FACTORIZATION STRATEGIES FOR THIRD-ORDER TENSORS *

MISHA E. KILMERT AND CARLA D. MARTIN?

Abstract. Operations with tensors, or multiway arrays, have become increasingly prevalent in
recent years. Traditionally, tensors are represented or decomposed as a sum of rank-1 outer products
using either the CANDECOMP /PARAFAC (CP) or the Tucker models, or some variation thereof.
Such decompositions are motivated by specific applications where the goal is to find an approximate
such representation for a given multiway array. The specifics of the approximate representation (such
as how many terms to use in the sum, orthogonality constraints, etc.) depend on the application.

In this paper, we explore an alternate representation of tensors which shows promise with re-
spect to the tensor approximation problem. Reminiscent of matrix factorizations, we present a new
factorization of a tensor as a product of tensors. To derive the new factorization, we define a closed
multiplication operation between tensors. A major motivation for considering this new type of ten-
sor multiplication is to devise new types of factorizations for tensors which can then be used in
applications.

Specifically, this new multiplication allows us to introduce concepts such as tensor transpose,
inverse, and identity, which lead to the notion of an orthogonal tensor. The multiplication also gives
rise to a linear operator, and the null space of the resulting operator is identified. We extend the
concept of outer products of vectors to outer products of matrices. All derivations are presented for
third-order tensors. However, they can be easily extended to the order-p (p > 3) case. We conclude
with an application in image deblurring.

Key words. multilinear algebra, tensor decomposition, singular value decomposition, multidi-
mensional arrays

AMS subject classifications. 15A69, 65F30

1. Introduction. With the availability of cheap memory and advances in in-
strumentation and technology, it is now possible to collect and store more data for
science, medical, and engineering applications than ever before. Often, this data is
multidimensional in nature, as opposed to bi-dimensional: the information is stored
in multiway arrays, known as tensors, as opposed to matrices. Applications involving
operations with tensors include chemometrics [41], psychometrics [24], signal process-
ing [9, 27, 39], computer vision [44, 46, 45], data mining [1, 38|, graph analysis [21],
neuroscience [3, 30, 31], and many more. A common thread in such applications is the
need to compress, sort, and/or otherwise manipulate the data by taking advantage
of its multidimensional structure (see for example the recent article [34]). Collaps-
ing multiway data to matrices and using standard linear algebra to answer questions
about the data often has undesirable consequences.

In this paper the focus is on third-order tensors. However, our approach naturally
generalizes to higher-order tensors in a recursive manner. Two well-known represen-
tations of third-order tensors are the CANDECOMP/PARAFAC (CP) ([7, 15]) and
Tucker3 ([43]) models. CP and Tucker3 are generally expressed as a sum of outer
products of vectors, although in the literature, they are sometimes written using n-
mode multiplication notation [22]. Each model can be considered an extension of
the singular value decomposition (SVD) ([12, p.70]) for matrices. In particular, one
method for computing the Tucker3 decomposition is now commonly referred to as the

*This work was supported in part by NSF grants DMS-0552577, DMS-0914957, and DMS-0914974.

fMathematics, Tufts University, 113 Bromficld-Pearson Bldg., Medford, MA 02155,
misha.kilmer@tufts.edu,

fMathematics and Statistics, James Madison University, 112 Roop Hall, MSC 1911, Harrisonburg,
VA 22807, carlam@math. jmu.edu

2 M.E. Kilmer, C.D. Martin

higher-order SVD (HOSVD) from [26]. However, the overall theme in multiway data
analysis is to build minimal approximations to a given tensor that satisfy the model
and any additional constraints.

Our contribution is an alternative representation for tensors with the same ulti-
mate goal in mind: building approximations to a given tensor. We think a bit ‘outside
the box’ to give a representation of a tensor as the ‘product’ of two tensors which is
reminiscent of the matrix factorization approach. This leads to a different generaliza-
tion of the matrix SVD. We discuss how to use this generalization to derive low-rank
tensor approximations. Furthermore, our framework allows other matrix factoriza-
tions to be extended to third-order tensors. Such higher-order extensions can then
be used to give optimal representations in the Frobenius norm of tensors as a sum of
so-called outer products of matrices.

Tensor decompositions or representations have been motivated by applications.
As such, there are many representations of a tensor appearing in the literature, with
no one representation being omnipresent in all applications. For a lengthy list of
tensor representations and corresponding applications, see the recent review article
on tensor-based approaches [22].

In this paper, we introduce a new tensor representation and compression algo-
rithms based on a new tensor multiplication scheme. Hence, we offer new contri-
butions to the class of tensor-based algorithms for compression. We emphasize that
our contributions are not meant as a replacement for the many useful tensor rep-
resentations presented in [22]. The tensor representation and algorithms here are
orientation-specific which are useful for applications where the data has a fixed ori-
entation, such as time series applications. Some examples include video compression
where the third-order tensor contains two-dimensional images over time [19], hand-
written digit identification [38], and image deblurring which is presented at the end of
this paper. Since our representation is based on a fundamentally new tensor multipli-
cation concept, we also hope to stimulate new research within the tensor community.

Our presentation is organized as follows. In Section 2, we describe the existing
outer product representations most traditionally used in tensor representations and
give some notation. In Section 3, we define a new type of multiplication between
tensors and give corresponding notions of identity, inverse, and orthogonality. In Sec-
tion 4 we give tensor-product decompositions based on these new definitions which
resemble matrix factorizations and show how these lead to a natural low rank prod-
uct decomposition of tensors. Section 5 illustrates the potential utility of our new
representations on an application in image deblurring. We conclude with remarks on
future work in Section 6.

2. Tensor Background and Notation. We use the accepted notation where
an order-p tensor is indexed by p indices and can be represented as a multidimensional
array of data [17]. That is, an order-p tensor, A, can be written as

A= (ailiz...ip) € R e x e,

Thus, a matrix is considered a second-order tensor, and a vector is a first-order tensor.
A third-order tensor can be pictured as a “cube” of data (see Figure 2.1). While the
orientation of third-order tensors is not unique, it is convenient to refer to its slices,
i.e., the two-dimensional sections defined by holding two indices constant. We use the
terms horizontal, lateral, and frontal slices defined in [22] to specify which two indices
are held constant. Using MATLAB notation, A(k,:,:) corresponds to the k-th hori-
zontal slice, A(:, k,:) corresponds to the k-th lateral slice, and A(:,:, k) corresponds

Factorization Strategies for Third-Order Tensors 3

the k-th frontal slice. A tube of a third-order tensor is defined by holding the first two
indices fixed and varying the third (see [22]). For example, using MATLAB notation,
A(i, j,:) is the ij-th tube of A.

Throughout this paper, it is crucial to understand the orientation of a tensor.
With that in mind, we restrict ourselves to third-order tensors and avoid messy sub-
scripting wherever possible. Hence, we will mostly be referring to the frontal slices of
a tensor, based on a given orientation.

Fic. 2.1. Illustration of a 2 X 2 X 2 tensor as a cube of data

If w is a length-m vector, v is a length-n vector, then uowv is the outer product of
u and v. The outer product gives a rank-1 matrix, whose (i, j)-entry is given by the
scalar product w;v;. Similarly, the outer product uovow yields a rank-1, third-order
tensor with (i, 7, k)-entry given by u;v;wy. Likewise, an outer product of four vectors
gives a rank-1, fourth-order tensor, etc.

The tensor rank, r, of an order-p tensor A is the minimum number of rank-1
tensors needed to express the tensor. For a third-order tensor, A € IR *"2%"3 thig
means we have the representation

A= Zai(u(i) ov® ow®), (2.1)
i=1

where o; is a scaling constant. The scaling constants are simply the nonzero elements
of an 7 x r X r diagonal tensor ¥ = (0;;x) (a tensor is diagonal if the only nonzeros
occur in elements o;;;, where i = j = k, see [22]). The vectors «(¥, (), and w® are
the i-th columns from matrices U € R™*", V € R™*" W € R"*", respectively.

A decomposition of the form (2.1) is called a CANDECOMP-PARAFAC (CP)
decomposition (CANonical DECOMPosition or PARAllel FACtors model), [7, 15],
whether or not r is known to be minimal. Note that the matrices U, V, W in (2.1) are
not constrained to be orthogonal. Furthermore, an orthogonal decomposition of the
form (2.1) may not exist [10]. There is no known closed-form solution to determine
the rank r of a tensor a priori. Rank determination of a tensor is a widely-studied
problem (see, for example, [25, 4, 16, 29, 22]).

While some applications use the nonorthogonal decomposition (2.1), other ap-
plications need orthogonality of the matrices for better interpretation of the data
[32, 38, 44, 45, 46]. Therefore, a more general form, called the Tucker3 decomposition
[43] is often used to guarantee existence of an orthogonal decomposition as well as
to better model certain data. The Tucker3 decomposition has also been called the
higher-order SVD (HOSVD) [26], though the HOSVD actually refers to a method

4 M.E. Kilmer, C.D. Martin

for computation [22]. However, [26] shows that the HOSVD is a convincing exten-
sion of the matrix SVD. The HOSVD is guaranteed to exist and computes a Tucker3
decomposition directly. HOSVD first computes the SVDs of the matrices obtained
by “flattening” the tensor in each dimension and then uses the results to assemble
the so-called core tensor. The Tucker3 decomposition can be re-written as a CP
decomposition, except that r will not typically correspond to the tensor rank.

The CP and Tucker3 decompositions are analogous to the matrix SVD in that
they describe the tensor as a sum of outer products of vectors. In geometric terms, the
SVD decomposes a matrix into an outer product of vectors, which are one dimension
less than a matrix. However, in the third-order case a vector has two fewer dimensions
than a third-order tensor. Thus, one contribution of this paper is a decomposition of
a third-order tensor that is an outer product of matrices (i.e., a decomposition into
terms of only one dimension less). We pursue this idea further in Section 4.1.

We note that both the CP and Tucker3 representations can also be described in
terms of n-mode multiplication [22] between a tensor and a matrix which is a way of
expressing the vector outer-product sum as a matrix product involving a flattening
of different stackings of the slices of the tensors ¥ and .A. As our representations are
based on a fixed orientation, we choose to avoid this notation.

Since we are working with third-order tensors, it is convenient to write (2.1) using
Kruskal notation [23]. If A =37 u® ov® 0w is an ny x ngy x n3 tensor, then we
may equivalently write A = [U, V, W], where the columns of U, V, W are u’g, p(g
and w()’s, respectively. It follows that U, V, W have 7 columns but U has n, rows, V
has ny rows and W has ng rows.

In this paper, script notation is used to refer to tensors. Capital non-script
letters are used to refer to matrices and lower case letters refer to vectors. Entries
in vectors are indexed by subscripts. We use diag(vy,...,v,) to denote the n x n
diagonal matrix with entries v, ..., v,. Similarly, the notation diag(D1, ..., Dy), for
k, n1 X ne matrices D;, refers to a block diagonal matrix of size kny x kng with nq X no
blocks.

2.1. Approximate Tensor Factorizations. We adopt the definition of the
Frobenius norm of a tensor used in the literature:
DEFINITION 2.1. Suppose A = (a;ji) is size n1 X ng X ng. Then

ny no ns

2.0 ke

i=1 j=1 k=1

[AllF =

One of the fundamental problems in applications is finding a CP or Tucker3

approximation, A, to a given tensor A which is optimal in the sense that
min || A — Al r, subject to vector constraints (2.2)

is solved, possibly subject to some constraints on A as well.

Computing the rank of a tensor as in (2.1) is not well-posed. One idea that has
been explored for determining good low-rank approximations to A, based on this fact,
is to successively subtract best rank-1 approximations from 4. Unfortunately, this
process does not necessarily lead to tensors that have subsequently lower rank [42].
It may be that the best rank-k approximation does not exist [22, 35, 40]. However,
the best rank-1 problem is solveable. Algorithms for finding this (iteratively) can be
found in [20, 28, 47].

Factorization Strategies for Third-Order Tensors 5

If an estimate, ry of the rank, r, is available, one could use the CP model (2.1)
where A in (2.2) is found using r ~ r. Computing the best rank-(k;, ks, k3) approx-
imation (known as the multilinear rank) is well-posed (see [25, 26]).

In some cases, the vectors in the CP and Tucker3 decompositions are constrained
to be nonnegative ([6, 11]) or orthogonal ([32]) given the physical nature of the prob-
lem. See [22] for a more complete list of constrained tensor decompositions and
corresponding algorithms.

In Section 4, however, we give a method for subtracting low rank approximations
from A based on a new type of factorization into a tensor SVD, which gives a handle
on the quality of the approximation after each successive step. Our strategy, loosely
outlined, is as follows:

e Find A = argminge s || A— Al p, where M describes a special class of tensors
that can be written as a “product” of tensors of appropriate dimension.

e Compute a low-rank approximation to A

e Repeat, as necessary, on A — A.

First, however, we need to introduce the type of multiplication that will give rise
to such product-based factorizations.

3. New Tensor Operators. One major contribution of this paper is an alter-
native tensor representation based on a product of two tensors, which we will call the
t-product’. In this section we define a new notion of multiplication between tensors
and present other properties that follow from our new definition. The t-product op-
erator was initially motivated by desiring a closed operation that preserves the order
of a tensor. We begin by showing where current multiplication strategies fall short
in this regard. Then we introduce the the t-product operation and corresponding
group-theoretic and linear-algebraic properties.

3.1. Current Tensor Multiplication Strategies. Multiplication between ten-
sors and matrices has been defined using the n-mode product [2, 26, 17]. We will not
go into detail here, except to describe the 1-mode product, which will reappear a few
times throughout, due to the fixed orientation in which we are working. If A is an
n1 X ng X n3 tensor, then the 1-mode product of A with ns x ny matrix U, is the
ng X ng X ng tensor that results from left multiplying each frontal slice of A with U.

There are several ways to multiply tensors, but the most common method is the
contracted product. The name “contracted product” can be a little misleading: indeed,
the contracted product of an £ X no x ng tensor and an £ X mg X mg tensor in the
first mode is an ns X n3 X mg X mg tensor. For example, if A is nq X ng X n3 and
B is n1 X my X mg, then the contracted product of A and B in the first “mode” or
“dimension” is ny X ng X ma X m3. However, the contracted product of an nq X no X ng
tensor and a n1 X ng X ms tensor in the first two modes results in an n3 x ms tensor
(matrix). Notably, the contracted product does not preserve the order of a tensor
which suggests that it is perhaps not ideal for helping to generalize other concepts of
linear algebra for tensors.

In summary, the order of the resulting tensor depends on the modes where the
multiplication takes place. We refer the reader to the explanation in [2] for details.
We now introduce a new definition of multiplication between tensors that preserves
order. For example, the product of an n x n X n tensor with another of the same

IThis is to distinguish it from the notion of “tensor product”, which often is understood to refer
to the Kronecker product of two matrices.

6 M.E. Kilmer, C.D. Martin
dimension will yield an n x n x n tensor. We start by giving some notation that will
be useful in deriving the concept of multiplication between tensors.
3.2. Notation. We use circulant matrices extensively in our new definitions. If
T
v = [Vo V1 V2 U3 }

then

Vo V3 V2 U1
U1 Vo U3 U2
V2 V1 Vo U3
v3 U2 V1 Vo

circ(v) =

is a circulant matrix. Note that all the matrix entries are defined once the first column
is specified. Therefore, we adopt the convention that circ(v) refers to the circulant
matrix obtained with the vector v as the first column.

Circulant matrices can be diagonalized with the normalized Discrete Fourier
Transform (DFT) matrix [12, p.202], which is unitary. In particular, if vis n x 1, F),
is the n x n DFT matrix, and F}; is its conjugate transpose, then

F,circ(v)E;
is diagonal. The following, well-known, simple fact ([8]) is used to compute this
diagonal using the fast Fourier transform (FFT):

Fact 1 The diagonal of F,circ(v)F;f = fft(v), where fit(v) is the result of applying
the Fast Fourier Transform to v.

It is possible to create a block circulant matrix from the slices of a tensor. For
this paper, we will always assume the block circulant is created from the frontal slices
(if we wished another ordering, we would first permute the tensor to achieve it),
and thus there should be no ambiguity with the following notation. For example, if

A € R™M*™2X"s with ny X ng frontal slices Ay, ..., A,, then
Ay Any Aps1 ... A
A, Ay P P
CirC(.A) = : :)
An3 Ans*l R A2 Al

where A; = A(:,:,4) for i =1,...,ns.
Similarly, we will anchor the MatVec command to the frontal slices of the tensor.
MatVec(.A) takes an ny X ng X ng tensor and returns a block ninz x ng matrix

Ay
Ay

MatVec(A) = .

Ap,

The operation that takes MatVec(A) back to tensor form is the fold command:

fold(MatVec(A)) = A.

Factorization Strategies for Third-Order Tensors 7

Just as circulant matrices can be diagonalized by the DFT, block-circulant ma-
trices can be block-diagonalized. Suppose A is n1 X ny X ng and F,, is the ng x ng
DFT matrix. Then

Dy
D,
(Fns ® I,,) - circ(MatVec(A)) - (F;, ® In,) = . , (3.1)

D,,

where “®” denotes the Kronecker product and F* denotes the conjugate transpose
of F and “” means standard matrix product. Note that each D; could be dense and
furthermore most will be complex unless certain symmetry conditions hold.

To compute the product in the preceding paragraph, assuming ng is a power of
2, can be done in O(ninansloga(ng)) flops using the FFT and Fact 1. Indeed, using
stride permutations and Fact 1, it is straightforward to show that there is no need to
lay out the data in order to compute the matrices D;. Indeed, we have the following.

Fact 2 The D; are the frontal slices of the tensor D, where D is computed by
applying FFT’s along each tube of A.

3.3. New Tensor Multiplication. In this section we define a new type of mul-
tiplication between tensors, called the t-product, and explore some of the important
theoretical and practical resulting properties.

DEFINITION 3.1. Let A be ny X no X ng and B be no X £ X n3. Then the t-product
A x B is the ny x £ X n3 tensor

A x B = fold(circ(A)) - MatVec(B)) .

EXAMPLE 3.2. Suppose A € R™"*"2%3 gnd B € R™**3, Then

Al A3 A2 Bl
AsB=fold| | Ay A Ag By e R™M >3,
Ag AQ A1 Bg

If the tensors are sparse, we may choose to compute this product as it is written.
If the tensors are dense, naively computing the t-product would cost O(ninan3f) flops.
However, since circ(MatVec(.A)) can be block diagonalized, we can choose to compute
this product as

(F;f3 ® Ip,) ((Fn3 ® I,) - circ(MatVec(A)) - (F;f3 ® In2)) (Fh, @ I,)MatVec(B).

It is readily shown that (F,, ® I,,,)MatVec(B) can be computed in O(¢nanslogy(ns))
flops by applying FFTs along the tubes of B: we call the result B. If we take the
FFT of each tube of A, using Fact 2, we obtain D. Thus, it remains to multiply each
frontal slice of D with each frontal slice of B, then take an inverse FFT along the
tubes of the result. We arrive at the following fact regarding this multiplication.

Fact 3 The t-product in Definition 3.1 can be computed in at most O(ninqtng)
flops by making use of the FFT along mode 3.

If n3 is not a power of two, we may still employ FFTs in the multiplication by
noting that the block circulant matrix can be embedded in a larger block circulant
matrix where the number of blocks in a block row can be increased to the next largest

8 M.E. Kilmer, C.D. Martin

power of two greater than 2ns — 1 by the addition of zero blocks and repetition of
previous blocks in an appropriate fashion. Likewise, once B is unfolded, it can be
conformally extended by zero blocks. The product is computed using FFTs, and the
result is then truncated appropriately. This is a commonly used trick in the literature
(see, for example, [33]) for fast multiplication with Toeplitz or block Toeplitz matrices
by embedding them in larger, block circulant circulant block matrices, and will not
be described further here.

Now we discuss some group-theoretical properties of the t-product.

First, the t-product is associative, as the next lemma shows.

LEMMA 3.3. Ax (B+C) = (AxB)«C.

Proof. The proof follows naturally from the definition of % and the fact that
matrix-matrix multiplication is associative.ll

DEFINITION 3.4. The n x n X £ identity tensor L,ne is the tensor whose frontal
slice is the n x n identity matriz, and whose other frontal slices are all zeros.

It is clear that AxZ = A and Z « A = A given the appropriate dimensions.

For an n x n x £ tensor, an inverse exists if it satisfies the following:

DEFINITION 3.5. Ann x n x £ tensor A has an inverse B provided that

A*B:Znng, and B*A:Inn[.

From Definitions 3.1, 3.4, 3.5 and Lemma 3.3, we have the following lemma.

LEMMA 3.6. The set of all invertible n x n x n tensors forms a group under the
* operation.

It is also true that the set of invertible n x n x n tensors forms a ring under
standard tensor addition (component-wise addition) and the t-product. Furthermore,
as we show in the next section, the set of all invertible n X n X n tensors is non-empty.

3.4. Linear Operators, Rank, and Null space. We also can define linear
transformations around the t-product.

LEMMA 3.7. IfT(X) = Ax X where A is a real ny x m X n3g and X is a real
m X ng X ng tensor, then T : RM>N2Xns _, RMXN2XNs 4 [ineqr,

Proof. Follows directly from the definition and the linearity of matrix-matrix
products. O

We note that [5] was able to show that our t-product results in a linear operator
in a special case when ny = 1.

In particular, since the mode-1 product can be represented using this new nota-
tion, mode-1 multiplication defines a linear transformation. This is in contrast to the
interpretation (see [22, p.6]) that a mode-1 multiplication defines a change of basis
when the tensor defines a multilinear operator.

Since the t-product defines a linear operator, it makes sense to explore invertibility
and the null space, which is more easily accomplished via the following result.

THEOREM 3.8. Let A € R *"2Xns gnd B € R™2X4X"3 pe rank r4 and v tensors,
respectively, defined by

TA B
A= Z u® o0 9@ o w® B = Z 2@ o y@ o @),
1=1 j=1

Let tt3) denote the vector circ(w)zU). Define scalars d;j = (v0)T29). Then

TA TB

AxB = Z Z di; (u(i) o y(j) o t(i’j)) . (3.2)

i=1 j=1

Factorization Strategies for Third-Order Tensors 9

Proof. Using the definition to lay out the tensor product as the product of two
matrices,

TA TB TA TB
3 cire(w®)@u®)T S 2Dz ()T = 373 di (cire(w®)2 D) oul) (y@)T
=1 j=1 i=1 j=1

where the last equality comes from properties of Kronecker products. The result
follows upon applying the MatVec operation to the matrix on the right. O

In the following, we use 7 to denote the tensor with ij-tubes, t(»7) for simplicity.
Now we discuss rank and null space.

COROLLARY 3.9. Let T denote the ra X rp matriz formed by taking the norms
(any wvalid vector norm) of the tubes t7) of T, and let A be the matriz with entries
dij.

Then rank(Ax B) = nnz(A©T) < rarp, where nnz means number of nonzeros
and ® stands for Hadamard product. Furthermore, B € null(A) if |A© T = 0.

Proof. Follows by noting that an entry in the matrix 7" will be zero precisely when
2\ is in the null space of circ(w(®). O

In the remainder of the paper, we use the notation ¢ to denote the vector of
Fourier coefficients of a vector v. Note that entry 7, j in T will be zero precisely when
the vector w") ® 2\9) is the zero vector. Therefore,

COROLLARY 3.10. Fiz i, and assume that circ(w®)z(® = s = 0. Then,
circ(w™)zU) = 0 for some j # i is possible only if 5% has at least 1 zero entry.

Next, we move on to invertibility.

THEOREM 3.11. Let A=Y, uDov@ow® be a representation of anny ><m><n3
tensor.2 Then A has an m x ny x ng right inverse, A', such that Ax A" = T, 1, n,
defined by

Al = Z‘T(i) oy® oz
i=1

provided that UYT = I,,,VTX = I. are solvable and that each w® has no zero
Fourier coefficients, so that 2 = 1./ W@ . In particular, A~' = At when U,V are
square and full rank.

Proof. f VT X = I, and circ(w®)z) = e, then by Theorem (3.8), the product
Ax AN = (30w o y®D) o ey = T, wnyxn, precisely when UYT = I, «p,. In
order for circ(w®)z() = e;, by taking the Fourier transform of each side we need
20 =1./%%. 0

Thus, for existence of a (right) inverse, this means we need r > n; and U to have
full rank, and m > r with V full rank.

For applications purposes (see Section 5), it is also convenient to define a right
pseudoinverse in the case r < ny.

DEFINITION 3.12. If A= Y"1 u® ov® ow® is m x ny x ng then if 29 has no
0 entries:

ATT — Zx(z) ° y(l) ° Z(l) € R xmxng
=1

2We have not assumed that r is minimal here.

10 M.E. Kilmer, C.D. Martin

with YT = U VTX =1, and 2 = 1./w. A similar definition for a left pseu-
doinverse is also possible.

Now it makes sense to consider whether or not a tensor of rank r can be factored
as a product of two tensors of rank no greater than r. This is straightforward with
appropriate definition of the “free” parameters in Theorem 3.8 (i.e. we can ensure it
if VT X = D is an invertible diagonal matrix, for instance; however if this is not the
case, it still might be possible to do, depending on the Fourier coefficients of the 3rd
terms in the outer product representation). The factorization is not unique, although
some terms are specified.

For completeness, we note that we have a change-of-basis type of result:?

THEOREM 3.13. Given C =37, pD oqos). Let P=[pM),...p"] =UE,
where U is nq X k1 with k1 linearly independent columns. Then

kl K
C=AxB, A=Y uDovDoe, B=3 a0 oghosl),
i=1 j=1

as long as VT X = E, with ey the first column of the n3 x ng identity matriz.

3.5. Transpose, Orthogonality, Range. Armed with the definition of t-product,
several interesting facts now arise (dimensions relative to Lemma 3.7):

e If we take m = 1, we arrive at something that is akin to the outer-product
of two vectors. The outer-product of two vectors gives a matrix. Here, the
“outer-product” of two matrices (i.e. m =1 but n; > 1,n9 > 1,n3 > 1) gives
an ny X no X ng tensor. We show based on the remainder of the definitions
in this section, that we can construct an optimal (in the Frobenius norm)
factorization of a tensor into a sum of outer products of matrices, given our
fixed orientation.

e In linear algebra, it is quite common to think of the matrix-matrix product
AB as A acting on each column of the matrix, and each column is a vector:
AB = [Aby, ..., Ab,]. Similarly, if C = A« B, each lateral slice of C (a matrix)
is obtained by A acting on a lateral slice of B (also a matrix) and so we have
C(:yiy:) = AxB(:,1,:).

o If we take ny = 1 = no, but m > 1,n3 > 1, the result is a single tube,
which can be oriented as a vector. Thus, an “inside-product” (indeed, in a
forthcoming work, we show that this satisfies properties of an inner product)
of two matrices, appropriately oriented as tensors, results in a vector.

Our goal in this section is to build on the t-product definition, to try to take
advantage of some of the observations above. First, we need a few more definitions.

With the definition of a transpose operation for tensors, we will be able to write
our previous approximation in terms of products of tensors.

DEFINITION 3.14. If A is nq x no x n3, then AT is the no X ny Xna tensor obtained
by transposing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through ns.

3Compare to page 6 of [22].

Factorization Strategies for Third-Order Tensors 11

EXAMPLE 3.15. If A € R™*"2X4 gnd its frontal slices are given by the ny X n
matrices Ay, As, Az, Ay, then

AT = fold

The tensor transpose has the same property as the matrix transpose.

LEMMA 3.16. Suppose A,B are two tensors such that A x B and BT x AT is
defined. Then (Ax* B)T = BT x AT,

Proof. Follows directly from Definitions 3.1 and 3.14 O

For completeness we define permutation tensors.

DEFINITION 3.17. A permutation tensor is an n x n x £ tensor P = (p;ji) with
exactly n entries of unity, such that if p;jr = 1, it is the only non-zero entry in row
i, column j, and slice k.

We are now ready to define orthogonality for tensors, from which it follows that
the identity tensor and permutation tensors are orthogonal.

DEFINITION 3.18. An n x n x £ real-valued tensor Q is orthogonal if oT x 9 =
Qx9T =1.

We can also define a notion of partial orthogonality, similar to saying that a tall,
thin matrix has orthogonal columns. In this case if Q is p X ¢ X n and partially
orthogonal, we mean Q7 x Q is well defined and equal to the a ¢ x ¢ x n identity.
Note that if Q is an orthogonal tensor, then it does not follow that each frontal slice
of Q is necessarily orthogonal.

Another nice feature of orthogonal (similarly, partially tensors) is that they pre-
serve the Frobenius norm:

LEMMA 3.19. If Q is an orthogonal tensor,

1Qx Allr = [l Allp.

Proof. From definitions 3.1, 3.14, and 2.1, it follows that
[A% = trace((A* AT) (.. 1)) = trace((A" * A)..1)),

where (A x AT)(:ml) is the frontal slice of Ax AT and (A7 * A)(:,:,1) is the frontal slice
of AT x A. Therefore,

1Q * A||% = trace([(Q * A)T % (@ * A)l(...1))
= trace([.AT * QT * Q x A](:,:,l))
= [lAll%-

d

Note that if the tensor is two-dimensional (i.e. n3 = 1, so the tensor is a matrix),
Definitions 2.1, 3.1, 3.4, 3.5, 3.17, and 3.18 are consistent with standard matrix algebra
operations and terminology.

We are finally in a position to consider tensor factorizations that are analagous
to the matrix SVD and matrix QR.

12 M.E. Kilmer, C.D. Martin

4. New Product Decompositions of Tensors. We say a tensor is “f-diagonal”
if each frontal slice is diagonal. Likewise, a tensor is f-upper triangular or f-lower tri-
angular if each frontal slice is upper or lower triangular, respectively.

THEOREM 4.1. (T-SVD) Let A be an ny X ng X ng real-valued tensor. Then A
can be factored as

A=UxS VT, (4.1)

where U,V are orthogonal ny X ni X n3 and ny X ny X ng respectively, and S is a
ny X ng X ng f-diagonal tensor. The factorization (4.1) is called the T-SVD (i.e.,
tensor SVD).

Proof. The proof is by construction. First, we transform circ(A) into the Fourier
domain as in (3.1). Next, we compute the SVD of each D; as D; = U;%;V;T. Then

Dy Uy v
I S . [
Doy Ung Tng Vi

We apply (Fy;, ®I) to the left and (F,,, ® I) to the right of each of the block diagonal
matrices in (4.2). Observing that in each of the three cases, the resulting triple product
results in a block circulant matrix, we define MatVec(U), MatVec(S), MatVec(VT) as
the first block columns of each of the respective block-circulant matrices, and fold the
results. This gives a decomposition of the form U * S * V7.

It remains to show that &/ and V are orthogonal. However, this is easily proved by
forming the necessary products (e.g. U” * U) and using the same forward, backward
matrix transformation to the Fourier domain as was used to compute the factorization,
and the proof is complete. O

We note that this particular diagonalization was achieved using the standard de-
creasing ordering for the singular values of each D;. If a different ordering is used, a
different diagonalization would be acheived, which would be equivalent up to permu-
tation (in the Fourier domain) with the T-SVD given here.

Assuming (4.1) and using Lemma 3.19 we have that | Al r = ||S||r. We will make
use of this fact in the next section in devising approximation strategies based on (4.1).
The T-SVD can be computed using the fast Fourier transform utilizing Fact 1 from
Section 3.2. One version of MATLAB pseudocode is provided below.

Algorithm T-SVD
Input: nq X ng X ng tensor A

¥

D = fit(A,[],3);
fori=1...n3

U, S, V] svd(D(:,:));
UG, i) =u; V(5 50) =03 8(,50) = s
L{:ifft(u,[1,3); V 1fft(V [,) =ifft(S,[].3);

Note that if A is real, (4.1) is composed of real tensors even though the proof of
Theorem 4.1 involves computations over the complex field. The complex computations
result when computing the D; matrices in (4.2). In particular, these D; matrices will
be complex unless there are very specific symmetry conditions imposed on the original
tensor.

The T-SVD and the SVD of the matrix Y ., A(:, :, %) are related and the following
Lemma shows.

Factorization Strategies for Third-Order Tensors 13

LEMMA 4.2. Suppose the T-SVD of A € R™*"2X"s js given by A =U xS x V7.
Then

ZA(:,:,k) = (Zu(:,:,@) (25(:,;,1@) (ZV(:,:,k)T> : (4.3)
k=1 k=1 k=1 k=1

Furthermore, (4.3) gives an SVD for > A(:,:, k) in the sense that Y U(:,:, k), > V(:
.1, k) are orthogonal and > S(:,:, k) is diagonal.

Proof. Clearly > S(:,:, k) is a diagonal matrix (the entries can be made positive by
an appropriate scaling). Now, all that remains to show is that if ¢ is an orthogonal
tensor, then Y U(:,:, k) is an orthogonal matrix (the proof for Y V(:,:, k) follows
similarly).

Suppose U is orthogonal. Then we have U * UT = I, ,,n, which means, by
Definition 3.1 that

i: UG BUG k)T =1,, and S (UG UG H)T) =0y, (44)
k=1

i#]

Equation (4.4) means that (37, U(:,:, k) (1L, U(:,+, k) = I, which completes
the proof. O

We now have an interesting way to describe the range of our linear operator, based
on the SVD and bullet points at the beginning of this section, which is analogous to
the matrix case. We can say B is in the range of T(X) = A * X if B(:, j,:) is of the
form Y7 U(:,i,:) * c(i,,:) for each j. Note this is not quite a linear combination in
the sense that the ¢(i,1,:) are not scalars, but they do represent the “inside products”
(S(i,i,:) * V(:,3,:)T) * X(:,4,:) for some X.

Other matrix factorization ideas can be extended to third-order tensors in a sim-
ilar fashion as the T-SVD. For example, we can compute a QR type decomposition
A= 09xR ([19]) where Q is an orthogonal tensor and R is f-upper triangular. We
call this a T-QR factorization. Such a decomposition might be preferred when data is
being added to each frontal slice of the tensor, because QR-updating strategies can be
employed (in the Fourier domain). Note that the T-SVD and T-QR decompositions
can be done in “reduced” form analogous to matrices when D(:, :, 7) is rectangular. For
example, if D(:,:,1) is ny X ng, ny > ng, we can compute its reduced SVD, rather than
the full SVD, in which case each matrix U is no longer orthogonal but has ns < n4q
orthonormal columns. As a result, « will be partially orthogonal 11 X ny X ng, rather
than orthogonal, and & will be ng X ny X ng.

Finally, we note again that the factorizations are orientation dependent: i.e. ro-
tating the tensor gives a different factorization. On the other hand, applying permu-
tation tensors to A before computing the T-SVD does not affect the entries in S, and
affects the right or left singular tensor through this permutation.

4.1. Approximation Strategies Based on Products of Tensors. In [19] we
present a compression strategy based on Lemma 4.2. The compression is based on the
assumption that the terms ||S(4,1,:)||% decay rather quickly. We do not pursue this
idea further here, but rather present a compression strategy based on the following.
If the T-SVD of A € R™*"2X"s ig given by A = U * S * VT, then it is easy to show
that

min(ni,n2)

A= 3" UG) *S3d,0) # V(i) (4.5)

=1

14 M.E. Kilmer, C.D. Martin

Thus, A is written as a finite sum of outer products of matrices. A particularly nice
feature of the T-SVD is that it gives a way to find an optimal approximation of a
tensor as a sum of k < min(ni, ng) of the matrix outer products in (4.5).

THEOREM 4.3. Let the T-SVD of A € R™*"2X7s pe given by A = U * S + VT
and for k < min(nq,ng2) define

k
A, = ZZ/{(:,i, N xS(i,d,:) * V(54,7

=1

Then Ap = arg min ||A — A||p, where M = {C = X % Y|X € Rmxkxns y ¢
AeM
Rk}anXng}.

Proof. We will use (3.1), unitary invariance of (partially) orthogonal tensors, and
the definition of the T-SVD to complete the proof. Let n = min(ny, na).

A= A7 = ISk + 1,k +1:n,:)|F
= |(Fn, ® MatVec(S(k+1:n,k+1:n,:)|%
=ng||Si(k+1:nk+1:n)|%+... +n3]|Sn(E+1:nk+1:0)]%

Now let B € M, so that B =X % YT. Then

A - B|% = |[MatVec(A) — circ(X)MatVec(YT)||3
= [[(Fn, ® I)MatVec(A) — (F, ® I)circ(X)(F,f3 QI)(F,, ® I)MatVec(yT)H%
=ng||Dy — leflTH?r + ...+ n3||Dps — X,. YT H%

n3*ng

>ng|Zik+1:ink+1:n)|% 4. +n3]|Zns(k+1:nk+1:n)||%

d
Thus, it appears the straightforward way to compress the tensor is to choose some
k < min(ny,n2) and compute

k
A UG, S(d,0) =« V(i) (4.6)

=1

Unfortunately, it is not immediately obvious that (4.6) leads to a very compressed
representation. At first glance, the method requires the storage of U(:,4,:) for ¢ =
1,...,k, so k,nj X ny matrices, and storage of S(i,4,:)V (:,4,:)7, so k, na x n3 matrices.
Even if k is small, the memory storage is prohibitive.

The columns of the matrix (:, i, :) may be nearly linearly dependent. To see this,
observe that if U(:,,:) *S(4,4,:) * V(:,4,:)T is a rank-1 tensor, S(i,4,:)* V(:,4,:)T and
U(:,1,:) must each have rank 1. Thus, if this term is well approximated by a tensor
of low rank, we expect this to be reflected in singular values of each of the matrices
U(:,i,:) and S(ii,:) * V(:,4,:) 7.

Therefore, one practical compression strategy is to take (4.6) and for each 4,
compute a low rank approximation to U(:,i,:) * S(i,4,:) * V(:,4,:)T. There are several
ways this could be computed. We consider one method here.

Consider that for each i we have

U(:yi,:) = Zp(j) o pu9) o ¢l@), S(iyi,:) V(i)T = Z AW 6 pld) o ()

Jj=1 Jj=1

Factorization Strategies for Third-Order Tensors 15

where ;1) A\) are scalars. These could be given by the matrix SVD’s of appropriately
oriented U(:,4,:), S(i,4,:) * V(:,4,:)T, for example. Thus, their product is

U i,:) % S(iyi,e) * T =33 DA @) 06O o cire(qW)e). (4.7)
j=14=1

This is an outer product representation of each tensor in the sum (4.6). From
the right of (4.7) for each ¢ = 1,...,k, we wish to drop certain terms. Appealing
to Lemma 4.2, denote o; = > 2, S(i,4,k). Since o; are the singular values by the
lemma, this suggests we drop any terms for which

oD NG |cire(¢W)t || o < tol.

The proposed algorithm for computing the resulting approximation to A is below.
The approximation is returned in Kruskal form (i.e. A ~ [U,V,W]). Note the
parallelizability in that the full T-SVD need not be approximated at the start of the
algorithm.

Algorithm T-Compress
Input: n1 X ne X ng tensor A, truncation index k
fori=1,...,k
1) Compute U(:,1,:),S(i,14,:), V(:,4,:) if not already available

2) Compute ky terms of the SVD for U(:,4,:) and kg terms of the SVD for S(i,4,:) * V(:,

3)for j=1:k
for 6 =1: ke
if oy DAD | cire(¢))t O o > tol,
U=[UpD],V =[V,bO)| W = [W, gD A\Ocirc(q))t®)]

T-Compress relies on computing at least k terms of the T-SVD, although this
stage can be interleaved with computing the rest of the approximation. However,
Theorem 4.3 suggests that computing the T-SVD is not necessary in practice. We
can modify steps 1 and 2 to obtain the following.

Algorithm T-Compress, ver. 2
Input: n1 X ne X ng tensor A, truncation index k
Initialize Acyr = A.
fori=1,...,k
1) Compute G € R X1Xns 1 ¢ RIX12X1s 35 G H = argmin || A — G * H| ¢
2) Compute kp terms of the SVD for G and ks terms of the SVD for H
3)forj=1:k
for 0 =1: ko
if o3 AO||cire(qW))t?)]| o > tol,
U=[UpD],V =[V,bO)| W = [W, uDA\Ocirc(q))t®)]
4) Acurr = Acurr - g * H

Of course, there are many different variations on the idea we have just presented
(e.g. using an ‘optimal’ approximation in place of SVDs of the individual matrices,
adding a step that checks if one can “shrink” the rank of the approximation, taking
G, H to have more than 1 slice), but we do not wish to pursue them all here in the
interest of space.

i,:)

16 M.E. Kilmer, C.D. Martin

One should compare T-Compress to algorithms that seek to find low rank ap-
proximations of tensors by subtracting off “best rank-1" approximations one after the
other. It has been shown (see, [42], for example) that subtracting a best rank-1 tensor
approximation from A does not necessarily reduce the rank: that is, if A has rank r,
and u o v ow is the best rank-1 approximation to A, A — u o v o w does not have to
have rank » — 1. This is true for our algorithm as well — A, may not have lower
rank. From (4.7), if |[U/(:,4,:) * S(i,4,:) * V(:,4,:) 7 || > || D idT 2L pDNO (pl) o
b o cire(qW))t®)|| g, where J, L denote (for fixed i) the indicies of terms that were
kept each sum on the right, the residual between A and the tensor approximation
(output of the algorithm) must be non-increasing as a function of k. This seems to
be born out in our examples, but more study is needed.

5. An application from image processing. In this section, we illustrate the
potential utility of our new tensor-product formulation and related definitions on an
application in image processing.

The discrete model for 2D image blurring is represented as

Ax =0,

where A is known as the blurring operator, x is the “image” unstacked by columns to
obtain a vector, and b is a column vector representing the image. In truth, b has been
corrupted by some noise, A is ill-conditioned, so even if A is theoretically invertible,
the exact solution = will be contaminated by noise.

The regularization procedure used to generate an approximation to the desired
image is iterative, and to speed convergence to this solution requires a preconditioner;
that is, a matrix M such that AM has some of the singular values (corresponding
to the so-called signal subspace) near 1, but which leaves the noise subspace (cor-
responding to the small singular values of A) untouched [18]. Then one applies the
iterative method to the system

AMy=0b, x=MT'y. (5.1)

At each step of the iterative method, one will have to compute matrix-vector products
with A and M (possibly also AT, M7 depending on which method is used), and
therefore matrix-vector products with M need to be performed efficiently. Indeed,
the cost of using an iterative regularization method is roughly the sum of the costs
of these matrix vector products times the number of iterations needed to reach the
solution.

A preconditioner M with the desired SVD spectral clustering properties could be
easily obtained from the SVD of A if it were available; the small singular values are
replaced by 1, and M is obtained as the (psuedo)inverse of the result. Unfortunately,
it is usually too costly to factor A to obtain the desired rank-revealing information
needed to generate M directly, nor would matrix-vector products with M so defined
be efficient. It is common in image deblurring applications to assume that the blurring
matrix A has some structure: for example, it might be block Toeplitz with Toeplitz
blocks (BTTB). In such cases, a reasonable first step is to compute a level-1 circulant
approximation of A, (i.e. a block circulant approximation), called A. This can be
block diagonalized by a 1D Fourier transform, and then one may work in Fourier
space to define the preconditioner M from A [13, 18].

Here, we want to exploit the fact that since the approximate blurring matrix
A is block circulant, the corresponding approximate blurring model Az = b can be

Factorization Strategies for Third-Order Tensors 17

written in terms of a third order tensor (the approximate blurring operator) acting
on a matrix (e.g. the image) through the use of the t-product:

Ax X =B,

where X' = fold(x), B = fold(b). Thus, we can define our preconditioner from (an ap-
proximation to) the operator A itself. The approximation is obtained from Algorithm
T-compress in Section 4.1. We then generate a regularized pseudoinverse from the
output, and this gives our preconditioner, except that the matrix M is not available
explicitly. Rather, the resulting preconditioner will also be represented in terms of a
tensor, M, and so the matrix-vector product Mv is computed as M x fold(v).

Here, we assume A is square, with n blocks of size n x n, and that A is BTTB.
The matrix is generated from the point-spread function (see, for example, [33] for
how to generate such a matrix from the PSF), which in turn is the sum of three,
nonsymmetric Gaussian blurring kernels with different variances. Code to generate
our PSF is given below. We let A denote the T-Chan level-1 block circulant with
Toeplitz blocks (BCTB) matrix approximation to A (see [8]).

In this example, we use n = 128. First, we create an approximation

k
Ar Z u® 0@ 0w (5.2)
i=1

following Algorithm T-Compress in Section 4.1 by setting k = 50, k1 = ko = 1.

Our goal now is to use this output [U, V, W] to produce another tensor, M, which
is a regularized inverse of A in the sense that when applying it to B, the resulting image
should resemble a less blurred (without noise amplification) of the image. Once such
M has been identified, we will iterate on the right preconditioned system (5.1), again
noting that we compute the multiplication of M with a vector v as M xfold(v). It can
be shown that if the Kruskal form of M is available, this product can be performed
in only O(kn? + knlg(n)) flops. This means an application of the preconditioner per
iteration is on the order of the O(n?lg(n)) cost of a matrix vector product? with A.
So if the number of iterations to achieve the regularized solution of the preconditioned
system is significantly smaller than it is to compute the regularized solution to the
unpreconditioned system, we have an efficient deblurring algorithm.

To generate M, we will use definition 3.12 with one small adjustment. In our
case, the condition numbers of U and V are near 1. However, W has many small
magnitude (numerically zero) Fourier coefficients. Because of this, Definition 3.12
cannot directly be applied. Instead, M = [X,Y, Z] where X,Y are determined as in
3.12 and Z is determined as follows. For the Fourier coefficients

20 _ 1/w ﬁ’y) < Ve
! 1 @) >
We chose our threshold . by trial and error visually by inspecting M x B.
The PSF was created using the following MATLAB script.

T=gausswin(m,20); T2=gausswin(m,25); Psfl1=reshape(kron(T,T2),m,m);
T=gausswin(m,27); T2=gausswin(m,23); Psf2=reshape(kron(T,T2),m,m);
T=gausswin(m,23); T2=gausswin(m,30); Psf3=reshape(kron(T,T2),m,m);
PSF = Psfl + Psf2 + Psf3;

4Products with A are computed by embedding in a BCCB matrix and using 2D FFTs.

18 M.E. Kilmer, C.D. Martin

blrted, nosy

450
25

400
2 350

300
15

250

200
1

150
o5 100

s

Fic. 5.1. True image (left), blurred noisy image (middle), reconstruction after 3 iterations of
preconditioned LSQR with M defined using . = 0.5.

For this example, the true image is a 128x128 downsampled (scaled) version of
the satellite image, in the left of Figure 5.1. We then formed b = Az, where x is the
vectorized version of the true image. Gaussian white noise was added to b so that
the noise level was 0.1 percent. The blurred, noisy image is in the middle of Figure
5.1. As mentioned above, we viewed M % B where M is defined for three different
choices of 7., 0.1,0.5,1. We chose 7. = 0.5 since the other two values seemed to give
an image that was underregularized or overregularized, respectively. A more sophisti-
cated mechanism for choosing the regularization parameter v, would be necessary in
practice; the reader is referred to [14] for one possibility. The reconstruction obtained
using 3 iterations of the LSQR® algorithm [36] applied to the preconditioned problem
is shown on the right of Figure 5.1. Three iterations corresponded to the optimal (in
the two-norm) reconstruction as compared to the true image. This was obtained via
our MATLAB codes in 0.126 seconds. A solution of comparable quality, as measured in
the 2-norm of the error with the exact solution, was obtained with unpreconditioned
LSQR in 325 iterations and required 8.52 seconds to compute.

We believe this example illustrates the potential of many new ideas presented
in this paper (t-product, T-SVD, pseudoinverses, and our compression strategy) in
at least one application in image processing. Our current work suggests that our
approach might also be valuable in the context of facial recognition.

For different strategies and models relating tensors to deblurring see [32] and [37].

6. Conclusions and Future Work. In order to determine compressed rep-
resentations of tensors, we introduced the notion of a t-product between tensors.
We subsequently derived formulations of tensor identity, inverse, pseudoinverse, and
transpose. We showed that the set of n X n X n tensors with the t-product, inverse
and identity forms a group. We also showed that the t-product defines a linear op-
erator, and discussed its range and null space. Furthermore, we showed that using
the t-product we could extend such orthogonal matrix factorizations such as the SVD
and QR factorizations to tensors. The resulting T-SVD gave a means for optimally
approximating the tensor as a sum of outer products of matrices. We then proposed
an approximation algorithm for the tensor based on this k-term optimal sum. We
demonstrated the utility of our approximation algorithm, as well as the utility of
concepts such as right pseudoinverse, on an application from image deblurring.

Our focus in this paper was on developing a representation specifically for third-

5LSQR is a Krylov-subspace iterative method for solving the least squares problem. It is known
to act as a regularization method if iterations are stopped before the least squares solution is reached.

Factorization Strategies for Third-Order Tensors 19

order tensors. However, our approach naturally generalizes to higher-order tensors
in a recursive manner. The interpretation of range discussed in this paper leads us
to consider extensions of the concept of Krylov iterative methods. In future work,
we will explore the possibility of devising non-negative tensor factorizations based
on our t-product approach. Our results regarding the null space suggest it might be
possible to look for sparse (e.g. compressed) approximations by adding constraints to
the Fourier domain.

REFERENCES

[1] E. AcARr, S. CAMTEPE, M. KRISHNAMOORTHY, AND B. YENER, Modeling and multiway analysis
of chatroom tensors, Proceedings of the IEEE International Conference on Intelligence and
Security Informatics EMBS 2007, (2005), pp. 256-268. 3495 of Lecture Notes in Computer
Science.
[2] B. BADER AND T. KoLpaA, Algorithm 862: MATLAB tensor classes for fast algorithm proto-
typing, ACM Transactions on Mathematical Software, 32 (2006), pp. 635-653.
[3] C. BECKMANN AND S. SMITH, Tensorial extensions of the independent component analysis for
multisubject FMRI analysis, Neurolmage, 25 (2005), pp. 294-311.
[4] J. T. BERGE, Kruskal’s polynomial for 2 x 2 X 2 arrays and a generalization to 2 X n X n arrays,
Psychometrika, 56 (1991), pp. 631-636.
(5] K. BRAMAN, Third-order tensors as linear operators on a space of matrices, Linear Algebra
and its Applications. To appear.
(6] R. BRO AND S. D. JONG, A fast non-negativity-constrained least squares algorithm, Journal of
Chemometrics, 11 (1997), pp. 393-401.
[7] J. CARROLL AND J. CHANG, Analysis of individual differences in multidimensional scaling
via an n-way generalization of “eckart-young” decomposition, Psychometrika, 35 (1970),
pp. 283-319.
8] R. CHAN AND M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38
(1996), pp. 427-482.
(9] P. ComON, Tensor decompositions, in Mathematics in Signal Processing V, J. G. McWhirter
and I. K. Proudler, eds., Clarendon Press, Oxford, UK, 2002, pp. 1-24.
(10] J. DENIS AND T. DHORNE, Orthogonal tensor decomposition of 3-way tables, in Multiway Data
Analysis, R. Coppi and S. Bolasco, eds., Elsevier, Amsterdam, 1989, pp. 31-37.
[11] M. P. FRIEDLANDER AND K. HATZ, Computing nonnegative tensor factorizations, Tech. Report
TR-2006-21, University of British Columbia, Computer Science Department, 2006.
[12] G. GoruB AND C. V. LoAN, Matriz Computations, Johns Hopkins University Press, Baltimore,
3rd edition ed., 1996.
[13] M. HANKE, J. G. Naay, AND R. J. PLEMMONS, Preconditioned iterative regularization, in
Numerical Linear Algebra, de Gruyter, Berlin, 1993, pp. 141-163.
[14] P. C. HANSEN, M. E. KILMER, AND R. KJELDSEN, Ezploiting residual information in the pa-
rameter choice for discrete ill-posed problems, BIT, 46 (2006), pp. 41-59.
[15] R. HARSHMAN, Foundations of the parafac procedure: Model and conditions for an ’explanatory’
multi-mode factor analysis, UCLA Working Papers in phonetics, 16 (1970), pp. 1-84.
(16] J. J. JA’, Optimal evaluation of pairs of bilinear forms, STAM Journal on Computing, 8 (1979),
pp. 443-461.
[17] H. A. KIERS, Towards a standardized notation and terminology in multiway analysis, J. Chemo-
metrics, 14 (2000), pp. 105-122.
(18] M. E. KILMER, Cauchy-like preconditioners for 2-dimensional ill-posed problems, SIAM J.
Matrix Anal. Appl., 20 (1999).
[19] M. E. KILMER, C. D. MARTIN, AND L. PERRONE, A third-order generalization of the matriz svd
as a product of third-order tensors, Tech. Report TR-2008-4, Tufts University, Computer
Science Department, 2008.
[20] E. Koripis AND P. REGALIA, On the best rank-1 approzimation of higher-order supersymmetric
tensors, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 863-884.
[21] T. KoLDA AND B. BADER, Higher-order web link analysis using multilinear algebra, Proceedings
of the 5th IEEE International Conference on Data Mining, ICDM 2005,IEEE Computer
Society (2005), pp. 242-249.
[22] , Tensor decompositions and applications, SIAM Review, 51 (2009), pp. 455-500.
(23] T. G. KoLDA, Multilinear operators for higher-order decompositions, Tech. Report SAND2006-
2081, Sandia National Laboratories, 2006.

20 M.E. Kilmer, C.D. Martin

[24] P. KROONENBERG, Three-mode principal component analysis: Theory and applications, DSWO
Press, Leiden, 1983.

[25] J. KRUSKAL, Rank, decomposition, and uniqueness for 3-way and n-way arrays, in Multiway
Data Analysis, R. Coppi and S. Bolasco, eds., Elsevier, Amsterdam, 1989, pp. 7-18.

[26] L. D. LATHAUWER, B. D. MOOR, , AND J. VANDEWALLE, A multilinear singular value decom-
position, STAM Journal of Matrix Analysis and Applications, 21 (2000), pp. 1253-1278.

[27] L. D. LATHAUWER AND B. D. MOOR, From matriz to tensor: Multilinear algebra and signal
processing, in Mathematics in Signal Processing IV, J. McWhirter and e. I. Proudler, eds.,
Clarendon Press, Oxford, UK, 1998, pp. 1-15.

[28] L. D. LATHAUWER, B. D. MOOR, AND J. VANDEWALLE, On the best rank-1 and rank-Ri1,..., RN
approzimation of higher-order tensors, STAM J. Matrix Anal. Appl., 21 (2000), pp. 1324—
1342.

[29] C. MARTIN, The rank of a 2 X 2 X 2 tensor, submitted Linear and Multilinear Algebra, (2010).
accepted subject to revision.

[30] E. MARTINEZ-MONTES, P. VALDEs-Sosa, F. MIwAKEICHI, R. GOLDMAN, AND M. COHEN,
Concurrent eeg/fmri analysis by multiway partial least squares, Neurolmage, 22 (2004),
pp. 1023-1034.

[31] F. MIwAKEICHI, E. MARTINEZ-MONTES, P. VALDES-S0SA, N. NisHIYAMA, H. MIZUHARA, AND
Y. YAMAGUCHI, Decomposing eeg data into space-time-frequency components using parallel
factor analysis, Neurolmage, 22 (2004), pp. 1035-1045.

[32] J. Naacy aAND M. KILMER, Kronecker product approzimation for preconditioning in three-
dimensional imaging applications, IEEE Trans. Image Proc., 15 (2006), pp. 604-613.

[33] J. G. Nacy, K. PALMER, AND L. PERRONE, [terative methods for image deblurring: A matlab
object oriented approach, Numerical Algorithms, 36 (2004), pp. 73-93.

[34] 1. V. OSELEDETS, D. V. SAVOSTIANOV, AND E. E. TYRTYSHNIKOV, Tucker dimensionality re-
duction of three-dimensional arrays in linear time, STAM J. Matrix Anal. Appl., 30 (2008),
pp. 939-956.

[35] P. PAATERO, Construction and analysis of degenerate parafac models, Journal of Chemometrics,
14 (2000), pp. 285-299.

[36] C. C. PAIGE AND M. A. SAUNDERS, LSQR: An algorithm for sparse linear equations and sparse
least squares, ACM Transaction on Mathematical Software, 8 (1982), pp. 43-71.

[37] M. REzGHI AND L. ELDEN, Diagonalization of tensors with circulant structure, Linear Algebra
and its Applications, Special Issue in Honor of G. W. Stewart’s 70th birthday. To appear.

[38] B. Savas aND L. ELDEN, Handwritten digit classification using higher order singular value
decomposition, Pattern Recogn., 40 (2007), pp. 993-1003.

[39] N. SipiroPOULOS, R. BRO, AND G. GIANNAKIS, Parallel factor analysis in sensor array pro-
cessing, IEEE Transactions on Signal Processing, 48 (2000), pp. 2377-2388.

[40] V. D. Siva AND L.-H. KiMm, Tensor rank and the ill-posedness of the best low-rank approzi-
mation problem, STAM J. Matrix Anal. Appl., 30 (2008), p. 10841127.

[41] A. SMILDE, R. BRO, AND P. GELADI, Multi-way Analysis: Applications in the Chemical Sci-
ences, Wiley, 2004.

[42] A. STEGEMAN AND P. COMON, Subtracting a best rank-1 approzimation may increase tensor
rank, ArXiv e-prints, (2009).

[43] L. TUCKER, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966),
pp. 279-311.

[44] M. VAaSILESCU AND D. TERzZOPOULOS, Multilinear analysis of image ensembles: Tensorfaces,
Proceedings of the 7th European Conference on Computer Vision ECCV 2002, (2002),
pp- 447-460. Vol. 2350 of Lecture Notes in Computer Science.

[45] , Multilinear image analysis for face recognition, Proceedings of the International Con-
ference on Pattern Recognition ICPR 2002, 2 (2002), pp. 511-514. Quebec City, Canada.
[46] , Multilinear subspace analysis of image ensembles, Proceedings of the 2003 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition CVPR 2003,
(2003), pp. 93-99.

[47] T. Zuanc aND G. GoOLUB, Rank-one approzimation to high order tensors, SIAM J. Matrix
Anal. Appl., 23 (2001), pp. 534-550.

