
 

 

REAL-TIME FNIRS BRAIN INPUT 
FOR ENHANCING INTERACTIVE 

SYSTEMS 
 

A dissertation 

submitted by 

 Erin Treacy Solovey  

In partial fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

in 

Computer Science 

 

TUFTS UNIVERSITY 

May, 2012 

 

©2012, Erin Treacy Solovey 

 

Advisor: Robert J.K. Jacob 

  



ii 
 

ABSTRACT 

Most human-computer interaction (HCI) techniques cannot fully capture the richness of 

the user’s thoughts and intentions when interacting with a computer system. For example, 

when we communicate with other people, we do not simply use words, but also 

accompanying cues that give the other person additional insight to our thoughts. At the 

same time, several physiological changes occur that may or may not be detected by the 

other person. When we communicate with computers, we also generate these additional 

signals, but the computer cannot sense such signals, and therefore ignores them. 

Detecting these signals in real time and incorporating them into the user interface could 

improve the communication channel between the computer and the human user with little 

additional effort required of the user. This communication improvement would lead to 

technology that is more supportive of the user’s changing cognitive state. Such 

improvements in bandwidth are increasingly valuable, as technology becomes more 

powerful and pervasive, while our cognitive abilities do not change considerably. 

In this dissertation, I explore using brain sensor data as a passive, implicit input channel 

that expands the bandwidth between the human and computer by providing supplemental 

information about the user. Using a relatively new brain imaging tool called functional 

near-infrared spectroscopy (fNIRS), we can detect signals within the brain that indicate 

various cognitive states. This device provides data on brain activity while remaining 

portable and non-invasive. This research aims to develop tools to make brain sensing 

more practical for HCI and to demonstrate effective use of this cognitive state 

information as supplemental input to interactive systems. 
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First, I explored practical considerations for using fNIRS in HCI research to determine 

the contexts in which fNIRS realistically could be used. Secondly, in a series of 

controlled experiments, I explored cognitive multitasking states that could be classified 

reliably from fNIRS data in offline analysis. Based on these experiments, I created 

Brainput, a system that learns to identify brain activity patterns occurring during 

multitasking. It provides a continuous, supplemental input stream to an interactive 

human-robot system, which uses this information in real time to modify its behavior to 

better support multitasking. Finally, I conducted an experiment to investigate the efficacy 

of Brainput and found improvements in performance and user experience. 
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Chapter 1 INTRODUCTION 
 

 

 

1.1.	
  Motivation	
  
Over the past fifty years, computers have gained power and efficiency, and can now 

process massive amounts of information at high speeds. Humans, on the other hand, have 

not witnessed such dramatic improvements. To make humans more effective when they 

interact with computer systems, we devise novel human-computer interaction techniques. 

Early systems used punch cards, and later, command line interfaces. Today, the mouse 

and keyboard are ubiquitous input devices, while graphical displays on monitors are used 

for transmitting information from the system to the user. However, these techniques do 

not fully capture the richness of the user’s thoughts and intentions when interacting with 

a computer system. 



2 
 

For example, when we communicate with other people, we do not simply use words, but 

also accompanying visual and auditory cues that give the other person additional insight 

to our thoughts. At the same time, several physiological changes occur that may or may 

not be detected by the other person. When we communicate with computers, we also 

generate these additional signals, but the computer cannot sense such signals, and 

therefore completely ignores them. Detecting these signals in real time and incorporating 

them into the user interface could improve the communication channel between the 

computer and the human user with little additional effort required of the user. This 

communication improvement would lead to technology that is more supportive of the 

user’s changing cognitive state. Such improvements are increasingly valuable, as 

technology becomes more powerful and pervasive, while our cognitive abilities do not 

change considerably. 

In order to automatically infer the user’s changing cognitive state in real time, some 

researchers have explored performance data, interaction history (e.g. keystrokes) or 

environmental context to assess the user’s current state (Fogarty, Hudson, & Lai, 2004; 

Hudson et al., 2003; Starner, Schiele, & Pentland, 1998), while others use computer 

vision to detect facial expressions or other behavioral measures. Physiological measures 

are also emerging as continuous indicators of cognitive state changes (Fairclough, 2009; 

R. Mandryk, Atkins, & Inkpen, 2006; Nacke, Kalyn, Lough, & Mandryk, 2011). Brain 

imaging and brain sensing techniques aim to get close to the source by looking at changes 

in brain activity during task performance (Grimes, Tan, Hudson, Shenoy, & Rao, 2008; 

Leanne M. Hirshfield et al., 2009) and are becoming realistic tools for HCI research. 

Progress in brain imaging has opened the door for promising research on brain-computer 

interfaces. For example, users without motor control or speech can currently use a virtual 

keyboard (Kennedy, Bakay, Moore, Adams, & Goldwaithe, 2000) and navigate in their 
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environment (Millán, Renkens, Mouriño, & Gerstner, 2004) using mental motor imagery. 

Such systems usually are designed with brain activity as the primary, and often only, 

input to the system. Users concentrate on a certain type of thought (such as imagined 

hand movement) in order to control the system. This requires concentration, effort, and 

training, and often seems unnatural. Some require implanted electrodes in the skull 

(Kennedy, et al., 2000; M. Moore, Kennedy, Mynatt, & Mankoff, 2001; Melody M. 

Moore & Kennedy, 2000) or long training periods with limited bandwidth (Millán, et al., 

2004). While these systems are valuable to paralyzed and locked in patients, they do not 

provide sufficient gains to healthy users to make the effort required worthwhile. 

Here, I take a different approach for brain-computer interfaces that augments traditional 

input devices such as the mouse and keyboard and that targets a wider group of users. I 

 

Figure 1-1. FNIRS as a passive, implicit input channel that supplements the primary input 
to an interactive system.  
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use brain sensor data as a passive, implicit input channel that expands the bandwidth 

between the human and computer by providing supplemental information about the user 

(Figure 1-1). Using a relatively new brain imaging tool called functional near-infrared 

spectroscopy (fNIRS) (Chance et al., 1988; Villringer, Planck, Hock, Schleinkofer, & 

Dirnagl, 1993) (Figure 1-2), we can detect signals within the brain that indicate various 

cognitive states. This device provides data on brain activity while remaining portable and 

non-invasive. This research aims to develop tools to make brain sensing more practical 

for HCI and to demonstrate effective use of this cognitive state information as 

supplemental input to an interactive system. 

1.2.	
  An	
  Example	
  
In order to explore the potential of fNIRS brain sensing in HCI, I began exploring 

specific applications where this type of passive, supplemental input may be worthwhile. 

My goal was to build a working platform for studying these types of systems and to target 

a key use case for deeper study. One area where such brain-based interfaces would be 

 

Figure 1-2. Two functional near-infrared spectroscopy sensors are placed under the red 
headband and non-invasively detect brain activity. 
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beneficial is in the support of users who are multitasking, and I investigate the feasibility 

of measuring cognitive multitasking states with fNIRS in Chapter 4. There is a wide 

range of contexts that involve information overload, interruptions or multitasking. As a 

proof-of-concept, in Chapter 5 and Chapter 6, I demonstrate and evaluate a human-robot 

system that utilizes the fNIRS cognitive multitasking input stream to support the 

supervision of multiple robots in a team task. Below, I further discuss the use of these 

domains for exploring fNIRS as a supplemental input stream to an interactive system. 

1.2.1.	
  Multitasking	
  Support	
  in	
  Interactive	
  Systems	
  
 

Multitasking has become an integral part of work environments, even though people are 

not well-equipped to effectively handle more than one task at a time (Miyata & Norman, 

1986b). While multitasking has been shown to be detrimental to performance in 

individual tasks (Miyata & Norman, 1986b), it can also be beneficial when a secondary 

task provides additional information for completing the primary task, such as allowing 

people to integrate information from multiple sources. 

Multiple windows, multiple monitors and large displays make it possible for the interface 

to handle multitasking, and many researchers have investigated how best to support the 

user who is balancing multiple tasks. Because multitasking can elicit several different 

cognitive states, the user’s needs during multitasking may change over time. However, it 

is difficult to determine the best way to support the user without understanding the 

internal cognitive processes occurring during task performance. Recognizing signals 

generated naturally by the user that differentiate different types of multitasking could lead 

to higher productivity, better task performance, and improved user experience when the 

signals are utilized to make the system more responsive to the user’s needs. 

1.2.2.	
  Human-­‐Robot	
  Interaction	
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Recent advances in artificial intelligence and robotics have led to the development of 

autonomous robots that can work closely with human operators to complete tasks. 

Understanding and improving the interactions during such mixed human-robot team tasks 

is a key research area in the growing field of human-robot interaction. Many such human-

robot team tasks also provide appropriate scenarios for studying adaptive multitasking 

support, as they inherently involve multitasking: the user is performing a task, while also 

monitoring the state of the robot(s). Such human-robot team tasks thus may see improved 

performance with brain-based adaptive interfaces. There has been much work on adaptive 

robots that change behavior based on the environment or situation. In Chapter 5 and 

Chapter 6, I demonstrate how we could develop robots that have a greater understanding 

of the user’s cognitive state during multitasking, and that can adapt their behavior to 

better support the user, based on this supplemental cognitive state information. 

1.3.	
  Thesis	
  Statement	
  	
  

In this dissertation, I claim that: 

Functional near-infrared spectroscopy, an emerging brain-sensing technology, can infer 

passive cognitive state and provide real-time input that allows an interactive user 

interface to adapt its behavior, thus improving user performance and experience 

compared to a traditional user interface.  

To demonstrate this thesis, my research had four phases. First, I explored practical 

considerations for using fNIRS in HCI research to determine the contexts in which fNIRS 

realistically could be used. Secondly, in a series of controlled experiments, I explored the 

cognitive states that could be classified reliably from fNIRS data in offline analysis, 

focusing on multitasking scenarios. This involved understanding brain activation profiles 



7 
 

in the anterior prefrontal cortex, and developing preprocessing, visualization and machine 

learning techniques for analyzing the fNIRS data. Based on these experiments, I created 

Brainput, a system that learns to identify brain activity patterns occurring during 

multitasking. It provides a continuous, supplemental input stream to an interactive 

human-robot system, which uses this information in real time to modify its behavior to 

better support multitasking. Finally, I conducted an experiment to investigate the efficacy 

of Brainput. 

1.4	
  Thesis	
  Contributions	
  
To support the thesis statement, my interdisciplinary research touches the fields of 

machine learning, signal processing, brain-computer interfaces, biomedical engineering, 

human-robot interaction, as well as HCI. It makes several contributions that lay a 

foundation for future HCI research by overcoming many of the technical challenges and 

bringing brain sensing for HCI to a point where concrete research and evaluation can be 

conducted. In particular, with this dissertation, I make the following contributions: 

1) fNIRS Guidelines: I facilitate further adoption of fNIRS brain sensing in HCI 

research by providing practical guidelines and considerations for its effective use, 

based on past experience and experimental evidence. 

2) fNIRS Analysis tools: I describe visualization, analysis and classification tools for 

fNIRS that work for offline analysis as well as in real time systems.  

3) Offline fNIRS Multitasking Study: I show that specific cognitive multitasking 

states, previously studied with fMRI (which cannot be used in HCI settings), can be 

detected automatically with fNIRS which is more practical for HCI. I also show that 

these cognitive multitasking brain processes are detectable across multiple domains 

and tasks, by moving from a simple letter-based task in previous work to actual HCI-
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related tasks that elicit similar states. These processes are almost indistinguishable by 

examining overt behavior or task performance alone. I explored these cognitive 

multitasking states because they have direct relevance to many HCI scenarios. 

4) Streaming fNIRS input channel: I describe Brainput, a passive, implicit input 

channel to an interactive system, based on real-time cognitive multitasking state 

detection with fNIRS. This system was integrated with a human-robot system. 

Together, this platform provides the basis for the design and evaluation of future 

brain-based adaptive user interfaces, with broader applications beyond human-robot 

team tasks. 

5) System Evaluation and User Study: I present results of a user study showing that 

Brainput significantly improves several performance metrics, as well as the 

subjective scores in a dual-task human-robot activity, while requiring no additional 

effort from the user. This study also confirmed that we can train a machine learning 

classifier on a set of known tasks and later successfully classify brain activity in 

unrelated activities that generate similar brain processes. This suggests that implicit 

brain input as a supplemental input stream has promise both in human-robot 

interaction and in various other domains and tasks.  

6) Recommendations: I make recommendations for designing interfaces that can take 

advantage of a supplementary, implicit input channel such as that coming from 

fNIRS. 

1.5.	
  Thesis	
  Overview	
  

This dissertation is organized as follows: 
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Chapter 2 provides an overview of related work that lays the foundation for this 

dissertation. This includes prior work with brain sensing in general, as well as the 

specifics of functional near-infrared spectroscopy. It also covers prior brain-computer 

interface research as well as research into the brain processes occurring during 

multitasking, which is fundamental to this work. 

Chapter 3 describes a series of experiments investigating practical aspects of using fNIRS 

in HCI research, and provides guidelines for its effective use in HCI contexts. 

Chapter 4 describes several controlled experiments conducted to determine whether there 

are patterns in the fNIRS brain signals that could differentiate between various types of 

multitasking behavior, which would be valuable in HCI research. It also describes tools 

developed for offline signal processing and analysis of the fNIRS signal. 

Chapter 5 contains a description of Brainput, a working system that uses fNIRS as a 

passive, implicit input channel to an interactive human-robot interaction system. To 

support this, I created tools for real time analysis and classification that can be used in 

other contexts, and these are explained in this chapter as well. 

Chapter 6 details the evaluation experiment of Brainput, in which performance data 

showed improved user performance using this input modality in the human-robot system. 

It also provides evidence from subjective questionnaires showing that this input modality 

improved the users’ perceived workload and experience. 

Chapter 7 summarizes the main contributions of this work and discusses future 

directions.
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Chapter 2 BACKGROUND & RELATED 
WORK 
 

 

 

This chapter lays the foundation for this dissertation by discussing related work in several 

areas. It begins by discussing the state of the art in brain-computer interface research and 

then goes into functional near-infrared spectroscopy background. Section 2.1.5. discusses 

brain sensing in human-robot interaction. Then, I cover related prior research on brain 

processes occurring during multitasking, which is fundamental to this work. Other related 

work appears throughout the dissertation when it is closely connected to a particular 

section. 
2.1. Brain-Computer Interface Research 

2.1.1.	
  Brain	
  Sensing	
  and	
  Imaging	
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Non-invasive brain sensing and imaging techniques, primarily developed for clinical 

settings, have been powerful tools for understanding brain structure and function as well 

as for diagnosing brain injuries or disorders. Structural imaging techniques, such as 

computed tomography (CT), generate brain images of the mostly static structure of the 

brain, as well as brain tumors and injuries. These provide valuable snapshots of the state 

of the brain, but are not used in brain-computer interfaces, which require measurement of 

the changing state of the brain due to cognitive activity. Functional imaging detects 

changes within the brain during various activities, and is used to understand brain 

function and brain illnesses. Functional magnetic resonance imaging (fMRI) is widely 

used to generate 3-dimensional images of the brain showing the blood oxygen level 

dependence (BOLD) effect, which measures changes in volume and oxygenation of the 

blood. These hemodynamic changes in the brain are an indirect measure of the activity in 

the brain. Similar to fMRI, functional near-infrared spectroscopy (fNIRS), measures 

blood oxygen changes, and is discussed in detail below. Positron emission tomography 

(PET) scans provide 3-dimensional images of blood flow, blood oxygen and metabolic 

function of cells, but is mainly used for investigating organs for cancers and other 

diseases. Electroencephalography (EEG) and magnetoencephalography (MEG) provide a 

more direct measure of neuronal activity by detecting electrical signals generated by 

neurons firing. For a table comparing these brain sensing technologies for use in HCI, see 

(Tan & Nijholt, 2010). 

Since these tools were designed for use in clinical or laboratory settings, they often 

require restrictions on the patient or study participant. Most of these restrictions are not 

reasonable for realistic HCI settings. Besides being expensive, PET, fMRI and MEG 

require subjects to sit or lay down in unnatural positions and remain essentially 
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motionless (Lee & Tan, 2006). In addition, PET requires ingestion of hazardous material 

and fMRI exposes subjects to loud noises that may interfere with the study (M Izzetoglu, 

Izzetoglu, Bunce, Onaral, & Pourrezaei, 2005). Plus, the powerful magnetic field 

prevents computer usage in both fMRI and MEG. These factors make it impractical to 

use these techniques in a realistic interactive situation. 

Because it is less intrusive, more portable, and less expensive than these other 

technologies, EEG (Figure 2-1) has seen wide use in BCI research. For example, it has 

been used to classify tasks (Lee & Tan, 2006), measure cognitive load (Grimes, et al., 

2008), support human-aided computer vision (Shenoy & Tan, 2008), as well as limited 

communication (Keirn & Aunon, 1990; Schalk, McFarland, Hinterberger, Birbaumer, & 

Wolpaw, 2004; Wolpaw, McFarland, Neat, & Forneris, 1991). However, it can have a 

significant setup time, and electronic devices in the room can interfere with the signal. It 

has limited spatial resolution, but high temporal resolution. In addition, most EEG 

systems require gel to be applied to the scalp, although devices are being developed that 

use dry electrodes. Because these disadvantages are not prohibitive, EEG has been the 

main technology used in brain-computer interface research.  
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2.1.2.	
  Functional	
  Near-­‐Infrared	
  Spectroscopy	
  Background	
  

My work focuses on using functional near-infrared spectroscopy (fNIRS) to overcome as 

well as complement some of the drawbacks of these other brain-imaging systems. 

However, because it is a novel technique for brain sensing, there have been few studies 

showing specific measurements with fNIRS and their appropriate use in HCI. The 

emerging, non-invasive, and lightweight sensors detect changes in oxygenated and 

deoxygenated blood in a region of the brain by using optical wires to emit near-infrared 

light (Chance, et al., 1988). The sensors are placed on the forehead and secured with a 

headband, making them portable, easy to use, and quick to set up—characteristics that 

make fNIRS suitable for use in realistic HCI settings (Figure 2-1).  

Figure 2-2 shows one of the two fNIRS sensors that would be placed on a person’s 

forehead. On the sensor shown in the photo, there are five possible light sources and one 

light detector. The light sources send two wavelengths of near-infrared light into the 

 

Figure 2-1. fNIRS (left) and EEG (right) provide useful cognitive and affective state information 
while remaining non-invasive and practical for HCI settings. 
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forehead, where it continues through the skin and bone 1-3 cm deep into the cortex. 

Biological tissues are relatively transparent to these wavelengths, but the oxygenated and 

deoxygenated hemoglobin are the main absorbers of this light. After the light scatters in 

the brain, some reaches the light detector. By determining the amount of light picked up 

by the detector, we can calculate the amount of oxygenated and deoxygenated 

hemoglobin in the area. Because these hemodynamic and metabolic changes are 

associated with neural activity in the brain, fNIRS measurements can be used to 

understand changes in a person's cognitive state while performing tasks. 

Like most brain imaging techniques, fNIRS was designed primarily for laboratory and 

clinical settings. However, it avoids many of the restrictions of other techniques (as will 

be discussed in more depth in Chapter 3), and therefore has promise for HCI research. 

However, like EEG, the data can be noisy and less reliable than the more intrusive 

techniques (e.g. fMRI, MEG, surgically-implanted electrodes), requiring machine 

learning algorithms that can handle this type of data. Despite this, fNIRS and EEG open 

new doors for HCI research since they are safe, non-invasive, and portable, yet still 

provide cognitive state information.  

 

Figure 2-2. Left: One fNIRS sensor. In a typical setup, two sensors are placed on the forehead. 
The thin clear fibers are attached to the light sources and the black, thicker fiber is attached to 
the light detector. A headband holds the probes in place. Right: Illustration of path of near-
infrared light between the source and detector. 
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2.1.2.1.	
  Experimental	
  fNIRS	
  Setup	
  

In all studies described in this dissertation, a multichannel frequency domain OxiplexTS 

from ISS Inc. (Champaign, IL) was used for data acquisition (Figure 2-3). Two probes 

(Figure 2-2) were placed on the forehead to measure the two hemispheres of the anterior 

prefrontal cortex. The source-detector distances were 1.5, 2, 2.5, 3cm respectively. Each 

distance measures a different depth in the cortex. Each source emits two light 

wavelengths (690nm and 830nm) to pick up and differentiate between oxygenated and 

deoxygenated hemoglobin. The sampling rate was 6.25Hz.  

The basic technology is common to all systems, and the measured signal depends on the 

location of the probe and the amount of light received. The most common placements are 

on the motor cortex (Sitaram et al., 2007), and the prefrontal cortex (Ehlis, Bähne, Jacob, 

Herrmann, & Fallgatter, 2008; Mappus, Venkatesh, Shastry, Israeli, & Jackson, 2009), 

although other regions have also been explored (Herrmann et al., 2008). The sensors used 

 

Figure 2-3. OxiplexTS by ISS, Inc. is used in all the experiments described in this dissertation. 
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in this research were designed for the forehead, which is one of the most successful 

placements because of the absence of hair, which absorbs light and degrades the fNIRS 

signal. Thus, the anterior prefrontal cortex, which lies behind the forehead, is the main 

target for fNIRS brain sensing in this dissertation. This area of the brain deals with high-

level processing (Ramnani & Owen, 2004), such as working memory, planning, problem 

solving, memory retrieval and attention. Here, we look specifically at detecting brain 

activity changes during multitasking as we would like to improve user performance and 

experience in such difficult situations. 

2.1.3.	
  Brain-­‐Computer	
  Interface	
  Approaches	
  

Lee and Tan (Lee & Tan, 2006) describe two approaches to brain-computer interfaces: 

operant conditioning and pattern recognition. With operant conditioning, the user is 

trained to control his or her brain signal using feedback from the system. This approach is 

often used as explicit input to the system. It is most useful when the user is invested in 

the system, as is the case with disabled users. In the pattern recognition approach, the 

user does not go through extensive training. Instead, the system uses signal processing 

and machine learning techniques to learn patterns associated with various cognitive 

states. This method is most likely used as implicit input to the system, and may be more 

practical for most HCI settings. 

Following the pattern recognition approach, the work in this dissertation makes use of 

brain activity as an additional input channel, providing hard-to-detect information such as 

aspects of the cognitive state of the user. In order to do this, a training or calibration 

session is required for the computer to begin learning about the user’s brain patterns. This 

will be discussed more in Section 5.2 and Section 6.4. 

2.1.4.	
  Brain	
  Sensing	
  for	
  HCI	
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Much prior research on brain-computer interfaces has a primary goal of helping people 

with severe motor disabilities to interact with their environment by translating their brain 

activity into specific device control signals. For example, users who are paralyzed or who 

lack muscle control can currently use BCIs to answer simple questions, control their 

environment, and conduct word processing (M. M. Moore, 2003). 

In HCI contexts, cognitive state information could be valuable to interface designers, 

both for evaluation of user interfaces as well as for input to interactive systems (Cutrell & 

Tan, 2008). In evaluation of user interfaces, researchers may use the cognitive state 

information as an objective, real-time measure to assess and compare user interfaces. 

When designing interactive systems, the additional information could lead to interfaces 

that respond carefully to changes in the user’s cognitive state.  

Until recently, most brain-computer interfaces were designed for disabled users, and 

employed brain signals as the primary input (Blankertz et al., 2007; Kennedy, et al., 

2000; Pfurtscheller, Flotzinger, & Kalcher, 1993; Schalk, et al., 2004; Wolpaw, et al., 

1991). While these systems provide this group of users with a valuable communication 

channel, they likely will not see wider adoption due to the low bandwidth compared to 

other available methods for non-disabled users.  

With lower costs for non-invasive brain sensing, we recently have seen a growing interest 

in employing brain sensors for a wider audience (for an overview, see (Jackson & 

Mappus, 2010)). Much of this work has also used brain sensing as explicit input to the 

system to make selections or control the interface, (e.g. in a game context (Kuikkaniemi 

et al., 2010; O'Hara, Sellen, & Harper, 2011) or with a multitouch table (Yuksel, 

Donnerer, Tompkin, & Steed, 2010)), although there have been examples of passive brain 

sensing to be used either as implicit input or for evaluation of user interfaces (Grimes, et 
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al., 2008; Leanne M. Hirshfield et al., 2011; Leanne M. Hirshfield, et al., 2009; Lee & 

Tan, 2006). Recently, it has been suggested that untrained users may benefit from 

systems that use pattern recognition and machine learning to classify signals users 

naturally give off when using a computer system (Cutrell & Tan, 2008). The system 

would use brain sensors to automatically discover aspects of the user’s cognitive state 

and use this information as passive or implicit input to a system, augmenting any explicit 

input from other devices, and increasing the bandwidth from humans to computers.  

In Girouard, et al., we brought offline analysis of fNIRS signals into a realtime system 

with the goal of using it to build passive brain-computer interfaces (Girouard, Solovey, & 

Jacob, 2010). The work described here goes beyond this work by improving the 

processing, training and classification algorithms, and building and evaluating a viable 

new input technique to improve the user performance and experience. 

The motivation for using fNIRS and other brain sensors in HCI research is to pick up 

cognitive state information that is difficult to detect otherwise. It should be noted that 

some changes in cognitive state may also have physical manifestations. For example, 

when someone is under stress, his or her breathing patterns may change. It may also be 

possible to make inferences based on the contents of the computer screen, or on the input 

to the computer. However, since these can be detected with other methods, we are less 

interested in picking them up using brain sensors. Instead, we are interested in using brain 

sensors to detect information that does not have obvious physical manifestations, and that 

can only be sensed using tools such as fNIRS.  

2.1.5.	
  Brain	
  Sensing	
  for	
  Human	
  Robot	
  Interaction	
  

Brain-computer interfaces have previously been incorporated into robot architectures, 

although these have typically been EEG-based systems. For example, they have been 
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used for controlling mobile robots (Barbosa, Achanccaray, & Meggiolaro, 2010; 

Escolano, Murguialday, Matuz, Birbaumer, & Minguez, 2010) or an intelligent 

wheelchair (Perrin, Chavarriaga, Colas, Siegwart, & Millán). fNIRS provides advantages 

over the more prevalent EEG due to its easy setup and robustness to noise. Past research 

has proposed the use of fNIRS-based BCIs (Okumura & Zhiwei, 2007; Tsubone, Tsutsui, 

Muroga, & Wada, 2008). However, these projects focus on using brain data for direct 

one-way control of robot movement, and are less concerned with the interaction between 

the human and robot. In addition, the reliability of such active control schemes will vary 

greatly depending on context, and may be particularly difficult to apply in high-stress or 

high-load contexts. By using fNIRS to passively identify an operator's cognitive state, we 

can exploit that very phenomenon to improve interaction efficiency. 

Augmenting active communication channels is particularly important in human-robot 

interaction, because people have a tendency to ascribe human-like abilities of 

comprehension to autonomous robots (possibly due to their apparent agency, or to their 

depiction in popular culture) that are, at this point, unrealistic. Hence, any 

additional information that can help the robot to understand the operator's intentions will 

be of great value. 

When designing autonomy modes for the robot, it is important to understand the user’s 

cognitive state. Parasuraman et al. (Parasuraman, Sheridan, & Wickens, 2000) propose a 

framework for supporting user cognition with automation which describes four stages of 

human information processing (sensory processing, perception, decision making and 

response selection), each of which can have a different automation level. They also 

outline criteria for evaluating the user interface by examining both human performance 

measures and also system performance criteria (automation reliability, costs of action 

outcomes). This framework provides guidelines but does not prescribe specific adaptive 
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behavior for every system. Instead, each system must be carefully evaluated and 

iteratively designed to meet the needs of the users. 

2.2.	
  Multitasking	
  Background	
  

In Chapter 4 and Chapter 6, I try to identify specific cognitive multitasking states with 

fNIRS to better support the user. Here, I give background on multitasking and 

interruptions that lays the foundation for those sections.  

Although computers are capable of handling multiple processes simultaneously, people 

have a difficult time due to high mental workload from increased working memory 

demands and the overhead of switching context between multiple tasks. Repeated task 

switching during an activity may lead to completion of the primary task with lower 

accuracy and longer duration, in addition to increased anxiety and perceived difficulty of 

the task (Bailey, Konstan, & Carlis, 2001). The challenge is to devise an effective way to 

measure workload and attention-shifting in a dynamic environment, as well as to identify 

optimal support for multitasking.  

2.2.1.	
  Measuring	
  Mental	
  Workload	
  and	
  Other	
  Cognitive	
  States	
  

Managing mental workload has long been an active topic in HCI research and high 

mental workload has been identified as a cause of potential errors (Card, Moran, & 

Newell, 1983). Researchers have shown that different types of subtasks lead to different 

mental workload levels (Iqbal, Adamczyk, Zheng, & Bailey, 2005). As a measure for 

mental workload, researchers have proposed pupil dilation (Iqbal, Zheng, & Bailey, 

2004) in combination with subjective ratings as this is non-invasive, and allows the user 

to perform the tasks as the data is processed in real time. Other physiological measures, 

including skin conductance, respiration, facial muscle tension and blood volume pressure, 
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have also been used to detect cognitive or emotional states to improve machine 

intelligence (Fairclough, 2009; R. L. Mandryk & Inkpen, 2004; Picard, Vyzas, & Healey, 

2001). While adaptive user interfaces may be designed to reduce mental workload, any 

automation may also result in reduced situation awareness, increased user complacency 

and skill degradation, and these human performance areas should be evaluated in the 

system (Parasuraman, et al., 2000). 

2.2.2.	
  Task	
  Switching	
  and	
  Measuring	
  Interruptibility	
  

When managing multiple tasks, interruptions are unavoidable. To address this, 

researchers have developed systems that try to identify the cost associated with 

interruption based on different inputs, such as desktop activity, environment context 

(Fogarty, et al., 2004; Hudson, et al., 2003; Starner, et al., 1998), eye tracking (Hornof, 

Zhang, & Halverson, 2010), or other physiological measures such as heart rate variability 

and electromyogram (Chen, Hart, & Vertegaal, 2008) and handle interruptions 

accordingly. They have found interruptions to be less disruptive during lower mental 

workload (Iqbal & Bailey, 2005; Salvucci & Bogunovich, 2010). Other studies tried 

placing interruptions near the beginning, middle or end of a task (Czerwinski, Cutrell, & 

Horvitz, 2000), at task boundaries (Miyata & Norman, 1986a), or between repetitive 

tasks which were considered as more interruptible (Monk, Boehm-Davis, & Trafton, 

2002). It was also shown that interruptions relevant to the main task tend to be less 

disruptive for the users than irrelevant interruptions (Czerwinski, et al., 2000).  

Various interruption schemes may affect performance in different ways; however, there is 

no universally optimal interruption scheme. Interrupting the user as soon as the need 

arises, for example, emphasizes task completeness over accuracy, while allowing the user 

to defer interruptions indefinitely does the opposite (Sasse, Johnson, & Mcfarlane, 1999). 
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McFarlane (McFarlane, 2002) discusses four distinct methods for coordinating 

interruption—immediate, negotiated (user selects when to be interrupted), mediated (an 

intelligent agent selects when to interrupt), and scheduled (interruptions appear at fixed 

times)—and found that no optimal method existed across users and tasks. Thus, it is 

crucial that the style of interruption adapts to the task. Systems have been developed that 

quantify the optimal time to interrupt a user by weighing the value against the cost of 

interruption (Iqbal, et al., 2005). In addition to determining the optimal time for switching 

tasks, researchers have tried to determine the best method for reminding users of pending 

background tasks. Miyata and Norman (Miyata & Norman, 1986b) note that important 

alerts specifically designed for someone who is deeply engaged in another task would 

most likely be inappropriate and may even be disruptive in other situations. 

2.2.3. Multitasking Scenarios: Branching, Dual Task, Delay 

Multitasking behavior involves several high-level brain processes, which vary depending 

on the types of tasks and the interaction between the tasks. Koechlin et al. (E. Koechlin, 

Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 1999) described three distinct, but 

related multitasking scenarios, which they refer to as branching, dual-task, and delay. 

These are the foundation for the studies described in Chapter 4. 
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Branching (Figure 2-5, Figure 2-4) is illustrated by the following scenario: A user is 

tackling a complex programming task but is interrupted by an incoming email from her 

boss that is time sensitive. Thus, the user must “hold in mind goals while exploring and 

processing secondary goals” (E. Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, 

J., 1999). Branching processes are triggered frequently in multitasking environments and 

pose a challenge to users.  

However, some situations may involve frequent task switching without the need to 

maintain information about the previous task (e.g. A user is monitoring and responding to 

high priority software support issues that are logged by clients as well as responding to 

important emails, and regularly switches between the two tasks). These tasks are referred 

to as dual-task because there are two tasks that require attentional resources (Figure 2-5). 

These situations could also utilize adaptive support in the user interface, but the adaptive 

behavior would be distinct from that of branching.  

 

Figure 2-4. Branching: Primary and secondary task both require attentional resources to be 
allocated, and the primary task goal must be kept in mind over time. 
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The third multitasking paradigm is illustrated with the following scenario: A user is 

tackling a complex programming assignment and at the same time gets instant messages 

which the user notices, but ignores. Here, the secondary task is ignored and therefore 

requires little attentional resources. They refer to this as delay because the secondary task 

mainly delays response to the primary task (Figure 2-5). 

In their experiment, Koechlin et al. demonstrated using functional Magnetic Resonance 

Imaging (fMRI) that these three multitasking processes have different activation profiles 

in the prefrontal cortex of the brain, particularly in Brodmann’s Areas 8, 9 and 10. Their 

task involved processing rules based on letters appearing on the screen. Each stimulus 

was either an uppercase or lowercase letter from the word “tablet.” The expected 

response from the user was different depending on the case of the letter, so switching 

between uppercase and lowercase letters would be similar to balancing two tasks. There 

were four conditions in their experiment, each with different rules for responding, 

designed to trigger specific multitasking behavior (Figure 2-6): 

1) Delay: Are two consecutive uppercase stimuli in immediate succession in the word 

“TABLET’? Ignore lowercase. 

 

Figure 2-5. In the Delay scenario, the secondary task requires little attention, but the primary task goal is 
held in working memory. In the Dual-Task scenario, both primary and secondary tasks require attentional 
resources to be allocated for each task switch, but goals are not held in working memory. Branching has 

characteristics of both Delay and Dual-Task scenarios (Figure 2-4). 
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2) Dual-Task: Are two consecutive stimuli of the same case in immediate succession in 

the word tablet? When the case changes, is the first letter in the series a ‘T’ or ‘t’? 

3) Branching: For uppercase stimuli, respond as in Delay. If the letter is lowercase, 

respond as in Dual Task. 

4) Control: Are two consecutive stimuli in immediate succession in “TABLET’? All 

stimuli were uppercase. 

Koechlin et al. (E. Koechlin, Corrado, G., Pietrini, P., & Grafman, J. , 2000) later showed 

that even during branching, there were distinct activation profiles that varied depending 

on whether the participant could predict when task switching would occur or whether it 

was random. The experimental setup was almost identical to the earlier study, except that 

in all conditions, the branching paradigm was used. There were two experimental 

branching conditions (Figure 2-7) and a control: 

 

Figure 2-6. Branching, Dual Task and Delay tasks and responses from Koechlin, et al. (1999). 

 



26 
 

1) Random Branching: Upper- and lower-case letters were presented pseudorandomly. 

2) Predictive Branching: Uppercase letters were presented every 3 stimuli. 

3) Control Branching: The same six-letter sequence (A e t a B t) was shown repeatedly.  

The significance of these two experiments lies in the fact that all experimental conditions 

had the same stimuli and the same possible user responses, so the conditions could not be 

easily distinguished from one another by simply observing the participant. Using fMRI, 

however, it became possible to distinguish the conditions based on the distinct mental 

processes (and thus, distinct blood flow patterns) elicited by each task.  

In addition, the cognitive states identified in these experiments have direct relevance to 

many HCI scenarios, particularly when a user is multitasking. Automatically recognizing 

that the user is experiencing one of these states provides an opportunity to build adaptive 

 

Figure 2-7. Experimental conditions from Koechlin et al. (2000) 
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systems that support multitasking. For example, by recognizing that most interruptions 

are quickly ignored, as in the delay condition, the system could limit these types of 

interruptions or reduce their salience as appropriate. Further, if a user is currently 

experiencing a branching situation, the interface could better support maintaining the 

context of the primary task, whereas during dual-task scenarios this would be 

unnecessary. Finally, distinguishing between predictive and random scenarios could 

trigger the system to increase support when the user’s tasks become unpredictable. 

Using fMRI for brain imaging, Koechlin et al. demonstrated that these three multitasking 

activities had different signatures in the anterior prefrontal cortex (E. Koechlin, Basso, 

G., Pietrini, P., Panzer, S. & Grafman, J., 1999), the area that is best for measuring with 

fNIRS. This dissertation builds on these results. In Chapter 4, we show that these states 

could, in fact, be distinguished using fNIRS as well. Then, in Chapter 5 and Chapter 6, 

we use the known multitasking activities described by Koechlin, et al. as stimuli for 

creating individual sets of fNIRS training data during multitasking for each user. This 

training data is used to build a classification model for each individual that is used to later 

distinguish between multitasking states the user is experience during other tasks and 

activities.  
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Chapter 3 USING FNIRS BRAIN 

SENSING IN REALISTIC HCI SETTINGS: 
EXPERIMENTS AND GUIDELINES1 
 

 

 

3.1. Introduction 

In this dissertation, I explore functional near-infrared spectroscopy (fNIRS) as a potential 

input to interactive systems because it is safe, non-invasive and relatively portable, but 

still provides brain activity data. However, because fNIRS was originally developed for 

use in clinical settings, the typical procedures used with fNIRS called for restrictions that 

are not actually practical in HCI research settings. To be valuable in HCI, brain sensors 

                                                        
1 The work in this chapter was originally described in Solovey, et al. “Using fNIRS Brain Sensing 
in Realistic HCI Settings: Experiments and Guidelines” in the proceedings of the ACM UIST ’09 
Symposium on User Interface Software and Technology, (2009) p. 157-166. This was joint work 
with Audrey Girouard. 
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such as fNIRS should collect useful information while ideally allowing normal 

interaction with the computer.  

In particular, when using fNIRS to pick up brain activity data for HCI, we would not 

expect the participant to be physically constrained while using the computer. However, in 

most studies using brain sensors, researchers expend great effort to reduce the noise 

picked up by the sensors. Typically, participants are asked to remain still, avoid head and 

facial movement, and use restricted movement when interacting with the computer. In 

addition, many factors cannot be controlled, so researchers sometimes throw out data that 

may have been contaminated by environmental or behavioral noise, or they develop 

complex algorithms for removing the noise from the data. By doing this, the researchers 

hope to achieve higher quality brain sensor data, and therefore better estimates of 

cognitive state information. 

However, it is not clear that all of these factors contribute to problems in fNIRS data or 

that these restrictions improve the signal quality. Ideally, for HCI research, the fNIRS 

signals would be robust enough to be relatively unaffected by other non-mental activity 

occurring during the participant’s task performance. In fact, one of the main benefits of 

fNIRS is that the equipment imposes very few physical or behavioral restrictions on the 

participant (Hoshi, 2009).  

From our experience conducting a feasibility study with fNIRS (L. M. Hirshfield et al., 

2007), we identified several considerations and provide guidelines in this chapter for 

using fNIRS in realistic HCI laboratory settings. We empirically examined whether 

typical human behavior (e.g. head and facial movement) or computer interaction (e.g. 

keyboard and mouse usage) interfere with brain measurement using fNIRS. Based on the 

results of our studies, we establish which physical behaviors inherent in computer usage 
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interfere with accurate fNIRS sensing of cognitive state information, which can be 

corrected in data analysis, and which are acceptable. With these findings, we facilitate 

further adoption of fNIRS brain sensing technology in HCI research and inform the 

experiments described in the rest of this dissertation. 

3.2. fNIRS Considerations 

We identify below potential sources of noise and artifacts in the fNIRS signal when used 

in typical HCI laboratory settings. 

3.2.1. fNIRS Considerations: Head Movement  

Several fNIRS researchers have brought attention to motion artifacts in fNIRS sensor 

data, particularly those from head movement (Devaraj, Izzetoglu, Izzetoglu, & Onaral, 

2004; Matthews, et al., 2008). Matthews et al. (Matthews, et al., 2008) explains that 

“motion can cause an increase in blood flow through the scalp, or, more rarely, an 

increase in blood pressure in the interrogated cerebral regions.” In addition, they point 

out that “orientation of the head can affect the signal due to gravity’s effect on the 

blood.” They note that these issues are significant if the head is not restricted, and even 

more so in an entirely mobile situation. However, other researchers indicate that fNIRS 

systems can “monitor brain activity of freely moving subjects outside of laboratories" and 

note that “measurements with less motion restriction in the daily-life environment open 

new dimensions in neuroimaging studies” (Hoshi, 2009). While fNIRS data may be 

affected by head movements, this should be contrasted with fMRI where movement over 

3mm will blur the image. Because of the lack of consensus in the community, we chose 

to investigate the artifacts associated with head movements during typical computer 

usage to determine their effect on fNIRS sensor data in a typical HCI setting. This is 

described in Experiment 3 below. 
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3.2.2. fNIRS Considerations: Facial Movement 

fNIRS sensors are often placed on the forehead, and as a result, it is possible that facial 

movements could interfere with accurate measurements. Coyle, Ward, and Markham 

point out that “slight movements of the optodes on the scalp can cause large changes in 

the optical signal, due to variations in optical path. It is therefore important to ensure 

robust coupling of optodes to the subject’s head” (Coyle, et al., 2004). These forehead 

movements could be caused by talking, smiling, frowning, or by emotional states such as 

surprise or anger, and many researchers have participants refrain from moving their face, 

including talking (Chenier & Sawan, 2007). However, as there is little empirical evidence 

of this phenomenon, we examined it further in Experiment 4 described below. We 

selected frowning for testing as it would have the largest effect on fNIRS data collected 

from the forehead. 

Eye movements and blinking are known to produce large artifacts in EEG data which 

leads to the rejection of trials including such an artifact (Izzetoglu, et al., 2004). 

However, fNIRS is less sensitive to muscle tension and researchers have reported that no 

artifact is produced in nearby areas of the brain (Izzetoglu, et al., 2004). It would also be 

unrealistic to prevent eye blinks and movement in HCI settings. Overall, we conclude eye 

artifacts and blinks should not be problematic for fNIRS, and we do not constrain 

participants in this study.  

3.2.3. fNIRS Considerations: Ambient Light 

Because fNIRS is an optical technique, light in the environment could contribute to noise 

in the data. Coyle, Ward, and Markham advise that stray light should be prevented from 

reaching the detector (Coyle, et al., 2004). Chenier and Sawan (2007) note that they use a 
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black hat to cover the sensors, permitting the detector to only receive light from the 

fNIRS light sources.  

While this is a concern for researchers currently using raw fNIRS sensors that are still 

under development, future fNIRS sensors will be embedded in a helmet or hat that 

properly isolates them from this source of noise. Therefore, we did not further examine 

how the introduction of light can affect fNIRS data. Instead we just caution that excess 

light should be kept to a minimum when using fNIRS, or the sensors should be properly 

covered to filter out the excess light. 

3.2.4. fNIRS Considerations: Ambient Noise 

During experiments and regular computer usage, one is subjected to different sounds in 

the environment. Many studies using brain sensors are conducted in sound-proof rooms 

to prevent these sounds from affecting the sensor data (Morioka, et al., 2008). However, 

this is not a realistic setting for most HCI research. Therefore, we conducted this study in 

a setting similar to a normal office. It was mostly quiet, but the room was not soundproof, 

and there was occasional noise in the hallway, or from heating and air conditioning 

systems in the building.  

3.2.5. fNIRS Considerations: Respiration and Heartbeat 

The fNIRS signals picks up artifacts from respiration and heart beat, by definition, as it 

measures blood flow and oxygenation (Coyle, et al., 2004; Matthews, et al., 2008). These 

systemic noise sources can be removed using known filtering techniques. For a 

discussion of the many filtering techniques, see Matthew et al. (Matthews, et al., 2008) 

and Coyle et al. (Coyle, et al., 2004).  

3.2.6. fNIRS Considerations: Muscle movement 
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In clinical settings, it is reasonable to have participants perform purely cognitive tasks 

while collecting brain sensor data. This allows researchers to learn about brain function, 

without any interference from other factors such as muscle movement. However, to move 

this technology into HCI settings, this constraint would have to be relaxed, or methods 

for correcting the artifacts must be developed. Fink et al. discussed the difficulty of 

introducing tasks that have a physical component in most brain imaging devices, 

explaining that they may “cause artifact (e.g. muscle artifacts in EEG or activation 

artifacts due to task-related motor activity in fMRI) and consequently reduce the number 

of reliable (artifact-free) time segments that can be analyzed” (Fink, Benedek, Grabner, 

Staudt, & Neubauer, 2007). In addition, they note that the test environment of fMRI 

scanners also makes it difficult for any physical movement.  

One of the main benefits of fNIRS is that the setup does not physically constrain 

participants, allowing them to use external devices such as a keyboard or mouse. In 

addition, motion artifacts are expected to have less of an effect on the resulting brain 

sensor data (Girouard et al., 2009). In Experiments 1 and 2 described below, we examine 

physical motions that are common in HCI settings, typing and mouse clicking, to 

determine whether they are problematic when using fNIRS. 

3.2.7. fNIRS Considerations: Slow Hemodynamic Response 

The slow hemodynamic changes measured by fNIRS occur in a time span of 6-8 seconds 

(S. Bunce, Devaraj, Izzetoglu, Onaral, & Pourrezaei, 2005). This is important when 

designing interfaces based on fNIRS sensor data, as the interface would have to respond 

in this time scale. While the possibility of using event-related fNIRS has been explored 

(Herrmann, et al., 2008), most studies take advantage of the slow response to measure 

short term cognitive state, instead of instantaneous ones.  
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3.3. Experimental Protocol 

Understanding how the potential noise sources described above affect fNIRS data during 

cognitive tasks is critical for proper use of fNIRS in HCI research. Thus, we devised a 

study to empirically test whether or not several common behavioral factors interfere with 

fNIRS measurements. Specifically, we selected typical human behaviors (head and facial 

movement) and computer interaction (keyboard and mouse usage), to determine whether 

each of them needs to be controlled, corrected, or avoided at all cost. This will help us 

determine whether standard interfaces can be used along with fNIRS in real brain-

computer interfaces. 

We will call each of the examined physical actions artifacts, since they are not the 

targeted behavior we would like to detect with fNIRS. Using fNIRS, we measured brain 

activity as these artifacts were introduced while the participant was otherwise at rest, as 

well as while the participant was performing a cognitive task. We then compared these 
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2: Is there a difference between rest and 
cognitive task? 
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results to signals generated while the participant was completely at rest with no artifact, 

as well as to when the participant performed the cognitive task without the artifact. This 

allowed us to determine whether the artifact had an influence on the signal generated in a 

rested state, as well as if it has an impact on the signal during activation. 

For each artifact, there were four conditions tested: (A) a baseline with no cognitive task 

or artifact; (B) the cognitive task alone with no artifact; (C) the artifact alone with no 

cognitive task; and (D) the cognitive task along with an artifact (Figure 3-1).  

Our goal in designing the protocol for each artifact was to reproduce realistic 

occurrences. As these artifacts do not necessarily happen often, we tried to balance 

conservatism (i.e. highly exaggerated artifact) with optimism (i.e. minute occurrence of 

artifact), and chose a reasonable exaggeration of the artifact, maximizing the possibility 

of measuring the artifact if it can be measured, yet keeping the conditions somewhat 

realistic. 

3.3.1 Participants 

Ten participants took part in this experiment (mean age = 20.6, std = 2.59, 6 females). All 

were right-handed, with normal or corrected vision and no history of major head injury. 

They signed an informed consent approved by the Institutional Review Board of the 

university, and were compensated for their participation. The experiment is within 

subject (each participant did all the experiments and conditions), and was 

counterbalanced to eliminate bias due the order of the experiments, and the conditions.  

3.3.2. Apparatus 

We used the device described in Section 2.1.2.1. We use the term channel to define a 

source-detector distance. In previous studies using a similar, linearly arranged probe, 
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researchers have chosen to use data from the furthest two channels only, in order to 

guarantee that the depth of the measurement reached the cortex (Girouard, et al., 2009; 

Leanne M. Hirshfield, et al., 2009). While it is likely that the shallower channels pick up 

systemic responses, or other noise sources, we decided to keep the data from all four 

source-detector distances measured as they might help separate out artifacts from task 

activation.  

In all the experiments, the participants were at a desk with only a small lamp (60 W) 

beside the desk turned on, and they were sitting at a distance of roughly 30” from a 19” 

flat monitor. The room was quiet, but was not soundproof and noise from the hallway 

outside the laboratory could be heard occasionally. The participants were instructed to 

keep their eyes fixated on one point on the screen, and to refrain from speaking, frowning 

or moving their limbs, unless instructed otherwise. 

3.3.3. Procedure and Design 

There were five different experiments conducted with each participant, all in one session. 

These corresponded with the four artifacts being studied (keyboard input, mouse input, 

head movement, and facial movement), plus the tasks without any artifact present. In 

between each experiment, the participant could take a break. Although the descriptions 

below are numbered as Experiments 0, 1, 2, 3, 4, the ordering of the experiments was 

counterbalanced between subjects. The main difference between the experiments was 

which additional physical artifact, if any, was introduced as the participant performed the 

two tasks. 

3.3.4.	
  Cognitive	
  Task	
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All five experiments used the same cognitive task. At the beginning of each trial, the 

participants were shown a 7-digit number on the screen for four seconds. The number 

then disappeared from the screen, but the participants were instructed to remember it in 

their head. After 15 seconds, the participants were asked to enter as much of the number 

as they could remember.  

The goal of the cognitive task used in these experiments was to provide a common task 

that participants would perform in all experiments, which yields a brain signal that could 

be detected with fNIRS. We choose a simple verbal working memory task because 

previous fNIRS studies have reported this type of task to produce a clear and consistent 

brain signal across participants (Ehlis, et al., 2008; Leanne M. Hirshfield, et al., 2009). 

Many studies have successfully shown discrimination of two (or more) states, and we 

believe our results will generalize to those as well. 

3.4.	
  Experiment	
  0:	
  No	
  artifacts	
  

This experiment consisted primarily of the cognitive task and rest periods. No additional 

artifact was introduced. This experiment was used to verify that we could distinguish the 

fNIRS data while the participant was at rest from the fNIRS data while the participant 

performed the cognitive task, when no artifact was present.  

First, the researcher read instructions to the participants, explaining the two tasks that 

they would perform in the experiment. Then the participants were presented with a 

practice trial which included an example of each task in that experiment, so the 

participants would know what to expect. The participants then relaxed for one minute, so 

their brains could be measured at a normal, rested state. During this period, as well as all 

other rest periods, there was a black screen and participants were instructed to focus their 

eyes on the focal point and relax, clearing their heads of any thoughts. This was followed 
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by ten trials. A trial contained one 15-second condition with the cognitive task, followed 

by a 15-second rest period to allow the participant’s brain to return to a rested state. In 

addition, there was a 15-second condition without the cognitive task in which the 

participant was essentially at rest (Figure 3-2). These conditions were counterbalanced so 

that sometimes participants started with the cognitive task, and sometimes they started 

without the cognitive task.  

3.4.1.	
  Preprocessing	
  
The preprocessing step transforms the raw data from the device into hemoglobin values, 

and smoothes the data to remove any high-frequency noise, as well as heart beat. We 

chose to filter the data in these experiments because this is a standard step in fNIRS 

experiments, and the goal was to determine the influence of interaction techniques and 

artifacts on a typical fNIRS experiment. We applied a simple preprocessing procedure, 

described in Girouard et al. (Girouard, et al., 2009). We used a non-recursive time-

domain band-pass filter, keeping frequencies between 0.01-0.5 Hz (Folley & Park, 2005). 

The data was then transformed to obtain oxy- ([HbO]) and deoxy-hemoglobin ([Hb]) 

concentration values, using the modified Beer-Lambert law (Villringer & Chance, 1997). 

It should be noted that the combination of [HbO] and [Hb] gives a measure of total 

 

Figure 3-2. Experiment 0 (No artifacts). The white areas represent the two conditions 
analyzed. The answer period’s length was variable. 
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hemoglobin, which we will refer to as [HbT]. We averaged each trial in two seconds 

periods, to obtain seven averaged points we call Time Period. 

3.4.2.	
  Analysis	
  
In this experiment, we wanted to observe whether the cognitive task, on its own, yielded 

a brain signal that was distinguishable from the signal during a rested state. This result is 

fundamental to all the other experiments that include the cognitive task. If we were not 

able to significantly distinguish the cognitive task from rest with no added artifacts, it 

would have been difficult to distinguish the two when additional noise was introduced 

into the data. 

This dataset and all reported in this chapter were tested for conformity with the ANOVA 

assumption of normality by creating a normal probability plot, on which normal data 

produces a straight or nearly straight line, confirming that the ANOVA is an appropriate 

test of significance. 

We did a factorial repeated measures ANOVA on Cognitive Task (cognitive task or rest) 

x Hemisphere (left or right) x Channel (4) x Time Period (7). This would identify 

differences within each participant, and determine if they are significant across 

participants. This is Comparison 2.1 in Figure 3-1. We ran this analysis with [HbO], [Hb] 

and [HbT] data separately. While we did a factorial ANOVA, we are most interested in 

results that show significant interactions including the Cognitive Task factor, since these 

show significant differences between the signal during the cognitive task and the signal 

during rest. In this analysis, and all those following, we will only report significant results 

(p<0.05) that are pertinent to current HCI questions. 

3.4.3.	
  Results	
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From these three analyses, the only relevant significant factor found was with [Hb], 

Cognitive Task x Channel (F(3, 27)= 5.670, p= 0.031). This confirms that levels of [Hb] 

differ between trials where participants performed a cognitive task, and trials where they 

simply rested, and that this difference in [Hb] levels varied by channel. This positive 

result allowed us to move forward with the rest of the analysis.  

3.5.	
  Experiment	
  1:	
  Keyboard	
  Input	
  

The keyboard and mouse are the most common input devices for modern computers. We 

tested keyboard input in Experiment 1 and mouse input in Experiment 2. We 

hypothesized that keyboard inputs would not be a problem with fNIRS, since most brain 

activation for motor movement occurs in the motor cortex, an area not probed with our 

fNIRS sensors. In addition, we did not believe that the physical act of typing would cause 

the sensors to move out of place or change the blood oxygenation characteristics in the 

prefrontal cortex.  

We decided not to have the participants type specific words because we were only 

interested in measuring the influence of the typing motions on the signal, instead of any 

 

Figure 3-3. Experiment 1 (Keyboard Input). The white areas represent the two conditions analyzed in 
the experiment. 
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brain activity associated with composing and typing text. They were instructed to 

randomly type on the keyboard, using both hands, at a pace resembling their regular 

typing pace, including space bars occasionally to simulate words. The protocol was 

analogous to Experiment 0. The main difference is that in both tasks, the participant was 

also typing randomly as described above (Figure 3-3).  

3.5.1.	
  Analysis	
  
To observe the influence of typing on the brain data, we examined the data in several 

different ways, corresponding with the numbers in Figure 3-1. Comparison 1 determines 

whether there is a difference between typing and not typing, regardless of whether there 

was cognitive task. Comparison 1.1 examines whether there is a difference in the fNIRS 

data between the presence and absence of the typing artifacts when the participant is at 

rest. Comparison 1.2 determines whether there is a difference between the presence and 

absence of the typing artifacts when the participant performs the cognitive task. 

Comparison 2 determines whether there is a difference between doing a cognitive task 

and no cognitive task, regardless of whether the participant was typing. Comparison 2.2 

looks at whether there is a difference between rest and cognitive task when typing 

artifacts are present. Note that 2.1 was not examined in Experiments 1 to 4, as there are 

no artifacts present in this condition. 

As in Experiment 0, we were most interested in results that showed significant 

interactions including the Cognitive Task factor, since these show significant differences 

between the signal during the cognitive task and the signal during rest. In addition, we 

were interested in significant interactions that included the artifact Typing, since these 

show significant differences between when the subject was typing and when the subject 

was not typing. 
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Comparison 1, 1.1 and 1.2 used the interaction Typing (present or not) x Hemisphere (left 

or right) x Channel (4) x Time Period (7); Comparison 1.1 uses data from rest tasks; 

Comparison 1.2 uses data during cognitive tasks; while Comparison 1 uses both datasets. 

Comparisons 2 and 2.2 used the interaction Cognitive Task (cognitive task or rest) x 

Hemisphere (left or right) x Channel (4) x Time Period (7). Comparison 2.2 used data 

containing typing while Comparison 2 used data both with and without typing.  

Ideally, we would observe the absence of Typing as a factor in significant interactions for 

Comparisons 1, 1.1, and 1.2. For Comparisons 2 and 2.2, ideally we would find Cognitive 

Task as a factor in significant interactions, as this indicates the ability to distinguish the 

presence or absence of a cognitive task.  

For each comparison, we analyze the data for [Hb], [HbO] and [HbT] separately, as was 

done for Comparison 1 in Experiment 0. 

3.5.2.	
  Results	
  
Comparison 1 showed significance for Typing x Time Period with [HbO] (F(6, 54)= 

3.762, p= 0.034), meaning that with cognitive task and rest tasks combined, we can 

distinguish typing using the time period. We did not observe any significant interaction 

that included Typing in Comparison 1.1. We can conclude that at rest, there is no 

significant difference in the fNIRS signal between typing and not typing. We found that 

for Comparison 1.2, [Hb] data revealed significance with Typing x Hemisphere x 

Channel (F(3, 27)= 3.650, p= 0.042). We find Typing x Hemoglobin Type x Time Course 

to be significant (F(6, 54)= 6.190, p= 0.012). These results show that when the participant 

is performing a cognitive task, there is a difference whether the participant is also typing 

or not, as typing shows up in significant interactions.  
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In Comparison 2, we found Cognitive Task x Hemisphere to be significant with [Hb] data 

(F(1, 9)= 5.358, p= 0.046. This indicates that when typing and not typing tasks are 

combined, we can determine whether the participant is performing a cognitive task or not 

using the right hemisphere. In Comparison 2.2, [Hb] yielded significance with Cognitive 

Task x Hemisphere (F(1, 9)= 5.319, p= 0.047). Comparison 2.2 demonstrates that given 

typing, we can distinguish whether the participant is also performing a cognitive task or 

not, specifically using [Hb] and hemisphere. 

3.5.3.	
  Discussion	
  
Comparison 1.1 confirmed that the sensors are not picking up a difference between the 

typing task and rest. However, in Comparison 1.2, we found that typing is influenced by 

the cognitive task. This is also true in general, as typing tasks are usually related to the 

current task. 

Overall, while typing can be picked up when there is a cognitive task present, we can still 

distinguish the cognitive task itself (Comparison 2.2 and 2). This confirmed our 

hypothesis and validated that typing is an acceptable interaction when using fNIRS. From 

this, we can also assume that simple key presses (e.g. using arrow keys) would also be 

acceptable with fNIRS since it is just a more limited movement than typing with both 

hands. 

3.6.	
  Experiment	
  2:	
  Mouse	
  Input	
  

We designed a task that tests mouse movement and clicking. We hypothesized that small 

hand movement such as using the mouse would not interfere with fNIRS signal. The 

participant was instructed to move a cursor until it was in a yellow box on the screen, and 

click. The box would then disappear and another one would appear somewhere else. 

Participants were directed to move at a comfortable pace, not particularly fast or slow, 



44 
 

and to repeat the action until the end of the condition. All participants used their right 

hand to control the mouse. The procedure was identical to Experiment 1, except that the 

typing was replaced with mouse clicking (Figure 3-4). We analyzed the data using the 

same comparisons as in Experiment 1, substituting mouse input for keyboard input.  

3.6.1.	
  Results	
  
Comparison 1 yielded no significant interactions, indicating that we cannot observe 

differences between the presence and absence of clicking, when combining data from the 

cognitive task and rest. In Comparison 1.1, with [Hb], we observe an interaction of 

Clicking x Channel (F(3, 27)= 4.811, p= 0.044). This shows that we can tell whether 

someone is clicking, depending on the channel with the participant being at rest. In 

Comparison 1.2, [HbO] data reveals significant interaction with Clicking x Hemisphere 

(F(1, 9)= 9.599, p= 0.013) and Clicking x Hemisphere x Time Course (F(6, 54)= 4.168, 

p= 0.037). This indicates the ability to distinguish Clicking from no motor activity when 

the participant is performing a cognitive task, although this effect differs across 

hemispheres. Finally, we observed significant interactions with Clicking x Hemisphere 

with [HbT] (F(1, 9)= 6.260, p= 0.034) and Clicking x Hemisphere x Hemoglobin Type 

(F(1, 9)= 5.222, p= 0.048), which leads to the same conclusion as with [HbO] data only. 

 

Figure 3-4. Experiment 2 (Mouse Input).  
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Overall, we can tell whether someone is clicking depending on the Hemisphere. 

Comparison 2 yielded no significant interactions, indicating that we cannot distinguish 

between rest and cognitive task, when the data includes both clicking and not clicking. In 

Comparison 2.2, we found both Cognitive Task x Hemisphere x Hemoglobin Type (F(1, 

9)= 5.296, p= 0.047) and Cognitive Task x Hemisphere x Hemoglobin Type x Time 

Course (F(6, 54)= 4.537, p= 0.036) to be significant, indicating that even in data 

containing clicking, we can tell whether the participant is doing a cognitive task or 

resting. 

3.6.2.	
  Discussion	
  
We found that clicking in this experiment might affect the fNIRS signal we are 

collecting, as Comparison 1.1 yielded interactions with the factor of clicking. This means 

that when the participant is at rest, there is a difference between the presence and absence 

of clicking. The difference in activation is not surprising as we did not have a “random 

clicking” task, but one where subject had to reach targets, which may have activated the 

anterior prefrontal cortex. However, because Comparison 2.2 still was able to distinguish 

Cognitive Task, the cognitive task of remembering numbers may produce a different 

signal from clicking.  

Hence, results indicate that when we want to observe a cognitive task that contains 

clicking, we need to have the rest task contain clicking as well, as Comparison 2.2 found 

significant interactions, but Comparison 2 did not. Overall, we believe that clicking is 

acceptable if the experiment is controlled, confirming in part our hypothesis.  

3.7.	
  Experiment	
  3:	
  Head	
  Movement	
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General head movements could affect the fNIRS signal, both because of possible probe 

movement on the skin, and possible change in blood flow due to the movement itself, as 

was noted earlier. We hypothesized that head movement could be a problem, as this 

seems to be reported by many researchers.  

Many types of head movements can occur, in all directions. We chose a condition that is 

representative of common movement while using the computer: we simulated looking 

down at the keyboard and up at the screen. These movements were done in an 

intermittent manner, similar to head movements that may occur during normal computer 

usage, three times per 15s trial.  

The procedure was identical to Experiment 1 and 2, except that the typing or mouse 

clicking was replaced by the head movement (Figure 3-5). We analyzed the data using 

the same comparisons as in Experiment 1 and 2, substituting head movement for 

keyboard or mouse input. 

3.7.1.	
  Results	
  
We found no significant interactions for Comparison 1, which indicates that it is not 

possible to distinguish between the presence and absence of head movements when the 

 

Figure 3-5. Experiment 3 (Head Movement).  

 

 



47 
 

cognitive and rest data are combined. There were no significant results for Comparison 

1.1, indicating that at rest, there is no significant difference in the signal when the 

participant is moving his or her head or not. Comparison 1.2 showed that with [Hb] data, 

we can distinguish Head Movement x Hemisphere x Channel (F(3, 27)= 5.363, p= 

0.028), and we can significantly observe Head Movement x Hemoglobin Type x Time 

Period (F(6, 54)= 7.455, p= 0.002), meaning that during the cognitive task, we can tell 

between the participant moving their head or not. 

We found no significant interactions for Comparison 2, meaning that it is not possible to 

separate the cognitive task from rest when including both data with head movements and 

data without head movements. In Comparison 2.2, we find that Cognitive Task x 

Hemoglobin Type x Channel x Time Period is significant (F(18, 162)= 3.915, p= 0.048). 

With head movements, there is a difference between rest and the cognitive task. 

3.7.2.	
  Discussion	
  
Similar to the clicking results, we found that we require the presence of head movements 

in both the rest and the cognitive task to distinguish it (Comparison 2.2), which leads us 

to suggest that head movement should be avoided. However, the movements in this 

experiment were more exaggerated and frequent than regular moving from keyboard to 

screen: for example, most subjects couldn’t see the screen when looking at the keyboard. 

We suggest that participants minimize major head movements, and instead move their 

eyes towards the keyboard. We found our initial hypothesis correct, although we believe 

head movement may be minimized and corrected using filtering techniques. 

3.8.	
  Experiment	
  4:	
  Facial	
  Movement	
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Forehead facial movement moves the skin located under the probe, which may interfere 

with the light sent into the brain and its path. We hypothesize that forehead facial 

movement, e.g. frowning, will have an effect on the data. 

In this experiment, participants were prompted to frown for two seconds, every five 

seconds. Specifically, we asked them to draw the brows together and wrinkle the 

forehead, as if they were worried, angry, or concentrating. 

The procedure was also identical to the other experiments, except that the artifact 

introduced was facial movement (Figure 3-6). We analyzed the data using the same 

comparisons as in the other experiments, substituting frowning motion for keyboard or 

mouse input, or head movement. 

3.8.1.	
  Results	
  
Comparison 1 showed significance with [HbO] for Frowning x Channel (F(3, 27)= 

5.287, p= 0.035). We found significance with Frowning x Channel with [HbT] (F(3, 27)= 

5.343, p= 0.035), Frowning x Hemoglobin Type x Channel (F(3, 27)= 4.451, p= 0.046). 

We see that regardless of whether at rest or doing cognitive task, we can distinguish 

whether frowning is occurring at some but not all channels, which is consistent with 

 

Figure 3-6. Experiment 4 (Facial Movement).  
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previous results. In Comparison 1.1, we found that [HbO] data showed Frowning x 

Channel to be significant (F(3, 27)= 5.194, p= 0.037), which we also noticed with both 

types of hemoglobin (F(3, 27)= 5.191, p= 0.037). When the participant was at rest, we 

can distinguish whether the participant is frowning or not at some but not all channels. 

Comparison 1.2 found Frowning x Channel to be significant for [HbO] data (F(3, 27)= 

4.862, p= 0.042) and with both types of hemoglobin (F(3, 27)= 4.978, p= 0.041). This 

indicates that there is a difference in [HbO] levels when participants were frowning or not 

frowning, and that this difference varied by channel, similarly to Comparison 1.1. 

Comparison 2 found Cognitive Task x Channel x Time Course to be significant with 

[HbO] (F(18, 162)= 3.647, p= 0.043). Cognitive Task x Hemoglobin Type x Channel x 

Time Course was a significant interaction (F(18, 162)= 4.130, p= 0.042), both indicating 

that when frowning data is combined with not frowning, we can tell the cognitive task 

from rest at some but not all channels. Finally, Comparison 2.2 showed no significance 

for interactions that included Cognitive Task, indicating we cannot distinguish the 

cognitive task from rest when the subject is frowning.  

3.8.2.	
  Discussion	
  
We found that frowning data always can be distinguished from non-frowning. We also 

learned that if all the data includes frowns, then we cannot tell apart the cognitive task 

from the rest condition. However, we found that if we mix the data that contains 

frowning and no frowning, we can then discriminate the cognitive task, which shows 

interesting potential. 

Those results indicate clearly that frowning is a problematic artifact, and should be 

avoided as much as possible. This confirms our hypothesis. However, given that this was 

an exaggerated movement (3 times in 15s), and that Comparison 2 had good results, we 
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can say that if some frowning data found its way into the dataset, it might be possible to 

still distinguish the cognitive task and the rest task.  

3.9.	
  Performance	
  data	
  
In all five experiments, after each cognitive task, participants entered the 7-digit number 

that they had been remembering. To obtain the error rate of those answers, we compared 

each digit entered to the original digit, and found the number of digits correctly answered. 

 

Table 3-1. Summary of considerations. Legend: ü  indicates acceptable, C indicates to correct, and û  
indicates to avoid or control. 

Considerations 

R
es

ul
t 

R
ef

er
en

c
e Correction  

Methods 

Forehead movement û Exp 4  

Major head movement û Exp 3 Use chin rest 

Minor head movement C Exp 3, (Matthews, Pearlmutter, Ward, 
Soraghan, & Markham, 2008) Filter 

Respiration and Heartbeat C (Matthews, et al., 2008) Filter 

Mouse Clicking ü Exp 2 

Collect signal 
during a 
clicking only 
task 

Typing ü Exp 1  

Ambient Light C (Chenier & Sawan, 2007; Coyle, Ward, 
& Markham, 2004) 

Wear 
isolating cap 

Hemodynamic  
Response ü (S. C. Bunce, Izzetoglu, Izzetoglu, 

Onaral, & Pourrezaei, 2006) 
Expect 6-8s  
response 

Ambient Noise C (Morioka, Yamada, & Komori, 2008) Minimize 
external noise 

Eye Movement and 
Blinking ü (Izzetoglu, Bunce, Onaral, Pourrezaei, 

& Chance, 2004)  
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A repeated measures ANOVA examining the error rate across artifact types revealed no 

statistical differences between them (F(4,36)= 0.637, p= 0.526). This result indicates that 

each experiment was of similar difficulty.  

3.10.	
  Guidelines	
  for	
  fNIRS	
  in	
  HCI	
  

To take advantage of the benefits of fNIRS technology in HCI, researchers should be 

aware of several considerations, which were identified in this chapter, and summarized in 

Table 3-1. Our goal was to reveal whether or not several common behavioral factors 

interfere with fNIRS measurements. We empirically examined whether four physical 

behaviors inherent in computer usage interfere with accurate fNIRS sensing of cognitive 

state information. Overall, we found that given specific conditions, we can use typing and 

clicking in HCI experiments, and that we should avoid or control major head movements 

and frowns.  

Other artifacts, such as minor head movements, heartbeat and respiration may be 

corrected using filtering. There are many types of filtering algorithms that can help 

reduce the amount of noise in data (Matthews, et al., 2008). Methods include adaptive 

finite impulse response (FIR) filtering, Weiner filtering (Devaraj, et al., 2004; M. 

Izzetoglu, Devaraj, Bunce, & Onaral, 2005), adaptive filtering (Devaraj, et al., 2004) and 

principal component analysis (Huppert & Boas, 2005; Matthews, et al., 2008; Sitaram, et 

al., 2007). Matthews et al. (Matthews, et al., 2008) note that FIR can be used in real time 

if accelerometers are used simultaneously on the head to record head motion. The other 

methods are mainly offline procedures, making them less practical for real-time systems.  

The experimental protocol was designed to reproduce realistic occurrences of artifacts 

that might be present during typical computer usage in HCI laboratory settings. We 

purposefully exaggerated the artifacts to make sure they would be measured with fNIRS. 
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So, we need to keep that in mind as the exaggerated artifacts are less likely to happen 

than in real experiments. Note that this was run in a typical, quiet office space, and not in 

a sound proof room like most brain sensing studies.  

3.11.	
  Conclusion	
  

In conclusion, we have confirmed that many restrictions such as long setup time, highly 

restricted position, intolerance to movement, and other limitations, that are inherent to 

other brain sensing and imaging devices are not factors when using fNIRS. By using the 

guidelines described above, researchers can have access to the user’s cognitive state in 

realistic HCI laboratory conditions. This is important for adoption in HCI, and these 

guidelines are followed in the research described in the remaining chapters. 
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Chapter 4 SENSING COGNITIVE 

MULTITASKING FOR A BRAIN-BASED 
ADAPTIVE USER INTERFACE2 
 

 

4.1.	
  Introduction	
  

Using the guidelines established in Chapter 3, I began to investigate the cognitive states 

that we could classify reliably using fNIRS data, focusing on multitasking scenarios. In 

this chapter, I describe a preliminary study and two experiments using neural data in 

which we identified four mental processes that may occur during multitasking and have 

direct relevance to many HCI scenarios. These processes are almost indistinguishable by 

examining overt behavior (e.g. keystrokes or screen contents) or task performance (e.g. 

response time, accuracy) alone. However, using fNIRS, we can automatically distinguish 

                                                        
2 The work in this chapter was originally described in “Sensing Cognitive Multitasking for a 
Brain-Based Adaptive User Interface” in the proceedings of the ACM CHI’11 Conference on 
Human Factors in Computing Systems. (E. T. Solovey et al., 2011) 
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these four states. By detecting specific cognitive states that occur when multitasking, we 

can build user interfaces that better support task switching, interruption management and 

multitasking. 

This work builds from the experiments described in Koechlin et al. and in Section 2.2.3 

with the goal of designing interfaces that recognize these states and behave in appropriate 

ways to support multitasking. We first conducted a preliminary study to reproduce the 

results of Koechlin et al. (E. Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 

1999) using fNIRS which is practical for HCI settings unlike fMRI in which slight 

movement can create motion artifacts and corrupt the image (Erin Treacy Solovey et al., 

2009). We then followed with two experiments that look at distinguishing the cognitive 

multitasking states in other scenarios besides the “tablet” task to investigate whether 

these are generic cognitive processes, and not simply tied to the particular task used in the 

earlier study.  

4.2. Preliminary Study 

The preliminary experiment extends Koechlin et al.’s work (E. Koechlin, Basso, G., 

Pietrini, P., Panzer, S. & Grafman, J., 1999) to more realistic HCI settings. The goal was 

to determine whether we could distinguish between branching, dual-task and delay 

situations using fNIRS.  

As explained in Section 2.2.3, these states were defined as follows: 

1) Branching occurs when the user must “hold in mind goals while exploring and 

processing secondary goals” (Koechlin, 1999). Since this is challenging to users, 

automatically sensing this state would be valuable to HCI and I focus on this 

state later in this research. 
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2) Delay Task occurs when secondary task is ignored and therefore requires little 

attentional resources. 

3) Dual Task entails frequent task switching without the need to maintain 

information about the previous task (e.g. switching between responding to emails 

and responding to software support issues being logged)  

These states were successfully distinguished using fMRI (E. Koechlin, Basso, G., 

Pietrini, P., Panzer, S. & Grafman, J., 1999), but fMRI is not practical in HCI settings. 

Our hypothesis was that the same could be achieved using fNIRS. Since the sensors are 

placed on the forehead, they are particularly sensitive to changes in the anterior prefrontal 

cortex, where Koechlin et al. (E. Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, 

J., 1999) showed distinct activation profiles during delay, dual and branching tasks.  

Three participants wore fNIRS sensors as they performed the experimental tasks. To 

trigger the three cognitive states, we used the same experimental paradigm used in (E. 

Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 1999).  

To determine whether these tasks could be distinguished, we performed leave-one-out 

cross validation in Weka (Hall et al., 2009) to classify the fNIRS sensor data. In 

MATLAB, the fNIRS signal was detrended by fitting a polynomial of degree 3 and then a 

low-pass elliptical filter was used to remove noise in the data. Using support vector 

machines, we achieved reasonably high accuracy classifying the tasks across the three 

participants (68.4% mean across three pair-wise classifications, and 52.9% accuracy for 

three-way classification). This was a small sample of users, and we hope to achieve 

higher accuracy, but found the results encouraging enough continue in this research 

direction.  

4.3. Multitasking Experiments 
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From the promising results of the preliminary study, we investigated whether we could 

detect these three states in other tasks and domains that are more relevant to interactive 

user interfaces. Our hypothesis was that the cognitive functions elicited in the “tablet” 

tasks were generic processes that occur during multitasking. Numerous HCI scenarios 

involve multitasking, and we chose a human-robot team scenario to further explore the 

detection of cognitive multitasking in user interfaces. 

4.3.1. Multitasking in Human Robot Interaction 

Human-robot team tasks often involve multitasking, as the user is both performing his or 

her part of the task, while monitoring the state of the robot(s). Thus, these tasks provide 

an appropriate example for studying adaptive multitasking support, and may see 

improved performance with brain-based adaptive interfaces. Thus, the simple word-

related task was replaced by a human-robot interaction task that has similar properties. 

4.3.2. Experimental Tasks 

We conducted two separate experiments which built from the human-robot team task 

described by Schermerhorn and Scheutz (Schermerhorn & Scheutz, 2009) and adjusted it 

to include tasks that would induce delay, dual-task and branching, similar to our 

preliminary study. The tasks involved a human-robot team performing a complex task 

that could not be accomplished by the human nor the robot alone. The robot and the 

human had to exchange information in order to accomplish the task. The robot 

continually updated the human operator with status updates to which the human 

responded.  

In the two separate studies, the participant worked with a robot to investigate rock types 

on the surface of Mars and had to perform two tasks. The robot presented the participant 
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with status updates, either about a newly found rock or a new location to which it moved. 

Each rock classification update informed the user of the newly discovered rock’s class, 

which was based on size and ranged from Class 1 to Class 5. Each location update alerted 

the user of the robot’s current location. The spacecraft to which the robot was 

transmitting could detect the robot’s location to the nearest kilometer and assumed the 

robot was moving in a straight line. Thus, the location updates presented to the user 

ranged from 0 to 800 meters, in 200 meter increments. 

The participant’s primary task was to sort rocks, and the secondary task was to monitor 

the location of the robot. Each time the participant received a status update from the robot 

(in the form of a pop-up on the screen), s/he had two possible responses: either respond 

with the left hand by typing “S” to signify same or the right hand by typing “N” to signify 

new. After a rock classification, “S” instructed the robot to store the rock in the same bin, 

while “N” instructed the robot to store the rock in a new bin. After a location update, “S” 

instructed the robot to maintain the same transmission, while “N” instructed the robot to 

begin a new transmission. The correct response after a particular update varied among the 

conditions.  

4.3.3. Experiment 1: Delay, Dual-Task & Branching 

The first experiment contained three conditions, analogous to those in (E. Koechlin, 

Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 1999), each with its own rules for the 

user response (Figure 4-1): 

Delay: Do two successive rock classification messages follow in immediate consecutive 

order? If so, put it in the same bin. If not, select a new bin. For all location updates, begin 

a new transmission. 
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Dual-Task: Do two successive messages of the same type follow in immediate 

consecutive order? If so, select the same rock bin or maintain the same transmission. If 

the update is of a different type (switch task between rock and location), is the message 

either a Class 1 rock or a location of 0 meters? If so, select the same rock bin or maintain 

the same transmission. In all other cases, place the rock in a new bin or begin a new 

transmission. 

Branching: For rock classification messages, respond as in Delay. If the update is a 

location, respond as in Dual Task. 

4.3.3.1.	
  Participants	
  

This study included 12 healthy volunteers (10 male), between the ages of 18 and 34. Four 

additional volunteers had participated in the study, but are not included in this analysis 

because their performance in the tasks was below 70% in more than two trials per 

condition, indicating that they were not correctly performing the tasks. In addition, data 

 

Figure 4-1. Stimuli and responses for conditions in Experiment 1. These conditions are analogous to 
those in (Koechlin, 1999). (See Figure 2-6). 
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from another participant is not included due to technical problems with the fNIRS 

system. All participants were right-handed, had English as their primary language, had no 

history of brain injury and had normal or corrected-to-normal vision.  

4.3.3.2. Design and Procedure 

Before the experiment, each participant was given the opportunity to become familiar 

with each of the three tasks during a practice session without the fNIRS sensors. The 

conditions were presented in counterbalanced pseudo-random order. Each task was 

repeated until the participant achieved greater than 80% accuracy in the task. After this 

accuracy was achieved for all three conditions, the fNIRS sensors were placed on the 

participant’s forehead. The participant was presented with an initial rest screen, which 

was used to collect a baseline measure of the brain activity at rest. After that, the user had 

to complete ten 40-second trials for each of the three conditions, which were presented 

randomly. Between each task, the user was presented with the instructions for the next 

task, followed by a rest screen.  

4.3.3.3. Equipment 

We used a multichannel frequency domain OxiplexTS from ISS Inc. for data acquisition, 

as described in 2.1.2.1. 

4.3.3.4. Results 

To examine the differences between the three task conditions, we looked at behavioral 

data collected during the experiment as well as the fNIRS sensor data. In both 

experiments, any trials where the participant achieved less than 70% accuracy in the task 

performance were removed in the analysis, since this would indicate that the subject was 

not actually performing the task correctly. 
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4.3.3.4.1.	
  Behavioral	
  Results	
  

In the three conditions, the stimuli were essentially the same, as were the possible 

responses. Thus, it would be difficult for an observer to detect any difference from the 

screen contents or the subject’s behavior alone. Like the sensor data, response time and 

accuracy measurements can be obtained automatically without interfering with the task 

so we investigated whether they would vary depending on the condition. 

All variables were tested for normal distribution with the Kolmogorov-Smirnov test. For 

normal distributions, the repeated measurements one-way analysis of variance (ANOVA) 

with the Tukey post-hoc test for multiple comparisons was used. For non-Gaussian 

distributions, we used the Friedman (non parametric repeated measurements ANOVA) 

 

Figure 4-2. Behavioral results for Experiment 1: median accuracy & standard deviation (top); mean 
response time and standard deviation (bottom). 
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test. The level of statistical significance was set at 0.05 (Figure 4-2).  

Since dual task and branching behavioral results are similar, the factor was not 

significant overall, but is in pairwise comparisons. We found statistical significance in 

response time between delay and dual (p < 0.001), delay and branching (p < 0.001), but 

not between dual and branching (p > 0.05). Similarly, we found statistical significance in 

accuracies between delay and dual (p < 0.05), delay and branching (p < 0.05), but not 

dual and branching (p > 0.05). Also, correlations between accuracy and response time for 

each task were not statistically significant. We also looked at learning effects based on 

response time and learning effects based on accuracies as users progressed through the 

experiment. We did not find a learning effect. 

4.3.3.4.2.	
  Analysis	
  of	
  Signal	
  

We wanted to determine whether the hemodynamic response measured by fNIRS has a 

different signature between the three conditions. For each of the two probes, we selected 

the fNIRS measurement channels with the greatest source-detector distances (3cm), as 

these channels are expected to probe deepest in the brain tissue, while the closer channels 

are more likely to pick up systemic effects and noise.  

From each of these channels, we calculated both the change in oxygenated hemoglobin 

and deoxygenated hemoglobin using the modified Beer-Lambert law (Chance, et al., 

1988) after removing noise with a band pass filter. Thus, we used four channels 

corresponding with changes in oxygenated and deoxygenated hemoglobin on the left and 

right hemispheres. Figure 4-3 shows the mean across all participants and all trials for the 

three conditions. This is plotted along with the standard error. Red is delay, green is dual, 

blue is branching. The figures in the top row show the pattern for oxygenated hemoglobin 
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and the bottom row shows the deoxygenated hemoglobin. The figures on the left are from 

the sensor on the left side of the head and the figures on the right are from the right. 

In order to confirm that there were differences in brain activity during the three 

conditions, we did an ANOVA comparing condition means within subjects. Since the 

hemodynamic changes occur over a 5-7 second period, we simplified the signal for 

analysis by dividing the time series measurement for each trial into seven segments 

(~5.57 second each) and took the mean over these segments for the four channels. Since 

there were multiple sensors, factors for the distribution of sensors were included 

(left/right hemisphere), as well as a factor for hemoglobin type (oxygenated or 

deoxygenated) and the time point. We used the Greenhouse-Geisser ANOVA values to 

 

Figure 4-3. Experiment 1: Mean and standard error of fNIRS signal during a trial 
across all participants and all trials for Branching (Blue), Dual Task (Green) and 

Delay (Red). The top row displays oxy-hemoglobin signal and the bottom row 
shows the deoxy-hemoglobin signal. The y-axis shows the change in hemoglobin 

values in micromolars (µM). 
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correct for violations in sphericity. We found a main effect of condition (F(2,22)=4.353, 

p=0.029), indicating that there is significant difference in at least one of the conditions. 

There were no other significant effects in this analysis. 

4.3.4. Experiment 2: Random & Predictive Branching 

To follow up on the first study, we conducted a second experiment to determine whether 

we could distinguish specific variations of the branching task. This experiment had two 

conditions that were analogous to those in (E. Koechlin, Corrado, G., Pietrini, P., & 

Grafman, J. , 2000), in which the participant was always following the branching rules 

described in Experiment 1: 

Random Branching: Rock classification and location update messages were presented 

pseudorandomly.  

Predictive Branching: Rock classification messages were presented every three stimuli.  

Ideally, when using computer systems, the default scenario for a user would be similar to 

the predictive condition, and therefore the user would be able to plan ahead and handle 

incoming work appropriately. If we could automatically identify that the user is 

experiencing random or unpredictable behavior, there may be appropriate adaptations 

that the system could make to better support the user, which we are exploring with the 

adaptive interface platform described below. This experiment investigates whether we 

can automatically detect the different scenarios using fNIRS. 

4.3.4.1. Participants 

This study included 12 healthy volunteers (5 male), between the ages of 19 and 32. Three 

additional volunteers had participated, but are not included in this analysis because their 
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performance in the tasks was below 70% in more than two trials per condition, indicating 

that they were not correctly performing the tasks. In addition, data from another 

participant was not included due to technical issues with the fNIRS system.  

4.3.4.2. Design, Procedure & Equipment 

This experiment used the same procedure and equipment as in Experiment 1. However, 

in this experiment, there were only two experimental conditions as described above and 

the participants completed eighteen trials of each condition, which were counterbalanced.  

4.3.4.3. Results 

4.3.4.3.1.	
  Behavioral	
  Results	
  
As in Experiment 1, we collected response time and accuracy throughout the study to 

determine whether the conditions elicited different measurements. 

All variables were tested for normal distribution with the Kolmogorov-Smirnov test. For 

normal distributions, a paired t-test was used. For non-Gaussian distributions, we used 

the Wilcoxon matched-pairs signed-ranks test.  

There was no statistically significant difference in response time between random 

(M=998.67, SD=190.02) and predictive (M=992.81, SD=213.34) branching, t(215)=0.53 

(p>0.05). There also was no statistically significant difference in accuracy between 

random (M=93.982, SD=8.144) and predictive (M=92.824, SD=8.765) branching 

(p>0.05). Also, correlation between accuracy and response time for random branching 

was not statistically significant (p>0.05), but there was a statistically significant 

correlation in the predictive branching condition (p<0.0001).  

4.3.4.3.2.	
  Analysis	
  of	
  Signal	
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Our goal was to determine whether the hemodynamic response measured by fNIRS has a 

different signature between the two conditions. Our analysis was the same as in 

Experiment 1.  

We found an interaction between branching type, timepoint, and hemoglobin type 

(F(6,66)=3.035, p=0.038). This effect indicates that, the differences in branching type 

depend on the hemoglobin type (oxygenated or deoxygentated hemoglobin) and on the 

time point. This can be seen in Figure 4-4. Therefore, it should be possible to distinguish 

these two conditions if we take these into account. There were no other significant effects 

in this analysis. 

4.4. Discussion and Conclusion 

 

Figure 4-4. Experiment 2: Mean and standard error of fNIRS signal during a trial 
across all participants and all trials for Random Branching (Red), and Predictive 
Branching (Green). The top row displays oxy-hemoglobin [HbO] signal and the 

bottom row shows the deoxy-hemoglobin [Hb] signal. The y-axis shows the change 
in hemoglobin values in micromolars (µM). 
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This section builds a foundation for brain-based adaptive user interfaces by illustrating 

significant differences in the fNIRS signal in specific multitasking scenarios that could be 

used in HCI. First, in our preliminary study, we brought research on cognitive activity 

during multitasking to a system that is practical for HCI by showing that fNIRS sensors 

could detect states previously studied with fMRI (which cannot be used in HCI settings). 

In our next two experiments, we further extended this research to HCI by showing that 

the states elicited in the “tablet” task may be generic processes that occur in more 

realistic HCI tasks, by using a human-robot scenario. Although all analysis was done 

offline, we found significant differences in the signals that suggest that a real time 

classifier may be possible. In Chapter 6, we will return back to these tasks and evaluate a 

real time, working system that learns to recognize distinct multitasking states and adapts 

behavior appropriately to better support the user.  
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Chapter 5 PROOF OF CONCEPT BRAIN-
BASED ADAPTIVE USER INTERFACE 
PLATFORM3 
 

 

 

In the experiments described in Chapter 4, we verified that there is a significant 

difference between the cognitive multitasking conditions in the fNIRS signal. Because we 

can statistically differentiate them, we hypothesize that we can apply machine learning 

techniques to automatically identify these cognitive multitasking states, in real time, in a 

user interface. This information could then be used to drive the user interface to better 

support cognitive multitasking.  

As a proof-of-concept, we developed a platform for studying brain-based adaptive user 

interfaces of this type. The system has two main components: the Brainput streaming 
                                                        
3 Parts of the work in this chapter was originally described in “Sensing Cognitive Multitasking for 
a Brain-Based Adaptive User Interface” in the proceedings of the ACM CHI’11 Conference on 
Human Factors in Computing Systems (E. T. Solovey, et al., 2011). The integration with DIARC 
robot framework was joint work with Paul Schermerhorn and Matthias Scheutz. 
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fNIRS input channel and the Distributed Integrated Affect, Reflection, Cognition 

Architecture (DIARC) (Scheutz, Schermerhorn, Kramer, & Anderson, 2007) for human-

robot interaction. Brainput expands the functionality of our Online fNIRS Analysis and 

Classification (OFAC) system (Girouard, et al., 2010). When used for real-time 

streaming input, there are four phases: baseline, calibration, modeling, and testing. 

5.1.	
  Baseline	
  Phase	
  

Before beginning the training phase, Brainput collects a baseline measure. During this 

period, the user is asked to relax and think of nothing, while focusing on a focal point on 

a computer screen. This is a standard practice in fNIRS studies and the baseline measure 

is used for later calculating changes in the oxygenated and deoxygenated hemoglobin 

values from the baseline values. Usually a baseline measure is collected for 30-60 

seconds, and then an average baseline measure is calculated. 

The beginning and end of the baseline period are indicated by a marker sent from an 

application over the serial port. In the experiments described in this dissertation, we 

present the baseline period using Presentation Software4 and start and end markers are 

sent over a serial connection to a MATLAB program that listens for these markers. Once 

the end marker is received for the baseline period, the fNIRS data from the baseline 

period is stored for use during the modeling and testing phases.  

5.2.	
  Calibration	
  Phase	
  

In order for the Brainput system to successfully classify fNIRS data and turn it into 

meaningful information for a user interface, we must first collect training or calibration 

                                                        
4 http://www.neurobs.com/menu_presentation/menu_features/features_overview 
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data. A calibration session is required before each use to train a machine learning 

classifier for the individual that will be using the system, since there can be variation in 

brain processes across different people. We have the participant complete a set of tasks 

designed to elicit understood cognitive states. By performing these known tasks 

repeatedly, we can create a dataset of labeled data. We then build a machine learning 

model that learns to find specific patterns in this data that indicate one cognitive state or 

another in future, unlabeled data.  

The main architecture of Brainput supports various calibration sessions. The only 

requirement is that markers are sent to the Matlab program indicating the start and end of 

a trial and the label that should be used for that trial. The Brainput system continually 

reads fNIRS data from the Boxy acquisition software (part of the ISS OxiTS system). In 

addition, we read a separate stream which is sending start and end markers that indicate 

when a particular known task starts and ends and which cognitive state is supposed to 

elicit. As in the baseline phase, we present the known tasks using Presentation Software, 

and start and end markers are sent over a serial connection to a MATLAB program that 

listens for these markers. However, this is configurable.  

Once Brainput receives an end marker indicating the end of one of the training trials, it 

creates a labeled training example for the machine learning model and stores this until the 

end of the training session. One training example consists of a sequence of data points, 

beginning at the start marker and ending with the end marker. There are sixteen channels 

(2 sensors x 2 wavelengths of light x 4 source-detector distances) coming from the fNIRS 

system, so we have sixteen sequences that together are a training example.  

5.2.1.	
  Calibrating	
  for	
  Multitasking	
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From the success in Chapter 4 in detecting various multitasking states, both in the simple 

“tablet” task and in a robot task, we built a training module specifically for calibrating the 

Brainput system to recognize branching and non-branching states. To do this, we 

integrated the Presentation program used in Chapter 4 to present the branching, delay and 

dual task stimuli trials. We use the original tasks described by Koechlin et al. (E. 

Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 1999) as simple calibration 

tasks to elicit the three multitasking states. After training the system on the fNIRS data 

generated during these tasks, the system is ready to recognize these states later in other 

tasks. 

5.3.	
  Modeling	
  Phase	
  

Once the training period has ended, as indicated by a marker sent over a serial port, the 

modeling phase begins. During this phase, the baseline data and training data are used to 

create a classification model for future brain data. In addition, we generate plots to 

examine the training data before continuing onto the next phase of the experiment.  

5.3.1.	
  Preprocessing	
  

Several preprocessing steps are taken to convert the raw data coming from the Boxy 

acquisition software into meaningful information.  

For each of the sixteen channels, the mean baseline value across each of the samples is 

taken and plotted. This is used in the both the modeling and testing phases. We then 

calculate the absorption coefficients for the training set, which uses the baseline measure, 

differential path length factors for the two wavelengths, and source-detector distances. 

An elliptic low pass filter with a cutoff frequency of 0.025 Hz, stoppage frequency of 

0.03 Hz, max ripple of 3 dB and a stopband attenuation of 50 dB was used to filter the 
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data. We normalized the data by channel using a z-score. For each example, we subtract 

the value of the first sample point from all points in the sequence to look at the changes 

from the same starting point. Although all trials lasted for the same length of time, it is 

possible that the training examples could have slightly different lengths due to differences 

in sampling. To ensure that all training examples have the same number of features, the 

examples were shortened to the length of the shortest example in the training set. Once all 

of these preprocessing steps were performed on the training data, we build a classification 

model. 

5.3.2.	
  Modeling	
  

To build a classification model, we use Weka’s (Hall, et al., 2009) sequential minimal 

optimization (SMO) package for Support Vector Machines which is a Java 

implementation of John C. Platt’s algorithm (Platt, 1999). If the training set is 

unbalanced, the smaller class is oversampled so that the classes are balanced before 

training. The Brainput system can be modified easily to use any of the other classification 

algorithms included in the Weka toolkit. 

5.3.3.	
  Visualizations	
  

We generate several plots to illustrate the fNIRS data that is generated during the training 

period. In most cases, these are plotted as two groups of eight subplots. The two groups 

are associated with the two wavelengths of light (690nm and 830nm). There are two 

sensors (left and right) and four source-detector distances, leading to sixteen subplots 

altogether. 
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5.3.3.1.	
  Raw	
  Data	
  plot	
  

This plot simply shows all of the raw data that was labeled for each channel. Any data 

collected during breaks or rest periods are removed. 

5.3.3.2.	
  Baseline	
  data	
  and	
  means	
  plot	
  

This plots the fNIRS data that was labeled as baseline along with the mean that was 

calculated. 

5.3.3.3.	
  Means	
  and	
  standard	
  error	
  for	
  each	
  class	
  

We plot the mean across all trials of each condition, along with the standard error for all 

channels. This allows the researcher to observe any obvious differences between the 

conditions in the training set, which could indicate that the training session was 

successful. These look similar to Figure 4-3 and Figure 4-4. 

5.4.	
  Classification	
  Phase	
  

Once the training and modeling phases are complete, Brainput enters classification phase. 

As fNIRS samples are received from the Boxy acquisition software, they are collected 

into a sequence of the same length as the training examples. A sliding window is created 

as new data comes in, and the continuous sequences of data are analyzed. Each sequence 

is preprocessed in the same manner as the training data (Section 5.2.1) and then sent to 

the machine learning classifier which classifies the sequence in real time. The 

classification results are sent over a socket connection. An interactive system can read 

this input stream and adapt behavior based on the classification. 

5.5.	
  Integration	
  with	
  Human-­‐Robot	
  System	
  



73 
 

As a proof-of-concept, we linked the Brainput system with the DIARC human-robot 

architecture. The DIARC (Scheutz, et al., 2007) is an integrated architecture for working 

with complex robots that can support various levels of robot autonomy and other adaptive 

robot behavior. To receive input from the Brainput system, we have created a DIARC 

component to which Brainput sends classification results via sockets. DIARC can then 

use these messages to change the robot’s goal structures, allowing the robot to adapt its 

autonomy and behavior. 

5.6	
  Additional	
  Modes	
  for	
  the	
  Platform	
  

In addition to the normal online mode where signals are classified and sent in real time, 

Brainput supports replay mode which simulates the analysis and classification of 

previously recorded data, and is useful in experimenting with various adaptive strategies, 

similar to the demo mode in OFAC (Girouard, et al., 2010). The DIARC architecture can 

interface with physical robots in an environment, but also has a simulation mode that 

allows for simulated interactions with a robot on a computer screen, along with several 

different environment configurations (Figure 5-1). In addition, an fNIRS simulation mode 

was created in DIARC, where cognitive state classifications can be entered manually by 

inputting classification confidence levels for each of the possible states. This allows for 

debugging and testing of the robot adaptive behaviors, without requiring a human to be 

physically connected to the fNIRS sensing system. 
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5.7	
  Conclusion	
  

The platform we have developed allows us to explore adaptive behavior to find the best 

strategies for use in interactive systems. By developing a calibration module to recognize 

multitasking states, we can look specifically at supporting multitasking. Integrating the 

Brainput system with DIARC provides the robot with cognitive state information of the 

human, affording the robot to adapt its behavior to better support and collaborate with the 

human operator. Driven by fNIRS cognitive state input, DIARC can adapt various 

aspects of the human-robot interface, such as level of autonomy of the robot, the 

frequency, length and style of the robot's status updates, as well as the tone of the robot's 

voice. We can now begin to develop complex systems that adapt based on fNIRS brain 

signals and experimentally evaluate them. We will further explore the value of this in 

Chapter 6. 

 

Figure 5-1. The Brainput integration with DIARC supports robot navigation (real or simulated), 
as well as fNIRS cognitive state input (real or simulated). 
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Chapter 6 EVALUATION OF BRAINPUT 5 
 

 

 

In Chapter 5, I described Brainput, a system that processes and classifies fNIRS data in 

real time and sends classification results to interactive system. In Chapter 4, I presented 

background experiments that showed that three specific cognitive multitasking states 

could be distinguished from each other in a non-interactive situation. These results 

suggest that an interactive system that is aware of the user’s changing cognitive state 

during multitasking would be possible. Here we evaluate the efficacy of the full working 

system. We demonstrate that we can use non-invasive methods to detect signals coming 

from the brain that users naturally and effortlessly produce while using a computer 

system. Brainput learns to identify brain activity patterns occurring during multitasking, 

by building on the experiments in Chapter 4. It then provides a continuous, supplemental 

                                                        
5 Parts of the work in this chapter was originally described in “Brainput: Enhancing Interactive 
Systems with Streaming fNIRS Brain Input” in the proceedings of the ACM CHI’12 Conference 
on Human Factors in Computing Systems (E. T. Solovey et al., 2012) 



76 
 

input stream to an interactive human-robot system, which uses this information to modify 

its behavior to better support multitasking.  

To evaluate the effectiveness of using Brainput in an adaptive system, we conducted a 

user study in which participants used the system to complete a human-robot team task 

that involved multiple robots navigating through an environment. This task required the 

user to constantly switch context between the two robots, maintaining information about 

each robot’s current location, which we presumed would lead to branching states (as 

described in Chapter 4). The robot adapted its behavior based on whether a branching 

state was identified. We created three adaptation schemes for comparison that are 

triggered by the brain input stream. Participants completed the robot navigation task three 

times, each employing a different adaptive behavior as a response to the brain input 

stream.  

6.1.	
  Experimental	
  Task 

The main task for the study is a multi-robot version of the task introduced in (Scheutz, 

Schermerhorn, & Kramer, 2006). Participants remotely supervised two robots (the blue 

robot and the red robot) that were exploring different areas of a virtual environment. 

Participants were told that the two robots had collected information that needed to be 

transmitted back to the control center. The robots could help the participant search for an 

appropriate transmission location by measuring and reporting the signal strength in its 

current position. Transmissions were only possible in locations with signal strength of at 

least 2400 (values ranged from 1300 to 2500, and the single target region in each robot's 

area covered roughly 1.25 % of the environment). The user had a console to view the 

environment from each robot’s point of view (Figure 6-1) and could issue commands to 

the robots such as “go straight,” or “turn right” and the appropriate robot would follow 
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the commands. They could also ask the robot for the signal strength of the current 

location by clicking “take a reading” and the robot would report the current signal 

strength. This required the robot to stop and also consumed resources so the robot could 

not be measuring signal strength at all times. In addition to the command interface, the 

red robot received cognitive load estimates from the fNIRS system. 

Participants were told that the task would last for five minutes and that the task was 

considered a failure if either robot did not find a transmission location in time. The robots 

moved continuously throughout each task run, except when (a) pausing to measure signal 

strength, (b) in a collision state with a wall or obstacle, or (c) at the target location. 

 

Figure 6-1. 3D view from robots' perspectives in navigation task. There was a separate navigation 
control for each of the robots, positioned to the left of the robot’s 3D view 
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Participants were instructed to avoid collisions with obstacles and walls, and were 

advised not to leave either robot idle, as it may go into a hibernation state to save power. 

These constraints helped to ensure that the participants engaged in multitasking between 

the two robot consoles and did not focus on finding one robot’s transmission point and 

then moving to the second.  

6.2.	
  Participants	
  

This study included eleven participants (three male), between the ages of 18 and 22 

(mean 20.7). All participants were right-handed, had no history of brain injury and had 

normal or corrected-to-normal vision.  

6.3.	
  Equipment	
  

We used a multichannel frequency domain OxiplexTS from ISS Inc. (Champaign, IL) 

described in Section 2.1.2.1. 

6.4.	
  Calibration	
  Phase	
  

Before working with the robot, each participant completed a calibration phase to gather 

fNIRS data in known multitasking exercises (as described in Section 5.2.1). This data 

was used to build a machine learning model for classifying these cognitive multitasking 

states. The stimuli were the same as the delay, dual task and branching conditions 

described in (E. Koechlin, Basso, G., Pietrini, P., Panzer, S. & Grafman, J., 1999) and 

shown in Chapter 4 to evoke different fNIRS brain activity patterns. By using known 

tasks that induce known cognitive states, we can train a machine learning classifier to 

recognize these states later, in new contexts.  
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Each run of the known multitasking activities lasted approximately forty seconds, and the 

fNIRS brain signal over this 40-second window became the training example. Once a 

machine learning model was built from this training data, the Brainput system 

continuously classified 40-second slices of fNIRS data, in a sliding window that moved 

with each new sample. The sampling rate for the fNIRS system was 6.25 Hz.  

6.5.	
  Conditions	
  

We compared our adaptive system with two alternate conditions in the experiment. One 

condition simply turned off autonomy as a baseline. The other used the Brainput 

inversely to probe more deeply into whether the brain input had any effect, similar to the 

experimental design in (Pope, Bogart, & Bartolome, 1995). Thus, there were three 

conditions in the study, varying only in the adaptive behavior that was triggered in the red 

robot by the fNIRS brain input: 

1) In the adaptive condition—our system—the red robot went into autonomy mode 

whenever a branching state was detected, indicating that the user was tending to 

multiple tasks and maintaining information about the primary task over time. 

This allowed the participant to focus on the blue robot. The red robot exited 

autonomy mode when a non-branching state was detected, requiring the human 

to give instructions to the robot about where to explore.  

2) In the non-adaptive condition, the brain input was ignored, and the red robot 

never acted autonomously. 

3) In the maladaptive condition, the rule was reversed from the adaptive condition. 

When a non-branching state was detected, the red robot began working 

autonomously and stopped when a branching state was detected, waiting for 
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commands from the participant. The autonomy mode provided the same 

assistance as in the adaptive condition, and thus should still allow the user to 

focus on the blue robot. The only difference is the timing of the onset of the 

autonomy mode. This condition allows us to investigate the effect of the mapping 

between Brainput and the adaptive behavior. 

In autonomy mode (regardless of which condition), the red robot would take over the 

search task, periodically sensing the signal strength and making appropriate course 

adjustments to ensure progress toward the target location. Note, however, that even in 

autonomy mode the robot could be interrupted by the operator (e.g., when asked to take a 

reading of the signal strength), but would return to the autonomous behavior after 

completing the requested action. 

The blue robot never acted autonomously, as we wanted to ensure that the human 

operator always had a task to perform. The red robot staying in autonomous mode 

throughout the entire task would not be ideal as the human needs to be aware of the 

robot’s location and progress to provide corrective feedback (as the robot’s search 

behavior is not optimal), to ensure that the message is transmitted before time is up. 

6.6.	
  Experimental	
  Procedure	
  

Before the experiment, each participant completed a practice session without the fNIRS 

sensors, first with the robot navigation task and then with the multitasking “tablet” 

exercises. This allowed the participants to familiarize themselves with each of the tasks. 

For the robot practice session, neither robot was autonomous as we simply wanted the 

participant to learn how to use the console and see the robot in action. In the multitasking 

practice exercises, the three distinct multitasking exercises (branching, dual task, and 
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delay) were presented in a counterbalanced order. Each was repeated until the participant 

achieved greater than 80% accuracy in the task.  

After the practice sessions, fNIRS sensors were applied to the forehead and the machine 

learning calibration session began. The participant completed known multitasking 

exercises to allow us to build an individual model of fNIRS activity for classification. 

The participant was presented with an initial rest screen, which was used to collect a one-

minute baseline measure of the brain activity at rest. After that, the user had to complete 

two sets of ten 40-second trials. There were ten trials of branching, five of delay and five 

of dual task, which were presented randomly. Between each trial, the user was presented 

with the instructions for the next trial, followed by a 10-second rest screen.  

Once the training session was complete, the data was used to build a training set for a 

machine learning model as described in Section 5.3.2. Any trial where the participant 

achieved lower than 70% accuracy was not used as this indicated that they were not 

actually performing the task. For the main experimental task, we were most interested in 

detecting branching states, as the workload level can be quite high with the demand from 

both context switching and working memory load. The dual task and delay trials were 

combined into one category for the machine learning model as non-branching. If the 

number of branching and nonbranching training examples were not equal, the smaller set 

was oversampled so that the classes were balanced. The machine learning model was 

built using Weka’s (Hall, et al., 2009) SMO package for Support Vector Machines.  

Once the model was built, the participant did one five-minute session of the robot 

navigation task in each of the three conditions. After each session, the participant filled 

out a NASA Task Load Index questionnaire (NASA-TLX) to provide their subjective 

assessment of task load. The first five participants also provided voluntary additional 



82 
 

comments about their experience with each of the robots. To formalize this, the second 

set of six subjects also filled out a questionnaire on their perceptions of the robot in each 

of the three conditions. During the navigation tasks, the system logged all commands 

issued, fNIRS multitasking classifications received, and events such as collisions with 

obstacles. 

6.3.	
  Design	
  and	
  Analysis	
  

The study used a within-subjects design. The independent variable is the robot’s adaptive 

condition: adaptive, non-adaptive and maladaptive. All participants performed one five-

minute session in each of the conditions. The condition order was counterbalanced. To 

evaluate whether the multitasking state information was valuable in the navigation task 

and produced differences between the three conditions, we investigated the following 

dependent measures: NASA-TLX questionnaire results, the robot perception 

questionnaire, and task performance from the log files, including number of completed 

tasks, number of commands issued, number of collisions, and maximum signal strength 

found.  

6.4.	
  Results	
  

6.4.1.	
  Performance	
  Results	
  

We examined several aspects of task performance to see how they were affected by the 

adaptive condition.  

First, we looked at the mean time (in seconds) that the red robot spent in autonomy mode 

in the adaptive condition (M=83.12, SD=35.94) and the maladaptive condition (M=88.00, 

SD = 38.28). During the non-adaptive condition, the robot was never in autonomy mode. 
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There was no significant difference between the two conditions, t(10) = 0.3737, p=0.7164 

(Figure 6-2). Since the time spent in autonomous mode was equivalent in the two 

conditions, we can attribute differences in performance between the conditions mainly to 

the timing of the autonomy mode initiated by Brainput. 

Since the autonomy mode should help the participant find the transmission location, we 

expected that we may observe higher task completion in both the adaptive and 

maladaptive conditions, over the non-adaptive condition where the user always had to 

control both robots. For the blue robot, we did find this (5, 4, 3 participants, respectively) 

but the result was not statistically significant (Figure 6-3). For the red robot, we did find a 

higher completion rate in the adaptive condition (9 out of 11 participants) than in the 

non-adaptive condition (5 out of 11 participants), as expected. However, the maladaptive 

condition had a lower completion rate (2 out of 11) than both the adaptive and non-

adaptive conditions (Figure 6-3), indicating that the autonomy is helpful only when it is 

well-matched to the user’s cognitive state. With a Cochran's Q test, we found a 

significant difference among the three adaptive conditions (χ2(2) = 10.57, p < 0.01). A 

 

Figure 6-2. Mean and standard error of time spent in autonomy mode across 11 participants. 
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pairwise comparison using continuity-corrected McNemar's tests with Bonferroni 

correction revealed that significantly more participants completed the task in the adaptive 

condition than in the maladaptive condition (p<0.1, ϕ = 0.48). 

To get a more fine-grained look at task completion, we investigated the maximum signal 

strength found (Figure 6-4). Since the main goal was to find a transmission point above 

2400, this could give an indication of how close the participants came to completion. 

Nonparametric analysis was used since the Shapiro-Wilk normality test showed that the 

data from each condition was not from a normal distribution. The adaptive condition 

resulted in the highest median for the maximum signal strength of the red robot (2416.0). 

The maladaptive condition resulted in the lowest median for the maximum signal strength 

of the red robot (2108.0). The non-adaptive condition was in the middle (2336.0). A 

Friedman nonparametric repeated measures ANOVA confirmed that the difference in the 

medians was statistically significant (p<0.001). Dunn’s multiple comparisons post-hoc 

test was conducted and showed a significant difference between the adaptive and 

 

Figure 6-3. Number of participants (out of 11 total) that completed each of the tasks.  
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maladaptive conditions (p<0.001). There was no statistically significant difference in the 

medians of the maximum signal strength of the blue robot across the three conditions. 

We then looked at the number of collisions in each of the conditions (Figure 6-5). 

Participants were told to avoid collisions with walls and obstacles, as it would damage 

the robot. This ensured that both robots were attended to throughout the tasks. The 

Shapiro-Wilk Normality Test showed that the data from each condition was not taken 

from a normal distribution. A Friedman nonparametric repeated measures ANOVA was 

performed to compare the medians. We did not find any statistically significant 

difference for the blue robot. However, for the red robot, we did find that the non-

adaptive condition resulted in a higher number of collisions than the two adaptive 

conditions (p=0.005). Collisions during the non-adaptive condition may indicate a 

performance degradation in the participant since a non-autonomous robot would likely 

walk into a wall if ignored, since there was no way to pause or stop the robot from 

moving.  

 

Figure 6-4. Mean and standard error for maximum signal strength found in each condition across 
11 participants. 
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Finally, as a measure of effort during the tasks, a repeated-measures analysis of variance 

was carried out to determine whether the adaptive mode had any effect on the number of 

commands issued (Figure 6-6). For the red robot, there was a statistically significant main 

effect of adaptive condition, F(2,20) = 3.691, p = 0.04, but post-hoc analysis did not 

reveal any statistically significant results. There was no statistically significant difference 

for the blue robot, F(2,20) = 1.153, p = 0.34. 

 

Figur 6-5. Mean and standard error for the number of collisions with each robot across 11 
participants. 
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Figure 6-6. Mean and standard error for the number of commands issued with each robot 
across 11 participants. 
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6.4.2.	
  NASA-­‐TLX	
  Results	
  

The goal of implementing adaptive behavior is to decrease the user’s workload level. To 

investigate the success of this, we analyze the results of the NASA-TLX questionnaire 

(Hart & Staveland, 1988). This survey was designed to take into account individual 

differences in perceptions of workload. The questionnaire asks the participant to rate the 

workload level of the task in several categories. In addition, the user evaluates pairs of 

workload categories and indicates the one that contributes most to the workload. This is 

used to generate a set of weights that are applied to the other workload ratings and that 

reduce inter-subject variability. The means and standard deviations for the NASA-TLX 

scores from our study are shown in Figure 6-7. A repeated-measures analysis of variance 

on the NASA-TLX score showed that there was a statistically significant main effect of 

adaptive condition, F(2,20) = 4.65, p = 0.02. A Tukey's pairwise comparison revealed the 

significant differences between adaptive and maladaptive (p < 0.05). Each dimension of 

workload (mental demand, physical demand, temporal demand, performance, effort, and 

frustration) was analyzed separately using Friedman’s non-parametric repeated measures 

ANOVA. The adaptive mode had a significant effect on performance (p<0.05) and 

frustration (p<0.05). 

 

Figure 6-7. Mean and standard deviation in NASA-TLX results. There was a statistically 
significant main effect of adaptive condition, F(2,20) = 4.65, p = 0.02. 
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6.4.3.	
  Perceptions	
  of	
  Adaptive	
  Behaviors	
  

The first five participants in the study provided informal comments about the robots and 

the different conditions. Many commented on the behavior of the red robot. For example, 

after the adaptive condition, one participant said, “Although red robot occasionally 

disobeyed my commands, for the most part it was cooperative and found the transmission 

spot. Blue robot was still very cooperative.” The same participant had this comment after 

completing the maladaptive condition, “Blue robot was much more cooperative than the 

red robot, which frequently disobeyed my commands and would go in its own direction.” 

From these comments, we can see that the participant found the red robot to be mostly 

helpful in the adaptive condition, but that it disobeyed in the maladaptive condition. To 

capture a clearer picture of the perceptions of the robots, we had the next six participants 

complete a questionnaire on their perceptions of the robots. The results are illustrated in 

Figure 6-8. 

 This is a small sample of users, and so the results of the questionnaire are preliminary. 

However, some patterns are beginning to emerge. First, we see that the participants 

seemed to agree that in the maladaptive condition, the robots appeared to make their own 

decisions and that the robots appeared to disobey the user’s commands. There was less 

agreement on those points for the adaptive condition, even though the red robot was 

autonomous in this condition as well. This indicates that when the robot was autonomous 

at appropriate times (based on the branching classification from fNIRS), it was less 

noticeable to the user.  

In the maladaptive condition, the participants indicated that the robots were more 

annoying than in the other conditions. This would make sense since they also felt that the 
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robots were disobeying their commands. The lower score for “The robots were 

cooperative” in the maladaptive condition also corresponds with the other statements.  

It is interesting to note that the ratings did not show strong differences between the 

adaptive and the non-adaptive conditions for these statements: “The robots acted like 

members of the team,” “The robots were annoying,” “The robots were capable,” and 

“The robots were cooperative.” This provides evidence that the user hardly noticed the 

adaptive behavior when it was consistent with the user’s needs. This is consistent with 

what we found in previous single-robot studies with both real and simulated robots 

(Schermerhorn & Scheutz, 2011). 

6.5.	
  Discussion	
  

 

Figure 6-8. Preliminary results from robot perception questionnaire for the three conditions: 
adaptive (ADA), non-adaptive (NON) and maladaptive (MAL) (N=6). The scale was from 1 
(strongly disagree) to 9 (strongly agree).  
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Overall, our results suggest that Brainput provided measureable benefits to the user, with 

little additional effort required of the user. This study also confirmed that we can train a 

machine learning classifier on a set of known tasks and later successfully classify brain 

activity in unrelated activities that elicit similar brain processes. 

The NASA-TLX results indicate that the adaptive condition had the lowest task load 

rating and the maladaptive condition had the highest, indicating that appropriate adaptive 

behavior helps to reduce workload, while adverse adaptations can actually make the 

system perform worse. In addition, the completion rates and maximum signal strength for 

the red robot were highest in the adaptive condition and lowest in the maladaptive 

condition, indicating that the adaptive behavior triggered by the Brainput correlates to 

performance improvements. 

One question that could be asked now is: how accurate is the cognitive state 

classification? However, this is not straightforward to answer because we do not have 

labeled data in this study. Since each participant may have different strategies and we did 

not constrain the participant to conduct the task in a specific way, we do not have 

“ground truth” as to when the participant was actually in a branching state and when they 

were not. However, the primary goal of this system is to better support multitasking, as 

indicated by better performance or better experience. High classification is a means to the 

main goal of better performance, which we have obtained.  

However, we can make some guesses about the classification accuracy by looking closer 

at the differences between the maladaptive and adaptive conditions. The red robot's 

autonomous behavior in both the adaptive and maladaptive conditions was the same: it 

made progress toward the target location. For this reason, we hypothesized that task 

performance would be improved in both the adaptive and maladaptive conditions, since 
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both conditions had the aid of an autonomous robot. As noted above (Figure 6-3), this 

was not the case for the maladaptive condition as the number of successful task runs was 

lowest.  

This raises the question of how a properly functioning cooperative teammate could 

decrease performance. One likely explanation is hinted at by the number of commands 

issued in each condition (Figure 6-6). Participants issued more commands to the red robot 

in the maladaptive condition than in the other conditions, and the maladaptive condition 

is the only one in which the red robot received more commands than the blue robot. It 

seems that subjects were less accepting of autonomous behavior occurring during non-

branching phases than during branching phases, and expended effort trying to "correct" 

the robot in that condition. This is reflected also in the subjective assessments: the robots 

were rated as more annoying and disobedient, and less helpful and cooperative in the 

maladaptive condition. These results demonstrate that basing the autonomy onset on the 

cognitive multitasking state has a positive impact on subjective task load. 

As the name implies, the strategy adopted by the red robot in the maladaptive condition is 

not being proposed as a potentially viable candidate for future robotic architectures. 

Instead, the maladaptive condition is included to serve as a direct contrast to the adaptive 

condition, similar to the comparisons of positive and negative feedback loops in (Pope, et 

al., 1995).  

Comparing the adaptive and non-adaptive conditions demonstrates that robot autonomy 

can improve task performance, but that is not surprising, having been shown in prior 

work (e.g., (Schermerhorn & Scheutz, 2011)). What is unclear, however, is whether 

the Brainput-initiated autonomy transitions correspond to meaningful cognitive state 

transitions in participants. Periods of autonomy might seem likely to be helpful in a task 
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like this regardless of when they occur, so comparisons between the adaptive and non-

adaptive conditions cannot, by themselves, support claims regarding the legitimacy of 

Brainput classifications. However, contrasting the adaptive and maladaptive results 

makes it immediately apparent that Brainput has successfully identified a distinction in 

cognitive states: if Brainput were not detecting a genuine difference in cognitive 

load, one would expect no difference between the adaptive and maladaptive conditions, 

and could attribute all of the performance benefits to the proportion of the time spent in 

autonomy mode. Instead, participants respond significantly differently to autonomy 

initiated when Brainput indicates a branching state than to autonomy initiated when 

Brainput indicates a non-branching state. This constitutes strong evidence that the system 

is properly categorizing the fNIRS data -- Brainput implicitly provides information, 

distinguishing between times in which autonomous operation is beneficial, and those in 

which autonomous operation is detrimental to the task.  
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Chapter 7  
CONCLUSIONS 
 

 

7.1.	
  Summary	
  of	
  Work	
  and	
  Contributions	
  

The ability to capture subtle changes in the user’s cognitive state in real time opens up 

new doors in human-computer interaction research. This information can be used as a 

continuous input stream to an interactive system, making the system more in sync with 

the user, and providing appropriate help and support when needed. This dissertation takes 

concrete steps toward this vision by showing that sensing fNIRS brain data is practical 

for HCI. I take a different approach for brain-computer interfaces that augments 

traditional input devices such as the mouse and keyboard and that targets a wider group 

of users than traditional brain-computer interfaces for disabled users. Brain sensor data is 

used as a passive, implicit input channel that expands the bandwidth between the human 

and computer by providing extra information about the user. 
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The previous chapters served to support my thesis: The emerging brain sensing 

technology, functional near-infrared spectroscopy, can be used as streaming input to an 

interactive user interface, which adapts its behavior based on the brain signal and 

improves user performance and experience compared to a traditional user interface. 

In support of this thesis, I have made several contributions to HCI research, described 

below. 

7.1.1.	
  Guidelines	
  
 

With the introduction of any new technology, there are considerations that should be 

made for its proper use. For this reason, we used our earlier experience with fNIRS as 

well as a literature review to recognize characteristics specific to fNIRS sensors that are 

relevant for HCI, and develop paradigms for using fNIRS properly in HCI research. 

These were described in Chapter 3 and provide guidelines for future researchers 

exploring fNIRS for HCI.  

7.1.2.	
  Analysis	
  tools	
  
 

Since fNIRS is relatively new, there are not established methods for analyzing the raw 

data from the device. Thus, I have developed tools that can be used to better understand 

the data coming from the machine. To classify cognitive states from fNIRS data alone, I 

implemented noise reduction and machine learning classification algorithms. These work 

in real time, as data is collected, in order to adapt the system in real time. These 

techniques will improve analysis of any new fNIRS data. 

In Chapter 4, I described preprocessing steps and offline analysis techniques. In Chapter 

5, I described the real-time system architecture that includes preprocessing, visualizing, 
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and classification of the fNIRS signal. These tools were valuable in the studies described 

here, but also can be used for future experiments using fNIRS. 

7.1.3.	
  Cognitive	
  State	
  Classification	
  
 

I show that we can use fNIRS to detect signals that are valuable to HCI. Specific 

cognitive multitasking states, previously studied with fMRI (which cannot be used in 

HCI settings), can be detected automatically with fNIRS which is more practical for HCI. 

I also show that these cognitive multitasking brain processes are detectable across 

multiple domains and tasks, by moving from a simple letter-based task in previous work 

to actual HCI-related tasks that elicit similar states. This is valuable because it shows that 

we can detect it branching in new domains, even if we train a classifier using known 

scenarios. These distinct brain processes are almost indistinguishable by examining overt 

behavior or task performance alone, and so the fNIRS brain sensors provide otherwise 

unavailable information. These cognitive multitasking states have direct relevance to 

many HCI scenarios. 

7.1.4.	
  Streaming	
  fNIRS	
  input	
  channel	
  
 

I describe Brainput, a passive, implicit input channel to an interactive system, based on 

real-time cognitive multitasking state detection with fNIRS. This system was integrated 

with a human-robot system. Together, this platform provides the basis for the design and 

evaluation of future brain-based adaptive user interfaces, with broader applications 

beyond human-robot team tasks. 

7.1.5.	
  System	
  Evaluation	
  and	
  User	
  Study	
  
 

We successfully integrated the Brainput system into a robot architecture 

and demonstrated that it can successfully be used to reduce human workload 
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in interactions with multiple robots. This shows the potential for fNIRS-based brain input 

in human-robot interaction, and opens the door for studying such interfaces in broader 

domains and situations. Brainput gives the interactive system a valuable additional 

information channel that can be used to improve team performance without adding to the 

operator's load. This suggests that implicit brain input as a supplemental input stream has 

promise both in human-robot interaction and in various other domains and tasks. 

7.1.6.	
  Design	
  Implications	
  
 

Because the brain input is implicit (unlike a mouse or keyboard that the user explicitly 

uses for input), we do not want to surprise or confuse the user by making unexpected 

changes to the interface. In addition, the data is often noisy, and is constantly changing. 

Plus, the machine learning classifications are unlikely to be perfect, leading to unreliable, 

imperfect cognitive state classification. Therefore, the adaptive interfaces should make 

subtle, helpful changes to the interface that ideally would not be too disruptive if the 

user’s state was misinterpreted occasionally. For example, in Chapter 6, we used the 

cognitive multitasking data to change the autonomy level of one of the robots. This does 

not affect the primary navigation task, and the user can always provide commands to the 

robot, even during autonomy mode. In our evaluation, it was shown that this adaptive 

behavior was indeed beneficial to the user. In other contexts, the cognitive state 

information may be used in other helpful (but not mission-critical) ways such as to 

change future interactions, to pre-choose defaults, or to change the effect of a click.  

7.1.7.	
  Research	
  Approach	
  
 

Finally, this dissertation presents an approach to exploring fNIRS for HCI. We began by 

looking to prior work with fMRI to pursue cognitive state detections that may be feasible 

with the fNIRS sensors worn on the forehead. In controlled experiments, we examined 
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these to determine whether they could be measured accurately using fNIRS. Once a 

promising set of tasks was established, we built real world systems that take this 

information as input. 

	
  7.2.	
  Future	
  Work	
  
There are several directions for future work originated by this dissertation. 

7.2.1.	
  Other	
  Multitasking	
  Scenarios	
  
 

Multitasking has become integral in many aspects of our lives, so there are opportunities 

to explore Brainput in other tasks and domains. In any activity involving multitasking or 

information overload, we could expect to see improvements in the user’s performance 

and experience. Some examples of other domains are complex data analytics, air traffic 

control and management of multiple unmanned vehicles. In addition, we believe that 

similar brain-based user interfaces may support a wide range of contexts that involve 

multitasking and interruptions. Moving into entertainment applications, we can imagine 

augmenting the video game experience in exciting ways by utilizing the subtle signals 

picked up from the user during game play. 
7.2.2.	
  Adaptive	
  Strategies	
  
 

We demonstrated that the platform can form the basis for brain-based user-interfaces by 

implementing a simple adaptive scheme based on the experiments. However, to design a 

successful adaptive user interface many factors could be considered and the automation 

scheme could be more complex than that illustrated here. Our platform will enable us to 

conduct evaluations of various adaptive behaviors to determine the appropriate strategy 

for supporting multitasking by utilizing signals coming implicitly from the brain. We can 



98 
 

now begin to develop complex systems that adapt based on fNIRS brain signals and 

experimentally evaluate them. 

To further explore effective adaptive strategies, we also could conduct a follow-up study 

to determine how a human (as opposed to the robot in our experiment) would adapt 

behavior to better to support a colleague that was multitasking. This would be valuable 

information since humans naturally adapt their behavior when interacting with others, 

and more importantly, we expect this. If computers adapted in similar ways as a person 

would, their behavior may be more predictable to the human operator. This would not 

require fNIRS sensors. Instead, we could provide a simulated stream of fNIRS 

classifications for branching and non-branching. These could be displayed to a user to 

indicate the current state for a teammate. It would be valuable to see how the user would 

adapt his or her behavior when receiving notification that the teammate is in a branching 

state.  

7.2.3.	
  Physical	
  Robots	
  
 

It is likely that interacting with real, physical robots will lead to some differences in 

operators' overall cognitive states and evaluating Brainput with real robots will 

be important for determining its applicability to real-world human-robot problems.  

7.2.4.	
  Additional	
  Cognitive	
  State	
  Sensing	
  
 

There likely exist other cognitive states that could be exploited to improve human-

computer interaction efficiency. In Experiment 1 in Chapter 4, we differentiated between 

branching, dual-task and delay. Experiment 2 showed differences between random and 

predictive branching. Although we have shown potential of differentiating these states, 

the system evaluated in Chapter 6 simply distinguished between branching and non-
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branching states. It would be straightforward to expand this to the other states that were 

discussed in Chapter 4, by creating calibration modules for presenting these states to the 

user in order to collect training data for the machine learning model. In addition, further 

studies can be conducted to determine additional cognitive states that could be 

distinguished reliably for use in an interactive system. Previous studies have been 

conducted to determine the feasibility of recognizing cognitive workload levels (L. M. 

Hirshfield, et al., 2007), game difficulty levels (Girouard, et al., 2009), and specific 

cognitive resources (i.e. verbal working memory) (Leanne M. Hirshfield, et al., 2011; 

Leanne M. Hirshfield, et al., 2009) with the fNIRS device.  

7.2.5.	
  Analysis	
  Improvements	
  
 

We intend to enhance the machine learning techniques to improve the accuracy of the 

system. We will also analyze the fNIRS response more deeply in our future work, but our 

initial goal was show that there was a significant difference between the signals we 

detected for the different conditions. This allows us to discriminate the conditions, and 

adapt a user interface when each state is detected.  

7.2.6.	
  Noise	
  and	
  Artifact	
  Reduction	
  
 

In Chapter 3, we investigated sources of noise and artifacts. In the future, it would be 

worthwhile to take these results a step further, to investigate even more realistic settings 

with multiple potentially interfering sources of noise. In addition, it would be useful to 

investigate using machine learning to identify the presence of artifacts in fNIRS data. 

With a database of undesirable artifacts in fNIRS signals, we could feed data from a new 

experiment to see whether any of the artifacts are found. This could provide a new and 

objective way to remove examples contaminated by such artifacts, instead of using visual 

observation. 



100 
 

7.2.7.	
  Additional	
  Sensors	
  
 

Our fNIRS machine is made up of sensors that are worn on the forehead and that probe 

the anterior prefrontal cortex. It would be valuable to collect more data in this area with 

denser arrays of light sources. We also could look at other areas of the brain if we had 

sensors designed for this. This would expand the cognitive state data that could be 

detected for an interactive system. Finally, it would be interesting to integrate the fNIRS 

system with an EEG system since they provide complementary information. 

7.2.8.	
  Disabled	
  Users	
  
 

Finally, while most of my research has focused on the broader population of healthy 

users, many of the results would benefit disabled users as well, by providing additional 

channels of communication in a lightweight manner. 

7.3.	
  Closing	
  Remarks	
  
 

Since Brainput has unique characteristics that set it apart from most standard input 

techniques, I have explored the effective use of the fNIRS brain data in human-computer 

interaction. From this exploration, I built a system that effectively uses the fNIRS input to 

adapt an interactive system to better support the user. This is an early step towards 

computers that can interpret the user’s cognitive state and adapt accordingly.  
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APPENDIX A: PARTICIPANT 
QUESTIONNAIRE 
Thanks for taking part in our study. Please fill out this form. All information will be kept confidential.  

What is your subject code? (ask researchers for code) *  

 

Enter age: *  

 

Gender: * 

 Male 

 Female 
 

Are you: * 

 Left handed 

 Right handed 
 

Are you a student? * 

 Yes 

 No 
Current Degree you are working on: 

 Bachelors 

 Masters 

 PhD or MS/PhD 

 

Major:  
 

Last degree: 

 Bachelor 

 Master 
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 PhD 
 

Profession:  

 
Do you have normal vision or corrected-to-normal vision (glasses, or contact lenses)? * 

 Yes 

 No 

 
Do you have any history of head injury (head/brain surgery, major concussion, etc)? * 

 Yes 

 No 

 

How many hours of sleep did you have last night? *  

 
Compared to your average sleeping time, is this * 

 A lot less 

 Less 

 Equal 

 More 

 A lot more 

 
Are you feeling well today? * 

 Yes 

 No 

 
Do you have a headache * 

 Yes 

 No 

 
Have you had any caffeinated drinks today? * 

 Yes 

 No 



103 
 

 

If yes, how much?  

 
Compared to an average day, is this: 

 Less 

 Same 

 More 

 

 
Do you have any comments about the study in general? 
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Appendix B: NASA-TLX Rating 
Questionnaire 

 
Mental DemandHow much mental and perceptual activity was required (e.g. thinking, deciding, calculating, 
remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, exacting or 
forgiving? 

 1 2 3 4 5 6 7 8 9 10  
Low 

          

High 

 
Physical Demand *How much physical activity was required (e.g. pushing, pulling, turning, controlling, 
activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious? 

 1 2 3 4 5 6 7 8 9 10  
Low 

          

High 

 
Temporal Demand *How much time pressure did you feel due to the rate of pace at which the tasks or task 
elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 1 2 3 4 5 6 7 8 9 10  
Low 

          

High 

 
Performance *How successful do you think you were in accomplishing the goals of the task set by the 
experimenter (or yourself)? How satisfied were you with your performance in accomplishing these goals? 

 1 2 3 4 5 6 7 8 9 10  
Good 

          

Poor 

 
Effort *How hard did you have to work (mentally and physically) to accomplish your level of performance? 

 1 2 3 4 5 6 7 8 9 10  
Low 

          

High 

 
Frustration *How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, 
relaxed and complacent did you feel during the task? 

 1 2 3 4 5 6 7 8 9 10  
Low 

          

High 
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Appendix C: NASA-TLX Weights 

 
 
Click on the factor that represents the more important contributor to workload for the task * 

 Physical Demand: How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 

goals? 

 Temporal Demand: How much time pressure did you feel due to the rate of pace at which the tasks 

or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 

goals? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 Mental Demand: How much mental and perceptual activity was required (e.g. thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 
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Click on the factor that represents the more important contributor to workload for the task * 

 Temporal Demand: How much time pressure did you feel due to the rate of pace at which the tasks 

or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Physical Demand: How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 

goals? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Mental Demand: How much mental and perceptual activity was required (e.g. thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 

 Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Physical Demand: How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 Temporal Demand: How much time pressure did you feel due to the rate of pace at which the tasks 

or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Temporal Demand: How much time pressure did you feel due to the rate of pace at which the tasks 

or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 
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 Mental Demand: How much mental and perceptual activity was required (e.g. thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Mental Demand: How much mental and perceptual activity was required (e.g. thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 

 Physical Demand: How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 Physical Demand: How much physical activity was required (e.g. pushing, pulling, turning, 

controlling, activating, etc)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Temporal Demand: How much time pressure did you feel due to the rate of pace at which the tasks 

or task elements occurred? Was the pace slow and leisurely or rapid and frantic? 

 Effort: How hard did you have to work (mentally and physically) to accomplish your level of 

performance? 

 
Click on the factor that represents the more important contributor to workload for the task * 
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 Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 

goals? 

 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, 

content, relaxed and complacent did you feel during the task? 

 
Click on the factor that represents the more important contributor to workload for the task * 

 Performance: How successful do you think you were in accomplishing the goals of the task set by 

the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these 

goals? 

 Mental Demand: How much mental and perceptual activity was required (e.g. thinking, deciding, 

calculating, remembering, looking, searching, etc)? Was the task easy or demanding, simple or complex, 

exacting or forgiving? 
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APPENDIX D: ROBOT PERCEPTION 
QUESTIONNAIRE 

 
Please indicate whether you agree or disagree with the following statements. 

 
The robots were helpful. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots were capable. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots appeared to make their own decisions. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots appeared to disobey my commands. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots were cooperative. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots acted like members of the team. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots were easy to interact with. * 
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 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 

 
The robots were annoying. * 

 1 2 3 4 5 6 7 8 9  
Strongly Disagree 

         

Strongly Agree 
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Appendix E: Instructions for Human-
Robot Navigation Task 

 
You	
  will	
  be	
  remotely	
  supervising	
  two	
  robots	
  that	
  are	
  exploring	
  different	
  areas.	
  The	
  two	
  
robots	
  have	
  collected	
  information	
  that	
  needs	
  to	
  be	
  transmitted	
  back	
  to	
  the	
  control	
  
center.	
  Your	
  job	
  is	
  to	
  supervise	
  the	
  two	
  robots	
  which	
  will	
  be	
  exploring	
  at	
  the	
  same	
  time. 
 
The	
  robots'	
  job	
  is	
  to	
  help	
  you	
  find	
  an	
  appropriate	
  transmission	
  location.	
  Transmissions	
  
are	
  only	
  possible	
  in	
  locations	
  with	
  signal	
  strength	
  of	
  at	
  least	
  2400.	
   
 
Since	
  only	
  the	
  robot	
  can	
  determine	
  the	
  signal	
  strength	
  and	
  only	
  in	
  its	
  current	
  position,	
  
you	
  will	
  have	
  to	
  instruct	
  each	
  robot	
  using	
  this	
  console	
  to	
  explore	
  the	
  surface	
  to	
  find	
  an	
  
appropriate	
  transmission	
  location. 
 
For	
  example,	
  you	
  can	
  tell	
  the	
  robots	
  “go	
  straight,”	
  or	
  “turn	
  right”	
  and	
  they	
  will	
  follow	
  
your	
  orders.	
  You	
  should	
  avoid	
  collisions	
  with	
  obstacles	
  and	
  walls.	
  You	
  do	
  not	
  want	
  to	
  
leave	
  a	
  robot	
  idle,	
  as	
  it	
  may	
  go	
  into	
  hibernation	
  to	
  save	
  power	
  and	
  slow	
  you	
  down.	
   
 
Any	
  messages	
  from	
  the	
  robot	
  will	
  be	
  displayed	
  next	
  to	
  the	
  robot	
  view.	
  The	
  messages	
  
from	
  the	
  red	
  robot	
  will	
  come	
  in	
  red	
  text	
  and	
  the	
  messages	
  from	
  the	
  blue	
  robot	
  will	
  be	
  in	
  
blue	
  text. 
 
You	
  can	
  ask	
  the	
  robot	
  for	
  the	
  signal	
  strength	
  (e.g.,	
  “take	
  a	
  reading”)	
  and	
  it	
  will	
  tell	
  you	
  
the	
  current	
  signal	
  strength.	
  This	
  does	
  require	
  the	
  robot	
  to	
  stop	
  and	
  also	
  takes	
  up	
  
resources	
  so	
  the	
  robot	
  cannot	
  be	
  measuring	
  signal	
  strength	
  at	
  all	
  times.	
  Signal	
  strengths	
  
vary	
  from	
  0-­‐3000.	
  You	
  need	
  a	
  strength	
  of	
  at	
  least	
  2400	
  to	
  transmit	
  the	
  data. 
 
The	
  task	
  will	
  last	
  for	
  five	
  minutes	
  total.	
  The	
  robots	
  will	
  periodically	
  inform	
  you	
  of	
  the	
  
remaining	
  time.	
  	
  
 
The	
  task	
  will	
  be	
  considered	
  a	
  failure	
  if	
  either	
  robot	
  does	
  not	
  find	
  a	
  transmission	
  location	
  
in	
  time	
  (i.e.,	
  before	
  the	
  5	
  min.	
  are	
  up),	
  so	
  plan	
  accordingly.	
  You	
  will	
  now	
  have	
  the	
  
opportunity	
  to	
  see	
  the	
  robot	
  and	
  go	
  through	
  a	
  training	
  phase.	
  I’ll	
  start	
  by	
  demonstrating	
  
some	
  commands	
  and	
  then	
  I’ll	
  give	
  you	
  a	
  chance	
  to	
  interact	
  freely	
  with	
  the	
  robot.	
  	
  
	
  
Since	
  we	
  are	
  interested	
  in	
  evaluating	
  different	
  robotic	
  control	
  systems	
  for	
  team	
  tasks,	
  
we	
  will	
  ask	
  you	
  to	
  perform	
  the	
  navigation	
  task	
  three	
  times.	
  The	
  blocks	
  will	
  use	
  different	
  
robot	
  control	
  systems	
  that	
  have,	
  however,	
  similar	
  functionality.	
  In	
  some	
  blocks,	
  one	
  of	
  
the	
  robots	
  may	
  occasionally	
  start	
  working	
  autonomously,	
  without	
  your	
  command.	
  You	
  
can	
  always	
  interrupt	
  the	
  robot	
  by	
  issuing	
  your	
  own	
  commands.	
  After	
  the	
  experiment,	
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we	
  will	
  ask	
  you	
  a	
  few	
  questions	
  about	
  your	
  view	
  of	
  the	
  robot’s	
  performance	
  in	
  each	
  of	
  
the	
  three	
  blocks. 
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