target(e2) is propositional, and hence the test in V7.3 implicitly assumes that the common

variables in the operands are the same and P7.1 does not checkthis. Figure 3.4 illustrates

that the reachability condition P7.1 together with V7.3, i.e., combining the weaker por-

tions of conditions from Lemma 3 and Lemma 4, cannot guarantee that we can replace

a branch with a constant. Consider an interpretationI with domain{1, 2, 3, 4} and rela-

tions{h(1, 2), q(3, 4), p(2)}. In addition assume domain knowledgeB = [∃x, y, h(x, y)→

∃z, w, q(z, w)]. Therefore P7.1 and V7.3 hold fore1 = [q(x, y)]↓t ande2 = [h(z, y)↓t]. We

have MAPB1(I) = 3 and MAPB2(I) = 0. It is therefore not possible to replaceh(z, y)↓t

with 0.

Sometimes we can drop the nodeq completely with R7-drop. Intuitively, when we

remove a node, we must guarantee that we do not gain extra value. The conditions for

R7-replace can only guarantee that we will not lose any value. But if we remove the node

q, a valuation that was supposed to reache2 may reach a better value ine2’s sibling. This

would change the map, as illustrated in Figure 3.5. Notice that the conditions P7.1 and

V7.1 hold fore1 = [p(x)]↓t ande2 = [p(y)]↓t so we can replace[p(y)]↓t with a constant.

Consider an interpretationI with domain{1, 2} and relations{q(1), p(2), h(2)}. We have

MAPB1(I) = 10 via valuation{x/2} and MAPB2(I) = 20 via valuation{x/1, y/2}. Thus

removingp(y) is not correct.

Therefore we need the additional condition to guarantee that we will not gain extra

40 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

 10 p(y)

 7

q(y)

h(y)

p(x)

 9 20 0

 B2
 p(x)

 10 h(y)
 20 0

 B1

Figure 3.5: An example illustrating the condition for removing a node in R7.

value with node dropping. This condition can be stated as: for any valuationζ1 that reaches

e2 and thus will be redirected to reach a valuev1 in sibling(e2) whenq is removed, there

is a valuationζ2 that reaches a leaf with valuev2 ≥ v1. However, this condition is too

complex to test in practice. In the following we identify twostronger conditions.

Lemma 5 (Wang, 2008) LetB be a FODD,e1 ande2 edges for which condition V7.2 hold

in addition to the conditions for replacingtarget(e2) with a constant, andB′ the result of

R7-drop(e1, e2), then for any interpretationI we have MAPB(I) = MAPB′(I).

Lemma 6 (Wang, 2008) LetB be a FODD,e1 ande2 edges for which P7.3 and V7.4 hold

in addition to conditions for replacingtarget(e2) with a constant, andB′ the result of

R7-drop(e1, e2), then for any interpretationI we have MAPB(I) = MAPB′(I).

To summarize if P7.1 and V7.1 and S1 hold or P7.2 and V7.3 and S1hold then we can

replacetarget(e2) with a constant. If we can replace and V7.2, or both P7.3 and V7.4 hold,

then we can dropq = source(e2) completely. These conditions are simplified in the next

chapter.

In some cases, several instances of R7 are applicable and onehas to choose which

instance to apply first. This is an interesting issue becauseit turns out that the order in

which we apply them is important. In some cases the order can affect the number of steps

needed to reduce the diagram. In other cases it can affect thefinal result. A discussion and

examples of these issues is given by Wang (2008).

3.7. DECISION DIAGRAMS FOR MDPS 41

A B

p(x, y)

q(x) h(z)

3 2 3 2

p(x, y)

q(x)

1

h(z)

2 1 h(z)

3 1

Figure 3.6: An example illustrating that the minimal set of variables for subtraction is not
unique.

Relaxation of Reachability Conditions

The conditions P7.2 and P7.3 are sufficient, but not necessary to guarantee correct re-

ductions. Sometimes valuations just need to agree on a smaller set of variables than the

intersection of variables. To see this, consider the example as shown in Figure 3.6, where

A⊖B > 0 and the intersection is{x, y, z}. However, to guaranteeA⊖B > 0 we just need

to agree on either{x, y} or {x, z}. Intuitively we have to agree on the variablex to avoid

the situation when two pathsp(x, y) ∧ ¬q(x) andp(x, y) ∧ q(x) ∧ h(z) can co-exist. In

order to prevent the co-existence of two paths¬p(x, y) ∧¬h(z) andp(x, y) ∧ q(x) ∧ h(z),

eithery or z has to be the same as well. Now if we change this example a little and replace

eachh(z) with h(z, v), then we have two minimal sets of variables of different size, one

is {x, y}, and the other is{x, z, v}. As a result we cannot identify a minimum set of vari-

ables for the subtraction and must either choose the intersection or heuristically identify a

minimal set, for example, using a greedy procedure. In chapter 4 we will present one such

procedure that works well in practice.

3.7 Decision Diagrams for MDPs

In this section we show how FODDs can be used to capture an RMDP. We therefore use

FODDs to represent the domain dynamics of deterministic action alternatives, the proba-

bilistic choice of action alternatives, the reward function, and value functions.

42 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

3.7.1 Example Domain

We first give a concrete formulation of the logistics problemdiscussed in the introduc-

tion. This example follows exactly the details given by Boutilier et al. (2001), and is used

to illustrate our constructions for MDPs. The domain includes boxes, trucks and cities,

and predicates areBin(Box, City), T in(Truck, City), andOn(Box, Truck). Following

Boutilier et al. (2001), we assume thatOn(b, t) andBin(b, c) are mutually exclusive, so a

box on a truck is not in a city and vice versa. That is, our background knowledge includes

statements∀b, c, t, On(b, t)→ ¬Bin(b, c) and∀b, c, t, Bin(b, c)→ ¬On(b, t). The reward

function, capturing a planning goal, awards a reward of 10 ifthe formula∃b, Bin(b, Paris)

is true, that is if there is any box in Paris. Thus the reward isallowed to include constants

but need not be completely ground.

The domain includes 3 actionsload, unload, anddrive. Actions have no effect if their

preconditions are not met. Actions can also fail with some probability. When attempting

load, a successful versionloadS is executed with probability 0.99, and an unsuccessful

versionloadF (effectively a no-operation) with probability 0.01. The drive action is ex-

ecuted deterministically. When attemptingunload, the probabilities depend on whether

it is raining or not. If it is not raining then a successful versionunloadS is executed with

probability 0.9, andunloadF with probability 0.1. If it is rainingunloadS is executed with

probability 0.7, andunloadF with probability 0.3.

3.7.2 The Domain Dynamics

We follow Boutilier et al. (2001) and specify stochastic actions as a randomized choice

among deterministic alternatives. The domain dynamics aredefined bytruth value dia-

grams(TVDs). For every action schemaA(~a) and each predicate schemap(~x) the TVD

T (A(~a), p(~x)) is a FODD with{0, 1} leaves. The TVD gives the truth value ofp(~x) in the

next state whenA(~a) has been performed in the current state. We call~a action parame-

ters, and~x predicate parameters. No other variables are allowed in theTVD; the reasoning

behind this restriction is explained in Section 3.8.1. The restriction can be sometimes

sidestepped by introducing more action parameters insteadof the variables.

The TVD simultaneously captures the truth values of all instances ofp(~x) in the next

3.7. DECISION DIAGRAMS FOR MDPS 43

p(x)

 1 0

 0

undo
bring
about

Figure 3.7: A template for the TVD

state. Notice that TVDs for different predicates are separate. This can be safely done

even if an action has coordinated effects (not conditionally independent) since the action

alternatives are deterministic.

Because we allow both action parameters and predicate parameters, the effects of an

action are not restricted to predicates over action arguments so TVD are more expressive

than simple STRIPS based schemas. For example, TVDs can easily express universal

effects of an action. To see this note that ifp(~x) is true for allx after actionA(~a) then the

TVD T (A(~a), p(~x)) can be captured by a leaf valued 1. Other universal conditional effects

can be captured similarly. On the other hand, because we do not have explicit universal

quantifiers, TVDs cannot capture universal preconditions.

For any domain, a TVD for predicatep(~x) can be defined generically as in Figure 3.7.

The idea is that the predicate is true if it was true before andis not “undone” by the action

or was false before and is “brought about” by the action. TVDsfor the logistics domain

in our running example are given in Figure 3.8. All the TVDs omitted in the figure are

trivial in the sense that the predicate is not affected by theaction. In order to simplify the

presentation we give the TVDs in their generic form and did not sort the diagrams using

the order proposed in Section 3.5; the TVDs are consistent with the orderingBin ≺ “=”

≺ On ≺ T in ≺ rain. Notice that the TVDs capture the implicit assumption usually taken

in such planning-based domains that if the preconditions ofthe action are not satisfied then

the action has no effect.

44 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Bin (B, C)

B= b*

Tin(t*, C)
 0

0

1

(c)

On (B, T)

B= b*

T= t*

0

0

1

(b)

Bin (B, C)

1 B= b*

On (B, t*)

Tin (t* , C)

1 0

(a)

On (B, T)

1 B= b*

T= t*

Tin (T, c*)

1 0

(d)

Bin (B, c*)

Tin (T, C)

T= t*

C≠ c*

0 1

T= t*

C= c*

1 0

(e)

rain

0.7 0.9

Bin (b, Paris)

10 0

(f) (g)

C= c*

Figure 3.8: FODDs for the logistics domain: TVDs, action choice, and reward function.
(a)(b) The TVDs forBin(B, C) andOn(B, T) under action choiceunloadS(b∗, t∗, c∗).
(c)(d) The TVDs forBin(B, C) and On(B, T) under action choiceloadS(b∗, t∗, c∗).
Note thatc∗ must be an action parameter so that (d) is a valid TVD. (e) The TVD for
T in(T, C) under action choicedriveS(t∗, c∗). (f) The probability FODD for the action
choiceunloadS(b∗, t∗). Therefore,P (unloadS(b∗, t∗, c∗) | unload(b∗, t∗, c∗), rain) = 0.7
andP (unloadS(b∗, t∗, c∗) | unload(b∗, t∗, c∗),¬rain) = 0.9. (g) The reward function.

3.7.3 Probabilistic Action Choice

The probability distribution over action effects can itself depend on the state. One can con-

sider modeling arbitrary conditions described by formulasover the state to control nature’s

probabilistic choice of action. Here the multiple path semantics makes it hard to specify

mutually exclusive conditions using existentially quantified variables and in this way spec-

ify a distribution. We therefore restrict the conditions tobe either propositional or depend

directly on the action parameters. Under this condition anyinterpretation follows exactly

one path (since there are no variables and thus only the emptyvaluation) thus the aggrega-

tion function does not interact with the probabilities assigned. A diagram showing action

choice forunloadS in our logistics example is given in Figure 3.8. In this example, the

3.8. VALUE ITERATION WITH FODDS 45

Big(b*)

 rain

0.7

0.9

 0.9

Figure 3.9: An example showing that the choice probability can depend on action parame-
ters.

condition is propositional. The condition can also depend on action parameters, for exam-

ple, if we assume that the result is also affected by whether the box is big or not, we can

have a diagram as in Figure 3.9 specifying the action choice probability.

Note that a probability usually depends on the current state. It can depend on arbitrary

properties of the state (with the restriction stated as above), e.g.,rain andbig(b∗), as shown

in Figure 3.9. We allow arbitrary conditions that depend on predicates with arguments re-

stricted to action parameters so the dependence can be complex. However, we do not allow

any free variables in the probability choice diagram. For example, we cannot model a

probabilistic choice ofunloadS(b∗, t∗, c∗) that depends on other boxes on the truckt∗, e.g.,

∃b, On(b, t∗) ∧ b 6= b∗ : 0.2; otherwise,0.7. While we can write a FODD to capture this

condition, the semantics of FODD means that a path to0.7 will be selected by max aggre-

gation so the distribution cannot be modeled in this way. While this is clearly a restriction,

the conditions based on action arguments still give a substantial modeling power.

3.7.4 Reward and Value Functions

Reward and value functions can be represented directly using algebraic FODDs. The re-

ward function for our logistics domain example is given in Figure 3.8.

3.8 Value Iteration with FODDs

Following Boutilier et al. (2001) we define the first order value iteration algorithm as fol-

lows: given the reward functionR and the action model as input, we setV0 = R, n = 0

and repeat the procedureRel-greedyuntil termination:

46 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Procedure 1 Rel-greedy

1. For each action typeA(~x), compute:

Q
A(~x)
Vn

= R⊕ [γ ⊗⊕j(prob(Aj(~x))⊗ Regr(Vn, Aj(~x)))] (3.1)

2. QA
Vn

= obj-max(QA(~x)
Vn

).

3. Vn+1 = maxA QA
Vn

.

The notation and steps of this procedure were discussed in Chapter2 except that now⊗

and⊕ work on FODDs instead of case statements. Note that because the reward function

does not depend on actions, we can move the object maximization step forward before

adding the reward function. I.e., we first have

T
A(~x)
Vn

= ⊕j(prob(Aj(~x))⊗ Regr(Vn, Aj(~x))),

followed by

QA
Vn

= R⊕ γ ⊗ obj-max(T A(~x)
Vn

).

Later we will see that the object maximization step makes more reductions possible; there-

fore by moving this step forward we get some savings in computation. We compute the

updated value function in this way in the comprehensive example of value iteration given

later in Section 3.8.7.

Value iteration terminates when‖Vi+1 − Vi‖ ≤
ε(1−γ)

2γ
(Puterman, 1994). In our case

we need to test that the values achieved by the two diagrams iswithin ε(1−γ)
2γ

.

Some formulations of goal based planning problems use an absorbing state with zero

additional reward once the goal is reached. We can handle this formulation when there is

only one non-zero leaf inR. In this case, we can replace Equation 3.1 with

Q
A(~x)
Vn

= max(R, γ ⊗⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x))).

To see why this is correct, note that due to discounting the max value is always≤ R. If R

is satisfied in a state we do not care about the action (max would beR) and if R is 0 in a

state we get the value of the discounted future reward.

3.8. VALUE ITERATION WITH FODDS 47

Note that we can only do this in goal based domains, i.e., there is only one non-zero

leaf. This does not mean that we cannot have disjunctive goals, but it means that we must

value each goal condition equally.

3.8.1 Regressing Deterministic Action Alternatives

We first describe the calculation ofRegr(Vn, Aj(~x)) using a simple idea we call block

replacement. We then proceed to discuss how to obtain the result efficiently.

ConsiderVn and the nodes in its FODD. For each such node take a copy of the cor-

responding TVD, where predicate parameters are renamed so that they correspond to the

node’s arguments and action parameters are unmodified. BR-regress(Vn, A(~x)) is the FODD

resulting from replacing each node inVn with the corresponding TVD, with outgoing edges

connected to the 0, 1 leaves of the TVD.

Recall that an RMDP represents a family of concrete MDPs eachgenerated by choosing

a concrete instantiation of the state space (typically represented by the number of objects

and their types). The formal properties of our algorithms hold for any concrete instantia-

tion.

Fix any concrete instantiation of the state space. Lets denote a state resulting from

executing an actionA(~x) in stateŝ. Notice thatVn and BR-regress(Vn, A(~x)) have exactly

the same variables. We have the following lemma:

Lemma 7 (Wang, 2008) Letζ be any valuation to the variables ofVn (and thus also the

variables of BR-regress(Vn, A(~x))). Then MAPVn(s, ζ) = MAPBR−regress(Vn,A(~x))(ŝ, ζ).

A naive implementation of block replacement may not be efficient. If we use block re-

placement for regression then the resulting FODD is not necessarily reduced and moreover,

since the different blocks are sorted to start with the result is not even sorted. Reducing and

sorting the results may be an expensive operation. Instead we calculate the result as fol-

lows. For any FODDVn we traverse BR-regress(Vn, A(~x)) using postorder traversal in

terms of blocks and combine the blocks. At any step we have to combine 3 FODDs such

that the parent block has not yet been processed (so it is a TVDwith binary leaves) and the

two children have been processed (so they are general FODDs). If we call the parentBn,

48 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

thetrue branch childBt and thefalse branch childBf then we can represent their

combination as[Bn ⊗ Bt]⊕ [(1⊖ Bn)⊗ Bf].

Lemma 8 (Wang, 2008) LetB be a FODD whereBt and Bf are FODDs, andBn is a

FODD with {0, 1} leaves. LetB̂ be the result of using Apply to calculate the diagram

[Bn ⊗ Bt] ⊕ [(1 ⊖ Bn) ⊗ Bf]. Then for any interpretationI and valuationζ we have

MAPB(I, ζ) = MAPB̂(I, ζ).

A high-level description of the algorithm to calculate BR-regress(Vn, A(~x)) by block

combination is as follows:

Procedure 2 Block Combination for BR-regress(Vn, A(~x))

1. Perform a topological sort onVn nodes (Cormen, Leiserson, Rivest, & Stein, 2001).

2. In reverse order, for each non-leaf noden (its childrenBt andBf have already been

processed), letBn be a copy of the corresponding TVD, calculate[Bn ⊗Bt]⊕ [(1⊖

Bn)⊗ Bf]

3. Return the FODD corresponding to the root.

Notice that different blocks share variables so we cannot perform weak reductions dur-

ing this process. However, we can perform strong reductionsin intermediate steps since

they do not change the map for any valuation. After the process is completed we can per-

form any combination of weak and strong reductions since this does not change the map of

the regressed value function.

We can now explain why we cannot have variables in TVDs through an example il-

lustrated in Figure 3.10. Suppose we have a value function asdefined in Figure 3.10(a),

saying that if there is a blue block and a big truck such that the block is not on the truck

then value1 is assigned. Figure 3.10(b) gives the TVD forOn(B, T) under actionloadS,

in which c is a variable instead of an action parameter. Figure 3.10(c)gives the result

after block replacement. Consider an interpretationŝ with domain{b1, t1, c1, c2} and rela-

tions{Blue(b1), Big(t1), Bin(b1, c1), T in(t1, c1)}. After the actionloadS(b1, t1) we will

reach the states = {Blue(b1), Big(t1), On(b1, t1), T in(t1, c1)}, which gives us a value of

3.8. VALUE ITERATION WITH FODDS 49

Big(t)

Blue (b)

Big(t)

Bin (b, c)

0

(c)

0

Blue (b)

On(b,t)
 0 1

On (B, T)

1 B= b*

T= t*

Tin (T, c)

1 0

Bin (B, c)

On (b, t)

0 b= b*

t= t*

Tin (t, c)

0 1

(a)

(b)

Figure 3.10: An example illustrating why variables are not allowed in TVDs.

0. But Figure 3.10(c) withb∗ = b1, t
∗ = t1 evaluated in̂s gives value of 1 by valuation

{b/b1, c/c2, t/t1}. Here the choicec/c2 makes sure the precondition is violated. By making

c an action parameter, applying the action must explicitly choose a valuation and this leads

to a correct value function. Object maximization turns action parameters into variables and

allows us to choose the argument so as to maximize the value.

3.8.2 Regressing Probabilistic Actions

To regress a probabilistic action we must regress all its deterministic alternatives and com-

bine each with its choice probability as in Equation 3.1. As discussed in the previous

chapter, due to the restriction in the RMDP model that explicitly specifies a finite number

of deterministic action alternatives, we can replace the potentially infinite sum of Equa-

tion 2.1 with the finite sum of Equation 3.1 which is thereforecorrect. In the following we

specify how this can be done with FODDs.

Recall thatprob(Aj(~x)) is restricted to include only action parameters and cannot in-

clude variables. We can therefore calculateprob(Aj(~x)) ⊗ Regr(Vn, Aj(~x)) in step (1)

directly using Apply. However, the different regression results are independent functions

so that in the sum⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x))) we must standardize apart the dif-

ferent regression results before adding the functions (note that action parameters are still

50 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

q (x)
 p (x)

 10

0

 5

(a)

q (x1)

q (A)

 1

p (x1)

 0

 5 0

 2.5

p (A)
 A=x*

1

 0

(c)

V0 ASucc(x*)

(b)

x1= x*
 q (x1)

+

q (x2)
 p (x2)

 5

0

 2.5

q (x2)
 q (x1)

 p (x1)
 x1= x*

 q (x1)
 7.5

 …

Figure 3.11: An example illustrating the need to standardize apart.

considered constants at this stage). The same holds for the addition of the reward function.

The need to standardize apart complicates the diagrams and often introduces structure that

can be reduced. When performing these operations we first usethe propositional Apply

procedure and then follow with weak and strong reductions.

Figure 3.11 illustrates why we need to standardize apart different action outcomes.

Action A can succeed (denoted asASucc) or fail (denoted asAFail, effectively a no-

operation), and each is chosen with probability 0.5. Part (a) gives the value functionV 0.

Part (b) gives the TVD forP (A) under the action choiceASucc(x∗). All other TVDs are

trivial. Part (c) shows part of the result of adding the two outcomes forA after standardizing

apart (to simplify the presentation the diagrams are not sorted). Consider an interpretation

with domain{1, 2} and relations{q(1), p(2)}. As can be seen from (c), by choosingx∗ =

1, i.e. actionA(1), the valuationx1 = 1, x2 = 2 gives a value of7.5 after the action (without

considering the discount factor). Obviously if we do not standardize apart (i.ex1 = x2),

there is no leaf with value7.5 and we get a wrong value. Intuitively the contribution of

ASucc to the value comes from the “bring about” portion of the diagram andAFail’s

3.8. VALUE ITERATION WITH FODDS 51

contribution uses bindings from the “not undo” portion and the two portions can refer to

different objects. Standardizing apart allows us to capture both simultaneously.

From Lemma 7 and 8 and the discussion so far we have:

Lemma 9 (Wang, 2008) Consider any concrete instantiation of an RMDP. Let Vn be a

value function for the corresponding MDP, and letA(~x) be a probabilistic action in the

domain. ThenQA(~x)
Vn

as calculated by Equation 3.1 is correct. That is, for any state s,

MAP
Q

A(~x)
Vn

(s) is the expected value of executingA(~x) in s and then receiving the terminal

valueVn.

3.8.3 Object Maximization

Notice that since we are handling different probabilistic alternatives of the same action

separately we must keep action parameters fixed during the regression process and until

they are added in step1 of the algorithm. In step 2 we maximize over the choice of action

parameters. As mentioned above we get this maximization forfree. We simply rename

the action parameters using new variable names (to avoid repetition between iterations)

and consider them as variables. The aggregation semantics provides the maximization and

by definition this selects the best instance of the action. Since constants are turned into

variables additional reduction is typically possible at this stage. Any combination of weak

and strong reductions can be used. From the discussion we have the following lemma:

Lemma 10 (Wang, 2008) Consider any concrete instantiation of an RMDP. Let Vn be a

value function for the corresponding MDP, and letA(~x) be a probabilistic action in the

domain. ThenQA
Vn

as calculated by object maximization in step 2 of the algorithm is cor-

rect. That is, for any states, MAPQA
Vn

(s) is the maximum over expected values achievable

by executing an instance ofA(~x) in s and then receiving the terminal valueVn.

A potential criticism of our getting object maximization for free is that we are essen-

tially adding more variables to the diagram and thus evaluating the diagram in any state

becomes more expensive (since more substitutions need to beconsidered). However, this

is only true if the diagram remains unchanged after object maximization. In fact, as illus-

trated in the example given below, these variables may be pruned from the diagram in the

52 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

process of reduction. Thus as long as the final value functionis compact the evaluation is

efficient and there is no such hidden cost.

3.8.4 Maximizing Over Actions

The maximizationVn+1 = maxA QA
n+1 in step (3) combines independent functions. As

above we first standardize apart the different diagrams, then we can follow with the propo-

sitional Apply procedure and finally follow with weak and strong reductions. This clearly

maintains correctness for any concrete instantiation of the state space. The next chapter

shows that standardizing apart in this case (and whenever combining diagrams usingmax)

is not necessary.

3.8.5 Order Over Argument Types

We can now resume the discussion of ordering of argument types and extend it to predicate

and action parameters. As above some structure is suggestedby the operations of the

algorithm. Section 3.5 already suggested that we order constants before variables.

Action parameters are “special constants” before object maximization but they become

variables during object maximization. Thus their positionshould allow them to behave as

variables. We should therefore order constants before action parameters.

Note that predicate parameters only exist inside TVDs, and will be replaced with do-

main constants or variables during regression. Thus we onlyneed to decide on the relative

order between predicate parameters and action parameters.If we put action parameters

before predicate parameters and the latter is replaced witha constant then we get an order

violation, so this order is not useful. On the other hand, if we put predicate parameters

before action parameters then both instantiations of predicate parameters are possible, as

long as the variables corresponding to action parameters (in object maximization) are after

the ones in the FODD. Therefore, we also order action parameters after variables.

To summarize, the ordering: constants≺ variables (predicate parameters in case of

TVDs)≺ action parameters, is suggested by heuristic considerations for orders that maxi-

mize the potential for reductions, and avoid the need for re-sorting diagrams.

3.8. VALUE ITERATION WITH FODDS 53

On(X, Y)

p(X)

p(Y)

1 0

(a)

On(x2, x1)

p(x2)

p(x1)

1 0

(b)

On(X, Y)

p(Y)

p(X)

1 0

(c)

Figure 3.12: An example illustrating the necessity to maintain multiple TVDs.

Finally, note that if we want to maintain the diagram sorted at all times, we need to

maintain variant versions of each TVD capturing possible ordering of replacements of pred-

icate parameters. Consider a TVD in Figure 3.12(a). If we rename predicate parametersX

andY to bex2 andx1 respectively, and ifx1 ≺ x2, then the resulting sub-FODD as shown

in Figure 3.12(b) violates the order. To solve this problem we have to define another TVD

corresponding to the case where the substitution ofX succeeds the substitution ofY , as

shown in Figure 3.12(c). In the case of replacingX with x2 andY with x1, we use the

TVD in Figure 3.12(c) instead of the one in Figure 3.12(a).

3.8.6 Convergence and Complexity

Since each step of Procedure 1 is correct we have the following theorem:

Theorem 2 (Wang, 2008) Consider any concrete instantiation of an RMDP. LetVn be the

value function for the corresponding MDP when there aren steps to go. Then the value of

Vn+1 calculated by Procedure 1, correctly captures the value function when there aren+1

steps to go. That is, for any states, MAPVn+1(s) is the maximum expected value achievable

in s in n + 1 steps.

Note that for first order MDPs some problems require an infinite number of state par-

titions. Thus we cannot converge toV ∗ in a finite number of steps. However, since our

algorithm implements VI exactly, standard results about approximating optimal value func-

tions and policies still hold. In particular the following standard result (Puterman, 1994)

54 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

holds for our algorithm, and our stopping criterion guarantees approximating optimal value

functions and policies.

Theorem 3 (Wang, 2008) LetV ∗ be the optimal value function and letVk be the value

function calculated by the relational VI algorithm.

1. If r(s) ≤M for all s then‖Vn − V ∗‖ ≤ ε for n ≥
log(2M

ε(1−γ)
)

log 1
γ

.

2. If ‖Vn+1 − Vn‖ ≤
ε(1−γ)

2γ
then‖Vn+1 − V ∗‖ ≤ ε.

While the algorithm maintains compact diagrams, reductionof diagrams is not guaranteed

for all domains. Therefore we can only provide trivial upperbounds in terms of worst

case time complexity. Notice first that every time we use the Apply procedure the size

of the output diagram may be as large as the product of the sizeof its inputs. We must

also consider the size of the FODD giving the regressed valuefunction. While Block

replacement isO(N) whereN is the size of the current value function, it is not sorted

and sorting may require both exponential time and space in the worst case. For example,

Bryant (1986) illustrates how ordering may affect the size of a diagram. For2n arguments,

the functionx1 · x2 + x3 · x4 + · · ·+ x2n−1 · x2n only requires a diagram of2n + 2 nodes,

while the functionx1 ·xn+1+x2 ·xn+2+· · ·+xn ·x2n requires2n+1 nodes. Notice that these

two functions only differ by a permutation of their arguments. Now if x1 · x2 + x3 · x4 +

· · ·+x2n−1 ·x2n is the result of block replacement then clearly sorting requires exponential

time and space. The same is true for our block combination procedure or any other method

of calculating the result, simply because the output is of exponential size. In such a case

heuristics that change variable ordering, as in propositional ADDs (Bryant, 1992), would

probably be very useful.

Assuming TVDs, reward function, and probabilities all havesize≤ C, each action

has≤ M action alternatives, the current value functionVn hasN nodes, and worst case

space expansion for regression and all Apply operations, the overall size of the result and

the time complexity for one iteration areO(CM2(N+1)). However note that this is the

worst case analysis and does not take reductions into account. While our method is not

guaranteed to always work efficiently, the alternative of grounding the MDP will have

an unmanageable number of states to deal with. Therefore, despite the high worst case

3.8. VALUE ITERATION WITH FODDS 55

complexity our method provides a potential improvement. Asthe next example illustrates

reductions can substantially decrease diagram size and therefore save considerable time in

computation.

3.8.7 A Comprehensive Example of Value Iteration

Figure 3.13 traces steps in the application of value iteration to the logistics domain. The

TVDs, action choice probabilities, and reward function forthis domain are given in Fig-

ure 3.8. To simplify the presentation, we continue using thepredicate orderingBin ≺ “=”

≺ On ≺ T in ≺ rain introduced earlier.2

GivenV0 = R as shown in Figure 3.13(a), Figure 3.13(b) gives the result of regression

of V0 through the action alternativeunloadS(b∗, t∗, c∗) by block replacement, denoted as

Regr(V0, unloadS(b∗, t∗, c∗)).

Figure 3.13(c) gives the result of multiplyingRegr(V0, unloadS(b∗, t∗, c∗)) with the

choice probability ofunloadS Pr(unloadS(b∗, t∗, c∗)).

Figure 3.13(d) is the result ofPr(unloadF (b∗, t∗, c∗))⊗Regr(V0, unloadF (b∗, t∗, c∗)).

Notice that this diagram is simpler sinceunloadF does not change the state and the TVDs

for it are trivial.

Figure 3.13(e) gives the unreduced result of adding two outcomes forunload(b∗, t∗, c∗),

i.e.,

[Pr(unloadS(b∗, t∗, c∗)) ⊗ Regr(V0, unloadS(b∗, t∗, c∗))] ⊕ [Pr(unloadF (b∗, t∗, c∗)) ⊗

Regr(V0, unloadF (b∗, t∗, c∗))]. Note that we first standardize apart the diagrams for action

alternativesunloadS(b∗, t∗, c∗) andunloadF (b∗, t∗, c∗) by respectively renamingb as b1

andb2. Action parametersb∗, t∗ andc∗ at this stage are considered as constants and we do

not change them. Also note that the recursive part of Apply (addition⊕) has performed

some reductions, i.e., removing the noderain when both of its children lead to value10.

In Figure 3.13(e), we can apply R7 to nodeBin(b2, Paris) in the left branch. The

conditions

P7.1:[∃b1, Bin(b1, Paris)]→ [∃b1, b2, Bin(b1, Paris) ∧ Bin(b2, Paris)],

V7.1: min(Bin(b2, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f) = 9,

2The details do not change substantially if we use the order suggested in Section3.5 (where equality is
first).

56 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

V0

Bin (b, Paris)

10 0

Bin (b, Paris)

10 b= b*

On (b, t*)

Tin (t* , Paris)

10 0

(b)

0

Bin (b, Paris)

7

b= b*

On (b, t*)

Tin (t* , Paris)

rain

9

(h)

(l)

(c)

(e)

Bin (b, Paris)

b= b*

On (b, t*)

Tin (t* , Paris)

19
 b=b*

t= t*

On(b, t) 0

0 Tin (t, Paris)

rain

 6.3 8.1

0

(f)

(a)

Bin (b, Paris)

3 1

rain 0

(d)

(g)

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

unloadQ1

Bin (b, Paris)

19 On (b, t)
 Tin (t, Paris)

 rain

 6.3 0 8.1

V1

0

 9

Bin (b1, Paris)

10

On (b1, t*)
 Tin (t* , Paris)

 rain

 7

b1= b*

7

rain

9

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

10

Bin (b2, Paris)

10

7

rain

9

Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

3

rain

1 7

rain

9

Bin (b1, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

10

10 Bin (b2, Paris)

b1= b*

On (b1, t*)

Tin (t* , Paris)

3

rain

1

Bin (b1, Paris)

10 On (b1, t1)
 Tin (t1, Paris)

 rain

 7 0 9

(i)

Bin (b, Paris)

19 0

Bin (b, Paris)

19 0

loadQ1

driveQ1

(j)

(k)

(m)

0 0

Tin (t, Paris)

0 1

rain

 6.3 8.1
⊗

⊕
Tin (t, Paris)

1 0

⊗ 0

=
Tin (t, Paris)

rain

 6.3 8.1

0

(n)

Figure 3.13: An example of value iteration in the Logistics Domain.

3.8. VALUE ITERATION WITH FODDS 57

V7.2: Bin(b2, Paris)↓t is a constant

hold. According to Lemma 3 and Lemma 5 we can drop nodeBin(b2, Paris) and con-

nect its parentBin(b1, Paris) to its true branch. Figure 3.13(f) gives the result after this

reduction.

Next, consider thetrue child of Bin(b2, Paris) and thetrue child of the root.

Conditions

P7.1:[∃b1, b2,¬Bin(b1, Paris) ∧ Bin(b2, Paris)]→ [∃b1, Bin(b1, Paris)],

V7.1: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓t) = 10,

V7.2: min(Bin(b1, Paris)↓t) = 10 ≥ max(Bin(b2, Paris)↓f) = 9

hold. According to Lemma 3 and Lemma 5, we can drop the nodeBin(b2, Paris) and

connect its parentBin(b1, Paris) to Bin(b2, Paris)↓f . Figure 3.13(g) gives the result

after this reduction and now we get a fully reduced diagram. This isT
unload(b∗,t∗,c∗)
V0

.

In the next step we perform object maximization to maximize over action parameters

b∗, t∗ andc∗ and get the best instance of the actionunload. Note thatb∗, t∗ andc∗ have

now become variables, and we can perform one more reduction:we can drop the equality

on the right branch by R9. Figure 3.13(h) gives the result after object maximization, i.e.,

obj-max(T unload(b∗,t∗,c∗)
V0

). Note that we have renamed the action parameters to avoid the

repetition between iterations.

Figure 3.13(i) gives the reduced result of multiplying the diagram in Figure 3.13(h),

obj-max (T
unload(b∗,t∗,c∗)
V0

), by γ = 0.9, and adding the reward function. This result is

Qunload
1 .

We can calculateQload
1 and Qdrive

1 in the same way and results are shown in Fig-

ure 3.13(j) and Figure 3.13(k) respectively. Fordrive the TVDs are trivial and the cal-

culation is relatively simple. Forload, the potential loading of a box already in Paris is

dropped from the diagram by the reduction operators in the process of object maximiza-

tion.

Figure 3.13(l) givesV1, the result after maximizing overQunload
1 , Qload

1 and Qdrive
1 .

Here again we standardized apart the diagrams, maximized over them, and then reduced

the result. In this case the diagram forunload dominates the other actions. Therefore

Qunload
1 becomesV1, the value function after the first iteration.

Now we can start the second iteration, i.e., computingV2 from V1. Figure 3.13(m)

58 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

gives the result of block replacement in the regression ofV 1 through the action alternative

unloadS(b∗, t∗, c∗). Note that we have sorted the TVD foron(B, T) so that it obeys the

ordering we have chosen. However, the diagram resulting from block replacement is not

sorted.

To address this we use the block combination algorithm to combine blocks bottom up.

Figure 3.13(n) illustrates how we combine blocksT in(t, Paris), which is a TVD, and

its two children, which have been processed and are general FODDs. After we combine

T in(t, Paris) and its two children,On(b, t)↓t has been processed. SinceOn(b, t)↓f = 0,

now we can combineOn(b, t) and its two children in the next step of block combination.

Continuing this process we get a sorted representation ofRegr(V1, unloadS(b∗, t∗, c∗)).

3.8.8 Extracting Optimal Policies

There is more than one way to represent policies with FODDs. Here we simply note that a

policy can be represented implicitly by a set of regressed value functions. After the value

iteration terminates, we can perform one more iteration andcompute the set ofQ-functions

using Equation 3.1.

Then, given a states, we can compute the maximizing action as follows:

1. For eachQ-functionQA(~x), compute MAPQA(~x)(s), where~x are considered as vari-

ables.

2. For the maximum map obtained, record the action name and action parameters (from

the valuation) to obtain the maximizing action.

This clearly implements the policy represented by the valuefunction. We use this ap-

proach in our implementation. An alternative approach thatrepresents the policy explicitly

was developed in the context of a policy iteration algorithm(Wang & Khardon, 2007).

3.9. SUMMARY AND CONCLUDING REMARKS 59

3.9 Summary and Concluding Remarks

In this chapter we presented the definition of FODDs along with their properties and algo-

rithms for combining and reducing them. In particular we developed the reduction opera-

tor R7 and discussed its applicability. We also presented anSDP based VI algorithm for

RMDPs that uses FODDs as the underlying RMDP language. In subsequent chapters we

will build on this framework, introduce improvements and provide experimental evaluation

of these ideas.

Chapter 4

Theorem Proving Reductions

The VI algorithm we presented in the last chapter performs reasoning with FODDs. This

reasoning process introduces many redundancies in the FODDs. In the previous chapter

we also presented a set of operators to reduce FODDs. Reductions are based on the idea

that a diagram can be made smaller by the removal of these redundancies. This set of re-

duction operators, however, is by no means comprehensive and has two limitations. Firstly

it falls short of providing a canonical form for FODDs. Secondly there are simple cases

where FODDs can be simplified but none of the existing reductions (R1· · · R5, R7) can

perform the simplification. Unfortunately an implementation of the VI algorithm using

this set of reduction operators is too slow to yield practical results because diagrams are

not sufficiently reduced and because the reductions themselves are expensive.

In this chapter, we address the second issue by introducing new reduction operators

R9, R10 and R11. R9 is designed specifically to reduce diagrams with redundant equality

nodes. R10 is similar to R7 in some sense. Unlike R7, however,R10 makes a global anal-

ysis of the FODD and removes many redundant portions of the diagram simultaneously.

R11 works locally and targets a particular redundancy that arises quite often when FODDs

are composed. The new operators still do not guarantee a canonical form, but improve

upon many of the deficiencies of the previous operators. All of these reductions rely on

proving reachability conditions (e.g. P7.2) and thus make use of theorem proving. We

therefore call them theorem proving reductions to distinguish them from the constructions

in chapter6. In addition this chapter includes results that directly improve the previous

60

61

Figure 4.1: Example illustrating the need for a DPO

constructions. First we introduce a technique to improve applicability of R7 and secondly

we show that standardizing apart diagrams is unnecessary when combining FODDs under

themax operator.

We need the following notation in addition to that explainedin the previous chapter.

If B is a FODD andp is a path from the root to a leaf inB, then the path formula forp,

denoted by PF(p) is the conjunction of literals alongp. The variables ofp, are denoted~xp.

When ~xp are existentially quantified, satisfiability of PF(p) under an interpretationI is a

necessary and sufficient condition for the pathp to be traversed by some valuation under

I. If ζ is such a valuation, then we definePathB(I, ζ) = p. The leaf reached by pathp is

denoted asleaf(p). We let PF(p)\Lit denote the path formula of pathp with the literalLit

removed (if it was present) from the conjunction.

The following definitions are important in developing new reductions and to understand

potential scope for reducing diagrams.

Definition 3 A descending path ordering (DPO) is an ordered list of all paths from the

root to a leaf in FODDB, sorted in descending order by the value of the leaf reached by

the path. The relative order of paths reaching the same leaf is unimportant as long as it is

fixed.

Definition 4 If B is a FODD, andP is the DPO forB, then a pathpj ∈ P is instrumental

iff

1. there is an interpretationI and valuation,ζ , such thatPathB(I, ζ) = pj , and

2. ∀ valuationsη, if PathB(I, η) = pk, thenk ≥ j.

62 CHAPTER 4. THEOREM PROVING REDUCTIONS

The example in Figure 4.1 shows why a DPO is needed. The pathsp(x) ∧ ¬p(y) and

¬p(x) ∧ p(z) both imply each other. Whenever there is a valuation traversing one of the

paths there is always another valuation traversing the other. Removing any one path from

the diagram would be safe meaning that the map is not changed.But we cannot remove

both paths. Without an externally imposed order on the paths, it is not clear which path

should be labeled as redundant. A DPO does exactly that to make the reduction possible.

4.1 (R9) Equality Reduction

Consider a FODDB with an equality noden labeledt = x. Sometimes we can dropn and

connect its parents to a sub-FODD that is the result of takingthe maximum of the left and

the right children ofn. For this reduction to be applicableB has to satisfy the following

condition.

(E9.1) : For an equality noden labeledt = x at least one oft andx is a variable and it

appears neither inn↓f nor in the node formula forn. To simplify the description of the

reduction procedure below, we assume thatx is that variable.

Additionally we make the following assumption about the domain.

(D9.1) : The domain contains more than one object.

The above assumption guarantees that valuations reaching the right child of equality

nodes exist. This fact is needed in proving correctness of the Equality reduction operator.

First we describe the reduction procedure for R9(n). Let Bn denote the FODD rooted at

noden in FODD B. We extract a copy ofBn↓t
(and name itBn↓t

-copy), and a copy of

Bn↓f
(Bn↓f

-copy) fromB. In Bn↓t
-copy, we rename the variablex to t to produce diagram

B′
n↓t

-copy. LetB′
n = Apply(B′

n↓t
-copy, Bn↓f

-copy, max). Finally we drop the noden in

B and connect its parents to the root ofB′
n to obtain the final resultB′. An example is

shown in Figure 4.2.

Informally, we are extracting the parts of the FODD rooted atnoden, one wherex = t

(and renamingx to t in that part) and one wherex 6= t. The condition E9.1 and the

assumption D9.1 guarantee that regardless of the value oft, we have valuations reaching

both parts. Since by the definition of map, we maximize over the valuations, in this case

we can maximize over the diagram structure itself. We do thisby calculating the function

4.1. (R9) EQUALITY REDUCTION 63

x=y

(a)

b=x

0

q(x)

10

p(y)

q(x)

5 0

p(y)

10

p(x)

q(x)

0

(c)

10

q(x)

0

(b)

5

q(x)

0

(d)

b=x

0

q(x)

10

p(x)

q(x)

5 0

(e)

Figure 4.2: An example of the equality reduction. (a) The FODD before reduction. The
nodex = y satisfies condition E9.1 for variabley. (b) Bn↓t

-copy (n↓t extracted). (c)
Bn↓t

-copy renamed to produceB′
n↓t

-copy. (d)Bn↓f
-copy. (e) Final result with noden

replaced byapply(B′
n↓t

-copy, Bn↓f
-copy, max)

which is the maximum of the two functions corresponding to the two children ofn (using

Apply) and replacing the old sub-diagram rooted at noden by the new combined diagram.

Theorem 12 proves that this does not affect the map ofB.

One concern for implementation is that we simply replace theold sub-diagram by the

new sub-diagram, which may result in a diagram where strong reductions are applicable.

While this is not a problem semantically, we can avoid the need for strong reductions by

usingApply that implicitly performs strong reductions R1(neglect) and R2(join) as follows.

Let Ba denote the FODD resulting from replacing noden in B with 0, andBb the

FODD resulting from replacing noden with 1 and all leaves other than noden by 0, we

have the final resultB′ = Ba ⊕B′
b whereB′

b = Bb⊗B′
n. By correctness ofApply the two

forms of calculatingB′ give the same map.

In the following we prove that for any noden where equality condition E9.1 holds inB

we can perform the equality reduction R9 without changing the map for any interpretation

satisfying D9.1. We start with properties of FODDs defined above, e.g.,Ba, Bb, andB′
b. Let

Γn denote the set of all valuations reaching noden and letΓm denote the set of all valuations

64 CHAPTER 4. THEOREM PROVING REDUCTIONS

not reaching noden in B. From the basic definition of map we have the following:

Claim 1 For any interpretationI,

(a) ∀ ζ ∈ Γm, MAPBa(I, ζ) = MAPB(I, ζ).

(b) ∀ ζ ∈ Γn, MAPBa(I, ζ) = 0.

(c) ∀ ζ ∈ Γm, MAPBb
(I, ζ) = 0.

(d) ∀ ζ ∈ Γn, MAPBb
(I, ζ) = 1.

From Claim 1 and the definition of map, we have,

Claim 2 For any interpretationI,

(a) ∀ ζ ∈ Γm,MAPB′
b
(I, ζ) = 0.

(b) ∀ ζ ∈ Γn,MAPB′
b
(I, ζ) = MAPB′

n
(I, ζ).

From Claim 1, Claim 2, and the definition of map we have,

Claim 3 For any interpretationI,

(a) ∀ ζ ∈ Γm, MAPB′(I, ζ) = MAPB(I, ζ).

(b) ∀ ζ ∈ Γn, MAPB′(I, ζ) = MAPB′
n
(I, ζ).

Next we prove the main property of this reduction stating that for all valuations reaching

noden in B, the old sub-FODD rooted atn and the new (combined) sub-FODD produce

the same map.

Lemma 11 LetΓn be the set of valuations reaching noden in FODD B. For any interpre-

tationI satisfying D9.1,maxζ∈Γn MAPBn(I, ζ) = maxζ∈Γn MAPB′
n
(I, ζ).

Proof: By condition E9.1, the variablex does not appear inNF (n) and hence its value

in ζ ∈ Γn is not constrained. We can therefore partition the valuations inΓn into disjoint

sets,Γn = {Γ∆ | ∆ is a valuation to variables other thanx}, where inΓ∆ variables other

thanx are fixed to their value in∆ andx can take any value in the domain ofI. Assumption

D9.1 guarantees that everyΓ∆ contains at least one valuation reachingBn↓t
and at least one

valuation reachingBn↓f
in B. Note that if a valuationζ reachesBn↓t

thent = x is satisfied

by ζ thus MAPBn↓t
(I, ζ) = MAPB′

n↓t
-copy(I, ζ). Sincex does not appear inBn↓f

we also

4.2. THE R10 REDUCTION 65

have that MAPB′
n↓f

-copy(I, ζ) is constant for allζ ∈ Γ∆. Therefore by the correctness of

Apply we havemaxζ∈Γ∆
MAPBn(I, ζ) = maxζ∈Γ∆

MAPB′
n
(I, ζ).

Finally, by the definition of map,

max
ζ∈Γn

MAPBn(I, ζ) = max
∆

max
ζ∈Γ∆

MAPBn(I, ζ)

= max
∆

max
ζ∈Γ∆

MAPB′
n
(I, ζ)

= max
ζ∈Γn

MAPB′
n
(I, ζ).

Lemma 12 Let B be a FODD,n a node for which condition E9.1 holds, andB′ be the

result of R9(n), then for any interpretationI satisfying D9.1, MAPB(I) = MAPB′(I).

Proof: Let X = maxζ∈Γm MAPB′(I, ζ) andY = maxζ∈Γn MAPB′(I, ζ). By the defini-

tion of map, MAPB′(I) = max(X, Y). However, by Claim 3,X = maxζ∈Γm MAPB(I, ζ)

and by Claim 3 and Lemma 11,Y = maxζ∈Γn MAPB′
n
(I, ζ) = maxζ∈Γn MAPBn(I, ζ).

Thusmax(X, Y) = MAPB(I) = MAPB′(I).

While Lemma 12 guarantees correctness, when applying it in practice it may be impor-

tant to avoid violations of the sorting order (which would require expensive re-sorting of

the diagram). If bothx andt are variables, we can sometimes replace both with a new vari-

able name so the resulting diagram is sorted. However this isnot always possible. When

such a violation is unavoidable, there is a trade-off between performing the reduction and

sorting the diagram and ignoring the potential reduction. In our implementation we always

avoid sorting the diagram and choose to ignore the reductionif it causes a sorting violation.

4.2 The R10 Reduction

A path in FODDB is dominated if whenever a valuation traverses it, there is always an-

other valuation traversing another path and reaching a leafof greater or equal value. Now

if all paths through an edgee are dominated, then no valuation crossing that edge will

ever determine the map undermax aggregation semantics. In such cases we can replace

66 CHAPTER 4. THEOREM PROVING REDUCTIONS

target(e) by a0 leaf. This is the basic intuition behind the R10 operation which is similar

to the reduction of rules in decision lists of Kersting et al.(2004).

Although its objective is the same as that of R7-replace, R10is faster to compute and

has two advantages over R7-replace. First, because paths can be ranked by the value of the

leaf they reach, we can perform a single ranking and check forall dominated paths (and

hence all dominated edges). Hence, while all other reduction operators are local, R10 is a

global reduction. Second, the theorem proving required forR10 is always on conjunctive

formulas with existentially quantified variables. This gives a speedup over R7-replace.

Consider the example shown in Figure 4.3. The following is a DPO for this diagram:

1. p(y), ¬p(z), ¬p(x)→ 3

2. p(y), ¬p(z), p(x), ¬q(x)→ 3

3. ¬p(y), p(x), q(x)→ 2

4. p(y), ¬p(z), p(x), q(x)→ 2

Notice that the relative order of paths reaching the same leaf in this DPO is defined by

ranking shorter paths higher than longer ones. This is not a requirement for the correctness

of the algorithm but is a good heuristic. According to the reduction procedure, all edges

of path1 are important and cannot be reduced. However, since1 subsumes2, 3 and4, all

the other edges (those belonging to paths2, 3 and4 and those not appearing in any of the

ranked paths) can be reduced. Therefore the reduction procedure replaces the targets of all

edges other than the ones in path1, to the value0. Path1 is thus aninstrumentalpath but

paths2, 3 and4 are not. We now present a formal definition of R10.

Procedure 3 R10(B)

1. LetE be the set of all edges inB

2. LetP = [p1, p2 · · · pn] be a DPO forB. Thusp1 is a path reaching the highest leaf

andpn is a path reaching the lowest leaf.

3. For j = 1 to n, do the following

4.2. THE R10 REDUCTION 67

Figure 4.3: Example of R10 reduction

(a) LetEpj
be the set of edges onpj

(b) If ¬∃i, i < j such thatB |= (∃ ~xpj , PF(pj)) → (∃ ~xpi, PF(pi)), then setE =

E − Epj

4. For every edgee ∈ E, set target(e) = 0 in B

In the example in Figure 4.3 none of the paths2, 3 and 4 satisfy the conditions of

step 3b in the algorithm. Therefore their edges are not to be removed fromE and are

assigned the value0 by the algorithm. Here R10 is able to identify in one pass, theone path

(shown along a curved indicator line) that dominates all other paths. To achieve the same

reduction, R7-replace takes 2-3 passes depending on the order of application. Since every

pass of R7-replace has to check for implication of edge formulas for every pair of edges,

this can be expensive. On the other hand, there are cases where R10 is not applicable but

R7-replace is. An example of this is shown in the diagram in Figure 4.4. For this diagram

it is easy to see that ife2 is reached then so ise1 ande1 always gives a strictly better value.

R10 cannot be applied because it tests subsumption for complete paths. In this case the

path fore2 implies the disjunction of two paths going throughe1. We now present a proof

of correctness for R10.

Lemma 13 For any pathpj ∈ P , if pj is instrumental then¬∃i, i < j andB |= (∃ ~xpj ,

PF(pj))→ (∃ ~xpi , PF(pi))

Proof: If pj is instrumental then by definition, there is an interpretation I and valuation,ζ ,

such thatPathB(I, ζ) = pj, and∀ valuationsη, ¬∃ i < j such thatPathB(I, η) = pi. In

68 CHAPTER 4. THEOREM PROVING REDUCTIONS

Figure 4.4: Example where R7 is applicable but R10 is not

other words,I |= [B → (∃ ~xpj , PF(pj))] but I 6|= [B → (∃ ~xpi , PF(pi))] for any i < j. This

implies that¬∃i, i < j and (B → ∃ ~xpj , PF(pj)) |= (B → ∃ ~xpi , PF(pi)). Hence¬∃i, i < j

andB |= [(∃ ~xpj , PF(pj))→ (∃ ~xpi , PF(pi))].

The above lemma basically states that the conjunctive formula for an instrumental path

cannot logically imply the conjunctive formula of any otherpreferred path (with respect to

the DPO) in the FODD.

Lemma 14 If E is the set of edges left at the end of the R10 procedure then ife ∈ E then

there is no instrumental path that goes throughe.

Proof: Lemma 13 proves that if a pathpj is instrumental, then¬∃i, i < j andB |= [(∃ ~xpj ,

PF(pj)) → (∃ ~xpi , PF(pi))]. Thus in step 3b of R10, if a path is instrumental, all its edges

are removed fromE. Therefore ife ∈ E at the end of the R10 procedure, it cannot be

in pj . Sincepj is not constrained in any way in the argument above,e cannot be in any

instrumental path.

Given the above2 lemmas, the following theorem makes the argument that R10 pre-

serves instrumental paths by preserving the edges on instrumental paths and thus maintains

the map of any interpretation.

Theorem 4 Let B be any FODD. IfB′ = R10(B) then∀ interpretationsI, MAPB(I) =

MAPB′(I)

Proof: By the definition of R10, the only difference betweenB andB′ is that some

edges that pointed to sub-FODDs inB, point to the0 leaf in B′. These are the edges

left in the setE at the end of the R10 procedure. Therefore any valuation crossing these

4.3. THE R11 REDUCTION 69

Figure 4.5: Example of R11 reduction

edges achieves a value of0 in B′ but could have achieved more value inB under the same

interpretation. Valuations not crossing these edges will achieve the same value inB′ as they

did in B. Therefore for any interpretationI and valuationζ , MAPB(I, ζ) ≥ MAPB′(I, ζ)

and hence MAPB(I) ≥MAPB′(I).

Fix any interpretationI andv = MAPB(I). Let ζ be a valuation such that MAPB(I, ζ)

= v. If there is more than oneζ that gives valuev, we choose one whose pathpj has the

least index inP . Now by definitionpj is instrumental and by lemma 14, none of the edges

of pj are removed by R10. Therefore MAPB′(I, ζ) = v = MAPB(I). By the definition

of the max aggregation semantics, MAPB′(I) ≥ MAPB′(I, ζ) and therefore MAPB′(I) ≥

MAPB(I)

4.3 The R11 Reduction

Consider the FODDB in Figure 4.5(a). Clearly, with no background knowledge this di-

agram cannot be reduced. Now assume that the background knowledgeB contains a rule

∀x, [q(x)→ p(x)]. In this case if there exists a valuation that reaches the1 leaf, there must

be another such valuationζ that agrees on the values ofx andy. ζ dominates the other

valuations under themax aggregation semantics. The background knowledge rule implies

that for ζ , the test at the root node is redundant. However, we cannot set the left child of

the root to 0 since the entire diagram will be eliminated. Therefore R7 is not applicable,

and similarly none of the other existing reductions is applicable. Although the example is

70 CHAPTER 4. THEOREM PROVING REDUCTIONS

artificial, similar situations arise often in runs of the value iteration algorithm.1 We intro-

duce the R11 reduction operator that can handle such situations. R11 reduces the FODD in

Figure 4.5(a) to the FODD in Figure 4.5(b)

Let B be a FODD,n a node inB, e an edge such thate ∈ {n↓t, n↓f}, e′ = sibling(e)

(so that whene = n↓t, e′ = n↓f and vice versa), andP the set of all paths from the root

to a non-zero leaf going through edgee. Then the reductionR11(B, n, e) drops noden

from diagramB and connects its parents to target(e). We need two conditions for the

applicability of R11. The first requires that the sibling is azero valued leaf.

Condition 1 target(e′) = 0

The second requires that valuations that are rerouted by R11when traversingB′ are

dominated by other valuations giving the same value.

Condition 2 ∀p ∈ P , B |= [∃ ~xp, PF(p)\ne.lit ∧ ne′.lit] → [∃ ~xp, PF(p)]

Theorem 5 If B′ = R11(B, n, e), and conditions 1 and 2 hold, then∀ interpretationsI,

MAPB(I) = MAPB′(I)

Proof: Let I be any interpretation and letZ be the set of all valuations. We can divideZ

into three disjoint sets depending on the path taken by valuations inB underI. Ze - the set

of all valuations crossing edgee, Ze′ - the set of all valuations crossing edgee′ andZother

- the set of valuations not reaching noden. We analyze the behavior of the valuations in

these sets underI.

• Since structurally the only difference betweenB andB′ is that inB′ noden is by-

passed, all paths from the root to a leaf that do not cross noden remain untouched.

Therefore∀ζ ∈ Zother, MAPB(I, ζ) = MAPB′(I, ζ).

1This happens naturally, without the artificial background knowledge used for our example. The main
reason is that standardizing apart introduces multiple renamed copies of the same atoms in the different
diagrams. When the diagrams are added, many of the atoms are redundant but some are not removed by old
operators. These atoms may end up in a parent-child relationwith weak implication from child to parent,
similar to the example given.

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 71

• Since, inB′ the parents of noden are connected to target(e), all valuations crossing

edgee and reaching target(e) in B underI will be unaffected inB′ and will, therefore,

produce the same map. Thus∀ζ ∈ Ze, MAPB(I, ζ) = MAPB′(I, ζ).

• Now, letm denote the node target(e) in B. UnderI, all valuations inZe′ will reach

the0 leaf inB but they will cross nodem in B′. Depending on the leaf reached after

crossing nodem, the setZe′ can be further divided into 2 disjoint subsets.Ze′

zero -

the set of valuations reaching a0 leaf andZe′

nonzero - the set of valuations reaching a

non-zero leaf. Clearly∀ζ ∈ Ze′

zero, MAPB(I, ζ) = MAPB′(I, ζ).

By the structure ofB, everyζ ∈ Ze′

nonzero, traverses somep ∈ P , that is, (PF(p)\ne.lit

∧ ne′ .lit)ζ is true in I. Condition 2 states that for every suchζ , there is another

valuationη such that (PF(p))η is true inI, soη traverses the same path. However,

every such valuationη must belong to the setZe by the definition of the setZe. In

other words, inB′ every valuation inZe′

nonzero is dominated by some valuation inZe.

From the above argument we conclude that inB′ underI, every valuation either produces

the same map as inB or is dominated by some other valuation. Under the max aggregation

semantics, therefore, MAPB(I) = MAPB′(I).

4.4 Further Speedup of Theorem Proving Reductions

Identifying and applying more reductions helps keep FODDs compact. This improves effi-

ciency of the combination and reasoning procedures. This Section presents two techniques

to further speed up theorem proving reductions while maintaining an exact solution.

4.4.1 Subtracting Apart - Improving applicability of R7

Consider the FODDB in Figure 4.6. Intuitively a weak reduction is applicable onthis

diagram because of the following argument. Consider a valuation ζ = {x \ 1, y \ 2, z \ 3}

crossing edgee2 under some interpretationI. I |= B →¬p(1)∧p(2). Therefore there must

be a valuationη = {x\2, z \3} (and any value fory), that crosses edgee1. Now depending

on the truth value ofI |= B → q(1) and I |= B → q(2), we have four possibilities of

72 CHAPTER 4. THEOREM PROVING REDUCTIONS

Figure 4.6: Sub-Apart

whereζ andη would reach after crossing the nodes target(e2) and target(e1) respectively.

However, in all these cases, MAPB(I, η) ≥ MAPB(I, ζ). Therefore we should be able to

replace target(e2) by a0 leaf. A similar argument shows that we should also be able to drop

the node source(e2). Surprisingly, though, none of the R7 conditions apply in this case and

this diagram cannot be reduced. On closer inspection we find that the reason for this is that

the conditions(P7.2) and(V7.3) are too restrictive.(V7.3) holds but(P7.2) requires that

∀x, ∀z,[[∃y,¬p(x) ∧ p(y)] → [p(x)]] implying that for every valuation crossing edgee2,

there has to be another valuation crossing edgee1 such that the valuations agree on the value

of x andz and this does not hold. However, from our argument above, forη to dominateζ ,

the two valuations need not agree on the value ofx. We observe that if we rename variable

x so that its instances are different in the sub-FODDs rooted at target(e1) and target(e2) (i.e.

we standardized apart w.r.t.x) then both(P7.2) and(V7.3) go through and the diagram

can be reduced. To address this problem, we introduce a new FODD subtraction algorithm

sub-apart. Given diagramsB1 andB2 the algorithm tries to standardize apart as many of

their common variables as possible, while keeping the condition B1 ⊖ B2 ≥ 0 true. The

algorithm returns a 2-tuple{T, V }, whereT is a boolean variable indicating whether the

combination can produce a diagram that has no negative leaves when all variables except

the ones inV are standardized apart.

Procedure 4 sub-apart(A, B)

1. If A andB are both leaves,

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 73

(a) If A− B ≥ 0 return{true, {}} else return{false, {}}

2. If l(A) ≺ l(B), let

(a) {L, V1} = sub-apart(target(A↓t), B)

(b) {R, V2} = sub-apart(target(A↓f), B)

Return{L ∧ R, V1 ∪ V2}

3. If l(B) ≺ l(A), let

(a) {L, V1} = sub-apart(A, target(B↓t))

(b) {R, V2} = sub-apart(A, target(B↓f))

Return{L ∧ R, V1 ∪ V2}

4. If l(A) = l(B), let V be the variables ofA (or B). Let

(a) {LL, V3} = sub-apart(target(A↓t), target(B↓t))

(b) {RR, V4} = sub-apart(target(A↓f), target(B↓f))

(c) {LR, V5} = sub-apart(target(A↓t), target(B↓f))

(d) {RL, V6} = sub-apart(target(A↓f), target(B↓t)

(e) If LL ∧RR = false, return{false, V3 ∪ V4}

(f) If LR ∧RL = false return{true, V ∪ V3 ∪ V4}

(g) Return{true, V3 ∪ V4 ∪ V5 ∪ V6}

The next theorem shows that the procedure is correct. The variables common toB1 andB2

are denoted by~u andB ~w denotes the combination diagram ofB1 andB2 under the subtract

operation when all variables except the ones in~w are standardized apart. Letn1 andn2 be

the roots nodes ofB1 andB2 respectively.

Theorem 6 sub-apart(n1, n2) = {true, ~v} impliesB~v contains no negative leaves and

sub-apart(n1, n2) = {false, ~v} implies¬∃~w such that~w ⊆ ~v andB ~w contains no negative

leaves.

74 CHAPTER 4. THEOREM PROVING REDUCTIONS

Proof: The proof is by induction onk, the sum of the number of nodes inB1 andB2. For

the base case whenk = 2, bothB1 andB2 are single leaf diagrams and the statement is

trivially true. Assume that the statement is true for allk ≤m and consider the case wherek

= m + 1. Whenl(n1) ≺ l(n2), in the resultant diagram of combination under subtraction,

we expectn1 to be the root node andn1↓t ⊖ n2 andn1↓f ⊖ n2 to be the left and right

sub-FODDs respectively. Hence, the sub-apart algorithm recursively calls sub-apart(n1↓t,

n2) and sub-apart(n1↓f , n2). Since the sum of the number of nodes of the diagrams in the

recursive calls is always≤ m, the statement is true for both recursive calls. Clearly, the

top level can return atrue iff both calls returntrue. A similar argument shows that the

statement is true whenl(n2) ≺ l(n1).

When l(n1) = l(n2), again by the inductive hypothesis, the statement of the theorem

is true for all recursive calls. Here we have 2 choices. We could either standardize apart

the variablesV in l(n1) and l(n2) or keep them identical. If they are the same, in the

resultant diagram of combination under subtraction we expect n1 to be the root node and

n1↓t ⊖ n2↓t andn1↓f ⊖ n2↓f to be the left and right sub-FODDs respectively. Again the top

level can return atrue iff both calls returntrue . The set of shared variables requires

the variables ofl(n1) in addition to those from the recursive calls in order to ensure that

l(n1) = l(n2).

If we standardize apartl(n1) andl(n2), then we fall back on one of the cases wheren1

6= n2 except that the algorithm checks for the second level of recursive callsn1↓t ⊖ n2↓t,

n1↓t⊖n2↓f , n1↓f ⊖n2↓t andn1↓f ⊖n2↓f . The top level of the algorithm can returntrue if

all four calls returntrue and return the union of the sets of variables returned by the four

calls. If not all four calls returntrue, the algorithm can still keep the variables inl(n1)

andl(n2) identical and returntrue if the conditions for that case are met.

The theorem shows that the algorithm is correct but does not guarantee minimality. In

fact, as we described in Chapter3 (Figure 3.6), the smallest set of variables~w for B ~w to

have no negative leaves may not be unique and one can also showthat the output of sub-

apart may not be minimal. In principle, one can use a greedy procedure that standardizes

apart one variable at a time and arrives at a minimal set~w. However, althoughsub-apart

does not produce a minimal set, we prefer it to the greedy approach because it is fast and

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 75

often generates a small set~w in practice. We can now define new conditions for applicabil-

ity of R7:

(V7.3S): sub-apart(target(e1), target(e2)) = {true, V1}.

(P7.2S): B |= ∀ V1, [[∃~w, EF(e2)] → [∃~v, EF(e1)]] whereV1 is as above and~v, ~w are the

remaining variables (i.e. not inV1) in EF(e1), EF(e2) respectively.

(P7.2S) guarantees that whenever there is a valuationζ2 going through target(e2), there is

always aζ1 going through target(e1) andζ1 andζ2 agree onV1. (V7.3S) guarantees that

under this condition,ζ1 provides a better value thanζ2. In fact the proof of Lemma 4 goes

through unchanged. For completeness we include the proof here.

Lemma 15 LetB be a FODD,e1 ande2 edges for which conditions P7.2S, V7.3S, and S1

hold, andB′ the result of R7-replace(b, e1, e2), where0 ≤ b ≤ min(target(e1)), then for

any interpretationI we have MAPB(I) = MAPB′(I).

Proof: Consider any valuationζ2 that reachestarget(e2). By P7.2S there is another valu-

ationζ1 reachingtarget(e1) andζ2 andζ1 agree on all variables that appear inV1. There-

fore, by V7.3Sζ1 achieves a higher value. Therefore according to maximum aggregation

the value of MAPB(I) will never be determined bytarget(e2), and we can replace it with

a constant as described above.

Importantly, conditions(P7.2S), (V7.3S) subsume all the previous conditions for ap-

plicability and safety of R7-replace that were given in Chapter 3. I.e. whenever any of

the two previous conditions for the applicability of R7-replace (P7.1, V7.1 and S1 or P7.2,

V7.3 and S1) are satisfied, P7.2S, V7.3S and S1 are satisfied. Avery similar argument

shows howsub-apartextends and simplifies the conditions of R7-drop. Thus the use of

sub-apartboth simplifies the conditions to be tested and provides moreopportunities for

reductions. In our implementation, we use the new conditions with sub-apart (instead of

the old conditions) whenever testing for applicability of R7.

4.4.2 Not Standardizing Apart

Recall that the FODD-based VI algorithm must add functions represented by FODDs (in

Step 2) and take the maximum over functions represented by FODDs (in Step 4). Since

76 CHAPTER 4. THEOREM PROVING REDUCTIONS

the individual functions are independent functions of the state, the variables of different

functions are not related to one another. Therefore, beforeadding or maximizing, the

VI algorithm standardizes apart the diagrams. That is, all variables in the diagrams are

given new names so they do not constrain each other. On the other hand, since the different

diagrams are structurally related this often introduces redundancies (in the form of renamed

copies of the same atoms) that must be be removed by reductionoperators. However, our

reduction operators are not ideal and avoiding this step canlead to significant speedup in

the system. Here we observe that for maximization (in Step 4)standardizing apart is not

needed and therefore can be avoided.

Theorem 7 Let B1 and B2 be FODDs. LetB be the result of combiningB1 and B2

under themax operation whenB1 and B2 are standardized apart. LetB′ be the result

of combiningB1 andB2 under themax operation whenB1 andB2 are not standardized

apart.∀ interpretationsI, MAPB(I) = MAPB′(I).

Proof: The theorem is proved by showing that for anyI a valuation for the maximizing

diagram can be completed into a valuation over the combined diagram giving the same

value. Clearly MAPB(I) ≥ MAPB′(I) since every substitution and path that exist forB′

are also possible forB. We show that the other direction holds as well. Let~u be the

variables common toB1 andB2. Let ~u1 be the variables inB1 that are not inB2 and ~u2 be

the variables inB2 not inB1. By definition, for any interpretationI,

MAPB(I) = Max[MAPB1(I), MAPB2(I)] = Max[MAPB1(I, ζ1), MAPB2(I, ζ2)]

for some valuationsζ1 over ~u ~u1 and ζ2 over ~u ~u2. Without loss of generality let us as-

sume that MAPB1(I, ζ1) = Max[MAPB1(I, ζ1), MAPB2(I, ζ2)]. We can construct valua-

tion ζ over~u ~u1 ~u2 such thatζ andζ1 share the values of variables in~u and ~u1. Obviously

MAPB1(I, ζ) = MAPB1(I, ζ1). Also, by the definition of FODD combination, we have

MAPB′(I) ≥MAPB1(I, ζ) = MAPB(I).

4.5 Discussion

This chapter introduced new reduction operators, each focusing on a particular kind of re-

dundancy. R9 applies to equality conditions, R10 performs aglobal analysis based on path

4.5. DISCUSSION 77

reachability and R11 focuses on sub-FODDs with redundant ancestors. The sub-apart sub-

routine improves applicability of R7. However, even with the new reduction operators, our

set of reductions is heuristic and does not guarantee a canonical form for diagrams which

is instrumental for efficiency of propositional algorithms. Identifying such “complete” sets

of reductions operators and canonical forms is an interesting challenge. However, in spite

of the elusive canonical form, as we will see in the next chapter, these new operators prove

valuable in making FODD based algorithms practical.

Chapter 5

Stochastic Planning with FODDs

5.1 Introduction

The FODD based VI algorithm in Chapter3 has been proved correct but we did not ad-

dress the question of efficiency. Writing an efficient RMDP solver based on this algorithm

is crucial to its practical utility. Although the issue of efficiency is partly a matter of good

software engineering, there is also scope for algorithmic solutions. In the last chapter we in-

troduced additional reduction operators that keep the FODDs compact, thereby improving

efficiency. In this chapter we introduce more solutions thatmake the VI algorithm practi-

cal. Incorporating these, we developed FODD-PLANNER, a planning system for solving

relational stochastic planning problems. The FODD-PLANNER system is evaluated on sev-

eral domains, including problems from the recent international planning competition (IPC),

and shows competitive performance with top ranking systems. To our knowledge this is the

first application of a pure relational VI algorithm without linear function approximation to

problems of this scale. As we will see later, the results demonstrate that abstraction through

compact representation is a promising approach to stochastic planning.

This chapter is organized as follows. Section 5.2 describesthe FODD-PLANNER sys-

tem which includes several extensions of the basic algorithm and techniques for approx-

imation. Section 5.3 presents the results of experiments onplanning domains from the

IPC.

78

5.2. FODD-PLANNER 79

5.2 FODD-PLANNER

In this section we discuss the system FODD-PLANNER that implements the VI algorithm

with FODDs. FODD-PLANNER employs a number of approximation techniques that yield

further speedup over the algorithms of previous chapters. The system also implements

extensions of the basic VI algorithm that allow it to handle action costs and universal goals.

The following sections describe these details.

5.2.1 Value Approximation

Reductions help keep the diagrams small in size by removing redundancies but when the

true n step-to-go value function itself is large, legal reductions cannot help. There are

domains where the true value function is unbounded. For example in the tireworld domain

from the international planning competition, where the goal is always to get the vehicle to

a destination city, one can have a chain of cities linked to one another up to the destination.

This chain can be of any length. Therefore when the value function is represented using

state abstraction, it must be unbounded. Kersting et al. (2004) and Sanner (2008) observe

that SDP-like algorithms are less effective on domains where the dynamics lead to such

transitive structure and every iteration of value iteration increases the size of then step-to-

go value function. In other cases the value function is not infinite but is simply too large to

manipulate efficiently. When this happens we can resort to approximation keeping as much

of the structure of the value function as possible while maintaining efficiency. One must be

careful about the trade off here. Without approximation therun time can be prohibitive and

too much approximation causes loss of structure and value. We next present three methods

to get approximations that act at different levels in the algorithm.

Not Standardizing Apart Action Variants

As shown in Section 3.8.2, standardizing apart of action variant diagrams before adding

them is required for the correctness of the FODD based VI algorithm. That is, if we do

not standardize apart action variant diagrams before adding them, the value given to some

states may be lower than the true value. Intuitively, this istrue since different paths in the

80 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

value function share atoms and variables. Now, for a fixed action, the best variable binding

and corresponding value for different action variants may be different. Thus, if the variables

are forced to be the same for the variants, we may rule out viable combinations of value.

On the other hand,the value obtained if we do not standardize apart is a lower bound on

the true value. This is because every path in the diagram resulting from notstandardizing

apart is present in the diagram resulting from standardizing apart. On the other hand, not

standardizing apart leads to more compact diagrams. We callthis approximation method

non-std-apartand use it as a heuristic to speed up computation. Although this heuristic

may cause loss of structure in the representation of the value function, we have observed

that in practice it gives significant speedup while maintaining most of the relevant structure.

Merging Leaves

The use of FODDs also allows us to approximate the value function in a simple and con-

trolled way. Here we follow the approximation techniques ofAPRICODD (St-Aubin et al.,

2000) where they were used for propositional problems. The idea is to reduce the size

of the diagram by merging substructures that have similar values. One way of doing this

is to reduce the precision of the leaf values. That is, for a given (user defined) precision

valueǫ, we join leaves whose value is withinǫ. This can cause reduction of the diagram

because sub-parts of the diagram that previously pointed todifferent leaves, now point to

the same leaf. The granularity of approximation, however, becomes an extra parameter for

the system and has to be chosen carefully.

Domain Determinization

Previous work on stochastic planning has discovered that for some domains one can get

good performance by pretending that the domain is deterministic and replanning if unex-

pected outcomes are reached (Yoon et al., 2007). For this approximation, we use a similar

idea and determinize the domain in the process of policy generation. This saves signifi-

cant amount of computation and avoids the typical increase in size of the value function

encountered in step 2 of the VI algorithm. Domains can be determinized in many ways.

5.2. FODD-PLANNER 81

In our experiments we chose to perform determinization by replacing every stochastic ac-

tion with its most probable deterministic alternative. Although this is not always the ideal

method of determinization, it makes sense when the most probable outcome corresponds

to the successful execution of an action (Little & Thibaux, 2007) as in the case of the do-

mains we experimented on. Determinization is done only onceprior to running VI. Note

that the determinization only applies to the process of policy generation. When the gener-

ated policy is deployed to solve planning problems, it does so under the original stochastic

environment.

5.2.2 Extensions to the VI Algorithm

FODD-PLANNER makes two additional extensions to the basic algorithm. This allows the

handling of action costs, arbitrary conjunctive goals as well as universal goals.

Handling Action Costs

The standard way to handle action costs is to replaceR(s, a) by R(s, a) − Cost(a) in the

VI algorithm. However, our formalism using FODDs relies on the fact that all the leaves

(and thus values) are non-negative. To avoid this difficulty, we note that action costs can

be supported as long as there is at least one zero cost action.To see this recall the VI

algorithm. The appropriate place to add action costs is justbefore the Object Maximization

step. However, because this step is followed by maximizing over the action diagrams, if at

least one action has0 cost (if not we can create ano-op action), the resultant diagram after

maximization will never have negative leaves. Therefore wesafely convert negative leaves

before the maximization step to0 and thereby avoid conflict with the reduction procedures.

Heuristically Handling Universal Goals

FODDs withmax aggregation cannot represent universal quantifiers. Therefore our VI

algorithm cannot handle universal goals at the abstract level (in Chapter8 we develop a

formalism that does accept arbitrary quantifiers). For a concrete planning problem with a

known set of objects we can instantiate the universal goal toget a large conjunctive goal.

In principle we can run VI and policy generation for this large conjunctive goal. However,

82 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Figure 5.1: Example where the AGD heuristic awards equal value to the optimal and sub-
optimal actions

this would mean that we cannot plan offline to get a generic policy and must replan for

each problem instance from scratch. Here we follow an alternative heuristic approach

previously introduced by Sanner and Boutilier (2006) and use an approximation of the true

value function, that results from a simple additive decomposition of the goal predicates.

Concretely, this additive goal decomposition (AGD) heuristic works as follows. Dur-

ing offline planning we plan separately for a generic versionof each predicate. Then at

execution time, when given a concrete goal, we approximate the true value function by the

sum of the generic versions over each ground goal predicate.This is clearly not an exact

calculation and will not work in every case. On the other hand, it considerably extends the

scope of the technique and works well in many situations.

However, this heuristic is limited and does not apply well todomains where goal liter-

als must be achieved in some order. As an example consider a problem in the well known

blocksworld domain. In this domain the world consists of blocks on a table in some con-

figuration. The objective is to rearrange the blocks into some other specified configuration

by picking them and putting them down. Figure 5.1 shows a simple example problem in

this domain. Clearly the blockb has to be put on blockc beforea is put onb. However, the

AGD heuristic adds up the values for each individual goal resulting in the effect that the

action that putsa on b first and the one that putsb on c first get equal value. This results in

the wrong action being chosen half of the time. For problems with a larger domain this can

cause failure of plan execution.

To address this issue, we propose a new heuristic based on weighted goal ordering

(WGO). The idea is to first get a partial ordering between eachpair of goal literals. We

use the following heuristic. For each pair of goal literalsg1 andg2 we check if¬g2 is

a precondition for some action to bring aboutg1. If this condition is satisfied,g1 must

5.2. FODD-PLANNER 83

be achieved beforeg2 in the partial order. The intuition here is that preconditions expose

some obvious ordering constraints on the goals. Identifying all such constraints amounts

to solving a deterministic planning problem. Instead the heuristic identifies constraints that

we can discover easily.

Respecting this partial order we impose a total order on the goals in an arbitrary way.

Finally the value of an action is calculated by adding the values of the individual goals

literals as before, except that this time we weight the values of the individual sub-goals in

proportion to their position in the total order. The value ofthe goal literal at positioni is

weighted bywi−1. The weight parameterw (0 < w ≤ 1) is user defined. As expected,

smaller weights are better for domains with interacting sub-goals and large weights are

better for domains where sub-goals are independent. In the example in Figure 5.1, an action

that putsa onb will get a lower value than the action that putsb onc in the start state. These

ideas help serialize any obvious ordered set of goals and gives a weak preference ordering

on other sub-goals. This leads to significant improvements in performance in domains with

interacting dependent sub-goals as we show in the next section.

5.2.3 The FODD-Planner System

We implemented the FODD-PLANNER system, plan execution routines and evaluation

routines under Yap Prolog 5.1.2. Our implementation uses a simple theorem prover that

supports background knowledge by “state flooding”. That is,to proveB |= X → Y , where

X is a ground conjunction (represented in prolog as a list), we“flood” X using rules of the

background knowledge using the following simple steps until convergence.

1. GenerateZ, the set of all ground literals that can be derived fromX and the rules of

background knowledge.

2. SetX = X ∪ Z.

WhenX has converged we test for membership ofY in X. Because of our restricted

language, the reasoning problem is decidable and our theorem prover is complete. An

alternative to the list representation ofX would have been to utilize the prolog database

to store the literals ofX and employ the fast prolog engine to queryY . However, in our

84 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

experience with Yap, it becomes expensive toassert(andretract) the literals ofX to (from)

the prolog database so that the list representation is faster.

The overall algorithm is the same as SDP except that all operations are performed on

FODDs and reductions are applied to keep all intermediate diagrams compact. In the ex-

periments reported below, we use all previously mentioned reductions (R1· · · R11) except

R7-replace. We applied reductions iteratively until no reduction was applicable on the

FODD. There is no correct order to apply the reductions in thesense that any reduction

when applied can give rise to other reductions. Heuristically we chose an order where we

hope to get as much of the diagram reduced as soon as possible.We apply reductions in the

following order. We start by applying R10 twice with a different DPO each time. The first

DPO is generated by breaking ties in favor of shorter paths. The second is generated by

reversing the order of equal valued paths in the first DPO. With R10 we hope to catch many

redundant edges early. R10 is followed by R7-drop to remove redundant nodes connected

to the edges removed by R10. After this, we apply a round of allstrong reductions followed

by R9 to get rid of the redundant equality nodes. R9 is followed by another round of strong

reductions. This sequence is performed iteratively until the diagram is stable. In effect

strong reductions are applied every time two diagrams are combined and weak reductions

are applied every time two diagrams are combined except during regression by block com-

bination. We chose to apply R11 only twice in every iteration- once after regression and

once just before the next iteration. This setting for application of reduction operators is

investigated experimentally and discussed in Section 5.3.1.

5.3 Experimental Results

We ran experiments on the logistics problem as well as probabilistic planning domains from

the international planning competitions (IPC) held in 2006and 2008. All experiments were

run on a Linux machine with an Intel Pentium D processor running at 3 GHz, with 2 GB

of memory. All timings, rewards and plan lengths we report are averages over 30 rounds.

For each domain, we constructed by hand background knowledge restricting arguments of

predicates (e.g., a box can only be at one city in any time soBin(b, c1), Bin(b, c2)→ (c1 =

c2)). This is useful in the process of simplifying diagrams. Thedomain definition (TVDs

5.3. EXPERIMENTAL RESULTS 85

05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 03 0 0 0 0

1 2 3 4CPUti me(second s)
o f I t e r a t i o n s

T i r e w o r l d : R 7 v s . R 1 0 R 1 0R 1 0 + R 1 1R 1 0 + R 9R 1 0 + R 9 + R 1 1R 7R 7 + R 1 1R 7 + R 9R 7 + R 9 + R 1 1
Figure 5.2: A comparison of planning time taken by various settings of reduction operators
over varying number of iterations. Four settings of R10 are compared against four settings
of R7.

and reward function diagrams) was generated by translatingthe IPC encoding, which is

given in the PPDDL language (Younes et al., 2005), manually.To avoid long execution

times, we set a limit of200 steps on the plan length when solving IPC problems. Plans that

ran for more than200 steps were counted as failed.

5.3.1 Merits of Reduction Operators

In our first set of experiments we used the tireworld domain tocompare the relative merits

of the new reductions R9, R10 and R11 along with R7. The experimental setup was the

same as detailed in Section 5.2.3. Since R10 and R7 are both edge removal reductions and

R7-drop is used in conjuction with both, we compare R10 to R7-replace directly under all

configurations of R9 and R11. Figure 5.2 shows the time to build a policy over varying

number of iterations for different settings of these weak reduction operators. Strong reduc-

tions were always applied. The figure clearly shows the superiority of R10 over R7-replace.

All combinations with R7-replace have prohibitively largerun times at3 or 4 iterations.

With or without R9 and R11, R10 is orders of magnitude more efficient than R7-replace.

86 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

05 0 0 01 0 0 0 01 5 0 0 02 0 0 0 02 5 0 0 0

1 2 3 4 5 6 7CPUTi me(second s)
o f i t e r a t i o n s

T i r e w o r l d : M e r i t s o f R 9 a n d R 1 1
R 1 0R 1 0 + R 1 1R 1 0 + R 9R 1 0 + R 9 + R 11

Figure 5.3: A comparison of the merits of R9 and R11 in the presence of R10

It is for this reason that in all future experiments we used R10 instead of R7-replace. Fig-

ure 5.3 shows the relative merits of R9 and R11 in the presenceof R10. Clearly R11 is

an important reduction and it makes planning more efficient in both settings (just R10 and

R10+R9). Another fact, while not evident from Figure 5.3, isthat R9 improves planning

performance when the number of iterations is small (1 to 3). This makes sense because

R9 eliminates equality nodes and combines the sub-FODDs under them. When diagrams

get larger (as with more iterations), combinations can produce even larger diagrams and

slow down reductions. Even so, R9 can help in not infrequent cases where the combination

does not produce a larger diagram. At the same time, given a particular setting (just R10

or R10+R11) the addition of R9 does not cause a significant drop in performance even for

more iterations. In addition, R9 targets the removal of equality nodes which no other re-

duction does directly. Based on these results we choose the setting where we employ R10

along with R9 and R11 for the experiments henceforth.

5.3. EXPERIMENTAL RESULTS 87

00 . 20 . 40 . 60 . 8 11 . 2
2 3 4 5 6C o verage

I n t e r a c t i n g G o a l s

B l o c k s w o r l d : C o v e r a g e v s . #I n t e r a c t i n g G o a l s A d d i t i v e G o a lD e c o m p o s i t i o nH e u r i s t i cW e i g h t e d G o a lO r d e r i n gH e u r i s t i c
Figure 5.4: WGO Heuristic vs. AGD Heuristic

5.3.2 The Logistics Benchmark Problem

This is the running example introduced in Chapter1. Because of the assumption that all

cities are reachable from each other this domain has a compact abstract optimal value func-

tion. Like ReBel (Kersting et al., 2004) and FOADD (Sanner, 2008) we were able to solve

this RMDP and identify all relevant partitions of the optimal value function and in fact the

value function converges after 10 iterations. FODD-PLANNER performed10 iterations in

under2 minutes.

5.3.3 Conjunctive Goals and Goal Ordering

Before presenting results on IPC benchmarks we demonstratethe difference between the

AGD and the WGO heuristic. The difference between the two becomes apparent in do-

mains where the order in which goal literals are achieved is important. To test this we

generated problems with5 blocks in the blocksworld domain with increasing number of

interacting goals. This was done by manually constructing goal states with towers of in-

creasing height. Figure 5.4 plots the percentage of planning problems solved against the

number of interacting goal literals on these problems wherewe set the parameterw to

0.8. We observe that as the number of interacting goals increases, the AGD heuristic is

88 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Coverage Time (ms) Reward
GPT 100% 2220 57.66

Policy Iteration with
policy language bias 46.66% 60466 36
Re-Engg NMRDPP 10% 290830 -387.7

FODD-Planner 100% 65000 47.3

Table 5.1: Fileworld domain results

out-performed by the WGO heuristic. In domains where the order of achievement of goal

literals is not crucial to solving the planning problem, theWGO heuristic has no effect. For

such domains we set thew parameter to1.0 causing the WGO heuristic to fall back on the

AGD heuristic.

5.3.4 The Fileworld Domain

This domain was part of the probabilistic track of IPC-4 (2004) (http://ls5-web.cs.uni-

dortmund.de/∼edelkamp/ipc-4/). The domain consists of files and folders.Every file ob-

tains a random assignment to a folder at execution time and the goal is to place each file

in its assigned folder. There is a cost of 100 to handle a folder and a cost of 1 to place

a file in a folder. Results have been published for one probleminstance which consisted

of thirty files and five folders. The optimal policy for this domain is to first get the as-

signments of files to folders and then handle each folder once, placing all files that were

assigned to it. Because the goal is conjunctive we used the additive goal decomposition

discussed above. We used offline planning for a generic goalfiled(a) and use the policy

to solve for any number of files. This domain is ideal for abstract solvers since the optimal

value function and policy are compact and can be found quickly. The FODD-PLANNER

was able to achieve convergence within 4 iterations even without approximation. Policy

generation and execution together took65 seconds. Of the 6 systems that competed on this

track, results have been published for 3 on the website citedabove. Table 5.1 compares the

performance of FODD-PLANNER to the others. We observe that we rank ahead of all ex-

cept GPT in terms of total reward and coverage (both FODD-PLANNER and GPT achieve

full coverage). We do not get perfect reward in spite of a converged exact value function

because of the additive decomposition of rewards. The policy generated is optimal for one

5.3. EXPERIMENTAL RESULTS 89

00 . 20 . 40 . 60 . 8 11 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
C overage

P r o b l e m I n s t a n c e I D

T i r e w o r l d : C o v e r a g e v s . P r o b l e mI n s t a n c e
F O D DF O A L PF P GP a r aF F

Figure 5.5: Coverage result of tireworld experiments

file but it is still a heuristic for many files. The order of goalliterals is not important and so

thew parameter was set to1.0 in these experiments.

5.3.5 The Tireworld Domain

This domain was part of the probabilistic track of IPC-5 (2006) The domain consists of a

network of locations (or cities). A vehicle starts from one city and moves from city to city

with the objective of reaching a destination city. Moves canonly be made between cities

that are directly connected by a road. However, on any move the vehicle may lose a tire

with 40% probability. Some cities have a spare tire that can be loaded onto the vehicle.

If the vehicle contains a spare tire, the flat tire can be changed with 50% success proba-

bility. This domain is simple but not trivial owing to the possibility of a complex network

topology and high probabilities of failure. Participants at IPC-5 competed over 15 problem

instances on this domain. To limit offline planning time we restricted FODD-PLANNER to

7 iterations without any approximation for the first 3 iterations and with the non-std-apart

approximation for the remaining iterations. The policy wasgenerated in 2.5 hours. The

goal always contains a single literal describing where the vehicle should be. Therefore

90 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

11 01 0 01 0 0 01 0 0 0 01 0 0 0 0 01 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5A veragerunti me(ms)
P r o b l e m I n s t a n c e I D

T i r e w o r l d : A v e r a g e r u n t i m e (m s) v s .P r o b l e m I n s t a n c e
F O D DF O A L PF P GP a r aF F

Figure 5.6: Timing result of tireworld experiments

024 681 01 21 4

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5A verage#A cti onst oG oal
P r o b l e m I n s t a n c e I D

T i r e w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c e
F O D DF O A L PF P GP a r aF F

Figure 5.7: Plan length result of tireworld experiments

5.3. EXPERIMENTAL RESULTS 91

Precision Planning Time Execution Time (sec) Coverage Plan length
50 81.89% 87.77 13.99 7.47
75 95.10% 90.33 15.48 10.40
100 95.13% 90.52 15.48 10.40
125 99.37% 94.78 32.99 -30.93
150 99.47% 94.88 32.99 -30.93

Table 5.2: Percentage average reduction in planning time, execution time, coverage and
plan length, for tireworld under the merging of leaves approximation for varying leaf pre-
cision values. For example, the first row of the table states that by reducing the precision
on the leaves to50, which is10% of the largest achievable reward in any state, the planning
time was reduced by81.89% of its original value, average execution time was reduced by
87.77%, average coverage was reduced by13.99% and average plan length was reduced by
7.74%

ordering goal literals is not relevant. The performance of FODD-PLANNER and systems

competing in the probabilistic track of IPC-5, for which, data is published, is summarized

in Figures 5.5, 5.6, and 5.7. The figures show a comparison of the percentage of problem

instances each planner was able to solve (coverage), the average time per instance taken

by each planner to generate an online solution, and the average number of actions taken

by each planner to reach the goal on every instance. We observe that the overall perfor-

mance of FODD-PLANNER is competitive with (and in a few cases better than) the other

systems. Run Times to generate online solutions are high forFODD-PLANNER but are

comparable to FOALP which is the only other First-Order planner. Overall run time of our

system (offline plus online) is within the time limit of the competition. On the other hand,

in comparison with the other systems, we are able to achieve high coverage and short plans

on most of the problems.

Although this domain can be solved as above within the IPC time, one might wish for

even faster execution. As we show next, the heuristic of merging leaves provides such

a tool, potentially trading off quality of coverage and planlength for faster planning and

execution times. Table 5.2 shows the average reduction in planning time, coverage and

planning length achieved when the approximation of mergingleaves is used. The highest

reward obtained in any state is500. We experimented with reducing precision on the leaves

from 50.0 and150.0. As the results demonstrate, for some loss in coverage and planning

length, the system can gain in terms of execution time and planning time. For example,

92 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

00 . 20 . 40 . 60 . 811 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
C overage

P r o b l e m I n s t a n c e I D

B o x w o r l d : C o v e r a g e v s . P r o b l e mI n s t a n c e
F O D DR F F

Figure 5.8: Coverage results of boxworld experiments

with leaf precision of10% we get81.89% reduction in planning time (5 fold speedup) but

we lose13.99% in coverage.

5.3.6 Boxworld

In this domain from IPC 2008, the world consists of boxes, trucks, planes and a map of

cities. The objective is to get boxes from source cities to destination cities using the trucks

and planes. Boxes can be loaded and unloaded from the trucks and planes. Trucks (and

planes) can be driven (flown) from one city to another as long as there is a direct road (or

air route) from the source to the destination city. The only probabilistic action isdrive.

driveworks as expected (transporting the truck from the source city to the destination city)

with probability0.8. With probability0.2 drive teleports a truck to the wrong city.

IPC posted15 problems with varying levels of difficulty for this domain. Competition

results show that RFF (Teichteil-Koenigsbuch et al., 2008)was theonlysystem that solved

any of the15 problems. Neither RFF nor FODD-PLANNER could solve problems13 to

15. Hence we omit results for those.

5.3. EXPERIMENTAL RESULTS 93

04 0 08 0 01 2 0 01 6 0 02 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2A verage#A cti onst oG oal
P r o b l e m I n s t a n c e I D

B o x w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c e
F O D DR F F

Figure 5.9: Plan length results of boxworld experiments

02 0 04 0 06 0 08 0 01 0 0 01 2 0 01 4 0 01 6 0 01 8 0 02 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2A verageR eward
P r o b l e m I n s t a n c e I D

B o x w o r l d : A v e r a g e R e w a r d v s .P r o b l e m I n s t a n c e I D
F O D DR F F

Figure 5.10: Average reward results of boxworld experiments

94 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

To limit offline planning time we determinized this domain (makingdrive determinis-

tic) and restricted FODD-PLANNER to 5 iterations. Since the domain was determinized,

there was only one alternative per action. Therefore the thenon-std-apart approximation

has no effect here. The policy was generated in55.5 minutes. Goal literals in this domain

can be achieved independently of each other. Therefore goalordering is not effective and

thew parameter was set to1.0. The performance of FODD-PLANNER and RFF is sum-

marized in Figures 5.8, 5.9, and 5.10. The figures show a comparison of the percentage of

problem instances each planner was able to solve (coverage), the average reward achieved

per problem instance, and the average number of actions taken by each planner to reach the

goal on every instance.

As can be seen FODD-PLANNER has lower coverage than RFF on problems10, 11

and12. However, our performance is close to RFF in terms of accumulated reward and

consistently better in terms of plan length even on problemswhere we achieve full cover-

age1. In this domain we experienced extremely long plan execution times (1.5 hours per

round on hard problems and about100 seconds per round on the easier problems). This

could be a one reason for the failure of other planning systems at IPC where a strict time

bound was observed, and for the failure of RFF on problems13, 14 and15. Improving run

time of the online application of our policies is an important aspect for future work. One

direction might be to employ a more efficient subsumption (matching a rule to the state)

routine. Another possibility is to cache queries to the policy FODD.

In this domain the heuristic of merging leaves did not provide any advantage. As in

tireworld, there is a clear trade off between the quality of coverage and planning time.

However the loss in coverage is very high for the planning efficiency gained. Additionally,

this heuristic does not reduce execution time, which is the main bottleneck in this domain.

5.3.7 Blocksworld

This is the classic domain discussed in the context of goal ordering above. This domain has

many variants. In IPC 2006 this domain was described by7 probabilistic actions. For the

1When coverage is not full it is possible that a system solvingonly easy problems can look better in terms
of planning length (because their solutions are shorter) and therefore average planning length is not a good
criterion for comparison. However with full coverage planning length provides a valid comparison

5.3. EXPERIMENTAL RESULTS 95

00 . 20 . 40 . 60 . 8 11 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
C o verage

P r o b l e m I n s t a n c e I D

B l o c k s w o r l d : C o v e r a g e v s .P r o b l e m I n s t a n c e
F O D DF O A L PP a r aF P GF F

Figure 5.11: Blocksworld Coverage Results

05 01 0 01 5 02 0 02 5 03 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5A verage#A cti onst oG oal
P r o b l e m I n s t a n c e I D

B l o c k s w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c e
F O D DF O A L PP a r aF P GF F

Figure 5.12: Blocksworld Plan Length Results

purpose of VI we simplified the domain by determinizing it. The resultant blocksworld do-

main consisted of4 deterministic actions - pick-up-block-from-table, pick-up-block-from-

block, put-block-on-table, put-block-on-block.

96 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

We limited FODD-PLANNER to 8 iterations to stay within competition times. The pol-

icy was generated in3.46 hours. IPC posted15 problems with varying degrees of difficulty.

The goal is each of these problems is a configuration of blocksconsisting of a set of tow-

ers. The goal state, therefore, consists of multiple interacting goal literals. Hence, the goal

ordering heuristic is useful in this domain. In our experiments we achieved no coverage

with the AGD heuristic but full coverage on almost all of the problems by switching to the

WGO heuristic. Thew parameter was heuristically set to0.8. Figures 5.11 and 5.12 show

the comparison of cover and plan length of the FODD-PLANNER with systems competing

in IPC 2006. FODD-PLANNER achieves performance close to the top rankers in terms

of both metrics. We experienced long plan execution times, similar to the boxworld prob-

lems, for the harder problems (10 to 15) in this domain. Again, improving this aspect of

the system is left to future work. The heuristic of merging leaves was not helpful in this

domain.

5.4 Summary and Concluding Remarks

The main contribution of this chapter is the introduction ofFODD-PLANNER, a relational

planning system based on FODDs as the underlying representation. This is the first plan-

ning system that uses lifted algebraic decision diagrams asits representation language and

successfully solves planning problems from the IPC.

We also introduced the WGO heuristic for goal ordering in RMDPs. Although WGO

requires setting the weight parameter,w, it performs better than previous heuristics on do-

mains where goal literals have to be achieved in a certain order. In exploratory experiments

we observed that the performance of FODD-PLANNER is consistent over large parts of the

weight space. Therefore future work may include experiments where thew parameter is

learned or set by cross-validation.

The experimental results show that abstraction through compact representation is a

promising approach to stochastic planning. They also raisemany interesting questions

concerning foundations for FODDs and their application to solve RMDPs. One important

aspect is the question of reductions. Our set of reductions is still heuristic and does not

5.4. SUMMARY AND CONCLUDING REMARKS 97

guarantee a canonical form for diagrams which is instrumental for efficiency of proposi-

tional algorithms. Identifying such “complete” sets of reductions operators and canonical

forms is an interesting challenge. Identifying a practically good set of operators trading

off complexity for reduction power is crucial for further applicability. In the next chapter

we develop novel methods for improving the applicability and efficiency of reductions to

achieve even better performance.

Chapter 6

Model-Checking Reductions

One characteristic of systems based on the SDP algorithm andin general systems that rea-

son with relational representations is the need for logicalsimplification of formulas. In SDP

based systems, like our FODD-PLANNER for example, backward reasoning introduces re-

dundancies in the structure of the value function, creatinga need for logical simplification

in order to maintain a value function of reasonable size. Thesimplification steps are at the

core of SDP based systems and they must be implemented efficiently. To date, all such

systems (Kersting et al., 2004; Hölldobler et al., 2006; Sanner & Boutilier, 2009) have

employed theorem proving to identify and remove redundancies. This is also true for the

FODD-PLANNER as described in the previous chapter. However, theorem proving comes

with two major drawbacks.

• Firstly, it is expensive.

• Secondly, in all but trivial domains, reduction effectively requires the theorem prover

to have access to some background knowledge from the domain.For example in

the logistics domain, knowledge that a box cannot simultaneously be in more than

one city has to be supplied to the theorem prover. By encodingdetailed background

knowledge, more redundancies can be identified but this increases the run time of

the theorem proving routine. On the other hand, if one encodes too little background

knowledge, it is impossible to identify redundant structures in the value function and

when the value function is large, reasoning becomes slow. This trade-off has to be

98

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 99

balanced by encoding just the right amount of background knowledge, a challenging

task when we aim for domain independent solutions.

In this chapter we show that both of these issues can be mitigated by changing the focus

to model-checking reductions. More precisely, we present the idea of model-checking

reductions and give an algorithm which is sound and completefor reducing FODDs. Next

we design practical variants of this algorithm thus developing approximate but efficient

reductions for FODDs.

6.1 R12: The Model Checking Reduction for FODDs

In this section we introduce a new reduction operator R12. The basic intuition behind R12

is to use the semantics of the FODD directly in the reduction process. According to the

semantics of FODDs the map is generated by aggregation of values obtained by running all

possible valuations through the FODD. Therefore, if we run all possible valuations through

the diagram and document the behavior of valuations under all possible interpretations, we

can identify parts of the diagram that are never important for determining the map. Such

parts can then be eliminated to reduce the diagram. Crucially, with some bookkeeping, it

is possible to obtain this information without enumeratingall possible interpretations and

by enumerating all possible valuations over just the variables in the diagram.

Enumeration of all possible interpretations can be avoidedwith the observation that

although there can be many interpretations over a set of domain objects, there are only a

fixed number of paths in the FODD that a valuation can traverse. For a given valuationζ ,

any interpretation can be classified into one of a set of equivalence classes based on the

pathp that it forcesζ through. All interpretations belonging to an equivalence class have

the following in common.

1. They forceζ through pathp.

2. They forceζ to the same leaf - leaf(p).

3. They are consistent with PF(p)(ζ).

100 CHAPTER 6. MODEL-CHECKING REDUCTIONS

Figure 6.1: An example of reduction operator R12 for FODDs. Each entry of the form
value-{path}-{interpretation} in the table expresses the value obtained by running the val-
uation of the corresponding row through the diagram under anequivalence class of inter-
pretations. The MAX-3 aggregation function then calculates the possible aggregates that
could be generated under different equivalence classes of interpretations. Since the edge1f
does not appear along any of the paths leading to a non-zero leaf in the result of MAX-3, it
is not crucial towards determining the map and can be removed

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 101

PF(p)(ζ) is, thus, the most general interpretation that forcesζ throughp and can be

viewed as a key or identifier for its equivalence class. For the purpose of reduction we are

not interested in the interpretations themselves but only in the paths that they force valua-

tions through. Therefore we can restrict our attention to the equivalence classes and avoid

enumerating all possible interpretations. In other words,if we collect the abstract interpre-

tation PF(p)(ζ) for every pathp that a valuationζ could possibly take (i.e. every path where

PF(p)(ζ) is consistent), along with the corresponding path and leafreached, we will have

all information we need to describe the behavior ofζ under all possible interpretations. The

proceduregetValuedescribed below, does exactly that by simulating the run of avaluation

through a FODD. The output of the procedure is a set of〈leaf , EL, I〉 triplets, whereleaf

is the leaf reached by the valuationζ by traversing the pathp (described by the set of edges

EL) andI = PF(p)(ζ). We rungetValuefor valuationζ with root noden and empty sets

for PF andEL

Procedure 5 getValue(valuationζ , PathFormulaPF , EdgeListEL, Noden)

1. If n is a leaf, return{{l(n), EL, PF}}

2. If B |= PF → l(n)(ζ), then return getValue(ζ , PF ∪ l(n)(ζ), EL∪ n↓t, target(n↓t))

If B |= PF → ¬l(n)(ζ), then return getValue(ζ , PF ∪ ¬l(n)(ζ), EL ∪ n↓f ,

target(n↓f))

Return getValue(ζ , PF ∪ l(n), EL ∪ n↓t, target(n↓t)) ∪ getValue(ζ , PF ∪ ¬l(n),

EL ∪ n↓f , target(n↓f))

Figure 6.1 shows an example of the R12 reduction. The reduction is applied to the FODD

on the left to reduce it to the FODD on the right. The table illustrates the result of running

the getValue procedure on all possible valuations over the set of domain objects{a, b} and

the variablesx andy appearing in the left FODD. For example, the traversal of valuation

{x/a, y/b} through the FODD has 3 possible eventualities. Either it reaches a10 leaf by

traversing path{1t} (which is short forpath consisting of the true edge of node1), under

abstract interpretation{p(a)}, or it reaches a10 leaf by traversing path{1f2t} (which is

short forpath consisting of the false edge of node1 followed by the true edge of node 2),

under abstract interpretation{¬p(a), p(b)} or (in all other cases) it reaches a0 leaf.

102 CHAPTER 6. MODEL-CHECKING REDUCTIONS

Note that the different behaviors of a valuation are mutually exclusive because the ab-

stract interpretations associated with these behaviors partition the space of worlds. Any in-

terpretation must be consistent with exactly one of these abstract interpretations and hence

must force the behavior corresponding to that abstract interpretation on the valuation.

Thus with the help of the getValue procedure, the possible behaviors of all valuations

over a set of domain objects can be tabulated. The next step isto generate all possible ways

in which an aggregate value can be derived. This can be done without enumerating all

interpretations. The table gives sufficient information tolist all possible ways to aggregate

over the set of all valuations. Just consider all combinations of behaviors over the set of

valuations. Every combination (as long as it is consistent)can produce an aggregate value

or the map.

The aggregation, however, has to be done so as to expose the valuations (and thereby

the paths) that prove to be important for determining the map. Intuitively, then, paths

that remain unexposed in spite of listing all possible ways to aggregate over the set of all

valuations are unimportant and can be removed. To this end, the next section introduces

variants of themax aggregation function denotedmax2 andmax3.

6.1.1 Generalized Aggregation Function and the R12 Reduction

When calculating the map, the max aggregation operation is applied to values obtained

by evaluating the FODD under different valuations. For R12,we are interested not just

in the aggregate value but also in other information relatedto the aggregate value. This

information could be

1. The valuations that were indispensable in generating theaggregate value.

2. The paths followed by those valuations.

3. The minimal interpretation under which the valuations were important.

In max aggregation, only one valuation is indispensable in generating the aggregate

− the valuation corresponding to the highest value (if it is unique). If all values below

the highest were to be removed from the input setmax aggregation would still return the

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 103

same result. Therefore none of the removed values are important for determining the result.

Recall from Chapter4 that a path is instrumental relative to a given DPO if

1. there is an interpretationI and valuation,ζ , such thatPathB(I, ζ) = pj, and

2. ∀ valuationsη, if PathB(I, η) = pk, thenk ≥ j.

Thus valuations that are indispensable towards generatingan aggregate value follow instru-

mental paths. Removal of such paths can cause the map to change. All non-instrumental

paths, however, can be safely removed.

Algorithmically we define three variants of themax aggregation operator.

max1: The first variantmax1 is the usual aggregation operator that given a set of values

{v1, · · · vn} returns the aggregatev = max({v1, · · · vn}).

max2: The second variantmax2 is defined relative to a DPO as follows. LetPL be

a fixed DPO. UnderPL, max2({〈v1, path1, I1〉,〈v2, path2, I2〉,· · · 〈vn, pathn, In〉}) = 〈vo,

patho, Io〉. The input to the second variant is, therefore, a set of 3-tuples of the form

〈vi, pathi, Ii〉. Each 3-tuple corresponds to a valuationζi so thatζi traverses pathpathi in

the FODD under interpretationIi (and therefore all consistent extensions of interpretation

Ii) to reach leafvi. The output is a 3-tuple defined as:

1. vo = max1({v1, v2 · · · vn}).

2. Io =
⋃n

i=1 Ii.

3. patho = pathi such thatvi = vo andi = min{j | vj = v0}.

The example in Figure 6.1 shows the DPO and the 3 possible aggregation results derived

from the table. Each of the 3 results is derived using themax2 variant. For example,

aggregating over

• 〈10, {1t}, {p(a)}〉 for {x/a, y/a},

• 〈10, {1t}, {p(a)}〉 for {x/a, y/b},

104 CHAPTER 6. MODEL-CHECKING REDUCTIONS

• 〈10, {1t}, {p(b)}〉 for {x/b, y/a}, and

• 〈10, {1t}, {p(b)}〉 for {x/b, y/b},

using themax2 variant gives〈10, {1t}, {p(a), p(b)}〉 indicating that there is a possible

aggregation where the path consisting of the edge{1t} is instrumental in determining the

map. Note that the resulting partial interpretation{p(a), p(b)} is consistent but this does

not have to be the case.

max3: The third variantmax3 gets as input a setT . Each element ofT is a〈valuation−

valueset〉 pair. A valueset is itself a set of〈value, path, Interpretation〉 triplets. In Fig-

ure 6.1 each row of the table is a〈valuation − valueset〉 pair. LetT = {〈valuation1 −

valueset1〉, 〈valuation2−valueset2〉, · · · 〈valuationn−valuesetn〉}. Thus in Figure 6.1,

T is the entire table and each element ofT is a row of the table. LetT ′ be the corresponding

set{valueset1, valueset2, · · · , valuesetn}. Let T ′′ be the cartesian product of the sets in

T ′. Each elementei of T ′′ = {e1, e2, · · · , em}, then, is a set of〈value, path, Interpretation〉

triplets.max3(T) is then defined as

max3(T) = {〈valuer, pathr, Ir〉

= max2(ei) | ei ∈ T ′′, valuer > 0, Ir 6=⇒⇐}

Thus,max3(T) is the collection of results ofmax2 applied to each element ofT ′′ where

the combined interpretation is consistent and the aggregate value is greater than0. The

cartesian product is taken to make sure that we consider all possible ways in which a map

can be generated in the FODD.

The example in Figure 6.1 shows the result of applyingmax3 to the elements in the

table. Although there are2 × 3 × 3 × 2 = 36 possible combinations of valuation be-

haviors (and hence36 elements inT ′′), only 3 of these combinations result in a con-

sistent combined interpretation and positive value. For example, under the given DPO,

max2({〈10,{1t},{p(a)}〉, 〈10,{1t},{p(a)}〉,〈10,{1f2t},{p(a),¬p(b)}〉, 〈10,{1t},{p(b)}〉})

= 〈10,{1t},{p(a), p(b),¬p(b)}〉 is omitted from the result ofmax3(T) because the com-

bined abstract interpretation is inconsistent. Aggregations resulting in0 value are ignored

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 105

because0, being the smallest obtainable value, is uninteresting under themax aggregation

semantics. Observe that in this example, the path{1t} is the only instrumental path. Intu-

itively this implies that the target of any edge not on this path (for instance edge1f) can be

set to0 without changing the map. The resulting FODD is shown on the right.

This process is formalised in procedures 6 and 7.

Procedure 6 R12(B)

1. Fix a DPOPL.

2. Invent as many new objects as the number of variables inB. LetO be the set of these

new objects.

3. LetU be the set of all possible valuations of the variables inB overO.

4. LetS = Reduction-Aggregation(B, U , PL) =

{〈value1, path1, I1〉, 〈value2, path2, I2〉, · · · 〈valuen, pathn, In〉}.

5. LetE ′ = {e | e is an edge in pathpathi and{leaf(pathi), pathi, I} ∈ S for some

I}. ThusE ′ is the set of all edges that appear on any path exposed in any triplet in

the setS.

6. DefineE = BE − E ′, whereBE is the set of all edges inB.

7. ∀ edgese ∈ E, set target(e) in B to 0 to produce FODDB′.

8. returnB′.

Procedure 7 Reduction-Aggregation(B, U , PL)

1. LetV al = {}

2. Do for every valuationζ ∈ U

(a) valueset = getValue(ζ , {}, {}, Broot)

(b) Add the entry[ζ, valueset] to V al

3. LetT = max3(V al) underPL.

4. returnT

106 CHAPTER 6. MODEL-CHECKING REDUCTIONS

6.1.2 Proof of Correctness

This section shows that the R12 procedure removes exactly the right edges in its input

FODD. We show that our procedure identifies the set of edges oninstrumental paths and

that all other edges can be removed, thus showing both soundness and completeness. We

follow with the technical details.

Lemma 16 If a pathpi in FODD B is instrumental under DPOPL, and reaches a non-

zero leaf, then∃ Io such that{leaf(pi), pi, Io} ∈ S.

Proof: If pi is instrumental underPL then∃ I, ζ , PathB(I, ζ) = pi and∀ η, PathB(I, η)

= pj impliesj ≥ i. Let O′ be the set of objects inI that participate inζ . Clearly1 ≤ |O′|

≤ |O|. Let o1 be an object inO′. Add |O| − |O′| new objects toO′ to make the setsO and

O′ equal in size. Construct interpretationI ′ by first projectingI to include only the objects

in O′ and then defining truth values and predicates over the new objects to behave identical

to o1.

SinceI ′ includes the relevant portion ofI there is a valuation that traversespi under

I ′. Additionally, if ∃ζ̂, PathB(I ′, ζ̂) = pj , wherej < i, we can construct valuationζ by

replacing the new objects in̂ζ by o1 so thatPathB(I, ζ) = pj . However, we know that∀

η, PathB(I, η) = pj implies j ≥ i. Therefore we conclude that∀ η, PathB(I ′, η) = pj

impliesj ≥ i.

Let U now, be the set of all valuations of the variables inB over O′. Let Io =
⋃

η∈U (PF (PathB(I ′, η)))η. That is, Io includes all the atoms ofI ′ that participate in

traversing paths inB for all η ∈ U . By construction the corresponding parts(PF (PathB(I ′,

η)))η will be included in thevalueset returned by the getValue procedure. ClearlyIo ⊆ I ′.

Therefore ifI ′ is consistent then so isIo. By the definition ofmax3, S = max3(V al) under

PL must contain{leaf(pi), pi, Io} when leaf(pi) is non-zero.

Lemma 17 If there exists an instrumental path underPL that crosses edgee in B and

reaches a non-zero leaf, thene ∈ E ′.

Proof: If there is an instrumental pathpi ∈ PL that crosses edgee and reaches a non-zero

leaf, then by Lemma 16∃ Io such that{leaf(pi), pi, Io} ∈ S. By definition ofE ′, e ∈ E ′.

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 107

Theorem 8 (soundness)If FODD B′ is the output of R12(B) for any FODDB, then∀

interpretationsI, MAPB(I) = MAPB′(I).

Proof: By the definition of R12, the only difference betweenB andB′ is that some edges

that pointed to sub-FODDs inB, point to the0 leaf in B′. These are the edges in the set

E at the end of the R12 procedure. Therefore any valuation crossing these edges achieves

a value of0 in B′ but could have achieved more value inB under the same interpretation.

Valuations not crossing these edges will achieve the same value in B′ as they did inB.

Therefore for any interpretationI and valuationζ , MAPB(I, ζ) ≥ MAPB′(I, ζ) and hence

MAPB(I) ≥MAPB′(I).

Fix any interpretationI andv = MAPB(I). Let ζ be a valuation such that MAPB(I, ζ)

= v. If there is more than oneζ that gives valuev, we choose one whose pathpj has

the least index inPL. By definition,pj is instrumental and by lemma 17, either leaf(pj)

= 0 or none of the edges ofpj are removed by R12. In both cases, MAPB′(I, ζ) = v =

MAPB(I). By the definition of the max aggregation semantics, MAPB′(I)≥MAPB′(I, ζ)

and therefore MAPB′(I) ≥ MAPB(I).

Theorem 9 (completeness)If no path crossing edgee and reaching a non-zero leaf inB

is instrumental underPL, then R12 removese.

Proof: By definition the set of all edges inB is partitioned into setsE andE ′. Now, if

e ∈ E ′, then∃ pathpi ∈ PL and interpretationIo such thate is an edge onpi, leaf(pi) is

non-zero and{leaf(pi), pi, Io} ∈ S. The existence of{leaf(pi), pi, Io} in S implies that

underIo, ∃ valuationζ ∈ U such thatPathB(Io, ζ) = pi and∀ η ∈ U , PathB(Io, η) =

pj impliesj ≥ i. Thereforepi is instrumental. Therefore all edges inE ′ belong to some

instrumental path. This implies thate from the statement of the theorem is not inE ′ and

therefore it is removed by R12.

Implementing R12 will not be practical for FODDs with more than a small number of

variables because it involves enumeration of all possible valuations. On the other hand,

previous reduction operators rely on theorem proving over single path formulas or edge

implications. There are cases where such reduction operators fail to reduce a diagram

but R12 is successful. Figure 6.2 shows an example where R12 succeeds but previous

108 CHAPTER 6. MODEL-CHECKING REDUCTIONS

Figure 6.2: Example where R12 can reduce the diagram but previous reductions fail

reductions fail. Notice that there are 2 paths reaching the10 leaf in the left FODD. In this

diagram, whenever a valuation reaches the1 leaf there is another valuation that reaches the

10 leaf through one of the 2 paths. However, neither of the path formulas are individually

implied by the formula for the path reaching the1 leaf. Similarly neither of the edge

formulas for the edges terminating in the10 leaf are implied by the edge formula for the

edge terminating in the1 leaf. R12, on the other hand, relies on model checking and is able

to reduce the FODD on the left to the FODD on the right.

Above we gave soundness and completeness properties for R12. However, the com-

pleteness result falls short of providing a normal form because it relies on a DPO to define

which parts of a diagram may be reduced when there are mutual implication relations.

Therefore the same semantic function may have different minimal representations. How-

ever, the completeness guarantees are much stronger than those of previous reductions. In

Chapter3 we discussed normal form for FODDs. Examples of FODDs given there (using

the length2 path construction) show that for normal form we may need somesyntactic

manipulation of diagrams. Therefore going beyond the completeness shown in this chapter

may be hard or expensive to compute. As a final comment, note that R12 is distinguished

from previous reductions by the fact that it employs the aggregation function of the FODD

itself as its main subroutine. This fact is useful when we generalize FODDs to allow dif-

ferent aggregation functions in Chapter8.

6.2. PRACTICAL MODEL-CHECKING REDUCTIONS 109

Figure 6.3: Example ofR12edge and R12node. Given the training set{{p(1),q(1)},
{¬p(1),q(1)}}, R12edge reduces the diagram (a) to produce diagram (b). Given the training
set{{p(1),q(1)},{¬p(1),q(1)},{¬p(1),¬q(1)}}R12node removes the redundant node from
(b) to produce (c).

6.2 Practical Model-Checking Reductions

As mentioned in the previous section, R12 avoids enumerating all possible interpretations

through bookkeeping but the complexity of R12 is too high requiring an enumeration ofnn

valuations to a hypothetical interpretation for a diagram with n variables. In the following

we present two simple heuristic variants of R12 that allow usto remove edges as well as

nodes in FODDs. We assume a given set of “focus interpretations” that together capture

all important variation in the state space. Note that we do not assume all interpretations of

interest are given but instead we assume that if an importantcondition exists for the domain

then this condition is realized in at least one of the given interpretations. This is a much

weaker condition. The result is an efficient variant of R12 and of an extension of R12 for

node removal. As a result we lose soundness and may over-prune a diagram if the set of

given states is not sufficiently rich. On the other hand if theset does capture all important

distinctions in the domain we get efficient, sound and complete reductions.

6.2.1 Edge Removal by Model Checking

For edge removal we want to determine when an edge pointing toa sub-diagram can be

replaced with a zero leaf. Recall that MAPB(I) = maxζMAPB(I). Therefore the values

provided by the non maximizingζ ’s can be reduced without changing the final results. As

110 CHAPTER 6. MODEL-CHECKING REDUCTIONS

above, an edge is instrumental if it participates in a path that gives the final value on some

interpretation. In the following this is approximated by being instrumental on the given

examples. This idea can be easily implemented as follows:

Procedure 8 R12edge

Input: FODDB, SampleE

Output: Reduced FODDB′

1. Generate a DPOP for B.

2. I = {}

3. For each examplee in E,

For i = 1 to |P |,

if pi subsumese, thenI = I∪ edges(pi) ; break

4. For each edgee′ in B such thate′ /∈ I, set target(e′) = 0

Clearly every path identified as instrumental and added toI is instrumental. Therefore

we prune all unnecessary edges. On the other hand if the example set is too poor, we may

over prune the FODD. Notice that as long as the given examplessatisfy domain constraints

we will automatically prune any paths violating such constraints without the need to em-

ploy complex background knowledge. Similarly any implied relation among predicates is

automatically and implicitly used in the reduction. This isa significant practical feature

of the new reductions and already provides an advantage overthe theorem proving reduc-

tions. In practice this reduction is also much faster than theorem proving reductions of

similar scope.

On the other hand, the quality of the reduction is strongly dependent on the quality

of the example set. The set has to be representative so that important structure is not

reduced from the diagram. At the same time we want fewer examples to improve efficiency.

Figure 6.3 shows an example ofR12edge. Given a training set{{p(1), q(1)}, {¬p(1), q(1)},

where the domain contains only one object{1}, the FODD in Figure 6.3(a) is reduced by

R12edge to produce the FODD in Figure 6.3(b). When the DPO is constructed so as to

give precedence to shorter paths, the pathp(x) is deemed instrumental byR12edge because

6.2. PRACTICAL MODEL-CHECKING REDUCTIONS 111

of example{p(1), q(1)} and the path¬p(x),¬p(y), q(x) is deemed instrumental because

of the example{¬p(1), q(1)}. In fact this is the smallest training set that removes all

redundant edges from the diagram without over pruning it.

6.2.2 Node Removal with Model Checking

While edge removal is important it does not handle a common type of redundancy that

arises often when FODDs are composed. For instance, in the SDP algorithm we add or

multiply functions with similar structure that are standardized apart (step2 of the relational

VI algorithm described in Chapter2). Often we have an irrelevant node above an important

portion of the diagram. We cannot remove the edge from that node because it will cut off

the important sub-diagram. Instead what we need is a reduction that can skip the irrelevant

node. This is similar to the issue handled by R11. We use this idea for nodes where one

child is zero and the other is a diagram. The question is whether connecting the node’s

parents directly to the non-zero child will change MAPB(I) = maxζMAPB(I). The only

way this can happen is if a valuationζ that previously went to the zero child is now directed

to a non-zero leaf which is greater than the previous maximum. As above, this condition is

easy to check directly on the given set of examples.

Procedure 9 R12node

Input: FODDB, SampleE, Set of Candidate nodesC

Output: Reduced FODDB′

1. Generate a DPOP for B.

2. For each noden ∈ C do the following:

(a) Remove noden fromB by connecting the parents ofn directly to the non-zero

child ofn to produce FODDB−n.

(b) Generate a DPOP−n for B−n.

(c) Setkeep.node = 0.

(d) For each examplee in E, do the following:

112 CHAPTER 6. MODEL-CHECKING REDUCTIONS

i. For i = 1 to |P |,

if pi subsumese, then set value(e) = leaf(pi) ; break

ii. For i = 1 to |P−n|,

if pi subsumese, then set newvalue(e) = leaf(pi) ; break

iii. If newvalue(e) > value(e), setkeep.node = 1; break

(e) If keep.node == 0, setB = B−n

As above, any node withkeep.node = 1 must be kept otherwise the value correspond-

ing to some example will change. Therefore we prune as much asis allowed by the example

set. Again, if the example set is not rich enough, we may over prune the FODD. For ex-

ample we saw that the example set{{p(1), q(1)}, {¬p(1), q(1)}} is sufficient to remove

all edge redundancies while still maintain soundness and reduce it to the FODD in Figure

6.3(b). With the same example set, however, the R12-node reduction will remove the non-

redundant nodeq(x). This is because the value of neither example in the set changes by

the removal ofq(x). For q(x) to survive R12-node the example set must have an example

like {¬p(1),¬q(1)} demonstrating that the node is important. Adding{¬p(1),¬q(1)} to

the example set reduces the diagram in Figure 6.3(b) to the diagram in Figure 6.3(c), which

is the smallest FODD representation of the functionp(x) ∨ q(x).

6.3 Discussion

In this chapter we introduced the reduction operator R12 based on model-checking. Al-

though R12 has theoretical properties that are superior to the theorem proving reductions,

it is not a practical algorithm. We presented practical versions of R12,R12edge andR12node.

The efficiency ofR12edge andR12node is significantly better than that of theorem proving

reductions. With a good set of training examples, these reductions preserve important struc-

ture in the diagram. The quality of the training set has to be defined relative to a specific

application. In the next Chapter we continue with Decision Theoretic Planning as our ap-

plication to demonstrate how a “good” training set can be generated for this application.

At the same time we will demonstrate the superior efficiency of R12edge andR12node over

other reductions.

Chapter 7

Self-Taught Decision Theoretic Planning

with FODDs

Inspired by the model-checking reductions developed in theprevious chapter, we intro-

duce a new paradigm for planning by learning: the planner is given a model of the world

and a small set of states of interest, butno indication of optimal actions in any states.

This paradigm is motivated by the observation that many state descriptions generated when

solving one planning problem contain basic information that is important for solving other

planning problems. Similar to implicit imitation for reinforcement learning of Price and

Boutilier (2003), the additional information can help focus the planner on regions of the

state space that are of interest and lead to improved performance. Naturally we validate

and demonstrate the idea in the context of the FODD-PLANNER but the same technique is

applicable to any SDP algorithm that requires logical simplification.

Focused planning as outlined above requires a set of training examples. We show that

such training examples can be constructed on the fly from a description of the planning

problem. Thus we can bootstrap our planner to get a self-taught planning system. We pro-

pose several such approaches, based on backward random walks from goal states enhanced

with specific restrictions to ensure coverage of a rich set ofstates with a small sample. To

recap, the idea is that given a description of the domain, we first generate the focus states

automatically and then run SDP using FODDs as before but using model-checking reduc-

tions with the focus states as training examples instead of theorem proving reductions.

113

114CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

There have been other approaches where training examples have been used to gener-

ate models for solving planning problems (Fern et al., 2006;Gretton & Thiebaux, 2004).

However, our approach differs from these approaches in thatthe training set does not need

information about optimal actions or values along with the examples.

We implemented the model-checking reductions and the example generation routines

in the FODD-PLANNER and applied it to several domains. In this chapter we providean

extensive evaluation of the ideas described above as well asseveral other system related

issues, using the experiments to investigate and demonstrate the contribution of different

aspects of the system.

The rest of the chapter is organized as follows. Section 7.1 describes ideas on gener-

ating examples to focus the planner. Section 7.2 provides the experimental evaluation in

which we explore the merits of different methods to generatethe training examples, pro-

vide “learning curves”, explore speedup mechanisms, and give the experimental results on

IPC problems.

7.1 Bootstrapping: Example Generation

The key to effective employment ofR12edge andR12node is to provide these operators with

a rich set of interesting examples. In the case of planning problems, the examples of interest

are states visited during execution of the solution to a planning problem. Such states can be

generated in a variety of ways. One potential method starts from a random state and runs

episodes of simulated random walks through the state space.Another potential method

employs a planner to solve a few sample planning problems andcollect the states on the

solution paths into the set of examples.

The methods most relevant to Decision Theoretic Planning start from a set of typical

goal states and regress over ground actions to generate states from which the goal state

is reachable. Regression from a ground states over actiona is possible only whena can

achieves from some states′. Using STRIPS notation, this is easily verified by checking if s

is subsumed byPRECONDITIONS(a)+ ADD-LIST(a)− DELETE-LIST(a). Such ans′ is

then generated by simply addingDELETE-LIST(a)to s and removingADD-LIST(a)from

s. This method of example generation is particularly suitable for SDP based systems like

7.1. BOOTSTRAPPING: EXAMPLE GENERATION 115

FODD-PLANNER because the same states are assigned new values by VI. In the following,

we develop two variants of this approach both of which take a seed states and regress from

it.

Instance Regression (IR):We iteratively generate all possible states up to a certain

specified depth using a BFS procedure. Regression over states at depthd produce states at

depthd + 1 in thedth iteration. The depth parameter can be set to the same value asthe

number of iterations of VI run by FODD-PLANNER because states from deeper levels are

not relevant to the value function. Therefore there is no need for parameter selection of the

depth parameter. However, this method could generate a large example set eliminating the

advantage of model-checking reductions. To mitigate this effect we introduce the following

pruning techniques.

(1) Limit IR to use only those actions that bring about certain literals in the state. These

literals are the preconditions of the previous action that generated this state through re-

gression. In particular, if states was regressed over actiona′ to produce states′ in the ith

iteration, then the preconditions ofa′ (which must be true ins′) are maintained as special

literals in the description ofs′. When regressing overs′ in iterationi+1, only those actions

that bring about these special literals are considered. Thus we try to generate states that are

further away from the goal.

(2) Identify and mark sub-goals so that they are not achieved more than once. For

example, supposesp ⊂ s are the special literals ins and as above we regress froms using

a′. Mark literals insp∩ ADD-LIST(a′). Now, in thei + 1th iteration, when regressing from

s′, only those actions that generate states not containing themarked literals are considered.

Considering the sequence of actions generated as a plan, this heuristic avoids re-achieving

the same goal literal by the plan. Although incomplete, thisheuristic is effective in limiting

the number of states generated.

(3) Regress states over a composition ofk actions instead of a single action. The param-

eterk is independent and thus requires parameter selection. For example suppose actiona

is a composition of actionsa′′ anda′. Now, if s′ regressed overa′′ generates states′′, then

s regressed overa generatess′′. We add statess, s′ ands′′ to the set of examples. Regres-

sion continues from states′′. This technique avoids imposing the special and marked literal

restrictions on every action and imposes them directly on compositions of actions, thereby

116CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

allowing more freedom to search the state space in cases where the previous techniques are

too restrictive. In our experiments we used this option withk = 2 whenever insufficient

data was generated by settingk = 1 (as shown by planning experiments).

Backward Random Walk (BRW): Instead of generating all states by iterative regres-

sion, as in IR, we run episodes of random walks backwards fromthe goal (sampling actions

uniformly) without any of the above restrictions. This provides a varied set of states includ-

ing states that are off the solution path for typical planning problems. Here the length and

number of episodes require parameter selection. In our experiments we choose these arbi-

trarily so as to add examples but not increase set size to be too large.

In practice we need a mix of examples generated by IR and BRW. To see why, letV be a

value function that solves planning problemp optimally andS be a set of all possible states

along any optimal solution path ofp. ThenV reduced byR12edge againstS is guaranteed to

solvep optimally butV reduced byR12node againstS is not. As illustrated above,R12node

requires examples that demonstrate that the diagram will erroneously gain value on removal

of important nodes. Hence states off the solution path ofp might be required forV to be

retained byR12node. The techniques with IR, however, are designed to generate only states

along solution paths. Therefore in the example set we include all the states generated by

IR and add states generates by BRW to yield a mixed set.

7.2 Experiments on Planning Domains

In this section we present the results of our experiments on domains discussed in chapter

5, namely tireworld and blocksworld from IPC 2006, and the boxworld domain from IPC

2008. We left out the domains fileworld and logistics becausewe were able to achieve

convergence of the policy in these domains and hence there islittle scope for improvement.

Our intention here is to investigate

(Q1) what are the contributions of the different parameters (number of train-

ing examples, number of iterations of VI, types of reductions, goal ordering

heuristic) of the self-taught model-checking system, and(Q2) whether our

self-taught model-checking system can effectively speed up decision theoretic

7.2. EXPERIMENTS ON PLANNING DOMAINS 117

planning while matching performance with the theorem proving system and

other state of the art systems in stochastic planning.

To this aim, we generated a value function for each domain by running FODD-PLANNER

in three different configurations based on the method used toreduce FODDs.

1. FODD-PL: All theorem proving reductions only. This is the same systemwe pre-

sented in chapter5. All configurations or parameter settings of FODD-PL in these

experiments are exactly the same as the ones used in the experiments in chapter5.

2. ST-FODD-ER: R12 edge removal reduction and a theorem proving node removal

reduction R11.

3. ST-FODD-ERNR: R12 edge and node removal reductions only.

In the following, we present a comparison study of the three methods over the same metrics

we used in the experiments in chapter5, i.e. their ability to solve planning problems from

IPC measured in terms of coverage, average plan length, cpu time required to generate

the value function (or policy), and in the case the boxworld domain, the average reward

achieved. Average reward is irrelevant for blocksworld andtireworld because there are no

action costs in these domains. We generated examples by mixing states generated by the

IR and BRW methods as explained above. Again, we set a limit of200 steps on the plan

length when solving IPC problems. Plans that ran for more than 200 steps were counted as

failed.

Overall we observe that self-taught planning (Methods ST-FODD-ER and ST-FODD-

ERNR) generates the value function much faster than FODD-PLwhile maintaining the

same level of performance. As in Chapter5, plan execution time standards of IPC were

not met for boxworld problems and some hard problems of blocksworld due to slow policy

evaluation in the online component. Further research on this topic is needed to optimize

for a faster execution module.

7.2.1 Timeout Mechanism

When building the model or executing a plan, the most expensive operation in FODD-

PLANNER is subsumption (that is given a state and a path formula, solving the matching

118CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91

10 20 30 40 50 100 200 300 400 500 600 700 800 900 1000 >1000% of sub sumpti oncall smad e

M i l l i s e c o n d s

S u b s u m p t i o n C a l l S t a t i s t i c s
T i r e w o r l d 1 0 i t e r

Figure 7.1: Subsumption Call Statistics: More than 99 percent of the call run under 50
milliseconds

Ex 50 100 150 200 250
Calls 145298 240157 320509 689286 852904

Table 7.1: Number of subsumption calls made during VI using ST-FODD-ER with given
number of examples (Ex)

problem to decide whether the formula is applicable in the state). The basic observation is

that because we switched from theorem proving to model-checking the complexity of the

system is heavily affected by the cost of subsumption tests.As has been well documented

in the literature (Maloberti & Sebag, 2004) subsumption problems show a phase transition

phenomenon and, while most problems are easy, certain typesof problems have a very

high cost. In our context it turns out that very few subsumption tests are of this class and

therefore we can get significant speedup by detecting and stopping these early, with little

or no difference in coverage for the planning problem. Table7.1 shows the number of

subsumption calls made by FODD-PLANNER using ST-FODD-ER with varying number

of training examples when building a model for7 iterations of the tireworld domain. Since

the number of calls is large, unless the amount of time per call is somehow controlled, we

could be faced with prohibitively large run times.

7.2. EXPERIMENTS ON PLANNING DOMAINS 119

0 . 6 50 . 70 . 7 50 . 80 . 8 50 . 9
5 0 1 0 0 1 5 0 2 0 0 2 5 0

C overage
e x a m p l e s

T i r e w o r l d : C o v e r a g e v s .# e x a m p l e s
S T _ F O D D _ E R(7 i t e r)

Figure 7.2: Tireworld Learning Curve: Average Percentage of Problems solved by ST-
FODD-ER vs. Number of examples in the training set

In order to alleviate this cost, we utilize a timeout mechanism within the subsumption

routine. The subsumption simply fails if it runs beyond a specified time limit. To decide

on a setting for the time limit parameter, we generated histograms of run times of single

subsumption tests. Figure 7.1 illustrates the percentage of subsumption calls made against

the cpu time. We observe here, that more than99 percent of the calls that are made run

within 50 milliseconds. The most expensive call took more than35 minutes. Therefore a

time limit parameter to1 second would cause only a negligible percentage of calls to time

out yet eliminating the significantly more expensive subsumption calls. In initial experi-

ments we were able to verify that the run time was greatly improved by setting a time limit

of 1 second while keeping the same level of performance in solving planning problems.

Additional timing experiments showed that not much more canbe gained by fine tuning

the timeout threshold. Therefore this heuristic provides arobust mechanism to control run

time increase due to subsumption tests.

120CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

02 0 04 0 06 0 08 0 01 0 0 01 2 0 0
5 0 1 0 0 1 5 0 2 0 0 2 5 0CPUTi me(second s)

e x a m p l e s

T i r e w o r l d : P l a n n i n g T i m e v s . #e x a m p l e s
S T _ F O D D _ E R(7 i t e r)

Figure 7.3: Tireworld: Planning time in cpu seconds by ST-FODD-ER vs. Number of
examples in the training set

7.2.2 (Q1) System Characteristics

Since the model checking reductions remove all parts of the FODD that are not instrumen-

tal in determining the map for the set of training examples, similar to standard machine

learning, we would expect the size of the training set to havean effect on the level of ap-

proximation in the value function and hence on planning accuracy. Smaller training sets

would cause important structures in the value function to beeliminated and consequently

show poorer performance than larger training sets. In orderto understand and illustrate

this, we experimented on building the value function for7 iterations on the tireworld do-

main using ST-FODD-ER varying the example set size. Figure 7.2 shows the learning

curve produced. We increased the example set size from 50 to 250 with each set containing

all examples from the previous set and50 additional random examples. The Y-axis shows

average coverage over the 15 IPC 2006 problems. We see that the performance converges

before reaching a 100%. This is because some of the problems are designed with action

failures and deadlocks so that achieving a coverage of 100% when averaged over30 rounds

is statistically very unlikely. For the same setting, Figure 7.3 shows a linear increase of run

time against the number of training examples. Figure 7.4 shows the run time against the

7.2. EXPERIMENTS ON PLANNING DOMAINS 121

01 0 0 02 0 0 03 0 0 04 0 0 05 0 0 06 0 0 0

1 2 3 4 5 6 7 8 9 1 0CPUTi me(second s)
I t e r a t i o n s

T i r e w o r l d : P l a n n i n g T i m e v s .# I t e r a t i o n s
F O D D _ P LS T _ F O D D _ E R(2 1 5 e x)S T _ F O D D _ E R N R(2 1 5 e x)

Figure 7.4: Tireworld: Planning time in cpu seconds vs. Number of iterations of VI

M PL ER ERNR ER ERNR
I 7 7 7 10 10
C 1831.69 914.428 542.464 5457.76 1129.02

Table 7.2: Tireworld: Planning time taken in CPU seconds (C)by methods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for various number of
iterations (I)

number of iterations of VI for the3 methods. For ST-FODD-ER and ST-FODD-ERNR,

a fixed training set of215 examples was used. Clearly ST-FODD-ERNR is more efficient

than ST-FODD-ER, which in turn is more efficient than FODD-PL. This allows us to run

more iterations of VI with the system based in model-checking reductions.

7.2.3 (Q2) Tireworld

Training examples for this domain were generated by runningIR with thed parameter set

to 10 and thek parameter set to1 and running BRW for10 episodes of length20 each. The

seed state for both methods was designed so as to have a map of10 locations connected

linearly. Each location connects to2 neighbors by a two way road except the locations

at the extremes which connect to only one location. The vehicle was placed in the first

122CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

00 . 20 . 40 . 60 . 8 11 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
C overage

P r o b l e m I n s t a n c e I D

T i r e w o r l d : C o v e r a g e v s . P r o b l e mI n s t a n c e F O D D 9 P L(7 i t e r)F O A L PS T 9 F O D D 9 E R(7 i t e r)S T 9 F O D D 9E R N R (7 i t e r)S T 9 F O D D 9 E R(1 0 i t e r)S T 9 F O D D 9E R N R (1 0 i t e r)
Figure 7.5: Tireworld Coverage Results

location. This was chosen heuristically as it seemed the simplest configuration relevant for

tireworld.

Following the experimental procedure in chapter5, we apply the non-std-apart approx-

imation after the3rd iteration of VI. Figures 7.5, 7.6 and Table 7.2 show the comparison

of the3 methods. We observe here that the model checking methods ST-FODD-ER and

ST-FODD-ERNR generate a value function much faster than FODD-PL while keeping

the same level of performance on the IPC problems. It is also important to note that these

results of coverage and plan length are competitive with theperformance of FOALP (San-

ner & Boutilier, 2009), one of the top ranking systems from IPC 2006. Results for plan

length show comparable results to FODD-PL which is slightlybetter than other systems.

Since the model checking reductions allow faster planning,we can run more iterations

of VI to generate a deeper value function that can solve harder planning problems. Figure

7.7 shows a simple planning problem where the value functiongenerated by7 iterations of

the FODD-PLANNER using FODD-PL fails but one generated by10 iterations of FODD-

PLANNER using ST-FODD-ER succeeds. The vehicle is at locationa and has to get to

locationj. Spare tires are available in all locations. The problem is designed such that at

every step along the way, there are4 wrong actions that lead to dead end states and one

7.2. EXPERIMENTS ON PLANNING DOMAINS 123

024 681 01 21 4
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5A verage#A cti onst oG oal

P r o b l e m I n s t a n c e I D

T i r e w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c eF O D D _ P L (7 i t e r)F O A L PS T _ F O D D _ E R(7 i t e r)S T _ F O D D _ E R N R(7 i t e r)S T _ F O D D _ E R(1 0 i t e r)S T _ F O D D _ E R N R(1 0 i t e r)
Figure 7.6: Tireworld Plan Length Results

G o a l :v e h i c l e [a t (j)

I n i t i a l S t a t e :v e h i c l e [a t (a)

Figure 7.7: Tireworld Challenge Problem

124CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

b 1b 3b 2b 4b 6b 5b 7b 9b 8

b 1 2 b 1 3b 1 0 b 1 1
I n i t i a l S t a t e G o a l :c l e a r (b 1)

Figure 7.8: Blocksworld Challenge Problem

correct action that makes progress. Thus one wrong action will cause the plan to fail. So

only a value function deep enough to assign a non-zero value to the starting state can solve

it. We could not generate such a problem using the IPC problemgenerator for tireworld.

The problem generator produces example problems by creating random location maps of

given edge density and choosing random connected initial and goal locations. We observed

that independently of the edge density parameter the initial and goal location appeared no

farther than5 steps from each other. Running10 iterations with FODD-PL takes more

than2 days whereas with ST-FODD-ER takes about and hour and a half and with ST-

FODD-ERNR takes about16 minutes.

7.2.4 Blocksworld

As before, training examples for this domain were generatedby both methods IR and BRW.

For IR thed parameter was set to15 and thek parameter was set to2. For BRW we

ran 10 episodes of length20 each. For both methods, the seed examples for each goal

(the 4 goals in blocksworld areclear-block(a), on(a,b), on-table(a)andarm-empty) was

designed to be a state satisfying the single goal literal and, in addition, a tower including all

7.2. EXPERIMENTS ON PLANNING DOMAINS 125

00 . 20 . 40 . 60 . 8 11 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5
C overage

P r o b l e m I n s t a n c e I D

B l o c k s w o r l d : C o v e r a g e v s .P r o b l e m I n s t a n c e F O D D 9 P L(8 i t e r)F O A L PS T 9 F O D D 9 E R(8 i t e r)S T 9 F O D D 9 E R N R(8 i t e r)S T 9 F O D D 9 E R(1 0 i t e r)S T 9 F O D D 9 E R N R(1 0 i t e r)
Figure 7.9: Blocksworld Coverage Results

01 02 03 04 05 06 07 08 09 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5A verage#A cti onst oG oal
P r o b l e m I n s t a n c e I D

B l o c k s w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c e F O D D _ P L (8 i t e r)F O A L PS T _ F O D D _ E R(8 i t e r)S T _ F O D D _ E R NR (8 i t e r)S T _ F O D D _ E R(1 0 i t e r)S T _ F O D D _ E R NR (1 0 i t e r)
Figure 7.10: Blocksworld Plan Length Results

126CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

M PL ER ERNR ER ERNR
I 8 8 8 10 10
C 12465.95 222.33 78.69 865.57 357.68

Table 7.3: Blocksworld: Planning time taken in CPU seconds (C) by methods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for various number of
iterations (I)

other blocks. This was chosen heuristically because it seemed the simplest configuration

relevant for blocksworld. Examples just from IR were sufficient to provide the results

shown for ST-FODD-ER but examples from BRW were required forST-FODD-ERNR

to perform well. Table 7.3 and Figures 7.9 and 7.10 show the comparison of the3 methods

on the15 IPC 2006 problems. We observe that for8 iterations ST-FODD-ER and ST-

FODD-ERNR achieve respectively56 and158 fold speedup in terms of planning time

over FODD-PL while keeping the same level of performance on the IPC problems. ST-

FODD-ERNR in particular performs better than the other two in terms of both coverage

and plan length. Once again the results presented here are competitive in comparison with

top ranking systems from IPC 2006. The results of FOALP are presented on the same graph

for comparison. Plan execution times were very similar to the ones in chapter5.

As before the IPC problems do not illustrate dramatic improvement in performance

due to a larger number of iterations. But such problems are not rare and can be easily

designed. For example Figure 7.8 shows a problem at which thevalue function generated

by 8 iterations of FODD-PLANNER with FODD-PL achieves only50% coverage but one

generated by15 iterations of FODD-PLANNER with ST-FODD-ERNR achieves full cov-

erage. This shows that the ability of the model checking methods to run more iterations

pays off when solving harder problems. This problem was designed so that a shallow value

function would get lost in the action space (as there are manyblock to move) whereas a

deep value function would be able to take the right actions (unstacking the tower) from the

start state itself. Running15 iterations using FODD-PL takes more than3 days whereas

with ST-FODD-ERNR takes less than5 hours.

7.2. EXPERIMENTS ON PLANNING DOMAINS 127

00 . 20 . 40 . 60 . 8 11 . 2

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2
C overage

P r o b l e m I n s t a n c e I D

B o x w o r l d : C o v e r a g e v s . P r o b l e mI n s t a n c e F O D D 9 P L(5 i t e r)R F FS T 9 F O D D 9 E R(5 i t e r)S T 9 F O D D 9E R N R (5 i t e r)S T 9 F O D D 9 E R(8 i t e r)S T 9 F O D D 9E R N R (8 i t e r)
Figure 7.11: Boxworld Coverage Results

M PL ER ERNR ER ERNR
I 5 5 5 8 8
C 3332.33 302.8 117.7 3352.93 618.85

Table 7.4: Boxworld: Planning time taken in CPU seconds (C) by methods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for various number of
iterations (I)

7.2.5 Boxworld

Training examples for this domain were generated by IR and BRW. For IR we set thed

parameter to8 and thek parameter to1. For BRW we ran10 episodes of length20 each.

For both methods, the seed example was designed so as to have amap of10 cities connected

linearly. Each location connects to2 neighbors by a two way road except the locations at

the extremes which connect to only one location.2 boxes,2 trucks and a plane were was

placed in the4th city from one extreme.

Table 7.4 and Figures 7.11, 7.12 and 7.13 show a comparison ofthe3 methods on the

12 IPC 2008 problems. For comparison, the results of RFF are plotted on the same graph.

ST-FODD-ER and ST-FODD-ERNR respectively achieve11 and28 fold speed up over

FODD-PL at5 iterations and enable running a larger number of iterations. Similar to the

128CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH FODDS

02 0 04 0 06 0 08 0 01 0 0 01 2 0 01 4 0 01 6 0 01 8 0 02 0 0 0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2A verage#A cti onst oG oal

P r o b l e m I n s t a n c e I D

B o x w o r l d : A v e r a g e # A c t i o n s t oG o a l v s . P r o b l e m I n s t a n c eF O D D _ P L (5 i t e r)R F FS T _ F O D D _ E R(5 i t e r)S T _ F O D D _ E R N R(5 i t e r)S T _ F O D D _ E R(8 i t e r)S T _ F O D D _ E R N R(8 i t e r)
Figure 7.12: Boxworld Plan Length Results

02 0 04 0 06 0 08 0 01 0 0 01 2 0 01 4 0 01 6 0 01 8 0 02 0 0 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2A verageR e ward
P r o b l e m I n s t a n c e I D

B o x w o r l d : A v e r a g e R e w a r d v s .P r o b l e m I n s t a n c e F O D D _ P L (5 i t e r)R F FS T _ F O D D _ E R(5 i t e r)S T _ F O D D _ E R N R(5 i t e r)S T _ F O D D _ E R(8 i t e r)S T _ F O D D _ E R N R(8 i t e r)
Figure 7.13: Boxworld Plan Length Results

7.3. SUMMARY AND CONCLUDING REMARKS 129

experiments in chapter5, we faced long execution times varying from100 seconds per

round on the easier problems to1.5 hours per round on hard problems.

We observe again that ST-FODD-ER and ST-FODD-ERNR outperform FODD-PL

in terms of planning time while maintaining the level of performance. None of the methods

are able to outperform RFF in terms of coverage, especially for problems10, 11 and12.

RFF achieves full coverage on all the12 problems. However, as in Chapter5, our perfor-

mance is close to RFF in terms of accumulated reward and we perform consistently better

in terms of plan length even on problems where we achieve fullcoverage.

7.3 Summary and Concluding Remarks

To summarize, our experiments demonstrate that the new paradigm of self-taught planning

leads to a significant speedup of Symbolic Dynamic Programming through the use of a set

of states of interest. Self-taught or provided by a mentor, the information gleaned from

these states of interests is used to remove any complex specifications within the value func-

tion that are irrelevant to the given states, thereby focusing on the region of interest. In

this light, the paradigm can also be described as unsupervised transfer learning for plan-

ning. Experiments on domains and planning problems from theInternational Planning

Competitions suggest that this technique not only greatly improves the efficiency of the

planning system, but also allows it to solve harder planningproblems. The systems ST-

FODD-ER and ST-FODD-ERNR show orders of magnitude improvement in efficiency

over FODD-PL demonstrating the superior efficiency of model-checking reductions over

theorem proving reductions.

Although all experiments and demonstrations have been in the context of FODDs and

the FODD-PLANNER system, we believe that self-taught planning can also be applied to

other SDP based solvers of RMDPs. Exploring this is an interesting direction for future

work. Another promising idea is to acquire the training examples from multiple teachers

each specializing in a separate (but possibly overlapping)part of the state space. In con-

trast with behavioral cloning (Morales & Sammut, 2004) where the performance typically

degrades if the learner gets contradicting examples from multiple teachers, our approach

handles this case in a natural way.

Chapter 8

Generalized First Order Decision

Diagrams

FODDs have an inherent limitation in terms of representation power. FODDs (roughly

speaking) represent existential statements but do not allow universal quantification. This

can be a limitation for many tasks that require more expressive representations. This ex-

cludes some basic planning tasks. For example, a company that has to plan a recall of

faulty products requires quantifier prefix∃∀ for the goal: there exists a depot such that

all products are in the depot. Towards overcoming this limitation, this chapter introduces

Generalized FODDs (GFODD), a novel FODD extension that allows for existential and

universal quantification and other aggregators of value. Wedevelop a theoretical frame-

work for GFODDs by characterizing GFODD composition and introducing an extension

of the model-checking reduction R12 for GFODDs for the quantifier settings∃∗∀∗. That

is a finite number of∃ quantifiers followed by a finite number of∀ quantifiers. Finally we

refer to the Decision Theoretic Planning application againby presenting a SDP based al-

gorithm showing how GFODDs can be used to solve RMDPs with arbitrary quantification.

This is a significant extension of the scope of the FODD approach to decision-theoretic

planning. This also advances the theoretical understanding of probabilistic inference with

large models.

The chapter is organized as follows. Section 8.1 introducesGFODDs and their compo-

sition operations. Section 8.2 extends the model-checkingreduction operator to GFODDs

130

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 131

with the quantifier setting∃∗∀∗. Finally Section 8.3 shows the utility of GFODDs for solv-

ing RMDPs.

8.1 Generalized FODDs: Syntax and semantics

The max aggregation of FODDs makes them sufficiently expressive to represent many

planning problems of interest. However, since themax aggregation mirrors existential

quantification over the variables of the FODD, many other functions over logical spaces

cannot be represented by FODDs. These functions could be represented if the aggregation

function was more complex. For example, employing amin aggregation instead of amax

allows representation of functions where the variables areuniversally quantified. Similarly

one can imagine using other aggregation functions like thesum, themean, thevariance

and also a complex mix of these aggregation operators. In this section and the next, we

discuss the properties of such generalized FODDs and the operations that can be performed

to manipulate them. We start by a formal definition of Generalized First Order Decision

Diagrams.

Definition 5 A Generalized First Order Decision Diagram (GFODD) is a 2-tuple 〈V, B〉,

where,V is an ordered list of distinct variables each associated with its own aggregation

operator. We callV the aggregation function for the GFODD. A variable cannot beaggre-

gated in more than one way. ThereforeV contains no repetitions.B is a FODD except that

the leaves can be labeled by a special characterd (for discard).

8.1.1 Semantics of GFODDs

The semantics we choose for GFODDs is similar to the ones for FODDs except that the

aggregation operation is now defined byV = [(op1
v1

), (op2
v2

) · · · (opn
vn

)]. Here everyvi is a

variable of the GFODD (orderedv1 to vn) and the correspondingopi is the aggregation op-

erator associated with variablevi. Consider the set of all possible valuations over variables

v1 · · · vn defined for the domain of interpretationI. Each valuationζ is associated with a

value MAPB(I, ζ). We can now divide up these valuations into blocks. All valuations in

a block have the same assignment of values to variablesv1 · · · vn−1 but they differ in the

132 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

value of the variablevn. We then “collapse” each block to a single valuation over vari-

ablesv1 · · · vn−1 by eliminating the variablevn and replacing the set of associated values

(MAPB(I, ζ)) by their aggregate value produced by applyingopn to the set. Any discard

values in the block are removed before applyingopn. If all values are discard then the result

is discard. If we do this for every block we are left with the set of all possible valuations

defined over the variablesv1 · · · vn−1 each associated with a value (which was obtained by

aggregating over the valuations of variablevn in the block). We repeat the same proce-

dure for variablesvn−1 to v1 to produce a final aggregate value. We define MAPB(I) to

be this final aggregate value. The reader may also view this procedure as aggregation over

variables inV by nesting aggregation operators from left (outermost) to right (innermost).

i.e.

MAPB(I) = op1
v1

[

op2
v2

[

· · ·
[

opn
vn

[MAPB (I, [v1, v2, · · · vn])]
]

· · ·
]]

The term in the center, MAPB(I, [v1, v2, · · · vn]), is the value obtained by running a

valuation defined by an assignment to the variablesv1, · · · vn throughB underI. In order

to reduce the notational clutter, in the rest of the chapter we will drop brackets so that the

above equation looks as follows

MAPB(I) = op1
v1

op2
v2
· · · opn

vn
[Map(I, [v1, v2, · · · vn])]

= op1
v1

op2
v2
· · · opn−1

vn−1
opn[c

[v1···vn−1]
1 · · · c[v1···vn−1]

m]

where eachc[v1···vn−1]
i is a value corresponding to a different object assignment tovari-

ablevn in the block defined by the values assigned to the variablesv1 · · · vn−1.

Figure 8.1 shows an example GFODDB capturing the following statement from the

logistics domain:∃c∀b, boxb is in city c. The output ofB is 10 if all boxes are in one city

and0 otherwise. In the example GFODD shown,V = {Max(c), Min(b)}. Aggregation

is done from right to left, one variable at a time. In the example, therefore, given the value

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 133

Figure 8.1: A Generalized FODD Example

of MAPB(I, ζ) for every possible valuationζ , MAPB(I) is calculated by first aggregating

the values MAPB(I, ζ) over all bindings (or assignments) of the variableb, using themin

operation, producing exactly one value per binding of variable c, and then aggregating all

of the produced values over all bindings of variablec using themax operation. In this

example, to keep the GFODD diagram simple, we assume the variables are typed and use

only valuations that conform to the types of the variables. Had we used all possible valua-

tions over the set of objects{b1, b2, c1, c2}, the diagram would have been more complicated

as it would have had to represent∃c, ∀b, city(c) ∧ [box(b)→ bin(b, c)].

With decision diagrams employing these semantics, there are a few important points to

note.

• The order inV is important. Changing the order of the variables can changethe

aggregation function and hence can change the map.

• First order decision diagrams (FODDs) form a proper subclass of GFODDs where

the aggregation operator associated with every variable ismax. In this case, due to

properties of themax aggregation, the order of variables inV is not important.

134 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

• GFODDs with0/1 leaves can be used to express closed, function free first order for-

mulas by employing themin aggregation operator over universally quantified vari-

ables and themax aggregation operator over existentially quantified variables.

Finally we want the functions represented by GFODDs to be well defined on any inter-

pretation. For this we define:

Definition 6 A GFODDB is legal iff it obeys the GFODD syntax and∀ interpretations I,

∃ζ , MAPB(I, ζ) 6= d.

8.1.2 Combining GFODDs

So far we have focused on the syntax and semantics of GFODDs and their ability to rep-

resent complex functions over relational structures. The utility of such a representation,

though, is in performing operations over such functions, for examplemax (taking the

maximum),+ (addition) and× (multiplication) as used in the SDP algorithm. We call

these operatorscombination operatorsand provide an algorithm Ex-apply to implement

them. Notice that combination operators are different fromaggregation operators. The

next definition provides the intended meaning of combination.

Definition 7 GFODD B is a combination of GFODDsB1 andB2 under the binary com-

bination operatoropc iff ∀ interpretationsI, MAPB(I) = MAPB1(I) opc MAPB2(I).

Aggregation and combination operators can interact, complicating the result of the com-

bination operation. The following definition provides the condition under which a simple

operation can perform the combination.

Definition 8 A combination operatoropc and an aggregation operatoropa are a safe pair

iff for any set of non-negative valuesx1, x2, . . . , xk and any non-negative constantb it holds

that

opa(x1, x2, . . . , xk) opc b = opa(x1 opc b, x2 opc b, . . . , xk opc b) .

The aggregation operatormax and combination operator+ form a safe pair because

for any setS = {c1 · · · cm} and constantb, max{c1 · · · cm}+ b = max{c1 + b, · · · cm + b}.

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 135

opc ⊕ ⊕ ⊕ ⊕ ⊗ ⊗
opa max min sum avg max min

safe/unsafe safe safe unsafe safe safe safe

opc ⊗ ⊗ max max max max
opa sum avg max min sum avg

safe/unsafe safe safe safe safe unsafe unsafe

Table 8.1: List of safe and unsafe pairs for operators.

For examplemax{1, 9, 3, 12} + 5 = max{6, 14, 8, 17} = 17. The aggregation oper-

ator mean and the combination operatormax do not form a safe pair. For example

max{mean{1, 5, 3}, 4} = 4 butmean{4, 5, 4} = 4.33.

Table 8.1 summarizes the safe and unsafe pairs for operatorsthat are of interest to us.

We later use the fact that themax andmin aggregation operators are safe with all the

combination operators listed.

We next turn to the algorithm for combining diagrams. FODDs can be combined with

the Apply operation described in chapter 3.Apply produces a combination of2 FODDs

under combination operatoropc by choosing the smaller root (according to the FODD pred-

icate order) to be the root of the resultant FODD and then recursing on the sub-diagrams.

When the computation reaches the leaves in both diagrams, the result isopc applied to the

two leaf values. For GFODDs, if either leaf value isd, we definev opc d = d, for anyv

so the discard value is carried over to the resulting leaf. Wenext define the combination

procedure for GFODDs and prove its correctness.

Definition 9 If B1 = 〈V1, D1〉 and B2 = 〈V2, D2〉 whereV1 and V2 do not have any

variables in common, andopc is any combination operator, then Ex-apply(B1, B2, opc) =

B = 〈V, D〉, where

1. V is the aggregation function obtained by appendingV2 to V1.

2. D = apply(D1, D2, opc).

The next lemma shows that the combination produced by Ex-apply is correct when one

of the diagrams is a single leaf with valueb.

136 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Lemma 18 If B = 〈V, D〉 is a GFODD,b is a non-negative constant,opc is a combination

operator, and if for every aggregation operatoropa in V , (opa, opc) is a safe pair, then,∀

interpretationsI, MAPB(I) opc b = op1
v1

op2
v2
· · · opn

vn
[MAPB(I, [v2 · · · vn]) opc b]

Proof: The proof is by induction onn, the number of operators (and variables) inV . By

the semantics of GFODDs,

MAPB(I) opc b = op1
v1
· · · opn

vn
[MAPB(I, [v1 · · · vn])] opc b

Whenn = 1, we have

MAPB(I) opc b = op1
v1

[MAPB(I, [v1])] opc b

= op1
v1

[MAPB(I, [v1]) opc b]

becauseop1 andopc form a safe pair. Assume that the statement is true for allV of n − 1

or fewer aggregation operators. Consider aV with n aggregation operators. We then have,

MAPB(I) opc b = op1
v1
· · · opn

vn
[MAPB(I, [v1 · · · vn])] opc b

= op1
v1

[c
[v1]
1 · · · c

[v1]
m] opc b

= op1
v1

[c
[v1]
1 opc b · · · c[v1]

m opc b]

becauseop1 andopc form a safe pair. Here eachc[v1]
i = op2

v2
· · · opn

vn
[MAPB(I, [v2 · · · vn])]

for theith value of the variablev1. By the inductive hypothesis we know that

op2
v2
· · · opn

vn
[MAPB(I, [v2 · · · vn])] opc b = op2

v2
· · · opn

vn
[MAPB(I, [v2 · · · vn]) opc b]

Thus,

MAPB(I) opc b = op1
v1

op2
v2
· · · opn

vn
[MAPB(I, [v2 · · · vn])opc b]

We now use this lemma to prove the correctness of Ex-apply.

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 137

Theorem 10 Given GFODDsB1 = 〈V1, D1〉 andB2 = 〈V2, D2〉 and a combination op-

erator opc, if for every aggregation operatoropa ∈ V1 ∪ V2, opa andopc form a safe pair,

thenB = 〈V, D〉 = Ex-apply(B1, B2, opc) is a combination of functionsB1 andB2 under

operatoropc.

Proof: Let opi,j andvi,j denote theith operator and variable respectively inVj . V is a

juxtaposition ofV1 andV2 by the definition of Ex-apply. Therefore by the definition of the

GFODD semantics, for any interpretationI,

MAPB(I) = op1,1
v1,1
· · · opn,1

vn,1
op1,2

v1,2
· · · opn,2

vn,2
[MAPB(I, [v1,1 · · · vn,1v1,2 · · · vn,2])]

SinceD = apply(D1, D2, opc), by the correctness of apply we have that for all interpreta-

tionsI and valuationsζ , MAPB(I, ζ) = MAPB1(I, ζ) opc MAPB2(I, ζ). Also, since the

variables inV1 andV2 are disjoint, we can write any valuationζ asζ1ζ2 such thatζ1 is the

sub-valuation ofζ over the variables inV1 andζ2 is the sub-valuation ofζ over the variables

in V2. Thus we can write

MAPB(I) = op1,1
v1,1
· · · opn,1

vn,1
op1,2

v1,2
· · · opn,2

vn,2
[MAPB1(I, [v1,1 · · · vn,1]) opc

MAPB2(I, [v1,2 · · · vn,2])]

Now the important observation is that since MAPB1(I, [v1,1 · · · vn,1]) does not depend on

the variables inV2, when aggregating over the variables inV2, MAPB1(I, [v1,1 · · · vn,1]) can

be treated as a constant. Sinceopc forms a safe pair with all aggregation operators ofV2,

by Lemma 18,

MAPB(I) = op1,1
v1,1
· · · opn,1

vn,1
(MAPB1(I, [v1,1 · · · vn,1]) opc op1,2

v1,2

· · · opn,2
vn,2

(MAPB2(I, [v1,2 · · · vn,2])))

= op1,1
v1,1
· · · opn,1

vn,1
(MAPB1(I, [v1,1 · · · vn,1]) opc MAPB2(I))

Similarly when aggregating over variables inV1, MAPB2(I) can be treated as a constant

because it does not depend on the value of any of the variablesin V1. Sinceopc forms a

138 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

safe pair with all the aggregation operators inV1, by Lemma 18,

MAPB(I) = op1,1
v1,1
· · · opn,1

vn,1
(MAPB1(I, [v1,1 · · · vn,1])) opc MAPB2(I)

= MAPB1(I) opc MAPB2(I)

Thus by definition,B = Ex-apply(B1, B2, opc) is a combination ofB1 andB2 under the

combination operatoropc.

The following theorem strengthens this result showing thatEx-apply has some freedom

in reordering the aggregation operators while maintainingcorrectness. In particular ifV1

andV2 are in “block form” e.g.∃∗∀∗, we can reorder the resultV ′ to keep the same block

form. This property is useful for our solution of RMDPs.

Theorem 11 Let B1 = 〈V1, D1〉 and B2 = 〈V2, D2〉 be GFODDs that do not share any

variables and assume thatopc forms a safe pair with all operators inV1 andV2. LetB =

〈V, D〉 = Ex-apply(B1, B2, opc). Let V ′ be any permutation ofV so long as the relative

order of operators inV1 and V2 remains unchanged, andB′ = 〈V ′, D〉. Then for any

interpretationI, MAPB(I) = MAPB′(I).

Proof: LetV1 = F 1
1 F 1

2 · · ·F
1
k andV2 = F 2

1 F 2
2 · · ·F

2
k so that eachF i

j is a series of zero or

more consecutive aggregation operators inVi. ThenV ′ = F 1
1 F 2

1 F 1
2 F 2

2 · · ·F
1
k F 2

k represents

a permutation ofV such that the relative order of operators inV1 andV2 remains unchanged.

By the semantics of GFODDs,

MAPB′(I) = F 1
1 F 2

1 · · ·F
1
k F 2

k MAPB′(I, [v1,1 · · · vn,1v1,2 · · · vm,2])

wherevi,j, is a variable inBj. This is becauseB andB′ share the diagramD and differ

only in the aggregation function. Therefore,

MAPB′(I) = F 1
1 F 2

1 · · ·F
1
k F 2

k MAPB(I, [v1,1 · · · vn,1v1,2 · · · vm,2])

= F 1
1 F 2

1 · · ·F
1
k F 2

k [MAPB1(I, [v1,1 · · · vn,1]) opc MAPB2(I, [v1,2 · · · vm,2])]

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 139

by the correctness of apply procedure . SinceB1 andB2 do not share any variables, and

opc forms a safe pair with all operators inV1 andV2, we have the following sequence of

equations where in each step we use Lemma 18 and the fact that one of the arguments is a

constant with respect to the corresponding block of aggregation operators.

MAPB′(I) = F 1
1 F 2

1 · · ·F
1
k [MAPB1(I, [v1,1 · · · vn,1]) opc F 2

k MAPB2(I, [v1,2 · · · vm,2])]

= F 1
1 F 2

1 · · ·F
2
k−1[F

1
k MAPB1(I, [v1,1 · · · vn,1]) opc F 2

k MAPB2(I, [v1,2 · · · vm,2])]

= · · ·

= F 1
1 · · ·F

1
k MAPB1(I, [v1,1 · · · vn,1]) opc F 2

1 · · ·F
2
k MAPB2(I, [v1,2 · · · vm,2])

Finally by Theorem 10, the last term is equal to MAPB(I) implying that MAPB′(I) =

MAPB(I).

8.2 Model Checking Reductions for GFODDs

The R12 procedure introduced in Section 6.1 can be extended to operate on GFODDs. In

this section we present extensions of R12 for two forms of aggregation functions. The first

is a set of diagrams using onlymin aggregation. The second is the set of diagrams with

max∗min∗ aggregation. In this case the aggregation function consists of a series of zero

or moremax operators followed by a series of zero or moremin operators. For this case

we introduce two variants,R12d andR120, with differing computational costs and quality

of reduction. We discuss each of these in turn starting with the R12 procedure for themin

operator.

8.2.1 R12 for min aggregation

The case ofmin aggregation is obtained as a dual of themax aggregation case. Also the

notion of instrumental paths here is the dual of the notion ofinstrumental paths for themax

aggregation. However, it is worthwhile considering it explicitly as a building block for the

next construction.

140 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Definition 10 If B is a GFODD with only the min aggregation function, andP is the DPO

for B, then a pathpj ∈ P is instrumental iff

1. there is an interpretationI and valuation,ζ , such thatPathB(I, ζ) = pj, and

2. ∀ valuationsη, if PathB(I, η) = pk, thenk ≤ j.

The generalized aggregation function for themin aggregation operator is the same as

themax operator except that themax is replaced by themin and no special treatment is

given to paths reaching the0 leaf. We thus have amin3 generalized aggregation function.

The reduction procedure is identical to themax except thatmin3 is used instead ofmax3

and that edges inE have the targets replaced bydiscard instead of0. This is not strictly

necessary, as we can replace the target of the edges with a large value (or∞). But it is

useful for the preparation of the next construction. A trivial adaptation of the proofs in the

Chapter6 yields the corresponding properties formin aggregation.

Lemma 19 If a pathpi in GFODDB is instrumental under DPOPL, then∃ Io such that

{leaf(pi), pi, Io} ∈ S.

Lemma 20 If there exists an instrumental path underPL that crossese in B thene ∈ E ′.

Theorem 12 (soundness)If GFODD B′ is the output of R12(B) for any GFODDB, then

∀ interpretationsI, MAPB(I) = MAPB′(I).

Theorem 13 (completeness)If no path crossing edgee and reaching a non-zero leaf inB

is instrumental underPL, then R12 removese.

8.2.2 Model Checking Reduction formax∗min∗ Aggregation

This section is concerned with GFODDs employingmax∗min∗ aggregation. The aggre-

gation function consists of a series of zero or moremax operators followed by a series

of zero or moremin operators. The aggregation functionV is therefore split intoV l −

the variables aggregated over using themax aggregation operator, andV r − the variables

aggregated over using themin aggregation operator. Thus,V = V lV r. The setU of all

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 141

Figure 8.2: An example of reduction operatorR12d for GFODDs withmax∗min∗ Ag-
gregation. Each entry of the form value-{path}-{interpretation} in the table expresses the
value obtained by running the valuation of the corresponding row through the diagram un-
der an equivalence class of interpretations. Themin3 aggregation function applied to every
block (in this case there is just one block withζ l = a because there is only one variablex
associated with themax aggregation operator) then calculates the possible aggregates that
could be generated under different equivalence classes of interpretations. Since the edge3t
does not appear along any of the instrumental paths leading to a non-zero leaf in the result
of min3, it is not instrumental and can be removed

142 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

possible valuations of the variables inB can be split intoU l andU r, the sets of all valua-

tions over the variables inV l andV r respectively. Any valuationζ ∈ U can then be written

asζ lζr whereζ l ∈ U l andζr ∈ U r. Thus by the definition of GFODD semantics, for any

interpretationI,

MAPB(I) = op1
v1
· · · opn

vn
[MAPB(I, [v1 · · · vn])]

= maxζl∈U l[minζr∈Ur [MAPB(I, ζ lζr)]].

The procedureR12d

Our first reduction operator captures a simple notion of instrumental paths. Considering

the evaluation ofB on I, we check whether a path is instrumental in obtaining the value of

themin aggregation for any fixedζl. If not then it clearly does not contribute to the final

value. However, we must be careful when changing the value ofthe path, because this may

affectmin competitions (if we replace the value of the path with a valuethat is too low).

We therefore use the valued in the reduction.

Definition 11 If B is a GFODD with themax∗min∗ aggregation function, andP is a DPO

for B, then a pathpi ∈ P is instrumental iff there is an interpretationI and valuationζ =

ζ lζr, whereζ ∈ U , ζ l ∈ U l andζr ∈ U r, such that,

1. PathB(I, ζ) = pi

2. For everyηr ∈ U r, if PathB(I, ζ lηr) = pj, thenj ≤ i underP

TheR12d procedure for themax∗min∗ aggregation is identical to the R12 procedure

for themin aggregation with the following exceptions.

1. The setU of valuations is built in the following way. LetOl be the set of|V l| newly

invented objects. LetOr be the set of|V r| newly invented objects.Ol andOr are

disjoint. LetU l be the sets of all possible valuations of the variables inV l over the

objects inOl and letU r be the set of all possible valuation of the variables inV r

over the objects inOl ∪ Or. The setU is then defined asU = {ζ lζr | ζ l ∈ U l and

ζr ∈ U r}.

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 143

2. The setS is defined asS =
⋃

ζlReduction-Aggregation(B, Uζl, PL), whereUζl is

the block of valuations corresponding toζ l. Thus the setV al in the procedure is

divided into blocks, each containing a set of valuations with the sameζ l. S is the

union of the sets generated as a result of applyingmin3 to each blocks ofV al.

Figure 8.2 shows a small example of this reduction. The process is similar to the R12

procedure for themax aggregation, except for the generalized aggregation function. A

DPO is first established as shown. SetsOl = {1} and Or = {2} are invented and

the table (V al) is generated by running thegetV alue procedure on the valuations gen-

erated from those. Finally, sinceV al consists of a single block (since only one variable

is associated with themax operator),min3(V al) is evaluated to produce the 5{leaf,

path, Interpretation} triplets as shown. For example combining0-{1t2f3f}-{p(a),¬q(a)}

with 10-{1t2f3t4t}-{p(a),¬q(a), q(b),r(b)} undermin3 we get0-{1t2f3f}-{p(a),¬q(a),

q(b),r(b)}. The targets of all edges other than the ones present in the paths of the resultant

triplets can be replaced by the valued. The resultant diagram is shown.

The proof of correctness follows the same outline as above but accounts for the extra

aggregation operators.

Lemma 21 If a pathpi in GFODDB employing themax∗min∗ semantics is instrumental

under DPOPL, then∃ Io such that{leaf(pi), pi, Io} ∈ S.

Proof: If pi is instrumental underPL then∃ interpretationI over a set of objectsOI and

valuationζ = ζ lζr such thatPathB(I, ζ) = pi and for everyηr, if PathB(I, ζ lηr) = pj ,

thenj ≤ i underP . Let O′l be the set of objects that participate inζ l and letO′r be the set

of objects that participate inζr but not inζ l. Clearly1 ≤ |O′l| ≤ |V l| and1 ≤ |O′r| ≤ |V r|.

Let o′l1 ∈ O′l ando′r1 ∈ O′r. Add |V l|−|O′l| new objects toO′l and|V r|−|O′r| new objects

to O′r.

Construct interpretationI ′ by first projectingI to include only the objects inO′l and

O′r and then defining truth values and predicates over the new objects inO′l andO′r to

behave identical too′l1 ando′r1 respectively. LetO′l andO′r be the setsOl andOr used in

theR12d procedure to generate the set of valuations,U . U can be split into blocks so that

each valuationη = ηlηr belonging toU can be assigned to the block corresponding toηl.

Let Uζl be the block corresponding toζ l.

144 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Sinceζ ∈ Uζl, andI ′ contains the relevant portion ofI, ζ traversespi underI ′. Addi-

tionally if ∃η ∈ Uζl such thatPathB(I ′, η) = pj , andj > i underPL, we could construct

another valuation̂η = η̂lη̂r by replacing the new objects in̂ηl andη̂r by o′l1 ando′r1 respec-

tively, so thatPathB(I, η̂) = pj . However, we know that no sucĥη exists. Therefore there

is noη ∈ Uζl such thatPathB(I ′, η) = pj , andj > i underPL.

Let Io =
⋃

η∈U
ζl

(PF (PathB(I ′, η)))η. That is,Io includes all the atoms ofI ′ that par-

ticipate in traversing paths inB for all valuations inUζl. By construction the corresponding

parts(PF (PathB(I ′, η)))η will be included in thevalueset returned by the getValue pro-

cedure. ClearlyIo ⊆ I ′. Therefore ifI ′ is consistent then so isIo. If V alζl is the block

in V al corresponding to the valuations inUζl, then by the definition ofmin3, min3(V alζl)

must contain an entry{leaf(pi), pi, Io}. Finally sincemin3(V alζl) is a subset ofS, S must

contain{leaf(pi), pi, Io}.

Lemma 22 If there exists an instrumental path underPL that crossese in B thene ∈ E ′.

Proof: If there is an instrumental pathpi ∈ PL that crosses edgee, by Lemma 21∃ Io such

that{leaf(pi), pi, Io} ∈ S. By definition ofE ′, e ∈ E ′.

Theorem 14 (soundness)If GFODD B′ is the output ofR12d(B) for any GFODDB with

themax∗min∗ semantics, then∀ interpretationsI, MAPB(I) = MAPB′(I).

Proof: By the definition ofR12d, the only difference betweenB andB′ is that some edges

that pointed to sub-FODDs inB, point to thediscard leaf in B′. These are the edges in

the setE at the end of theR12d procedure. Therefore any valuation crossing these edges is

discarded from the aggregation function. Valuations not crossing these edges will achieve

the same value inB′ as they did inB.

Fix any interpretationI over any setOI of objects. LetU be the set of all valuations of

the variables inB overOI . Each valuationη ∈ U can be expressed asη = ηlηr such that

ηl ∈ U l andηr ∈ U r. MAPB(I) can then be expressed as

MAPB(I) = maxηl∈U l[minηr∈Ur [MAPB(I, ηlηr)]

Now for any ηl ∈ U l, let pi be a path such that∃ηr ∈ U r, PathB(I, ηlηr) = pi and

∀ιr ∈ U r, PathB(I, ηlιr) = pj implies thatj ≤ i under the same DPO employed in the

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 145

R12d reduction procedure. By definitionpi is instrumental and hence by Lemma 22 none

of the edges onpi are affected byR12d. Therefore MAPB(I, ηlηr) = MAPB′(I, ηlηr) and

by the property ofmin aggregation, forηl,

minηr∈Ur [MAPB(I, ηlηr)] = minηr∈Ur [MAPB′(I, ηlηr)].

Since this is true for everyηl ∈ U l, it is also true for the aggregation, that is

maxηl∈U l[minηr∈Ur [MAPB(I, ηlηr)] = maxηl∈U l[minηr∈Ur [MAPB′(I, ηlηr)].

Therefore MAPB(I) = MAPB′(I).

The ProcedureR120

The introduction of the discard value in the leaves makes handling and interpretation of

diagrams awkward. In this section we show that at some additional computational cost

this can be avoided. With some extra bookkeeping, a variant of the R12 procedure can

avoid replacing edge targets with thed leaf and in the process, potentially remove more

redundancies from amax∗min∗ GFODD. To motivate the new procedure, consider what

happens during evaluation of interpretationI on GFODDB. Each blockb of valuations

corresponding to aζ l is collapsed undermin aggregation. LetPb (Pζl) denote the set of

paths inB traversed by the valuations inb and ordered by the given DPO. We can view this

procedure as a competition among the paths inPb. The winner of this competition is the

path of highest index inPb. Denote this path bypb (pζl). Themin competition applied to

all blocks creates a “super block”b̂ of all the winners, each corresponding to aζ l. Finally

all theζ ls are collapsed under themax aggregation. This process can, in turn, be viewed as

amax competition among the paths inPb̂. The winner of this competition is the path with

the least index inPb̂. Obviously this path also wins themin competition in its own block.

We call this block themax blockb∗ and the winning pathpb∗. Then, MAPB(I) = leaf(pb∗).

We observe the following:

1. If the value of the leaf reached by any path in themax block is reducedto a value

at least as large as leaf(pb∗), the map remains unchanged. This is because themin

146 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

competition on themax block will still produce the same result. Additionally, since

we are only reducing the values of other paths, none of the other blocks will produce

a winner with a leaf value higher than leaf(pb∗).

2. If the value of the leaf reached by any path in any blockb other than themax block

is reduced to0, leaf(pb∗) will still win the max competition and the map will be

preserved.

The above observation suggests that we can reduce a GFODD in the following way,

1. Preserve the targets of all edges in all paths winning the final max competition under

any interpretation. We call theseinstrumentaledges.

2. Identify edges on paths inB that appear in themax block under any possible inter-

pretationI. We call theseblockedges. For each block edgee, replace target(e) by a

value that is (1) at least as large as leaf(pb∗) underI but (2) no larger than the smallest

leaf reachable by traversinge. Notice that (1) means thatpb∗ wins themin competi-

tion of the blocks and (2) makes sure we never add value to any path. The condition

(2) is somewhat limiting in that it may prevent us from reducingthe diagram because

of conflict with (1). One might be able to prune further using a deeper analysis;

however (2) provides a cheap test that appears to provide reasonable coverage.

3. Replace the targets of all other edges by0.

In the remainder of this section, we describe theR120 reduction procedure and prove its

correctness. The input to the procedure is a GFODDB = 〈V, D〉 and a DPOPL for B.

The output is a reduced GFODDB′. We redefine the generalized aggregation functions

min3 andmax3 to capture the bookkeeping needed for block edges.min3 is redefined as

follows.

min3: min3 takes as input a setV al of valuations each corresponding to a set of〈value,

path, interpretation〉 triplets. The output is a set of all possible quadruplets〈vo, po, Eo,

Io〉 generated as follows

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 147

1. LetX = {〈v1, p1, I1〉, · · · , 〈v|V al|, p|V al|, I|V al|〉} be a set constructed by picking one

triplet from the set corresponding to each valuationζ ∈ V al.

2. vo = min[v1, · · · , v|V al|]

3. po is the path of least index under DPOPL that appears in a triplet inX such that

leaf(po) = vo.

4. Eo is the set of all the edges appearing in all the paths in all thetriplets inX except

the edges inpo

5. Io =
⋃

i Ii such thatIo is consistent and〈vi, pi, Ei, Ii〉 ∈ X.

max3: max3 takes as input a setV al of valuations each corresponding to a set of〈value,

path, EdgeList, interpretation〉 quadruplets. The output is a set of all possible quadru-

plets〈vo, po, Eo, Io〉 generated as follows.

1. LetX = {〈v1, p1, E1, I1〉, · · · , 〈v|V al|, p|V al|, E|V al|, I|V al|〉} be a set constructed by

picking one quadruplet from the set corresponding to each valuationζ ∈ V al.

2. vo = max[v1, · · · , v|V al|]

3. po is the path of highest index under DPOPL that appears in a quadruplet inX such

that leaf(po) = vo.

4. Eo is the setEi such thatpo = pi andvo = vi

5. Io =
⋃

i Ii such thatIo is consistent and〈vi, pi, Ei, Ii〉 ∈ X.

Note that the setEo in min3 collects the edges from the losing paths in one block

whereas the setEo in max3 collects the block edges.

TheR120 procedure is as follows.

1. The setU of valuations is built in the following way. LetOl be the set of|V l| newly

invented objects. LetOr be the set of(|V l||V
l| + 1)|V r| newly invented objects.Ol

andOr are disjoint. LetU l be the sets of all possible valuations of the variables inV l

over the objects inOl and letU r be the set of all possible valuation of the variables

148 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

in V r over the objects inOl ∪ Or. The setU is then defined asU = {ζ lζr | ζ l ∈ U l

andζr ∈ U r}.

2. For every edge we maintain3 variables. low(e) and high(e) are bounds on its value

and InstrEdge(e) is a flag. These are initialized as follows. For all edgese in B, set

low(e) =−1, high(e) = le, wherele is the value of the smallest leaf reachable through

e in B, and InstrEdge(e) = 0.

3. Run themaxmin3 procedure as follows.

(a) DivideV al into |U l| blocks of valuations each block corresponding to a valua-

tion ζ l ∈ U l. Let X be the set of these blocks.

(b) Let Y = {〈ζ l −min3(b)〉 | ζ l ∈ U l andb ∈ X is the block corresponding to

ζ l}.

(c) LetS = max3(Y).

(d) For every quadruplet〈vo, po, Eo, Io〉 ∈ S, do

i. For every edgee ∈ po, set InstrEdge(e) = 1.

ii. For every edgee ∈ Eo, set low(e) to max[low(e), vo].

4. Finally the target of every edgee is replaced as follows:

(a) If InstrEdge(e) = 1, do not replace.

(b) If InstrEdge(e) = 0, low(e) 6= −1 i.e. e is a block edge and high(e) ≥ low(e),

replace target(e) by any suitable valuev, such that low(e) ≤ v ≤ high(e).

(c) If InstrEdge(e) = 0 and low(e) =−1, i.e. e is not a block edge replace target(e)

by 0.

Figure 8.3 shows an example of theR120 reduction.

In the remaining part of this section we provide a proof of soundness forR120. To that

end we introduce the following terms.

Definition 12 An edgee in GFODD B is instrumental iffe ∈ pb∗ under some interpreta-

tion.

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 149

Figure 8.3: An example of reduction operatorR120 for GFODDs withmax∗min∗ Ag-
gregation. The initial diagram is the same as in Figure 8.2. This time |Or| = 3 because
|V l| = |V r| = 1 and hence|V l| + (|V l||V

l| + 1)|V r| = 3. Each entry of the form value-
{path}-{interpretation} in the table expresses the value obtained by running the valua-
tion of the corresponding row through the diagram under an equivalence class of inter-
pretations. The MAXMIN-3 aggregation function then calculates the possible aggregates
that could be generated under different equivalence classes of interpretations. Since we
have only one block, we only need to run the extendedmin3 aggregation on this example.
The result is shown below the table. For example the entries0-{1t2f3f}-{p(a),¬q(a)},
10-{1t2f3t4t}-{p(a),¬q(a), q(b), r(b)} and10-{1t2f3t4t}-{p(a),¬q(a), q(c), r(c)}, give
the last row in the result. The edges3t,4t and4f are identified as a block edges. For edge3t,
InstrEdge(3t) = 0 because there is no winner of the max block contains edge3t. high(3t)
= 0 because the smallest leaf reachable by traversing3t is 0. Themaxmin3 procedure sets
low(3t) to 0 because the highest leaf reached by any path defeating the paths containing
3t in the max block is0. Thus target(3t) can be set to0 without violating the constraint
low(3t)≤ target(3t) ≤ high(3t). Setting the target of3t to 0 reduces the diagram. Note that
in this example all edges shown are block edges because thereis only one block - the max
block. All the edges appearing in the result ofmaxmin3 are instrumental edges and their
targets are preserved by the reduction procedure

150 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Definition 13 An edgee in GFODD B is a block edge if it is not instrumental ande ∈

path ∈ Pb∗ under some interpretation.

Definition 14 An edgee in GFODD B is a useless edge if it is neither an instrumental

edge nor a block edge.

Definition 15 For any block edgee, CannotExceed(e) is the value of the smallest leaf

reachable throughe and CannotLag(e) is the value of the largest leaf(pb∗) over all inter-

pretations, when a path containinge appears in themax block

Definition 16 A reduction procedureR that reduces a given GFODDB to produce GFODD

B′ is block-safe if it conforms to the following rules.

1. R identifies all instrumental edges inB and for each such identified edgee, R main-

tains target(e).

2. R identifies all block edges inB and for each such identified edgee, R replaces

target(e) by any leaf valuev such that CannotLag(e) ≤ v ≤ CannotExceed(e).

3. For each edgee that is not identified byR as an instrumental or block edge,R

replaces target(e) by0.

The proof below has two parts. Theorem 15 says that any reduction procedure that is

block-safemust also be a sound reduction procedure. Theorem 16 proves thatR120 is block

safe.

Theorem 15 If reduction procedureR is block-safe andB′ = R(B), then for every inter-

pretationI, MAPB(I) = MAPB′(I).

Proof: Fix any interpretationI over any setOI of objects. LetU be the set of all valuations

of the variables inB over OI . Let ζ = ζ lζr ∈ U be a valuation traversingpb∗ in B.

MAPB(I) can then be expressed as

MAPB(I) = maxηl∈U l [minηr∈Ur [MAPB(I, ηlηr)]

= max[minζr∈Ur [MAPB(I, ζ lζr)], maxηl 6=ζl∈U l[minηr∈Ur [MAPB(I, ηlηr)]]]

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 151

Since the definition ofblock-safeguarantees that the target of every edgee is not replaced

by a value greater than CannotExcede(e), target(e) only decrease in value. Therefore, for

any valuationη ∈ U , leaf(PathB(I, η)) ≥ leaf(PathB′(I, η)). Therefore we have,

maxηl 6=ζl∈U l[minηr∈Ur [MAPB′(I, ηlηr)]] ≤ maxηl 6=ζl∈U l[minηr∈Ur [MAPB(I, ηlηr)]]

Additionally, the definition ofblock-safeguarantees that all instrumental edges are pre-

served and that the value reached by the block edges is never reduced below leaf(pb∗).

Therefore,ζ reaches leaf(pb∗) in bothB andB′. No other valuation in themax block b∗

reaches a value less than leaf(pb∗) when evaluated onB′. Thus,

minζr∈Ur [MAPB′(I, ζ lζr)] = minζr∈Ur [MAPB(I, ζ lζr)]

= leaf(pb∗)

Finally,

MAPB′(I) = max[minζr∈Ur [MAPB′(I, ζ lζr)], maxηl 6=ζl∈U l[minηr∈Ur [MAPB′(I, ηlηr)]]]

= minζr∈Ur [MAPB′(I, ζ lζr)]

= leaf(pb∗)

= MAPB(I)

It is clear thatR120 identifies some instrumental edges and some block edges. To show

that this is true for all such edges over an infinite set of interpretations some of which

have infinite domains, we show that each such edge is discovered by one of the finite

combinations in our procedure. Thus even if two edges are theblock edges of the same

pb∗, they may be discovered by differentIo’s in our procedure. This is achieved in the

following theorem by showing that any instrumental edge (onpb∗) and block edge (onpj)

are appropriately accounted for byR120.

Theorem 16 (soundness)R120 is block-safe.

152 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Proof: Line 4 in theR120 procedure enumerates the treatment of different edges inB. It

remains to be shown that

1. If an edgee in B is instrumental under some interpretationI, thenR120 sets Instr(e)

= 1.

2. If an edgee is a block edge under some interpretationI, thenR120 sets low(e) ≥

CannotLag(e).

3. If an edgee is a block edge under some interpretationI, thenR120 sets high(e) ≤

CannotExceed(e).

Of the above, 3 is true by the definition ofR120. Consider any interpretationI. Letζ = ζ lζr

be a valuation traversingpb∗ = pi in B underI. Let η = ζ lηr be any other valuation in the

max block b∗ that does not win the min competition and letPathB(I, η) = pj . Let O′l be

the set of objects that participate inζ l and define the setO′r = { o /∈ O′l | o participates in

ηr or in ιr, whereιl contains only the objects fromO′l andιlιr wins themin competition

in its block}. By construction|O′l| ≤ |V l| and|O′r| ≤ (|V l||V
l| + 1)|V r|. Let o′l1 ∈ O′l and

o′r1 ∈ O′r. Add |V l| − |O′l| new objects toO′l and(|V l||V
l| + 1)|V r| − |O′r| new objects to

O′r.

Construct interpretationI ′ by first projectingI to include only the objects inO′l and

O′r and then defining truth values and predicates over the new objects added toO′l andO′r

to behave identical too′l1 ando′r1 respectively. LetO′l andO′r be the setsOl andOr used in

theR120 procedure to generate the set of valuations,U .

SinceI ′ contains the relevant portion ofI, PathB(I ′, ζ) = pi andPathB(I ′, η) = pj.

Additionally if there exists valuationζ lιr ∈ U such thatPathB(I ′, ζ lιr) = pk andk > i

underPL, then we could construct another valuationζ̂ lι̂r by replacing the new objects inζ l

andιr by o′l1 ando′r1 respectively so thatPathB(I, ζ̂ lι̂r) = pk. However, we know that there

is no suchζ̂ lι̂r. In other words, pathpi is the winner of the min competition in themax

block b∗ underI ′. An identical argument proves that ifb is a block inU corresponding to

ιl, thenpb defined relative toI is the winner of themin competition inb underI ′.

Let Iιlιr = PF (PathB(I ′, ιlιr))ιlιr be the set of atoms on the pathpιlιr in B tra-

versed by some valuationιlιr underI ′. By construction, a triplet〈leaf(pιlιr),pιlιr ,Iιlιr〉

8.3. AN APPLICATION OF GFODDS FOR VALUE ITERATION IN RELATIONAL MDPS153

appears in the output of the getValue procedure, when run onιlιr. Therefore, by the

definition of min3, the setX generated by applyingmin3 to b must contain an entry

〈leaf(pb),pb,Eb,Ib〉, whereIb =
⋃

ιr∈Ur (PF (PathB(I ′, ιlιr)))ιlιr. Similarly the set pro-

duced by applyingmin3 to themax block must contain an entry〈leaf(pb∗),pb∗,Eb∗ ,Ib∗〉,

whereIb∗ =
⋃

ιr∈Ur (PF (PathB(I ′, ζ lιr)))ζ lιr. Also,Eb∗ must contain all the edges inpj .

Now, by the definition ofmax3, the setS built in the reduction procedure must contain

an entry〈leaf(pb∗),pb∗ ,Eb∗,Io〉 whereIo =
⋃

ι∈U (PF (PathB(I ′, ι)))ι is consistent because

it is a subset ofI ′.

Thereforee ∈ pb∗ is marked instrumental byR120. Every edgee ∈ pj is marked with

low(e) ≥ leaf(pb∗). Since the choice ofI, pb∗ andpj was arbitrary in the above argument,

this holds for all block edges, implying that low(e) ≥ CannotLag(e). ThusR120 is block-

safe.

We have proved above thatR12d andR120 are both sound reductions, the question of

completeness of these reductions is still open. Since theorem proving of first order formulas

with the quantifier settings∃∗∀∗ is decidable, there is hope for a completeness result.

8.3 An Application of GFODDs for Value Iteration in Re-

lational MDPs

So far we have described a general theory of GFODDs. This included the syntax and

semantics of GFODDs, combination procedures and reductionprocedures for GFODDs.

In this section we describe an application of GFODDs for solving RMDPs.

The algorithm is very similar to the one presented in Chapter3 but uses the more ex-

pressive GFODDs instead of FODDs as the underlying representation for the RMDP. Recall

that domain dynamics are expressed as Truth Value Diagrams (TVD) which describe, for

each deterministic alternative of each probabilistic action and for each world predicate, the

conditions under which the corresponding world literal becomestrue when the action

is executed and that action alternative occurs. Figure 8.4 shows an example of a TVD

for the parametrized world predicatep(A, B) under the deterministic actionA(x∗, y∗) in a

hypothetical planning domain that we use to illustrate the algorithm.

154 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Figure 8.4: Example of GFODD Regression and Object Maximization

8.3.1 The VI-GFODD Algorithm

In this section we show that the FODD based VI algorithm can begeneralized to handle

cases where the reward function is described by a GFODD withmax∗min∗ aggregation.

The following are the steps of the algorithmVI-GFODD. A subsequent discussion shows

why VI-GFODD produces the correct result at each step.

1. Regression:Then step-to-go value functionVn is regressed over every deterministic

variantAj(~x) of every actionA(~x) to produceRegr(Vn, A(~x)) by replacing each

node inV n−1 by its corresponding Truth Value Diagram (TVD) without changing

the aggregation function. This step is unchanged.

8.3. AN APPLICATION OF GFODDS FOR VALUE ITERATION IN RELATIONAL MDPS155

2. Add Action Variants: The Q-functionQA(~x)
Vn

= R⊕ [γ ⊗⊕j(prob(Aj(~x))⊗Regr(Vn,

Aj(~x)))] for each actionA(~x) is generated by combining regressed diagrams using

Ex-apply. This step is changed simply by using Ex-apply instead of Apply.

3. Object Maximization: Maximize over the action parameters ofQ
A(~x)
Vn

to produce

QA
Vn

for each actionA(~x), thus obtaining the value achievable by the best ground

instantiation ofA(~x). This step is implemented by converting action parameters in

Q
A(~x)
Vn

to variables each associated with themax aggregation operator, and prepend-

ing these operators to the aggregation function.

4. Maximize over Actions: Then + 1 step-to-go value functionVn+1 = maxA QA
Vn

, is

generated by combining the diagrams using Ex-apply.

Figure 8.4 shows an example of the VI algorithm using GFODDs for a simplified do-

main. This domain contains one single deterministic action. Therefore steps 2 and 4 of the

algorithm are not needed. The reward function is regressed over the deterministic action

A(x∗, y∗), which is defined such thatp(x, y) is true after the action if it was true before

or if q(x, y) was true before and the action performed wasA(x, y). The reward is1 if ∃x,

∀y, p(x, y) and0 otherwise. Since the action can make at most onep(x, y) true at a time,

intuitively, the regressed diagram should capture the union of the following conditions for

returning a value of1.

1. ∃x, ∀y, p(x, y)

2. ∃x, such that for all but oney, p(x, y) is true and for thaty, q(x, y) is true.

Figure 8.4 shows the diagram after being regressed and object maximized. The final dia-

gram is correct because it returns a1 iff one of above situations occur. If∃x, ∀y, p(x, y),

then all valuations in the blocks with that value ofx and fixed values forw andz will reach

the1 leaf directly from the root. EvaluatingMin(y) will collapse these blocks to partial

valuations with a1 value. Now since the rest of the aggregation is maximization, the1

value will be returned as the map. If∃x, such that for all but oney, p(x, y) is true and for

thaty, q(x, y) is true, then all valuations in the blocks with that value ofx, the other values

of y and fixed values forw andz reach a1 leaf directly through the root. The valuation in

156 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

the block with the one value ofy would traverse right from the root but would still reach

the1 leaf depending on the conditionw = x andz = y. Note that there will be exactly one

block where this valuation will reach the1 leaf. EvaluatingMin(y) would collapse that

block into a valuation with value1. Since the rest of the aggregation is maximization, the

1 value will be returned as the map. When neither of the conditions is true, there will be at

least one valuation in every block that reaches a0 leaf. Hence evaluatingMin(y) would

collapse every block to a valuation with a0 value.

For Value Iteration to work correctly with GFODDs, all the steps of the algorithm

listed above must be correct. Regression by block replacement is correct regardless of the

aggregation function. Recall that a TVD for a predicate under deterministic actionAj(~x)

describes conditions under which the predicate becomestrue afterAj(~x) is executed. In

chapter 3 we imposed the constraint that TVDs cannot includefree variables. Using this

constraint the diagrams before and after regression have exactly the same variables. Also

in chapter 3 we showed that regression is correct for any valuation.

Lemma 23 (Wang, 2008) IfVn is then step to go value function, BR-regress(Vn, A(~x)) is

the result of regressingVn over the deterministic actionA(~x), andζ is any valuation to the

variables ofVn (and thus also the variables of BR-regress(Vn, A(~x))), thenMAPVn(s, ζ)

= MAPBR-regress(Vn,A(~x))(ŝ, ζ)

The lemma claims that after regression the map of every valuation stays the same for any in-

terpretation. Therefore, under any interpretation, the map of Vn before and after regression

is also the same irrespective of the aggregation function onVn.

The third step of Object Maximization is correct because converting action parameters

in Q
A(~x)
Vn

to variables each associated with themax aggregation operator, and prepending

these operators to the aggregation function ofQA
Vn

, implies that the map ofQA
Vn

under any

interpretation will now be the map ofQA(~x)
Vn

maximized over all possible values of the action

parameters, as required. Steps 2 and 4 are correct by the correctness of Ex-apply. Since

value iteration requires combining diagrams under the⊕, ⊗ and themax operators, only

GFODDs with aggregation operators that are safe with the combination operators⊕, ⊗

andmax may be used. Thus aggregation operatorsmax andmin can be used. The current

version of VI-GFODD does not allow aggregation operators like
∑

, mean etc.

8.4. SUMMARY AND CONCLUDING REMARKS 157

Thus we have a correct Value Iteration algorithm for GFODDs with max andmin ag-

gregations. Finally, Theorem 11 guarantees that if we startwith a reward function GFODD

with an aggregation of the formmax∗min∗, then throughout Value Iteration all GFODDs

produced to have an aggregation function of the same form. With the R12 reductions for

this case, we have a sound procedure that can help keep the diagrams compact over the

Value Iteration process. We have therefore shown:

Theorem 17 For any Relational MDP where the aggregation function of thereward func-

tion diagram contains only operators that are safe with the combination operators+, ×

andmax, algorithm VI-GFODD produces the correct value function atevery iteration.

Corollary 1 For any Relational MDP where the reward function has amax∗min∗ ag-

gregation, VI-GFODD produces the correct value function atevery iteration and the R12

procedure can be used to reduce diagrams such that the final result also hasmax∗min∗

aggregation.

8.4 Summary and Concluding Remarks

This chapter significantly extends the representation power of FODDs. We show how

Generalized FODDs allow for arbitrary aggregation functions, thereby facilitating repre-

sentation of complex functions, and how basic operations onthem can be performed. In

particular we can naturally capture and manipulate logicalformulas with existential and

universal quantifiers usingmax andmin aggregation. In addition we show that first order

Value Iteration can be supported in a more expressive setting when the MDP is represented

by GFODDs. This new formulation can naturally handle universal goals that were handled

heuristically by previous implementations of first order Value Iteration (Sanner & Boutilier,

2009) and by the FODD-PLANNER.

As we have shown, the idea of model-checking reductions extends to model-checking

reduction operators for a useful subset of GFODDs. Nevertheless, more work is needed to

identify efficient reductions for this subset and for other interesting subsets of GFODDs.

Chapter 9

Conclusions

The work in this thesis has focused on compact representations for sequential decision

making problems. In particular we derived motivation from problem domains like logistics

where the state space is large, action effects are probabilistic and objectives can be complex

but there exists rich relational structure that can be leveraged by solution algorithms. Re-

lational Markov decision processes (RMDP) have become a popular tool for solving such

problems. To this end we follow the approach of Boutilier et al. (2001), who developed

the Symbolic Dynamic Programming (SDP) algorithm to solve RMDPs. The main idea in

SDP is to abstract the relational structure of the underlying domain and generate a solution

in terms of the relational structure rather than actual domain objects. Such a solution is

independent of the actual problem instance and is valid for all domain sizes. The RMDP

solution algorithm we presented in this thesis is an instance of SDP and shares all the ad-

vantages of SDP that arise out of abstraction. Our main contribution is the development

of compact and expressive knowledge representations to capture the reward structure and

domain dynamics of the underlying RMDP and appropriate algorithms for efficient imple-

mentation of SDP using this representation.

Through theoretical results and emperical evidence, we have shown our approach to be

practical and useful. There are many open questions that naturally arise from this work.

We discuss some of the interesting questions in Section 9.2.First the following section

presents a summary of the contributions of this thesis.

158

9.1. SUMMARY OF CONTRIBUTIONS 159

9.1 Summary of Contributions

This thesis makes the following contributions.

1. First Order Decision Diagrams: In Chapter3 we invented First Order Decision Di-

agrams (FODD) by modifying and extending the approach of Groote and Tveretina

(2003). FODDs are a compact knowledge representation for real valued functions

over relational structures and are useful in defining utilities and probabilities of world

states in an RMDP. We presented the FODD representation and algorithms to manip-

ulate them. We demonstrated the use of FODDs to represent RMDPs and developed

an SDP algorithm for the FODD representation. However, FODDs are a very general

representation and we believe they can be employed in a variety of applications that

involve structured representations.

2. Theorem Proving Reductions:Our RMDP solver based on FODDs performs rea-

soning by combination of FODDs. Reasoning with First Order models is an integral

part of all SDP based algorithms (Boutilier et al., 2001; Kersting et al., 2004; San-

ner & Boutilier, 2009). This reasoning process creates diagrams that are large and

contain a lot of redundant structure. Indeed any application that requires performing

reasoning with FODDs will face this problem. Our contribution to mitigate this is-

sue and improve the practical applicability of FODDs is the development of logical

simplification operators for FODDs in Chapter4. These “reduction” operators use

First Order logical implication as the primary tool to identify and remove redundant

structure from the diagram. Therefore we call them Theorem Proving Reductions.

3. Model Checking Reductions:Proving First Order logical implication is an expen-

sive operation. Moreover any constraints in the domain mustbe explicitly specified

to the implication engine otherwise it can fail to prove truestatements. These issues

can limit the applicability of FODDs. To mitigate these issues, in Chapter6, we

introduced a new paradigm for reduction of FODDs based on model-checking and

proved its superiority over theorem proving reductions. Wepresented theoretical and

practical versions of model-checking reductions and provided proofs of correctness

and completeness. The practical versions of model-checking reductions are very

160 CHAPTER 9. CONCLUSIONS

efficient and, we believe, have utility in a variety of applications using structured

representations.

4. Weighted Goal Ordering Heuristic: To apply SDP to concrete planning problems,

one typically plans for abstract generic goals and then usesgoal decomposition to put

the abstract solutions together for a concrete instance. InChapter5, we introduced

the Weighted Goal Ordering heuristic and showed its superiority over the heuristic of

Sanner and Boutilier (2009) in domains where goal serializability is a crucial factor.

5. FODD-Planner: In Chapter5, using theorem proving reductions to simplify FODDs,

we presented a prolog based software system that implementsthe SDP algorithm

with the FODD representation. We demonstrated this system by solving stochastic

planning problems showing performance comparable to top ranking systems from

the International Planning Competitions.

6. Self-Taught Planning: In Chapter7 we developed a new paradigm for planning

by learning. The idea is to provide FODD-PLANNER with a small “training set”

of world states of interest, but no indication of optimal actions in any states. The

FODD-PLANNER uses this training set and performs logical simplification by model-

checking reductions. We also showed that such training examples can be constructed

on the fly from a description of the planning problem. Thus we bootstrap our planner

to get a self-taught planning system. By combining this ideawith model-checking

reductions we showed drastic improvements in planning efficiency over the use of

theorem proving reductions on a variety of IPC domains. Although we employed the

FODD-PLANNER to demonstrate the self-taught planning paradigm we believe that

this technique is applicable with any SDP based system.

7. Generalized FODDs:FODDs are compact and expressive but when considered as

logical formulas they are limited to existential quantification. To address this we

introduced Generalized FODDs (GFODD) in Chapter8, where we extend the repre-

sentation power to arbitrary aggregation or quantification. GFODDs are very expres-

sive structures that share the same compactness advantagesas FODDs. We discussed

several properties of GFODDs and presented reductions for an important subset of

9.2. FUTURE DIRECTIONS 161

GFODDs. We also identified conditions under which GFODDs canbe composed or

combined by a simple procedure. Similar to FODDs, we believeGFODDs can be

employed in a variety of applications that involve structured representations.

8. VI-GFODD: We have shown that the same SDP based algorithm that employs FODDs

as the underlying representation is also valid when GFODDs are used as the under-

lying representation. We proved the correctness of this algorithm, VI-GFODD, for a

very expressive subset of GFODDs. Within this representation we can capture objec-

tives liketransport at least one box to Paris and all trucks to Londonin the logistics

domain. This was not possible with FODDs.

9.2 Future Directions

Although we have covered many issues in this thesis, there are many questions that arise

from this work. Broadly we can classify these into two categories covering short term and

long term research questions.

Under the short term category, an important issue is that of building efficient evaluation

rountines for policies represented as FODDs. Similar to other SDP based algorithms (San-

ner & Boutilier, 2009), FODD-PLANNER generates an abstract policy for a given planning

domain. This policy uses a goal decomposition heuristic to aggregate information about the

utility of the current world state w.r.t. various decomposed parts of the goal. The process of

evaluating the individual utility values and combining them has been the bottleneck in the

plan execution routine of FODD-PLANNER and improving the efficiency of this task will

be instrumental in building a better evaluation routine. Two possible directions to resolve

this are employing faster subsumption engines and caching the utility values of recently

evaluated world states.

Another issue in this category is that of ordering atoms in a FODD. Similar to ADDs,

the order of atoms in a FODD can have a dramatic effect on its size. Discovering the op-

timal order for a given domain is a hard problem (it is NP-Hardfor propositional ADDs).

162 CHAPTER 9. CONCLUSIONS

In this thesis we have put the burden of inventing the optimalorder on the user of FODD-

PLANNER. However, one might hope for an inexpensive heuristic solution, following com-

mon practice in propositional decision diagrams (Rudell, 1993).

Two more issues in this category arise from the self-taught planning paradigm. One is

the employment of SDP based RMDP solvers other than FODD-PLANNER, in self-taught

planning. The other and more interesting question is that ofalternative methods of example

generation. One idea is to generate the set of training examples from solutions of multi-

ple planners (teachers), each specializing in a different part of the state space. It would

be interesting to see how such a method would enhance the performance of the planning

system because in the self-taught planning formalism, contradictory information from dif-

ferent teachers does not adversely affect the learned model. Ideas from the research on

active learning might also prove useful in acquiring training examples. A related problem

for future study is that of characterizing the quality of thetraining set. Intuitively the best

training set is the one in which all important conditions areidentified by the fewest exam-

ples. It would also be interesting to see if PAC learning bounds on sample complexity can

be derived for practical model-checking reductions.

The work on GFODDs also leads to two questions in the short term research category

corresponding to two current limitations of GFODDs - composing functions defined by

GFODDs in the general case and performing logical simplification of GFODDs efficiently.

We believe that techniques for composition can be developedfor mean and
∑

aggregation.

This will greatly widen the applicability of GFODDs. Efficient logical simplification will

make GFODDs a very powerful, expressive, compact and efficiently manipulable tool for

applications with structured representations. Deriving intuitions and ideas from the work

on logical simplification of FODDs based on model-checking could be useful here.

The category of long term research questions contains many interesting problems. Most

of these arise from our work on GFODDs, a largely unexplored area. The most obvious

among them is the use of expressive GFODDs to represent and solve RMDPs. Answering

this question, however, is not straight forward given the inherent limitation of representing

solutions in factored MDPs (Allender et al., 2002) and RMDPs. Therefore using forward

search methods similar to UCT (Kocsis & Szepesvari, 2006) inconjunction with dynamic

programming might prove useful. We have already seen success in blending search and

9.2. FUTURE DIRECTIONS 163

Figure 9.1: Reward and Value function for the goalcl(a) in the blocksworld domain

dynamic programming with FODD-PLANNER in the self-taught planning paradigm and

we believe there is potential in this line of research towards developing practical, compact,

expressive and efficient RMDP solvers. Additionally, in context of the connection between

SDP and EBL as explained in Chapter2, GFODDs might also prove useful in addressing

issues related to the “Generalization to N problem”. For instance, Kersting et al. (2004)

showed an example in the blocksworld domain where the goal isto make a particular block,

a, clear (cl(a)) and the value function is infinite in size because there could be any number

of blocks on top ofa. However, the value function can be represented compactly using

GFODDs in conjunction with a more descriptive predicate,above, as shown in Figure 9.1.

In the figure,above(X, a) is true for any blockX that is part of a tower stacked on top

of blocka, aggregation overX is performed by the simple multiplication operator and the

discount factor is0.9. Thus the multiplicative aggregation implicitly capturesthe number

of steps to the goal. Although the existence of a compact value function does not imply an

efficient algorithm to produce it, at least in this particular case we know that the problem is

not inherently that of representation.

Another issue in the long term research category is that of solving games. The current

work on RMDPs is limited to a single agent and applicable onlywhen the environment is

non-adversarial. However, many real world domains are bestdescribed by the multi-agent

adversarial setting e.g. real time strategy games, networksecurity and military planning.

Here it is important to consider the actions of the adversaries and generate a policy to

achieve the agent’s goals or thwart the opponent’s goals. The seminal works in this area

(Dietterich & Flann, 1997; Schaeffer, Burch, Bjornsson, Kishimoto, Muller, Lake, Lu, &

164 CHAPTER 9. CONCLUSIONS

Sutphen, 2007) are based on the complementary approaches ofSDP and search. Yet the

representations they use are much simpler in comparison with what RMDP solvers are

capable of. Similar to the problems solved by RMDPs, however, the agent objectives in

games can be complex (e.g. for all friend soldiers, maximizethe total number of enemy

soldiers captured by each while minimizing physical harm tooneself). This suggests an

advantage in using the GFODDs to address such problems. To our knowledge, there is

no method that takes advantage of relational structure of games, generalizes over problem

size and yet achieves complex objectives. In a similar vein to the approaches mentioned

above, employing the RMDP solution with GFODDs in conjunction with forward search to

solve games holds promise. GFODDs naturally handlemin andmax which are the main

combining functions needed to solve games.

Another research area where FODDs and GFODDs can be applied is that of Statistical

Relational Models (SRM) (Getoor & Tasker, 2007). SRMs for probabilistic reasoning have

recently become popular due to their succinct representation, easier learning due to shared

parameters and lifted inference methods. In fact, the relational VI algorithm of Boutilier

et al. (2001) and the implementation of this algorithm using(G)FODDs can be seen to

perform some form of lifted inference in probabilistic models. Recently several algorithms

that take advantage of model structure in inference have been proposed (Poole, 2003; Braz,

Amir, & Roth, 2005; Jaimovich, Meshi, & Friedman, 2007; Milch, Zettlemoyer, Kersting,

Haimes, & Kaelbling, 2008; Singla & Domingos, 2008; Sen, Deshpande, & Getoor, 2008,

2009; Kersting, Ahmadi, & Natarajan, 2009; Kisynski & Poole, 2009). The advantage of

lifted inference techniques is that they use abstraction toidentify repeated factors in com-

putation and thus lead to speedup. Comparatively, researchin dynamic models is at a fairly

exploratory stage (Kersting, DeRaedt, & Raiko, 2006) and the techniques of lifted inference

have not been applied to different classes of problem such asreinforcement learning. These

models, in various form, need to represent real valued functions over relational structures.

Hence employing GFODDs to represent these functions thus creating a scope for complex

yet compact and efficiently manipulable functions could be beneficial. As described in

this thesis, GFODDs have the ability to perform reasoning with dynamic models. Thus

GFODDs could be the missing link between SRMs and dynamic SRMs. There can be a

number of ways to leverage GFODDs in this area. One idea is to represent the entire SRM

9.2. FUTURE DIRECTIONS 165

as a set of GFODDs. Lifted inference can then be performed naturally by the manipulation

of GFODDs.

We note, however, that in order to develop GFODD based solutions to these research

problems we need to first solve the problem of composing functions defined by GFODDs

with expressive aggregation functions and performing logical simplification of GFODDs

efficiently.

Bibliography

Allender, E., Kearns, M., Arora, S., Russell, A., & Moore, C.(2002). A note on the rep-

resentational incompatibility of function approximationand factored dynamics. In

Proceedings of the International Conference on Neural Information Processing Sys-

tems, pp. 431–437.

Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., & Somenzi, F. (1993).

Algebraic decision diagrams and their applications. InIEEE /ACM ICCAD, pp. 188–

191.

Balla, R., & Fern, A. (2009). UCT for tactical assault planning in real-time strategy games.

In Proceedings of the International Joint Conference of Artificial Intelligence, pp.

40–45.

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act using real-time dynamic pro-

gramming.Artificial Intelligence, 72(1-2), 81–138.

Bellman, R. (1957).Dynamic Programming. Princeton University Press, Princeton, NJ.

Blum, A., & Furst, M. (1997). Fast planning through planninggraph analysis.Artificial

Intelligence, 90(1-2), 279–298.

Blum, A., & Langford, J. (1998). Probabilistic planning in the Graphplan framework. In

Proceedings of the European Conference on Planning, pp. 8–12.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence,

129(1-2), 5–33.

166

Bibliography 167

Boutilier, C., Dean, T., & Hanks, S. (1996). Planning under uncertainty: Structural as-

sumptions and computational leverage. InProceedings of the European Workshop

on Planning, pp. 157–171.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural as-

sumptions and computational leverage.Journal of Artificial Intelligence Research,

11, 1–94.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Exploiting structure in policy con-

struction. InProceedings of the International Joint Conference of Artificial Intelli-

gence, pp. 1104–1111.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1999). Stochastic dynamic programming

with factored representations.Artificial Intelligence, 121(1-2), 49–107.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-specific indepen-

dence in bayesian networks. InProceedings of Uncertainty in Artificial Intelligence,

pp. 115–123.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for First-

Order MDPs. InProceedings of the International Joint Conference of Artificial In-

telligence, pp. 690–700.

Braz, R., Amir, E., & Roth, D. (2005). Lifted First-Order probabilistic inference. InPro-

ceedings of the International Joint Conference of Artificial Intelligence, pp. 1319–

1325.

Bryant, R. (1986). Graph-based algorithms for boolean function manipulation.IEEE Trans-

actions on Computers, C-35(8), 677–691.

Bryant, R. (1992). Symbolic boolean manipulation with ordered binary-decision diagrams.

ACM Computing Surveys, 24(3), 293–318.

Bryce, D., & Buffet, O. (2008) InOnline Proceedings of the Probabilistic track of IPC-06,

http://ippc-2008.loria.fr/wiki/index.php/Main_Page.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algo-

rithms. MIT Press.

168 Bibliography

Croonenborghs, T., Ramon, J., Blockeel, H., & Bruynooghe, M. (2007). Online learning

and exploiting relational models in reinforcement learning. In Proceedings of the

International Joint Conference of Artificial Intelligence, pp. 726–731.

Dean, T., & Kanazawa, K. (1990). A model for reasoning about persistence and causation.

Computational Intelligence, 5(3), 142–150.

Dearden, R. (2001). Structured prioritized sweeping. InProceedings of the International

Conference on Machine Learning, pp. 82–89.

DeJong, G., & Mooney, R. (1986). Explanation-Based Learning: An Alternative View.

Machine Learning, 1(2), 145–176.

Dietterich, T., & Flann, N. (1997). Explanation-based learning and reinforcement learning:

A unified view. Machine Learning, 28(2-3), 169–210.

Driessens, K., & Dzeroski, S. (2004). Integrating guidanceinto relational reinforcement

learning.Machine Learning, 57(3), 271–304.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning.

Machine Learning, 43(1-2), 7–52.

Feng, Z., & Hansen, E. (2002). Symbolic heuristic search forfactored Markov decision

processes. InProceedings of the National Conference on Artificial Intelligence, pp.

455–460.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language

bias: Solving relational Markov decision processes.Journal of Artificial Intelligence

Research, 25(1), 75–118.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to theapplication of theorem

proving to problem solving.Artificial Intelligence, 2(3-4), 189–208.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal

planning domains.Journal of Artificial Intelligence Research, 20(1), 61–124.

Gardiol, N., & Kaelbling, L. (2003). Envelope-based planning in relational MDPs. InPro-

ceedings of the International Conference on Neural Information Processing Systems,

pp. 1040–1046.

Bibliography 169

Garriga, G., Khardon, R., & De Raedt, L. (2007). On mining closed sets in multi-relational

data. InProceedings of the International Joint Conference of Artificial Intelligence,

pp. 804–809.

Gelly, S., & Silver, D. (2007). Combining online and offline knowledge in UCT. InPro-

ceedings of the International Conference on Machine Learning, pp. 273–280.

Gelly, S., & Wang, Y. (2006). Exploration exploitation in Go: UCT for monte-carlo Go. In

NIPS Workshop for On-line trading of Exploration and Exploitation.

Gerevini, A., Bonet, B., & Givan, R. (2006) InOnline Proceedings of the Probabilistic

track of IPC-05, http://www.ldc.usb.ve/ bonet/ipc5/docs/ipc-2006-booklet.pdf.gz.

Getoor, L., & Tasker, B. (2007).An Introduction to Statistical Relational Learning. MIT

Press.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A.,Veloso, M., Weld, D., &

Wilkins, D. (1998). PDDL: The planning domain definition language. Tech. rep.,

Yale Center for Computational Vision and Control.

Gretton, C., & Thiebaux, S. (2004). Exploiting First-Orderregression in inductive policy

selection. InProceedings of Uncertainty in Artificial Intelligence, pp. 217–225.

Groote, J., & Tveretina, O. (2003). Binary decision diagrams for First-Order predicate

logic. Journal of Logic and Algebraic Programming, 57, 1–22.

Großmann, A., Hölldobler, S., & Skvortsova, O. (2002). Symbolic dynamic programming

within the fluent calculus. InProceedings of the IASTED International conference

on Artificial and Computational Intelligence, pp. 378–383.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003a). Generalizing plans to new

environments in relational MDPs. InProceedings of the International Joint Confer-

ence of Artificial Intelligence, pp. 1003–1010.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003b). Efficient solution algorithms

for factored MDPs.Journal of Artificial Intelligence Research, 19(1), 399–468.

Hanks, S., & McDermott, D. (1993). Modeling a dynamic and uncertain world i: Symbolic

and probabilistic reasoning about change.Artificial Intelligence, 66(1), 1–55.

170 Bibliography

Hansen, E., & Zilberstein, S. (2002). LAO*: A heuristic search algorithm that finds solu-

tions with loops.Artificial Intelligence, 129(1-2), 35–62.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999). SPUDD: Stochastic planning using

decision diagrams. InProceedings of Uncertainty in Artificial Intelligence, pp. 279–

288.

Hölldobler, S., Karabaev, E., & Skvortsova, O. (2006). FluCaP: a heuristic search planner

for First-Order MDPs.Journal of Artificial Intelligence Research, 27(1), 419–439.

Hölldobler, S., & Skvortsova, O. (2004). A logic-based approach to dynamic program-

ming. InProceedings of the AAAI-04 workshop on learning and planning in Markov

Processes – advances and challenges.

Howard, R. (1960).Dynamic Programming and Markov Processes. MIT Press.

Jaimovich, A., Meshi, O., & Friedman, N. (2007). Template-based inference in symmetric

relational Markov random fields. InProceedings of Uncertainty in Artificial Intelli-

gence, pp. 191–199.

Joshi, S., Kersting, K., & Khardon, R. (2009). Generalized First-Order decision diagrams

for First-Order Markov decision processes. InProceedings of the International Joint

Conference of Artificial Intelligence, pp. 1916–1921.

Joshi, S., Kersting, K., & Khardon, R. (2010). Self-taught decision theoretic planning with

First-Order decision diagrams. InProceedings of the International Conference on

Automated Planning and Scheduling, pp. 89–96.

Joshi, S., & Khardon, R. (2008). Stochastic planning with First-Order decision diagrams. In

Proceedings of the International Conference on Automated Planning and Scheduling,

pp. 156–163.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and

stochastic search. InProceedings of the National Conference on Artificial Intelli-

gence, pp. 1194–1201.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Counting belief propagation. InPro-

ceedings of Uncertainty in Artificial Intelligence.

Bibliography 171

Kersting, K., & De Raedt, L. (2004). Logical Markov decisionprograms and the con-

vergence of logical TD(λ). In Proceedings of Inductive Logic Programming, pp.

180–197.

Kersting, K., DeRaedt, L., & Raiko, T. (2006). Logical hidden Markov models.Journal of

Artificial Intelligence Research, 25(1), 425–456.

Kersting, K., van Otterlo, M., & De Raedt, L. (2004). Bellmangoes relational. InProceed-

ings of the International Conference on Machine Learning, pp. 465–472.

Kisynski, J., & Poole, D. (2009). Lifted aggregation in directed First-Order probabilistic

models. InProceedings of the International Joint Conference of Artificial Intelli-

gence, pp. 1922–1929.

Kocsis, L., & Szepesvari, C. (2006). Bandit based monte-carlo planning. InProceedings

of the European Conference on Machine Learning, pp. 282–293.

Koller, D., & Parr, R. (1999). Computing factored value functions for policies in structured

MDPs. InProceedings of the International Joint Conference of Artificial Intelligence,

pp. 1332–1339.

Koller, D., & Parr, R. (2000). Policy iteration for factoredMDPs. In Proceedings of

Uncertainty in Artificial Intelligence, pp. 326–334.

Krof, R. (1990). Real-time heuristic search.Artificial Intelligence, 42(2-3), 189–211.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning.

Artificial Intelligence, 76(1-2), 239–286.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in SOAR: The anatomy of a

general learning mechanism.Machine Learning, 1(1), 11–46.

Little, I., & Thibaux, S. (2007). Probabilistic planning vs. replanning. InProceedings of

the ICAPS Workshop on IPC: Past, Present and Future.

Littman, M. (1997). Probabilistic propositional planning: Representations and complexity.

In Proceedings of the National Conference on Artificial Intelligence, pp. 748–754.

Littman, M., & Younas, H. (2004) InOnline Proceedings of the Probabilistic track of

IPC-04, http://www.cs.rutgers.edu/mlittman/topics/ipc04-pt/proceedings/.

172 Bibliography

Lloyd, J. (1987).Foundations of Logic Programming. Springer Verlag. Second Edition.

Majercik, S., & Littman, M. (2003). Contingent planning under uncertainty via stochastic

satisfiability.Artificial Intelligence, 147(1-2), 119–162.

Maloberti, J., & Sebag, M. (2004). Fast theta-subsumption with constraint satisfaction

algorithms.Machine Learning, 55(2), 137–174.

Martelli, A., & Montanari, U. (1973). Additive and/or graphs. In Proceedings of the

International Joint Conference of Artificial Intelligence, pp. 1–11.

Mausam, & Weld, D. (2003). Solving relational MDPs with First-Order machine learn-

ing. In Proceedings of the ICAPS Workshop on Planning under Uncertainty and

Incomplete Information.

McDermott, D. (1998) In Online Proceedings of AIPS planning competition,

ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

McMillan, K. L. (1993). Symbolic model checking. Kluwer Academic Publishers.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Kaelbling, L. (2008). Lifted proba-

bilistic inference with counting formulas. InProceedings of the National Conference

on Artificial Intelligence, pp. 1062–1068.

Minton, S. (1988).Learning Search Control Knowledge: An explanation-based approach.

Kluwer Academic Publishers.

Mitchell, T., Keller, T., & Kedar-Cabelli, S. (1986). Explanation-Based Generalization: A

Unifying View. Machine Learning, 1(1), 47–80.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Reinforcement learning with less

data and less real time.Machine Learning, 13(1), 103–130.

Morales, E., & Sammut, C. (2004). Learning to fly by combiningreinforcement learning

with behavioral cloning. InProceedings of the International Conference on Machine

Learning, p. 76.

Nilsson, N. (1971).Problem-solving methods in artificial intelligence. McGraw-Hill.

Bibliography 173

Pednault, E. (1989). ADL: Exploring the middle ground between STRIPS and the situa-

tion calculus. InProceedings of the Conference on Knowledge Representationand

Reasoning, pp. 324–332.

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner for

ADL. In Proceedings of the Conference on Knowledge Representationand Reason-

ing, pp. 103–114.

Poole, D. (2003). First-Order probabilistic inference. InProceedings of the International

Joint Conference of Artificial Intelligence, pp. 985–991.

Price, B., & Boutilier, C. (2003). Accelerating reinforcement learning through implicit

imitation. Journal of Artificial Intelligence Research, 19, 569–629.

Puterman, M. (1994).Markov decision processes: Discrete stochastic dynamic program-

ming. Wiley.

Puterman, M., & Shin, M. (1978). Modified policy iteration algorithms for discounted

Markov decision problems.Management Science, 24, 1127–1137.

Rivest, R. (1987). Learning decision lists.Machine Learning, 2, 229–246.

Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. In

Proceedings of the International Conference on Computer-Aided Design, pp. 42–47.

Russel, S., & Norvig, P. (2010).Artificial Intelligence: A Modern Approach. Third Edition.

Prentice Hall Series in Artificial Intelligence.

Sanner, S. (2008).First-Order decision-theoretic planning in structured relational envi-

ronments. Ph.D. thesis, University of Toronto.

Sanner, S., & Boutilier, C. (2006). Practical linear value-approximation techniques for

First-Order MDPs. InProceedings of Uncertainty in Artificial Intelligence, pp. 409–

417.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for First-Order MDPs.

Artificial Intelligence, 173(5-6), 748–788.

174 Bibliography

Sanner, S., & McAllester, D. (2005). Affine algebraic decision diagrams (AADDs) and

their application to structured probabilistic inference.In Proceedings of the Interna-

tional Joint Conference of Artificial Intelligence, pp. 1384–1390.

Sanner, S., Uther, W., & Delgado, K. (2010). Approximate dynamic programming with

affine ADDs. InProceedings of the International Conference on AutonomousAgents

and Multiagent Systems.

Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Muller, M., Lake, R., Lu, P., &

Sutphen, S. (2007). Checkers is solved.Science, 317(5844), 1518–1522.

Schuurmans, D., & Patrascu, R. (2001). Direct value-approximation for factored MDPs.

In Proceedings of the International Conference on Neural Information Processing

Systems, pp. 1579–1586.

Schweitzer, P., & Seidmann, A. (1985). Generalized polynomial approximations in Marko-

vian decision processes.Journal of Mathematical Analysis and Applications, 110(2),

568–582.

Sen, P., Deshpande, A., & Getoor, L. (2008). Exploiting shared correlations in probabilistic

databases. InVLDB, pp. 809–820.

Sen, P., Deshpande, A., & Getoor, L. (2009). Bisimulation-based approximate lifted infer-

ence. InProceedings of Uncertainty in Artificial Intelligence, pp. 496–505.

Shavlik, J. (1989). Acquiring recursive and iterative concepts with explanation-based learn-

ing. Machine Learning, 5(1), 39–70.

Singla, P., & Domingos, P. (2008). Lifted First-Order belief propagation. InProceedings

of the National Conference on Artificial Intelligence, pp. 1094–1099.

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). APRICODD: approximate policy construc-

tion using decision diagrams. InProceedings of the International Conference on

Neural Information Processing Systems, pp. 1089–1095.

Sutton, R., & Barto, A. (1998).Reinforcement Learning: An Introduction. MIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An

overview. InProceedings of the ICML’04 Workshop on Relational Reinforcement

Learning.

Bibliography 175

Teichteil-Koenigsbuch, F., & Fabiani, P. (2006). Symbolicstochastic focused dynamic

programming with decision diagrams. InProceedings of the Fifth IPC at ICAPS.

Teichteil-Koenigsbuch, F., Infantes, G., & Kuter, U. (2008). RFF: A robust FF-based mdp

planning algorithm for generating policies with low probability of failure. In Pro-

ceedings of the Sixth IPC at ICAPS.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

8(3-4), 257–277.

Tsitsiklis, J., & Van Roy, B. (1996). Feature-based methodsfor large scale dynamic pro-

gramming.Machine Learning, 22(1-3), 59–94.

van Otterlo, M. (2008).The logic of Adaptive behavior: Knowledge representation and

algorithms for adaptive sequential decision making under uncertainty in First-Order

and relational domains. IOS Press.

Veloso, M. (1992).Learning by Analogical reasoning in general problem solving. Ph.D.

thesis, Carnegie Mellon University.

Walker, T., Torrey, L., Shavlik, J., & Maclin, R. (2007). Building relational world models

for reinforcement learning. InProceedings of Inductive Logic Programming, pp.

280–291.

Wang, C. (2008).First-Order Markov decision processes. Ph.D. thesis, Tufts University.

Wang, C., Joshi, S., & Khardon, R. (2007). First-Order decision diagrams for relational

MDPs. InProceedings of the International Joint Conference of Artificial Intelligence,

pp. 1095–1100.

Wang, C., Joshi, S., & Khardon, R. (2008). First-Order decision diagrams for relational

MDPs. Journal of Artificial Intelligence Research, 31(1), 431–472.

Wang, C., & Khardon, R. (2007). Policy iteration for relational MDPs. InProceedings of

Uncertainty in Artificial Intelligence.

Weld, D., Anderson, C., & Smith, D. (1998). Extending graphplan to handle uncertainty

and sensing actions. InProceedings of the National Conference on Artificial Intelli-

gence, pp. 897–904.

176 Bibliography

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baselinefor probabilistic planning. In

Proceedings of the International Conference on Automated Planning and Scheduling,

p. 352.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track

of the international planning competition.Journal of Artificial Intelligence Research,

24(1), 851–887.

