FIRST ORDER DECISION DIAGRAMS FOR DECISION THEORETIC
PLANNING

A Dissertation
submitted by
Saket Joshi

in partial fulfilment of the requirements
for the degree of
Doctor of Philosophy
in
COMPUTER SCIENCE
TUFTS UNIVERSITY
August 2010

(© Saket Joshi 2010
ADVISER: Professor Roni Khardon

Abstract

Compact representations of complex knowledge form the gbselutions to many prob-
lems in Artificial Intelligence. Sequential decision maginnder uncertainty is one such
important problem and Decision Theoretic Planning (DTF baen one of the most suc-
cessful frameworks for this task. Recent advances in DTR hasused on generating
efficient solutions for Relational Markov Decision Proces$RMDP), a formulation that
models problems that are naturally described using obggadgelations among them. The
core contribution of this thesis is the introduction of caunprepresentation schemes for
functions over relational structures, and associatedrigos that together lead to effi-
cient solutions of RMDPs. Our First Order Decision Diagraff®DD) representation
captures an expressive class of functions generalizirggential quantification in logic to
real valued functions, and the Generalized FODDs (GFODBgjure both existential and
universal quantification. The thesis develops severalrdilgos for composition and logi-
cal simplification of functions represented by FODDs and GBS using theorem proving
and model-checking methods. We prove various theoretrogdgyties on their correctness
and their applicability in the context of solutions for RMBPThrough implementation,
experimentation and empirical evidence we demonstratsubeess of FODD-based algo-
rithms to solve RMDPs, by applying them to solve stochadtomping problems that have
been used as challenge benchmarks in planning research.

Acknowledgements

It has been my good fortune to have Roni Khardon as my Ph.DsadWorking with him
has been a great learning experience for me. His expert geedaot only made this work
possible but also shaped my thinking process and my apptoaeinds research problems.
While continually striving to match his abilities, | will res his gifted intellect, his unique
talent in formalizing ideas, his patience, and his encoemaant in my future endeavors.

| am very grateful to my committee members, Carla Brodleysélm Blumer, Prasad
Tadepalli and Eric Miller for the time and effort they speaviewing my thesis; especially
to Carla Brodley for the most effective words of encouragenakiring a time of crisis and
to Prasad Tadepalli for his unconditional help and suppwodiutghout my graduate student
life.

| owe big thanks to Scott Sanner and Kristian Kersting foirthet infrequent men-
toring and for invaluable aid in the form of ideas, insighdgscussions, suggestions and
software.

Finally, my gratitude goes to my family and friends; esplgito Avi kaka, without
whom | might never have had an interest in science, and to Wdks and Manik mavshi
whose presence made me feel like | have parents in Boston.

Dedication

To Aai and Baba, whose undying love and sacrifice has madelitiiatl am today; and to
Tai who has been not only the most loving elder sister butalg®at source of inspiration.

Contents

Acknowledgements
Dedication

1 Introduction

1.1 ThelogisticsDomain.

1.2 Our Approach . .

1.3 Major Contributions 5

1.4 Thesis Overview

2 Background

2.1 PlanningUnderUncertainty 9

2.2 Markov Decision Processes 10

2.2.1 Valuelteration e

2.2.2 Policylteration
2.2.3 Modified Policy Iteration, 3
2.2.4 LinearProgramming

2.2.5 Search.

2.2.6 Asynchronous ValueUpdates

2.2.7 ReinforcementLearning

2.3 Factored MDPs
2.4 Relational MDPs

3 First Order Decision Diagrams

3.1 Syntax of First Order Decision Diagrams 27
3.2 Semantics of First Order DecisionDiagrams 29
3.3 BasicReductionof FODDs 13
3.4 CombiningFODDS e 32
3.5 OrderofLabels 35
3.6 ReductionOperators i 6 3
3.6.1 (R5) Strong Reduction for Implied Branches 36
3.6.2 (R7) Weak Reduction Removing Dominated Edges 37
3.7 Decision DiagramsforMDPs L. 41
3.71 ExampleDomain 42
3.7.2 TheDomainDynamics 42
3.7.3 Probabilistic Action Choice 44
3.7.4 Rewardand Value Functions 45
3.8 Value lterationwith FODDs 45
3.8.1 Regressing Deterministic Action Alternatives 47
3.8.2 Regressing ProbabilisticActions 49
3.8.3 Object Maximization 51
3.8.4 MaximizingOverActions 52
3.8.5 OrderOver ArgumentTypes 52
3.8.6 Convergence and Complexity 53
3.8.7 A Comprehensive Example of Value Iteration . 55
3.8.8 Extracting Optimal Policies 58
3.9 Summary and ConcludingRemarks 59
4 Theorem Proving Reductions 60
4.1 (R9)Equality Reduction 62
4.2 TheRI10OReduction i 65
4.3 TheR11Reduction i 69
4.4 Further Speedup of Theorem Proving Reductions 71
4.4.1 Subtracting Apart - Improving applicabilityof R7 71

Vil

4.4.2 Not Standardizing Apart
45 Discussion

Stochastic Planning with FODDs

5.1 Introduction

5.2 FODD-PLANNER

5.2.1 Value Approximation
Extensions to the VI Algorithm

5.2.2

5.2.3 The FODD-Planner System
5.3 ExperimentalResults

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7

5.4 Summary and Concluding Remarks

Merits of Reduction Operators
The Logistics Benchmark Problem
Conjunctive Goals and Goal Ordering

The Fileworld Domain
The TireworldDomain
Boxworld
Blocksworld

Model-Checking Reductions
6.1 R12: The Model Checking Reduction for FODDs
6.1.1 Generalized Aggregation Function and the R12 Reolucti

6.1.2 ProofofCorrectness
6.2 Practical Model-Checking Reductions
6.2.1 Edge Removal by ModelChecking
6.2.2 Node Removal with Model Checking

6.3 DISCUSSION o e

Self-Taught Decision Theoretic Planning with FODDs
7.1 Bootstrapping: Example Generation
7.2 Experimentson PlanningDomains

7.2.1 TimeoutMechanism

7.2.2 (Q1) System Characteristics 120

723 (Q2)Tireworld 121
7.24 Blocksworld 124
7.25 Boxworld 127
7.3 Summary and ConcludingRemarks 129
8 Generalized First Order Decision Diagrams 130
8.1 Generalized FODDs: Syntax and semantics 131
8.1.1 Semanticsof GFODDs 131
8.1.2 CombiningGFODDs 134
8.2 Model Checking Reductions for GFODDs 139
8.2.1 RIl12forminaggregation 139
8.2.2 Model Checking Reduction fataz*min* Aggregation 140
8.3 An Application of GFODDs for Value Iteration in Relat@rvDPs 153
8.3.1 TheVI-GFODD Algorithm 154
8.4 Summary and ConcludingRemarks 157
9 Conclusions 158
9.1 Summary of Contributions 0 . 159
9.2 FutureDirections 611
Bibliography 166

List of Tables

5.1
5.2

7.1

7.2

7.3

7.4

8.1

Fileworlddomainresults. 88
Percentage average reduction in planning time, ex@ttitne, coverage
and plan length, for tireworld under the merging of leavepragimation

for varying leaf precisionvalues. 91

Number of subsumption calls made during VI using ST-FOBER with

given numberofexamples (Ex). 811
Tireworld: Planning time taken in CPU seconds (C) by mé&#{M) FODD-

PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for
various number of iterations (I). 121
Blocksworld: Planning time taken in CPU seconds (C) byhods (M)
FODD-PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR)
run for various number of iterations (I). 126
Boxworld: Planning time taken in CPU seconds (C) by masi{t) FODD-

PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run for
various number of iterations (I). L oL 127

List of safe and unsafe pairs foroperators.135

List

2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9

3.10
3.11
3.12
3.13

4.1
4.2
4.3
4.4

of Figures

Propagation of value in the MDP by (a) forward search dmaddynamic

Programming. e e e e e e e e e 14
Dynamic Bayesian Networks for Factored MDPs. 18
Asimple FODD. 28
Examples illustrating weakness of normal form. 33

A simple example of addingtwo FODDs. 34
An example illustrating the subtraction conditioninR7. 39
An example illustrating the condition for removingaead R7. 40
An example illustrating that the minimal set of variabler subtraction is
NOLUNIQUE. o o e e e e e e e e 41
Atemplateforthe TVD. 43

FODDs for the logistics domain: TVDs, action choice, aalard function. 44
An example showing that the choice probability can ddpanaction pa-

rameters. e e e e 45
An example illustrating why variables are not allomedVDs. 49
An example illustrating the need to standardize apart.. 50
An example illustrating the necessity to maintain rplétTvDs. 53
An example of value iteration in the Logistics Domain. 56
Example illustrating the need foraDPO. 61
An example of the equality reduction. 63
Example of R10reduction. 67
Example where R7 is applicable but R10isnot. 68

Xi

4.5
4.6

5.1

5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3

7.1
7.2

7.3

7.4
7.5
7.6
7.7
7.8

Example of R11reduction. 69
Sub-Apart. 72

Example where the AGD heuristic awards equal value togtenal and

suboptimalactions. 82
A comparison of planning time taken by various settiniggeduction op-
erators over varying number of iterations. 85
A comparison of the merits of R9 and R11 in the presencel6fR 86
WGO Heuristic vs. AGD Heuristic. 87
Coverage result of tireworld experiments. 89
Timing result of tireworld experiments. 90
Plan length result of tireworld experiments. 90
Coverage results of boxworld experiments.. 92
Plan length results of boxworld experiments. 93
Average reward results of boxworld experiments. 93
Blocksworld CoverageResults. 9
Blocksworld Plan LengthResults. 95
An example of reduction operator R12 for FODDs. 100
Example where R12 can reduce the diagram but previoustieds fail . . 108
Example of?12.45 andR12,04e. o oo 109
Subsumption Call Statistics. 118
Tireworld Learning Curve: Average Percentage of Prmislsolved by ST-
FODD-ER vs. Number of examples in the trainingset. 119
Tireworld: Planning time in cpu seconds by ST-FODD-ER Msimber

of examplesinthetrainingset. 120
Tireworld: Planning time in cpu seconds vs. Number ofifiens of VI. . . 121
Tireworld Coverage Results. 122
Tireworld Plan Length Results. 123
Tireworld Challenge Problem. 123
Blocksworld Challenge Problem.124

Xil

7.9 Blocksworld CoverageResults.125

7.10 Blocksworld Plan LengthResults. 125
7.11 Boxworld Coverage Results. 127
7.12 Boxworld Plan LengthResults.128
7.13 Boxworld Plan LengthResults.128
8.1 AGeneralized FODD Example. 331
8.2 An example of reduction operatfn 2, for GFODDs withmax*min* Ag-
gregation. e e e 141
8.3 An example of reduction operatn 2, for GFODDs withmax*min* Ag-
gregation. 149
8.4 Example of GFODD Regression and Object Maximization...... 154

9.1 Reward and Value function for the gae#(a) in the blocksworld domain. . . 163

Xiii

Xiv

Chapter 1
Introduction

Many problems in Artificial Intelligence (Al) can benefit frocompact representations of
complex knowledge. One such problem is that of building &gémat interact optimally
with an environment in order to achieve a certain objectiMere formally, starting with
some knowledge about the environment such agents eithehse@aason or learn to take
actions (or build a policy) in the world while optimizing semeward criterion. Various
forms of this problem have been studied in the literature.if&tance,

e The world could be fully observable, partially observabi@inobservable.

e The dynamics of the world could be deterministic, probahtior adversarial.
e The objective could be to reach a goal state or to achievermaxireward.

e The state and action spaces could be discrete or continuous.

Classical planning (e.g., (Fikes & Nilsson, 1971)) addeesme of the simplest versions of
this problem where the world is observable, the domain dyosuare deterministic, state
and action spaces are discrete and the objective of the egerdtart from a concrete state
and reach a concrete goal state. In this thesis we focus ovetisen where the world is
fully observable, the domain dynamics are probabilistit kmown in advance, the state
and action spaces are discrete and the agents objectiveastzl by a reward function.
This problem is, therefore, that of sequential decisionimgkinder uncertainty and is
more general than classical planning. Markov Decision &ses (MDP) have become the

1

2 CHAPTER 1. INTRODUCTION

de-facto standard model for such problems. Some concrara@es of such problems are
as follows.

¢ Planning in Logistics Applications: The agent must maxergpods delivered while
minimizing resource consumption.

e Emergency Response Services: A fire response schedulibgnsysust minimize
the time and resources required per emergency.

¢ Robot Navigation: A robot must take the right course of attaget to its destination
from the source.

As the examples illustrate, the domains of interest are destribed using objects and
relations among them. For example, in the logistics apfpticave have packages, vehicles
and locations and their corresponding configuration. MBpecting such structured state
and action spaces are known as Relational MDPs (RMDP). Tlsviag are some typical
aspects of such real world sequential decision making probl

e The agent's state space can be very large. For example tbalé be numerous
vehicles to transport numerous parcels between numerstisdeons in the logistics
application. Each configuration of these objects is a ptessilate of the world.

e The effect of the agent’s actions on the environment can loertain. Robots can
slip and skid on a smooth floor. Time taken to deliver packagesvary. The returns
on investments can be uncertain.

e The agent’s objective can be complex. In the logistics watti@ objective could
be to maximize the total number of packages delivered whilgmizing time and
resources. The robot’s objective could be to minimize ayernergy consumption
per route.

Research on such problems has progressed by solving singkgons that are gen-
erated by restricting the setting and abstracting awayaceqarts of the problem. As
an example we will explain a simplified logistics domain imsodetail here. Following
Veloso (1992) and Boutilier, Reiter, and Price (2001), oy domain has been used by

1.1. THE LOGISTICS DOMAIN 3

several authors (Kersting, van Otterlo, & De Raedt, 2004n8a& Boutilier, 2009; Wang,
Joshi, & Khardon, 2008) to demonstrate ideas and methods.dbimain will also be used
as a running example to explain many ideas in this thesis.

1.1 The Logistics Domain

In the logistics domain the world consists of three typeslgécts, namely boxes, trucks
and cities. A box can be either in a city or on a truck. The dgefijective is to transport
boxes from their source cities to their destination citi€ke trucks can be used for trans-
portation. A world state is described by specifying the tawaof every box (in a city or
on a truck), the location of every truck, and whether it is\nag or not. There are three
actions available to the agent. At any time step, the ageneither load a box from a city
onto a truck, unload a box from a truck into a city, or driveweck from one city to another.
In this simplified domain, every city is reachable from evetljer city in one time step. A
truck can carry any number of boxes. Common sense domairraons apply, e.g., a box
or truck cannot be in two places at once.

The drive action is deterministic. The load and unload atiare probabilistic and
in this simplified domain they either succeed leading tortke&pected outcomes or fail
where nothing in the world changes. The load action succegtisprobability 0.99 and
fails with probability0.01. The probabilities of success and failure of the unloacdacire
conditioned on whether itis raining or not. If it is rainingyload succeeds with probability
0.7 and fails with probability0.3. If it is not raining, unload succeeds with probability
and fails with probability0.1.

1.2 Our Approach

Notice that even in such abstracted worlds, the typical@spod real world problems listed
above are preserved. Therefore solution algorithms foh gwoblems must handle large
state spaces with uncertain action effects and rich reptaens for complex objectives.
The problem of solving MDPs has been a widely studied in Gpera Research and Com-
puter Science. Most solution methods, however, repreberdtate space either as a flat set

4 CHAPTER 1. INTRODUCTION

of monolithic world states or as defined by values assignesfaie feature variables. Al-
though there are dynamic programming algorithms that sibigéviDP in time polynomial
in the size of the state space, the size of the state spalfesiesgponential in the number of
state feature variables. Hence even for small problemayibB can be prohibitively ex-
pensive to solve by state space enumeration. This is knowheasurse of dimensionality
(Bellman, 1957). Recent work has addressed this probleralkgg advantage of internal
structure in the problem definition (Boutilier, Dearden, &I@szmidt, 1995, 1999; Hoey,
St-Aubin, Hu, & Boutilier, 1999). However even these algfums cannot handle very large
problem instances. In addition, a solution for every prabiastance (e.g., one with five
boxes and one with ten boxes) has to be generated sepanatkligese algorithms cannot
take advantage of similarities in problem instances to heestlution of one problem in
solving another. All is not lost, however, and there is pagdnn the observation that for
domains like logistics, the world is naturally represenigdobjects and relations among
them rather than as a set of state feature variables. ThresaRests rich relational structure
in these problems that can be exploited to further countectiise of dimensionality.

In this thesis we follow the approach of Boutilier et al. (200who developed the
Symbolic Dynamic Programming (SDP) algorithm to solve peofs of sequential deci-
sion making under uncertainty. The main idea in SDP is torabsthe relational structure
of the underlying domain and generate a solution in termb@felational structure rather
than actual domain objects. Such a solution is independeheactual problem instance
and is valid for all domain sizes. Given an abstract form ef dbjective, such a solution
has to generated only once. For example, in the logisticédwar objective could be to
transport at least one box to Paris. Once SDP generates t@#oadior this problem, the
same solution is valid for all problems with the same obyecindependent of the number
of boxes, cities and trucks in the domain. Our main contrdsuts the introduction and
use of a new compact knowledge representation to capturple@rabjectives and domain
dynamics under the SDP algorithm. We develop algorithmat¢stéor this knowledge rep-
resentation and make a case for the applicability of this@ggh through theoretical results
and empirical evidence. In the next section we present auiriboitions in more detail.

1.3. MAJOR CONTRIBUTIONS 5

1.3 Major Contributions

Following are the main contributions of this work. Most ofslvork has been published
in conference and journal papers (Wang, Joshi, & Khardo@72®ang et al., 2008; Joshi
& Khardon, 2008; Joshi, Kersting, & Khardon, 2009, 2010).

1. First Order Decision Diagrams: A First Order Decision Diagram (FODD) is a
compact knowledge representation for real valued funstiover relational struc-
tures. That is, FODDs map every possible world state to avaake. Such func-
tions are very useful in defining utilities and probabiktief world states in an MDP.
We modify and extend the approach of Groote and Tveretin@3Rt develop the
FODD representation and algorithms to manipulate them. B®Pban be viewed
as a relational extension of Algebraic Decision Diagrams/éBt, 1992; McMil-
lan, 1993; Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & &mmn 1993). When
restricted to Boolean valued leaves, FODDs representifumétee First Order for-
mulas with existentially quantified variables. We demaatstthe use of FODDs to
represent MDPs and develop an SDP algorithm for the FOD Cesgmitation.

2. Theorem Proving Reductions:SDP based algorithms (Boutilier et al., 2001; Kerst-
ing et al., 2004; Sanner & Boutilier, 2009) have to perforras@ning in First-Order
logic in order to represent and manipulate partitions ofdfage space. Therefore all
such algorithms require the need for logical simplificatodmelational formulas for
practical implementation. Similarly, logical reasoningiwFODDs creates redun-
dancies in the diagrams. Special operators are neededrtfydand remove these
redundancies. Although the removal of redundancies ortlaeteof does not affect
correctness of the representation, these operators argeddor any practical appli-
cation of FODDs. We present new reduction operators for FO@b&sed on theorem
proving of First Order formulas. The idea is to use logicapliwation to identify
redundant parts of the diagram and remove them.

3. Model Checking Reductions: Theorem proving reductions have a few drawbacks.
Proving logical implication is an expensive operation. bidéion, domain con-
straints have to be explicitly specified as background kedgk. To mitigate these

CHAPTER 1. INTRODUCTION

issues, we introduce a new paradigm for reduction of FODDsetbaon model-
checking and prove its superiority over theorem provingustbns. We present
theoretical and practical versions of model-checking otidas and provide proofs
of correctness and completeness.

4. Weighted Goal Ordering Heuristic: SDP based algorithms have been motivated
by problems in probabilistic planning. Planning problenasgthe task of reaching
a concrete goal state from a concrete start state in the W8EBdP based algorithms,
however, are designed to solve the domain at the abstrasitden planning for a
concrete domain instance will lose the benefits of abstraciiherefore Sanner and
Boutilier (2009) introduced a method to plan for genericlg@d the abstract level,
and given a concrete instance and goal, use a goal decompadsitput together
solutions to sub-problems. However, their solution makesssumption that the
decomposed parts of the goal are independent of each otles. a§sumption is
unrealistic in some domains. We present a new heuristicdalr decomposition that
is not dependent on this assumption. We show evidence ofijisririty over the
heuristic of Sanner and Boutilier (2009) in domains wheralgerializability is a
crucial factor.

5. FODD-Planner: We incorporate all the above ideas for FODD manipulation and
present a prolog based software system that implements ire égorithm with
the FODD representation. We demonstrate this system byngpstochastic plan-
ning problems and showing performance comparable to tokingrsystems from
the International Planning Competitions. This shows thstraction through com-
pact representation is a promising approach for solvingisetial decision making
problems. The results make a very good case for the use of FODERpresenting
functions over relational structures (which are import@mtmany applications like
Statistical Relational Learning) and demonstrate thdicieht manipulability.

6. Self-Taught Planning: Inspired by the efficiency of model-checking reductions we
develop a new paradigm for planning by learning. The idea® igrovide FODD-
PLANNER with a small “training set” of world states of interest, but mdication of
optimal actions in any states. The FODDRARNER uses this training set to “focus”

1.4. THESIS OVERVIEW 7

its logical simplification in model-checking reductionsalude only formulas rele-
vant for these states. We also show that such training exemeah be constructed on
the fly from a description of the planning problem. Thus we lbaatstrap our plan-
ner to get a self-taught planning system. We show drasticaugments in planning
efficiency on a variety of IPC domains. Although we employ #@DD-PLANNER

to demonstrate the self-taught planning paradigm we belibat this technique is
applicable with any SDP based system.

7. Generalized FODDs: FODDs are compact and expressive but when considered as
logical formulas they are limited to existential quantifioa. We present Gener-
alized FODDs (GFODD), where we extend the representatiomepdo arbitrary
aggregation where aggregation is a generalization of diation. Every FODD
is also a GFODD. GFODDs are thus very expressive structhegsshare the same
compactness advantages as FODDs. We discuss severalte®péiGFODDs and
present reductions for an important subset of GFODDs. Weidkntify conditions
under which GFODDs can be composed or combined by a simpéeguve.

8. VI-GFODD: GFODDs can represent complex functions over relationalcsires
and can thus be employed instead of FODDs in applications asicequential de-
cision making to enhance expressive power of representatide show that the
same FODD-based SDP algorithm used above is valid when GEQID®used as
the underlying representation. Finally we prove the cdness of this algorithm,
VI-GFODD, for a very expressive subset of GFODDs. Withirsthepresentation
we can capture objectives likeansport at least one box to Paris and all trucks to
Londonin the logistics domain. This was not possible with FODDs.

1.4 Thesis Overview

The thesis proceeds as follows. We start by providing texirbackground in Chapter
2. This includes an overview of the literature on planning @mdncertainty and solution
techniques for MDPs, factored MDPs and Relational MDPs.

In Chapter3 we introduce First Order Decision Diagrams (FODD) and disconany

8 CHAPTER 1. INTRODUCTION

of their properties. We also discuss the process of reagonith FODDs and present
some operators to reduce FODDs. The results in Chapkave previously appeared in
the thesis of Wang (2008). Chaptéraddresses the deficiencies of the set of reduction
operators presented in Chapteby introducing new reduction operators for FODDs. In
Chapteb we demonstrate the first empirical evidence and practiqali@ability of FODDs

by presenting our SDP based MDP solver, FODDxNER, and results of experiments of
the application of FODD-PANNER to stochastic planning problems from the International
Planning Competition. FODD4RANNER implements the FODD manipulation algorithms
presented in ChapteBsand4.

In Chapter6 we introduce a new paradigm for reduction of FODDs based odatro
checking and prove that it gives much stronger reductiomantaes than the theorem prov-
ing reductions of Chapters and4. We also present practical versions of this reduction
that can be easily implemented. Then in Chafitere incorporate the new reductions of
Chapter6 in FODD-P_.ANNER and develop a new paradigm for planning. We also show
empirical evidence of drastic improvements in planningcefficy of FODD-RANNER by
shifting focus to the new reductions.

In Chapte we present Generalized FODDs (GFODDSs), discuss their pliepécom-
bination and reduction) and prove correctness of a GFODRM&DP algorithm, VI-
GFODD.

We conclude in Chaptérwith a discussion and perspective for future work.

Chapter 2
Background

In this chapter we provide the basic background and the gbifde the thesis. In the
process we also elaborate on related work.

2.1 Planning Under Uncertainty

Planning is the problem of getting from a start state to sessatisfying some goal con-
ditions using actions which move the agent according to kntnansition dynamics. In
classical planning the dynamics are deterministic. Tlegfthe problem can be seen as
a search for a sequence of actions that achieves the goah. Wiitertainty the dynamics
are non-deterministic and there are several formalismsudag planning under uncer-
tainty. In our work action dynamics are probabilistic, amf@ism known as stochastic
planning. Deterministic Planning is a relatively maturddiwith a number of planning
formalisms and systems developed over the years. The STR#PS8Ing system (Fikes &
Nilsson, 1971) led a generation of automated planning rekeand produced a number
of successful systems for deterministic planning usingpuesparadigms like partial order
planning (Penberthy & Weld, 1992), planning based on plaggraphs (Blum & Furst,
1997), planning by satisfiability (Kautz & Selman, 1996) drmlristic search (Bonet &
Geffner, 2001).

These ideas were later employed in solving the problem ahststic planning (Blum &
Langford, 1998; Weld, Anderson, & Smith, 1998; Majercik &tionan, 2003; Yoon, Fern,

9

10 CHAPTER 2. BACKGROUND

& Givan, 2007; Teichteil-Koenigsbuch, Infantes, & Kutef(B). Of these, approaches
using forward heuristic search with a heuristic functiosdxon the planning graph (Blum
& Furst, 1997) have been very successful at the recent latiermal Planning Competitions
(Yoon et al., 2007; Teichteil-Koenigsbuch et al., 2008).g%®per overview of the different
approaches to planning is beyond the scope of this thesisipAn date overview is given
by Russel and Norvig (2010).

In the case of planning under uncertainty, straight linepldo not guarantee achieve-
ment of the goal due to the stochastic nature of the undeyhiorld. A Markov decision
process is a natural formalism for optimizing actions urgtechastic dynamics and its ap-
plication to planning is known as known as Decision Theoretanning (DTP) (Boutilier,
Dean, & Hanks, 1999). A number of the algorithms and systemBTP mentioned in this
chapter have been motivated by and employed in solving astichplanning problems.

In recent years, the International Planning Competiti®C{l has been instrumental in
the development of efficient algorithms and systems formlagn There have been six
competitions so far since the AIPS competition in 1998 (Mcbatt, 1998). The last three
IPCs since ICAPS 2004 promoted a separate track for planmidgr uncertainty (Littman
& Younas, 2004; Gerevini, Bonet, & Givan, 2006; Bryce & Buff2008).

2.2 Markov Decision Processes

A Markov decision process (MDP) is a mathematical model efittteraction between an
agent and its environment. The environment can be dynantictthastic. The agent’s
objective is to act optimally (or near optimally) in the emnment. Puterman (1994) pro-
vides a comprehensive discussion of MDPs. Formally an MCPSduple(S, A, T, R, v)
defining

e A set of fully observable states.
e A setA of actions available to the agent.

e A state transition function defining the probabilify(s'|s, a) of getting to states’
from states on taking actionu.

2.2. MARKOV DECISION PROCESSES 11

e Areward functionR(s, a) defining the immediate reward received by the agent for
being in states and taking actioru. To simplify notation we assume throughout
this thesis that the reward is independent @o thatR(s,a) = R(s). However the
general case does not lead to significant difficulties.

e Adiscount facto < v < 1.

The reward function provides a mathematical way of encodiregagent’s objective in
the environment. Informally the agent’s goal is to take @wdi that help accumulate as
much reward as possible. For problems that do not have a foiieon, the total reward
achieved can be infinite. Thus to help quantify distinctibesween policies either the
average per-step reward model or a discounted reward medehisidered. In this thesis
we use the discounted model which is described next. Foodisasks such as planning
it provides an incentive to find short solutions. Anotheealftive in this case uses an
“absorbing state” when the goal is achieved so that the ekwan only be obtained once
in any episode. We discuss this model later in the thesis.

In the discounted model, the objective of solving an MDP ig¢nerate a policy (a
mapping from states to actions) that maximizes the agent’s total, expected, discounted
reward. The value (or utility) of a staté™(s) under a policyr is the total, expected,
discounted reward achieved by the agent starting fs@nd followingz. Thatis,V™(s) =
Yoo 7 R(s;) | so = s. Intuitively the expected utility or value of a state undee bptimal
policy is equal to the reward obtained in the state plus tiseadinted value of the state
reached by the best action in the state. This is capturedeoBeliman equation as

V*(s) = Max,[R(s) + vEg P(s" | s,a)V*(s')] (2.1)

that is well known to define the optimal value functigh. For tasks such as planning where
the objective is to reach a set of goal states, the valueiimgt(s) encodes the “distance”
from the states to the goal. The optimal value function and the transitiamcfion together
define the optimal policy. Therefore solvingan MDP can beiced to solving the Bellman
equation. This has been a very productive approach overaelerades. Next we will look
at some standard algorithms for solving MDPs.

12 CHAPTER 2. BACKGROUND

2.2.1 Value lteration

Value Iteration (VI) (Bellman, 1957) is a dynamic programignialgorithm that treats the
Bellman equation as an update rule. Starting from an arpitralue functionV?(s), the
value of every state is iteratively updated until convergeusing the rule

Vi(s) «+ Max,[R(s) +y34P(s" | s,a)V'(s)]. (2.2)

For practical solutions, convergence is usually defined@stimality meaning that conver-
gence is obtained when the difference between the currehtrenoptimal value function
is less tharx i.e. | V*1(s) — V*(s) | < e (Puterman, 1994). Algorithmically the test
| ViHL(s) — Vi(s) | < % guarantees-optimality. Once the optimal value function
is known, a policy can be generated by assigning to each tsiataction that maximizes
expected value. VI, therefore, ignores policies altogetiméi| the e-optimal value function
is discovered.

The update is generally performed in two steps. The backrupgression step calcu-

lates the)-function for every state-action pair.
Q'(s,a) «— R(s) + Xy P(s' | a,s)V' (s (2.3)
The maximization step calculates thstep-to-go value function.
Vi(s) « Maz,Q"(s,a) (2.4)

Figure 2.1(b) shows an illustration of dynamic programmmethods for calculating
the value function. The current value function estimaté§) depicted by the squares) is
backed up over actions using the Bellman update to give tkevadue function estimate

(Vi (s)).

2.2.2 Policy Iteration

Policy iteration (PI) (Howard, 1960) is another dynamicgraomming solution, but unlike
VI it starts with an arbitrary policyr and “improves” it until convergence to the optimal

2.2. MARKOV DECISION PROCESSES 13

policy. Given an initial policyr’, the algorithm iterates over two steps:

1. Policy Evaluation: Calculate the valli&", of policy 7“. This is done by solving the
Bellman equation for the fixed policy.

i

V™ (s) = R(s) + ySg P(s' | 5,7 (s))V™ (') (2.5)

2. Policy Improvement: Find a new poliey ' that is greedy with respect 6™

Convergence is reached whefi! = 7. One advantage of policy iteration is that the policy
evaluation step consists of solving simultaneous lineaaggns. Hence for moderate size
state spaces one can utilize off-the-shelf linear algetirgess to perform this step.

2.2.3 Modified Policy Iteration

Pl calculated/™ exactly before improving the policy. For policy improvenghnowever,
a close estimate df™ is not necessary. The idea behind Modified Policy IteratMR)
(Puterman & Shin, 1978) is to generate a rough estimat&oind run the policy improve-
ment step befor& ™ converges. This is done by a sequence of “policy restrictedtie
backups using the Bellman update but fixing the actions daogrto 7i. MPI can thus
be viewed as covering the entire space between PI at one endlat the other (every
update of VI implicitly defines a policy). While PI takes bgygsteps through policy space
towards the optimal policy than MPI, each step of MPI is cleedp calculate. Overall,
MPI is often more efficient than either VI or Pl when suitabptinized.

2.2.4 Linear Programming

The problem of solving for the value function can be cast aseal programming problem
(Puterman, 1994) in the following way

Variables:V (s) Vs € S

Minimize: Y5V (s)

Subject to:V (s) > R(s) + 7XgesP(s' | s,a)V(s) Vs € S;a € A

14 CHAPTER 2. BACKGROUND

Val Vi)

>

L0 e L[] <
(a) (b)

Vo(s)

Figure 2.1: Propagation of value in the MDP by (a) forwardrele@and (b) dynamic pro-
gramming

The constraints impose a lower bound on the value functidre ifituition is that the
total, expected discounted reward obtained by startingates and following the optimal
policy is at least as much d3(s) plus the total, expected, discounted reward obtained by
taking some action ia and following the optimal policy from there on. The lineaogram,
thus finds the smallest value assignment that is at leastrges &8 the total, expected,
discounted reward it guarantees.

2.2.5 Search

V*(s) can also be calculated by forward search from statg to a prespecified depth.
Forward search with depth equal to the MDP horizon calcal&tgs) exactly. If the
depth is smaller than the MDP horizon, the error of the valugfion can be bounded.
This method, therefore always produces an approximatevahction for infinite horizon

2.2. MARKOV DECISION PROCESSES 15

MDPs. As shown in Figure 2.1(a), the search tree is an AND+@&donsisting of alternate
levels of states and actions. The value is propagated ugwaoth the leaves, summing
over the state levels and maximizing over the action levé&lerward search, however,
requires exponential time in the depth to calculate theevafitevery state. Hence practical
search based solvers employ some heuristic to prune thehsgaaice. AO(Nilsson, 1971,
Martelli & Montanari, 1973) is such a heuristic search aitjon. However, AO enters
an infinite search expansion loop when the AND-OR graph isicywhich is often the
case with MDPs. In order to handle this case Hansen and Ztiar(2002) combined
AO* search with dynamic programming and introduced l'ACan AO* that can handle
loops in the AND-OR graph. Since value updates are perfollmgetynamic programming,
the presence of loops in the AND-OR graph does not precludeecgence of the policy.
Unlike VI and PI, however dynamic programming is performedycon the states along
the best solution path to recently expanded nodes in the ANDgraph.

2.2.6 Asynchronous Value Updates

The Bellman update does not have to be applied to all statescat By choosing a useful
subset of the state space to apply the updates one can hdjpstfarconvergence. There
have been some important advances based on this idea.

Real Time Dynamic Programming (RTDP) (Barto, Bradtke, &dBin1995), is an ex-
tension of the search algorithm Learning Real Time(IRRTA) (Krof, 1990) to stochastic
problems. RTDP solves the MDP by combining dynamic programgrand search. Start-
ing with an admissible value function, RTDP runs episodesials simulating the MDP.
Each trial starts with a randomly selected state from a setitbél states and proceeds
by choosing actions according a policy that is greedy widpeet to the current value
function. The episode ends when the goal is reached or tpelisté is exceeded. The
value function is updated by executing the Bellman backuplstates encountered in the
episode. When the initial value function is admissible, RT&entually converges to the
optimal value function (Barto et al., 1995). The advantag@TDP is apparent when only
few states are reachable from the initial state as the algordoes not waste resources
updating values of other states.

16 CHAPTER 2. BACKGROUND

Prioritized Sweeping (Moore & Atkeson, 1993) is based onitttaition that states
with the largest value update have the most effect on theeMalniction and hence should
be given priority during a round of Bellman backups. In tHgogithm an explicit priority
gueue is maintained according to which states are schedudzhckup. The priority of
a state in the queue is in direct proportion to the amount dfevahange incurred in the
backup of the state’s successors.

Another approach to simulation based planning is the UCaorélgm (Kocsis & Szepes-
vari, 2006). UCT is a Monte-Carlo value estimation techeigdnere action selection in the
simulated trials is dependent on the upper confidence botitig@ction value. UCT has
shown success in planning to play the game of GO (Gelly & Wa086; Gelly & Silver,
2007) and real time strategy games (Balla & Fern, 2009).

2.2.7 Reinforcement Learning

The MDP solutions we have looked at so far assume that thddaliription of the MDP is
available to the solver. However, in many real world taskg.(eobot soccer) it is difficult
for an expert to specify the reward function or the transitionction precisely. Thus the
agent interacts with the environment and must learn to aot the observed transitions and
rewards. This discipline is known as Reinforcement LeayRL) (Sutton & Barto, 1998).
There is a vast literature on RL which is a very active areaeséarch and it is beyond the
scope of this thesis to give a deeper overview. An excell@nbduction is given by Sutton
and Barto (1998). However, when the agent does have a mottes @forld, either learned
or given, the planning problem, that is identifying an omlmolicy is the same as the one
studied in this thesis.

2.3 Factored MDPs

Early solutions to MDPs required enumeration of the stasespAlthough VI and Pl run
in time polynomial in|S| and|A|, owing to the curse of dimensionality (Bellman, 1957),
even for reasonably small problems, the state space canrpdavge. This can be seen
easily for propositionally factored domains when the sistéefined by binary variables

2.3. FACTORED MDPS 17

and the number of possible state2i§ A logistics problem with as few as ten cities, ten
boxes and five trucks would be prohibitively expensive tosdly state space enumeration.
Factored MDP solvers address this problem by taking adgardaéstructure in the domain.
One source of domain structure is the representation estaging state feature variables.
Structure in the domain can be implicitly leveraged by repreing state values as functions
of state features rather than states themselves.

Domain structure can also be expressed explicitly throbghtransition function. Dy-
namic Bayesian Networks (DBN) (Dean & Kanazawa, 1990) amdbailistic STRIPS
(Hanks & McDermott, 1993; Kushmerick, Hanks, & Weld, 1995ouBlier, Dean, &
Hanks, 1996) are useful representations for expressingrdhsition function in factored
MDPs. Although both representations have their strendifizN\s are better than proba-
bilistic STRIPS when actions have non-correlated effents\ace-versa (Boutilier et al.,
1999)) Littman (1997) showed the two to be representatipeagjuivalent in the sense that
every STRIPS representation can be converted to a polyigrtaeger DBN representa-
tion.

Figure 2.2 shows an example of a DBN representation for ttieragnload(b, tr, c;)
from the logistics domain with box, 1 truck and2 cities. There is &-time step DBN
fragment for every action in the domain. The network dessibow the state (probabilis-
tically) changes from time sliceto time slicet + 1. Conditional probability tables (CPT)
are associated with every variable in time slieel. The CPT associated with the variable
bin(b, c) in time slicet+ 1 is shown in the diagram. The DBN structure allows us to model
dependencies while reducing the number of parametersregtjuihe CPTs are much more
memory efficient than the flat transition matrix for this pkatn which enumerates the state
space. Also notice the presence of synchronic arcs (deperedeamong variables in the
same time slice). These are typical when action effects@related.

The probabilistic dependence of the variables from timeegh-1 on the variables from
time slicet is given by the CPTs. For instance in the CPT #or(b, ¢;) shown, each row
of the CPT corresponds to a variable from time stiexcept for the last (highlighted) row
which refers to the variablein(b, ¢,) from time slicet + 1. Each column depicts the truth
values of the variables in time sli¢eand the entry in the final row defines the probability
with with bin(b, ¢;) is true in time slice + 1 given the truth values of the variables in the

18 CHAPTER 2. BACKGROUND

bin(b,c;) |1]0]0]0(0

Action: on(btr) | -{1(1[0]-

: unload(b,tr,c,) t+1 tintrc) | -(1]1]-|0
4 rain | -|1]0]-]-

bin(b,c,) [1].7]1.9{0]0

Conditional Probability
Table (CPT) for bin(b,c,)

Figure 2.2: Dynamic Bayesian Networks for Factored MDPs fipure shows the transi-
tion function relative to the actiomnload(b, tr, ¢1) in the logistics domain.

column. For example, the first column shows thatiif(b, ¢;) is true in time slice, then
bin(b, cy) is true in time slice + 1 irrespective of the truth values of other variables. The
last column shows that ifin(b, ¢,), andtin(tr, ¢;) are false in time slice, then irrespec-
tive of the truth value obn(b, tr) andrain, bin(b, ¢1) is true in time slicet + 1 with 0
probability (always false). The predicaie(b, tr) is true at time + 1 only when the box is

in neither of the cities. This dependency has been shownégythchronic arcs. The truth
value of other variables can only persist under the actioload(b, tr, c;). Synchronic arcs
cannot be handled by some factored MDP solvers. One coulpideariables to replace

2.3. FACTORED MDPS 19

variables connected by synchronic arcs. This would caudeva lp exponential in the
number of variables joined. But by doing so we could conv@&®Ba with synchronic arcs
to one without synchronic arcs. The equivalent represemtah probabilistic STRIPS is
as follows:

Action: unloadbozx, truck, city):

Preconditions: on(bozx, truck), tin(truck, city)

Outcome 1: [Probabilityrain — 0.7, —rain — 0.9] bin(box, city), ~on(boz, truck)
Outcome?2: [Probabilityrain — 0.3, =rain — 0.1] nothing changes.

Unfortunately the factoring of the transition functionatsdoes not guarantee a com-
pact value function. This is because the state variablesaat through parent-child rela-
tionships in the DBN. Therefore thestep-to-go value function that captures interactions
overn actions could depend on the combinations of all values ofalhbles, thus elimi-
nating the advantage of factoring.

An approach that solves factored MDPs effectively and éx&cbased on the observa-
tion that in the CPTs, the values of some variables could m#ier variables unimportant.
This phenomenon, known as context specific independencati(idg Friedman, Gold-
szmidt, & Koller, 1996), enables the use of compact datagtras like decision trees and
Algebraic Decision Diagrams (Bahar et al., 1993) to repmetiee CPTs. Boutilier et al.
(1995, 1999) showed that using decision trees to repreBer@®PTs, and the reward func-
tion, optimal policies and value functions can be generated structured version of VI
and PI. Dearden (2001) presented a structured prioritia@eping algorithm based on this
idea. Although decision trees leverage context specifiepeddence they could be expo-
nentially larger than ADDs. Noticing this Hoey et al. (1998placed the decision trees
by ADDs in their decision theoretic planning system SPUDBUS®D showed a gain up
to 30 times in memory efficiency over the decision tree regmégtion. Extensions of this
work using approximations in the ADDs (St-Aubin, Hoey, & Bitier, 2000) displayed
further improvement in efficiency. Following this work, ABDhave been used in several
algorithms to represent and solve MDPs. Feng and Hansei2)20@nbined the SPUDD
approach with forward search to extend LAO* to factored MDRe SPUDD variant of

20 CHAPTER 2. BACKGROUND

Teichteil-Koenigsbuch and Fabiani (2006) participatethanInternational Planning Com-
petition. Sanner, Uther, and Delgado (2010) showed fuglhers in efficiency by shifting
focus from ADDs to Affine ADDs (Sanner & McAllester, 2005).

Another effective approach has been to combine dynamicranagning with function
approximation. The value function is described using armpatec representation such as
a neural network (Tesauro, 1992) or a linear function of ashdsrived from state feature
variables (Schweitzer & Seidmann, 1985; Tsitsiklis & VanyR®@996). Value function
approximations were also used in solutions not based onndigriazogramming. One such
approach to generating a compact solution restricts tha fafrthe value function. Once
again linear value functions are attractive because of thathematical properties (Koller
& Parr, 1999, 2000; Schuurmans & Patrascu, 2001; GuestotieK Parr, & Venkatara-
man, 2003b). Since the value function might not be represdmby a linear combination
of basis functions derived from state feature variablesséhapproaches are necessarily
approximate. But their advantage is that they are not degggrmh context specific inde-
pendence to generate a compact solution.

2.4 Relational MDPs

Propositionally factored representations show an imprespeedup by taking advantage
of the propositional domain structure. However, they dobetefit from the structure that
exists with objects and relations. A Relational MDP (RMD&an MDP where the world
is represented by objects and relations among them. A RMBpesified by

1. A set of world predicates. Each atom, formed by instaimiga predicate using
objects from the domain, can be eitherue or f al se in a given state. For
example in the logistics domain, world atoms are(bin, city) (box is in city),
on(box, truck) (box is ontruck), and tintruck, city) (truck is in city).

2. A set of action predicates. Each action atom formed byant&iting an action
predicate using objects from the domain defines a concreéienacFor example
in the logistics domain, action atoms are of the form l@ad, truck, city) (load

2.4. RELATIONAL MDPS 21

box on totruck in city), unloadboz, truck, city) (unloadbox from truck in city),
drive(truck, source.city, dest.city) (drive truck from source.city to dest.city), etc.

3. A state transition function that provides an abstractdpson of the probabilistic
move from one state to another. For example, using prolséibils TRIPS notation,
the transition defined by the action load can be described as

Action: loadboz, truck, city)

Preconditions: bin(boz, city), tin(truck, city)

Outcome 1: [Probability 0.99] on(box, truck), —bin(box, city)
Outcome?2: [Probability 0.01] nothing changes.

If the preconditions of the action kibvz, city), tin(truck, city) are satisfied, then
with probability 0.99, the action will succeed generating the effection, truck),
- bin(boz, city). The state remains unchanged with probabilityl. The effects of
actions in RMDPs are usually correlated and cannot be ceresido occur indepen-
dent of one another. Therefore Probabilistic STRIPS is gebetpresentation for the
transition function.

4. An abstract reward function describing conditions urvdleich rewards are obtained.
For example in the logistics domain, the reward function berdz, bin(x, paris)
constructed so as to capture the goal of transporting at ¢eesbox from its source
city to Paris.

Work on RMDPs has been largely motivated by and applied tptblelem of stochastic
planning. In fact, the languages that have been popular finidg planning domains,
e.g. STRIPS (Fikes & Nilsson, 1971), ADL (Pednault, 198D (Ghallab, Howe,
Knoblock, McDermott, Ram, Veloso, Weld, & Wilkins, 1998;»>& Long, 2003; Younes,
Littman, Weissman, & Asmuth, 2005) have all exploited rielal structure of the planning
domains. Hence, in a way, it is more natural to think of sajvprobabilistic planning
problems using RMDP solvers. However, RMDP solvers soltgesnlasses of problems
given the planning domain. This might generate an unnegessarhead when solving
simple problems but can be a huge advantage when the domaryisarge. This thesis
presents one such RMDP solver that has found success imggvobabilistic planning

22 CHAPTER 2. BACKGROUND

problems.

Boutilier et al. (2001) developed the first VI method for snly RMDPs and pro-
vided the Symbolic Dynamic Programming (SDP) algorithmhe tontext of the situa-
tion calculus. This algorithm provided a framework for dymia programming solutions to
RMDPs that was later employed in several formalisms andesysiKersting et al., 2004;
Holldobler & Skvortsova, 2004; Sanner, 2008; Sanner & Bt 2009). The main ad-
vantage of SDP is that state and action predicates are nobded or enumerated and the
MDP is solved to the extent possible at the abstract leveimgadkistinctions among states
only when the value function requires it. One of the importdeas in SDP was to rep-
resent stochastic actions as a finite set of determinidecredtives under nature’s control.
This helps separate regression over deterministic acttematives from the probabilities
of action effects. This separation is necessary when tiandunctions are represented as
relational schemas abstracting over the structure of @west Recall the Bellman update
step of the VI algorithm.

Vi(s) « Maxg[R(s) +vXgP(s" | 5,a)VI (5] (2.6)

The SDP algorithm implements this for all states simultarshoat the abstract level. Intu-
itively, eachV’* partitions the state space into “abstract states” whemgatis in an abstract
state have the same value and are thus “equivalent”. The tatdine of the relational value
iteration algorithm is as follows:

1. Regression:Thet-step-to-go value functiol® is regressed over every deterministic
variantA; (%) of every actionA(Z) to produceRegr(V*, A(Z)). At the first iteration
V0 is assigned the reward function. This is not necessary faectmess of the
algorithm but is a convenient starting point for ViRegr(V*, A(Z)) describes the
conditions under which the action alternatide(z) causes the state to transition to
some abstract state descriptioriih

2. Add Action Variants: The Q-function for each actioA(Z) is generated;)“%f) =R
@ [y @ ®;(prob(A;(Z)) @ Regr(V*, A;(Z)))]. In this step the different alternatives
of an action are combined. Each alternativg) produces &egr(V*, A(Z)) from
the regression step. All thRegr(V*, A(Z))s are added, and each is weighted by the

2.4. RELATIONAL MDPS 23

probability of A;(Z). This produces the parametrized funct'@é@ which describes
the utility of being in a state and taking a concrete actign’) and being rewarded
according td/! in the next step. In the formula above we asand® to indicate that
the addition and multiplication operations are performadunctions over relational
structures. Each such function defines a partition over thte space as described
above and assigns a value or probability to states in the speice.

3. Object Maximization: Maximize over the action parameters @C@ to produce
Q4. for each actionA(Z), thus obtaining the value achievable by the best ground
instantiation ofA ().

4. Maximize over Actions: Thet + 1-step-to-go value function is generated by maxi-
mizing over all actionsy ‘™! = max4 Q%..

In this description of RMDPs all intermediate construdts P, V' etc.) are represented
in some compact form and they capture a mapping from stateslt@s or probabilities.
The operations of the Bellman update are performed oveethestions while maintaining
the compact form.

The advantage of the relational representation is abgiracOne can plan at the ab-
stract level without grounding the domain, potentiallydisy to more efficient algorithms.

In addition, the solution at the abstract level is optimaldeery instantiation of the domain
and can be reused for multiple problems. However, this agroaises some difficult com-
putational issues because one must use theorem provingdorrat the abstract level, and
because for some problems optimal solutions at the abstragdtcan be infinite in size.

Following Boutilier et al. (2001) several abstract versaf the value iteration (V1) al-
gorithm have been developed using different represematbemes. Gro3mann, Holldobler,
and Skvortsova (2002) developed a SDP algorithm in the gbwifethe fluent calculus.
Later Holldobler and Skvortsova (2004) improved this foster VI algorithm (FOVIA) by
employing normalization procedures to remove redundanfcan formulas in the fluent
calculus. FCPANNER, a planning system based on FOVIA participated in the latern
tional Planning Competition. Kersting et al. (2004) innvaht relational Bellman operator
based on SDP. Their systemEREL however, represented the RMDP in a simpler language

24 CHAPTER 2. BACKGROUND

restricted to existential quantification. This change tlyeanproved the logical simplifi-
cation step and hence the planning efficiency. FurtreBER. used decision lists (Rivest,
1987) to represent value functions. Since a decision ligticitly encodes an ordering on
the rules in the list, the object maximization step iBBEL was reduced to sorting the
decision list. The RBEL paper demonstrated that abstract value functions as geddogp
SDP based algorithms can be infinite in sizeeBRL exhibited excellent performance in
solving some case studies. The work of Sanner (2008) ancetiearch presented in this
thesis were motivated by the success of ADDs in solving psdjamal MDPs. While both
approaches invent relational versions of ADDs, Sanner§2@&ports on an implementa-
tion that does not scale well to large problems. In subseeleapters we will present a
full description of our SDP based RMDP solver along with aplementation that scales
to problems from the International Planning Competition.

There are many similarities between the SDP method andquswork on explanation
based learning (EBL) (Mitchell, Keller, & Kedar-Cabell986; DeJong & Mooney, 1986;
Laird, Rosenbloom, & Newell, 1986). In the EBL setting tharleer has access to posi-
tive training examples for a particular concept and a dortta@ory. The domain theory is
sufficient to explain the training examples by itself. Thgeahve of the learner is to gen-
erate such explanations for the given training exampleganéralize each explanation to
produce a hypothesis that can be later used to explain siextamples. Generalization is
performed using the same process of regression we discurstezlcontext of SDP. Since
the domain theory already classifies the training exampde®ctly, the hypotheses gener-
ated by EBL does not add any new information but simply coegpéxisting knowledge
into a more readily usable form. Thus the objective of EBLoispeed up the process of
classification. This line of research has, therefore, camr®etknown as speedup learning.
EBL developed as an alternative to inductive learning wathadvantage that the generated
hypotheses are completely justified by the domain theoryteemte the error and sample
complexity bounds for inductive learning do not apply to EBL

In deterministic planning domains, the domain theory capyessed as the descrip-
tion of operators or actions. In such domains the domainrthisguaranteed to be correct
and complete and EBL systems can be employed to learn seantiolcrules. Minton
(1988) presented such an EBL based systeRQRGY. PRODIGY was designed to learn

2.4. RELATIONAL MDPS 25

a variety of search control rules. These not only includdds@about which operators to
apply but also rules about ordering parts of the goal. Oner@sting aspect of BODIGY
was the ability, similar to SDP, to directly reason backvedrom the target concept (using
regression) without generalizing concrete examples.

Difficult issues that arose in the work on EBL are also seerDR $ased systems. EBL
systems faced what is known as the utility problem. In nonardomains, the number and
complexity of rules learned can be large enough that seagdbr a solution becomes inef-
ficient. In such cases speedup learning can actually slowdosproblem solving process.
Minton (1988) addressed this issue by removing rules forctvithe cost of applying the
rule outweighed the benefit of using the rule. Similarly inf5the value function can be-
coome prohibitively complex and logical simplification lo@tes necessary. On the other
hand more prunning may be possible for RMDPs because abstedes are associated
with values in RMDPs and because &aktep-to-go abstract states are developed simul-
taneously. Another problem encountered by EBL was knowrhagyeneralization to N
problem (Shavlik, 1989). Often times hypotheses learneBBly are specific to some nu-
merical property of the domain (e.g., its size) whereas at&wl that generalizes over all
values of that numerical property is desired. A similar esswises in SDP in the form of
domains where the value function can be infinite in size. T@USDP based solutions to
RMDPs encounter these issues.

In the literature there are numerous other representaiodssolution formalisms for
RMDPs. These include approaches that combine dynamicgmrogmg with linear func-
tion approximation (Sanner & Boutilier, 2009), forward sga(Holldobler, Karabaev, &
Skvortsova, 2006) and machine learning (Fern, Yoon, & GiZ&96; Gretton & Thiebaux,
2004). Sanner and Boutilier (2009), in particular, devedoglational extension of linear
function approximation techniques for factored MDPs désad above. The value function
is represented as a weighted sum of basis functions, eadtingm partition of the state
space. The difference from the work on factored MDPs is thesé basis functions are
first order formulas and thus the value function is valid fay @lomain size (this is the
same fundamental advantage that RMDP solvers have ovendifdDP solvers). They
develop methods for automatic generation of first order tamgs in a linear program and
automatic generation of basis functions that shows promiselving some domains from

26 CHAPTER 2. BACKGROUND

the IPC. The work of Sanner and Boutilier (2009) is thus aemsion of the work on linear
programming based MDP solvers that takes advantage ofoddstructure in the domain.
In a similar view the work in this thesis is a relational e>d&em of the work on ADD based
MDP solvers.

There are also approaches that do not resort to dynamicgmrogmg at all. For in-
stance Guestrin, Koller, Gearhart, and Kanodia (2003aegprtean approach based on ad-
ditive value functions based on object classes and empiegtiprogramming to solve the
RMDP. Mausam and Weld (2003)’s approach is to employ SPUDBotee ground in-
stances of an RMDP, generate training data from the solsiiad learn a lifted value func-
tion from the training data using a relational tree learn@ardiol and Kaelbling (2003)
apply methods from probabilistic planning to solve the RM¥&t other RMDP solvers
are based on using reinforcement learning techniquestiBedh Reinforcement Learning
(RRL) (Tadepalli, Givan, & Driessens, 2004) is an activeaaséresearch. RRL followed
from the seminal work of Dzeroski, De Raedt, and Driessef812 whose algorithm in-
volved generating state-action or state-value pairs bie stpace exploration (biased in
favor of state-action pairs with high estimated value) aeatriing a relational value func-
tion tree from the collected data. There have been sevepabaphes to RRL in recent
years (Driessens & Dzeroski, 2004; Kersting & De Raedt, 200dlker, Torrey, Shavlik,
& Maclin, 2007; Croonenborghs, Ramon, Blockeel, & Bruynbeg2007). van Otterlo
(2008) provides an excellent overview of the various sohgimethods to RMDPs.

In the rest of the thesis we present our FODD representatigarithms for it and its use
in solving RMDPs through a relational VI algorithm. To ourdwiedge, apart from Sanner
and Boutilier (2009) and Holldobler et al. (2006), this e tonly dynamic programming
based approach to RMDPs that has been shown to scale tomobfehe size used in the
recent IPCs.

Chapter 3
First Order Decision Diagrams

First Order Decision Diagrams (FODD) are the fundamenta amd underlying thread
connecting all the research in this thesis. In this chaptenmml describe FODDs and
their application in representing and solving relationdDRs. The research presented in
this chapter is joint work with Chenggang Wang and has preshoappeared in her Ph.D.
thesis (Wang, 2008).

This chapter is organised as follows. Sections 3.1 and 3s2rite the syntax and
semantics of FODDs. Sections 3.3 to 3.6 discuss propertiE©DDs. Finally Sections
3.7 and 3.8 present an application of FODDs in solving RMDPs.

3.1 Syntax of First Order Decision Diagrams

A decision diagram is a graphical representation for fuorediover propositional (Boolean)
variables. The function is represented as a labeled roatedted acyclic graph where
each non-leaf node is labeled with a propositional variaolé has exactly two children.
The outgoing edges are marked with valtesie andf al se. Leaves are labeled with
numerical values. Given an assignment of truth values t@tbpositional variables, we
can traverse the graph where in each node we follow the auggeige corresponding to
its truth value. This gives a mapping from any assignmentlemafof the diagram and in
turn to its value. If the leaves are marked with valueg(nl} then we can interpret the
graph as representing a Boolean function over the propositvariables. Equivalently, the

27

28 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

IO/Q

1 01 o0
Figure 3.1: A simple FODD.

graph can be seen as representing a logical expression wlsatisfied if and only if the
leaf is reached. The case with, 1} leaves is known as Binary Decision Diagrams (BDD)
and the case with numerical leaves (or more general algebrgiressions) is known as
Algebraic Decision Diagrams (ADD). Decision Diagrams aagtigularly interesting if we
impose an order over propositional variables and requaeribde labels respect this order
on every path in the diagram; this case is known as Orderegidadiagrams (ODD). In
this case every function has a unique canonical represemtatit serves as a normal form
for the function. This property means that propositionaldtem proving is easy for ODD
representations. For example, if a formula is contradictben this fact is evident when
we represent it as an ODD, since the normal form for a conttidfi is a single leaf valued
0. This property together with efficient manipulation algbms for ODD representations
have led to successful applications, e.g., in VLSI designh \aerification (Bryant, 1992;
McMillan, 1993; Bahar et al., 1993) as well as MDPs (Hoey etX99; St-Aubin et al.,
2000). In the following we generalize this representatamrélational problems.

There are various ways to generalize ADDs to capture relatistructure. One could
use closed or open formulas in the nodes, and in the latterasnust interpret the quan-
tification over the variables. In the process of developigitieas here we have considered
several possibilities including explicit quantifiers bhese did not lead to useful solutions
because of the complexity of manipulating the resultanteggntations. We therefore fo-
cus on the following syntactic definition which does not hawg explicit quantifiers. We
use standard terminology from first order logic (Lloyd, 1987

For this representation, we assume a fixed set of predicatesanstant symbols, and
an enumerable set of variables. We also allow using an dgumtween any pair of terms
(constants or variables).

Definition 1 First Order Decision Diagram

3.2. SEMANTICS OF FIRST ORDER DECISION DIAGRAMS 29

1. AFirst Order Decision Diagram (FODD) is a labeled rooteettted acyclic graph,
where each non-leaf node has exactly two children. The auggdges are marked
with valuest r ue andf al se.

2. Each non-leaf node is labeled with: an atdhfty, ..., t,) or an equalityt; = ¢,
where each; is a variable or a constant.

3. Leaves are labeled with numerical values.

Figure 3.1 shows a FODD with binary leaves. Left going edgpsasent r ue branches.
To simplify diagrams in the thesis we draw multiple copieshef leaves) and1 (and oc-
casionally other values or small sub-diagrams) but theyessmt the same node in the
FODD.

We use the following notation: for a node n|, denotes thé r ue branch ofn, and
n s thef al se branch ofn; n|, is an outgoing edge from, wherea can bet r ue or
f al se. For an edge;, source(e) is the node that edgeissues from, andarget(e) is
the node that edge points to. Lete; ande, be two edges, we havg = sibling(es) iff
source(ey) = source(es).

In the following we will slightly abuse the notation and tet, mean either an edge or
the sub-FODD this edge points to. We will also usg andtarget(e;) interchangeably
wheren = source(e;) anda can bet r ue orf al se depending on whethey lies in the
true orfal se branch ofn.

3.2 Semantics of First Order Decision Diagrams

We use a FODD to represent a function that assigns valueat®ssn a relational MDP.
For example, in the logistics domain, we might want to assgjnes to different states in
such a way that if there is a box in Paris, then the state igmasdia value of 19; if there
is no box in Paris but there is a box on a truck that is in Pargsitus raining, this state is
assigned a value of 6.:3The question is how to define the semantics of FODDs in omler t
have the intended meaning.

1This is a result of regression in the logistics domain; cfiufe 3.13(1).

30 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

The semantics of first order formulas are given relative terpretations. An interpre-
tation has a domain of elements, a mapping of constants taitloeslements and, for each
predicate, a relation over the domain elements which spsaifhen the predicate is true.
There is more than one way to define the meaning of FOPD@n interpretatiory.

We build on work by Groote and Tveretina (2003) who defined asims based on
multiple paths. Following this work, we define the semanficst relative to a variable
valuation{. Given a FODDB over variablesr and an interpretatiord, a valuation¢
maps each variable ifito a domain element ih. Once this is done, each node predicate
evaluates either tor ue orf al se and we can traverse a single path to a leaf. The value
of this leaf is denoted by MAR(I, ().

Different valuations may give different values; but re¢htit we use FODDs to repre-
sent a function over states, and each state must be assigmeglevalue. Therefore, we
next define

MAP(I) = aggregate{MAP (1, ()}

for some aggregation function. That is, we consider all fpswaluations(, and for each
valuation we calculate MAR(I, (). We then aggregate over all these values. In the special
case of Groote and Tveretina (2003) leaf labels arfin } and variables are universally
quantified; this is easily captured in our formulation byngsminimum as the aggregation
function. For FODDs, we use maximum as the aggregation ifmct

MAP (1) = max{MAP(I,)}

This corresponds to existential quantification in the bmease (if there is a valuation
leading to valuel, then the value assigned will B@ and gives useful maximization for
value functions in the general case. Using this definifibassigns every a unique value
v = MAPg(I) so B defines a function from interpretations to real values. Werleefer to
this function aghe map ofB.

Consider evaluating the diagram in Figure 3.1 on the ingtgtion/; where the only
true atoms ardp(1), ¢(2), h(3)}. The valuation where is mapped t@ andy is mapped
to 3 denoted{z/2,y/3} leads to a leaf with valué. Because there exists a valuations
reaching thd leaf, the maximum over the values of leaves reached by allawi@ins isl.

3.3. BASIC REDUCTION OF FODDS 31

When leaf labels are ig0, 1}, we can interpret the diagram as a logical formula. When
MAP5(I) = 1, as in our example, we say thasatisfiesB and when MAR; (1) = 0 we
say that/ falsifiesB.

3.3 Basic Reduction of FODDs

Groote and Tveretina (2003) define several operators tluaiceea diagram into normal
form. A total order over node labels is assumed. We deschiegset operators briefly and
give their main properties.

(R1) Neglect operator: if both children of a nogen the FODD lead to the same nogle
then we remove and link all parents op to ¢ directly.

(R2) Join operator: if two nodes ¢ have the same label and point to the same two children
then we can joip andg (removeg and linkg's parents t@).

(R3) Merge operator: if a node and its child have the same labaltie parent can point
directly to the grandchild of the parent.

(R4) Sort operator: If a node is a parent of; but the label ordering is violated(¢) <
l(p)) then we can reorder the nodes locally using two copieg ahd ¢ such that
labels of the nodes do not violate the ordering.

Define a FODD to be reduced if none of the four operators carppkesl. Groote and
Tveretina (2003) have shown the following:

Theorem 1 (Groote & Tveretina, 2003)

(1) LetO € {Neglect, Join, Merge, Sdribe an operator and)(B) the result of applying
O to FODD B, then for anyB, I, and¢, MAPg(1, () = MAPy (1, ().

(2) If By, B, are reduced and satisf, MAPg, (1, () = MAPg, (1, () then they are identi-
cal.

Property (1) gives soundness, and property (2) shows tdatineg a FODD gives a normal
form. However, this only holds if the maps are identical feewy ¢ and this condition is

32 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

stronger than equivalence of the maps. This normal formcasfior Groote and Tveretina
(2003) who use it to provide a theorem prover for first ordegido but it is not strong
enough for our purposes. Figure 3.2 shows two pairs of redik€@DDs (with respect
to R1-R4) such that MAR,(I) = MAPg,(I) but 3¢, MAPg, (1,{) # MAPpg,(I,(). In
this case although the maps are the same the FODDs are neoetethuthe same form.
Consider first the pair in the upper part of the figure. An iptetation wherey(a) is false
butp(b) is true and and a substitutidn:/a, y/b} leads to value of 0 iB; while B, always
evaluates to 1. But the diagrams are equivalent. For anypirggtion, ifp(c) is true for
any objectc then MAPg, (I) = 1 through the substitutiofiz/c}; if p(c) is false for any
objectc then MAPg, () = 1 through the substitutiofiz/c, y/c}. Thus the map is always
1 for B; as well. In Section 3.6.2 we show that with the additionalustbn operators
we have developed?; in the first pair is reduced td. Thus the diagrams in the upper
part have the same form after reduction. However, our redastdo not resolve the pair
given in the lower part of the figure. Notice that both funoBocapture a path of two
edges labeleg in a graph (we just change the order of two nodes and renanmebies)
so the diagrams evaluate to 1 if and only if the interpretalias such a path. Even though
B; and B, are logically equivalent, they cannot be reduced to the simme using R1-
R4 or our new operators. To identify a unique minimal syntafdrm one may have to
consider all possible renamings of variables and the salisagtams they produce, but this
is an expensive operation. A discussion of normal form farjeoctions that uses such an
operation is given by Garriga, Khardon, and De Raedt (2007).

3.4 Combining FODDs

Given two algebraic diagrams we may need to add the correspgiiunctions, take the
maximum or use any other binary operatiom, over the values represented by the func-
tions. Here we adopt the solution from the propositionaéq@syant, 1986) in the form of
the procedurdpply(B;,B,,0p) defined as follows.

Definition 2 Let B = Apply(B:,B-,0p) and letp and ¢ be the roots o3, and B, respec-
tively.

3.4. COMBINING FODDS 33

Bl B2
PX) L
<o
0 1

SO
opd 0 o) 0
1 0 1 0

Figure 3.2: Examples illustrating weakness of normal form.

1. If pandq are both leavesB = p op gq.

2. If p preceeds; according to the order of the labels, thens the root of B, the left
sub-diagram ofB is given by Apply;,B,,0p) and the right sub-diagram ab is
given by Applyg, r,B2,0p).

3. If ¢ preceeds according to the order of the labels, thens the root ofB, the left
sub-diagram ofB is given by ApplyB;,q,:,0p) and the right sub-diagram aob is
given by ApplyBi.q,,0p).

4. If p = ¢, thenp (or q) is the root of B, the left sub-diagram of3 is given by
Apply@,:,q,:,0p) and the right sub-diagram ab is given by Apply(r,q, r,0p).

This procedure chooses a new root label (the lower amongglabg, ¢) and recursively
combines the corresponding sub-diagrams, according tethton between the two labels
(=, =, or >). In order to make sure the result is reduced in the propwstisense one
can use dynamic programming to avoid generating nodes fashwgither neglect or join
operators ((R1) and (R2) above) would be applicable.

Figure 3.3 illustrates this process. In this example, weiragspredicate ordering as
p1 < po, and parameter ordering < x,. Non-leaf nodes are annotated with numbers and
numerical leaves are underlined for identification during éxecution trace. For example,
the top level call adds the functions corresponding to nddasd 3. Since,(z,) is the
smaller label it is picked as the label for the root of the lesthen we must add both left

34 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

1
Py, (%a) 1+3
3 P, (X0)
2 P2 (X2)
P2 (X1)] = 2+3
9 0 P2 (1) \ 0+3
10 0 10+ /\)
P2 X2
X
%) 9 0
19 10

Figure 3.3: A simple example of adding two FODDs.

and right child of node 1 to node 3. These calls are performedrsively. It is easy to see
that the size of the result may be the product of sizes of id@grams. However, pruning
will occur with shared variables and further pruning is madssible by weak reductions
presented later.

Since for any interpretatioh and any fixed valuatiog the FODD is propositional, we
have the following. We later refer to this property as tioerectness oApply .

Lemma 1l LetC = Apply(A, B, op), then for anyl and(, MAP4(I, () op MAPs(1,() =
MAP: (I, ().

Proof: First we introduce some terminology. Létnodes(X) refer to the set of all
nodes in a FODDX. Let the root nodes ofl andB be A,.,.; and B,,.; respectively. Let the
FODDs rooted at, ot , » Aroot, ;+ Broot ;s Broot, ;» Croot,,» @NdCho0t, , be A, A”, B!, B, C"
andC" respectively.

The proof is by induction on = |#nodes(A)| + |#nodes(B)|. The lemma is true for
n = 2, because in this case bath,,; and B,..,; have to be single leaves and an operation
on them is the same as an operation on two real numbers. Fordbetive step we need
to consider two cases.

Case 1:A,.. = B,.:. Since the root nodes are equal, if a valuatjaeaches’, then
it will also reachB' and if ¢ reachesA”, then it will also reachB”. Also, by the definition
of Apply, in this caseC! = Apply(Al, B, op) andC" = Apply(A", B", op). Therefore
the statement of the lemma is true if MARI, () op MAPg: (I,() = MAP~(1,() and

3.5. ORDER OF LABELS 35

MAP 4-(I,¢) op MAPg:(I,¢) = MAP¢- (I, ¢) forany¢ andl. Now, sincg#nodes(A')+
#nodes(B')| < n and|#nodes(A") + #nodes(B")| < n, this is guaranteed by the induc-
tion hypothesis.

Case 2:A,,.: # B,o.ot- Without loss of generality let us assume that,; < B,.oo:. BY
the definition of Apply,C! = Apply(A', B, op) andC™ = Apply(A", B, op). Therefore
the statement of the lemma is true if MARI, ¢) op MAPs(I,¢() = MAP«(I,¢) and
MAP 4. (1,¢) op MAPg(I,() = MAP:: (1, () forany(and/. Again this is guaranteed by
the induction hypothesis. [|

3.5 Order of Labels

The syntax of FODDs allows for two “types” of objects: comgtaand variables. Any
argument of a predicate can be a constant or a variable. Wenasa complete ordering
on predicates, constants, and variables. The ordetibgtween two labels is given by the
following rules.

1. P(zy,...,xzn) < P2}, ...;2),) if P < P’

2. P(xy,...,z,) < P(2,..., 1) if there existsi such thatr; = 2 for all j < i,

andtype(z;) < type(x}) (Where “type” can be constant or variable)@pe(x;) =
type(z;) andx; < ..

While the predicate order can be set arbitrarily it appeaeful to assign the equality
predicate as the first in the predicate ordering so that émsbre at the top of the dia-
grams. During reductions we often encounter situationsgg/bae side of the equality can
be completely removed leading to substantial space savitwggy also be useful to order
the argument types so that constanvariables. This ordering may be helpful for reduc-
tions. Intuitively, a variable appearing lower in the diagr can be bound to the value of
a constant that appears above it. These are only heurisdelges and the best ordering
may well be problem dependent. We later introduce other $oofmrargumentspredicate
parameterandaction parametersThe ordering for these is discussed in Section 3.8.

36 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

3.6 Reduction Operators

In our context, especially for algebraic FODDs, we may wanteduce the diagrams be-
yond the compression achieved by R1-R4. We distinguishdmtatrong reductionghat
preserve MAR (1, () for all ¢ andweak reductionshat only preserve MAR(/). Theo-
rem 1 shows that R1-R4 given above are strong reductionshdradilowing we present
the details of R5 and R7 that are used in our implementatidres& details are relevant
in Chapterd where some improvements are presented. For a discussiod ahtRR8 see
Wang (2008).

All the reduction operators below can incorporate exisingwledge on relationships
between predicates in the domain. We denote this backgroumaledge byi5. For exam-
ple in the Blocks World we may know that if there is a block oadKy then it is not clear:
Va,y, [on(z,y) — —clear(y)].

When we define conditions for reduction operators, thereéwaoetypes of conditions:
the reachability condition and the value condition. We nasechability conditions by
starting with P (for Path Condition) and the reduction opmraumber. We name condi-
tions on values by starting with V and the reduction operatonber.

In the following we define node formulas (NF) and edge formulaF) recursively
as follows. For a node labeledl/(n) with incoming edges, . .., ¢, the node formula
NF(n) = (V;EF(e;)). The edge formula for ther ue outgoing edge ofi is ERn|;) =
NF(n) Al(n). The edge formula for thkal se outgoing edge of. is EFn; ;) = NF(n) A
-l(n). These formulas, where all variables are existentiallyngjfiad, capture the condi-
tions under which a node or edge are reached.

3.6.1 (R5) Strong Reduction for Implied Branches

Consider any node such that whenever is reached then thier ue branch is followed.
In this case we can remoweand connect its parents directly to theue branch. We first
present the condition, followed by the lemma regarding opisrator.
(P5): B = V%, [NF(n) — I(n)] wherez are the variables in Bl ;).

Let R5n) denote the operator that removes nedand connects its parents directly
to thet r ue branch. Notice that this is a generalization of R3. It is el@sgee that the

3.6. REDUCTION OPERATORS 37

following lemma is true:

Lemma 2 (Wang, 2008) LetB be a FODD,n a node for which condition P5 holds,
and B’ the result of RB»). Then for any interpretatiod and any valuation{ we have
MAPg(1,() = MAPg (I, ().

A similar reduction can be formulated for thal se branch, i.e., i3 |= VZ, [NF(n) —
—l(n)] then whenever node is reached then thieal se branch is followed. In this case
we can remove and connect its parents directly to thal se branch.

Implied branches may simply be a result of equalities alopgta. For examplézr =
y) Ap(x) — p(y) so we may prung(y) if (x = y) andp(z) are known to be true. Implied
branches may also be a result of background knowledge. feongbe in the Blocks World
if on(x,y) is guaranteed to be true when we reach a node labéted(y) then we can
removeclear(y) and connect its parent tdear(y), .

3.6.2 (R7) Weak Reduction Removing Dominated Edges

Consider any two edges ande; in a FODD whose formulas satisfy the condition that if
we can followe, using some valuation then we can also followising a possibly different
valuation. Ife; gives better value tha#y then intuitivelye; never determines the value of
the diagram and is therefore redundant. We formalize thiedsction operator R7.

Let p = source(ey),q = source(es), e = pj,, andey = qp, Wherea andb can be
true orfal se. We first present all the conditions for the operator and flodow with
the definition of the operator.

(P7.1): B | [3%,EFR(es)] — [Jy,EF(ey)] whereZ are the variables in EE,) andy the
variables in EFe;).

(P7.2): B = Vu,[[3wW, EF(e3)] — [3U, ERe1)]] wherew are the variables that appear in
bothtarget(e,) andtarget(es), v the variables that appear in &) but are not ini, and

w the variables that appear in Ef) but are not in:. This condition requires that for every
valuation(; that reaches, there is a valuatioq, that reaches; such that;; and(; agree
on all variables that appear in battv-get(e;) andtarget(es).

(P7.3): B |= ¥, [[35, EF(ey)] — [31, EF(e;)]] wherer are the variables that appear in both
target(e;) andtarget(sibling(e;)), t the variables that appear in EF) but are not inv,

38 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

ands the variables that appear in k) but are not in”. This condition requires that for
every valuation(; that reaches, there is a valuatiog, that reaches; such that; and(,
agree on all variables that appear in bathget(e;) andtarget(sibling(es)).

(V7.1): min(target(e;)) > max(target(ey)) wheremin(target(ey)) is the minimum leaf
value intarget(e;), andmax(target(ez)) the maximum leaf value itarget(ez). In this
case regardless of the valuation we know that it is betteoltow ¢; and note,.

(V7.2): min(target(e;)) > max(target(sibling(es))).

(V7.3): all leaves inD = target(e;) & target(ez) have non-negative values, denoted as
D > 0. In this case for any fixed valuation it is better to follewinstead ofk.

(V7.4): all leaves inG = target(e;) © target(sibling(e2)) have non-negative values.

We define the operators R7-replée;, e;) as replacingarget(es) with a constand
that is between 0 andhin(target(e;)) (we may write it as R7-replacey, e;) if b = 0),
and R7-droge;, e5) as dropping the node = source(es) and connecting its parents to
target(sibling(es)).

We need one more “safety” condition to guarantee that theatésh is correct:

(S1): NF(source(e;)) and the sub-FODD dfurget(e;) remain the same before and after
R7-replace and R7-drop. This condition says that we mushaoh the value promised
by target(e;). In other words, we must guarantee that= source(e;) is reachable just
as before and the sub-FODD #irget(e;) is not modified after replacing a branch with
The condition is violated if is in the sub-FODD op,, or if p is in the sub-FODD of ;.

But it holds in all other cases, that is whgandq are unrelated (one is not the descendant
of the other), org is in the sub-FODD op,;,, or p is in the sub-FODD of wherea, b
stand for negation. The following results guarantee comess of the reduction.

Lemma 3 (Wang, 2008) LeB be a FODD,e; and e, edges for which conditions P7.1,
V7.1, and S1 hold, anB’ the result of R7-replag®, e;, e>), whered < b < min(target(e;)),
then for any interpretatiod we have MAR (1) = MAPg. (I).

Lemma 4 (Wang, 2008) LeB be a FODD,e; and e, edges for which conditions P7.2,
V7.3, and S1 hold, an8’ the result of R7-repladé, e;, e5), whered < b < min(target(e;)),
then for any interpretatiod we have MAR (1) = MAPg (I).

3.6. REDUCTION OPERATORS 39

X, X,
)q}\ﬁ() q}\y)o
MR s P
5 0RY O 5 0
3 0
Bl B2

Figure 3.4: An example illustrating the subtraction coiwitin R7.

Note that the conditions in the previous two lemmas are notparable since P7.2
P7.1 and V7.1— V7.3. Intuitively when we relax the conditions on values, mexd to
strengthen the conditions on reachability. The subtractiperationD = target(e;) ©
target(es) is propositional, and hence the test in V7.3 implicitly aseg that the common
variables in the operands are the same and P7.1 does notitieeckigure 3.4 illustrates
that the reachability condition P7.1 together with V7.8, ,i.combining the weaker por-
tions of conditions from Lemma 3 and Lemma 4, cannot guaeatitat we can replace
a branch with a constant. Consider an interpretafianith domain{1,2, 3,4} and rela-
tions{h(1,2),¢(3,4),p(2)}. In addition assume domain knowled§e= [3z,y, h(x,y) —
dz,w, q(z,w)]. Therefore P7.1 and V7.3 hold fer = [¢(x,y)]|;: andes = [h(z,y):]. We
have MAPB;; (1) = 3 and MAPg,(I) = 0. It is therefore not possible to replagéz, y) |,
with 0.

Sometimes we can drop the nodeompletely with R7-drop. Intuitively, when we
remove a node, we must guarantee that we do not gain extra.vdlne conditions for
R7-replace can only guarantee that we will not lose any vaug if we remove the node
q, a valuation that was supposed to reagimay reach a better value i’s sibling. This
would change the map, as illustrated in Figure 3.5. Notieg the conditions P7.1 and
V7.1 hold fore; = [p(z)];: andes = [p(y)];: SO we can replac@(y)],: with a constant.
Consider an interpretatiohwith domain{1, 2} and relationg¢(1), p(2), h(2)}. We have
MAP 5, (1) = 10 via valuation{z/2} and MAPg, () = 20 via valuation{z /1, y/2}. Thus
removingp(y) is not correct.

Therefore we need the additional condition to guaranteeweawill not gain extra

40 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Bl B2

R)
10 p(y) B=% 10 h(y)

7 920 O

~

Figure 3.5: An example illustrating the condition for renmaya node in R7.

value with node dropping. This condition can be stated asarig valuation(; that reaches
e; and thus will be redirected to reach a valyen sibling(es) wheng is removed, there
is a valuation(, that reaches a leaf with valug > v,;. However, this condition is too
complex to test in practice. In the following we identify twtvonger conditions.

Lemma 5 (Wang, 2008) LeB be a FODD,e; ande, edges for which condition V7.2 hold
in addition to the conditions for replacingrget(es) with a constant, and3’ the result of
R7-drofes, e2), then for any interpretatiod we have MARB(/) = MAPg/ (I).

Lemma 6 (Wang, 2008) LeB be a FODD,e; ande, edges for which P7.3 and V7.4 hold
in addition to conditions for replacingarget(e;) with a constant, and3’ the result of
R7-drofes, e2), then for any interpretatiod we have MARB(/) = MAPg (I).

To summarize if P7.1 and V7.1 and S1 hold or P7.2 and V7.3 arfib&ilthen we can
replacetarget(ey) with a constant. If we can replace and V7.2, or both P7.3 and Wald,
then we can drog = source(ez) completely. These conditions are simplified in the next
chapter.

In some cases, several instances of R7 are applicable antasn® choose which
instance to apply first. This is an interesting issue bec#usens out that the order in
which we apply them is important. In some cases the order ffact@he number of steps
needed to reduce the diagram. In other cases it can affeihttieesult. A discussion and
examples of these issues is given by Wang (2008).

3.7. DECISION DIAGRAMS FOR MDPS 41

A B
%y) %y)
3 23 2 % 12 1

3 1

Figure 3.6: An example illustrating that the minimal set afiables for subtraction is not
unique.

Relaxation of Reachability Conditions

The conditions P7.2 and P7.3 are sufficient, but not necg¢eaguarantee correct re-
ductions. Sometimes valuations just need to agree on aeansai of variables than the
intersection of variables. To see this, consider the exaraplshown in Figure 3.6, where
A© B > 0 and the intersection sz, y, z}. However, to guaranteé© B > 0 we just need
to agree on eithefz, y} or {z, z}. Intuitively we have to agree on the variahleo avoid
the situation when two pathgx, y) A —¢(z) andp(z,y) A q(z) A h(z) can co-exist. In
order to prevent the co-existence of two pathgz, y) A =h(z) andp(z,y) A q(x) A h(z),
eithery or z has to be the same as well. Now if we change this exampleaaititl replace
eachh(z) with h(z,v), then we have two minimal sets of variables of different soee
is {z,y}, and the other i§z, z,v}. As a result we cannot identify a minimum set of vari-
ables for the subtraction and must either choose the irdgoseor heuristically identify a
minimal set, for example, using a greedy procedure. In avapive will present one such
procedure that works well in practice.

3.7 Decision Diagrams for MDPs

In this section we show how FODDs can be used to capture an RMBRherefore use
FODDs to represent the domain dynamics of deterministioaclternatives, the proba-
bilistic choice of action alternatives, the reward funotiand value functions.

42 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

3.7.1 Example Domain

We first give a concrete formulation of the logistics probldimcussed in the introduc-
tion. This example follows exactly the details given by Blert et al. (2001), and is used
to illustrate our constructions for MDPs. The domain in@adoxes, trucks and cities,
and predicates arBin(Boz, City), Tin(Truck, City), andOn(Bozx, Truck). Following
Boutilier et al. (2001), we assume that.(b, t) and Bin(b, c) are mutually exclusive, so a
box on a truck is not in a city and vice versa. That is, our baakgd knowledge includes
statementsb, ¢, t, On(b, t) — —Bin(b, ¢c) andvb, c, t, Bin(b,c) — —On(b, t). The reward
function, capturing a planning goal, awards a reward of #0défformuladb, Bin(b, Paris)

is true, that is if there is any box in Paris. Thus the rewaralswed to include constants
but need not be completely ground.

The domain includes 3 actiomsad, unload, anddrive. Actions have no effect if their
preconditions are not met. Actions can also fail with sonmebpbility. When attempting
load, a successful versiolvadsS is executed with probability 0.99, and an unsuccessful
versionloadF' (effectively a no-operation) with probability 0.01. The\dr action is ex-
ecuted deterministically. When attemptingload, the probabilities depend on whether
it is raining or not. If it is not raining then a successful sil@NunloadsS is executed with
probability 0.9, andinload F' with probability 0.1. Ifitis rainingunloadsS is executed with
probability 0.7, andinload F' with probability 0.3.

3.7.2 The Domain Dynamics

We follow Boutilier et al. (2001) and specify stochasticians as a randomized choice
among deterministic alternatives. The domain dynamicsdafaed bytruth value dia-
grams(TVDs). For every action schemé(a) and each predicate schemg’) the TVD
T(A(@),p(Z)) is a FODD with{0, 1} leaves. The TVD gives the truth value gfr) in the
next state whem(a@) has been performed in the current state. We galttion parame-
ters, andr predicate parameters. No other variables are allowed iT¥2; the reasoning
behind this restriction is explained in Section 3.8.1. Thstriction can be sometimes
sidestepped by introducing more action parameters ingtethe variables.

The TVD simultaneously captures the truth values of allanses ofp(%) in the next

3.7. DECISION DIAGRAMS FOR MDPS 43

p(X)

bring

T N
C 1 C

Figure 3.7: A template for the TVD

state. Notice that TVDs for different predicates are separahis can be safely done
even if an action has coordinated effects (not conditignalllependent) since the action
alternatives are deterministic.

Because we allow both action parameters and predicate ptgesnthe effects of an
action are not restricted to predicates over action argisngm TVD are more expressive
than simple STRIPS based schemas. For example, TVDs cdy eagress universal
effects of an action. To see this note that(f’) is true for allz after actionA(@) then the
TVD T(A(d), p(Z)) can be captured by a leaf valued 1. Other universal conditieffects
can be captured similarly. On the other hand, because we tbave explicit universal
guantifiers, TVDs cannot capture universal preconditions.

For any domain, a TVD for predicatg) can be defined generically as in Figure 3.7.
The idea is that the predicate is true if it was true beforeiambt “undone” by the action
or was false before and is “brought about” by the action. T\f@rsthe logistics domain
in our running example are given in Figure 3.8. All the TVDsitied in the figure are
trivial in the sense that the predicate is not affected byaitteon. In order to simplify the
presentation we give the TVDs in their generic form and ditlswt the diagrams using
the order proposed in Section 3.5; the TVDs are consisteht the orderingBin < “="
< On < Tin < rain. Notice that the TVDs capture the implicit assumption ulsuaken
in such planning-based domains that if the preconditiorte@action are not satisfied then
the action has no effect.

44 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Bin(g, O On(g, Bin (B, C)

1 B= b* B=b* 0
On (B, t*) T=t*
Tin (t*,.C) 0 1
1 0
(@) (b) ()
. (d)
Tin(T, C)
T=t* T= t* ,
rain . .
Bin (b, Paris
S T S
0.7 0.9 10 0

o 11 o0
() (f) (9)

Figure 3.8: FODDs for the logistics domain: TVDs, action ickeo and reward function.
(@)(b) The TVDs forBin(B,C') andOn(B,T) under action choicenloadS(b*,t*, c*).
(c)(d) The TVDs for Bin(B,C) and On(B,T) under action choicoadS(b*,t*, c*).
Note thatc* must be an action parameter so that (d) is a valid TVD. (e) TW® Tor
Tin(T,C) under action choicériveS(t*,c¢*). (f) The probability FODD for the action
choiceunloadS(b*,t*). Therefore,P(unloadS(b*,t*, c*) | unload(b*,t*, c¢*), rain) = 0.7
and P(unloadS (b*,t*, c*) | unload(b*,t*, c*), —rain) = 0.9. (g) The reward function.

3.7.3 Probabillistic Action Choice

The probability distribution over action effects can ifs##pend on the state. One can con-
sider modeling arbitrary conditions described by formudasr the state to control nature’s
probabilistic choice of action. Here the multiple path satiea makes it hard to specify
mutually exclusive conditions using existentially quéat variables and in this way spec-
ify a distribution. We therefore restrict the conditionste either propositional or depend
directly on the action parameters. Under this condition iatgrpretation follows exactly
one path (since there are no variables and thus only the eraptgtion) thus the aggrega-
tion function does not interact with the probabilities gegid. A diagram showing action
choice forunloadS in our logistics example is given in Figure 3.8. In this exdenphe

3.8. VALUE ITERATION WITH FODDS 45

oA

% 0.9

0.7 0.8

Figure 3.9: An example showing that the choice probabiléy depend on action parame-
ters.

condition is propositional. The condition can also depenéaction parameters, for exam-
ple, if we assume that the result is also affected by whetiebbx is big or not, we can
have a diagram as in Figure 3.9 specifying the action chaickgbility.

Note that a probability usually depends on the current statan depend on arbitrary
properties of the state (with the restriction stated as ap@:g.;ain andbig(b*), as shown
in Figure 3.9. We allow arbitrary conditions that depend oedicates with arguments re-
stricted to action parameters so the dependence can beearigdwever, we do not allow
any free variables in the probability choice diagram. Foaraple, we cannot model a
probabilistic choice ofinloadS(b*, t*, ¢*) that depends on other boxes on the trticle.g.,
3b, On(b,t*) A b # b* : 0.2; otherwise,0.7. While we can write a FODD to capture this
condition, the semantics of FODD means that a pathiavill be selected by max aggre-
gation so the distribution cannot be modeled in this way. [éiis is clearly a restriction,
the conditions based on action arguments still give a snbatanodeling power.

3.7.4 Reward and Value Functions

Reward and value functions can be represented directhguwsgebraic FODDs. The re-
ward function for our logistics domain example is given igiie 3.8.

3.8 Value Iteration with FODDs

Following Bouitilier et al. (2001) we define the first orderwaliteration algorithm as fol-
lows: given the reward functio®® and the action model as input, we 3gt= R,n = 0
and repeat the proceduRel-greedyuntil termination:

46 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Procedure 1 Rel-greedy
1. For each action typel (), compute:

Qi = R [y @ @, (prob(A;()) @ Regr(V, A;()))] (3.1)

2.Q4 = obj-maXQéif)).
3. V11 = maxy Q{}n.

The notation and steps of this procedure were discussedaptéf2 except that novw
and® work on FODDs instead of case statements. Note that becheiseward function
does not depend on actions, we can move the object maxionzatep forward before
adding the reward function. l.e., we first have

T = @;(prob(A; (7)) ® Regr(Vi, Aj(7))),

n

followed by
Qi = R® v ® obj-maxT;™).

Later we will see that the object maximization step makessmeductions possible; there-
fore by moving this step forward we get some savings in coadput. We compute the
updated value function in this way in the comprehensive etarof value iteration given
later in Section 3.8.7.

Value iteration terminates whefi/; ., — V|| < % (Puterman, 1994). In our case
we need to test that the values achieved by the two diagrawighis %

Some formulations of goal based planning problems use aorlaibg state with zero
additional reward once the goal is reached. We can handiddhnulation when there is

only one non-zero leaf if®. In this case, we can replace Equation 3.1 with
éf) =maz(R,y ® ®;(prob(A;(Z)) @ Regr(V,,, A;(Z))).

To see why this is correct, note that due to discounting the value is always< R. If R
is satisfied in a state we do not care about the action (maxdimeiR) and if Ris 0 in a
state we get the value of the discounted future reward.

3.8. VALUE ITERATION WITH FODDS 47

Note that we can only do this in goal based domains, i.e.etfseonly one non-zero
leaf. This does not mean that we cannot have disjunctivesgbat it means that we must
value each goal condition equally.

3.8.1 Regressing Deterministic Action Alternatives

We first describe the calculation dtegr(V,,, A;(Z)) using a simple idea we call block
replacement. We then proceed to discuss how to obtain thé efBciently.

ConsiderV,, and the nodes in its FODD. For each such node take a copy ofbthe c
responding TVD, where predicate parameters are renamduhsthiey correspond to the
node’s arguments and action parameters are unmodifiedeBRss$V,,, A(¥)) is the FODD
resulting from replacing each nodel with the corresponding TVD, with outgoing edges
connected to the 0, 1 leaves of the TVD.

Recall that an RMDP represents a family of concrete MDPs gankrated by choosing
a concrete instantiation of the state space (typicallyasgmted by the number of objects
and their types). The formal properties of our algorithm&Hor any concrete instantia-
tion.

Fix any concrete instantiation of the state space. d.denote a state resulting from
executing an actiorl (%) in states. Notice thatV;, and BR-regregd/,,, A(Z)) have exactly
the same variables. We have the following lemma:

Lemma 7 (Wang, 2008) Let be any valuation to the variables &f, (and thus also the
variables of BR-regre$¥),, A(%))). Then MAR;, (s, () = MAPgR_,cgress(vi,, a@@)) (5:).

A naive implementation of block replacement may not be efiti If we use block re-
placement for regression then the resulting FODD is notseamdy reduced and moreover,
since the different blocks are sorted to start with the tasulot even sorted. Reducing and
sorting the results may be an expensive operation. Insteadalculate the result as fol-
lows. For any FODDV,, we traverse BR-regre6,, A(Z)) using postorder traversal in
terms of blocks and combine the blocks. At any step we haventhmne 3 FODDs such
that the parent block has not yet been processed (so it is awitfCbinary leaves) and the
two children have been processed (so they are general FODDgg call the parenis,,,

48 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

thet rue branch childB, and thef al se branch childB, then we can represent their
combination a$B,, ® B ® [(1 © B,) ® By.

Lemma 8 (Wang, 2008) Lef3 be a FODD whereB; and B; are FODDs, andB,, is a
FODD with {0,1} leaves. LetB be the result of using Apply to calculate the diagram
B, ® B] & [(1 © B,) ® By]. Then for any interpretatiod and valuation{ we have
MAPzs(1,¢) = MAP4(I, ¢).

A high-level description of the algorithm to calculate B&gres§V,,, A(Z)) by block
combination is as follows:

Procedure 2 Block Combination for BR-regre€s,, A(%))
1. Perform a topological sort oir;, nodes (Cormen, Leiserson, Rivest, & Stein, 2001).

2. Inreverse order, for each non-leaf nodgits children B, and B, have already been
processed), leB,, be a copy of the corresponding TVD, calculal® @ B;] @ [(1 ©
B,) ® Byl

3. Return the FODD corresponding to the root.

Notice that different blocks share variables so we canndopa weak reductions dur-
ing this process. However, we can perform strong reductionstermediate steps since
they do not change the map for any valuation. After the ptesompleted we can per-
form any combination of weak and strong reductions sincedbes not change the map of
the regressed value function.

We can now explain why we cannot have variables in TVDs thinoaigy example il-
lustrated in Figure 3.10. Suppose we have a value functiadeésed in Figure 3.10(a),
saying that if there is a blue block and a big truck such thatilock is not on the truck
then valuel is assigned. Figure 3.10(b) gives the TVD fon (B, T') under actiorioads,
in which ¢ is a variable instead of an action parameter. Figure 3.1§i{®@s the result
after block replacement. Consider an interpretatiovith domain{b,, t;, c;, co} and rela-
tions{ Blue(b,), Big(t1), Bin(by, c1), Tin(t1, c1)}. After the actionoadS (b, t,) we will
reach the state = { Blue(b,), Big(t,), On(by, t1), Tin(t1, c1)}, which gives us a value of

3.8. VALUE ITERATION WITH FODDS 49

O e
19 g

/

9@) 0 = on,t) 0
0 1

(@)

(©)

Figure 3.10: An example illustrating why variables are ritmvaed in TVDs.

0. But Figure 3.10(c) with* = by, t* = t; evaluated ins gives value of 1 by valuation
{b/b1,c/cq,t/t1}. Here the choice/c, makes sure the precondition is violated. By making
¢ an action parameter, applying the action must explicitiyage a valuation and this leads
to a correct value function. Object maximization turns@cfparameters into variables and
allows us to choose the argument so as to maximize the value.

3.8.2 Regressing Probabilistic Actions

To regress a probabilistic action we must regress all itsrd@histic alternatives and com-
bine each with its choice probability as in Equation 3.1. Ascdssed in the previous
chapter, due to the restriction in the RMDP model that explispecifies a finite number
of deterministic action alternatives, we can replace themially infinite sum of Equa-
tion 2.1 with the finite sum of Equation 3.1 which is therefoagrect. In the following we
specify how this can be done with FODDs.

Recall thatprob(A;(Z)) is restricted to include only action parameters and carmot i
clude variables. We can therefore calculgteb(A; (7)) ® Regr(V,, A;(Z)) in step (1)
directly using Apply. However, the different regressiosuls are independent functions
so that in the surm; (prob(A,(7)) @ Regr(V,,, A;(Z))) we must standardize apart the dif-
ferent regression results before adding the functionse(tiwdt action parameters are still

50 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Ve ASuc(x*)
o8 o
pX 5 1 A/:<*
10 0 q(A) o
1 0
(@) (b)
q (1) /Q(Q)
0 25 q (o) e qX)
S + p) 25 = p(@
) 5 0 Xl/:X*
g 0 q (x1)

7.
(©

Figure 3.11: An example illustrating the need to standardjzart.

considered constants at this stage). The same holds fodttigoam of the reward function.
The need to standardize apart complicates the diagramsfeamiotroduces structure that
can be reduced. When performing these operations we firstnespropositional Apply
procedure and then follow with weak and strong reductions.

Figure 3.11 illustrates why we need to standardize apaferémt action outcomes.
Action A can succeed (denoted adsSucc) or fail (denoted asAFail, effectively a no-
operation), and each is chosen with probability 0.5. P3argiiees the value functiof®.
Part (b) gives the TVD folP(A) under the action choicdSucc(x*). All other TVDs are
trivial. Part (c) shows part of the result of adding the twoammes forA after standardizing
apart (to simplify the presentation the diagrams are ndeddr Consider an interpretation
with domain{1, 2} and relationg¢(1),p(2)}. As can be seen from (c), by choosing=
1,i.e. actionA(1), the valuationr; = 1,z = 2 gives a value oT.5 after the action (without
considering the discount factor). Obviously if we do notnstardize apart (i.e; = x3),
there is no leaf with valu&.5 and we get a wrong value. Intuitively the contribution of
ASwuce to the value comes from the “bring about” portion of the dagrandAF ail’s

3.8. VALUE ITERATION WITH FODDS 51

contribution uses bindings from the “not undo” portion ahé two portions can refer to
different objects. Standardizing apart allows us to caphath simultaneously.
From Lemma 7 and 8 and the discussion so far we have:

Lemma 9 (Wang, 2008) Consider any concrete instantiation of an RMBRV,, be a
value function for the corresponding MDP, and lkt7) be a probabilistic action in the
domain. TherQéf) as calculated by Equation 3.1 is correct. That is, for anytesta
MAPQéf)(s) is the expected value of executidgzr) in s and then receiving the terminal
valueV,,.

3.8.3 Object Maximization

Notice that since we are handling different probabilistiematives of the same action
separately we must keep action parameters fixed during tdresgion process and until
they are added in stepof the algorithm. In step 2 we maximize over the choice ofatcti

parameters. As mentioned above we get this maximizatiofrée:. We simply rename

the action parameters using new variable names (to avoetitem between iterations)

and consider them as variables. The aggregation semantigsles the maximization and

by definition this selects the best instance of the actiomceéconstants are turned into
variables additional reduction is typically possible aststage. Any combination of weak
and strong reductions can be used. From the discussion veethavollowing lemma:

Lemma 10 (Wang, 2008) Consider any concrete instantiation of an RM®V,, be a
value function for the corresponding MDP, and lkt7) be a probabilistic action in the
domain. TherQ(}n as calculated by object maximization in step 2 of the al@poniis cor-
rect. That is, for any state, MAP%Z (s) is the maximum over expected values achievable
by executing an instance df(Z) in s and then receiving the terminal valié.

A potential criticism of our getting object maximizationrfiyee is that we are essen-
tially adding more variables to the diagram and thus evalgahe diagram in any state
becomes more expensive (since more substitutions needdonseered). However, this
is only true if the diagram remains unchanged after objectimization. In fact, as illus-
trated in the example given below, these variables may begorfrom the diagram in the

52 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

process of reduction. Thus as long as the final value funisicompact the evaluation is
efficient and there is no such hidden cost.

3.8.4 Maximizing Over Actions

The maximizationV,,,; = maxy Qﬁﬂ in step (3) combines independent functions. As
above we first standardize apart the different diagrams, Wescan follow with the propo-
sitional Apply procedure and finally follow with weak andatg reductions. This clearly
maintains correctness for any concrete instantiation efstate space. The next chapter
shows that standardizing apart in this case (and whenewabioing diagrams usingrax)

IS not necessary.

3.8.5 Order Over Argument Types

We can now resume the discussion of ordering of argumenstgpd extend it to predicate
and action parameters. As above some structure is suggegtdte operations of the
algorithm. Section 3.5 already suggested that we ordertantsbefore variables.

Action parameters are “special constants” before objectimization but they become
variables during object maximization. Thus their positstrould allow them to behave as
variables. We should therefore order constants beforerap@arameters.

Note that predicate parameters only exist inside TVDs, aitidoe replaced with do-
main constants or variables during regression. Thus we eyl to decide on the relative
order between predicate parameters and action paramdfes® put action parameters
before predicate parameters and the latter is replacedangtinstant then we get an order
violation, so this order is not useful. On the other hand, & put predicate parameters
before action parameters then both instantiations of patdiparameters are possible, as
long as the variables corresponding to action parametersbiect maximization) are after
the ones in the FODD. Therefore, we also order action paensafter variables.

To summarize, the ordering: constantsvariables (predicate parameters in case of
TVDs) < action parameters, is suggested by heuristic considesatay orders that maxi-
mize the potential for reductions, and avoid the need faaring diagrams.

3.8. VALUE ITERATION WITH FODDS 53

Oon(X,Y) On(xs, x;) Oon(X,Y)
p p2) p

() (b) (©

Figure 3.12: An example illustrating the necessity to memmultiple TVDs.

Finally, note that if we want to maintain the diagram sorté@latimes, we need to
maintain variant versions of each TVD capturing possibteeang of replacements of pred-
icate parameters. Consider a TVD in Figure 3.12(a). If weanea predicate parametexs
andY to bex, andzx; respectively, and it; < x5, then the resulting sub-FODD as shown
in Figure 3.12(b) violates the order. To solve this problemivave to define another TVD
corresponding to the case where the substitutioX afucceeds the substitution b, as
shown in Figure 3.12(c). In the case of replacikigwith x, andY with x,, we use the
TVD in Figure 3.12(c) instead of the one in Figure 3.12(a).

3.8.6 Convergence and Complexity

Since each step of Procedure 1 is correct we have the foltpthi@orem:

Theorem 2 (Wang, 2008) Consider any concrete instantiation of an RM2®V, be the
value function for the corresponding MDP when there aseps to go. Then the value of
V,.+1 calculated by Procedure 1, correctly captures the valuefiom when there are + 1
steps to go. That is, for any stateMAP, _, (s) is the maximum expected value achievable
insinn+ 1 steps.

Note that for first order MDPs some problems require an irdiniimber of state par-
titions. Thus we cannot converge ¥§ in a finite number of steps. However, since our
algorithm implements VI exactly, standard results abopragimating optimal value func-
tions and policies still hold. In particular the followingasdard result (Puterman, 1994)

54 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

holds for our algorithm, and our stopping criterion guaes® approximating optimal value
functions and policies.

Theorem 3 (Wang, 2008) Lel* be the optimal value function and &}, be the value
function calculated by the relational VI algorithm.

109(657%)

1. Ifr(s) < Mforall s then||V,, — V*|| < eforn > — 5

2. 1f|[Vosy = Vil < <2 then|| Vi, .y — V7 <e.

While the algorithm maintains compact diagrams, reduatibsiagrams is not guaranteed
for all domains. Therefore we can only provide trivial upfrEunds in terms of worst
case time complexity. Notice first that every time we use tipplj procedure the size
of the output diagram may be as large as the product of theafize inputs. We must
also consider the size of the FODD giving the regressed vialoetion. While Block
replacement i$)(N) where N is the size of the current value function, it is not sorted
and sorting may require both exponential time and spacedmtbrst case. For example,
Bryant (1986) illustrates how ordering may affect the siza diagram. Fo2n arguments,
the functionzy - x5 + 23 - x4 + - - - + 9,1 - T2, ONly requires a diagram & + 2 nodes,
while the functionr; -z, 1 + 29 - Tpio+- - -+, - 12, require2” ! nodes. Notice that these
two functions only differ by a permutation of their argum&nNow if x1 - x5 + x5 - 4 +
-4 x9,_1 - T9, IS the result of block replacement then clearly sorting rexguexponential
time and space. The same is true for our block combinatioogatare or any other method
of calculating the result, simply because the output is gomential size. In such a case
heuristics that change variable ordering, as in propastidDDs (Bryant, 1992), would
probably be very useful.

Assuming TVDs, reward function, and probabilities all haree < C', each action
has< M action alternatives, the current value functighhas N nodes, and worst case
space expansion for regression and all Apply operatiomsotierall size of the result and
the time complexity for one iteration a@(C™*(N+1)), However note that this is the
worst case analysis and does not take reductions into atc®vile our method is not
guaranteed to always work efficiently, the alternative asugrding the MDP will have
an unmanageable number of states to deal with. Therefospitdehe high worst case

3.8. VALUE ITERATION WITH FODDS 55

complexity our method provides a potential improvementiifesnext example illustrates
reductions can substantially decrease diagram size aneftine save considerable time in
computation.

3.8.7 A Comprehensive Example of Value Iteration

Figure 3.13 traces steps in the application of value iterato the logistics domain. The
TVDs, action choice probabilities, and reward function fleis domain are given in Fig-
ure 3.8. To simplify the presentation, we continue usingfeglicate orderingzin < “="

< On < Tin < rain introduced earlief.

Givenl; = R as shown in Figure 3.13(a), Figure 3.13(b) gives the resuligression
of V; through the action alternativenloadS(b*,t*, ¢*) by block replacement, denoted as
Regr(Vy, unloadS(b*, t*, c*)).

Figure 3.13(c) gives the result of multiplyinBegr(Vp, unloadS(b*,t*, ¢*)) with the
choice probability ofunloadS Pr(unloadS(b*,t*, c*)).

Figure 3.13(d) is the result d?r (unload F'(b*, t*, ¢*)) @ Regr(Vh, unload F (b*, t*, c*)).
Notice that this diagram is simpler sineeload F’ does not change the state and the TVDs
for it are trivial.

Figure 3.13(e) gives the unreduced result of adding twoauts forunload(b*, t*, c*),

i.e.,

[Pr(unloadS(b*,t*,c*)) @ Regr(Vo, unloadS(b*,t*, c*))] @ [Pr(unloadF (b*,t*,c*)) ®
Regr(Vy, unloadF'(b*, t*, ¢*))]. Note that we first standardize apart the diagrams for action
alternativesunloadS(b*, t*, ¢*) andunload F'(b*, t*, ¢*) by respectively renaming as b,
andb,. Action parameters*, t* andc* at this stage are considered as constants and we do
not change them. Also note that the recursive part of Applidifgon &) has performed
some reductions, i.e., removing the noden when both of its children lead to valué.

In Figure 3.13(e), we can apply R7 to no@én(b,, Paris) in the left branch. The
conditions
P7.1:[3by, Bin(by, Paris)| — [3by, be, Bin(by, Paris) A Bin(bs, Paris)],

V7.1: min(Bin(by, Paris)|:) = 10 > max(Bin(by, Paris),f) = 9,

2The details do not change substantially if we use the ordggested in Section3.5 (where equality is
first).

56

Y Waris)

Bin (b, Paris 10 b=b*
DALans
10 0 On (b, t*)
Tin (t*, Paris)
()
10 0
(b)

ybl Raris)

Bin (b,, Parls) ybz aQ
}\ by= b* = b*
7 9

On

CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

Bin (b, Paris) Bin (b, Paris)
b) b /(\0)
A
On (b, t*) 3 1
Tin (t*, Raris)
. (d)
200
7 9 (o
Bin (by, Parls)
10 ybz Ks)

b,z b* = b*

Tinl(;/*, Raris) - Tin (t/* Raris) | Tinl(;/*, Raris) . Tin (t/* Raris) |
317 9 317 9
(e) (f)
| .(1 1) |/n\arls) |n/(\ans)
On }b Tin (t1, Paris) 19 On(,t) 19 0 0
Tin (t’yD rain Tin (t, Paris) .
W 7?\9 0 rain Ql; b Pari
79 6381 0 m/(\Oans)
()] (h) 0] (k)
Vl
Bin (b, Paris)
Waris)
19 On(,t) Tin (t, {aris) rain
.) 0
Tin (t, Paris) 1 0 6.3 8.1
= .
6.3 8.1 0 Tin t,{aris) o o
0
I 0 Onp.Y
® ry) \ Tin (t, P\s)
Tin (t, P\s) 0 =
o\
rain
}I\ 6.3 8.1
6.3 8.1)
(m)
Figure 3.13: An example of value iteration in the Logistiaznmain.

3.8. VALUE ITERATION WITH FODDS 57

V7.2: Bin(by, Paris); is a constant

hold. According to Lemma 3 and Lemma 5 we can drop nBde(b,, Paris) and con-
nect its parenBBin(b;, Paris) to its true branch. Figure 3.13(f) gives the result aftes thi
reduction.

Next, consider the r ue child of Bin(by, Paris) and thet r ue child of the root.
Conditions
P7.1:[3by, by, ~Bin(by, Paris) A Bin(by, Paris)| — [3by, Bin(by, Paris)],

V7.1: min(Bin(by, Paris):) = 10 > maz(Bin(by, Paris) ;) = 10,

V7.2: min(Bin(by, Paris):) = 10 > maz(Bin(be, Paris);) =9

hold. According to Lemma 3 and Lemma 5, we can drop the nBd€b,, Paris) and
connect its parenBBin(b,, Paris) to Bin(by, Paris) ;. Figure 3.13(g) gives the result
after this reduction and now we get a fully reduced diagrahisTST%”O“d(b*’t*’C*).

In the next step we perform object maximization to maximizeraaction parameters
b*, t* andc* and get the best instance of the actiorlioad. Note thath*, t* andc¢* have
now become variables, and we can perform one more reducatiertan drop the equality
on the right branch by R9. Figure 3.13(h) gives the resuéiraibject maximization, i.e.,
obj-maxT;;"**®*><). Note that we have renamed the action parameters to avoid the
repetition between iterations.

Figure 3.13(i) gives the reduced result of multiplying thagtam in Figure 3.13(h),
obj-max (T3"***®*<)), by v = 0.9, and adding the reward function. This result is
Qunioad,

We can calculate)'**? and Q9"*¢ in the same way and results are shown in Fig-
ure 3.13(j) and Figure 3.13(k) respectively. Fbtive the TVDs are trivial and the cal-
culation is relatively simple. Foload, the potential loading of a box already in Paris is
dropped from the diagram by the reduction operators in tloegss of object maximiza-
tion.

Figure 3.13(l) gives/;, the result after maximizing ovepymced, Qled and Qdrive,
Here again we standardized apart the diagrams, maximizedtbem, and then reduced
the result. In this case the diagram fenload dominates the other actions. Therefore
Qunload hecomed/;, the value function after the first iteration.

Now we can start the second iteration, i.e., compufiagrom V;. Figure 3.13(m)

58 CHAPTER 3. FIRST ORDER DECISION DIAGRAMS

gives the result of block replacement in the regressiovi ‘ofhrough the action alternative
unloadS(b*,t*, ¢*). Note that we have sorted the TVD fon(B,T) so that it obeys the
ordering we have chosen. However, the diagram resulting fotock replacement is not
sorted.

To address this we use the block combination algorithm tolsnenblocks bottom up.
Figure 3.13(n) illustrates how we combine blockén(t, Paris), which is a TVD, and
its two children, which have been processed and are gen&@aDis. After we combine
Tin(t, Paris) and its two childrenOn(b,t),; has been processed. Sinee(b,t),; = 0,
now we can combin®n(b, t) and its two children in the next step of block combination.
Continuing this process we get a sorted representatidteof (V;, unloadS(b*, t*, c*)).

3.8.8 Extracting Optimal Policies

There is more than one way to represent policies with FODZseke simply note that a
policy can be represented implicitly by a set of regressddeviunctions. After the value
iteration terminates, we can perform one more iterationa@mdpute the set @p-functions
using Equation 3.1.

Then, given a state, we can compute the maximizing action as follows:

1. For each)-function Q4®, compute MA%A(f)(S), wherez are considered as vari-
ables.

2. Forthe maximum map obtained, record the action name d@mhgarameters (from
the valuation) to obtain the maximizing action.

This clearly implements the policy represented by the vélmetion. We use this ap-
proach in our implementation. An alternative approach teptesents the policy explicitly
was developed in the context of a policy iteration algorittWwang & Khardon, 2007).

3.9. SUMMARY AND CONCLUDING REMARKS 59

3.9 Summary and Concluding Remarks

In this chapter we presented the definition of FODDs along wieir properties and algo-
rithms for combining and reducing them. In particular we eleped the reduction opera-
tor R7 and discussed its applicability. We also presente8@R based VI algorithm for
RMDPs that uses FODDs as the underlying RMDP language. Isesuient chapters we
will build on this framework, introduce improvements andyide experimental evaluation
of these ideas.

Chapter 4
Theorem Proving Reductions

The VI algorithm we presented in the last chapter perforraseaing with FODDs. This
reasoning process introduces many redundancies in the BODDthe previous chapter
we also presented a set of operators to reduce FODDs. Redsicre based on the idea
that a diagram can be made smaller by the removal of thesadadaies. This set of re-
duction operators, however, is by no means comprehenst/aasntwo limitations. Firstly

it falls short of providing a canonical form for FODDs. Sedbnthere are simple cases
where FODDs can be simplified but none of the existing redust(R1- - - R5, R7) can
perform the simplification. Unfortunately an implementatiof the VI algorithm using
this set of reduction operators is too slow to yield pradtiesults because diagrams are
not sufficiently reduced and because the reductions theesate expensive.

In this chapter, we address the second issue by introdu@agraduction operators
R9, R10 and R11. R9 is designed specifically to reduce diagvaith redundant equality
nodes. R10 is similar to R7 in some sense. Unlike R7, how&&),makes a global anal-
ysis of the FODD and removes many redundant portions of tagrdim simultaneously.
R11 works locally and targets a particular redundancy thaéa quite often when FODDs
are composed. The new operators still do not guarantee anicahdorm, but improve
upon many of the deficiencies of the previous operators. Athese reductions rely on
proving reachability conditions (e.g. P7.2) and thus mage of theorem proving. We
therefore call them theorem proving reductions to distisguhem from the constructions
in chapter6. In addition this chapter includes results that directlyrove the previous

60

61

Figure 4.1: Example illustrating the need for a DPO

constructions. First we introduce a technique to improv@iagbility of R7 and secondly
we show that standardizing apart diagrams is unnecessay admbining FODDs under
themax operator.

We need the following notation in addition to that explainedhe previous chapter.
If Bis a FODD and is a path from the root to a leaf i, then the path formula fagp,
denoted by PR is the conjunction of literals along The variables op, are denoted?.
Whenz? are existentially quantified, satisfiability of Rf(under an interpretation is a
necessary and sufficient condition for the patto be traversed by some valuation under
I. If ¢ is such a valuation, then we defiathg (I, () = p. The leaf reached by pathis
denoted ageaf(p). We let PFp)\ Lit denote the path formula of pathwith the literal Lit
removed (if it was present) from the conjunction.

The following definitions are important in developing newuetions and to understand
potential scope for reducing diagrams.

Definition 3 A descending path ordering (DPO) is an ordered list of alllgafrom the
root to a leaf in FODDB, sorted in descending order by the value of the leaf reaclyed b
the path. The relative order of paths reaching the same kahimportant as long as it is
fixed.

Definition 4 If B is a FODD, andP is the DPO forB, then a patlp,; € P is instrumental
iff

1. there is an interpretatiod and valuation(, such thatPathg(1,) = p;, and

2. ¥V valuationsy, if Pathg(I,n) = p, thenk > j.

62 CHAPTER 4. THEOREM PROVING REDUCTIONS

The example in Figure 4.1 shows why a DPO is needed. The péaths\ —p(y) and
—p(x) A p(z) both imply each other. Whenever there is a valuation trawgrsne of the
paths there is always another valuation traversing theroBRemoving any one path from
the diagram would be safe meaning that the map is not charitdwe cannot remove
both paths. Without an externally imposed order on the paths not clear which path
should be labeled as redundant. A DPO does exactly that te thekreduction possible.

4.1 (R9) Equality Reduction

Consider a FODDB with an equality node labeledt = z. Sometimes we can dropand
connect its parents to a sub-FODD that is the result of tatiegnaximum of the left and
the right children ofn. For this reduction to be applicable has to satisfy the following
condition.

(E9.1) : For an equality node labeledt = z at least one of andz is a variable and it
appears neither in;; nor in the node formula for.. To simplify the description of the
reduction procedure below, we assume that that variable.

Additionally we make the following assumption about the éom
(D9.1): The domain contains more than one object.

The above assumption guarantees that valuations readengght child of equality
nodes exist. This fact is needed in proving correctnesse&tuality reduction operator.
First we describe the reduction procedure fofR9 Let B,, denote the FODD rooted at
-copy), and a copy of

noden in FODD B. We extract a copy of3,, ., (and name itB

nlt

-copy, we rename the variabteto ¢ to produce diagram

e
B, (B, ,-copy) fromB. In B, ,
B, ,-copy. LetB; = Apply(B;, ,-copy, B, ,-copy, maz). Finally we drop the node in

B and connect its parents to the root Bf to obtain the final resulB’. An example is
shown in Figure 4.2.

Informally, we are extracting the parts of the FODD rooted@den, one wherer = ¢
(and renaminge to ¢ in that part) and one where # t. The condition E9.1 and the
assumption D9.1 guarantee that regardless of the valueved have valuations reaching
both parts. Since by the definition of map, we maximize oventaluations, in this case
we can maximize over the diagram structure itself. We dolilgisalculating the function

4.1. (R9) EQUALITY REDUCTION 63

b/=< pW) px)
"R ; ;

PR q(o) 10 0 10 0
q
(b) (©)
10 5 0
(a) b=x
R 75
0 pQ)
5 0
q q00)
(d 10 5 0

(e)

Figure 4.2: An example of the equality reduction. (a) The EDiefore reduction. The
noder = y satisfies condition E9.1 for variable (b) B, ,-copy (»;; extracted). (c)
B, -copy renamed to producB;m-copy. (d) B, .-copy. (e) Final result with node

replaced byipply(B,, ,-copy, B, ,-copy, max)

n.f

nyf

which is the maximum of the two functions corresponding ®tio children ofn (using
Apply) and replacing the old sub-diagram rooted at neds the new combined diagram.
Theorem 12 proves that this does not affect the maj.of

One concern for implementation is that we simply replacedidesub-diagram by the
new sub-diagram, which may result in a diagram where stredgctions are applicable.
While this is not a problem semantically, we can avoid thedrfee strong reductions by
usingApply that implicitly performs strong reductions R1(neglectyi&®2(join) as follows.

Let B, denote the FODD resulting from replacing noden B with 0, and B, the
FODD resulting from replacing node with 1 and all leaves other than nodeby 0, we
have the final resuls’ = B, ® B; whereB;, = B, ® B,,. By correctness ofipply the two
forms of calculatingB’ give the same map.

In the following we prove that for any nodewhere equality condition E9.1 holds i
we can perform the equality reduction R9 without changiregrttap for any interpretation
satisfying D9.1. We start with properties of FODDs definedwah e.9.5,, By, andB;. Let
I',, denote the set of all valuations reaching nadend letl’,,, denote the set of all valuations

64 CHAPTER 4. THEOREM PROVING REDUCTIONS

not reaching node in B. From the basic definition of map we have the following:

Claim 1 For any interpretation/,

@V ¢ eT,,, MAPg, (I,¢) = MAP3(I, ().
(b)v¢el,, MAPg, (1,() = 0.
(c)v(¢el,,, MAPg, (I,() =0.

(d)V¢ eT,, MAPg, (I,¢) = 1.

From Claim 1 and the definition of map, we have,

Claim 2 For any interpretation/,
@)V ¢ € T, MAPg (1,¢) = 0.
(b)V ¢ € I'y,,MAPg (I, () = MAPg, (1, ().

From Claim 1, Claim 2, and the definition of map we have,

Claim 3 For any interpretation/,
@V ¢ eT,,, MAPs (I,¢) = MAP3(I,).
(b)V (¢ eT,, MAPg (1,() = MAPg (I,().

Next we prove the main property of this reduction stating tbiaall valuations reaching
noden in B, the old sub-FODD rooted at and the new (combined) sub-FODD produce
the same map.

Lemma 11 LetI', be the set of valuations reaching noden FODD B. For any interpre-
tation / satisfying D9.1maxccr, MAPg, (1, () = maxccr, MAPg (1,().

Proof: By condition E9.1, the variable does not appear ity F'(n) and hence its value
in ¢ € T',, is not constrained. We can therefore partition the valuntio I',, into disjoint
sets,I', = {I'a | A is a valuation to variables other that, where in[", variables other
thanz are fixed to their value i\ andx can take any value in the domainifAssumption
D9.1 guarantees that evelry contains at least one valuation reachiglg, and at least one
valuation reachinng in B. Note that if a valuatioig reacheanlt thent = z is satisfied

by ¢ thus MAPB% (1,¢) = MAPBQ“-Copy(I, (). Sincex does not appear iis,, . we also

nis

4.2. THE R10 REDUCTION 65

have that MA%;llf-copy(I ,() is constant for alf € I'A. Therefore by the correctness of
Apply we havemax cr, MAPg, (I, () = maxcer, MAP g (1, C).
Finally, by the definition of map,

max MAPg (I,() = maX Max MAP3 (I,()
l

= maxmaxMAPg (I,()

ANBNESUN

= Dla)(hA/\F)B%(I,C).

¢ely

Lemma 12 Let B be a FODD,n a node for which condition E9.1 holds, aifl be the
result of R9n), then for any interpretation satisfying D9.1, MARB(I) = MAPg/ (1).

Proof: Let X = max¢cr,, MAPg/ (1, () andY = maxcer, MAPg (1, (). By the defini-
tion of map, MARs (1) = max(X,Y'). However, by Claim 3X = maxccr,, MAPg(Z, ()
and by Claim 3 and Lemma 1Y}, = max¢cr, MAPg (I,() = maxcer, MAPg, (1, ().
Thusmaz(X,Y) = MAPg(I) = MAPg (I). u

While Lemma 12 guarantees correctness, when applying i&actice it may be impor-
tant to avoid violations of the sorting order (which wouldjuére expensive re-sorting of
the diagram). If botlr andt are variables, we can sometimes replace both with a new vari-
able name so the resulting diagram is sorted. However tmstislways possible. When
such a violation is unavoidable, there is a trade-off betwgerforming the reduction and
sorting the diagram and ignoring the potential reductiormodr implementation we always
avoid sorting the diagram and choose to ignore the redudtibcauses a sorting violation.

4.2 The R10 Reduction

A path in FODDB is dominated if whenever a valuation traverses it, therdwsigs an-
other valuation traversing another path and reaching aoegfeater or equal value. Now

if all paths through an edge are dominated, then no valuation crossing that edge will
ever determine the map undeiaxr aggregation semantics. In such cases we can replace

66 CHAPTER 4. THEOREM PROVING REDUCTIONS

target¢) by a0 leaf. This is the basic intuition behind the R10 operationclvhs similar
to the reduction of rules in decision lists of Kersting et(2D04).

Although its objective is the same as that of R7-replace, RI@ster to compute and
has two advantages over R7-replace. First, because pattecanked by the value of the
leaf they reach, we can perform a single ranking and checklfatominated paths (and
hence all dominated edges). Hence, while all other reducperators are local, R10 is a
global reduction. Second, the theorem proving requiredRfb0 is always on conjunctive
formulas with existentially quantified variables. Thisggva speedup over R7-replace.

Consider the example shown in Figure 4.3. The following isRC¥or this diagram:

1. p(y), =p(2), ~p(x) — 3
2. p(y), 7p(2), p(z), ~q(z) — 3
3. py), p(), g(x) — 2

4. p(y), 7p(2), p(r), q(x) — 2

Notice that the relative order of paths reaching the samkimetnis DPO is defined by
ranking shorter paths higher than longer ones. This is netjairement for the correctness
of the algorithm but is a good heuristic. According to theuettbn procedure, all edges
of path1 are important and cannot be reduced. However, sirmgbsumesg, 3 and4, all
the other edges (those belonging to pa&th3 and4 and those not appearing in any of the
ranked paths) can be reduced. Therefore the reduction guoeeeplaces the targets of all
edges other than the ones in patho the value). Pathl1 is thus aninstrumentalpath but
paths2, 3 and4 are not. We now present a formal definition of R10.

Procedure 3 R10(B)
1. LetF be the set of all edges iR

2. LetP = [p1,p2-- - pn] be a DPO forB. Thusp; is a path reaching the highest leaf
andp,, is a path reaching the lowest leaf.

3. Forj =1 ton, do the following

4.2. THE R10 REDUCTION 67

p(y) p(y)
R10
/p< P(X) p(2) 0
0 PRt) 0 0 P(X)
& | A /\
AN 0 3
2 3

Figure 4.3: Example of R10 reduction

(@) LetE,, be the set of edges gn

(b) If =34, i < j such thatB = (32%i, PF(p;)) — (32Pi, PF(p;)), then sett =
E— Epy’

4. Forevery edge € F, settarget¢) =0in B

In the example in Figure 4.3 none of the paths3 and4 satisfy the conditions of
step 3b in the algorithm. Therefore their edges are not toebsoved fromE and are
assigned the valugby the algorithm. Here R10 is able to identify in one passpiinepath
(shown along a curved indicator line) that dominates aleotbaths. To achieve the same
reduction, R7-replace takes 2-3 passes depending on teedafrdpplication. Since every
pass of R7-replace has to check for implication of edge féastor every pair of edges,
this can be expensive. On the other hand, there are cases ®Rh6ris not applicable but
R7-replace is. An example of this is shown in the diagram guFe 4.4. For this diagram
it is easy to see that #; is reached then so is ande; always gives a strictly better value.
R10 cannot be applied because it tests subsumption for ebdenpaths. In this case the
path fore; implies the disjunction of two paths going through We now present a proof
of correctness for R10.

Lemma 13 For any pathp; € P, if p; is instrumental ther-3:, ¢ < j andB = (FaPs,
PF(p;)) — (327, PF(p,))

Proof: If p; is instrumental then by definition, there is an interpretafi and valuationg,
such thatPathg(1, () = p;, and¥ valuationsy, -3 ¢ < j such thatPathp(I,n) = p;. In

68 CHAPTER 4. THEOREM PROVING REDUCTIONS

p(x)
€,

p(2) a(y)
e2

1 2 3 4

Figure 4.4: Example where R7 is applicable but R10 is not

other words/ |= [B — (32%/, PF{,))] but I [~ [B — (327, PF(;))] for anyi < j. This
implies that-34, i < j and B — 3a%i, PF@,)) &= (B — 327, PFf;)). Hence—3i, i < j
andB = [(32%i, PF@,)) — (327, PF;))]. n

The above lemma basically states that the conjunctive ftarfion an instrumental path
cannot logically imply the conjunctive formula of any othpeferred path (with respect to
the DPO) in the FODD.

Lemma 14 If E is the set of edges left at the end of the R10 procedure thea ifr then
there is no instrumental path that goes through

Proof: Lemma 13 proves that if a path is instrumental, them3i, i < j andB3 |= [(32#,
PFp;)) — (32P:, PF{;))]. Thus in step 3b of R10, if a path is instrumental, all itges
are removed from¥. Therefore ife € E at the end of the R10 procedure, it cannot be
in p;. Sincep, is not constrained in any way in the argument abaeveannot be in any
instrumental path.]

Given the above lemmas, the following theorem makes the argument that R&0 pr
serves instrumental paths by preserving the edges onimetital paths and thus maintains
the map of any interpretation.

Theorem 4 Let B be any FODD. IfB’ = R10(B) thenY interpretations/, MAPg (1) =
MAPg/ (1)

Proof: By the definition of R10, the only difference betweénand B’ is that some
edges that pointed to sub-FODDs i point to theO leaf in B’. These are the edges
left in the setF at the end of the R10 procedure. Therefore any valuatiorscrgghese

4.3. THE R11 REDUCTION 69

p(x)

aly)
q(y) /\
1 0

1 0

(@) (b)

Figure 4.5: Example of R11 reduction

edges achieves a value®in B’ but could have achieved more valueBrunder the same
interpretation. Valuations not crossing these edges eiilleve the same value i as they
did in B. Therefore for any interpretatiohand valuatior(, MAP3(1,() > MAPg/ (I,()
and hence MARB(/) > MAPg ().

Fix any interpretatiod andv = MAPg(I). Let(be a valuation such that MARI, ()
= v. If there is more than ong¢ that gives value), we choose one whose pathhas the
least index inP. Now by definitionp; is instrumental and by lemma 14, none of the edges
of p; are removed by R10. Therefore MARI, () = v = MAPg(I). By the definition
of the max aggregation semantics, MAP) > MAPg (I, () and therefore MAB/ (1) >
MAPg (1) |

4.3 The R11 Reduction

Consider the FODDB in Figure 4.5(a). Clearly, with no background knowledges tthi-
agram cannot be reduced. Now assume that the backgroundddg®® contains a rule
Vz, [q(xz) — p(x)]. In this case if there exists a valuation that reached tkeaf, there must
be another such valuatignthat agrees on the values @fandy. ¢ dominates the other
valuations under therax aggregation semantics. The background knowledge rulgespl
that for (, the test at the root node is redundant. However, we canhohaédeft child of
the root to O since the entire diagram will be eliminated. réfiere R7 is not applicable,
and similarly none of the other existing reductions is aggilie. Although the example is

70 CHAPTER 4. THEOREM PROVING REDUCTIONS

artificial, similar situations arise often in runs of the waliteration algorithnt. We intro-
duce the R11 reduction operator that can handle such sitgatR11 reduces the FODD in
Figure 4.5(a) to the FODD in Figure 4.5(b)

Let B be a FODDn a node inB, e an edge such thate {n, n s}, ¢ = sibling(e)
(so that where = n;, ¢ = n|; and vice versa), an& the set of all paths from the root
to a non-zero leaf going through edge Then the reductiorkR11(B, n, e) drops noden
from diagramB and connects its parents to target(We need two conditions for the
applicability of R11. The first requires that the sibling izexo valued leaf.

Condition 1 target¢’) =0

The second requires that valuations that are rerouted byvRieh traversingB’ are
dominated by other valuations giving the same value.

Condition 2 Vp € P, B = [3aP, PFp)\n.lit A n° .lit] — [32?, PF()]

Theorem 5 If B’ = R11(B, n,e), and conditions 1 and 2 hold, thehinterpretations/,

Proof: Let I be any interpretation and I&f be the set of all valuations. We can divide
into three disjoint sets depending on the path taken by tialusin B under/. Z¢ - the set
of all valuations crossing edge Z¢ - the set of all valuations crossing edgend Z°the"

- the set of valuations not reaching node We analyze the behavior of the valuations in
these sets undér.

¢ Since structurally the only difference betweBnand B’ is that in B’ noden is by-
passed, all paths from the root to a leaf that do not cross naéenain untouched.
Thereforev(€ Zoher, MAPg(I, () = MAPg (I, ().

1This happens naturally, without the artificial backgroumibwledge used for our example. The main
reason is that standardizing apart introduces multiplemesd copies of the same atoms in the different
diagrams. When the diagrams are added, many of the atomedaredant but some are not removed by old
operators. These atoms may end up in a parent-child relatitmweak implication from child to parent,
similar to the example given.

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 71

e Since, inB’ the parents of node are connected to targej(all valuations crossing
edger and reaching targef) in B under! will be unaffected inB’ and will, therefore,
produce the same map. Thds € Z¢, MAPg(I,() = MAPg/ (1, ().

e Now, letm denote the node targej(in B. Under!, all valuations inZ¢" will reach
theO leaf in B but they will cross node: in B’. Depending on the leaf reached after
crossing noden, the setZ¢ can be further divided into 2 disjoint subset&s, -
the set of valuations reaching)deaf andZ¢, . . - the set of valuations reaching a

MAP3(I,¢) = MAPg (1, ().

/

non-zero leaf. Clearly(€ Z¢

ero?

By the structure o3, every¢ € Z¢, _ traverses somec P,thatis, (PFg)\n°.lit

A ne 1it)¢ is true inI. Condition 2 states that for every suchthere is another
valuationn such that (PFR{))n is true in1, son traverses the same path. However,
every such valuation must belong to the séf® by the definition of the sef“. In

other words, inB’ every valuation inz¢ is dominated by some valuation A¥.

nonzero

From the above argument we conclude thaBirunder!, every valuation either produces
the same map as iR or is dominated by some other valuation. Under the max aggi@ay
semantics, therefore, MAR) = MAPg (). n

4.4 Further Speedup of Theorem Proving Reductions

Identifying and applying more reductions helps keep FOD@sgact. This improves effi-
ciency of the combination and reasoning procedures. This@epresents two techniques
to further speed up theorem proving reductions while maing an exact solution.

4.4.1 Subtracting Apart - Improving applicability of R7

Consider the FODDB in Figure 4.6. Intuitively a weak reduction is applicable tis
diagram because of the following argument. Consider a Vialng = {z \ 1,y \ 2, z \ 3}
crossing edge, under some interpretatiah / = B — —p(1) Ap(2). Therefore there must
be a valuatiom = {z\ 2, z\ 3} (and any value foy), that crosses edgg. Now depending
on the truth value of = B — ¢(1) andI = B — ¢(2), we have four possibilities of

72 CHAPTER 4. THEOREM PROVING REDUCTIONS

Figure 4.6: Sub-Apart

where(andn would reach after crossing the nodes targgtand target(;) respectively.
However, in all these cases, MAPL, n) > MAP3(I, (). Therefore we should be able to
replace target() by a0 leaf. A similar argument shows that we should also be abledp d
the node source{). Surprisingly, though, none of the R7 conditions applyhis tase and
this diagram cannot be reduced. On closer inspection weligidthe reason for this is that
the conditiongP7.2) and(V7.3) are too restrictive(V7.3) holds but(P7.2) requires that
Va,Vz,[[3y, 7p(x) A p(y)] — [p(z)]] implying that for every valuation crossing edge,
there has to be another valuation crossing edgeich that the valuations agree on the value
of x andz and this does not hold. However, from our argument above; fordominate,

the two valuations need not agree on the value.dVe observe that if we rename variable
x SO that its instances are different in the sub-FODDs rodtéatgete,) and target,) (i.e.

we standardized apart w.rt) then both(P7.2) and(V7.3) go through and the diagram
can be reduced. To address this problem, we introduce a n&@DFDbtraction algorithm
sub-apart Given diagramd3; and B, the algorithm tries to standardize apart as many of
their common variables as possible, while keeping the ¢mmdB; © B, > 0 true. The
algorithm returns a 2-tupl€T’, V'}, whereT is a boolean variable indicating whether the
combination can produce a diagram that has no negativede@en all variables except
the ones in/ are standardized apart.

Procedure 4 sub-apart(A, B)

1. If AandB are both leaves,

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 73

(@) If A— B > 0return{true, {}} else returr{ false, {}}
2. Ifl(A) < I(B), let

(@) {L, Vi} = sub-apart(targetd ;), B)
(b) {R, V>} = sub-apart(targetd, ;), B)

Return{L A R, V} U V,}
3. Ifi(B) < I(A), let

(@) {L, Vi} = sub-apart@, target(B,;))
(b) {R, V2} = sub-apart@, target(B, s))

Return{L A R, V} U V,}

4. Ifi(A) = l(B), letV be the variables ofi (or B). Let

(@) {LL, V3} = sub-apart(targetq ;), target(B,;))
(b) {RR, V,} = sub-apart(targetd}, s), target(B, 7))
(c) {LR, V5} = sub-apart(targetd ;), target(B,))
(d) {RL, Vs} = sub-apart(targetd, 7), target(B,;)
(e) f LL A RR = false, return{ false, V3 U V,}
(f) If LR A RL = false return{true, VU V3 U V,}
(9) Return{true, VUV, U V5U V4}

The next theorem shows that the procedure is correct. Thablas common t@; and B,
are denoted by and B” denotes the combination diagram®f and B, under the subtract
operation when all variables except the onegiiare standardized apart. Let andn, be
the roots nodes abB; and B, respectively.

Theorem 6 sub-apartf;, n,) = {true, v} implies BY contains no negative leaves and
sub-apartfy;, ny) = { false, v} implies—3w such that# C ' and B¥ contains no negative
leaves.

74 CHAPTER 4. THEOREM PROVING REDUCTIONS

Proof: The proof is by induction ok, the sum of the number of nodes# and B,. For

the base case whén= 2, both B, and B, are single leaf diagrams and the statement is
trivially true. Assume that the statement is true forkaft m and consider the case where
=m+ 1. Whenl(n;) < [(ns), in the resultant diagram of combination under subtragtion
we expectn; to be the root node and, |, © n, andn; |y © n, to be the left and right
sub-FODDs respectively. Hence, the sub-apart algorittoursévely calls sub-apart(.,

ne) and sub-apart(| s, no). Since the sum of the number of nodes of the diagrams in the
recursive calls is always. m, the statement is true for both recursive calls. Clearlg, th
top level can return &ir ue iff both calls returnt r ue. A similar argument shows that the
statement is true whelfn,) < I(ny).

Whenl(n;) = I(ns), again by the inductive hypothesis, the statement of theréme
is true for all recursive calls. Here we have 2 choices. Wddeither standardize apart
the variablesV in [(n,) andl(ny) or keep them identical. If they are the same, in the
resultant diagram of combination under subtraction we eixpeto be the root node and
nie © ngjy @ndny r © no 5 to be the left and right sub-FODDs respectively. Again tie to
level can return @r ue iff both calls returnt r ue . The set of shared variables requires
the variables of(n;) in addition to those from the recursive calls in order to eaghat

l(nl) = Z(TLQ)

If we standardize apattn,) andi(n), then we fall back on one of the cases wheye
ny except that the algorithm checks for the second level ofredee callsn, |, © noyq,
N1y ©nayf, Ny O Ny @Ndng | r ©no p. The top level of the algorithm can returm ue if
all four calls returrt r ue and return the union of the sets of variables returned bydbe f
calls. If not all four calls returri r ue, the algorithm can still keep the variableslim;)
andi(n,) identical and return r ue if the conditions for that case are met. n

The theorem shows that the algorithm is correct but does uatagntee minimality. In
fact, as we described in Chapt&(Figure 3.6), the smallest set of variablégor B” to
have no negative leaves may not be unique and one can alsatisabthe output of sub-
apart may not be minimal. In principle, one can use a greedgquture that standardizes
apart one variable at a time and arrives at a minimatiseHowever, althouglsub-apart
does not produce a minimal set, we prefer it to the greedycsgubr because it is fast and

4.4. FURTHER SPEEDUP OF THEOREM PROVING REDUCTIONS 75

often generates a small sgin practice. We can now define new conditions for applicabil-
ity of R7:

(V7.3S): sub-apart(target(), targeté,)) = {true, V1 }.

(P7.2S): B =V Vi, [[3W, ER(ez)] — [3U, EF(e1)]] whereV; is as above and, @ are the
remaining variables (i.e. not ivi)) in EF(e;), EFey) respectively.

(P7.2S) guarantees that whenever there is a valuagiogoing through target(), there is
always a(; going through target() and(; and(, agree onV;. (V7.3S) guarantees that
under this condition;; provides a better value thap. In fact the proof of Lemma 4 goes
through unchanged. For completeness we include the proef he

Lemma 15 Let B be a FODD,e; ande, edges for which conditions P7.2S, V7.3S, and S1
hold, andB’ the result of R7-repladé, e;, e>), where0 < b < min(target(e;)), then for
any interpretation/ we have MAR(/) = MAPg/ (I).

Proof: Consider any valuatiot, that reachesarget(e;). By P7.2S there is another valu-
ation(; reachingtarget(e;) and(, and(; agree on all variables that appeariin There-
fore, by V7.3S(; achieves a higher value. Therefore according to maximunmeggdgion
the value of MAR; (1) will never be determined biurget(e;), and we can replace it with
a constant as described above.]

Importantly, conditiongP7.2S), (V7.3S) subsume all the previous conditions for ap-
plicability and safety of R7-replace that were given in Cieap. l.e. whenever any of
the two previous conditions for the applicability of R7-tage (P7.1, V7.1 and S1 or P7.2,
V7.3 and S1) are satisfied, P7.2S, V7.3S and S1 are satisfiegeryAsimilar argument
shows howsub-apartextends and simplifies the conditions of R7-drop. Thus tleeais
sub-apartboth simplifies the conditions to be tested and provides mpportunities for
reductions. In our implementation, we use the new condstiwith sub-apart (instead of
the old conditions) whenever testing for applicability of.R

4.4.2 Not Standardizing Apart

Recall that the FODD-based VI algorithm must add functiemesented by FODDs (in
Step 2) and take the maximum over functions represented YHEJin Step 4). Since

76 CHAPTER 4. THEOREM PROVING REDUCTIONS

the individual functions are independent functions of ttedes the variables of different
functions are not related to one another. Therefore, beddicing or maximizing, the

VI algorithm standardizes apart the diagrams. That is, atiables in the diagrams are
given new names so they do not constrain each other. On teelwdihd, since the different
diagrams are structurally related this often introducesinelancies (in the form of renamed
copies of the same atoms) that must be be removed by redwgenators. However, our
reduction operators are not ideal and avoiding this stepgezoh to significant speedup in
the system. Here we observe that for maximization (in Stegta)dardizing apart is not
needed and therefore can be avoided.

Theorem 7 Let B; and B, be FODDs. LetB be the result of combining; and B,
under themaxz operation whenB; and B, are standardized apart. LeB’ be the result
of combiningB; and B, under themax operation whenB; and B, are not standardized
apart. vV interpretations/, MAPg (1) = MAPg/(I).

Proof: The theorem is proved by showing that for ahg valuation for the maximizing
diagram can be completed into a valuation over the combimggra@in giving the same
value. Clearly MAR;(I) > MAPg (1) since every substitution and path that exist &r
are also possible foB. We show that the other direction holds as well. Lebe the
variables common t®; andB,. Letwu; be the variables i3, that are not inB, andu; be
the variables inB; not in B;. By definition, for any interpretation,

MAP(I) = Maz[MAP g, (I), MAPg, (I)] = Maz[MAP g, (I, (1), MAPg, (I, ()]

for some valuationg; over wu; and(, over dus. Without loss of generality let us as-
sume that MAR, (1, () = Max[MAP g, (I,¢), MAPg, (I, (2)]. We can construct valua-
tion ¢ overwuju, such thatt and(; share the values of variablesihandw;. Obviously
MAP3, (1,{) = MAPg,(I,¢;). Also, by the definition of FODD combination, we have

MAPB/(]) Z MAPB1(I,C) = MAPB(I) | |

4.5 Discussion

This chapter introduced new reduction operators, eachsfagwon a particular kind of re-
dundancy. R9 applies to equality conditions, R10 performlobal analysis based on path

4.5. DISCUSSION 77

reachability and R11 focuses on sub-FODDs with redundasgsiars. The sub-apart sub-
routine improves applicability of R7. However, even witle thew reduction operators, our
set of reductions is heuristic and does not guarantee a @a@tdorm for diagrams which
is instrumental for efficiency of propositional algorithnmdentifying such “complete” sets
of reductions operators and canonical forms is an intergsthallenge. However, in spite
of the elusive canonical form, as we will see in the next cagphese new operators prove
valuable in making FODD based algorithms practical.

Chapter 5

Stochastic Planning with FODDs

5.1 Introduction

The FODD based VI algorithm in Chaptgrhas been proved correct but we did not ad-
dress the question of efficiency. Writing an efficient RMDR/epbased on this algorithm
is crucial to its practical utility. Although the issue ofiiefency is partly a matter of good
software engineering, there is also scope for algorithmigt®ns. In the last chapter we in-
troduced additional reduction operators that keep the F®Bdnpact, thereby improving
efficiency. In this chapter we introduce more solutions thake the VI algorithm practi-
cal. Incorporating these, we developed FODDARNER, a planning system for solving
relational stochastic planning problems. The FODDxRNER system is evaluated on sev-
eral domains, including problems from the recent inteoval planning competition (IPC),
and shows competitive performance with top ranking systdimsur knowledge this is the
first application of a pure relational VI algorithm withouriéar function approximation to
problems of this scale. As we will see later, the results destrate that abstraction through
compact representation is a promising approach to stact@anning.

This chapter is organized as follows. Section 5.2 desctine$ODD-RANNER Sys-
tem which includes several extensions of the basic alguoréind techniques for approx-
imation. Section 5.3 presents the results of experimentplamning domains from the
IPC.

78

5.2. FODD-PLANNER 79

5.2 FODD-PLANNER

In this section we discuss the system FODDARNER that implements the VI algorithm
with FODDs. FODD-RANNER employs a number of approximation techniques that yield
further speedup over the algorithms of previous chapterse Jystem also implements
extensions of the basic VI algorithm that allow it to handie@n costs and universal goals.
The following sections describe these details.

5.2.1 Value Approximation

Reductions help keep the diagrams small in size by remowdgndancies but when the
true n step-to-go value function itself is large, legal reductiarannot help. There are
domains where the true value function is unbounded. For plaim the tireworld domain
from the international planning competition, where thelgealways to get the vehicle to
a destination city, one can have a chain of cities linked samother up to the destination.
This chain can be of any length. Therefore when the valuetimmds represented using
state abstraction, it must be unbounded. Kersting et a4pand Sanner (2008) observe
that SDP-like algorithms are less effective on domains wtiee dynamics lead to such
transitive structure and every iteration of value iteratiocreases the size of thestep-to-
go value function. In other cases the value function is niaite but is simply too large to
manipulate efficiently. When this happens we can resortpocagpmation keeping as much
of the structure of the value function as possible while rreamng efficiency. One must be
careful about the trade off here. Without approximationrtiretime can be prohibitive and
too much approximation causes loss of structure and valaendit present three methods
to get approximations that act at different levels in theoatgm.

Not Standardizing Apart Action Variants

As shown in Section 3.8.2, standardizing apart of actiomwardiagrams before adding
them is required for the correctness of the FODD based Vlrdlga. That is, if we do

not standardize apart action variant diagrams before gdtiem, the value given to some
states may be lower than the true value. Intuitively, thisuge since different paths in the

80 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

value function share atoms and variables. Now, for a fixeagcthe best variable binding
and corresponding value for different action variants magifferent. Thus, if the variables
are forced to be the same for the variants, we may rule outeviambinations of value.
On the other handhe value obtained if we do not standardize apart is a lowarrtabon
the true value This is because every path in the diagram resulting fronstastdardizing
apart is present in the diagram resulting from standardiaipart. On the other hand, not
standardizing apart leads to more compact diagrams. Wehtalapproximation method
non-std-apartand use it as a heuristic to speed up computation. Althouighhiuristic
may cause loss of structure in the representation of theevialoction, we have observed
that in practice it gives significant speedup while maintagnmost of the relevant structure.

Merging Leaves

The use of FODDs also allows us to approximate the value fumah a simple and con-
trolled way. Here we follow the approximation technique®&&RICODD (St-Aubin et al.,
2000) where they were used for propositional problems. Hea iis to reduce the size
of the diagram by merging substructures that have similaresa One way of doing this
is to reduce the precision of the leaf values. That is, fon@mi(user defined) precision
valuee, we join leaves whose value is within This can cause reduction of the diagram
because sub-parts of the diagram that previously pointelifferent leaves, now point to
the same leaf. The granularity of approximation, howevecdmes an extra parameter for
the system and has to be chosen carefully.

Domain Determinization

Previous work on stochastic planning has discovered thaddme domains one can get
good performance by pretending that the domain is detesticreind replanning if unex-
pected outcomes are reached (Yoon et al., 2007). For thi®=ppation, we use a similar
idea and determinize the domain in the process of policy ig¢ioa. This saves signifi-
cant amount of computation and avoids the typical increasazie of the value function
encountered in step 2 of the VI algorithm. Domains can berdetézed in many ways.

5.2. FODD-PLANNER 81

In our experiments we chose to perform determinization Ipyagng every stochastic ac-
tion with its most probable deterministic alternative. dugh this is not always the ideal
method of determinization, it makes sense when the mosapiteloutcome corresponds
to the successful execution of an action (Little & Thibau@02) as in the case of the do-
mains we experimented on. Determinization is done only qmu® to running VI. Note
that the determinization only applies to the process ofgyaleneration. When the gener-
ated policy is deployed to solve planning problems, it daesgrgler the original stochastic
environment.

5.2.2 Extensions to the VI Algorithm

FODD-R.ANNER makes two additional extensions to the basic algorithms @Hows the
handling of action costs, arbitrary conjunctive goals al auniversal goals.

Handling Action Costs

The standard way to handle action costs is to replage a) by R(s,a) — Cost(a) in the

VI algorithm. However, our formalism using FODDs relies ¢ tfact that all the leaves
(and thus values) are non-negative. To avoid this difficwlty note that action costs can
be supported as long as there is at least one zero cost adimsee this recall the VI
algorithm. The appropriate place to add action costs idjefire the Object Maximization
step. However, because this step is followed by maximizireg the action diagrams, if at
least one action hascost (if not we can createra-op action), the resultant diagram after
maximization will never have negative leaves. Thereforesafely convert negative leaves
before the maximization step tocand thereby avoid conflict with the reduction procedures.

Heuristically Handling Universal Goals

FODDs withmax aggregation cannot represent universal quantifiers. Torereur VI

algorithm cannot handle universal goals at the abstraet gw Chapter8 we develop a
formalism that does accept arbitrary quantifiers). For acoete planning problem with a
known set of objects we can instantiate the universal gogéta large conjunctive goal.
In principle we can run VI and policy generation for this largonjunctive goal. However,

82 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Initial State —> Goal b

a b c c

Figure 5.1: Example where the AGD heuristic awards equalevéd the optimal and sub-
optimal actions

this would mean that we cannot plan offline to get a genericcp@nd must replan for
each problem instance from scratch. Here we follow an at@re heuristic approach
previously introduced by Sanner and Boutilier (2006) anelars approximation of the true
value function, that results from a simple additive decosijpan of the goal predicates.

Concretely, this additive goal decomposition (AGD) hetigisvorks as follows. Dur-
ing offline planning we plan separately for a generic versibeach predicate. Then at
execution time, when given a concrete goal, we approxiniegértie value function by the
sum of the generic versions over each ground goal prediddtes. is clearly not an exact
calculation and will not work in every case. On the other hancbnsiderably extends the
scope of the technique and works well in many situations.

However, this heuristic is limited and does not apply weltltonains where goal liter-
als must be achieved in some order. As an example considebéepr in the well known
blocksworld domain. In this domain the world consists ofdi®on a table in some con-
figuration. The objective is to rearrange the blocks into sather specified configuration
by picking them and putting them down. Figure 5.1 shows a Empample problem in
this domain. Clearly the blockhas to be put on blockbeforea is put onb. However, the
AGD heuristic adds up the values for each individual goallltesy in the effect that the
action that puts onb first and the one that putson ¢ first get equal value. This results in
the wrong action being chosen half of the time. For problentis alarger domain this can
cause failure of plan execution.

To address this issue, we propose a new heuristic based @itedigoal ordering
(WGO). The idea is to first get a partial ordering between gaaih of goal literals. We
use the following heuristic. For each pair of goal literglsand g, we check if—g, is
a precondition for some action to bring abayt If this condition is satisfiedg; must

5.2. FODD-PLANNER 83

be achieved beforg, in the partial order. The intuition here is that precondisexpose
some obvious ordering constraints on the goals. ldengfalh such constraints amounts
to solving a deterministic planning problem. Instead theristic identifies constraints that
we can discover easily.

Respecting this partial order we impose a total order on tedsgn an arbitrary way.
Finally the value of an action is calculated by adding theugalof the individual goals
literals as before, except that this time we weight the \@hfethe individual sub-goals in
proportion to their position in the total order. The valuetloé goal literal at position is
weighted byw'~!. The weight parameter (0 < w < 1) is user defined. As expected,
smaller weights are better for domains with interacting-gohls and large weights are
better for domains where sub-goals are independent. Irkdmajgle in Figure 5.1, an action
that putsz onb will get a lower value than the action that patsn c in the start state. These
ideas help serialize any obvious ordered set of goals aresgiweak preference ordering
on other sub-goals. This leads to significant improvemenp&rformance in domains with
interacting dependent sub-goals as we show in the nexbsecti

5.2.3 The FODD-Planner System

We implemented the FODD+RANNER system, plan execution routines and evaluation
routines under Yap Prolog 5.1.2. Our implementation usdmale theorem prover that
supports background knowledge by “state flooding”. Thabigrove5 = X — Y, where

X is a ground conjunction (represented in prolog as a list);fl@ed” X using rules of the
background knowledge using the following simple stepsl gotivergence.

1. Generate/, the set of all ground literals that can be derived franand the rules of
background knowledge.

2. SetX =X U Z.

When X has converged we test for membershipYofin X. Because of our restricted
language, the reasoning problem is decidable and our threprever is complete. An
alternative to the list representation &f would have been to utilize the prolog database
to store the literals ofX and employ the fast prolog engine to quéfy However, in our

84 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

experience with Yap, it becomes expensivassert(andretract) the literals ofX to (from)
the prolog database so that the list representation isrfaste

The overall algorithm is the same as SDP except that all tipesaare performed on
FODDs and reductions are applied to keep all intermediatgrdms compact. In the ex-
periments reported below, we use all previously mentioeddctions (R1-- R11) except
R7-replace. We applied reductions iteratively until nougtitbn was applicable on the
FODD. There is no correct order to apply the reductions ingbese that any reduction
when applied can give rise to other reductions. Heuridjicaé chose an order where we
hope to get as much of the diagram reduced as soon as po¥8é&pply reductions in the
following order. We start by applying R10 twice with a diféet DPO each time. The first
DPO is generated by breaking ties in favor of shorter pathse Jecond is generated by
reversing the order of equal valued paths in the first DPOh\R0 we hope to catch many
redundant edges early. R10 is followed by R7-drop to remedemdant nodes connected
to the edges removed by R10. After this, we apply a round aftedhg reductions followed
by R9 to get rid of the redundant equality nodes. R9 is folld\wg another round of strong
reductions. This sequence is performed iteratively uhtl diagram is stable. In effect
strong reductions are applied every time two diagrams anebaoed and weak reductions
are applied every time two diagrams are combined excephduegression by block com-
bination. We chose to apply R11 only twice in every iterati@nce after regression and
once just before the next iteration. This setting for agglan of reduction operators is
investigated experimentally and discussed in Sectiori5.3.

5.3 Experimental Results

We ran experiments on the logistics problem as well as pritbtplanning domains from
the international planning competitions (IPC) held in 2608 2008. All experiments were
run on a Linux machine with an Intel Pentium D processor rograt 3 GHz, with 2 GB
of memory. All timings, rewards and plan lengths we repoet averages over 30 rounds.
For each domain, we constructed by hand background knowlesigricting arguments of
predicates (e.g., a box can only be at one city in any timBsgb, ¢,), Bin(b, cz) — (¢1 =
c2)). This is useful in the process of simplifying diagrams. Tuwenain definition (TVDs

5.3. EXPERIMENTAL RESULTS 85

Tireworld: R7 vs. R10

30000 /*

25000 H ——R10
/ —#-R10+R11
R10+R9
=>=R10+R9+R11
—*¥=R7
R7+R11
R7+R9
R7+R9+R11

20000 /*

CPU time (seconds)

15000 /

10000 /

5000 /J
T

0 —i——— {1

1 2 3 4

of Iterations

Figure 5.2: A comparison of planning time taken by variousisgs of reduction operators
over varying number of iterations. Four settings of R10 ammpared against four settings
of R7.

and reward function diagrams) was generated by translatiedPC encoding, which is
given in the PPDDL language (Younes et al., 2005), manudityavoid long execution
times, we set a limit 0200 steps on the plan length when solving IPC problems. Plans tha
ran for more thar200 steps were counted as failed.

5.3.1 Merits of Reduction Operators

In our first set of experiments we used the tireworld domaiocampare the relative merits
of the new reductions R9, R10 and R11 along with R7. The experial setup was the
same as detailed in Section 5.2.3. Since R10 and R7 are bgétrechoval reductions and
R7-drop is used in conjuction with both, we compare R10 ta&Mace directly under all
configurations of R9 and R11. Figure 5.2 shows the time tadbaipolicy over varying
number of iterations for different settings of these wealuaion operators. Strong reduc-
tions were always applied. The figure clearly shows the sapgrof R10 over R7-replace.
All combinations with R7-replace have prohibitively largen times at3 or 4 iterations.
With or without R9 and R11, R10 is orders of magnitude moreieffit than R7-replace.

86 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Tireworld: Merits of R9 and R11

25000
20000 I
§ / ——R10
[*]
8 15000 [
g —B-R10+R11
(]
£ 10000 R10+R9
2
S —=R10+R9+R1
5000 A 1
0 %M

1 2 3 4 5 6 7

of iterations

Figure 5.3: A comparison of the merits of R9 and R11 in thegmes of R10

It is for this reason that in all future experiments we use@ Riktead of R7-replace. Fig-
ure 5.3 shows the relative merits of R9 and R11 in the preseh&d0. Clearly R11 is
an important reduction and it makes planning more efficieriath settings (just R10 and
R10+R9). Another fact, while not evident from Figure 5.3that R9 improves planning
performance when the number of iterations is smalq(3). This makes sense because
R9 eliminates equality nodes and combines the sub-FODDesruhdm. When diagrams
get larger (as with more iterations), combinations can poedeven larger diagrams and
slow down reductions. Even so, R9 can help in not infrequasés where the combination
does not produce a larger diagram. At the same time, givemtegar setting (just R10
or R10+R11) the addition of R9 does not cause a significamt sirperformance even for
more iterations. In addition, R9 targets the removal of &tguaodes which no other re-
duction does directly. Based on these results we choosesthegswhere we employ R10
along with R9 and R11 for the experiments henceforth.

5.3. EXPERIMENTAL RESULTS 87

Blocksworld: Coverage vs. #
Interacting Goals

IR .\. .<.7
== Additive Goal
\ Decomposition
Heuristic
\0\ = Weighted Goal

Ordering
\ Heuristic

N
o

-

o
o

Coverage
o
o

<
~

o
N

o

2 3 4 5 6
Interacting Goals

Figure 5.4: WGO Heuristic vs. AGD Heuristic

5.3.2 The Logistics Benchmark Problem

This is the running example introduced in ChapterBecause of the assumption that all
cities are reachable from each other this domain has a cdrapsiract optimal value func-
tion. Like ReBel (Kersting et al., 2004) and FOADD (Sann&)&) we were able to solve
this RMDP and identify all relevant partitions of the optimalue function and in fact the
value function converges after 10 iterations. FODDaRNER performed10 iterations in
under2 minutes.

5.3.3 Conjunctive Goals and Goal Ordering

Before presenting results on IPC benchmarks we demonslratéifference between the
AGD and the WGO heuristic. The difference between the twmbexs apparent in do-
mains where the order in which goal literals are achievednigartant. To test this we
generated problems with blocks in the blocksworld domain with increasing number of
interacting goals. This was done by manually constructiogl gtates with towers of in-
creasing height. Figure 5.4 plots the percentage of planpinblems solved against the
number of interacting goal literals on these problems wivegeset the parameter to
0.8. We observe that as the number of interacting goals incsedlse AGD heuristic is

88 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Coverage| Time (ms) | Reward
GPT 100% 2220 57.66

Policy Iteration with
policy language bias 46.66% 60466 36

Re-Engg NMRDPP| 10% 290830 | -387.7
FODD-Planner 100% 65000 47.3

Table 5.1: Fileworld domain results

out-performed by the WGO heuristic. In domains where theoad achievement of goal
literals is not crucial to solving the planning problem, IN& O heuristic has no effect. For
such domains we set the parameter td.0 causing the WGO heuristic to fall back on the
AGD heuristic.

5.3.4 The Fileworld Domain

This domain was part of the probabilistic track of IPC-4 (2P@http://Is5-web.cs.uni-
dortmund.detedelkamp/ipc-4/). The domain consists of files and fold&ngery file ob-
tains a random assignment to a folder at execution time amdahal is to place each file

in its assigned folder. There is a cost of 100 to handle a fadakel a cost of 1 to place

a file in a folder. Results have been published for one probietance which consisted
of thirty files and five folders. The optimal policy for this mhain is to first get the as-
signments of files to folders and then handle each folder,guleeing all files that were
assigned to it. Because the goal is conjunctive we used tthiévedgoal decomposition
discussed above. We used offline planning for a generic fided(a) and use the policy

to solve for any number of files. This domain is ideal for adstisolvers since the optimal
value function and policy are compact and can be found guickhe FODD-RANNER

was able to achieve convergence within 4 iterations evehowitapproximation. Policy
generation and execution together t@dkseconds. Of the 6 systems that competed on this
track, results have been published for 3 on the website altede. Table 5.1 compares the
performance of FODD-EANNER to the others. We observe that we rank ahead of all ex-
cept GPT in terms of total reward and coverage (both FODIBNRER and GPT achieve
full coverage). We do not get perfect reward in spite of a esged exact value function
because of the additive decomposition of rewards. The pgknerated is optimal for one

5.3. EXPERIMENTAL RESULTS 89

Tireworld: Coverage vs. Problem
Instance

LNV AN
ll V.V e

0.6 B FOALP

FPG

04 X Para
] FF
0.2

|

Coverage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem Instance ID

Figure 5.5: Coverage result of tireworld experiments

file but it is still a heuristic for many files. The order of gdiérals is not important and so
thew parameter was set o0 in these experiments.

5.3.5 The Tireworld Domain

This domain was part of the probabilistic track of IPC-5 (8DThe domain consists of a
network of locations (or cities). A vehicle starts from onty @and moves from city to city
with the objective of reaching a destination city. Moves ocaty be made between cities
that are directly connected by a road. However, on any moze/é¢hicle may lose a tire
with 40% probability. Some cities have a spare tire that caroladed onto the vehicle.
If the vehicle contains a spare tire, the flat tire can be chdngith 50% success proba-
bility. This domain is simple but not trivial owing to the pkility of a complex network
topology and high probabilities of failure. Participant$RC-5 competed over 15 problem
instances on this domain. To limit offline planning time wstrieted FODD-RANNER to

7 iterations without any approximation for the first 3 itecats and with the non-std-apart
approximation for the remaining iterations. The policy vggerated in 2.5 hours. The
goal always contains a single literal describing where thkisle should be. Therefore

90

CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Tireworld: Average runtime (ms) vs.
Problem Instance

1000000
m
m
100000

A
E 10000
o | n N
E - ——FODD
S 1000 - | u
] > B FOALP
]
g X < % X % X FPG
] 100 KX % S X Para
2 RYX XX XXX g X x XXX B

10

1

172 3 45 6 7 8 9101112131415

Problem Instance ID

Figure 5.6: Timing result of tireworld experiments

Tireworld: Average # Actions to
Goal vs. Problem Instance
14
12 +i .
g
O 10
e
(]
s 8 ——FODD
g ® FOALP
® 6 FPG
g X Para
s 41
I X FF
5
12 3 4 5 6 7 8 9 10 11 12 13 14 15
Problem InstancelD

Figure 5.7: Plan length result of tireworld experiments

5.3. EXPERIMENTAL RESULTS 91

Precision| Planning Time| Execution Time (sec) Coverage| Plan length
50 81.89% 87.77 13.99 7.47
75 95.10% 90.33 15.48 10.40
100 95.13% 90.52 15.48 10.40
125 99.37% 94.78 32.99 -30.93
150 99.47% 94.88 32.99 -30.93

Table 5.2: Percentage average reduction in planning tixexwtion time, coverage and
plan length, for tireworld under the merging of leaves appration for varying leaf pre-
cision values. For example, the first row of the table stdtaslby reducing the precision
on the leaves t60, which is10% of the largest achievable reward in any state, the planning
time was reduced b§1.89% of its original value, average execution time was reduged b
87.77%, average coverage was reduced By9% and average plan length was reduced by
7.74%

ordering goal literals is not relevant. The performance OMD-PLANNER and systems
competing in the probabilistic track of IPC-5, for which tdas published, is summarized
in Figures 5.5, 5.6, and 5.7. The figures show a comparisoheopércentage of problem
instances each planner was able to solve (coverage), thagavgéme per instance taken
by each planner to generate an online solution, and the g&eramber of actions taken
by each planner to reach the goal on every instance. We abseat the overall perfor-
mance of FODD-PANNER is competitive with (and in a few cases better than) the other
systems. Run Times to generate online solutions are high@DD-R.ANNER but are
comparable to FOALP which is the only other First-Order plan Overall run time of our
system (offline plus online) is within the time limit of theropetition. On the other hand,
in comparison with the other systems, we are able to achigyedoverage and short plans
on most of the problems.

Although this domain can be solved as above within the IP@ tiome might wish for
even faster execution. As we show next, the heuristic of mgréeaves provides such
a tool, potentially trading off quality of coverage and plength for faster planning and
execution times. Table 5.2 shows the average reductionainnihg time, coverage and
planning length achieved when the approximation of merdgages is used. The highest
reward obtained in any statei80. We experimented with reducing precision on the leaves
from 50.0 and150.0. As the results demonstrate, for some loss in coverage amhipig
length, the system can gain in terms of execution time andnotg time. For example,

92 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

Boxworld: Coverage vs. Problem
Instance

1.2

AR Y A
| \/ \/

0.6
\/ —FODD

0.4 B RFF

Coverage

0.2

1 2 3 4 5 6 7 8 9 10 11 12

Problem Instance ID

Figure 5.8: Coverage results of boxworld experiments

with leaf precision ofl0% we get81.89% reduction in planning times(fold speedup) but
we losel3.99% in coverage.

5.3.6 Boxworld

In this domain from IPC 2008, the world consists of boxesgkay planes and a map of
cities. The objective is to get boxes from source cities ttidation cities using the trucks
and planes. Boxes can be loaded and unloaded from the trackplanes. Trucks (and
planes) can be driven (flown) from one city to another as Iathare is a direct road (or
air route) from the source to the destination city. The onlgbabilistic action idrive.
drive works as expected (transporting the truck from the soutyg@ithe destination city)
with probability0.8. With probability0.2 drive teleports a truck to the wrong city.

IPC postedi5 problems with varying levels of difficulty for this domain.o@petition
results show that RFF (Teichteil-Koenigsbuch et al., 20@8) theonly system that solved
any of thel5 problems. Neither RFF nor FODDERNNER could solve problems3 to
15. Hence we omit results for those.

5.3. EXPERIMENTAL RESULTS

Boxworld: Average # Actions to
Goal vs. Problem Instance

2000 -
[
S 1600 - —
(O]
e
2 1200 -
S
C
< [-
* 800 | L FODD
) B RFF
o
[
X 400 - |
- mE N
T T T T

1 2 3 4 5 6 7 8 9 10 11 12

Problem Instance ID

Figure 5.9: Plan length results of boxworld experiments

Boxworld: Average Reward vs.

Problem Instance ID

2000
1800
1600
1400
1200
1000
800
600 -
400
200 A

——FODD
B RFF

Average Reward

1 2 3 4 5 6 7 8 9 10 11 12

Problem Instance ID

Figure 5.10: Average reward results of boxworld experirsent

94 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

To limit offline planning time we determinized this domaingkmngdrive determinis-
tic) and restricted FODD-EANNER to 5 iterations. Since the domain was determinized,
there was only one alternative per action. Therefore thenthrestd-apart approximation
has no effect here. The policy was generatethim minutes. Goal literals in this domain
can be achieved independently of each other. Thereforeaydaling is not effective and
thew parameter was set tb0. The performance of FODD4RNNER and RFF is sum-
marized in Figures 5.8, 5.9, and 5.10. The figures show a cosgueof the percentage of
problem instances each planner was able to solve (coverthgegverage reward achieved
per problem instance, and the average number of actions tgkeach planner to reach the
goal on every instance.

As can be seen FODDtRNNER has lower coverage than RFF on problenos 11
and12. However, our performance is close to RFF in terms of accatedlreward and
consistently better in terms of plan length even on problednsre we achieve full cover-
agé. In this domain we experienced extremely long plan exeauiimes (.5 hours per
round on hard problems and abdi) seconds per round on the easier problems). This
could be a one reason for the failure of other planning systamPC where a strict time
bound was observed, and for the failure of RFF on problésng4 and15. Improving run
time of the online application of our policies is an impottaspect for future work. One
direction might be to employ a more efficient subsumptiont@iiag a rule to the state)
routine. Another possibility is to cache queries to the @okODD.

In this domain the heuristic of merging leaves did not prevashy advantage. As in
tireworld, there is a clear trade off between the quality oferage and planning time.
However the loss in coverage is very high for the planningfficy gained. Additionally,
this heuristic does not reduce execution time, which is thérhottleneck in this domain.

5.3.7 Blocksworld

This is the classic domain discussed in the context of gadrarg above. This domain has
many variants. In IPC 2006 this domain was described pyobabilistic actions. For the

When coverage is not full it is possible that a system soliny easy problems can look better in terms
of planning length (because their solutions are shorted)tharefore average planning length is not a good
criterion for comparison. However with full coverage plamplength provides a valid comparison

5.3. EXPERIMENTAL RESULTS 95

Blocksworld: Coverage vs.

Problem Instance
1.2

" VA

o
o
o
% : \I \ l B FOALP
o

0.4 X Para

V \ l X FPG
0.2 X FF
0 thrh A Ardrh A Ardrdn VAR 2 VIRV

12 3 45 6 7 8 910 1 1213 14 15

Problem Instance ID

Figure 5.11: Blocksworld Coverage Results

Blocksworld: Average # Actions to

Goal vs. Problem Instance
300

250

200
X X —FODD
150 * B FOALP

X
100 &
X _ m X FPG
50 v X X5 A I~ wrm X FF
e \/
0 +h A A A A A A A A A KKK kXK
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Para

Average # Actions to Goal

Problem Instance ID

Figure 5.12: Blocksworld Plan Length Results

purpose of VI we simplified the domain by determinizing it.€lesultant blocksworld do-
main consisted ot deterministic actions - pick-up-block-from-table, piak-block-from-
block, put-block-on-table, put-block-on-block.

96 CHAPTER 5. STOCHASTIC PLANNING WITH FODDS

We limited FODD-RANNER to 8 iterations to stay within competition times. The pol-
icy was generated i8.46 hours. IPC postetl problems with varying degrees of difficulty.
The goal is each of these problems is a configuration of blooksisting of a set of tow-
ers. The goal state, therefore, consists of multiple irtérg goal literals. Hence, the goal
ordering heuristic is useful in this domain. In our expemtgewe achieved no coverage
with the AGD heuristic but full coverage on almost all of thelplems by switching to the
WGO heuristic. Thev parameter was heuristically set@@®. Figures 5.11 and 5.12 show
the comparison of cover and plan length of the FODDxPNER with systems competing
in IPC 2006. FODD-PANNER achieves performance close to the top rankers in terms
of both metrics. We experienced long plan execution timiesi)a to the boxworld prob-
lems, for the harder problemg((to 15) in this domain. Again, improving this aspect of
the system is left to future work. The heuristic of mergingves was not helpful in this
domain.

5.4 Summary and Concluding Remarks

The main contribution of this chapter is the introductiorF@DD-PLANNER, a relational
planning system based on FODDs as the underlying repreégentdhis is the first plan-
ning system that uses lifted algebraic decision diagranits aspresentation language and
successfully solves planning problems from the IPC.

We also introduced the WGO heuristic for goal ordering in RRAD Although WGO
requires setting the weight parameter,it performs better than previous heuristics on do-
mains where goal literals have to be achieved in a certaierohd exploratory experiments
we observed that the performance of FODDARNER is consistent over large parts of the
weight space. Therefore future work may include experimevtiere thav parameter is
learned or set by cross-validation.

The experimental results show that abstraction throughpamtirepresentation is a
promising approach to stochastic planning. They also naiaay interesting questions
concerning foundations for FODDs and their applicationdlys RMDPs. One important
aspect is the question of reductions. Our set of reductisrssill heuristic and does not

5.4. SUMMARY AND CONCLUDING REMARKS 97

guarantee a canonical form for diagrams which is instrualeiot efficiency of proposi-
tional algorithms. Identifying such “complete” sets of vetions operators and canonical
forms is an interesting challenge. Identifying a practicglood set of operators trading
off complexity for reduction power is crucial for further plcability. In the next chapter
we develop novel methods for improving the applicability afficiency of reductions to
achieve even better performance.

Chapter 6
Model-Checking Reductions

One characteristic of systems based on the SDP algorithnmageheral systems that rea-
son with relational representations is the need for logizaplification of formulas. In SDP
based systems, like our FODD-ANNER for example, backward reasoning introduces re-
dundancies in the structure of the value function, creagimged for logical simplification

in order to maintain a value function of reasonable size. Sihplification steps are at the
core of SDP based systems and they must be implemented mfficido date, all such
systems (Kersting et al., 2004; Holldobler et al., 2006nr&a & Boutilier, 2009) have
employed theorem proving to identify and remove redundamncT his is also true for the
FODD-PLANNER as described in the previous chapter. However, theoremmy@omes
with two major drawbacks.

e Firstly, it is expensive.

e Secondly, in all but trivial domains, reduction effectiyeéquires the theorem prover
to have access to some background knowledge from the donk@nexample in
the logistics domain, knowledge that a box cannot simutiasly be in more than
one city has to be supplied to the theorem prover. By encoditgiled background
knowledge, more redundancies can be identified but thigasgs the run time of
the theorem proving routine. On the other hand, if one enstoke little background
knowledge, it is impossible to identify redundant struetim the value function and
when the value function is large, reasoning becomes slows fféde-off has to be

98

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 99

balanced by encoding just the right amount of backgrounaveutge, a challenging
task when we aim for domain independent solutions.

In this chapter we show that both of these issues can be n@tidey changing the focus
to model-checking reductions. More precisely, we presbkatitiea of model-checking
reductions and give an algorithm which is sound and compbeteeducing FODDs. Next
we design practical variants of this algorithm thus develgmpproximate but efficient
reductions for FODDs.

6.1 R12: The Model Checking Reduction for FODDs

In this section we introduce a new reduction operator R12 @dsic intuition behind R12
is to use the semantics of the FODD directly in the reductimtgss. According to the
semantics of FODDs the map is generated by aggregationuwésalbtained by running all
possible valuations through the FODD. Therefore, if we fip@ssible valuations through
the diagram and document the behavior of valuations untpoasible interpretations, we
can identify parts of the diagram that are never importantitermining the map. Such
parts can then be eliminated to reduce the diagram. Crycwaith some bookkeeping, it
is possible to obtain this information without enumeratatigoossible interpretations and
by enumerating all possible valuations over just the véemin the diagram.

Enumeration of all possible interpretations can be avomét the observation that
although there can be many interpretations over a set of oloolgects, there are only a
fixed number of paths in the FODD that a valuation can travefse a given valuation,
any interpretation can be classified into one of a set of edemce classes based on the
pathp that it forces(through. All interpretations belonging to an equivalentass have
the following in common.

1. They force(through pathp.
2. They force(to the same leaf - leat].

3. They are consistent with PH(().

100 CHAPTER 6. MODEL-CHECKING REDUCTIONS

PCI(T)
: 2 p(x)
Ply R1Z2 > A DPO

10 0 1) p(x): 10
10 0 2) -p(x), p(y) : 10
3) -p(x), -p(y) : 0

10-{1t}-{p(a)}, O-{1f2f}-{-p(a)}
10-{1t}-{p(a)}, 10-{1f2t}-{-p(a).p(b)}, O-{1f2f}-{-p(a).-p(b)}
10-{1t}-{p(b)}, 10-{1f2t}-{-p(b).p(a)}, O-{1f2f}-{-p(a).-p(b)}
10-{1t}-{p(b)}, O-{1f2f}-{-p(b)}

O|lo|lo |o |Xx
|9 |T|9 |«

MTAX-S LOALG-p(@), pO) Target(1f) can
Aggregation: T 10-{1t-{p(a). -p(b)} be replaced by
10-{1t}-{-p(a), p(b)} 0

Figure 6.1: An example of reduction operator R12 for FODDsclEentry of the form
value{ path}-{interpretatior} in the table expresses the value obtained by running the val-
uation of the corresponding row through the diagram undezaanvalence class of inter-
pretations. The MAX-3 aggregation function then calcudéatee possible aggregates that
could be generated under different equivalence classedgaspretations. Since the edgke
does not appear along any of the paths leading to a non-zdrmlthe result of MAX-3, it

is not crucial towards determining the map and can be removed

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 101

PF@)(C) is, thus, the most general interpretation that for¢gbroughp and can be
viewed as a key or identifier for its equivalence class. Fergurpose of reduction we are
not interested in the interpretations themselves but anthé paths that they force valua-
tions through. Therefore we can restrict our attention ®ehuivalence classes and avoid
enumerating all possible interpretations. In other woifdsge collect the abstract interpre-
tation PFp)(¢) for every pathp that a valuatiord could possibly take (i.e. every path where
PF{)(¢) is consistent), along with the corresponding path andreathed, we will have
all information we need to describe the behavio¢ aihder all possible interpretations. The
proceduregetValuedescribed below, does exactly that by simulating the runwaflaation
through a FODD. The output of the procedure is a sétaff, F'L, I) triplets, wherdea f
is the leaf reached by the valuatigiby traversing the path (described by the set of edges
EL) andI = PFp)(¢). We rungetValuefor valuation{ with root nodern and empty sets
for PF andFE L

Procedure 5 getValue(valuatioq, PathFormulaP F', EdgeListE L, Noden)
1. Ifnis aleaf, return{{l(n), EL, PF'}}

2. If B = PF — I(n)(¢), then return getValue(PF Ul(n)(¢), EL Uny, target(q,:))
If B = PF — =l(n)(¢), then return getValug(PF U —l(n)(¢), EL U nyy,
target(u, ;))

Return getValue(PF U l(n), EL U n, target(:.;)) U getValue(, PF U —i(n),
ELUn g, target@ ¢))

Figure 6.1 shows an example of the R12 reduction. The remluiapplied to the FODD
on the left to reduce it to the FODD on the right. The tablesilfates the result of running
the getValue procedure on all possible valuations overéhefsdomain object$a, b} and
the variables: andy appearing in the left FODD. For example, the traversal ofi@abn
{z/a,y/b} through the FODD has 3 possible eventualities. Either ithiea al0 leaf by
traversing patH{ 1t} (which is short forpath consisting of the true edge of noe under
abstract interpretatiofip(a)}, or it reaches a0 leaf by traversing path1f2¢} (which is
short forpath consisting of the false edge of ndd®llowed by the true edge of nodg 2
under abstract interpretatigrp(a), p(b)} or (in all other cases) it reache$) deaf.

102 CHAPTER 6. MODEL-CHECKING REDUCTIONS

Note that the different behaviors of a valuation are muyuaXclusive because the ab-
stract interpretations associated with these behaviaotgipa the space of worlds. Any in-
terpretation must be consistent with exactly one of thes&radt interpretations and hence
must force the behavior corresponding to that abstractprééation on the valuation.

Thus with the help of the getValue procedure, the possibhatiers of all valuations
over a set of domain objects can be tabulated. The next stegenerate all possible ways
in which an aggregate value can be derived. This can be dam®uwtienumerating all
interpretations. The table gives sufficient informatioispall possible ways to aggregate
over the set of all valuations. Just consider all combimatiof behaviors over the set of
valuations. Every combination (as long as it is consistean) produce an aggregate value
or the map.

The aggregation, however, has to be done so as to exposeltia¢ioas (and thereby
the paths) that prove to be important for determining the mhbguitively, then, paths
that remain unexposed in spite of listing all possible wayadgregate over the set of all
valuations are unimportant and can be removed. To this dednéxt section introduces
variants of thenaz aggregation function denotedax? andmaa?®.

6.1.1 Generalized Aggregation Function and the R12 Reduacn

When calculating the map, the max aggregation operatioppéied to values obtained
by evaluating the FODD under different valuations. For Rd2, are interested not just
in the aggregate value but also in other information reldtethe aggregate value. This
information could be

1. The valuations that were indispensable in generatingglgeegate value.
2. The paths followed by those valuations.
3. The minimal interpretation under which the valuationsenenportant.

In max aggregation, only one valuation is indispensable in ge¢imgrdhe aggregate
— the valuation corresponding to the highest value (if it isque). If all values below
the highest were to be removed from the inputreetr aggregation would still return the

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 103

same result. Therefore none of the removed values are iangddr determining the result.
Recall from Chaptet that a path is instrumental relative to a given DPO if

1. there is an interpretatiohand valuation¢, such thatPathp (I, () = p;, and
2. V valuationsy, if Pathg(I,n) = py, thenk > j.

Thus valuations that are indispensable towards generatiggregate value follow instru-
mental paths. Removal of such paths can cause the map toechatighon-instrumental
paths, however, can be safely removed.

Algorithmically we define three variants of theax aggregation operator.

max': The first variantnaz! is the usual aggregation operator that given a set of values
{v1, - - -v, } returns the aggregaie= max({vy, - - v, }).

max?: The second variantiax? is defined relative to a DPO as follows. LEtL be

a fixed DPO. UndePL, max?({{vy, pathy, I1),{vs, pathy, I5),- - - (v, path,, I,)}) = (v,
path,, 1,). The input to the second variant is, therefore, a set of &tupf the form
(v, path;, I;). Each 3-tuple corresponds to a valuati@so that(; traverses pathath; in
the FODD under interpretatiof (and therefore all consistent extensions of interprematio
I;) to reach leai;. The output is a 3-tuple defined as:

1. v, = maz*({v,va - - v, }).
2. Io = U?:l [Z
3. path, = path; such that; = v, andi = min{j | v; = vo}.

The example in Figure 6.1 shows the DPO and the 3 possiblegation results derived
from the table. Each of the 3 results is derived usingthe:? variant. For example,
aggregating over

e (10,{1t},{p(a)}) for {z/a,y/a},
e (10,{1t},{p(a)}) for {z/a, y/b},

104 CHAPTER 6. MODEL-CHECKING REDUCTIONS

e (10, {1t},{p(b)}) for {z/b,y/a}, and
o (10,{1t}, {p(b)}) for {w/b,y/b},

using themax? variant gives(10, {1¢}, {p(a), p(b)}) indicating that there is a possible
aggregation where the path consisting of the efige is instrumental in determining the
map. Note that the resulting partial interpretatigiia), p(b)} is consistent but this does
not have to be the case.

maz?®: The third variantnaz® gets as input a s@t. Each element of is a(valuation —
valueset) pair. Avalueset is itself a set ofvalue, path, Interpretation) triplets. In Fig-
ure 6.1 each row of the table is(aaluation — valueset) pair. LetT = {(valuation, —
valuesety), (valuations — valuesetsy), - - - (valuation,, — valueset,)}. Thus in Figure 6.1,
T is the entire table and each elemenfab a row of the table. Let” be the corresponding
set{valuesety, valuesets, - - - ,valueset, }. LetT” be the cartesian product of the sets in
T'. Each elemert; of 77 = {ey, €9, - - - , e}, then, is a set ofvalue, path, Interpretation)
triplets. max3(T) is then defined as

maz®(T) = {(value,,path,,I,)

= maz*(e;) | e; € T", value, > 0, I, #=<}

Thus,maz?®(T) is the collection of results of.az* applied to each element @ where
the combined interpretation is consistent and the aggeegmltie is greater thah. The
cartesian product is taken to make sure that we consideoa8liple ways in which a map
can be generated in the FODD.

The example in Figure 6.1 shows the result of applying:® to the elements in the
table. Although there aré x 3 x 3 x 2 = 36 possible combinations of valuation be-
haviors (and henc86 elements inT"”), only 3 of these combinations result in a con-
sistent combined interpretation and positive value. Fangxe, under the given DPO,
max*({(10,{1t}.{p(a)}), (10.{1t},{p(a)}).(10.{1f2t} {p(a),~p(b)}), (10.{1}.{p(b)})})
= (10,{1t},{p(a), p(b), —p(b)}) is omitted from the result ofnaz®(T") because the com-
bined abstract interpretation is inconsistent. Aggregegiresulting ir) value are ignored

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 105

becaus®), being the smallest obtainable value, is uninterestingutiternaz aggregation
semantics. Observe that in this example, the gath is the only instrumental path. Intu-
itively this implies that the target of any edge not on thithp@or instance edgéf) can be
set to0 without changing the map. The resulting FODD is shown on e r

This process is formalised in procedures 6 and 7.

Procedure 6 R12(B)
1. FixaDPOPL.

2. Invent as many new objects as the number of variablés iretO be the set of these
new objects.

3. LetU be the set of all possible valuations of the variable®ioverO.

4. LetS = Reduction-Aggregatioi{, U, PL) =
{(valuey, pathy, I), (valueq, paths, I5), - - - (value,, path,, I,)}.

5. LetE’ = {e | e is an edge in pathpath; and{leaf(path;), path;, I} € S for some
I}. ThusE' is the set of all edges that appear on any path exposed in gigttn
the setsS.

6. DefineE = B — E’, whereBy; is the set of all edges iB.
7. Vedges € F, set targetf) in B to 0 to produce FODDB'.
8. returnB'.

Procedure 7 Reduction-Aggregatiof, U, PL)
1. LetVal = {}

2. Do for every valuatiog € U

(a) valueset = getValue(, {}, {}, Broot)
(b) Add the entry(, valueset] to Val

3. LetT = maz?®(Val) underPL.

4. returnT

106 CHAPTER 6. MODEL-CHECKING REDUCTIONS

6.1.2 Proof of Correctness

This section shows that the R12 procedure removes exadlyight edges in its input
FODD. We show that our procedure identifies the set of edgesstrumental paths and
that all other edges can be removed, thus showing both sesedind completeness. We
follow with the technical details.

Lemma 16 If a pathp; in FODD B is instrumental under DP@L, and reaches a non-
zero leaf, therd I, such that{leaf(p;), p;, I,} € S.

Proof: If p; is instrumental undePL then3 I, ¢, Pathg(I,() = p; and¥ n, Pathg(I,n)
= p; impliesj > i. Let O’ be the set of objects ih that participate irg. Clearlyl < |O’|
< |O|. Leto; be an object ir0’. Add |O| — |O’| new objects t@)’ to make the set® and
O’ equal in size. Construct interpretatiéhby first projecting/ to include only the objects
in O’ and then defining truth values and predicates over the negctshjo behave identical
to 0.

Since !’ includes the relevant portion df there is a valuation that traversgsunder
I'. Additionally, if 3¢, Pathp(I’, f) = p;, Wherej < 4, we can construct valuatiapby
replacing the new objects inby o; so thatPathp(I,¢) = p;. However, we know that
n, Pathg(I,n) = p; impliesj > i. Therefore we conclude thatn, Pathg(I',n) = p,
impliesj > 1.

Let U now, be the set of all valuations of the variablesBnover O’. Let I, =
U, (PE(Pathg(I’,m)))n. Thatis, I, includes all the atoms of’ that participate in
traversing paths i3 for all » € U. By construction the corresponding paifaF' (Pathg(I’,
n)))n will be included in thevalueset returned by the getValue procedure. CledpyC I'.
Therefore ifl’ is consistent then so i5. By the definition ofnaz?, S = max?(Val) under
PL must contain{leaf(p;), p;, I, } when leaff;) is non-zero. [

Lemma 17 If there exists an instrumental path undBr. that crosses edgein B and
reaches a non-zero leaf, there £'.

Proof: If there is an instrumental pafh) € PL that crosses edgeand reaches a non-zero
leaf, then by Lemma 18 [, such that{leaf(p;), p;, [,} € S. By definition of E’, e € E'. m

6.1. R12: THE MODEL CHECKING REDUCTION FOR FODDS 107

Theorem 8 (soundness)f FODD B’ is the output of R12§) for any FODD B, thenV
interpretationsl/, MAPg (1) = MAPg/ (I).

Proof: By the definition of R12, the only difference betweBrand B’ is that some edges
that pointed to sub-FODDs i, point to the0 leaf in B’. These are the edges in the set
E at the end of the R12 procedure. Therefore any valuatiorssrgshese edges achieves
a value of0 in B’ but could have achieved more valuefunder the same interpretation.
Valuations not crossing these edges will achieve the sarwe via B’ as they did inB.
Therefore for any interpretatiohand valuatior, MAPz (1, () > MAPg (I, () and hence
MAP3(I) > MAPg/(1).

Fix any interpretatiod andv = MAPg(I). Let(be a valuation such that MARI, ()
= v. If there is more than ong that gives valuey, we choose one whose path has
the least index inPL. By definition, p; is instrumental and by lemma 17, either lgaj(
= 0 or none of the edges ¢f; are removed by R12. In both cases, MAH,() = v =
MAP(I). By the definition of the max aggregation semantics, MAP) > MAPg/ (I, ()
and therefore MARB: (1) > MAPg(I). u

Theorem 9 (completeness)f no path crossing edge and reaching a non-zero leaf iR
is instrumental undeP L, then R12 removes

Proof: By definition the set of all edges iB is partitioned into setd’ and £’. Now, if
e € F', thend pathp; € PL and interpretatiori, such that is an edge om;, leaf(p;) is
non-zero andleaf(p;), p;, I,} € S. The existence ofleaf(p;), p;, I,} in S implies that
under/,, 3 valuation¢ € U such thatPathg(l,,() = p; andV n € U, Pathg(l,,n) =
p; impliesj > i. Thereforep; is instrumental. Therefore all edges i# belong to some
instrumental path. This implies thatfrom the statement of the theorem is notAhand
therefore it is removed by R12. |
Implementing R12 will not be practical for FODDs with moreatha small number of
variables because it involves enumeration of all possibleations. On the other hand,
previous reduction operators rely on theorem proving owegle path formulas or edge
implications. There are cases where such reduction operédd to reduce a diagram
but R12 is successful. Figure 6.2 shows an example where Bd&eds but previous

108 CHAPTER 6. MODEL-CHECKING REDUCTIONS

p(x) p(x)
R12

a(x) q(x)

10 acy) 10 0

1 0 1) p(x): 10 [DPO |
2) ~p(x), q(x) : 10
3) ~p(), ~a(*), a(y) : 1

Figure 6.2: Example where R12 can reduce the diagram buigqueveductions fail

reductions fail. Notice that there are 2 paths reachinglthieaf in the left FODD. In this
diagram, whenever a valuation reachesleaf there is another valuation that reaches the
10 leaf through one of the 2 paths. However, neither of the patmdilas are individually
implied by the formula for the path reaching thdeaf. Similarly neither of the edge
formulas for the edges terminating in the leaf are implied by the edge formula for the
edge terminating in theleaf. R12, on the other hand, relies on model checking anolés a
to reduce the FODD on the left to the FODD on the right.

Above we gave soundness and completeness properties for lRh&ever, the com-
pleteness result falls short of providing a normal form heseait relies on a DPO to define
which parts of a diagram may be reduced when there are mutyaication relations.
Therefore the same semantic function may have differentmahrepresentations. How-
ever, the completeness guarantees are much stronger thendhprevious reductions. In
Chapter3 we discussed normal form for FODDs. Examples of FODDs gitend (using
the length2 path construction) show that for normal form we may need seymgactic
manipulation of diagrams. Therefore going beyond the cetepless shown in this chapter
may be hard or expensive to compute. As a final comment, natdRth? is distinguished
from previous reductions by the fact that it employs the aggtion function of the FODD
itself as its main subroutine. This fact is useful when weegalize FODDs to allow dif-
ferent aggregation functions in Chapter

6.2. PRACTICAL MODEL-CHECKING REDUCTIONS 109

p(x) p(x) p(x)
p(y) p(y) &
N
a(x) 0 q(x) 1 0
1 0 1 0

€Y (b) (©

Figure 6.3: Example ofR12.4, and R12,.,. Given the training sef{p(1),q(1)},
{-p(1),q(1)}}, R12.4, reduces the diagram (a) to produce diagram (b). Given tir@rm
set{{p(1),¢(1) },{-p(1),q(1)},{-p(1),7q(1)}} R12,,q4. removes the redundant node from
(b) to produce (c).

6.2 Practical Model-Checking Reductions

As mentioned in the previous section, R12 avoids enumeyatirpossible interpretations
through bookkeeping but the complexity of R12 is too highuiegg an enumeration of”
valuations to a hypothetical interpretation for a diagraithw variables. In the following
we present two simple heuristic variants of R12 that allowwaussmove edges as well as
nodes in FODDs. We assume a given set of “focus interpreisitithat together capture
all important variation in the state space. Note that we daaseume all interpretations of
interest are given but instead we assume that if an impactardition exists for the domain
then this condition is realized in at least one of the givearpretations. This is a much
weaker condition. The result is an efficient variant of R18 ahan extension of R12 for
node removal. As a result we lose soundness and may ovee-prdiagram if the set of
given states is not sufficiently rich. On the other hand ifseedoes capture all important
distinctions in the domain we get efficient, sound and cotepgleductions.

6.2.1 Edge Removal by Model Checking

For edge removal we want to determine when an edge pointirgsiab-diagram can be
replaced with a zero leaf. Recall that MAR) = max:MAPg(I). Therefore the values
provided by the non maximizing's can be reduced without changing the final results. As

110 CHAPTER 6. MODEL-CHECKING REDUCTIONS

above, an edge is instrumental if it participates in a padl gives the final value on some
interpretation. In the following this is approximated byirag instrumental on the given
examples. This idea can be easily implemented as follows:

Procedure 8 R12.4¢
Input: FODD B, Samplet
Output: Reduced FODD’

1. Generate a DP@ for B.
2. I={}

3. For each examplein F,
Fori=1to|P|,
if p; subsumes, then/ = U edgesg;) ; break

4. For each edge’ in B such that’ ¢ I, set target¢’) = 0

Clearly every path identified as instrumental and addelisoinstrumental. Therefore
we prune all unnecessary edges. On the other hand if the dgaeigs too poor, we may
over prune the FODD. Notice that as long as the given exanspliesfy domain constraints
we will automatically prune any paths violating such coaistis without the need to em-
ploy complex background knowledge. Similarly any implietation among predicates is
automatically and implicitly used in the reduction. Thisaisignificant practical feature
of the new reductions and already provides an advantagetioe¢heorem proving reduc-
tions. In practice this reduction is also much faster thaotem proving reductions of
similar scope.

On the other hand, the quality of the reduction is stronglgeshelent on the quality
of the example set. The set has to be representative so tipattant structure is not
reduced from the diagram. At the same time we want fewer el@snp improve efficiency.
Figure 6.3 shows an example B 2.,,.. Given a training sef{p(1), ¢(1)}, {-p(1), ¢(1)},
where the domain contains only one objé¢t}, the FODD in Figure 6.3(a) is reduced by
R12.44e to produce the FODD in Figure 6.3(b). When the DPO is congtiso as to
give precedence to shorter paths, the path) is deemed instrumental y12,,,. because

6.2. PRACTICAL MODEL-CHECKING REDUCTIONS 111

of example{p(1),¢(1)} and the path-p(x), —p(y), ¢(x) is deemed instrumental because
of the example{—p(1),¢(1)}. In fact this is the smallest training set that removes all
redundant edges from the diagram without over pruning it.

6.2.2 Node Removal with Model Checking

While edge removal is important it does not handle a commge ©f redundancy that
arises often when FODDs are composed. For instance, in tlie &drithm we add or
multiply functions with similar structure that are standized apart (step of the relational

VI algorithm described in Chapt&). Often we have an irrelevant node above an important
portion of the diagram. We cannot remove the edge from thderiecause it will cut off
the important sub-diagram. Instead what we need is a remfutitat can skip the irrelevant
node. This is similar to the issue handled by R11. We use daia for nodes where one
child is zero and the other is a diagram. The question is védretbnnecting the node’s
parents directly to the non-zero child will change MAR) = maxz:MAPg(I). The only
way this can happen is if a valuatigrthat previously went to the zero child is now directed
to a non-zero leaf which is greater than the previous maximisrabove, this condition is
easy to check directly on the given set of examples.

Procedure 9 R12,,04¢
Input: FODD B, Samplef, Set of Candidate nodés
Output: Reduced FODD’

1. Generate a DP@ for B.
2. For each noder € C do the following:

(a) Remove node from B by connecting the parents afdirectly to the non-zero
child ofn to produce FODDB._,,.

(b) Generate a DPQ_,, for B_,,.

(c) Setkeep.node = 0.

(d) For each examplein F, do the following:

112 CHAPTER 6. MODEL-CHECKING REDUCTIONS

i. Fori=1to|P],
if p; subsumes, then set valuef = leaf(p;) ; break
ii. Fori=1to|P_,|,
if p; subsumes, then set newvalue) = leaf(p;) ; break

iii. If newvalueg) > valueg), setkeep.node = 1; break

(e) If keep.node == 0, setB=B_,,

As above, any node witheep.node = 1 must be kept otherwise the value correspond-
ing to some example will change. Therefore we prune as mudsdlewed by the example
set. Again, if the example set is not rich enough, we may owengthe FODD. For ex-
ample we saw that the example $ép(1),¢(1)}, {—p(1),q(1)}} is sufficient to remove
all edge redundancies while still maintain soundness athdlcesit to the FODD in Figure
6.3(b). With the same example set, however, the R12-nodetied will remove the non-
redundant node(x). This is because the value of neither example in the set esaog
the removal of;(z). For¢(z) to survive R12-node the example set must have an example
like {—p(1),—¢(1)} demonstrating that the node is important. Addingp(1), (1)} to
the example set reduces the diagram in Figure 6.3(b) to #ggaln in Figure 6.3(c), which
is the smallest FODD representation of the funcion) Vv ¢(z).

6.3 Discussion

In this chapter we introduced the reduction operator R12dtas model-checking. Al-
though R12 has theoretical properties that are superidredheorem proving reductions,
itis not a practical algorithm. We presented practical mers of R12,R12, 5, andR12,,,e.
The efficiency ofR12.4,. and R12,,,4. is significantly better than that of theorem proving
reductions. With a good set of training examples, theseataohs preserve important struc-
ture in the diagram. The quality of the training set has to &ned relative to a specific
application. In the next Chapter we continue with Decisidredretic Planning as our ap-
plication to demonstrate how a “good” training set can beegated for this application.
At the same time we will demonstrate the superior efficierfcR 2.4, and R12,,,4. OVer
other reductions.

Chapter 7

Self-Taught Decision Theoretic Planning
with FODDs

Inspired by the model-checking reductions developed inpiteeious chapter, we intro-
duce a new paradigm for planning by learning: the planneiverga model of the world
and a small set of states of interest, b indication of optimal actions in any states.
This paradigm is motivated by the observation that mangstascriptions generated when
solving one planning problem contain basic informatiort teamportant for solving other
planning problems. Similar to implicit imitation for reiofcement learning of Price and
Boutilier (2003), the additional information can help facihe planner on regions of the
state space that are of interest and lead to improved peafocen Naturally we validate
and demonstrate the idea in the context of the FODIANRER but the same technique is
applicable to any SDP algorithm that requires logical sifigaition.

Focused planning as outlined above requires a set of tgagamples. We show that
such training examples can be constructed on the fly from eriggion of the planning
problem. Thus we can bootstrap our planner to get a selfrtgnignning system. We pro-
pose several such approaches, based on backward randosfreatkgoal states enhanced
with specific restrictions to ensure coverage of a rich setates with a small sample. To
recap, the idea is that given a description of the domain, wedenerate the focus states
automatically and then run SDP using FODDs as before buguswdel-checking reduc-
tions with the focus states as training examples instealdeairem proving reductions.

113

114CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH AGDS

There have been other approaches where training examplesiean used to gener-
ate models for solving planning problems (Fern et al., 2@x&tton & Thiebaux, 2004).
However, our approach differs from these approaches irttiegatraining set does not need
information about optimal actions or values along with tharaples.

We implemented the model-checking reductions and the eleaggmeration routines
in the FODD-RANNER and applied it to several domains. In this chapter we proaite
extensive evaluation of the ideas described above as wek\asal other system related
issues, using the experiments to investigate and demoast@ contribution of different
aspects of the system.

The rest of the chapter is organized as follows. Section &stribes ideas on gener-
ating examples to focus the planner. Section 7.2 providexiperimental evaluation in
which we explore the merits of different methods to genetiagetraining examples, pro-
vide “learning curves”, explore speedup mechanisms, avelthe experimental results on
IPC problems.

7.1 Bootstrapping: Example Generation

The key to effective employment éf12.,,. andR12,,.,. is to provide these operators with
arich set of interesting examples. In the case of planniaglpms, the examples of interest
are states visited during execution of the solution to amlagproblem. Such states can be
generated in a variety of ways. One potential method stesta & random state and runs
episodes of simulated random walks through the state spawether potential method
employs a planner to solve a few sample planning problemsahekct the states on the
solution paths into the set of examples.

The methods most relevant to Decision Theoretic Planniag 8bm a set of typical
goal states and regress over ground actions to generags $tam which the goal state
is reachable. Regression from a ground stat&er actiona is possible only whem can
achieves from some state’. Using STRIPS notation, this is easily verified by checking i
is subsumed bPRECONDITIONS(a} ADD-LIST(a)— DELETE-LIST(a) Such ans’ is
then generated by simply addilELETE-LIST(afo s and removingADD-LIST(a)from
s. This method of example generation is particularly sugdbk SDP based systems like

7.1. BOOTSTRAPPING: EXAMPLE GENERATION 115

FODD-PLANNER because the same states are assigned new values by VI. dlitharig,
we develop two variants of this approach both of which takeeglstate and regress from
it.

Instance Regression (IR):We iteratively generate all possible states up to a certain
specified depth using a BFS procedure. Regression oves stitiepthl produce states at
depthd + 1 in the d*" iteration. The depth parameter can be set to the same valihe as
number of iterations of VI run by FODD{RANNER because states from deeper levels are
not relevant to the value function. Therefore there is nalrfeeparameter selection of the
depth parameter. However, this method could generate a &xgmple set eliminating the
advantage of model-checking reductions. To mitigate tiiéxewe introduce the following
pruning techniques.

(1) Limit IR to use only those actions that bring about certéarls in the state. These
literals are the preconditions of the previous action thategated this state through re-
gression. In particular, if statewas regressed over actiahto produce state’ in the ;"
iteration, then the preconditions af (which must be true in’) are maintained as special
literals in the description of . When regressing ovef in iterationi + 1, only those actions
that bring about these special literals are considereds Wautry to generate states that are
further away from the goal.

(2) Identify and mark sub-goals so that they are not achievetertttan once. For
example, supposg, C s are the special literals inand as above we regress frenusing
a'. Mark literals ins,N ADD-LIST@’). Now, in thei + 1" iteration, when regressing from
s’, only those actions that generate states not containingénked literals are considered.
Considering the sequence of actions generated as a plamgthiistic avoids re-achieving
the same goal literal by the plan. Although incomplete, fi@sristic is effective in limiting
the number of states generated.

(3) Regress states over a compositior @ictions instead of a single action. The param-
eterk is independent and thus requires parameter selection.x@ange suppose actian
is a composition of actions” anda’. Now, if s’ regressed over”’ generates state, then
s regressed over generates”. We add states, s’ ands” to the set of examples. Regres-
sion continues from stat¢. This technique avoids imposing the special and markeglite
restrictions on every action and imposes them directly anmasitions of actions, thereby

116CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

allowing more freedom to search the state space in case®\ieeprevious techniques are
too restrictive. In our experiments we used this option vtk 2 whenever insufficient
data was generated by setting= 1 (as shown by planning experiments).

Backward Random Walk (BRW): Instead of generating all states by iterative regres-
sion, asin IR, we run episodes of random walks backwards thengoal (sampling actions
uniformly) without any of the above restrictions. This pides a varied set of states includ-
ing states that are off the solution path for typical plagnamoblems. Here the length and
number of episodes require parameter selection. In ourrgrpats we choose these arbi-
trarily so as to add examples but not increase set size toddarge.

In practice we need a mix of examples generated by IR and BRWe& why, let” be a
value function that solves planning probleroptimally andS be a set of all possible states
along any optimal solution path pf ThenV reduced by?12,,,. againstS is guaranteed to
solvep optimally butV reduced byR12,,.4. againsts is not. As illustrated above?12,,,4.
requires examples that demonstrate that the diagram welheously gain value on removal
of important nodes. Hence states off the solution path wiight be required fol” to be
retained byR12,,.4.. The techniques with IR, however, are designed to generdyestates
along solution paths. Therefore in the example set we irchlbthe states generated by
IR and add states generates by BRW to yield a mixed set.

7.2 EXxperiments on Planning Domains

In this section we present the results of our experimentsarnains discussed in chapter
5, namely tireworld and blocksworld from IPC 2006, and theword domain from IPC
2008. We left out the domains fileworld and logistics becausewere able to achieve
convergence of the policy in these domains and hence thhttdeiscope for improvement.
Our intention here is to investigate

(Q1) what are the contributions of the different parameters (nemof train-

ing examples, number of iterations of VI, types of reducsiogoal ordering
heuristic) of the self-taught model-checking system, &@&) whether our
self-taught model-checking system can effectively spgedacision theoretic

7.2. EXPERIMENTS ON PLANNING DOMAINS 117

planning while matching performance with the theorem prgwsystem and
other state of the art systems in stochastic planning.

To this aim, we generated a value function for each domairubping FODD-RANNER
in three different configurations based on the method usegbiace FODDs.

1. FODD-PL: All theorem proving reductions only. This is the same systeenpre-
sented in chapter. All configurations or parameter settings of FODD-PL in #nes
experiments are exactly the same as the ones used in them&pts in chaptes.

2. ST-FODD-ER: R12 edge removal reduction and a theorem proving node rdmova
reduction R11.

3. ST-FODD-ERNR: R12 edge and node removal reductions only.

In the following, we present a comparison study of the thre¢hods over the same metrics
we used in the experiments in chapier.e. their ability to solve planning problems from
IPC measured in terms of coverage, average plan length,ig@urequired to generate
the value function (or policy), and in the case the boxworandin, the average reward
achieved. Average reward is irrelevant for blocksworld &irelvorld because there are no
action costs in these domains. We generated examples bygrsiates generated by the
IR and BRW methods as explained above. Again, we set a lindtofsteps on the plan

length when solving IPC problems. Plans that ran for mora #8 steps were counted as
failed.

Overall we observe that self-taught planning (Methods ®IPP-ER and ST-FODD-
ERNR) generates the value function much faster than FODDwRile maintaining the
same level of performance. As in Chapferplan execution time standards of IPC were
not met for boxworld problems and some hard problems of ldackld due to slow policy
evaluation in the online component. Further research antdpic is needed to optimize
for a faster execution module.

7.2.1 Timeout Mechanism

When building the model or executing a plan, the most expensperation in FODD-
PLANNER is subsumption (that is given a state and a path formulajregphhe matching

118CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

Subsumption Call Statistics

0.8

0.7 1

0.6

0.5

04 1]

4 Tireworld 10 iter

)
0.3

% of subsumption calls made

0.2 1

0.1 17

100
200
300
400 |
500 |
600
700 |
800
900 |\
1000 |
>1000 |

Milliseconds

Figure 7.1: Subsumption Call Statistics: More than 99 paroé the call run under 50
milliseconds

Ex 50 100 150 200 250
Calls | 145298| 240157| 320509| 689286| 852904

Table 7.1: Number of subsumption calls made during VI usifigF® DD-ER with given
number of examples (Ex)

problem to decide whether the formula is applicable in tlaée3t The basic observation is
that because we switched from theorem proving to modelichge¢he complexity of the
system is heavily affected by the cost of subsumption téstdas been well documented
in the literature (Maloberti & Sebag, 2004) subsumptiorbteons show a phase transition
phenomenon and, while most problems are easy, certain gfppoblems have a very
high cost. In our context it turns out that very few subsumptiests are of this class and
therefore we can get significant speedup by detecting anqgistg these early, with little
or no difference in coverage for the planning problem. Tahle shows the number of
subsumption calls made by FODD-ANNER using ST-FODD-ER with varying number
of training examples when building a model foiterations of the tireworld domain. Since
the number of calls is large, unless the amount of time péigabmehow controlled, we
could be faced with prohibitively large run times.

7.2. EXPERIMENTS ON PLANNING DOMAINS 119

Tireworld: Coverage vs.
examples
0.9
0.85 7‘_‘7
S 08
§ / —&—ST _FODD_ER
S 0.75 (7 iter)
° —d
0.7
0.65 ‘ ‘ : :
50 100 150 200 250
examples

Figure 7.2: Tireworld Learning Curve: Average Percentag®mblems solved by ST-
FODD-ER vs. Number of examples in the training set

In order to alleviate this cost, we utilize a timeout meckanwithin the subsumption
routine. The subsumption simply fails if it runs beyond aafied time limit. To decide
on a setting for the time limit parameter, we generated prstms of run times of single
subsumption tests. Figure 7.1 illustrates the percentagelisumption calls made against
the cpu time. We observe here, that more tharpercent of the calls that are made run
within 50 milliseconds. The most expensive call took more tRaminutes. Therefore a
time limit parameter td second would cause only a negligible percentage of calist® t
out yet eliminating the significantly more expensive subgtiom calls. In initial experi-
ments we were able to verify that the run time was greatly owed by setting a time limit
of 1 second while keeping the same level of performance in sglpianning problems.
Additional timing experiments showed that not much more lbargained by fine tuning
the timeout threshold. Therefore this heuristic provideskaist mechanism to control run
time increase due to subsumption tests.

120CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

Tireworld: Planning Time vs. #
examples

1200
1000 /A
800 /
600 —A—ST__FODD_ER
/ (7 iter)
400 /
200 - /

50 100 150 200 250

CPU Time (seconds)

examples

Figure 7.3: Tireworld: Planning time in cpu seconds by STEHDER vs. Number of
examples in the training set

7.2.2 (Q1) System Characteristics

Since the model checking reductions remove all parts of @BP that are not instrumen-
tal in determining the map for the set of training examplésilar to standard machine
learning, we would expect the size of the training set to Faveffect on the level of ap-
proximation in the value function and hence on planning e Smaller training sets
would cause important structures in the value function telbeainated and consequently
show poorer performance than larger training sets. In ordemderstand and illustrate
this, we experimented on building the value function Tdterations on the tireworld do-
main using ST-FODD-ER varying the example set size. Figu?esiiows the learning
curve produced. We increased the example set size from S0twRh each set containing
all examples from the previous set afidladditional random examples. The Y-axis shows
average coverage over the 15 IPC 2006 problems. We see éhpetformance converges
before reaching a 100%. This is because some of the problexrdeaigned with action
failures and deadlocks so that achieving a coverage of 100éhaveraged oven rounds

is statistically very unlikely. For the same setting, Figit3 shows a linear increase of run
time against the number of training examples. Figure 7.4vshibe run time against the

7.2. EXPERIMENTS ON PLANNING DOMAINS

6000

5000

4000

3000

2000

CPU Time (seconds)

1000

Tireworld: Planning Time vs.
Iterations

——FODD_PL

—4—ST_FODD_ER
(215 ex)

—&—ST_FODD_ERNR

(215 ex)

1 2 3 4 5 6 7 8 9 10

Iterations

121

Figure 7.4: Tireworld: Planning time in cpu seconds vs. Nantf iterations of VI

M PL ER ERNR ER ERNR
I 7 7 7 10 10
C | 1831.69| 914.428| 542.464| 5457.76| 1129.02

Table 7.2: Tireworld: Planning time taken in CPU secondsi{Z)nethods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run forigas number of
iterations (1)

number of iterations of VI for th8 methods. For ST-FODD-ER and ST-FODD-ERNR,
a fixed training set 0215 examples was used. Clearly ST-FODD-ERNR is more efficient
than ST-FODD-ER, which in turn is more efficient than FODD-Hhis allows us to run
more iterations of VI with the system based in model-chegkeductions.

7.2.3 (Q2) Tireworld

Training examples for this domain were generated by runiftgith the d parameter set
to 10 and thek parameter set tb and running BRW for 0 episodes of length0 each. The
seed state for both methods was designed so as to have a m@pochtions connected
linearly. Each location connects foneighbors by a two way road except the locations
at the extremes which connect to only one location. The lehias placed in the first

122CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

Tireworld: Coverage vs. Problem
Instance

1.2
——FODD-PL

(7 iter)
—#—FOALP

°©
®

ST-FODD-ER
(7 iter)
=>=ST-FODD-
ERNR (7 iter)
—*=ST-FODD-ER
(10 iter)
ST-FODD-
ERNR (10 iter)

Coverage
o
o

o
IS

©
N}

o

1234567 8 9101112131415

Problem Instance ID

Figure 7.5: Tireworld Coverage Results

location. This was chosen heuristically as it seemed thelsshconfiguration relevant for
tireworld.

Following the experimental procedure in chapgigwe apply the non-std-apart approx-
imation after the3" iteration of VI. Figures 7.5, 7.6 and Table 7.2 show the corispa
of the 3 methods. We observe here that the model checking methodsCHJP-ER and
ST-FODD-ERNR generate a value function much faster than BEHL while keeping
the same level of performance on the IPC problems. It is aflgmrtant to note that these
results of coverage and plan length are competitive witlpdgréormance of FOALP (San-
ner & Boutilier, 2009), one of the top ranking systems fronCIP006. Results for plan
length show comparable results to FODD-PL which is slightjter than other systems.

Since the model checking reductions allow faster plannvegcan run more iterations
of VI to generate a deeper value function that can solve hgmdaning problems. Figure
7.7 shows a simple planning problem where the value fungererated by iterations of
the FODD-RANNER using FODD-PL fails but one generated lsyiterations of FODD-
PLANNER using ST-FODD-ER succeeds. The vehicle is at locati@md has to get to
locationj. Spare tires are available in all locations. The problemesighed such that at
every step along the way, there ar@vrong actions that lead to dead end states and one

7.2. EXPERIMENTS ON PLANNING DOMAINS

Average # Actions to Goal

14

12

10

Tireworld: Average # Actions to
Goal vs. Problem Instance

——FODD_PL (7 iter)

“ =#—-FOALP

|l

A A

—+—ST FODD_ER

| ' \) (7 iter)
, N A M —ST FODD_ERNR
AAAR S~

=#=ST_FODD_ER

V- VARG s

VVVVVVVVVVVVVVV +ST_FODD_ERNR
12345678 9101112131415 (10 iter)

Problem Instance ID

Figure 7.6: Tireworld Plan Length Results

Initial State:
vehicle-at(a)

Figure 7.7: Tireworld Challenge Problem

123

b9

b8

b7

b6

b5 Goal:
b4 clear(b1)

Initial State

b3

b2

b10 | | b11 b1 b12 | | b13

Figure 7.8: Blocksworld Challenge Problem

correct action that makes progress. Thus one wrong actibbrcavise the plan to fail. So
only a value function deep enough to assign a non-zero valthetstarting state can solve
it. We could not generate such a problem using the IPC prolglenerator for tireworld.
The problem generator produces example problems by cgeetmdom location maps of
given edge density and choosing random connected inittaaal locations. We observed
that independently of the edge density parameter the liaitid goal location appeared no
farther than5 steps from each other. Runniig iterations with FODD-PL takes more
than2 days whereas with ST-FODD-ER takes about and hour and a héliveth ST-
FODD-ERNR takes aboutt minutes.

7.2.4 Blocksworld

As before, training examples for this domain were generaydabth methods IR and BRW.
For IR thed parameter was set tth and thek parameter was set & For BRW we

ran 10 episodes of lengtl0 each. For both methods, the seed examples for each goal
(the 4 goals in blocksworld arelear-block(a) on(a,b) on-table(a)and arm-empty was
designed to be a state satisfying the single goal literalimretidition, a tower including all

7.2. EXPERIMENTS ON PLANNING DOMAINS

o -
[oe] - N

Coverage
o
D

Blocksworld: Coverage vs.
Problem Instance

TN

=——FODD-PL
(8 iter)

—=#—FOALP

=#=ST-FODD-ER

e

\
\

(8 iter)
=—>ST-FODD-ERNR

[
[
[

0.4 (8 iter)
V \ —¥—ST-FODD-ER
0.2 & (10 iter)
y y —0—ST-FODD-ERNR
0 AT e (10 iter)
123 456 7 8 9101112131415
Problem Instance ID
Figure 7.9: Blocksworld Coverage Results
Blocksworld: Average # Actions to
Goal vs. Problem Instance
90 ——FODD_PL (8 iter)
_ 80 X \
§ 70 —B-FOALP
]
w 0 I —4—ST_FODD_ER
S 50 (8 iter)
< 40 —ST_FODD_ERN
= R (8 iter)
2 307 —%=ST_FODD_ER
g 20 % (10 iter)
< 10 —o—ST_FODD_ERN
R (10 iter)
0 s S S A B e p s e S e Y
12345678 9101112131415
Problem Instance ID

Figure 7.10: Blocksworld Plan Length Results

125

126CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

M PL ER | ERNR| ER | ERNR
I 8 8 8 10 10
C | 12465.95| 222.33| 78.69 | 865.57| 357.68

Table 7.3: Blocksworld: Planning time taken in CPU secoi@)dfy methods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run forigas number of
iterations (1)

other blocks. This was chosen heuristically because it sddire simplest configuration
relevant for blocksworld. Examples just from IR were su#fiti to provide the results
shown for ST-FODD-ER but examples from BRW were requiredSerFODD-ERNR
to perform well. Table 7.3 and Figures 7.9 and 7.10 show tinepazison of thel methods
on thel5 IPC 2006 problems. We observe that toiterations ST-FODD-ER and ST-
FODD-ERNR achieve respectivelp and 158 fold speedup in terms of planning time
over FODD-PL while keeping the same level of performancehenlPC problems. ST-
FODD-ERNR in particular performs better than the other twéarms of both coverage
and plan length. Once again the results presented here mgetitive in comparison with
top ranking systems from IPC 2006. The results of FOALP aesgmted on the same graph
for comparison. Plan execution times were very similar ®dhes in chapter.

As before the IPC problems do not illustrate dramatic impraent in performance
due to a larger number of iterations. But such problems ateaare and can be easily
designed. For example Figure 7.8 shows a problem at whichahe function generated
by 8 iterations of FODD-PANNER with FODD-PL achieves onl§0% coverage but one
generated by5 iterations of FODD-RANNER with ST-FODD-ERNR achieves full cov-
erage. This shows that the ability of the model checking oesho run more iterations
pays off when solving harder problems. This problem wasgihesi so that a shallow value
function would get lost in the action space (as there are niidogk to move) whereas a
deep value function would be able to take the right actionstacking the tower) from the
start state itself. Runningp iterations using FODD-PL takes more thauwlays whereas
with ST-FODD-ERNR takes less tharhours.

7.2. EXPERIMENTS ON PLANNING DOMAINS 127

Boxworld: Coverage vs. Problem
Instance

1.2

=——FODD-PL
(5 iter)
—8—RFF

ST-FODD-ER
(5 iter)
=>ST-FODD-
ERNR (5 iter)
=*=ST-FODD-ER
(8 iter)
ST-FODD-
ERNR (8 iter)

Coverage

1 2 3 4 5 6 7 8 9 10 11 12

Problem Instance ID

Figure 7.11: Boxworld Coverage Results

M PL ER | ERNR ER ERNR
I 5 5 5 8 8
C | 3332.33] 302.8| 117.7 | 3352.93| 618.85

Table 7.4: Boxworld: Planning time taken in CPU seconds (jnethods (M) FODD-
PL (PL), ST-FODD-ER (ER) and ST-FODD-ERNR (ERNR) run forigas number of
iterations (1)

7.2.5 Boxworld

Training examples for this domain were generated by IR antVBRor IR we set thel
parameter t® and thek parameter td. For BRW we ranl(episodes of length0 each.
For both methods, the seed example was designed so as tommayexdl 0 cities connected
linearly. Each location connects foneighbors by a two way road except the locations at
the extremes which connect to only one locati@rboxes,2 trucks and a plane were was
placed in thet*" city from one extreme.

Table 7.4 and Figures 7.11, 7.12 and 7.13 show a comparistire 8fmethods on the
12 IPC 2008 problems. For comparison, the results of RFF arggol@n the same graph.
ST-FODD-ER and ST-FODD-ERNR respectively achiéveand28 fold speed up over
FODD-PL at5 iterations and enable running a larger number of iterati@milar to the

128CHAPTER 7. SELF-TAUGHT DECISION THEORETIC PLANNING WITH HGDS

Boxworld: Average # Actions to
Goal vs. Problem Instance

2000

——FODD_PL (5 iter)
< 1800
o
o 1600 r’.i —8—RFF
£ 1400
0 |
§ 1200 I —4&—=ST_FODD_ER
g 1000 I (5 iter)
#* 800 I’ % I =>=ST FODD_ERNR
S 400 \.4 —¥=ST_FODD_ER
z / (8 iter)

200
0 M ~0—ST_FODD_ERNR

(8 iter)
12 3 4 5 6 7 8 910 1112

Problem Instance ID

Figure 7.12: Boxworld Plan Length Results

Boxworld: Average Reward vs.
Problem Instance
2000
——FODD_PL (5 iter)
1800
1600 &—REF
T 1400
é 1200 —4=ST FODD_ER
@ 1000 (5 iter)
£ 800 | —>=ST_FODD_ERNR
3: 600 - (5 iter)
400 - ’ , —#=ST_FODD_ER
200 - (8 iter)
—0—ST_FODD_ERNR
0 - — — (8 iter)
1 23456 7 8 9101112
Problem Instance ID

Figure 7.13: Boxworld Plan Length Results

7.3. SUMMARY AND CONCLUDING REMARKS 129

experiments in chapter, we faced long execution times varying fromi0 seconds per
round on the easier problemst® hours per round on hard problems.

We observe again that ST-FODD-ER and ST-FODD-ERNR outparféfODD-PL
in terms of planning time while maintaining the level of perhance. None of the methods
are able to outperform RFF in terms of coverage, especialyfoblems10, 11 and12.
RFF achieves full coverage on all the problems. However, as in Chaptgrour perfor-
mance is close to RFF in terms of accumulated reward and wWerpeconsistently better
in terms of plan length even on problems where we achievebvérage.

7.3 Summary and Concluding Remarks

To summarize, our experiments demonstrate that the newliganaof self-taught planning
leads to a significant speedup of Symbolic Dynamic Progrargrttirough the use of a set
of states of interest. Self-taught or provided by a mentog, information gleaned from
these states of interests is used to remove any compleXispgons within the value func-
tion that are irrelevant to the given states, thereby foaysin the region of interest. In
this light, the paradigm can also be described as unsuperransfer learning for plan-
ning. Experiments on domains and planning problems frominkernational Planning
Competitions suggest that this technique not only greatlgroves the efficiency of the
planning system, but also allows it to solve harder planmrapblems. The systems ST-
FODD-ER and ST-FODD-ERNR show orders of magnitude impraanm efficiency
over FODD-PL demonstrating the superior efficiency of medhetcking reductions over
theorem proving reductions.

Although all experiments and demonstrations have beeneaicdntext of FODDs and
the FODD-RANNER system, we believe that self-taught planning can also bkeapio
other SDP based solvers of RMDPs. Exploring this is an istarg direction for future
work. Another promising idea is to acquire the training epdas from multiple teachers
each specializing in a separate (but possibly overlapgiag) of the state space. In con-
trast with behavioral cloning (Morales & Sammut, 2004) wehtre performance typically
degrades if the learner gets contradicting examples frortipheiteachers, our approach
handles this case in a natural way.

Chapter 8

Generalized First Order Decision
Diagrams

FODDs have an inherent limitation in terms of representapower. FODDs (roughly
speaking) represent existential statements but do now alloversal quantification. This
can be a limitation for many tasks that require more expvesspresentations. This ex-
cludes some basic planning tasks. For example, a compahydkao plan a recall of
faulty products requires quantifier prefi¥/ for the goal: there exists a depot such that
all products are in the depot. Towards overcoming this ltnin, this chapter introduces
Generalized FODDs (GFODD), a novel FODD extension thawedlfor existential and
universal quantification and other aggregators of value. dé&eeslop a theoretical frame-
work for GFODDs by characterizing GFODD composition andadticing an extension
of the model-checking reduction R12 for GFODDs for the qifentsettings3*V*. That
is a finite number o8 quantifiers followed by a finite number sfquantifiers. Finally we
refer to the Decision Theoretic Planning application adsirpresenting a SDP based al-
gorithm showing how GFODDs can be used to solve RMDPs withrarlp quantification.
This is a significant extension of the scope of the FODD apprda decision-theoretic
planning. This also advances the theoretical understgraiiprobabilistic inference with
large models.

The chapter is organized as follows. Section 8.1 introd@feSDDs and their compo-
sition operations. Section 8.2 extends the model-chealadgction operator to GFODDs

130

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 131

with the quantifier setting*v*. Finally Section 8.3 shows the utility of GFODDs for solv-
ing RMDPs.

8.1 Generalized FODDs: Syntax and semantics

The max aggregation of FODDs makes them sufficiently expressiveepzasent many
planning problems of interest. However, since thex aggregation mirrors existential
guantification over the variables of the FODD, many othercfioms over logical spaces
cannot be represented by FODDs. These functions could besemted if the aggregation
function was more complex. For example, employingi aggregation instead ofraax
allows representation of functions where the variablesiareersally quantified. Similarly
one can imagine using other aggregation functions likesthe, the mean, thevariance
and also a complex mix of these aggregation operators. $nségtion and the next, we
discuss the properties of such generalized FODDs and thatopes that can be performed
to manipulate them. We start by a formal definition of Gerieeal First Order Decision
Diagrams.

Definition 5 A Generalized First Order Decision Diagram (GFODD) is a e (V, B),
where,V is an ordered list of distinct variables each associatedwit$ own aggregation
operator. We call the aggregation function for the GFODD. A variable cannotiggre-
gated in more than one way. Therefdfecontains no repetitionsB is a FODD except that
the leaves can be labeled by a special charadtéor discard).

8.1.1 Semantics of GFODDs

The semantics we choose for GFODDs is similar to the ones@[Bs except that the
aggregation operation is now defined By= [(op,), (op2,) - - - (opl)]. Here every; is a
variable of the GFODD (ordered to v,,) and the corresponding; is the aggregation op-
erator associated with variable Consider the set of all possible valuations over variables
vy - - - v, defined for the domain of interpretatidn Each valuatiort is associated with a
value MAP;(1, (). We can now divide up these valuations into blocks. All véhrss in

a block have the same assignment of values to variahles v,,_; but they differ in the

132 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

value of the variable,,. We then “collapse” each block to a single valuation over-var
ablesu, - - - v,_1 by eliminating the variable,, and replacing the set of associated values
(MAP3(I,()) by their aggregate value produced by applying to the set. Any discard
values in the block are removed before applyipg. If all values are discard then the result
is discard. If we do this for every block we are left with the eeall possible valuations
defined over the variables - - - v,,_; each associated with a value (which was obtained by
aggregating over the valuations of variablein the block). We repeat the same proce-
dure for variables),,_; to v; to produce a final aggregate value. We define MAB to

be this final aggregate value. The reader may also view tbisgolure as aggregation over
variables inV by nesting aggregation operators from left (outermost)gbtr(innermost).
ie.

MAP5(I) = op) [ops, [+ [opl, IMAPE (I, [v1,va, - va])]] -+ +]]

The term in the center, MARI, [v1, v9, - - - v,,]), IS the value obtained by running a
valuation defined by an assignment to the variables. - v,, throughB under!. In order
to reduce the notational clutter, in the rest of the chapemwl drop brackets so that the
above equation looks as follows

MAPg(I) = op) op., - op} [Map(I,[v1, v, - v,))]

_ 1 2 n—1 n [Ul"'vn—l} V1 Up—1
— Opvl O})y2 “ e Opvn_lop [Cl P CL’L }]

where each:E”l"'”"*] is a value corresponding to a different object assignmeuatp
ablew, in the block defined by the values assigned to the variahles v,,_;.

Figure 8.1 shows an example GFODBcapturing the following statement from the
logistics domain3cvb, boxb is in city c. The output ofB is 10 if all boxes are in one city
and0 otherwise. In the example GFODD shown,= {Max(c), Min(b)}. Aggregation
is done from right to left, one variable at a time. In the exémtherefore, given the value

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 133

B
Max(c) Min(b) Domain Box: bl, b2
: City: c1, c2 Maps(1)
bin(b, c)
/\ ‘ Interpretation
0 0 bin(b1,c1), bin(b2,c2) ‘
Valuation | Value Valuation | Value
c=cl [b=bl [10 c=cl 0 >0
c=cl | b=b2 0 c=C2 0
c=c2 | b=bl Minimizati Vaimizat
inimization aximization
c=c2 | b=b2 | 10 over b over ¢

Figure 8.1: A Generalized FODD Example

of MAP3(I, ¢) for every possible valuatiog, MAP(I) is calculated by first aggregating
the values MAR (I, ¢) over all bindings (or assignments) of the variablesing themin
operation, producing exactly one value per binding of \i@&aa, and then aggregating all
of the produced values over all bindings of variablasing themax operation. In this
example, to keep the GFODD diagram simple, we assume thablasi are typed and use
only valuations that conform to the types of the variablead /e used all possible valua-
tions over the set of objec{$,, b, 1, c2 }, the diagram would have been more complicated
as it would have had to represefit Vb, city(c) A [box(b) — bin(b, c)].

With decision diagrams employing these semantics, thera &w important points to
note.

e The order inV is important. Changing the order of the variables can chahge
aggregation function and hence can change the map.

e First order decision diagrams (FODDs) form a proper sulsctdsGFODDs where
the aggregation operator associated with every variabledis. In this case, due to
properties of thenax aggregation, the order of variableslihis not important.

134 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

e GFODDs with0/1 leaves can be used to express closed, function free first fmde
mulas by employing thein aggregation operator over universally quantified vari-
ables and thenax aggregation operator over existentially quantified vdaab

Finally we want the functions represented by GFODDs to bé adefined on any inter-
pretation. For this we define:

Definition 6 A GFODD B is legal iff it obeys the GFODD syntax aindnterpretations I,
3¢, MAP;(I,¢) # d.

8.1.2 Combining GFODDs

So far we have focused on the syntax and semantics of GFODdD#hair ability to rep-
resent complex functions over relational structures. Thilgyuof such a representation,
though, is in performing operations over such functions, deamplemaz (taking the
maximum),+ (addition) andx (multiplication) as used in the SDP algorithm. We call
these operatorsombination operatorand provide an algorithm Ex-apply to implement
them. Notice that combination operators are different fraggregation operators. The
next definition provides the intended meaning of combimatio

Definition 7 GFODD B is a combination of GFODD$; and B, under the binary com-
bination operatorop, iff V interpretations/, MAPg (1) = MAPg, (1) op. MAPg, (I).

Aggregation and combination operators can interact, caaiphg the result of the com-
bination operation. The following definition provides thendition under which a simple
operation can perform the combination.

Definition 8 A combination operatosp. and an aggregation operatep® are a safe pair
iff for any set of non-negative values, =, . . ., z, and any non-negative constdnt holds
that

op*(x1, X2, ..., xx) 0p. b = op®(x1 0pe b, T3 0P b, . .., X} 0P, b) .

The aggregation operatataz and combination operator form a safe pair because
forany setS = {¢; - - - ¢, } and constant, maz{c; - - - ¢, } + b = max{c; +b,- - ¢, +b}.

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 135

OPc D D 5% 5% & X
op® max | min | sum | avg | max | min
safe/unsafe safe | safe | unsafe| safe| safe | safe
op. & & | max | maxr | max max
op® sum | avg | max | min | sum avg

safe/unsafe safe | safe| safe | safe | unsafe| unsafe

Table 8.1: List of safe and unsafe pairs for operators.

For examplemaz{1,9,3,12} + 5 = max{6,14,8,17} = 17. The aggregation oper-
ator mean and the combination operatenar do not form a safe pair. For example
mazxz{mean{l,5,3},4} = 4 butmean{4,5,4} = 4.33.

Table 8.1 summarizes the safe and unsafe pairs for opethtarare of interest to us.
We later use the fact that theax and min aggregation operators are safe with all the
combination operators listed.

We next turn to the algorithm for combining diagrams. FODRa be combined with
the Apply operation described in chapter 2pply produces a combination @f FODDs
under combination operatop. by choosing the smaller root (according to the FODD pred-
icate order) to be the root of the resultant FODD and thenrszeg on the sub-diagrams.
When the computation reaches the leaves in both diagramsesilt isop. applied to the
two leaf values. For GFODDs, if either leaf valuediswe definev op. d = d, for anyv
so the discard value is carried over to the resulting leaf. néet define the combination
procedure for GFODDs and prove its correctness.

Definition 9 If B; = (V1,D;) and By = (V5, Dy) whereV; and V, do not have any
variables in common, angp. is any combination operator, then Ex-apaBy(Bz, op.) =
B = (V, D), where

1. V is the aggregation function obtained by appendindo V.
2. D= applw‘Dla -D27 Opc)'

The next lemma shows that the combination produced by Ektépporrect when one
of the diagrams is a single leaf with valte

136 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Lemma 18 If B = (V, D) is a GFODD,b is a non-negative constaniy, is a combination
operator, and if for every aggregation operatay® in V', (op®, op.) is a safe pair, theny
interpretationsl, MAP (1) op. b = op;, op2, - - - op}. [MAPg (I, [vg - - - vy]) ope b]

Proof: The proof is by induction om, the number of operators (and variables)in By
the semantics of GFODDs,

MAP5(I) op. b = op,, -+ op} [IMAPg(L, vy -+ - v,])] op. b
Whenn = 1, we have

MAP5(I) op. b = op, [MAPg(I,[v1])] op. b
= oplljl[MAPB(], [v1]) ope O]

becausep' andop, form a safe pair. Assume that the statement is true fovalf n — 1
or fewer aggregation operators. Considér avith n aggregation operators. We then have,

MAP5(I) op. b = op,, -+ op} [IMAPg(L, vy -+ - v,])] op. b

= op! [t] op, b
— op})1 [c&”ﬂ op. b - CLZI] ope]

becausep' andop. form a safe pair. Here eacff’! = op?, - op IMAPE(I, [vg - - - vy,])]
for the " value of the variable,. By the inductive hypothesis we know that

0]932 --opyy [MAPg(I, [vg---vp])] op. b = opg2 --opy IMAPg(I, [va---vy,]) ope b
Thus,

MAP5(I) op. b = op, opl, - op [MAPg(I, [vs- - v,])ope b]

We now use this lemma to prove the correctness of Ex-apply.

8.1. GENERALIZED FODDS: SYNTAX AND SEMANTICS 137

Theorem 10 Given GFODDsB; = (V;, D;) and By = (V5, Dy) and a combination op-
erator op,, if for every aggregation operatanp® € V; U Vs, op® andop,. form a safe pair,
thenB = (V, D) = Ex-apply(Bi, Bs, op.) is a combination of function8; and B, under

operatorop..

Proof: Let op*/ andv; ; denote the’ operator and variable respectively . V is a
juxtaposition ofl; andV; by the definition of Ex-apply. Therefore by the definition bét
GFODD semantics, for any interpretation

MAPB(I) = Opzl)’ll1 cee Opgy’jl Opzlj’122 cee Opgﬁz [MAPB(I, [Ul,l cee ’Un’lfULQ cee ’Umg])]

SinceD = apply(Dy, Dy, op.), by the correctness of apply we have that for all interpreta-
tions I and valuationg, MAPg(I,() = MAPg, (1,() op. MAPg,(I,(). Also, since the
variables inV; andV; are disjoint, we can write any valuatigras(; (> such that; is the
sub-valuation of over the variables ifv; and(, is the sub-valuation af over the variables

in V5. Thus we can write

MAP5(I) = opy,--opy opy, - opy L [MAP, (1, [y - vna]) ope
MAP g, (I, [v1.2 - - - Un])]

Now the important observation is that since MAFI, [v; ; - - - v,, 1]) does not depend on
the variables irl,, when aggregating over the variablesin MAPg, (1, [v1; - - - v,1]) CaN
be treated as a constant. Singe forms a safe pair with all aggregation operatord/®f
by Lemma 18,

MAPg(I) = opy - opl! (MAPg, (I, o1 -+ vna]) ope opy?,
" 'OPQ;?Q(MAPBJL [viz- - vn2])))
= opy, - opy (MAPg, (I, [v11 -+ -va]) ope MAPg,(I))

Similarly when aggregating over variableslify, MAPg, (/) can be treated as a constant
because it does not depend on the value of any of the variablés Sinceop,. forms a

138 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

safe pair with all the aggregation operatord/in by Lemma 18,

MAP3(I) = opll)f1 opt (MAPR, (I, [v11 -+ 1)) ope MAPg,(I)

n,1

= MAP3, (I) op. MAPg,(I)

Thus by definition,B = Ex-apply(B, Bs, op.) is a combination of3; and B, under the
combination operatasp.,.]

The following theorem strengthens this result showing Ehaaipply has some freedom
in reordering the aggregation operators while maintairdagectness. In particular if;
andV; are in “block form” e.g.3*V*, we can reorder the result’ to keep the same block
form. This property is useful for our solution of RMDPs.

Theorem 11 Let B, = (V4, Dy) and By, = (V,, Dy) be GFODDs that do not share any
variables and assume thap. forms a safe pair with all operators il; andV;. Let B =
(V, D) = Ex-applyBi, Bz, 0p.). LetV’ be any permutation of so long as the relative
order of operators inl; and V; remains unchanged, an8’ = (V’, D). Then for any
interpretation/, MAPg (1) = MAPg/(I).

Proof: LetVy = FI'Fy - - - Fj} andV, = FYF3 - - - F}? so that eaclt is a series of zero or
more consecutive aggregation operator§inThenV’ = FF2F)F} - - - FLF? represents
a permutation o such that the relative order of operatord/inandV; remains unchanged.
By the semantics of GFODDs,

MAPB/(]) = FllFf"'F]iF]?MAPB/(I,[Ulyl"'vn,lvlyg"'Um72]>

wherevw; ; is a variable inB;. This is becausé and B’ share the diagran and differ
only in the aggregation function. Therefore,

MAPB/(I) = F11F12 s FlekQMAPB([, [’U171 . '/Un71’l)172 . 'Um72])
= F11F12 s F]gleQ[MAPBl (I, [Ul,l ce Un,l]) ODc MAPBQ(I, [ULQ s Um,g])]

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 139

by the correctness of apply procedure . Sifeand B, do not share any variables, and
op. forms a safe pair with all operators In andV;, we have the following sequence of
equations where in each step we use Lemma 18 and the factihalf the arguments is a
constant with respect to the corresponding block of agdi@gaperators.

MAPB/(I) = F11F12 L] Fkl[MAPBl (I, [/Ul,l L] Un,l]) Opc 1“_}3|\/|/A\F)B2 (I, [/ULQ .. 'Um,Q])]
= F'F?-- F?2 [FIMAPg, (I, [v11 - -vna]) ope FEMAPR, (I, [v12 - Upma))]

= B! EMAPg, (I, [v11 - vna]) ope FP- FEMAPR, (I, [v12 Upa))

Finally by Theorem 10, the last term is equal to MAR) implying that MAPs/ (1) =
MAP(1). n

8.2 Model Checking Reductions for GFODDs

The R12 procedure introduced in Section 6.1 can be exterdepdrate on GFODDs. In
this section we present extensions of R12 for two forms ofeggfion functions. The first

is a set of diagrams using onlyin aggregation. The second is the set of diagrams with
max*min® aggregation. In this case the aggregation function caneisa series of zero
or moremax operators followed by a series of zero or maugén operators. For this case
we introduce two variants?12,; and R12,, with differing computational costs and quality
of reduction. We discuss each of these in turn starting viiéhR12 procedure for thein
operator.

8.2.1 R12 for min aggregation

The case ofnin aggregation is obtained as a dual of thex aggregation case. Also the
notion of instrumental paths here is the dual of the notionstrumental paths for th@ax
aggregation. However, it is worthwhile considering it agjly as a building block for the
next construction.

140 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Definition 10 If B is a GFODD with only the min aggregation function, aRds the DPO
for B, then a pathp; € P is instrumental iff

1. there is an interpretatiod and valuation(, such thatPathg(1, () = p;, and
2. Vvaluationsy, if Pathg(I,n) = pg, thenk < j.

The generalized aggregation function for thén aggregation operator is the same as
the max operator except that theax is replaced by thenin and no special treatment is
given to paths reaching theleaf. We thus have ain® generalized aggregation function.
The reduction procedure is identical to the.x except thainin?® is used instead afiaz?
and that edges iy have the targets replaced byscard instead of0. This is not strictly
necessary, as we can replace the target of the edges witgeavalue (or). But it is
useful for the preparation of the next construction. A athadaptation of the proofs in the
Chapter6 yields the corresponding properties fatin aggregation.

Lemma 19 If a pathp; in GFODD B is instrumental under DP@ L, then3 [, such that
{|eaf(pl), Di» Io} € S

Lemma 20 If there exists an instrumental path under. that crosses in B thene € F'.

Theorem 12 (soundness)f GFODD B’ is the output of R12) for any GFODDB, then
Vv interpretations/, MAPg (1) = MAPg/(1).

Theorem 13 (completeness)f no path crossing edgeand reaching a non-zero leaf i
is instrumental undeP L, then R12 removes

8.2.2 Model Checking Reduction formax*min* Aggregation

This section is concerned with GFODDs employimgxz*min* aggregation. The aggre-
gation function consists of a series of zero or morex operators followed by a series
of zero or moremin operators. The aggregation functidhis therefore split intd/! —
the variables aggregated over using ther aggregation operator, and™ — the variables
aggregated over using thein aggregation operator. Thug, = V!V". The setU of alll

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 141

1) px). g0, gly). r(y) : 10
g pgxg’ q(()> (). 1(y) : 0 Loy pX)
pPX), -q(x), qly), -ry
2) PO, 9, 40): @/\ PN
5) -p(x) : 0 . ® 0 4 0
N R12,
@(y) R q 9

X |y 10 0

a|a 0-{1f{-p(a)}, 5-{1t2t}-{p(a).q(a)}, 0-{1t2f3f}-{p(a)-a(a)}

a| b | 0-{1f-H{-p(@)} 5{1t2t}-{p(a).q(a)}, 0-{1t2f3f}-{n(a)-a(a),-q(b)}, O-{1t2f3t4f}-
{p(a).-q(@).q(b),-r(b)}, 10-{1t2f3t4t}-{p(),-q(a),q(b).r(b)}

0-{1f}-{-p(a)}
¥ 5-{1t2t}-{p(a), a(a)}
MIN-3 | O0-{1237Hp(a).-q(@).-a(b)} =— Target(3t) can be
Aggregation: 0-{1t2f3f}-{p(a),-q(a),q(b),-r(b)} replaced by d
0-{1t2f3f}-{p(a).-a(a),q(b) r(b)} |

Figure 8.2: An example of reduction operatBit2, for GFODDs withmax*min* Ag-
gregation. Each entry of the form valygath}-{interpretatior} in the table expresses the
value obtained by running the valuation of the correspogdiv through the diagram un-
der an equivalence class of interpretations. #hie?* aggregation function applied to every
block (in this case there is just one block with= a because there is only one variable
associated with thewax aggregation operator) then calculates the possible agtgethat
could be generated under different equivalence classegaypretations. Since the edge
does not appear along any of the instrumental paths leadiagnon-zero leaf in the result
of min?, it is not instrumental and can be removed

142 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

possible valuations of the variablesfhcan be split intd/! andU”, the sets of all valua-
tions over the variables iti' andV'" respectively. Any valuatiotg € U can then be written
as¢!¢" where¢! € U' and¢” € U". Thus by the definition of GFODD semantics, for any
interpretation/,

MAP5(I) = opl - op? [MAPg(I, [v; - - -v,))]
= mazacy [mineepr [MAPR(I, ¢'¢)]).

The procedure R12,

Our first reduction operator captures a simple notion ofruraental paths. Considering
the evaluation o3 on I, we check whether a path is instrumental in obtaining theevaf
themin aggregation for any fixed,. If not then it clearly does not contribute to the final
value. However, we must be careful when changing the valtiesgbath, because this may
affectmin competitions (if we replace the value of the path with a vdha is too low).
We therefore use the valukin the reduction.

Definition 11 If B isa GFODD with thenax*min* aggregation function, ané isa DPO
for B, then a patlp; € P is instrumental iff there is an interpretatiahand valuation/ =
¢i¢m, where¢ € U, ¢! € U and(" € U", such that,

1. Pathg(1,¢) = p;

2. Foreveryy” € U", if Pathg(I,('n") = p;, thenj <iunderP

The R12, procedure for thenax*min* aggregation is identical to the R12 procedure
for themin aggregation with the following exceptions.

1. The set’ of valuations is built in the following way. Led' be the set ofV!| newly
invented objects. Le®" be the set ofV"| newly invented objectsO! andO" are
disjoint. LetU! be the sets of all possible valuations of the variableg'iover the
objects inO! and letU” be the set of all possible valuation of the variabled/in
over the objects ifO! U O". The setl/ is then defined a8 = {¢!¢" | ¢! € U and
reUr}.

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 143

2. The setS is defined asS = [J..Reduction-Aggregatiodt, U, PL), whereU,: is
the block of valuations corresponding ¢& Thus the set/al in the procedure is
divided into blocks, each containing a set of valuation$wlite same!. S is the
union of the sets generated as a result of applyirig?® to each blocks o al.

Figure 8.2 shows a small example of this reduction. The ®cesimilar to the R12
procedure for thenax aggregation, except for the generalized aggregation imctA
DPO is first established as shown. Séts = {1} andO" = {2} are invented and
the table {'al) is generated by running thg=tV alue procedure on the valuations gen-
erated from those. Finally, sindéal consists of a single block (since only one variable
is associated with thewaz operator),min®(Val) is evaluated to produce the {8eaf,
path, Interpretatiohtriplets as shown. For example combinitd 123 f }-{p(a),~q(a)}
with 10-{1¢2f3t4t}-{p(a),~q(a), q(b),r(b)} undermin® we get0-{1¢2f3f}-{p(a),~q(a),
q(b),r(b)}. The targets of all edges other than the ones present in the pathe resultant
triplets can be replaced by the valdeThe resultant diagram is shown.

The proof of correctness follows the same outline as abovadxounts for the extra
aggregation operators.

Lemma 21 If a pathp; in GFODD B employing thenax*min* semantics is instrumental
under DPOPL, then3 I, such that{leaf(p;), p;, I} € S.

Proof: If p; is instrumental undeP L thend interpretation/ over a set of object®; and
valuation¢ = ¢!¢" such thatPathp (1, ¢) = p; and for everyy”, if Pathg(I,¢'n") = p;,
then; < i underP. Let O" be the set of objects that participate(frand letO be the set
of objects that participate iT but notin¢’. Clearlyl < |0"| < |V andl < |O™"| < V7.
Leto] € O"andof € O'". Add|V!| —|O"| new objects t@)" and|V"| — |O""| new objects
to 0.

Construct interpretatiod’ by first projecting/ to include only the objects i and
O'" and then defining truth values and predicates over the neactshjnO" andO" to
behave identical to} ando] respectively. LeD" andO™ be the set®)' andO" used in
the R12, procedure to generate the set of valuatidns{/ can be split into blocks so that
each valuatiom = n'n" belonging tol/ can be assigned to the block corresponding'to
Let U be the block corresponding to.

144 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Since¢ € Uq, and!’ contains the relevant portion éf ¢ traverseg; under!’. Addi-
tionally if 3n € U such thatPathp(I’,n) = p;, andj > i underP L, we could construct
another valuationy = ﬁlﬁr by replacing the new objects rﬁ andn” by o ando’ respec-
tively, so thatPathp (1, 7) = p;. However, we know that no suchexists. Therefore there
is non € Ua such thatPathg(I', 1) = p;, andj > i underPL.

Let], = UneUd (PF(Pathg(I',n)))n. Thatis,I, includes all the atoms aof that par-
ticipate in traversing paths iR for all valuations inU/.. By construction the corresponding
parts(PF(Pathg(I’',n)))n will be included in thevalueset returned by the getValue pro-
cedure. Clearlyl, C I'. Therefore ifI’ is consistent then so . If Val. is the block
in Val corresponding to the valuationsif., then by the definition ofnin®, min®(Valq)
must contain an entrfleaf(p;), p;, I, }. Finally sincemin®(Val.:) is a subset of, S must
contain{leaf(p;), p;, I, }.]

Lemma 22 If there exists an instrumental path under. that crosses in B thene € E'.

Proof: If there is an instrumental pafh € P L that crosses edge by Lemma 2H [, such
that{leaf(p;), p;, I,} € S. By definition of E’, e € F'. [|

Theorem 14 (soundness)f GFODD B’ is the output of?12,(B) for any GFODDRB with
themaz*min* semantics, thew interpretations/, MAPg (1) = MAPg/(1).

Proof: By the definition ofR12,, the only difference betweel and B’ is that some edges
that pointed to sub-FODDs iR, point to thediscard leaf in B’. These are the edges in
the sett at the end of thé?12, procedure. Therefore any valuation crossing these edges is
discarded from the aggregation function. Valuations nossing these edges will achieve
the same value i®’ as they did in3.

Fix any interpretatiorl over any se©; of objects. LetU be the set of all valuations of
the variables inB overO;. Each valuatiom € U can be expressed gs= n'n" such that
n' € Ut andn” € U". MAPg(I) can then be expressed as

MAPg(I) = maz, ey [ming co- [MAPg(L, 1'n")]

Now for anyn! € U', let p; be a path such thaty” € U", Pathg(I,n'n") = p; and
Vi € U", Pathg(I,n'") = p; implies thatj < i under the same DPO employed in the

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 145

R12, reduction procedure. By definitign is instrumental and hence by Lemma 22 none
of the edges op; are affected by?12,. Therefore MAR (I, 7'n") = MAPg/(I,n'n") and
by the property ofnin aggregation, for/,

ming ey [MAPg(I,1'n")] = mingco- IMAPg (I,1'n")].
Since this is true for eveny’ € U!, itis also true for the aggregation, that is
mazy ey [ming cor MAPE(I,0'")] = mazycp[ming: co- [MAPg (I, n'n")].
Therefore MAR; (1) = MAP g/ (I). u

The Procedure R12,

The introduction of the discard value in the leaves makesllagn and interpretation of
diagrams awkward. In this section we show that at some ahdikicomputational cost
this can be avoided. With some extra bookkeeping, a variaititeoR12 procedure can
avoid replacing edge targets with tiddeaf and in the process, potentially remove more
redundancies from awaz*min* GFODD. To motivate the new procedure, consider what
happens during evaluation of interpretatibon GFODD B. Each blockb of valuations
corresponding to g’ is collapsed undemin aggregation. Lef, (P.) denote the set of
paths inB traversed by the valuations érand ordered by the given DPO. We can view this
procedure as a competition among the paths,inThe winner of this competition is the
path of highest index iF,. Denote this path by, (p.:). Themin competition applied to
all blocks creates a “super block’of all the winners, each corresponding tg'a Finally

all the('s are collapsed under thezz aggregation. This process can, in turn, be viewed as
amax competition among the paths #). The winner of this competition is the path with
the least index inP;,. Obviously this path also wins thein competition in its own block.
We call this block thenaz blockb* and the winning path,-. Then, MAR; (1) = leaf(py-).

We observe the following:

1. If the value of the leaf reached by any path in thex block isreducedto a value
at least as large as legf(), the map remains unchanged. This is becauserthe

146 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

competition on thenax block will still produce the same result. Additionally, s
we are only reducing the values of other paths, none of ther dlocks will produce
a winner with a leaf value higher than leaf().

2. If the value of the leaf reached by any path in any bleckher than thenax block
is reduced td), leaf(p,-) will still win the maxz competition and the map will be

preserved.
The above observation suggests that we can reduce a GFODBP following way,

1. Preserve the targets of all edges in all paths winning tia fnhax competition under
any interpretation. We call thesastrumentakdges.

2. Identify edges on paths iR that appear in therwaz block under any possible inter-
pretation/. We call thesdlockedges. For each block edggereplace target(by a
value that is () at least as large as legf() under!/ but (2) no larger than the smallest
leaf reachable by traversing Notice that {) means thap,- wins them:n competi-
tion of the blocks and2) makes sure we never add value to any path. The condition
(2) is somewhat limiting in that it may prevent us from reducihg diagram because
of conflict with (1). One might be able to prune further using a deeper analysis;
however @) provides a cheap test that appears to provide reasonaldeacse.

3. Replace the targets of all other edge$)by

In the remainder of this section, we describe fRE, reduction procedure and prove its
correctness. The input to the procedure is a GFOBE: (V, D) and a DPOPL for B.
The output is a reduced GFODB'. We redefine the generalized aggregation functions
min® andmax® to capture the bookkeeping needed for block edges:.® is redefined as

follows.

min3: min® takes as input a sétal of valuations each corresponding to a setwaflue,
path, interpretation) triplets. The output is a set of all possible quadruplets p,, E.,
I,) generated as follows

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 147

1. LetX = {{vi,p1, 1), - - (Vv Pvals Livay) } DE @ set constructed by picking one
triplet from the set corresponding to each valuatjoa V al.

2. Vo = min[vli T U‘Va”]

3. p, Is the path of least index under DPRY. that appears in a triplet iX such that
leaf(p,) = v,.

4. E, is the set of all the edges appearing in all the paths in altrtpkets in X except
the edges i,

5. I, =, I; such that, is consistent andv;, p;, E;, ;) € X.

maz®. max® takes as input a sétal of valuations each corresponding to a setwflue,
path, EdgeList, interpretation) quadruplets. The output is a set of all possible quadru-
plets(v,, po, Eo, I,) generated as follows.

1. LetX = {{v, p1, Ev, L), -5 (Wvaps Dvayy Evays fivay)} be a set constructed by
picking one quadruplet from the set corresponding to eatitretian(€ Val.

2. vy =max[vy, -+, Vyal]

3. p, is the path of highest index under DH&. that appears in a quadrupletdsuch
that leafp,) = v,.

4. F, is the setty; such thap, = p; andv, = v;
5. 1, =, I; such that, is consistent andv;, p;, E;, ;) € X.

Note that the sefy, in min® collects the edges from the losing paths in one block
whereas the séf, in maz? collects the block edges.
The R12, procedure is as follows.

1. The setU of valuations is built in the following way. L&D’ be the set ofV!| newly
invented objects. LeD” be the set of|[V!|IV'| 4+ 1)|V"| newly invented objectsO
andO" are disjoint. Let/! be the sets of all possible valuations of the variabldg'in
over the objects i)’ and letU” be the set of all possible valuation of the variables

148 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

in V" over the objects i)' U O". The set’ is then defined a8 = {¢!¢" | ¢! € U
and¢" € U"}.

2. For every edge we maintaivariables. low¢) and high¢) are bounds on its value
and InstrEdge() is a flag. These are initialized as follows. For all edg@s B, set
low(e) = —1, high() = I., wherel, is the value of the smallest leaf reachable through
e in B, and InstrEdge{() = 0.

3. Run thenaxmin® procedure as follows.

(a) DivideVal into |U'| blocks of valuations each block corresponding to a valua-
tion ¢! € U'. Let X be the set of these blocks.

(b) LetY = {(¢' —min3(b)) | ¢' € U' andb € X is the block corresponding to
¢'}.

(c) LetS = maz3(Y).

(d) For every quadruplew,, p,, E,, I,) € S, do

i. For every edge € p,, set InstrEdge() = 1.

ii. Forevery edge € FE,, setlowg) to max[lowe), v,].
4. Finally the target of every edges replaced as follows:

(a) If InstrEdge¢) = 1, do not replace.

(b) If InstrEdge¢€) = 0, low(e) # —1 i.e. e is a block edge and high > low(e),
replace target) by any suitable value, such that lowf) < v < high(e).

(c) IfInstrEdgeé) = 0 and lowg) = —1, i.e. e is not a block edge replace targgt(
by 0.

Figure 8.3 shows an example of tR& 2, reduction.
In the remaining part of this section we provide a proof ofredness forR12,. To that
end we introduce the following terms.

Definition 12 An edgee in GFODD B is instrumental ifie € p,- under some interpreta-
tion.

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 149

1) p(x), -q(x), a(y), r(y) : 10 Max(x) Min(y) Max(x) Min(y)
2) p(), (x): 5 D
3) p(x), -a(x), q(y), -r(y) : 0 p(x) P(x)
4) p(x), -q(x), -q(y) : 0 © PN
5) -p(x):0 bpPO a(x) 0 a(x)
" yaN G R,
a | a |o-{h{p@} 5-{12tHp(a),q(@)}, 0-{1t2t31}- Y ° 0
p(2).-9(a)) @ (y)/>\
a| b |o-{IA{p@)} 5-{1t2t-{p(a),q(a)}, 0-{1t2f3f}- A \ 0
{p(a)-q(a)q0)}, 0-{123-p(@) @ab). | 157
-1(b)}, 10-{1t213t48}-{p(a).,-q(a) a(b),1(b)}

a | ¢ | 0-{If{-p(a)}, 5-{1t2t}-{p(a).q(a)}, 0-{1t2f3f}-{p(a),-a(a),-a(c)}, 0-{1tf3t4f}-{p(a).,-q(@).a(c),
-1(c)}, 10-{1t2f3t4t}-{p(a),-q(a).a(c).r(c)}

0-{1f}-{-{-p(a)}

5-{1t2t-{}Hp(a), a(a)}
0-{1t2f3f}-{}-{p(a).-a(a) -a(b),-q(c)}
0-{1t2(3f}-{3t4f}-{p(a),-a(a).-a(b).a(c),-r(c)}
0-{1t2(3f}-{3t4t}-{p(a),-q(a),-a(b).a(c) r(c)}

—

y 0-{1t2£31}-{3t41}-{p(@) -0(@),a(b)-a(c) (b)) L Target(3t) can be —
MAXMIN-3 | . o-{1t213}-{3t41}-p(a),-a(a).a(b) a(c),1(b),-1(c)} replaced by 0
Aggregation: 0-{1t2f3f}-{3t4t}-{p(a),-q(a),q(b),q(c),-r(b),r(c)}

0-{1t2f3f}-{3t4t}-{p(a),-a(a),q(b).-a(c) r(b)}
0-{1t2f3f}-{3t4t4f}-{p(a),-q(a),q(b),q(c).r(b),-r(c)}
0-{1t2f3f}-{3t4t}-{p(a),-q(a).a(b).a(c).r(b).r(c)}

Figure 8.3: An example of reduction operatBit2, for GFODDs withmax*min* Ag-
gregation. The initial diagram is the same as in Figure 8 &is Time |O"| = 3 because
[V!| = [V7| = 1 and hencéV'| + (|V!|V'I + 1)|V"| = 3. Each entry of the form value-
{path}-{interpretatior} in the table expresses the value obtained by running theavalu
tion of the corresponding row through the diagram under amvatgnce class of inter-
pretations. The MAXMIN-3 aggregation function then caltek the possible aggregates
that could be generated under different equivalence dasketerpretations. Since we
have only one block, we only need to run the extended® aggregation on this example.
The result is shown below the table. For example the entrigs2/3f}-{p(a), 7q(a)},
10-{1t2f3t4t}-{p(a), ~q(a), q(b), r(b)} and10-{1t2 f3t4t}-{p(a), q(a), q(c),r(c)}, give
the last row in the result. The edgésAt and4f are identified as a block edges. For e@ge
InstrEdgeBt) = 0 because there is no winner of the max block contains &tlgkigh(3t)

= 0 because the smallest leaf reachable by trave@img)). Themazmin® procedure sets
low(3t) to 0 because the highest leaf reached by any path defeating the gantaining
3t in the max block i9). Thus target§t) can be set t@ without violating the constraint
low(3t) < target@t) < high(3t). Setting the target @t to 0 reduces the diagram. Note that
in this example all edges shown are block edges becauseishamly one block - the max
block. All the edges appearing in the resultrofizmin® are instrumental edges and their
targets are preserved by the reduction procedure

150 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Definition 13 An edgee in GFODD B is a block edge if it is not instrumental arde
path € Py under some interpretation.

Definition 14 An edgee in GFODD B is a useless edge if it is neither an instrumental
edge nor a block edge.

Definition 15 For any block edge;, CannotExceed] is the value of the smallest leaf
reachable througle and CannotLagy) is the value of the largest leaif) over all inter-
pretations, when a path containirgappears in thenax block

Definition 16 A reduction proceduré that reduces a given GFODB to produce GFODD
B’ is block-safe if it conforms to the following rules.

1. Ridentifies all instrumental edges i and for each such identified edgeR main-
tains target¢).

2. R identifies all block edges i and for each such identified edge R replaces
target) by any leaf value such that CannotLagj < v < CannotExceed].

3. For each edge: that is not identified byR as an instrumental or block edge
replaces target() by 0.

The proof below has two parts. Theorem 15 says that any nestupgtocedure that is
block-safemust also be a sound reduction procedure. Theorem 16 proaE312, is block
safe

Theorem 15 If reduction procedure? is block-safe and3’ = R(B), then for every inter-
pretation/, MAPg (1) = MAPg/(I).

Proof: Fix any interpretatiod over any set); of objects. Let/ be the set of all valuations
of the variables inB over O;. Let ¢ = (!/¢" € U be a valuation traversing,- in B.
MAP (1) can then be expressed as

MAP35(I) = max,cp[mingcyr MAPg(I, nlnr)]
= maz[mine ey [MAPg(I, CZCT)], max, eyt [Mingcpr MAP (I, nlnr)]]]

8.2. MODEL CHECKING REDUCTIONS FOR GFODDS 151

Since the definition oblock-safeguarantees that the target of every edge not replaced
by a value greater than CannotExceqdgefargeté) only decrease in value. Therefore, for
any valuatiom € U, leaf(Pathg(I,n)) > leaf(Pathg/(1,n)). Therefore we have,

maz, eyt [Ming:cyr[MAPg/ (I, n'n")]] < maz, eyt [Mingcyr[MAP (I, n'n")]]

Additionally, the definition ofblock-safeguarantees that all instrumental edges are pre-
served and that the value reached by the block edges is nesecad below leaf-).
Therefore,(reaches leajf() in both B and B’. No other valuation in thenax block bx
reaches a value less than legfj when evaluated o®’. Thus,

mingre(]r [MAPB/(I, CZCT)] = minQTGUT [MAPB(]7 Cl(?‘)]
= leaf(py)

Finally,

MAPg5 (I) = maz[mine ey [MAPg (I, ¢'C7)], maz,ipccp [mingcp-[MAPg (I, n'n")]]]
= mingreyr IMAPg (T, ¢'¢7)]
= leaf(py)
— MAP3(I)

It is clear thatR12, identifies some instrumental edges and some block edgefiovo s
that this is true for all such edges over an infinite set ofrpretations some of which
have infinite domains, we show that each such edge is disedJu®r one of the finite
combinations in our procedure. Thus even if two edges ardlithek edges of the same
py, they may be discovered by differefj’'s in our procedure. This is achieved in the
following theorem by showing that any instrumental edge @ and block edge (op,)
are appropriately accounted for B312,.

Theorem 16 (soundness)R12, is block-safe.

152 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Proof: Line 4 in the R12, procedure enumerates the treatment of different edgés il
remains to be shown that

1. If an edge: in B is instrumental under some interpretatibrthen R12, sets Instr¢)
=1.

2. If an edger is a block edge under some interpretatibrthen R12, sets low¢) >
CannotLagg).

3. If an edger is a block edge under some interpretatigrthen R12, sets highf) <
CannotExceedy.

Ofthe above, 3istrue by the definition B12,. Consider any interpretatiah Let¢ = ¢¢”
be a valuation traversing,- = p; in B underl. Letn = ('n" be any other valuation in the
mazx block b+ that does not win the min competition and letthz(1,7) = p;. LetO" be
the set of objects that participate¢hand define the s&b” = { o ¢ O" | o participates in
n" orin ", where:! contains only the objects fro@" and.'.” wins themin competition
in its block}. By constructiodO”| < [V and|0”| < (|[V!|V'l +1)|V"|. Leto! € O" and
o € 0. Add |V!| —|0"| new objects t@" and(|V!|IV'l +1)|V"| — |O"| new objects to
or.

Construct interpretatiod’ by first projecting/ to include only the objects in" and
O'" and then defining truth values and predicates over the negctsbpdded t@" andO"
to behave identical to’ ando}” respectively. LeD” andO" be the set$)! andO" used in
the R12, procedure to generate the set of valuatidns,

Since!l’ contains the relevant portion @f Pathg(I’, () = p; and Pathg(I',n) = p;.
Additionally if there exists valuatiog’.” € U such thatPathg(I', (') = pr andk > i
underP L, then we could construct another valuatifjﬁ“ by replacing the new objects i
and.” by 0! ando’" respectively so thaPaths (I, (') = py,. However, we know that there
IS no sucl‘[flﬁ. In other words, patlp; is the winner of the min competition in theax
block b« under!’. An identical argument proves thattifis a block inU corresponding to
/!, thenp, defined relative td is the winner of thenin competition inb under!’.

Let [y, = PF(Pathg(I',/%7))i" be the set of atoms on the path,. in B tra-
versed by some valuatiof,” underI’. By construction, a tripletleaf(,.,-),p.,,1,1,-)

8.3. ANAPPLICATION OF GFODDS FOR VALUE ITERATION IN RELATIAL MDPS153

appears in the output of the getValue procedure, when ruw6n Therefore, by the
definition of min?, the setX generated by applyingwin® to b must contain an entry
(leaf(py),py, By, 1s), Wherel, = U,y (PF(Pathp(I',/0"))) . Similarly the set pro-
duced by applyingnin® to the maz block must contain an entriteaf(py-),pp-, Ep , [y),
wherely. =,y (PF(Pathp(I',¢"7)))¢"". Also, Ey- must contain all the edges in.

Now, by the definition ofnaz?, the setS built in the reduction procedure must contain
an entry(leaf(py-),py+, By, 1) Wherel, = |J,., (PF(Pathg(I’,1))). is consistent because
itis a subset of".

Thereforee € p,- is marked instrumental bf12,. Every edge: € p; is marked with
low(e) > leaf(p,-). Since the choice of, p,« andp; was arbitrary in the above argument,
this holds for all block edges, implying that losy(> CannotLag{). ThusR12, is block-
safe |

We have proved above th&tl 2, and R12, are both sound reductions, the question of
completeness of these reductions is still open. Sinceéneproving of first order formulas
with the quantifier settings*v* is decidable, there is hope for a completeness result.

8.3 An Application of GFODDs for Value Iteration in Re-
lational MDPs

So far we have described a general theory of GFODDs. Thisded the syntax and
semantics of GFODDs, combination procedures and redugtiocedures for GFODDs.
In this section we describe an application of GFODDs for s@\RMDPs.

The algorithm is very similar to the one presented in Chaptieut uses the more ex-
pressive GFODDs instead of FODDs as the underlying reptasen for the RMDP. Recall
that domain dynamics are expressed as Truth Value Diagrawd@)(which describe, for
each deterministic alternative of each probabilisticacttnd for each world predicate, the
conditions under which the corresponding world literal @®@est r ue when the action
is executed and that action alternative occurs. Figure Bodvs an example of a TVD
for the parametrized world predicatéA, B) under the deterministic actiaA(z*, y*) in a
hypothetical planning domain that we use to illustrate tigedthm.

154 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

Max(x) Min(y)
Max(x) Min(y) p(x.y)

/\ Regression

Reward Function

TVD for p(A, B) under
determistic action A(x*, y*)

p(A,B) p(x.y)

Max(w) Max(z) Max(x) Min(y) | 1 0

Object
Maximization

Figure 8.4: Example of GFODD Regression and Object Maxitiuna
8.3.1 The VI-GFODD Algorithm

In this section we show that the FODD based VI algorithm cagdigeralized to handle
cases where the reward function is described by a GFODD with*min* aggregation.
The following are the steps of the algoritivi-GFODD. A subsequent discussion shows
why VI-GFODD produces the correct result at each step.

1. Regression:Then step-to-go value functiolt, is regressed over every deterministic
variant A;(Z) of every actionA(Z) to produceRegr(V,, A(Z)) by replacing each
node inV"! by its corresponding Truth Value Diagram (TVD) without clyang
the aggregation function. This step is unchanged.

8.3. ANAPPLICATION OF GFODDS FOR VALUE ITERATION IN RELATIAL MDPS155

2. Add Action Variants: The Q-functiorQéf) =R®[y® ®;(prob(4;(Z)) ® Regr(V,,
A;(%)))] for each actionA(Z) is generated by combining regressed diagrams using
Ex-apply. This step is changed simply by using Ex-applygadtof Apply.

3. Object Maximization: Maximize over the action parameters @(gf) to produce
Q{}n for each actionA(Z), thus obtaining the value achievable by the best ground
instantiation ofA(%). This step is implemented by converting action parameters i
Q’éf) to variables each associated with thex aggregation operator, and prepend-
ing these operators to the aggregation function.

4. Maximize over Actions: Then + 1 step-to-go value functiolt,, . ; = max4 Q{}n, is
generated by combining the diagrams using Ex-apply.

Figure 8.4 shows an example of the VI algorithm using GFOD@safsimplified do-
main. This domain contains one single deterministic actidrerefore steps 2 and 4 of the
algorithm are not needed. The reward function is regressedtbe deterministic action
A(z*,y*), which is defined such that{x, y) is true after the action if it was true before
or if ¢(x,y) was true before and the action performed wds,). The reward il if 3z,
Yy, p(z,y) and0 otherwise. Since the action can make at mostyney) true at a time,
intuitively, the regressed diagram should capture themuoiahe following conditions for
returning a value of.

1. 3z, Yy, p(x,y)
2. Jz, such that for all but one, p(z, y) is true and for thay, ¢(x, y) is true.

Figure 8.4 shows the diagram after being regressed andtabgeamized. The final dia-
gram is correct because it returng &f one of above situations occur. Hz, Yy, p(z,y),
then all valuations in the blocks with that valuexofnd fixed values fow andz will reach
the 1 leaf directly from the root. Evaluating/in(y) will collapse these blocks to partial
valuations with al value. Now since the rest of the aggregation is maximizatibe 1
value will be returned as the map.3f, such that for all but oneg, p(x, y) is true and for
thaty, ¢(x,y) is true, then all valuations in the blocks with that value:pthe other values
of y and fixed values fow andz reach al leaf directly through the root. The valuation in

156 CHAPTER 8. GENERALIZED FIRST ORDER DECISION DIAGRAMS

the block with the one value af would traverse right from the root but would still reach
thel leaf depending on the conditian= x andz = y. Note that there will be exactly one
block where this valuation will reach theleaf. EvaluatingMin(y) would collapse that
block into a valuation with valué. Since the rest of the aggregation is maximization, the
1 value will be returned as the map. When neither of the comastis true, there will be at
least one valuation in every block that reachésleaf. Hence evaluating/in(y) would
collapse every block to a valuation witihavalue.

For Value lIteration to work correctly with GFODDs, all theeps of the algorithm
listed above must be correct. Regression by block replantimeorrect regardless of the
aggregation function. Recall that a TVD for a predicate urtgerministic actiord;(z)
describes conditions under which the predicate becameg after A;(%) is executed. In
chapter 3 we imposed the constraint that TVDs cannot incltekevariables. Using this
constraint the diagrams before and after regression haagtlgxhe same variables. Also
in chapter 3 we showed that regression is correct for anyatain.

Lemma 23 (Wang, 2008) If/}, is then step to go value function, BR-regrégs, A(z)) is
the result of regressing,, over the deterministic actioA (%), and(is any valuation to the
variables ofV,, (and thus also the variables of BR-regrégs A())), thenM APy, (s, ()

= MAPBR-regresg,. @) (%:)

The lemma claims that after regression the map of every tialuatays the same for any in-
terpretation. Therefore, under any interpretation, the wid/,, before and after regression
is also the same irrespective of the aggregation functiol,on

The third step of Object Maximization is correct becauseveaimg action parameters
in Q’éf) to variables each associated with thex aggregation operator, and prepending
these operators to the aggregation function@éj, implies that the map o@én under any
interpretation will now be the map 6f;,"”’ maximized over all possible values of the action
parameters, as required. Steps 2 and 4 are correct by thectwess of Ex-apply. Since
value iteration requires combining diagrams underdhex and themax operators, only
GFODDs with aggregation operators that are safe with thebooation operatorsp, ®
andmax may be used. Thus aggregation operatots: andmin can be used. The current

version of VI-GFODD does not allow aggregation operatds Ji |, mean etc.

8.4. SUMMARY AND CONCLUDING REMARKS 157

Thus we have a correct Value Iteration algorithm for GFODD$whax andmin ag-
gregations. Finally, Theorem 11 guarantees that if we stéinta reward function GFODD
with an aggregation of the formaz*min*, then throughout Value Iteration all GFODDs
produced to have an aggregation function of the same fornth We R12 reductions for
this case, we have a sound procedure that can help keep tirams compact over the
Value Iteration process. We have therefore shown:

Theorem 17 For any Relational MDP where the aggregation function of teard func-
tion diagram contains only operators that are safe with thenbination operatorst, x
andmazx, algorithm VI-GFODD produces the correct value functioresery iteration.

Corollary 1 For any Relational MDP where the reward function hasraxz*min* ag-
gregation, VI-GFODD produces the correct value functioreagry iteration and the R12
procedure can be used to reduce diagrams such that the fisaltralso hasnaxz*min*
aggregation.

8.4 Summary and Concluding Remarks

This chapter significantly extends the representation pad-ODDs. We show how
Generalized FODDs allow for arbitrary aggregation funetipthereby facilitating repre-
sentation of complex functions, and how basic operationhem can be performed. In
particular we can naturally capture and manipulate logicahulas with existential and
universal quantifiers usingax andmin aggregation. In addition we show that first order
Value Iteration can be supported in a more expressive gettiren the MDP is represented
by GFODDs. This new formulation can naturally handle urse¢goals that were handled
heuristically by previous implementations of first ordet0alteration (Sanner & Boutilier,
2009) and by the FODD4RANNER.

As we have shown, the idea of model-checking reductionsestéo model-checking
reduction operators for a useful subset of GFODDs. Nevirsisemore work is needed to
identify efficient reductions for this subset and for oth@eresting subsets of GFODDs.

Chapter 9
Conclusions

The work in this thesis has focused on compact representatar sequential decision
making problems. In particular we derived motivation frorolglem domains like logistics
where the state space is large, action effects are prosiétdnd objectives can be complex
but there exists rich relational structure that can be yged by solution algorithms. Re-
lational Markov decision processes (RMDP) have become alpofool for solving such
problems. To this end we follow the approach of Boutilier et(2001), who developed
the Symbolic Dynamic Programming (SDP) algorithm to sol¥s. The main idea in
SDP is to abstract the relational structure of the undeglgiomain and generate a solution
in terms of the relational structure rather than actual donohjects. Such a solution is
independent of the actual problem instance and is validlfatcamain sizes. The RMDP
solution algorithm we presented in this thesis is an insafcSDP and shares all the ad-
vantages of SDP that arise out of abstraction. Our main ibotiton is the development
of compact and expressive knowledge representations toreaghe reward structure and
domain dynamics of the underlying RMDP and appropriaterélyos for efficient imple-
mentation of SDP using this representation.

Through theoretical results and emperical evidence, we Baewn our approach to be
practical and useful. There are many open questions thatailgtarise from this work.
We discuss some of the interesting questions in Section Birdt the following section
presents a summary of the contributions of this thesis.

158

9.1. SUMMARY OF CONTRIBUTIONS 159

9.1 Summary of Contributions

This thesis makes the following contributions.

1. First Order Decision Diagrams: In Chapter3 we invented First Order Decision Di-
agrams (FODD) by modifying and extending the approach obot&and Tveretina
(2003). FODDs are a compact knowledge representation &rvadued functions
over relational structures and are useful in defining iggiand probabilities of world
states in an RMDP. We presented the FODD representationgmatiams to manip-
ulate them. We demonstrated the use of FODDs to representf\iDd developed
an SDP algorithm for the FODD representation. However, FORi2 a very general
representation and we believe they can be employed in ayafi@pplications that
involve structured representations.

2. Theorem Proving Reductions: Our RMDP solver based on FODDs performs rea-
soning by combination of FODDs. Reasoning with First Ordedsls is an integral
part of all SDP based algorithms (Boutilier et al., 2001; ¢tig et al., 2004; San-
ner & Boutilier, 2009). This reasoning process createsrdiag that are large and
contain a lot of redundant structure. Indeed any applioatiat requires performing
reasoning with FODDs will face this problem. Our contriloutito mitigate this is-
sue and improve the practical applicability of FODDs is tlegelopment of logical
simplification operators for FODDs in Chaptér These “reduction” operators use
First Order logical implication as the primary tool to idéptand remove redundant
structure from the diagram. Therefore we call them TheoreoviRg Reductions.

3. Model Checking Reductions:Proving First Order logical implication is an expen-
sive operation. Moreover any constraints in the domain roasxplicitly specified
to the implication engine otherwise it can fail to prove taiatements. These issues
can limit the applicability of FODDs. To mitigate these issuin Chapte6, we
introduced a new paradigm for reduction of FODDs based onefdkecking and
proved its superiority over theorem proving reductions. pkesented theoretical and
practical versions of model-checking reductions and plediproofs of correctness
and completeness. The practical versions of model-chgal@ductions are very

160 CHAPTER 9. CONCLUSIONS

efficient and, we believe, have utility in a variety of applions using structured
representations.

4. Weighted Goal Ordering Heuristic: To apply SDP to concrete planning problems,
one typically plans for abstract generic goals and then gsakdecomposition to put
the abstract solutions together for a concrete instanc€hhpter5, we introduced
the Weighted Goal Ordering heuristic and showed its supgriover the heuristic of
Sanner and Boutilier (2009) in domains where goal serihliitg is a crucial factor.

5. FODD-Planner: In Chapte, using theorem proving reductions to simplify FODDs,
we presented a prolog based software system that implerttentSDP algorithm
with the FODD representation. We demonstrated this systesolving stochastic
planning problems showing performance comparable to togimg systems from
the International Planning Competitions.

6. Self-Taught Planning: In Chapter7 we developed a new paradigm for planning
by learning. The idea is to provide FODD-ANNER with a small “training set”
of world states of interest, but no indication of optimaliagt in any states. The
FODD-RP.ANNER uses this training set and performs logical simplificatigmindel-
checking reductions. We also showed that such training plescan be constructed
on the fly from a description of the planning problem. Thus wetbktrap our planner
to get a self-taught planning system. By combining this idtd model-checking
reductions we showed drastic improvements in planningieffcy over the use of
theorem proving reductions on a variety of IPC domains. édiih we employed the
FODD-P_LANNER to demonstrate the self-taught planning paradigm we beliest
this technique is applicable with any SDP based system.

7. Generalized FODDs: FODDs are compact and expressive but when considered as
logical formulas they are limited to existential quantifioa. To address this we
introduced Generalized FODDs (GFODD) in Chapewhere we extend the repre-
sentation power to arbitrary aggregation or quantificat®@RODDs are very expres-
sive structures that share the same compactness advaasdg@®Ds. We discussed
several properties of GFODDs and presented reductionsnfamportant subset of

9.2. FUTURE DIRECTIONS 161

GFODDs. We also identified conditions under which GFODDslmaeomposed or
combined by a simple procedure. Similar to FODDs, we bel@®#DDs can be
employed in a variety of applications that involve struetlirepresentations.

8. VI-GFODD: We have shown that the same SDP based algorithm that empDiyB&
as the underlying representation is also valid when GFODPssed as the under-
lying representation. We proved the correctness of thisrétlyn, VI-GFODD, for a
very expressive subset of GFODDs. Within this represemtatie can capture objec-
tives liketransport at least one box to Paris and all trucks to Londioithe logistics
domain. This was not possible with FODDs.

9.2 Future Directions

Although we have covered many issues in this thesis, therenany questions that arise
from this work. Broadly we can classify these into two catgg®covering short term and
long term research questions.

Under the short term category, an important issue is thatiibdling efficient evaluation
rountines for policies represented as FODDs. Similar telo8DP based algorithms (San-
ner & Boultilier, 2009), FODD-PANNER generates an abstract policy for a given planning
domain. This policy uses a goal decomposition heuristiggregate information about the
utility of the current world state w.r.t. various decompogarts of the goal. The process of
evaluating the individual utility values and combiningtihé&as been the bottleneck in the
plan execution routine of FODD+RNNER and improving the efficiency of this task will
be instrumental in building a better evaluation routine.oTpossible directions to resolve
this are employing faster subsumption engines and cachmgitility values of recently
evaluated world states.

Another issue in this category is that of ordering atoms irGb. Similar to ADDs,
the order of atoms in a FODD can have a dramatic effect onzts €discovering the op-
timal order for a given domain is a hard problem (it is NP-Herdpropositional ADDS).

162 CHAPTER 9. CONCLUSIONS

In this thesis we have put the burden of inventing the optiondér on the user of FODD-
PLANNER. However, one might hope for an inexpensive heuristic safollowing com-
mon practice in propositional decision diagrams (Rud€f3).

Two more issues in this category arise from the self-tautdrirpng paradigm. One is
the employment of SDP based RMDP solvers other than FODANRER, in self-taught
planning. The other and more interesting question is thattefnative methods of example
generation. One idea is to generate the set of training ebemfimwm solutions of multi-
ple planners (teachers), each specializing in a differant @f the state space. It would
be interesting to see how such a method would enhance therpearice of the planning
system because in the self-taught planning formalism radidtory information from dif-
ferent teachers does not adversely affect the learned mddeas from the research on
active learning might also prove useful in acquiring tramexamples. A related problem
for future study is that of characterizing the quality of th&ining set. Intuitively the best
training set is the one in which all important conditions mlentified by the fewest exam-
ples. It would also be interesting to see if PAC learning lsuon sample complexity can
be derived for practical model-checking reductions.

The work on GFODDs also leads to two questions in the shart tesearch category
corresponding to two current limitations of GFODDs - compgsfunctions defined by
GFODDs in the general case and performing logical simptificeof GFODDs efficiently.
We believe that techniques for composition can be develtgedean and) | aggregation.
This will greatly widen the applicability of GFODDs. Effiaelogical simplification will
make GFODDs a very powerful, expressive, compact and atftigienanipulable tool for
applications with structured representations. Derivimgitions and ideas from the work
on logical simplification of FODDs based on model-checkingld be useful here.

The category of long term research questions contains nmaeresting problems. Most
of these arise from our work on GFODDs, a largely unexploneda The most obvious
among them is the use of expressive GFODDs to represent arelRMDPs. Answering
this question, however, is not straight forward given theeirent limitation of representing
solutions in factored MDPs (Allender et al., 2002) and RMDPBerefore using forward
search methods similar to UCT (Kocsis & Szepesvari, 200@pimunction with dynamic
programming might prove useful. We have already seen ssdodslending search and

9.2. FUTURE DIRECTIONS 163

Reward Function | Blocksworld | Value Function

cl(a) Mult(X)

RN above(X,a)
1o N

0.9 1

Figure 9.1: Reward and Value function for the geidk) in the blocksworld domain

dynamic programming with FODD4RANNER in the self-taught planning paradigm and
we believe there is potential in this line of research towatelveloping practical, compact,
expressive and efficient RMDP solvers. Additionally, in e of the connection between
SDP and EBL as explained in Chap&rGFODDs might also prove useful in addressing
issues related to the “Generalization to N problem”. Fotanse, Kersting et al. (2004)
showed an example in the blocksworld domain where the goalsake a particular block,
a, clear ¢l(a)) and the value function is infinite in size because thered:belany number
of blocks on top ofa. However, the value function can be represented compasthgu
GFODDs in conjunction with a more descriptive predicateue, as shown in Figure 9.1.
In the figure,above(X, a) is true for any blockX that is part of a tower stacked on top
of block a, aggregation ovek is performed by the simple multiplication operator and the
discount factor i€).9. Thus the multiplicative aggregation implicitly captutde number
of steps to the goal. Although the existence of a compacevalnction does not imply an
efficient algorithm to produce it, at least in this partiautase we know that the problem is
not inherently that of representation.

Another issue in the long term research category is that lefrepgames. The current
work on RMDPs is limited to a single agent and applicable avitgn the environment is
non-adversarial. However, many real world domains are ¢bestribed by the multi-agent
adversarial setting e.g. real time strategy games, netaeckrity and military planning.
Here it is important to consider the actions of the adveesaand generate a policy to
achieve the agent’s goals or thwart the opponent’s goalge sEminal works in this area
(Dietterich & Flann, 1997; Schaeffer, Burch, Bjornssonstimoto, Muller, Lake, Lu, &

164 CHAPTER 9. CONCLUSIONS

Sutphen, 2007) are based on the complementary approacl&3Roaind search. Yet the
representations they use are much simpler in comparisdm wiitat RMDP solvers are
capable of. Similar to the problems solved by RMDPs, howewer agent objectives in
games can be complex (e.g. for all friend soldiers, maxintigetotal number of enemy
soldiers captured by each while minimizing physical harnoteself). This suggests an
advantage in using the GFODDs to address such problems. rTknowledge, there is
no method that takes advantage of relational structure miegageneralizes over problem
size and yet achieves complex objectives. In a similar veitné approaches mentioned
above, employing the RMDP solution with GFODDs in conjuoictivith forward search to
solve games holds promise. GFODDs naturally handle andmax which are the main
combining functions needed to solve games.

Another research area where FODDs and GFODDs can be appliedtiof Statistical
Relational Models (SRM) (Getoor & Tasker, 2007). SRMs farfabilistic reasoning have
recently become popular due to their succinct represemagiasier learning due to shared
parameters and lifted inference methods. In fact, theioglat VI algorithm of Boutilier
et al. (2001) and the implementation of this algorithm ugi@)FODDs can be seen to
perform some form of lifted inference in probabilistic mésleRecently several algorithms
that take advantage of model structure in inference have pexposed (Poole, 2003; Braz,
Amir, & Roth, 2005; Jaimovich, Meshi, & Friedman, 2007; MilcZettlemoyer, Kersting,
Haimes, & Kaelbling, 2008; Singla & Domingos, 2008; Sen, iesde, & Getoor, 2008,
2009; Kersting, Ahmadi, & Natarajan, 2009; Kisynski & Pqd2©09). The advantage of
lifted inference techniques is that they use abstractiadeatify repeated factors in com-
putation and thus lead to speedup. Comparatively, resgatymamic models is at a fairly
exploratory stage (Kersting, DeRaedt, & Raiko, 2006) aedéelchniques of lifted inference
have not been applied to different classes of problem suatigf®rcement learning. These
models, in various form, need to represent real valued fanstover relational structures.
Hence employing GFODDs to represent these functions tleatiog a scope for complex
yet compact and efficiently manipulable functions could keedficial. As described in
this thesis, GFODDs have the ability to perform reasoninthwlynamic models. Thus
GFODDs could be the missing link between SRMs and dynamic §SRMhere can be a
number of ways to leverage GFODDs in this area. One idea sp@sent the entire SRM

9.2. FUTURE DIRECTIONS 165

as a set of GFODDs. Lifted inference can then be performagalft by the manipulation
of GFODDs.

We note, however, that in order to develop GFODD based swistio these research
problems we need to first solve the problem of composing fanstdefined by GFODDs
with expressive aggregation functions and performingdabsimplification of GFODDs
efficiently.

Bibliography

Allender, E., Kearns, M., Arora, S., Russell, A., & Moore, (2002). A note on the rep-
resentational incompatibility of function approximatiand factored dynamics. In
Proceedings of the International Conference on Neuralrimftion Processing Sys-
tems pp. 431-437.

Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., ®a#d, & Somenzi, F. (1993).
Algebraic decision diagrams and their applicationdHBE /ACM ICCAD pp. 188—
191.

Balla, R., & Fern, A. (2009). UCT for tactical assault plamgin real-time strategy games.
In Proceedings of the International Joint Conference of Auitii Intelligence pp.
40-45.

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to adghggeal-time dynamic pro-
gramming.Atrtificial Intelligence 72(1-2), 81-138.

Bellman, R. (1957)Dynamic ProgrammingPrinceton University Press, Princeton, NJ.

Blum, A., & Furst, M. (1997). Fast planning through planngigph analysis Artificial
Intelligence 90(1-2) 279-298.

Blum, A., & Langford, J. (1998). Probabilistic planning inet Graphplan framework. In
Proceedings of the European Conference on Planrppg8-12.

Bonet, B., & Geffner, H. (2001). Planning as heuristic skar@rtificial Intelligence
1291-2), 5-33.

166

Bibliography 167

Boutilier, C., Dean, T., & Hanks, S. (1996). Planning undecertainty: Structural as-
sumptions and computational leverage. Piroceedings of the European Workshop
on Planning pp. 157-171.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-thetar planning: Structural as-
sumptions and computational leveragkurnal of Artificial Intelligence Research
11, 1-94.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1995). Expiog structure in policy con-
struction. InProceedings of the International Joint Conference of Auitfi Intelli-
gencepp. 1104-1111.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1999). Stostia dynamic programming
with factored representationAvrtificial Intelligence 121(1-2), 49-107.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.996). Context-specific indepen-
dence in bayesian networks. Rroceedings of Uncertainty in Artificial Intelligence
pp. 115-123.

Bouitilier, C., Reiter, R., & Price, B. (2001). Symbolic dyn& programming for First-
Order MDPs. InProceedings of the International Joint Conference of AuitifiIn-
telligence pp. 690-700.

Braz, R., Amir, E., & Roth, D. (2005). Lifted First-Order grabilistic inference. IrPro-
ceedings of the International Joint Conference of Artificrdelligence pp. 1319-
1325.

Bryant, R. (1986). Graph-based algorithms for booleantionananipulationlEEE Trans-
actions on Computer€£-358), 677-691.

Bryant, R. (1992). Symbolic boolean manipulation with aegkebinary-decision diagrams.
ACM Computing Survey24(3), 293-318.

Bryce, D., & Buffet, O. (2008) IrDnline Proceedings of the Probabilistic track of IPC-06,
http://ippc-2008.loria.fr/wiki/index.php/MairPage

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.Q2P0 Introduction to Algo-
rithms MIT Press.

168 Bibliography

Croonenborghs, T., Ramon, J., Blockeel, H., & Bruynooghe(2007). Online learning
and exploiting relational models in reinforcement leaginn Proceedings of the
International Joint Conference of Artificial Intelligengep. 726—731.

Dean, T., & Kanazawa, K. (1990). A model for reasoning abeusistence and causation.
Computational Intelligengeés(3), 142—-150.

Dearden, R. (2001). Structured prioritized sweepingPtaceedings of the International
Conference on Machine Learningp. 82—-89.

Dedong, G., & Mooney, R. (1986). Explanation-Based Le@mnin Alternative View.
Machine Learning1(2), 145-176.

Dietterich, T., & Flann, N. (1997). Explanation-based feag and reinforcement learning:
A unified view. Machine Learning28(2-3), 169—-210.

Driessens, K., & Dzeroski, S. (2004). Integrating guidaimte relational reinforcement
learning.Machine Learning57(3), 271-304.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relatiorinforcement learning.
Machine Learning43(1-2), 7-52.

Feng, Z., & Hansen, E. (2002). Symbolic heuristic searchfdotored Markov decision
processes. lProceedings of the National Conference on Artificial Ingglhce pp.
455-460.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate poliogration with a policy language
bias: Solving relational Markov decision process&surnal of Artificial Intelligence
Research25(1), 75-118.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach todpplication of theorem
proving to problem solvingAtrtificial Intelligence 2(3-4), 189-208.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL faxpressing temporal
planning domainsJournal of Artificial Intelligence ResearcB((1), 61-124.

Gardiol, N., & Kaelbling, L. (2003). Envelope-based plammin relational MDPs. IiPro-
ceedings of the International Conference on Neural InfdrameProcessing Systems
pp. 1040-1046.

Bibliography 169

Garriga, G., Khardon, R., & De Raedt, L. (2007). On miningseld sets in multi-relational
data. InProceedings of the International Joint Conference of AuitifiIntelligence
pp. 804—-809.

Gelly, S., & Silver, D. (2007). Combining online and offlinedwledge in UCT. IrPro-
ceedings of the International Conference on Machine Lew;pp. 273-280.

Gelly, S., & Wang, Y. (2006). Exploration exploitation in GdCT for monte-carlo Go. In
NIPS Workshop for On-line trading of Exploration and Exgtion.

Gerevini, A., Bonet, B., & Givan, R. (2006) I®nline Proceedings of the Probabilistic
track of IPC-05, http://www.ldc.usb.ve/ bonet/ipc5/dgus2006-booklet.pdf.gz

Getoor, L., & Tasker, B. (2007)An Introduction to Statistical Relational Learning/IT
Press.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, Xeloso, M., Weld, D., &
Wilkins, D. (1998). PDDL: The planning domain definition tarage. Tech. rep.,
Yale Center for Computational Vision and Control.

Gretton, C., & Thiebaux, S. (2004). Exploiting First-Ordegression in inductive policy
selection. InProceedings of Uncertainty in Artificial Intelligencep. 217-225.

Groote, J., & Tveretina, O. (2003). Binary decision diagsafor First-Order predicate
logic. Journal of Logic and Algebraic Programming7, 1-22.

Grofimann, A., Holldobler, S., & Skvortsova, O. (2002). $ic dynamic programming
within the fluent calculus. IfProceedings of the IASTED International conference
on Artificial and Computational Intelligen¢cep. 378—383.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (20P3&eneralizing plans to new
environments in relational MDPs. Froceedings of the International Joint Confer-
ence of Artificial Intelligencepp. 1003-1010.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (200&fficient solution algorithms
for factored MDPsJournal of Artificial Intelligence Research9(1), 399-468.

Hanks, S., & McDermott, D. (1993). Modeling a dynamic andertein world i: Symbolic
and probabilistic reasoning about changetificial Intelligence 66(1), 1-55.

170 Bibliography

Hansen, E., & Zilberstein, S. (2002). LAO*: A heuristic sefaalgorithm that finds solu-
tions with loops.Artificial Intelligence 1291-2), 35-62.

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999). SPUDSBtochastic planning using
decision diagrams. IRroceedings of Uncertainty in Artificial Intelligengep. 279—
288.

Holldobler, S., Karabaev, E., & Skvortsova, O. (2006). &diP: a heuristic search planner
for First-Order MDPs.Journal of Artificial Intelligence ResearcB7(1), 419-439.

Holldobler, S., & Skvortsova, O. (2004). A logic-based aggrh to dynamic program-
ming. InProceedings of the AAAI-04 workshop on learning and plagmrVarkov
Processes — advances and challenges

Howard, R. (1960) Dynamic Programming and Markov ProcessBHT Press.

Jaimovich, A., Meshi, O., & Friedman, N. (2007). Templateséd inference in symmetric
relational Markov random fields. IRroceedings of Uncertainty in Artificial Intelli-
gencepp. 191-199.

Joshi, S., Kersting, K., & Khardon, R. (2009). GeneralizedtFOrder decision diagrams
for First-Order Markov decision processes.Rroceedings of the International Joint
Conference of Atrtificial Intelligen¢ep. 1916-1921.

Joshi, S., Kersting, K., & Khardon, R. (2010). Self-taugitidion theoretic planning with
First-Order decision diagrams. Iroceedings of the International Conference on
Automated Planning and Scheduljmup. 89-96.

Joshi, S., & Khardon, R. (2008). Stochastic planning witlstFOrder decision diagrams. In
Proceedings of the International Conference on Automatadritng and Scheduling
pp. 156-163.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Plammropositional logic, and
stochastic search. IRroceedings of the National Conference on Artificial Intell
gencepp. 1194-1201.

Kersting, K., Ahmadi, B., & Natarajan, S. (2009). Countirglief propagation. IrPro-
ceedings of Uncertainty in Atrtificial Intelligence

Bibliography 171

Kersting, K., & De Raedt, L. (2004). Logical Markov decisiprograms and the con-
vergence of logical TDX). In Proceedings of Inductive Logic Programmjnap.
180-197.

Kersting, K., DeRaedt, L., & Raiko, T. (2006). Logical higdglarkov modelsJournal of
Artificial Intelligence Researgt25(1), 425-456.

Kersting, K., van Otterlo, M., & De Raedt, L. (2004). Bellmgmes relational. IiProceed-
ings of the International Conference on Machine Learning. 465-472.

Kisynski, J., & Poole, D. (2009). Lifted aggregation in dited First-Order probabilistic
models. InProceedings of the International Joint Conference of Auitfi Intelli-
gence pp. 1922-1929.

Kocsis, L., & Szepesvari, C. (2006). Bandit based mont&gaanning. InProceedings
of the European Conference on Machine Learnmg 282—-293.

Koller, D., & Parr, R. (1999). Computing factored value ftioos for policies in structured
MDPs. InProceedings of the International Joint Conference of Autifilntelligence
pp. 1332-1339.

Koller, D., & Parr, R. (2000). Policy iteration for factorddDPs. InProceedings of
Uncertainty in Artificial Intelligencepp. 326—-334.

Krof, R. (1990). Real-time heuristic seardAurtificial Intelligence 42(2-3), 189-211.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithnmr fwrobabilistic planning.
Artificial Intelligence 76(1-2), 239-286.

Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking ©AR: The anatomy of a
general learning mechanismachine Learning1(1), 11-46.

Little, I., & Thibaux, S. (2007). Probabilistic planning.m&planning. InProceedings of
the ICAPS Workshop on IPC: Past, Present and Future

Littman, M. (1997). Probabilistic propositional plannirigepresentations and complexity.
In Proceedings of the National Conference on Artificial Intedhce pp. 748—754.

Littman, M., & Younas, H. (2004) IrOnline Proceedings of the Probabilistic track of
IPC-04, http://www.cs.rutgers.edu/mlittman/topicsg-pt/proceedings/

172 Bibliography

Lloyd, J. (1987).Foundations of Logic Programmingpringer Verlag. Second Edition.

Majercik, S., & Littman, M. (2003). Contingent planning werdincertainty via stochastic
satisfiability. Artificial Intelligence 147(1-2), 119-162.

Maloberti, J., & Sebag, M. (2004). Fast theta-subsumptidh wonstraint satisfaction
algorithms.Machine Learning55(2), 137-174.

Martelli, A., & Montanari, U. (1973). Additive and/or graph In Proceedings of the
International Joint Conference of Artificial Intelligengep. 1-11.

Mausam, & Weld, D. (2003). Solving relational MDPs with Ei@rder machine learn-
ing. In Proceedings of the ICAPS Workshop on Planning under Unicgytand
Incomplete Information

McDermott, D. (1998) In Online Proceedings of AIPS planning competition,
ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-reshtinl

McMillan, K. L. (1993). Symbolic model checkinglluwer Academic Publishers.

Milch, B., Zettlemoyer, L., Kersting, K., Haimes, M., & Kdading, L. (2008). Lifted proba-
bilistic inference with counting formulas. Iroceedings of the National Conference
on Artificial Intelligence pp. 1062—-1068.

Minton, S. (1988).Learning Search Control Knowledge: An explanation-baggar@ach
Kluwer Academic Publishers.

Mitchell, T., Keller, T., & Kedar-Cabelli, S. (1986). Explation-Based Generalization: A
Unifying View. Machine Learning1(1), 47-80.

Moore, A., & Atkeson, C. (1993). Prioritized sweeping: Rercement learning with less
data and less real tim&lachine Learning13(1), 103-130.

Morales, E., & Sammut, C. (2004). Learning to fly by combiniemqmforcement learning
with behavioral cloning. IfProceedings of the International Conference on Machine
Learning p. 76.

Nilsson, N. (1971) Problem-solving methods in artificial intelligenclcGraw-Hill.

Bibliography 173

Pednault, E. (1989). ADL: Exploring the middle ground beaweSTRIPS and the situa-
tion calculus. InProceedings of the Conference on Knowledge Representatidn
Reasoningpp. 324-332.

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, completetigd order planner for
ADL. In Proceedings of the Conference on Knowledge RepresentatiwbiReason-
ing, pp. 103-114.

Poole, D. (2003). First-Order probabilistic inference.Froceedings of the International
Joint Conference of Artificial Intelligencep. 985-991.

Price, B., & Boutilier, C. (2003). Accelerating reinforcemt learning through implicit
imitation. Journal of Artificial Intelligence Research9, 569—629.

Puterman, M. (1994)Markov decision processes: Discrete stochastic dynanugnam-
ming Wiley.

Puterman, M., & Shin, M. (1978). Modified policy iterationgafrithms for discounted
Markov decision problemdvlanagement Scienc@4, 1127-1137.

Rivest, R. (1987). Learning decision listdachine Learning2, 229-246.

Rudell, R. (1993). Dynamic variable ordering for ordereddsy decision diagrams. In
Proceedings of the International Conference on Computded\Designpp. 42—-47.

Russel, S., & Norvig, P. (2010Artificial Intelligence: A Modern Approach. Third Edition
Prentice Hall Series in Artificial Intelligence.

Sanner, S. (2008)First-Order decision-theoretic planning in structuredatonal envi-
ronments Ph.D. thesis, University of Toronto.

Sanner, S., & Bouitilier, C. (2006). Practical linear valgroximation techniques for
First-Order MDPs. IrProceedings of Uncertainty in Artificial Intelligengep. 409—
417.

Sanner, S., & Boutilier, C. (2009). Practical solution teicjues for First-Order MDPs.
Artificial Intelligence 1735-6), 748—788.

174 Bibliography

Sanner, S., & McAllester, D. (2005). Affine algebraic deorsdiagrams (AADDs) and
their application to structured probabilistic inferente Proceedings of the Interna-
tional Joint Conference of Artificial Intelligencpp. 1384—-1390.

Sanner, S., Uther, W., & Delgado, K. (2010). Approximate @wic programming with
affine ADDs. InProceedings of the International Conference on Autonordgents
and Multiagent Systems

Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A., Mul M., Lake, R., Lu, P., &
Sutphen, S. (2007). Checkers is solv&dience317(5844), 1518-1522.

Schuurmans, D., & Patrascu, R. (2001). Direct value-agpration for factored MDPs.
In Proceedings of the International Conference on Neuralrimfation Processing
Systemspp. 1579-1586.

Schweitzer, P., & Seidmann, A. (1985). Generalized polyiabapproximations in Marko-
vian decision processedournal of Mathematical Analysis and Applicatioad((2),
568-582.

Sen, P., Deshpande, A., & Getoor, L. (2008). Exploiting sbanorrelations in probabilistic
databases. IWLDB, pp. 809-820.

Sen, P., Deshpande, A., & Getoor, L. (2009). Bisimulatiasdxd approximate lifted infer-
ence. InProceedings of Uncertainty in Artificial Intelligencep. 496-505.

Shavlik, J. (1989). Acquiring recursive and iterative cepis with explanation-based learn-
ing. Machine Learning5(1), 39-70.

Singla, P., & Domingos, P. (2008). Lifted First-Order b&jeopagation. InProceedings
of the National Conference on Artificial Intelligengs. 1094-1099.

St-Aubin, R., Hoey, J., & Bouitilier, C. (2000). APRICODD:@pximate policy construc-
tion using decision diagrams. IRroceedings of the International Conference on
Neural Information Processing Systemp. 1089-1095.

Sutton, R., & Barto, A. (1998)Reinforcement Learning: An IntroductioMIT Press.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relatlaemforcement learning: An
overview. InProceedings of the ICML'04 Workshop on Relational Reirgorent
Learning

Bibliography 175

Teichteil-Koenigsbuch, F., & Fabiani, P. (2006). Symbdiochastic focused dynamic
programming with decision diagrams. Rroceedings of the Fifth IPC at ICAPS

Teichteil-Koenigsbuch, F., Infantes, G., & Kuter, U. (2DOBFF: A robust FF-based mdp
planning algorithm for generating policies with low proldéi of failure. In Pro-
ceedings of the Sixth IPC at ICAPS

Tesauro, G. (1992). Practical issues in temporal diffeederarning. Machine Learning
8(3-4), 257-277.

Tsitsiklis, J., & Van Roy, B. (1996). Feature-based methiod$arge scale dynamic pro-
gramming.Machine Learning22(1-3), 59-94.

van Otterlo, M. (2008).The logic of Adaptive behavior: Knowledge representatiod a
algorithms for adaptive sequential decision making underastainty in First-Order
and relational domainslOS Press.

Veloso, M. (1992).Learning by Analogical reasoning in general problem sadvifPh.D.
thesis, Carnegie Mellon University.

Walker, T., Torrey, L., Shavlik, J., & Maclin, R. (2007). Bding relational world models
for reinforcement learning. IfProceedings of Inductive Logic Programmjrap.
280-291.

Wang, C. (2008)First-Order Markov decision processeBh.D. thesis, Tufts University.

Wang, C., Joshi, S., & Khardon, R. (2007). First-Order deaigliagrams for relational
MDPs. InProceedings of the International Joint Conference of Autifiintelligence
pp. 1095-1100.

Wang, C., Joshi, S., & Khardon, R. (2008). First-Order deaigliagrams for relational
MDPs. Journal of Atrtificial Intelligence ResearcB1(1), 431-472.

Wang, C., & Khardon, R. (2007). Policy iteration for relatad MDPs. InProceedings of
Uncertainty in Artificial Intelligence

Weld, D., Anderson, C., & Smith, D. (1998). Extending gralaimpto handle uncertainty
and sensing actions. Proceedings of the National Conference on Artificial Intell
gence pp. 897-904.

176 Bibliography

Yoon, S., Fern, A, & Givan, R. (2007). FF-Replan: A baseforgrobabilistic planning. In

Proceedings of the International Conference on Automatadritng and Scheduling
p. 352.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005heTirst probabilistic track

of the international planning competitiodournal of Artificial Intelligence Research
24(1), 851-887.

