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Abstract

In many real world problems we are interested in learning multiple tasks while the

training set for each task is quite small. When the different tasks are related, one

can learn all tasks simultaneously and aim to get improved predictive performance

by taking advantage of the common aspects of all tasks. This general idea is known

as multi-task learning and it has been successfully investigated in several technical

settings, with applications in many areas.

In this thesis we explore a Bayesian realization of this idea especially using

Gaussian Processes (GP) where sharing the prior and its parameters among the

tasks can be seen to implement multi-task learning. Our focus is on the functional

mixed-effects model. More specifically, we propose a family of novel Nonpara-

metric Bayesian models, Grouped mixed-effects GP models, where each individual

task is given by a fixed-effect, taken from one of a set of unknown groups, plus

a random individual effect function that captures variations among individuals.

The proposed models provide a unified algorithmic framework to solve time se-

ries prediction, clustering and classification.

We propose the shift-invariant version of Grouped mixed-effects GP to cope with

periodic time series that arise in astrophysics when using data for periodic variable

stars. We develop an efficient EM algorithm to learn the parameters of the model,

and as a special case we obtain the Gaussian mixture model and EM algorithm for

phased-shifted periodic time series. Furthermore, we extend the proposed model

by using a Dirichlet Process prior, thereby leading to an infinite mixture model. A

Variational Bayesian approach is developed for inference in this model, leading to

an efficient algorithm for model selection that automatically chooses an appropri-
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ate model order for the data.

We present the first sparse solution to learn the Grouped mixed-effects GP. We

show that, given a desired model order, how the sparse approximation can be

obtained by maximizing a variational lower bound on the marginal likelihood,

generalizing ideas from single-task Gaussian processes to handle the mixed-effects

model as well as grouping.

Finally, the thesis investigates the period estimation problem through the lens

of machine learning. Using GP, we propose a novel method for period finding that

does not make assumptions on the shape of the periodic function. The algorithm

combines gradient optimization with grid search and incorporates several mech-

anisms to overcome the high computational complexity of GP. We also propose a

novel approach for using domain knowledge, in the form of a probabilistic genera-

tive model, and incorporate such knowledge into the period estimation algorithm,

yielding significant improvements in the accuracy of period identification.
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Chapter 1

Introduction

This thesis presents several new research developments in Machine Learning. Ma-

chine learning refers to the science of getting computers to act based on past expe-

rience instead of being explicitly programmed (Mitchell, 1997). Machine learning

tasks can be broadly divided into three main categories, namely supervised learning,

unsupervised learning and reinforcement learning. In this thesis we will mostly deal

with supervised learning on large-scale problems while briefly discussing unsu-

pervised learning.

The framework of supervised learning describes a scenario in which a learner

is given a training set D = {xi, yi} where xi is normally referred as a feature vector

and yi is its corresponding label. The goal of a learning algorithm is to estimate a

function f : X → Y such that f (x∗) ≈ y∗ on any unseen examples x∗. Depending

on the structure of the output set Y (or labels), one can distinguish between two

types of supervised learning problems: classification (Y = {−1,+1}) and regression

(Y = IR).

The mainstream approach is based on statistical modeling. That is, one assumes

that a statistical model (specified by a set of parameters) generates the observed

data; the parameters are estimated using the data; based on these parameters,

one can make prediction for unknown quantities of interest. Different research

philosophies exist for this process, and in the statistical literature, they are often

categorized as the frequentist approach and the Bayesian approach. These approaches
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differ on how they treat the model parameters. The former treats model param-

eters as fixed unknown quantities while the latter views them being governed by

probability distributions (Gelman, 2004). Our methodology in this thesis belongs

to the Bayesian school of statistics, whose key principle is treating everything unknown

as random variables.

More specifically, we use generative models to describe the process of data gen-

eration, where the data includes some observed quantities and some hidden vari-

ables. We treat the data “as if” it is sampled using the model we assumed. This

process articulates the statistical assumptions that the model makes, and also spec-

ifies the joint probability distribution (which is proportional to likelihood times the

prior distribution) of the hidden and observed random variables. Given the ob-

served data, the primary focus is the problem of posterior inference, computing the

conditional distribution of the hidden variables given the observed data. Thus,

posterior inference is the process of finding the distribution of the hidden struc-

ture that likely generated the observed data.

The motivation of this work stems from our collaboration with astrophysicists,

who are interested in the problem of classification of stars into meaningful cat-

egories. A major effort in astronomy research is devoted to sky surveys, where

measurements of the brightness of stars or other celestial objects are taken over a

period of time to produce time series, also known as light curves. Classification as

well as other analyses of stars lead to insights into the nature of our universe. Yet

the rate at which data are being collected by these surveys far outpaces current

methods to process and classify them.

The data from star surveys is normally represented by time series of brightness

measurements, based on which they are classified into categories. Stars whose be-

havior is periodic are especially of interest in such studies. Figure 1-1 shows sev-

eral examples of such time series generated from the three major types of periodic

variable stars: Cepheids, RR Lyraes (RRL), and Eclipsing Binaries (EB).

Clearly, the structure of the time series can be interpreted as a “shape” that

is indicative of star type and intuitively, stars from the same class should share

3
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Figure 1-1: Examples of light curves of periodic variable. Left: Cepheid, middle:
RR Lyrae, right: Eclipsing Binary.

similar “shape”. However, we face a number of challenges, as follows

• Each class has an unknown number of typical “shapes”;

• Light curves are not sampled synchronously;

• Each light curve has a typical “shape” associated with the class it belongs to

and an individual variation perhaps due to its own physical structure;

• Some light curves have a small number of samples, preventing us from get-
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Figure 1-2: Examples that exhibit both group effects and individual effects. Left:
Orange Tree Growth (Pinheiro and Bates, 2000, Chap. 10), middle: Glucose Level
of different patients after insulin injection (Vicini and Cobelli, 2001; Denti et al.,
2010), right: Concentration of drug indomethacin in the bloodstream of six subjects
(Courtesy of MATLAB).

ting a clean picture of their “shapes”;

• As the light curves are periodic, they can appear in arbitrary phase.

Leaving the phase shift aside for a moment, as shown in Figure 1-2, these prop-

erties appear frequently in a wide range of real world applications. For example,

in the medical domain, Figure 1-2 (center) shows the glucose level of five differ-

ent patients after injecting insulin. The corresponding machine learning task is to

predict individual patient’s glucose level at certain times. One can easily see that

the glucose curve of every patient has a group specific shape (perhaps diabetic or

not) plus some individual fluctuation (perhaps reflecting the patient’s own health

condition). Similar observations can be made on data for orange tree growth (Fig-

ure 1-2, Left) and concentration of drug indomethacin (Figure 1-2, Right). We will

revisit the glucose data set in Chapter 3.

In this thesis, we address all the challenges by proposing a family of novel

Nonparametric Beyesian models, namely, Grouped Mixed-effects GP models. Our

models provide solutions as shown in the following table where the terminology

and models are given more precisely in Chapter 2.
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CHALLENGES SOLUTIONS

multiple typical “shapes” mixture model

non-synchronously sampled data regression based model

individual fluctuation mixed-effects model

sparse samples per times series multi-task learning

phase shift specialized phase-shifted regression model

At a high level, the intuition is as follows: we assume that each class/category

has multiple typical “shapes” (we call these “centers” by analogy to clustering

models) and each time series that belongs to this class is a sum of one of the typi-

cal “shapes” and a specific random fluctuation. This idea, known as Mixed-effects

model, was developed to handle clustered data and has been a topic of increas-

ing interest in statistics for the past several decades (Demidenko, 2005). In these

models the regression function is assumed to be a function of a fixed (population)

effect, an instance-specific random effect, and an error term. Observations within

the same group share a common effect and are therefore statistically dependent.

Linear models are commonly used in mixed-effects modeling and normally the

data points are synchronously sampled, for example, each patient is measured at

exactly the same time points. Our models make three major extensions: 1) we

allow multiple fixed-effects and let the model choose the appropriate number of

centers based on the observed data; 2) we learn the grouping rather than assum-

ing that it is known; 3) we model both the typical “shape” and the random “shape”

via a nonparametric Bayesian approach, namely, Gaussian Processes (GP). In this

way, we allow non-synchronously sampled data.

Nonparametric models have received increasing attention in machine learning

in the past two decades. While parametric models require a finite set of param-

eters capturing all the information contained in the data, nonparametric models

make no such assumption and allow the size of models to grow with data size.

One example is the Support Vector Machine (SVM) or more broadly kernel machines

where the decision function is a linear combination of the kernel function at every

6



point in training set, and thus has a complexity that grows with more observations.

Nonparametric methods hold significant advantages in wide range of real world

applications (Joachims, 2002; Lafferty et al., 2004; Kocijan et al., 2004; Joachims,

2005; Chu et al., 2005; Murillo-Fuentes et al., 2006).

Nonparametric Bayesian methods put a prior distribution over the unknown

(infinite set of) parameters. Therefore the prior distributions become random func-

tions, or more precisely, stochastic processes. Of them, the most elegant is the Gaus-

sian process (GP) model, which generalizes the multivariate normal distributions.

In recent years, GPs have gained popularity due to their ability to produce proba-

bilistic predictions and their explicit way of modeling correlation.

Chapter 2 gives an overview of Gaussian process modeling, with a focus on re-

gression. We provide background on multi-task learning and introduce the Mixed-

effects GP models and Grouped Mixed-effects GP models (GMT).

In Chapter 3, we focus on the original problem that motivated our thesis work,

astrophysics time series classification. Since we are interested in periodic stars,

there is one extra challenge: the time series are not phase aligned, meaning that

light curves in the same category share a similar shape but with some unknown

shift. Therefore, we modify our model to incorporate the phase shift explicitly

(yielding the Shift-invariant GMT model) and develop an efficient inference al-

gorithm based on the EM algorithm. As a special case we obtain the Gaussian

mixture model for phased-shifted periodic time series. As in other mixture mod-

els, setting the correct number of centers is an important yet challenging problem.

A common solution is to use a model selection metric which usually includes two

terms to compare models of different orders. The first term measures how well the

model fits the data. The second term, a complexity penalty, favors simpler models

(i.e., ones with fewer centers). In Chapter 3, we use another important tool from

the Nonparametric Bayesian literature, the Dirichlet Processes. The idea is as fol-

lows: rather than comparing models that vary in complexity, the DP approach fits

a single model that can adapt its complexity to the data. Thus, by using a Dirichlet

Process prior over the mixture proportion, the model estimates how many clusters
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are needed to model the observed data and allows future data to exhibit previously

unseen clusters. This leads to an infinite mixture model (the DP-GMT model) that

is capable of automatic model selection. This Chapter is based on (Wang et al.,

2010, 2011).

However, one of the main difficulties with this model, is the computational cost.

The time complexity of GP training scales cubically with the number of training

data points N, and prediction scales quadratically in N. GPs in their standard

form have therefore been limited in their applicability to data sets of only several

thousand data points. In our case, while the number of samples per task is small,

the total sample size can be large, and the typical cubic complexity of GP inference

can be prohibitively large. Previous work showed that some improvement can

be obtained when all the input tasks share the same sampling points, or when

different tasks share many of the input points. However, if the number of distinct

sampling points is large the complexity remains high. To address this issue, in

Chapter 4 we propose a sparse model with variational model selection that greatly

speeds up learning without degrading performance. The key idea is to compress

the information of all tasks into an optimal set of pseudo samples for each mean

effect. Our approach is particularly useful when individual tasks have a small

number of samples, different tasks do not share sampling points, and there is a

large number of tasks. This Chapter is based on (Wang and Khardon, 2012b,a).

Another challenge in classification of astrophysics time series is to determine

whether a light curve is a variable star and to further estimate its period. State-of-

the-art performance requires a human in the loop to verify that the star is in fact

periodic, and that the period-finder has returned the true period. In Chapter 5,

we cast this problem as a model selection problem under the GP regression frame-

work. We develop a novel algorithm for parameter optimization for GP which is

useful when the likelihood function is very sensitive to the parameters with nu-

merous local minima, as in the case of period estimation. In particular, we propose

and evaluate: an approximation using a two level grid search, an approximation

using limited cyclic optimization, a method using sub-sampling and averaging,
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and a method using low-rank Cholesky approximations. Experimental results val-

idate our approach showing significant improvement over existing methods. This

Chapter is based on (Wang et al., 2012).

Finally, in Chapter 6, we conclude and outline directions for future work. In

summary, our contributions are

1. We propose the Grouped Mixed-effects GP models, a family of novel Nonpara-

metric Bayesian models for multi-task learning, and develop computation-

ally efficient inference algorithms for these models. Our models are well

suited for time series prediction, classification and clustering.

2. We extend the aforementioned Grouped Mixed-effects GP model to handle phase

shift, yielding the Shift-invariant Grouped Mixed-effects GP (GMT). We also pro-

pose its infinite version, DP-GMT that can choose model order automatically.

For both models, we develop inference algorithms, namely, an EM algorithm

for the GMT model and a Variational EM algorithm for DP-GMT optimizing

the maximum a posteriori (MAP) estimates for the parameters of the models.

3. To make the Grouped Mixed-effects GP “big data friendly”, we develop a sparse

variational learning algorithm that reduces the computational complexity sig-

nificantly. As a special case, we recover the sparse algorithm for singe-task

GP regression proposed in Titsias (2009).

4. We develop a new algorithm for period estimation using the GP regression

model by developing a novel method for model selection for GP. Our al-

gorithm combines gradient optimization with grid search and incorporates

several mechanisms to improve the complexity over the naive approach. In

addition, we also propose a novel approach for using domain knowledge,

in the form of a probabilistic generative model, and incorporate it into the

period estimation algorithm.
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Chapter 2

Gaussian Processes and Multi-task

Learning

Our work makes extensive use of kernel based learning with Gaussian processes

(GP) and properties of multivariate normal distributions. For an in depth intro-

duction to this area, the reader is encouraged to consult (Rasmussen and Williams,

2006). We also assume familiarity with general principles and techniques in Pattern

Recognition, for example, as covered by (Bishop, 2006). In this chapter we review

some of the basic results and algorithms for learning with GP and then define the

multi-task learning and mixed-effects model studied in this thesis. More specific

tools and techniques are discussed in the context of their usage in individual chap-

ters, in particular, Expectation Maximization in Section 3.2.1, Dirichlet processes

and Variational EM in Section 3.3.

Notation

Throughout the thesis, scalars are denoted using italics, as in x, y ∈ IR; vectors

(column vectors by default) use bold typeface, as in x, y, and xi denotes the ith

entry of x. For a vector x and real valued function f : IR → IR, we extend the

notation for f to vectors so that f (x) = [ f (x1), · · · , f (xn)]T where the superscript

T stands for transposition (and the result is a column vector). K(·, ·) denotes a
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kernel function associated with some reproducing kernel Hilbert space (RKHS) H

and its norm is denoted as ‖ · ‖H, i.e. ‖ f ‖2
H = K( f , f ). To keep the notation simple,

∑M
j=1 or ∏M

j=1 is substituted by ∑j or ∏j where the index j is not confusing.

Gaussian distributions are a convenient modeling tool because their analytical

properties make a wide range of mathematics and engineering problems tractable.

These nice properties hold even when we increase the dimensionality from 1 to in-

finity. Let us first introduce the multivariate Normal distribution. An n-dimensional

random vector x that follows a multivariate normal distribution of mean µ and co-

variance Σ, denoted as N (µ, Σ), has a probability density (pdf)

(2π)−n/2|Σ|−1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

The following formulas for multivariate normal distributions are used repeatedly

throughout this thesis. Let

x

y

 ∼ N
µx

µy

 ,

A B

BT C

 ,

then the marginal distribution of x and y are

x ∼ N (µx, A)

y ∼ N (µy, C).

The conditional distribution is

x|y ∼ N (µx + BC−1(y− µy), A− BC−1B
T
)

Let x ∼ N (µ, Σ) and y|x ∼ N (Ax + b, Λ), then we have the marginal distribution

of y,

y ∼ N (Aµ + b, Λ + AΣAT).
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2.1 Gaussian Processes for Machine Learning

2.1.1 Learning and Inference

A Gaussian process (GP) is a functional extension for Multivariate Gaussian distri-

butions. In the Bayesian literature, it has been widely used in statistical models by

substituting a parametric latent function with a stochastic process with a Gaussian

prior (Rasmussen and Williams, 2006). To explain this approach, we start with the

following regression model,

y = fw(x) + ε, (2.1)

where fw(x) is the regression function with parameter w and ε is independent

identically distributed (iid) Gaussian noise with variance σ2. For example, in linear

regression fw(x) = wTx and therefore y ∼ N (wTx, σ2). Given the data D =

{xi, yi}, i = 1, · · · , N, one wishes to infer w and the basic approach is to maximize

the likelihood

L(w|D) = Pr(D|w) =
N

∏
i=1

Pr(yi|xi, w).

In Bayesian statistics, the parameter w is assumed to have a prior probability

Pr(w) which encodes the prior belief on the parameter. The inference task becomes

calculating the posterior distribution over w, which, using the Bayes formula, is

given as

Pr(w|D) ∝ Pr(D|w)Pr(w). (2.2)

The predictive distribution for a new observation x∗ is given by

Pr( f (x∗)|D) =
∫

Pr( f (x∗)|w)Pr(w|D)dw. (2.3)

Returning to linear regression, the common model assumes that the prior for w

is a zero-mean multivariate Gaussian distribution, and the posterior turns out to

be multivariate Gaussian as well. Generally, calculating the posterior distribution

is difficult in Bayesian statistics. However, in this case, as well as in GP mod-

els defined below, we often have simple algorithms for inference or calculation of
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desired quantities because of the nice properties of multivariate Gaussian distribu-

tions and corresponding facts from linear algebra.

This approach can be made more general using a nonparametric Bayesian model.

In this case we replace the parametric latent function fw by a stochastic process f

where f ’s prior is given by a Gaussian process (GP). A GP is specified by a mean

function m(·) and covariance functionK(·, ·). This allows us to specify a prior over

functions f such that the distribution induced by the GP over any finite sample is

normally distributed. The particular choice of covariance function determines the

properties of sample functions drawn from the GP prior (e.g. smoothness, length

scales, amplitude etc).

More precisely, the GP regression model with zero mean and covariance func-

tion K(·, ·) is as follows. Given sample points [x1, . . . , xn]T let K = (K(xi, xj))i,j.

The induced distribution on the values of the function at the sampling points is

f , [ f (x1), · · · , f (xn)]
T ∼ N (0, K), (2.4)

where N denotes the multivariate normal distribution. Now assuming that yi is

generated from f (xi) using iid noise as in (2.1) and denoting y = [y1, . . . , yn]T we

get that y ∼ N (0, K + σ2I) and the joint distribution is given by

f

y

 ∼ N
0

0

 ,

K K

K K + σ2I

 . (2.5)

Using properties of multivariate Gaussians we can see that the posterior distribu-

tion f|y is given by

Pr(f|y) = N (K (σ2I + K)−1 y , K(σ2I + K)−1K). (2.6)

Similarly, given the observed dataD, the predictive distribution for some test point
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x∗ distinct from the training examples is given by

Pr( f (x∗)|x∗,D) =
∫

Pr( f (x∗)|x∗, f )Pr( f |D)d f

= N
(

k(x∗)T(σ2I + K)−1y,

K(x∗, x∗)− k(x∗)T(σ2I + K)−1k(x∗)
) (2.7)

where k(x∗) = [K(x1, x∗), · · · ,K(xN, x∗)]T. Therefore, although the model is based

on a distribution over functions, inference and prediction can be done directly us-

ing finite samples. Figure 2-1 illustrates GP regression, by showing how a finite

sample induces a posterior over functions and their predicted values for new sam-

ple points.

−8 −6 −4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

 

 

95% CI
Posterior mean
Observations

Figure 2-1: Illustration of prediction with GP regression. The data points D =
{xi, yi} are given by the crosses. The shaded area represents the pointwise 95%
confidence region of the predictive distribution. As can be seen from (2.7), GP
regression can be seen to perform a variant of kernel regression where f (x∗) is a
weighted average of all the measurements y. While the values of the weights are
obscured because of the inverse of the covariance matrix in that expression, one can
view this roughly by an analogy to nearest neighbor regression where the mean of
f (x∗) is affected more by the measurements whose sampling points are “close”
to x∗ and the variance of f (x∗) is small if x∗ is surrounded by measurements. A
deeper discussion of the equivalent kernel is given in (Rasmussen and Williams,
2006).

Readers with background in kernel-based machine learning may find the form
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of the posterior and predictive distribution very familiar. Indeed, the posterior

mean of the GPR is exactly the solution to the following least squares problem,

n

∑
i=1

( f (xi)− y)2 + σ2‖ f ‖H,

where ‖ f ‖H denotes the RKHS norm of the function f . One can relate a Gaussian

process f to a RKHSH with kernel K such that

cov[ f (x), f (y)] = K(x, y) ∀x, y ∈ X. (2.8)

In this way, we can express a prior on functions f using a zero mean Gaussian

process (Lu et al., 2008).

f ∼ exp
{
−1

2
‖ f ‖2

H

}
. (2.9)

Though tempting as it sounds, in general, a Gaussian process cannot be thought

of as a distribution on the RKHS, because with probability 1, one can find a Gaus-

sian process such that its sample path does not belong to the RKHS. However, the

equivalence holds between the RKHS and the expectation of a Gaussian process

conditioned on a finite number of observations. For more details on the relation-

ship between RKHS and Gaussian processes we refer interested readers to Seeger

(2004).

2.1.2 Model Selection

From the previous section, we know how to perform GPR inference when the co-

variance function is fully specified. However, in real applications, it is not easy to

determine the parameters of the covariance function. Thus, we need a criterion to

help us choose the free parameters (hyper-parameters) in the covariance function.
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Figure 2-2: Estimated Curves using different values of hyper-parameters. The blue
plus are observations and the solid curves are estimated functions. The shaded
areas are 0.95 confidence region. Data is generated from a zero mean GP with RBF
kernel with a = 1, σ2 = 0.5. Three pictures show the learned curves with a = 1 but
using different σ2’s. Left: σ2 = 0.05; Center: σ2 = 0.5; Right: σ2 = 5.

For example, consider the Radial Basis Function (RBF kernel), i.e.,

K(x, y) = a exp
{
−‖x− y‖2

2σ2

}
, (2.10)

The two hyper-parameters a and σ2 govern properties of sample functions where

a controls the typical amplitude and σ2 controls the typical length scale of varia-

tion. We refer to any hyper-parameters of a covariance function collectively as the

vector θ. Clearly, we can see that function variables close in input space are highly

correlated, whereas function variables far apart relative to the length scale σ2 are

uncorrelated.

Figure 2-2 shows that severe over/under fitting could happen when one chooses

the wrong hyper-parameters. Therefore, selecting an appropriate model is of vi-

tal importance in real world applications. We next review two most popular ap-

proaches. A more detailed treatment can be found in (Rasmussen and Williams,

2006).

Marginal Likelihood

The standard approach, known as empirical Bayes, is to identify the hyper-parameters

that maximize the marginal likelihood. More precisely, we try to find an appropri-
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ate modelM∗ such that

M∗ = argmax
M

[log [Pr(y|x;M)]] (2.11)

where the logarithm of the marginal likelihood is given by

log Pr(y|x;M) = log
(∫

Pr(y| f , x;M)Pr( f |x;M) d f
)

= −1
2

yT(K + σ2I)−1y

− 1
2

log |K + σ2I|−1 − n
2

log 2π

(2.12)

and (2.12) holds because y ∼ N (0, K + σ2I) (Rasmussen and Williams, 2006). We

can see that the hidden function f is marginalized out, hence the name “marginal

likelihood”. Typically, one can optimize the marginal likelihood by calculating

the partial derivative of the marginal likelihood with respect to (w.r.t.) the hyper-

parameters and optimizing the hyper-parameters using gradient based search (Ras-

mussen and Williams, 2006). The partial derivative of (2.12) w.r.t. the parameter θj

is (Rasmussen and Williams, 2006)

∂

∂θj
log Pr(y|x;M) = Tr

((
ααT −K−1

σ

) ∂Kσ

∂θj

)
(2.13)

where Kσ = K + σ2I and α = K−1
σ y.

In this thesis, we mostly use this method with gradient based optimization.

However, in Chapter 5 where we study period estimation, the marginal likelihood

becomes very sensitive to the hyper-parameters and thus gradient alone fail to

work. We therefore develop a more elaborate method in Chapter 5.

Cross-Validation

An alternative approach (Rasmussen and Williams, 2006) picks hyperparameter

M by minimizing the empirical loss on a hold out set. This is typically done with

a leave-one-out (LOO-CV) formulation, which uses a single observation from the
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original sample as the validation data, and the remaining observations as the train-

ing data. The process is repeated such that each observation in the sample is used

once as the validation data. To be precise, we choose the hyper-parameter M∗

such that

M∗ = argmin
M

n

∑
i=1

(yi − f̂−i(xi))
2 (2.14)

where f̂−i is defined as the posterior mean given the data {x−i, y−i} in which the

subscript −i means all but the ith sample, that is,

f̂−i(x) = K(x−i, x)T
(

K−i + σ2I
)−1

y−i. (2.15)

It can be shown that this computation can be simplified (Rasmussen and Williams,

2006) using the fact that

yi − f̂−i(xi) =

[
(K + σ2I)−1y

]
i

[(K + σ2I)−1]ii
(2.16)

where [·]i is the ith entry of the vector and [·]ii denotes the (i, i)th entry of the

matrix. We will compare this approach to the marginal likelihood approach in

Chapter 5. In Chapter 3 and 4, we use gradient based optimization of marginal

likelihood to select hyper-parameters.

2.2 Multi-task Learning

In real world problems, there are situations when multiple learning tasks are need

while the training set for each task is quite small. For example, in pharmacological

studies, we may be attempting to predict the blood concentration of a medicine at

different times across multiple patients. Finding the best-fit function for a single

patient based only on his measurements makes the learning difficult. Instead, if

we can get strength from measurements across all the patients, it is more likely to

estimate a function that better generalizes to the population at large. Multi-task
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learning arises in favor of learning multiple correlated task simultaneously. Over

the last decade, this topic has been the focus of much interest in the machine learn-

ing literature. Several approaches have been applied to a wide range of domains,

such as medical diagnosis, (Bi et al., 2008), recommendation systems (Dinuzzo

et al., 2008), HIV Therapy Screening (Bickel et al., 2008).

Consider the standard supervised learning problem, given a training set D =

{xi, yi}, i = 1, · · · , N, where xi ∈ X ⊂ IRd, single-task learning focuses on finding

a function f : X → IR, where X ⊂ IRd, which best fits and generalizes the observed

data. A fundamental limitation is the cost incurred by the preparation of the large

training samples required for good generalization. A potential remedy is offered

by multi-task learning: in many cases, while individual sample sizes are rather

small, there are samples to represent a large number of learning tasks, which share

some constraining or generative property. More precisely, suppose we have a set

of M (related) tasks, with jth task generated data D j = (xj
i , yj

i), i = 1, 2, · · · , Nj.

We are interested in finding M functions for each task. If one learns each task sep-

arately, it boils down to single-task learning. However, when there are relations

between the tasks to learn, it can be advantageous to learn all tasks simultane-

ously instead of following the more traditional approach of learning each task in-

dependently of the others. Thus, exploring a common property using the entire

collection of training samples, it should allow better estimation of the individual

tasks despite their small individual sample sizes. Indeed, the information pro-

vided by data for a specific task may serve as a domain- specific inductive bias for

the others.

In the past decade, starting with the seminal work of Caruana (1997), multi-

task learning, also under names such as transfer learning, and learning to learn, has

been extensively studied in the Machine Learning community (Bakker and Hes-

kes, 2003; Micchelli and Pontil, 2005; Xue et al., 2007a; Yu et al., 2005; Schwaighofer

et al., 2005; Pillonetto et al., 2010; Pan and Yang, 2010). There are two main for-

mulations of multi-task learning that are closely related to the work in this thesis,

namely in terms of the regularization framework and in the use of a Bayesian ap-

19



proach.

2.2.1 Regularization Formation

In particular, in the regularization framework, we wish to solve the following prob-

lem (Micchelli and Pontil, 2005)

argmin
f 1,··· , f M∈H

 1
M

M

∑
j=1

Nj

∑
i=1

(yj
i − f j(xj

i))
2 + λPEN( f 1, f 2, · · · , f M)

 (2.17)

where the penalty term, applying jointly to all the tasks, encodes our prior infor-

mation on how smooth the functions are, as well as how these tasks are correlated

with each other. For example, setting the penalty term to ∑j ‖ f j‖H implies that

there is no correlation among the tasks. It further decomposes the optimization

functional to M separate single-task learning problems. On the other hand, with a

shared penalty, the joint regularization can lead to improved performance.

Moreover, we can use a norm in RKHS with a multi-task kernel to incorporate

the penalty term (Micchelli and Pontil, 2005). Formally, consider a vector-valued

function f : X → IRM defined as f , [ f 1, f 2, · · · , f M]T. Then Equation (2.17) can

be written as

argmin
f∈H

 1
M

M

∑
j=1

Nj

∑
i=1

(yj
i − f j(xj

i))
2 + λ‖ f ‖2

H

 (2.18)

where ‖ · ‖H is the norm in RKHS with the multi-task kernelQ : (Λ, X)× (Λ, X)→

IR, where Λ = {1, 2, · · · , M}. As shown by Evgeniou et al. (2006), the representer

theorem shows that the solution to (2.18)

f `(·) =
M

∑
j=1

Nj

∑
i=1

cj
iQ((·, `), (xj

i , j)) (2.19)

with norm

‖ f ‖2
Q = ∑

`,k

n`

∑
i=1

nk

∑
j=1

c`i ck
jQ((x`i , `), (xk

j , k)).
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Let C = [c1
1, c1

2, · · · , cM
nM

]T, Y = [y1
1, y1

2, · · · , yM
nM

]T ∈ IR∑j Nj and X = [x1
1, x1

2, · · · , xM
nM

].

Using this formation, the coefficients {cj
i} are given by the following linear system

(Q + λI)C = Y (2.20)

where Q ∈ IR∑j Nj×∑j Nj is the kernel matrix formed by X.

2.2.2 GP Model for Multi-task Learning

On the other hand, several approaches formalizing multi-task learning exist within

Bayesian statistics. Considering hierarchical Bayesian models (Xue et al., 2007b;

Gelman, 2004), one can view the parameter sharing of the prior among tasks as a

form of multi-task learning where evidence from all tasks is used to infer the pa-

rameters. Over the past few years, Bayesian models for multi-task learning were

formalized using Gaussian processes (Yu et al., 2005; Schwaighofer et al., 2005; Pil-

lonetto et al., 2010). One particularly interesting Multi-task GP model is proposed

by Bonilla et al. (2008) that learns a shared covariance matrix on features and a

covariance matrix for tasks that explicitly models the dependency between tasks,

i.e. Cov( f i(s), f j(t)) = C(i, j)×K(s, t).

In this thesis, we concentrate on the so-called nonparametric Bayesian mixed-

effects model (Lu et al., 2008; Pillonetto et al., 2010). In this mixed-effects model,

information is shared among tasks by having each task f j (associated with the

dataset D j) combine a common (fixed effect) portion and a task specific portion,

each of which is generated by an independent Gaussian process.

Assumption 1 (Mixed-effects GP) For each j and x ∈ X,

f j(x) = f̄ (x) + f̃ j(x), j = 1, · · · , M. (2.21)

where f̄ and f̃ j are zero-mean Gaussian processes. In addition, f̄ and f̃ j are assumed to be

mutually independent.

This assumes that the fixed-effect (mean function) f̄ (x) is sufficient to capture the
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behavior of the data, an assumption that is problematic for distributions with sev-

eral modes. To address this, we introduce a mixture model allowing for multi-

ple modes (just like standard Gaussian mixture model (GMM)), but maintaining

the formulation using Gaussian processes. This amounts to adding a group effect

structure and yields the central object of our study in this thesis:

Assumption 2 (Grouped Mixed-effects GP (GMT)) For each j and x ∈ X,

f j(x) = f̄zj(x) + f̃ j(x), j = 1, · · · , M (2.22)

where { f̄s}, s = 1, · · · , k and f̃ j are zero-mean Gaussian processes and zj ∈ {1, · · · , k}.

In addition, { f̄s} and f̃ j are assumed to be mutually independent.

We can connect this model back to the regularization framework. With the

grouped-effect model and groups predefined, one can define a kernel that relates

(with non zero similarity) only points from the same example or points for different

examples but the same center as follows

Q((x, i), (x′, j)) = δzi,zjKzi(x, x′) + δi,jK̃i(x, x′)

where Kzi(x, x′) = cov[ f̄zi(x), f̄zi(x′)],

K̃i(x, x′) = cov[ f̃ j(x), f̃ j(x′)].

We point the connection out for completeness but will not use this formation in the

rest of the thesis.

In Chapter 3, we will discuss an extension of Grouped Mixed-effects GP that

is capable of handling phase shifted time series data. As will become clear there,

the complexity of inference in GMT can be prohibitively high when we have many

tasks. We will address the time complexity issue of the proposed model in Chap-

ter 4 by developing a so-called variational sparse solution for the model. Chapter 5

goes back to the problem of inference in single task GP when applied to the period

estimation problem.
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Our implementation of all the algorithms introduced in this thesis makes ex-

tensive use of the GPML package (Rasmussen and Nickisch, 2010) and extends it

to implement the required functions.
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Chapter 3

Shift-invariant Grouped

Mixed-effects GP

In some applications, we face the challenge of learning a periodic function on a

single period from samples. Motivated by an application in Astrophysics, we con-

sider the case where the mean effect functions in the same group may differ in their

phase. We are interested in classifying stars into different categories based on the

time series like the data shown in Figure 3-1. It can be noticed that there are two

main characteristics of this data set:

• The time series are not phase aligned, meaning that the light curves in the

same category share a similar shape but with some unknown shift.

• The time series are non-synchronously sampled and each light curve has a

different number of samples and sampling times.

These characteristics were our motivation for the main object introduced in this

chapter, which extends the grouped mixed-effects model (see Assumption 2) such

that each task may be an arbitrarily phase-shifted image of the original time series.

We call this model Shift-invariant Grouped Mixed-effects Model (GMT), which allows

us to handle phase shifted time series. In particular, we have the following model:

Assumption 3 (Shift-invariant Grouped mixed-effects Model) For the j-th task and
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Figure 3-1: Examples of light curves of periodic variable stars folded according
to their period to highlight the periodic shape. Left: Cepheid, middle: RR Lyrae,
right: Eclipsing Binary.

x ∈ [0, T),

f j(x) = [ f̄zj ∗ δtj ](x) + f̃ j(x), j = 1, · · · , M (3.1)

where zj ∈ {1, · · · , k}, { f̄s}, s = 1, · · · , k and { f̃ j} are zero-mean Gaussian processes, ∗

stands for circular convolution and δtj is the Dirac δ function with support at tj ∈ [0, T).

In addition, { f̄s}, f̃ j are assumed to be mutually independent.

Remark 1 Given a periodic function f with period T, its circular convolution with an-

other function h is defined as

( f ∗ h)(t) ,
∫ t0+T

t0

f (t− τ)h(τ)dτ

where t0 is arbitrary in IR and f ∗ h is also a periodic function with period T. Using the

definition we see that,

f ∗ δtj(t) = f (t− tj),

and thus ∗ performs a right shift of f or in other words performs a phase shift of tj on f .

Alternatively, our model can be viewed as a probabilistic extension of the Phased

K-means algorithm of Rebbapragada et al. (2009) that performs clustering for phase-
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shifted time series data, and as a non-parametric Bayesian extension of mixtures

of random effects regressions for curve clustering (Gaffney and Smyth, 2003). Like

previous work, the GMT model assumes that the model order is known a priori.

In Section 3.3, we present the DP-GMT model extending GMT by using a Dirichlet

process prior on the mixture proportions so that the number of mixture compo-

nents is adaptively determined by the data rather than being fixed explicitly.

Our main technical contribution is the inference algorithm for the GMT and

DP-GMT. We develop details for the EM algorithm for the GMT model and a Vari-

ational EM algorithm for DP-GMT optimizing the maximum a posteriori (MAP)

estimates for the parameters of the models. The main insights in the GMT solu-

tion are in estimating the expectation for the coupled hidden variables (the cluster

identities and the task specific portion of the time series) and in solving the regu-

larized least squares problem for a set of phase-shifted observations. In addition,

for the DP-GMT, we show that the variational EM algorithm can be implemented

with the same complexity as the fixed order GMT without using sampling. Thus

the DP-GMT provides an efficient model selection algorithm compared to alterna-

tives such as Bayesian Information Criterion (BIC). As a special case our algorithm

yields the (Infinite) Gaussian mixture model for phase shifted time series, which

may be of independent interest, and which is a generalization of the algorithms

of Rebbapragada et al. (2009) and Gaffney and Smyth (2003).

Our model primarily captures regression of time series but because it is a gen-

erative model it can be used for class discovery, clustering, and classification. We

demonstrate the utility of the model using several experiments with both synthetic

data and real-world time series data from astrophysics. The experiments show

that our model can yield superior results when compared to the single-task learn-

ing and Gaussian mixture models, especially when each individual task is sparsely

and non-synchronously sampled. The DP-GMT model yields results that are com-

petitive with model selection using BIC over the GMT model, at much reduced

computational cost.
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The remainder of the chapter is organized as follows. Section 3.1 defines the

new generative model, Section 3.2 develops the EM algorithm for it, and the in-

finite mixture extension is addressed in Section 3.3. The experimental results are

reported in Section 3.4. Related work is discussed in Section 3.5 and the final sec-

tion concludes with a discussion and outlines ideas for future work.

3.1 Model Description

We start by formally defining the generative model, which we call Shift-invariant

Grouped mixed-effects Model (GMT). In this model, k group effect functions are as-

sumed to share the same GP prior characterized by K0. The individual effect func-

tions are Gaussian processes with covariance function K. The model is shown in

Figure 3-2 and it is characterized by parameter setM = {K0,K, α, {tj}, σ2} where

α is the vector of the mixture proportion and tj is the phase shift for the jth time

series. The generative process is as follows

1. Draw the fixed-effect functions (centers): f̄s|K0 ∼ exp
{
−1

2
‖ f̄s‖2

H0

}
, s =

1, 2, · · · , k

2. For the jth time series

• Draw zj|α ∼ Multinomial(α)

• Draw the random effect: f̃ j|K ∼ exp
{
−1

2
‖ f̃ j‖2

H

}
• Draw yj|zj, f j, xj, tj, σ2 ∼ N

(
f j(xj), σ2Ij

)
, where f j = f̄zj ∗ δtj + f̃ j.

Additionally, denoteX = {x1, x2, · · · , xM} andY = {y1, y2, · · · , yM}, where xj are

the time points when the jth time series is sampled and yj are the corresponding

observations.

We assume that the group effect kernel K0 and the number of centers k are

known. The assumption on K0 is reasonable in that, normally, we can get more in-

formation on the shape of the mean waveforms, thereby making it possible to de-

sign the kernel forH0. On the other hand, the individual variations are more arbi-
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Figure 3-2: GMT: Plate graph

trary and thereforeK is not assumed to be known. The assumption that k is known

requires some form of model selection. An extension using a non-parametric Bayesian

model, the Dirichlet process (Teh, 2010), that does not limit k is developed in Sec-

tion 3.3. The group effect {fs}, individual shifts {tj}, noise variance σ2 and the

kernel for individual variations K are unknown and need to be estimated. The

cluster assignments {zj} and individual variation { f̃ j} are treated as hidden vari-

ables. Note that one could treat {fs} too as hidden variables, but we prefer to get a

concrete estimate for these variables because of their role as the mean waveforms

in our model.

The model above is a standard model for regression. We propose to use it

for classification by learning a mixture model for each class and using the Max-

imum A Posteriori (MAP) probability for the class for classification. In particu-

lar, consider a training set that has L classes, where the jth instance is given by

Y j = (xj, yj, oj) ∈ IRNj × IRNj × {1, 2, · · · , L}. Each observation (xj, yj) is given a

label from {1, 2, · · · , L}. The problem is to learn the model M` for each class sep-

arately (L in total) and the classification rule for a new instance (x, y) is given by

o = argmax
`={1,··· ,L}

Pr(y|x; M`)Pr(`). (3.2)
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As we show in our experiments, the generative model can provide explanatory

power for the application while giving excellent classification performance.

3.2 Parameter Estimation

Given data set Y = {xj, yj} = {xj
i , yj

i}, i = 1, · · · , Nj, j = 1, · · · , M, the learning

process aims to find the MAP estimates of the parameter setM = {α, {fs}, {tj}, σ2,K}

M∗ = argmax
M

(Pr(Y|X ;M)× Pr[{fs};K0]) . (3.3)

The direct optimization of (3.3) is analytically intractable because of coupled sums

that come from the mixture distribution. To solve this problem, we resort to the

EM algorithm (Dempster et al., 1977).

3.2.1 EM Algorithm

The EM algorithm is an iterative method for optimizing the maximum likelihood

(ML) or MAP estimates of the parameters in the context of hidden variables. Alter-

natively, it can be viewed as an estimation problem involving incomplete data in

which each unlabeled observation in the mixture is regarded as missing its label.

Let X be the observed data and Z be the hidden variables, i.e. in the GMM case,

the hidden variables indicate the class membership of the data. We are given a

joint distribution of the Pr(X, Z), governed by a set of parameters O, our goal is to

find the best parameters O∗ that maximize Pr(X).

We assume that if we are given the complete data {X, Z}, then the ML estimate

becomes significantly easier. With the hidden variable missing, the best we can do

is to: 1) estimate the distribution of the hidden variables Z (based on the observed

data X) ; 2) find the parameters that maximize the expected complete data likeli-

hood. This is what the EM algorithm does. More precisely, starting with an initial

value of O0, the EM algorithm iterates between the following two steps until it

converges,
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• In the Expectation step, one calculates the posterior distribution of the hidden

variables based on the current estimate Og, and then calculate the following

Q function

Q(O,Og) =
∫

ln Pr(X, Z|O)d Pr(Z|X,Og).

• In the Maximization step, one finds the best parameters O∗ that maximizes

Q(O,Og),

O∗ = argmax
O

Q(O,Og),

and O∗ becomes the new Og.

The EM algorithm is guaranteed to converge, although it may converge to a lo-

cal minimum. A common approach to address this is to repeat the EM several

times with different initialization and output the parameters with the maximum

log likelihood.

3.2.2 Expectation step

In our case, the hidden variables are z = {zj} (which is the same as in the standard

GMM), and f̃ := {f̃j , f̃ j(xj)}, j = 1, · · · , M. The algorithm iterates between the

following expectation and maximization steps until it converges to a local maxi-

mum. In the E-step, we calculate

Q(M,Mg) = IE{z,f̃|X ,Y ;Mg}
[
log
{

Pr(Y , f̃, z|X ;M)× Pr[{fs};K0]
}]

(3.4)

whereMg stands for estimated parameters from the last iteration. For our model,

the difficulty comes from estimating the expectation with respect to the coupled

latent variables {z, f̃}. In the following, we show how this can be done. First

notice that,

Pr(z, f̃|X ,Y ;Mg) = ∏
j

Pr(zj, f̃j|X ,Y ;Mg)
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and further that

Pr(zj, f̃j|X ,Y ;Mg) = Pr(zj|xj, yj;Mg)× Pr(f̃j|zj, xj, yj;Mg). (3.5)

The first term in (3.5) can be further written as

Pr(zj|xj, yj;Mg) ∝ Pr(zj;Mg)Pr(yj|zj, xj;Mg) (3.6)

where Pr(zj;Mg) is specified by the parameters estimated from last iteration. Since

zj is given, the second term is the marginal distribution that can be calculated us-

ing a Gaussian process regression model. In particular, denote fj = fzj ∗ δtj(xj) and

let Kg
j be the kernel matrix for the jth task using parameters from last iteration, i.e.

Kg
j = (K(xj

i , xj
l))il, the marginal distribution is

yj|zj ∼ N (fj, Kg
j + σ2I). (3.7)

Next consider the second term in (3.5) and recall that f̃j = f̃ j(xj). Given zj, there

is no uncertainty about the identity of fzj and therefore the calculation amounts to

estimating the posterior distribution under standard Gaussian process regression.

In particular,

yj − fj ∼ N ( f̃ j(xj), σ2I)

f̃ j ∼ exp
{
−1

2
‖ f̃ j‖2

K

}

and the conditional distribution is given by

f̃j|zj, xj, yj ∼ N (µ
g
j , Cg

j ) (3.8)

where µ
g
j is the posterior mean of f̃j

µ
g
j = Kg

j (K
g
j + σ2I)−1(yj − fj) (3.9)
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and Cg
j is the posterior covariance of f̃j

Cg
j = Kg

j −Kg
j (K

g
j + σ2I)−1Kg

j . (3.10)

Since (3.6) is Multinomial and f̃j is normal in (3.8), the marginal distribution of f̃j

is a Gaussian mixture distribution given by

Pr(f̃j|xj, yj;Mg) = ∑
s

Pr(zj = s|xj, yj;Mg)

×N
(

µ
g
j , Cg

j |zj = s;Mg
)

, s = 1, · · · , k.

To work out the concrete form of Q(M,Mg), denote zil = 1 if zi = l and zil = 0

otherwise. Then the complete data likelihood can be reformulated as

L = Pr(Y , f, z;X ,M)

= ∏
j,s

[
αs Pr(yj, f̃j|zj = s;M)

]zjs

= ∏
j,s

[
αs Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]zjs

where we have used the fact that exactly one zjs is 1 for each j and included the

last term inside the product over s for convenience. Then (3.4) can be written as

Q(M,Mg) = −1
2 ∑

s
‖ fs‖2

H0
+ IE{z,f̃|X ,Y ;Mg} [logL] .

Denote the second term by Q̃. By a version of Fubini’s theorem (Stein and Shakarchi,

2005) we have

Q̃ = IE{z|X ,Y ;Mg}IE{f̃|z,X ,Y ;Mg} [logL]

= ∑
z

Pr(z|X ,Y ;Mg)

{
∑
j,s

zjs

×
∫

d Pr(f̃j|zj = s) log
[
αs Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]}
.

(3.11)
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Now because the last term in (3.11) does not include any zi, the equation can be

further decomposed as

Q̃ = ∑
j,s

(
∑
z

Pr(z|X ,Y ;Mg)zjs

)

×
{∫

d Pr(f̃j|zj = s) log[αs Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)]

}
= ∑

j,s
γjs

∫
d Pr(f̃j|zj = s) log

[
αs Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]
= ∑

j,s
γjsIE{f̃j|zj=s,xj,yj;Mg}

[
log αs + log

(
Pr(yj|f̃j, zj = s;M)

)
+ log

(
Pr(f̃j;M)

)]
(3.12)

where

γjs = IE[zjs|yj, xj;Mg] =
Pr(zj = s|xj, yj;Mg)

∑
s

Pr(zj = s|xj, yj;Mg)
(3.13)

can be calculated from (3.6) and (3.7) and γjs can be viewed as a fractional la-

bel indicating how likely the jth task is to belong to the sth group. Recall that

Pr(yj|f̃j, zj = s) is a normal distribution given by

N ([fzj ∗ δtj ](xj) + f̃j, σ2I),

and Pr(f̃j;M) is a standard multivariate Gaussian distribution determined by its

prior N (0, Kj). Using these facts and (3.12), Q(M,Mg) can be re-formulated as

Q(M,Mg) = −1
2 ∑

s
‖fs‖2

H0
−∑

j
nj log σ + ∑

j,s
γjs log αs

− 1
2σ2 ∑

j,s
γjsIE{f̃j|zj=s,xj,yj;Mg}

[
‖yj − [fs ∗ δtj ](xj)− f̃j‖2

]
− 1

2 ∑
j

log |Kj| −
1
2 ∑

j,s
γjsIE{f̃j|zj=s,xj,yj;Mg}

(
(f̃j)TK−1

j f̃j
)
+ CONST

(3.14)
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We next develop explicit closed forms for the remaining expectations. For the first,

note that for x ∼ N (µ, Σ) and a constant vector a,

IE[‖a− x‖2] = IE[‖a‖2 − 2〈a, x〉+ ‖x‖2]

= ‖a‖2 − 2〈a, IE[x]〉+ IE[x]2 + Tr(Σ) = ‖a− µ‖2 + Tr(Σ).

Therefore the expectation is

1
2σ2 ∑

j,s
γjs · IE{f̃j|zj=s,xj,yj;Mg}

[
‖yj − [fs ∗ δtj ](xj)− f̃j‖2

]
=

1
2σ2 ∑

j
Tr(Cg

j )

+
1

2σ2 ∑
j,s

γjs

(
‖yj − [ fs ∗ δtj ](xj)− µ

g
js‖

2
) (3.15)

where µ
g
js = IE{f̃j|zj=s,xj,yj;Mg}[f̃

j] is as in (3.9) where we set zj = s explicitly. For the

second expectation we have

IE{f̃j|zj=s,xj,yj;Mg}

(
fT

j K−1
j f̃j

)
= IE{f̃j|zj=s,xj,yj;Mg}

[
Tr
(
(f̃j)TK−1

j f̃j
)]

= IE{f̃j|zj=s,xj,yj;Mg}

[
Tr
(

K−1
j f̃j(f̃j)T

)]
= Tr

(
IE{f̃j|zj=s,xj,yj;Mg}[K

−1
j f̃j(f̃j)T]

)
= Tr

(
K−1

j (Cg
j + µ

g
js(µ

g
js)

T)
)

.

3.2.3 Maximization step

In this step, we aim to find

M∗ = argmax
M

Q(M,Mg)

and useM∗ to update the model parameters. Using the results above this can be

decomposed into three separate optimization problems as follows:

M∗ = argmax
M

{
Q1(({fs}, {δtj}, σ)) + Q2(K) + ∑

j,s
γjs log αs

}
.
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That is, α can be estimated easily using its separate term, Q1 is only a function of

({fs}, {tj}, σ) and Q2 depends only on K, and we have

Q1({fs}, {tj}, σ2) =
1
2 ∑

s
‖fs‖2

K0
+ ∑

j
nj log σ +

1
2σ2 ∑

j
Tr(Cg

j )

+
1

2σ2 ∑
j,s

γjs

(
‖yj − [ fs ∗ δtj ](xj)− µ

g
js‖

2
) (3.16)

and

Q2(K) = −
1
2 ∑

j
log |Kj| −

1
2 ∑

j,s
γjsTr

(
K−1

j (Cg
j + µ

g
js(µ

g
js)

T)
)

. (3.17)

The optimizations for Q1 and Q2 are described separately in the following two

subsections.

Optimize Q1: Learning {fs}, {tj}, σ2

To optimize (3.16), we assume first that σ is given. To simplify the optimization, we

introduce the following heuristic: estimate separate time shifts tj for each center fs.

Intuitively this can speed up convergence in early iterations. Considering a time

series whose membership has not yet been determined, we can expect the estimate

of its phase shift to be affected by all centers leading to an inaccurate estimation.

In turn, this will slow down the identification of its cluster membership. With the

heuristic, the phase shift of a star in its own true class will be better estimated

leading to better identification of its cluster membership. Considering the limiting

case, when membership has converged to be close to zero or one for each cluster,

the irrelevant tj values (for cluster with membership close to 0) do not affect the

result, and we get individual tj estimates from their cluster. In practice, we get

improved convergence with this slightly modified model.

Using this heuristic, estimating {fs}, {tj} decouples into k sub-problems, find-

ing sth group effect fs and the corresponding time shift {tj}. Denoting the residual
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ỹj = yj − µjs, where µjs = IE[f̃j|yj, zj = s], the problem becomes

argmin
f∈H0,t1,··· ,tM∈[0,T)

{
1

2σ2 ∑
j

γjs

nj

∑
i=1

(ỹj
i − [ f ∗ δtj ](xj

i))
2 +

1
2
‖ f ‖2

H0

}
. (3.18)

Note that different xj, yj have different dimensions nj and they are not assumed

to be sampled at regular intervals. For further development, following Pillonetto

et al. (2010), it is useful to introduce the distinct vector x̆ ∈ IRIN whose component

are the distinct elements of X . For example if x1 = [1, 2, 3]T, x2 = [2, 3, 4, 5]T, then

x̆ = [1, 2, 3, 4, 5]T. For the jth task, let the binary matrix Ck be such that

xj = Cj · x̆, f (xj) = Cj · f (x̆).

That is, Cj extracts the values corresponding to the jth task from the full vector.

If {tj} are fixed, then the optimization in (3.18) is standard and the representer

theorem (Scholkopf and Smola, 2002) gives the form of the solution as

f (·) =
IN

∑
i=1

ciK0(x̆i, ·). (3.19)

Denoting the kernel matrix as K = K0(x̆i, x̆j), i, j = 1, · · · , IN , and c = [c1, · · · , cIN]
T,

we get f (x̆) = Kc. To simplify the optimization we assume that {tj} can only take

values in the discrete space {t̃1, · · · , t̃L}, that is, tj = t̃i, for some i ∈ 1, 2, · · · , L

(e.g., a fixed finite fine grid), where we always choose t̃1 = 0. Therefore, we can

write
[

f ∗ δtj

]
(x̆) = K̃T

tj
c, where K̃tj isK0(x̆, [(x̆− t̃j) mod T]). Accordingly, (3.18)

can be reduced to

argmin
c∈IRIN,t1,··· ,tj∈{t̃i}

{
∑

j
γjs‖ỹj − Cj · K̃T

tj
c‖2 +

1
2

cTKc

}
. (3.20)

To solve this optimization, we follow a cyclic optimization approach where we

alternate between steps of optimizing f and {tj} respectively,

• At step `, optimize equation (3.20) with respect to {tj} given c(`). Since c(`) is
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known, it follows immediately that (3.20) decomposes into M independent

tasks, where for the jth task we need to find t(`)j such that CjK̃T
t(`)j

c is closest

to ỹj under the Euclidean distance. A brute force search with time complex-

ity O(INL) yields the optimal solution. If the time series are synchronously

sampled (i.e. Cj = I, j = 1, · · · , M), this is equivalent to finding the shift τ

corresponding the cross-correlation, defined as

C(u, v) = max
τ
〈u, v+τ〉 (3.21)

where u = Kc and v = ỹj and v+τ refers to the vector v right shifted by τ

positions, and where positions are shifted modulo IN. Furthermore, as shown

by Protopapas et al. (2006), if every xj has regular time intervals, we can use

the convolution theorem to find the same value in O(IN log IN) time, that is

t(`)j = argmax
τ

(
F−1

[
U · V̂

]
(τ)
)

(3.22)

where F−1[·] denotes inverse Fourier transform, · indicates point-wise mul-

tiplication; U is the Fourier transform of u and V̂ is the complex conjugate

of the Fourier transform of v.

• At step `+ 1, optimize equation (3.20) with respect to c(`+1) given t(`)1 , · · · , t(`)M .

For the jth task, since t(`)j is known, denote CjK̃T
t(`)j

as M
(`)
j . The regularized

least square problem can be reformulated as

argmin
c∈IRIN

{
∑

j
γjs‖ỹj −M

(`)
j c‖2 +

1
2

cTKc

}
. (3.23)

Taking derivatives of (3.23), we see that the new c(`+1) value is obtained by

solving the following linear system

−2 ∑
j

γjs · (M
(`)
j )T

(
ỹj −M

(`)
j · c

)
+ Kc = 0. (3.24)
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Obviously, each step decreases the value of the objective function and therefore the

algorithm will converge.

Given the estimates of {fs}, {tj}, the optimization for σ2 is given by

σ∗ = argmin
σ∈IR

{
∑

j
nj log σ +

1
2σ2 ∑

j
Tr(Cg

j )

1
2σ2 ∑

j,s
γjs

(
‖yj − [f∗s ∗ δt∗j

](xj)− µjs‖
2
)} (3.25)

where {f∗} and {t∗j } are obtained from the previous optimization steps. Let R =

∑j Tr(Cg
j ) + ∑j,s γjs

(
‖yj − [f∗s ∗ δtj ](xj)− µjs‖2

)
. Then it is easy to see that (σ∗)2 =

R/ ∑j nj.

Optimize Q2: Learning the Kernel for the Random Effect

Lu et al. (2008) have already shown how to optimize the kernel function in a sim-

ilar context. Here we provide some of the details for completeness. If the kernel

function K admits a parametric form with parameter O, for example the RBF ker-

nel as in (2.10) where O = {a, σ2}, then the optimization of the kernel K amounts

to finding O∗ such that

O∗ = argmax
O

{
− 1

2 ∑
j

log |(Kj;O)| −
1
2 ∑

j,s
γjsTr

(
(Kj;O)−1(Cg

j + µ
g
js(µ

g
js)

T)
)}

.

(3.26)

It is easy to see that the gradient of the right hand side of (3.26) is

−1
2 ∑

j
Tr
(

Kj
∂Kj

∂O

)
− 1

2 ∑
j,s

γjsTr
(

K−1
j

∂Kj

∂O K−1
j (Cg

j + µ
g
js(µ

g
js)

T)

)
. (3.27)

Therefore, any optimization method, e.g. conjugate gradients can be utilized to

find the optimal parameters. Notice that given the inverse of kernel matrix {Kj},

the computation of the derivative requires |O| · ∑ N2
j steps. The parametric form

of the kernel is a prerequisite to perform the regression task when examples are
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not sampled synchronously as in our development above.

If the data is synchronously sampled, for classification tasks we only need to

find the kernel matrix K for the given sample points and the optimization problem

can be rewritten as

K∗ = argmax
K

{
− 1

2 ∑
j

log |K| − 1
2 ∑

j,s
γjsTr

(
K−1(Cg

j + µ
g
js(µ

g
js)

T)
)}

. (3.28)

Similar to maximum likelihood estimation for multivariate Gaussian distribution,

the solution is

K∗ =
1
M ∑

j,s
γjs(C

g
j + µ

g
js(µ

g
js)

T). (3.29)

In our experiments, we use both approaches where for the parametric form we

use the RBF kernel as outlined above.

3.2.4 Algorithm Summary

The various steps in our algorithm and their time complexity are summarized in

Algorithm 1.

Once the model parameters M are learned (or if they are given in advance),

we can use the model to perform regression or classification tasks. The following

summarizes the procedures used in our experiments.

• Regression: To predict a new sample point for an existing task (task j) we

calculate its most likely cluster assignment zj and then predict the y value

based on this cluster. Concretely, zj is determined by

zj = argmax
s={1,··· ,k}

[
Pr(zj = s|xj, yj;M)

]
(3.30)

and given a new data point x, the prediction y is given by

y =
[
fzj ∗ δtj

]
(x) + f̃ j(x).
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Algorithm 1 EM ALGORITHM FOR SHIFT-INVARIANT GMT

1: Initialize { f (0)s }, {t
(0)
j }, α(0) and K(0).

2: repeat
3: Calculate K(t)

j according to xj,K(t−1). The time complexity for construct-
ing kernel are O(∑ N2

j ) and O(1) in parametric and nonparametric case
respectively.

4: Calculate γjs according to (3.13). For each task, we need to invert the co-
variance matrix in the marginal distribution and then calculate the likeli-
hood, thus the time complexity is O(∑ N3

j ).
5: for all s such that 0 ≤ s ≤ k do
6: Update α(t) such that α

(t)
s = ∑j γjs/M.

7: repeat
8: Update {tj} w.r.t. cluster s such that tj ∈ {t̃1, · · · , t̃L} and mini-

mize ‖ỹj − Cj · K̃T
tj

c(0)s ‖2. The time complexity is O(LIN) as dis-
cussed above.

9: Update c(t+1)
s by solving linear system (3.24), which requires

O(IN3).
10: until converges or reach the iteration limit
11: end for
12: Update σ(t+1) according to (3.25).
13: Update the parameters of the kernel or the kernel matrix directly via op-

timizing (3.26) or using the closed-form solution (3.29) for K. In the for-
mer case, a gradient based optimizer can be used with time complexity
O(∑ N2

j ) for each iteration; while in the later case, the estimation only
requires O(kMIN).

14: until converges or reach the iteration limit

• Classification: For classification, we get a new time series and want to pre-

dict its label. Recall from Section 3.1 that we learn a separate model for each

class and predict using

o = argmax
`={1,··· ,L}

Pr(y|x; M`)Pr(`).

In this context, Pr(`) is estimated by the frequencies of each class and the

likelihood portion is given by first finding the best time shift t for the new
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time series and then calculating the likelihood according to

Pr(y|x; M`) = ∑
z

Pr(z|M`)Pr(y|z, x;M`) (3.31)

whereM` is the learned parameter set and the second term is calculated via

(3.7).

3.3 Infinite GMT

In this section we develop an extension of the model removing the assumption that

the number of centers k is known in advance.

3.3.1 Dirichlet Processes Basics

We start by reviewing basic concepts for Dirichlet processes (Blei and Jordan, 2006).

Suppose we have the following independent identically distributed (i.i.d.) data,

x1, x2, · · · , xn ∼ F

where F is an unknown distribution that needs to be inferred from {xi}. A Para-

metric Bayesian approach assumes that F is given by a parametric family FO and

the parameters O follow a certain distribution that comes from our prior belief.

However, this assumption has limitations both in the scope and the type of infer-

ences that can be performed. Instead, the nonparametric Bayesian approach places

a prior distribution on the distribution F directly. The Dirichlet process (DP) is

used for such a purpose. The DP is parameterized by a base distribution G0 and a

positive scaling parameter α (or concentration parameter). A random measure G

is distributed according to a DP with base measure G0 and scaling parameter α if

for all finite measurable partitions {Bi}, i = 1, . . . , k,

(G(B1), G(B2), · · · , G(Bk)) ∼ Dir(αG0(B1), αG0(B2), · · · , αG0(Bk)),
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where Dir(·) is the Dirichlet distribution. An important property of DP is the fact

that a sample G from a DP is almost surely a discrete measure (Blei and Jordan,

2006). This is illustrated in the concrete construction below.

The Dirichlet process mixture model extends this setting, where the DP is used

as a nonparametric prior in a hierarchical Bayesian specification. More precisely,

G|{α, G0} ∼ DP(α, G0)

ηn|G ∼ G n = 1, 2, . . .

xn|ηn ∼ f (xn|ηn)

where f is some probability density function that is parameterized by η. Data gen-

erated from this model can be naturally partitioned according to the distinct values

of the parameter ηn. Hence, the DP mixture can be interpreted as a mixture model

where the number of mixtures is flexible and grows as the new data is observed.

Alternatively, we can view the infinite mixture model as the limit of the finite mix-

ture model. Consider the Bayesian finite mixture model with a symmetric Dirichlet

distribution as the prior of the mixture proportions. When the number of mixtures

k goes to infinity, the Dirichlet distribution becomes a Dirichlet process (see Neal,

2000).

Sethuraman (1994) provides a more explicit construction of the DP which is

called the stick-breaking construction (SBC). Given {α, G0}, we have two collections

of random variables vi ∼ Beta(1, α) and η∗i ∼ G0, i = {1, 2, · · · , }. The SBC of G

is

πi(v) = vi

i−1

∏
j=1

(1− vj)

G =
∞

∑
i=1

πi(v)δη∗i
.

Here we see explicitly that G is a discrete measure. If we set vK = 1 for some K,
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then we get a truncated approximation to the DP

G =
K

∑
i=1

πi(v)δη∗i
.

Ishwaran and James (2001) show that when selecting the truncation level K appro-

priately, the truncated DP behaves very similarly to the original DP.

3.3.2 The DP-GMT Model

In this section, we extend our model by modeling the mixture proportions using a

DP prior. The plate graph is shown in Figure 3-3. Under the SBC, the generative

process is as follows

1. Draw vs|α ∼ Beta(1, α), s = {1, 2, . . .}

2. Draw fs|K0 ∼ exp
{
−1

2
‖fs‖2

H0

}
, s = {1, 2, . . .}

3. For the jth time series

(a) Draw zj|{v1, v2, . . .} ∼ Discrete(π(v)), where πs(v) = vs

s−1

∏
i=1

(1− vi);

(b) Draw f̃ j|K ∼ exp
{
−1

2
‖ f̃ j‖2

H

}
;

(c) Draw yj|zj, f j, xj, tj, σ2 ∼ N
(

f j(xj), σ2I
)
, where f j = fzj ∗ δtj + f̃ j.

In this model, the concentration parameter α is assumed to be known. As in

Section 3.2, the inference task is to find the MAP estimates of the parameter set

M = {{fs}, {tj}, σ2,K}. Notice that in contrast with the previous model, the mix-

ture proportion are not estimated here. To perform the inference, we must consider

another set of hidden variables v = {vi} in addition to f̃ and z. However, calcu-

lating the posterior of the hidden variables is intractable, thus the variational EM

algorithm (e.g., Bishop, 2006) is used to perform the approximate inference. The

next section briefly reviews the variational EM algorithms and the following sec-

tion provides the concrete algorithm for DP-GMT inference.

43



Figure 3-3: DP-GMT: The Plate graph of an infinite mixture of shift-invariant
mixed-effects GP model.

3.3.3 Variational EM

As in Section 3.2.1, we denote the X as the observed data and Z as the hidden vari-

ables. We are given a joint distribution Pr(X, Z), governed by a set of parameters

O. Again, our goal is to maximize the likelihood function Pr(X|O) and we assume

that optimizing Pr(X, Z) is much easier than optimizing Pr(X).

Recall that in the EM algorithm (see Section 3.2.1), we need to calculate the pos-

terior distribution over the hidden variables Pr(Z|X,O) and evaluate expectations

with respect to this distribution. However, in practice, for many models of inter-

est, it is infeasible to calculate the exact posterior distribution. Thus, we need some

kind of approximate inference, i.e., approximate the true posterior Pr(Z|X,O). To

this end, we introduce a so-called variational distribution q(Z) that is tractable

and our goal is to approximate the true posterior distribution. The KL divergence

is widely used to measure the distance between two distributions. As it turns out,

minimizing the KL divergence between q(Z) and Pr(Z|X,O) amounts to maxi-

mizing a lower bound on the true likelihood Pr(X|O). To see this, notice that the
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following decomposition holds

ln Pr(X|O) =
∫

q(Z) ln
[

Pr(X, Z|O)

q(Z)

]
dZ−

∫
q(Z) ln

[
Pr(Z|X,O)

q(Z)

]
dZ

= L(q,O) + KL(q(Z)||Pr(Z|X,O)).
(3.32)

As the KL divergence is greater or equal to 0, we have the L(q,O) is a lower

bound on the log likelihood. This is normally called the variational lower bound.

Variational EM optimizes L(q,O) iteratively via the following two steps,

• In the Variational Expectation step, one finds the best variational distribution

(in a predefined family of distributions) of the hidden variables based on the

current estimate Og, i.e.,

q∗(Z) = argmax
q

L(q,Og)

= argmin
q

KL(q(Z)||Pr(Z|X,Og))

The second equation holds because ln Pr(X|O) is independent of q, thus the

largest value of L occurs when the KL divergence is at its minimum (0 when

the variational distribution equals the true posterior).

• In the Variational Maximization step, one finds the best parameters O∗ such

that

O∗ = argmax
O

L(q,O),

and O∗ becomes the new Og.

The MAP extension is straightforward. When the variational distribution is cho-

sen to be the true posterior distribution, the KL divergence term vanishes and the

variational EM reduces to the EM algorithm (see Section 3.2.1).

45



3.3.4 Inference of DP-GMT

In our case, the parameters areM = {{fs}, {tj}, σ2,K} and the hidden variables

are {f̃, v, z}. In a high level, the algorithm can be summarized as follows:

• Variational E-Step Choose a family G of variational distributions q(f̃, v, z)

and find the distribution q∗ that minimizes the Kullback-Leibler (KL) diver-

gence between the posterior distribution and the proposed distribution given

the current estimate of parameters, i.e.,

q∗(f̃, v, z;Mg) = argmin
q∈G

KL
(
q(f̃, v, z))||Pr(f̃, v, z|X ,Y ;Mg)

)
(3.33)

where

KL
(
q(f̃, v, z)||Pr(f̃, v, z|X ,Y ;Mg)

)
=
∫

log

[
Pr(f̃, v, z|X ,Y ;Mg)

q(f̃, v, z)

]
dq(f̃, v, z).

• Variational M-Step Optimize the parameter setM such that

M∗ = argmax
M

Q(M,Mg)

where

Q(M,Mg) = IEq∗(z,f,v;Mg)

[
log
{

Pr(Y , f̃, z, v|X ;M)× Pr[{fs};K0]
}]

.

(3.34)

More precisely, we give the details as follows.

Variational E-Step. For the variational distribution q(·) we use the mean field

approximation (Wainwright and Jordan, 2008). That is, we assume a factorized

distribution for disjoint groups of random variables. This results in an analytic

tractable optimization problem. In addition, following Blei and Jordan (2006), the

variational distribution approximates the distribution over v using a truncated

stick-breaking representations, where for a fixed T, q(vT = 1) = 1 and there-

fore πs(v) = 0, s > T. We fix the truncation level T while in general it can also be
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treated as a variational parameter. Concretely, we propose the following factorized

family of variational distributions over the hidden variables {f̃, z, v}:

q(f̃, z, v) =
T−1

∏
s=1

qs(vs)
M

∏
j=1

qj( f j, zj). (3.35)

Note that we do not assume any parametric form for {qs, qj} and our only assump-

tion is that the distribution factorizes into independent components. To optimize

(3.33), recall the following result from (Bishop, 2006, Chapter 8):

Lemma 1 Suppose we are given a probabilistic model with a joint distribution Pr(X, Z)

over X, Z where X = {x1, x2, · · · , xN} denote the observed variables and all the parameters

and the hidden variables are given by Z = {z1, z2, · · · , zM}. Assume the distribution of

Z has the following form:

q(Z) =
M

∏
i=1

qi(zi).

Then, the KL divergence between the posterior distribution Pr(Z|X) and q(Z) is mini-

mized, and the optimal solution q∗j (zj) is given by

q∗j (zj) ∝ exp
(
IEi 6=j [log Pr(X, Z)]

)
where IEi 6=j[· · · ] denotes the expectation w.r.t. q() over all Zi, i 6= j.

From the graphical model in Figure 3-3, the joint distribution of Pr(Y , f̃, z, v|X ;Mg)

can be written as:

Pr(Y , f̃, z, v|X ) = Pr(Y|X , f̃, z)Pr(z|v)Pr(f̃|X )Pr(v|α)

= ∏
j

Pr(yj|xj, f̃j, zj)∏
j

Pr(zj|v)∏
j

Pr(f̃j|xj)∏
s

Pr(vs|α).

Equivalently,

log Pr(Y , f̃, z, v|X ) = ∑
j

log Pr(yj|xj, f̃j, zj)

+ ∑
j

log Pr(zj|v) + ∑
j

log Pr(f̃j|xj) + ∑
s

log Pr(vs|α).

47



First we consider the distribution of qs(v). Following Blei and Jordan (2006), the

second term can be expanded as

log Pr(zj|v) =
T

∑
t=1

1{zj>t} log(1− vt) + 1{zj=t} log vt (3.36)

where 1 is the indicator function. Therefore, using the lemma above and denoting

v\vs by v−s, and noting that the expectations of terms not including vs are constant

w.r.t. vs, we have

log qs(vs) ∝ IEf̃,z,v−s

[
log Pr(Y , f̃, z, v|X )

]
= ∑

j

(
IEf̃,z,v−s

[1{zj>s}] log(1− vs) + IEf̃,z,v−s
[1{zj=s}] log vs

)
+ log Pr(vs|α) + constant

= ∑
j

(
q(zj > s) log(1− vs) + q(zj = s) log vs

)
+ log Pr(vs|α) + constant

Recalling that the prior is given by

vs ∼ Beta(1, α) ∝ v1−1
s (1− vs)

α−1,

we see that the distribution of qs(vs) is

qs(vs) ∝ v
∑j q(zj=s)
s (1− vs)

α+∑j ∑T
l=s+1 q(zj=l)−1.

Observing the form of qs(vs), we can see that it is a Beta distribution and qt(vt) ∼

Beta(γt,1, γt,2) where

γt,1 = 1 + ∑
j

q(zj = t)

γt,2 = α + ∑
j

T

∑
l=s+1

q(zj = l).
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We next consider qj(f̃j, zj). Notice that we can always write qj(f̃j, zj) = qj(f̃j|zj)qj(zj).

Denote h(zj) = IEv
[
log Pr(zj|v)

]
, then again using the lemma above we have

qj(f̃j|zj)qj(zj) ∝ eh(zj) Pr(yj|xj, f̃j, zj)Pr(f̃j|xj)

= eh(zj) Pr(yj, f̃j|xj, zj)

∝ eh(zj) Pr(yj|xj, zj)Pr(f̃j|xj, yj, zj)

∝

eh(zj) Pr(yj|xj, zj)︸ ︷︷ ︸
qj(zj)


Pr(f̃j|xj, yj, zj)︸ ︷︷ ︸

qj(f̃j|zj)

 .

The equality in the second line holds because Pr(f̃j|xj) = Pr(f̃j|xj, zj); their dis-

tributions become coupled when conditioned on the observations yj, but without

such observations they are independent. Therefore the left term yields

qj(zj) ∝ eh(zj) Pr(yj|xj, zj)

where Pr(yj|xj, zj) is given by (3.7). The value of h(zj) can be calculated using

(3.36):

log Pr(zj = s|v) =
s−1

∑
t=1

log(1− vt) + log vs

h(zj = s) = IEvs [log vs] +
s−1

∑
i=1

IEvi [log(1− vi)]

where recalling that q(vt) ∼ Beta(γt,1, γt,2) and using properties of the Beta distri-

bution, we have

IEvt [log vt] = Ψ(γi,1)−Ψ(γi,1 + γi,2)

IEvi [log(1− vi)] = Ψ(γi,2)−Ψ(γi,1 + γi,2),
(3.37)
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where Ψ is the digamma function. Consequently, qj(zj) has the following form

qj(zj = t) ∝ exp

{
IEvt [log vt] +

t−1

∑
i=1

IEvi [(1− vi)]

}
×N

(
fj, Kg

j + σ2I
)

. (3.38)

Note that this is the same form as in (3.6) of the previous model where Pr(zj;Mg)

is replaced by eh(zj=t).

Given zj, qj(f̃j|zj) is identical to (3.8) and leads to the conditional distribution

such that

qj(f̃j|zj) ∝ Pr(yj|xj, f̃j, zj)Pr(f̃j; xj)

which is the posterior distribution under GP regression and thus is exactly the

same form as in the previous model.

Variational M-Step. Denote Q̃ as the expectation of the complete data log like-

lihood w.r.t. the hidden variables. Then as in (3.11), we have

Q̃ = IEq(v)IEq(z)IEq(f̃|z) log

(
∏

j
∏

s

[
πs(v)Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]zjs

)

= IEv

[
∑
z

q(z)

{
∑
j,s

zjs ·
∫

dq(f̃j|zj = s)

× log
[
πs(v)Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]}]

= ∑
z

q(z)

{
∑
j,s

zjs ·
∫

dq(f̃j|zj = s)

× log
[
Pr(yj|f̃j, zj = s;M)Pr(f̃j;M)

]}
+ IEv

[
∑
j,s

log πs(v)

]
.

(3.39)

Notice that IEv

[
∑j,s log πs(v)

]
is a constant w.r.t. the parameters ofM and can be

dropped in the optimization. Thus, following the same derivation as in the GMT
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model, we have the form of the Q function as

Q(M,Mg) = −1
2 ∑

s
‖fs‖2

H0
−∑

j
Nj log σ

− 1
2σ2 ∑

j,s
γjsIE{q(f̃j|zj=s)}

[
‖yj − [fs ∗ δtj ](xj)− f̃j‖2

]
+ ∑

j,s
γjsIE{q(f̃j)}

[
log Pr(f̃j;M)

]
.

(3.40)

where γjs is given by (3.13). Now because the qj(zj) and qj( f j|zj) have exactly

the same form as before (except Pr(zj;Mg) is replaced by (3.38)), the previous

derivation of the M-Step w.r.t. the parameter setM still holds.

To summarize, the algorithm is the same as Algorithm 1 except that

• we drop step 6,

• we add a step between steps 3 and 4 calculating γi,1 and γi,2 using (3.37),

• step 4 calculating (3.13) uses Equation (3.38) instead of (3.6).

3.4 Experiments

In this section, we evaluate our model and algorithms on a number of artificial

and real datasets. The EM algorithm is restarted 5 times and the parameters that

give the best Q value are selected. The EM algorithm stops when difference of the

log-likelihood is less than 10e-5 or at a maximum of 200 iterations.

3.4.1 Regression on Synthetic data

In the first experiment, we demonstrate the performance of our algorithm on a

regression task with artificial data. We generated the data following Assumption 2

under a mixture of three Gaussian processes. More precisely, each fs(x), s = 1, 2, 3

is generated on the interval [−50, 50] from a Gaussian process with covariance
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function

cov[ fs(t1), fs(t2)] = exp
{
− (t1 − t2)

2

25

}
, s = 1, 2, 3.

The individual effect f̃ j is sampled via a Gaussian process with the covariance

function

cov[ f̃ j(t1), f̃ j(t2)] = 0.2 exp
{
− (t1 − t2)

2

16

}
.

Then the hidden label zj is sampled from a multinomial distribution with the pa-

rameter α = [1/3, 1/3, 1/3]. The vector x̆ consists of 100 samples on [−50, 50]1. We

fix a sample size N, each xj includes N randomly chosen points from {x̆1, · · · , x̆100}

and the observation f j(xj) is obtained as ( fzj + f̃ j)(xj). In the experiment, we vary

the individual sample length N from 5 to 50. Finally, we generated 50 random

tasks with the observation yj for task j given by

yj ∼ N ( f j(xj), 0.01× I), j = 1, · · · , 50.

The methods compared here include

1. Single-task learning procedure (ST), where each fj is estimated only using

{xj
i , yj

i}, i = 1, 2, · · · , N.

2. Single center mixed-effects multi-task learning (SCMT), amounts to the

mixed-effects model (Pillonetto et al., 2010) where one average function f is

learned from {xj, yj}, j = 1, · · · , 50 and f j = f + f̃ j, j = 1, · · · , 50.

3. Grouped mixed-effects model (GMT), the proposed method with number

of clusters fixed to be the true model order (k = 3 in this case).

4. Dirichlet process Grouped mixed-effects model (DP-GMT), the infinite mix-

ture extension of the proposed model.

5. “Cheating” grouped fixed-effect model (CGMT), which follows the same

algorithm as the grouped mixed-effects model but uses the true label zj in-

1The samples are generated via Matlab command: linspace(-50,50,100).
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stead of their expectation for each task j. This serves as an upper bound for

the performance of the proposed algorithm.

All algorithms (except for ST which does not estimate the kernel of the individual

variations) use the same method to learn the kernel of the individual effects, which

is assumed to be RBF, cov[ f̃ j(t1), f̃ j(t2)] = ae−
(t1−t2)

2

σ2 . The Root Mean Square Error
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Figure 3-4: Simulated data: Comparison of the estimated function between sin-
gle, multi-task and grouped multi-task. The red dotted line is the reference true
function and the blue solid lines are the estimated functions.

(RMSE) for the four approaches is reported. For task j, the RMSE is defined as

RMSEj =

√
1

100
‖ f (x̆)− f j(x̆)‖2

where f is the learned function and RMSE for the data set is the mean of {RMSEj}, j =

1, · · · , 50. To illustrate the results qualitatively, we first plot in Figure 3-4 the true

and learned functions in one trial. The left/center/right column illustrates one

task that is sampled from group effect f1, f2 and f3. It it easy to see that, as ex-
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pected, the tasks are poorly estimated under ST due the sparse sampling. The

SCMT performs better than ST but its estimate is poor in areas where the three

centers disagree. The estimates of GMT are much closer to the true function.

Figure 3-5 (Left) shows a comparison of the algorithms for 50 random data

sets under the above setting when N equals 5. We see that GMT with the correct

model order k = 3 almost always performs as well as its upper bound CGMT,

illustrating that it recovers the correct membership of each task. On only three data

sets, our algorithm is trapped in a local maximum yielding performance similar

to SCMT and ST. Figure 3-5 (Right) shows the RMSE for increasing values of N

for the same experimental setup. From the plot we can draw the conclusion that

the proposed method works much better than SCMT and ST when the number

of samples is fewer than 30. As the number of samples for each task increases,

all methods are improving, but the proposed method always outperforms SCMT

and ST in our experiments. Finally, all algorithms converge to almost the same

performance level where the number of observations in each task are sufficient to

recover the underlying function. Finally, Figure 3-5 also includes the performance

of the DP-GMT on the same data. The truncation level of the Dirichlet process is

10 and the concentration parameter α is set to be 1. As we can see the DP-GMT is

not distinguishable from the GMT (which has the correct k), indicating that model

selection is successful in this example.

3.4.2 Classification on Astrophysics data

As we mentioned before, the concrete application motivating this research is the

classification of stars into several meaningful categories from the astronomy litera-

ture. Classification is an important step within astrophysics research, as evidenced

by published catalogs such as OGLE (Udalski et al., 1997) and MACHO (Alcock

et al., 1993; Faccioli et al., 2007). However, the number of light sources in such

surveys is increasing dramatically. For example Pan-STARRS (Hodapp et al., 2004)

and LSST (Starr et al., 2002) collect data on the order of hundreds of billions of

stars. Therefore, it is desirable to apply state-of-art machine learning techniques to
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Figure 3-5: Left: Simulated data: Comparison between single task, multi-task, and
grouped multi-task when sample size is 5. The figure gives 3 pairwise compar-
ison. The Blue stars denote ST vs. GMT: we can see the GMT is better than ST
since the stars are concentrated on the lower right. Similarly, the plot of red pluses
demonstrates the advantage of GMT over SCMT and the plot of green triangles
shows that the algorithm behaves almost as well as its upper bound. Right: Simu-
lated data: Performance comparison of single, multi-task, CGMT, and DP grouped
multi-task as a function of the number of samples per task.

enable automatic processing for astrophysics data classification.

The data from star surveys is normally represented by time series of brightness

measurements, based on which they are classified into categories. Stars whose be-

havior is periodic are especially of interest in such studies. Figure 3-1 shows exam-

ples of such time series generated from the three major types of periodic variable

stars: Cepheid, RR Lyrae, and Eclipsing Binary. In our experiments only stars of

these classes are present in the data, and the period of each star is given.

We run our experiment on the OGLEII data set (Soszynski et al., 2003). This

data set consists of 14087 time series from periodic variable stars with 3425 Cepheids,

3390 EBs and 7272 RRLs. We use the time series measurements in the I band

(Soszynski et al., 2003). We perform several experiments with this data set to ex-

plore the potential of the proposed method. In previous work with this dataset

Wachman et al. (2009) developed a kernel for periodic time series and used it with

the support vector machine (SVM) (Cortes and Vapnik, 1995) to obtain good classi-

fication performance. We use the results of Wachman et al. (2009) as our baseline.2

2Wachman et al. (2009) used additional features, in addition to time series itself, to improve the
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UP + GMM GMT UP + 1-NN K + SVM

RESULTS 0.956± 0.006 0.952± 0.005 0.865± 0.006 0.947± 0.005

Table 3.1: Accuracies with standard deviations reported on OGLEII dataset.

Classification using dense-sampled time series

In the first experiment, the time series are smoothed using a simple average filter,

re-sampled to 50 points via linear-interpolation and normalized to have mean 0

and standard deviation of 1. Therefore, the time series are synchronously sampled

in the pre-processing. We compare our method to Gaussian mixture model (GMM)

and 1-Nearest Neighbor (1-NN). These two approaches are performed on the time

series processed by Universal phasing (UP), which uses the method from Protopa-

pas et al. (2006) to phase each time series to the sliding window on the time series

with the maximum mean. We use a sliding window size of 5% of the number of

original points; the phasing takes place after the pre-processing explained above.

We learn a separate model for each class and for each class the model order for

GMM and GMT is set to be 15.

We run 10-fold cross-validation (CV) over the entire data set and the results

are shown in Table 3.1. We see that when the data is densely and synchronously

sampled, the proposed method performs similar to the GMM, and they both out-

perform the kernel based results of Wachman et al. (2009). The similarity of the

GMM and the proposed method under these experimental conditions is not sur-

prising. The reason is that when the time series are synchronously sampled, aside

from the difference of phasing, finding the group effect functions is reduced to

estimating the mean vectors of the GMM. In addition, learning the kernel in the

non-parametric approach is equivalent to estimating the covariance matrix of the

GMM. More precisely, assuming that all time series are re-phased (that is, tj = 0

for all j), the following results hold:

1. By placing a flat prior on the group effect function fs, s = 1, · · · , k, or equiv-

alently setting ‖fs‖2
H0

= 0, Equation (3.18) is reduced to finding a vector µs ∈ IN

classification performance. Here we focus on results using the time series only.
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that minimizes ∑j γjs‖ỹj − µs‖2. Therefore, we obtain fs = µs = ∑j γjsỹj/ ∑j γjs,

which is exactly the mean of the sth cluster during the iteration of EM algorithm

under the GMM setting.

2. The kernel K is learned in a non-parametric way. For the GP regression

model, we see that considering noisy observations is essentially equivalent to con-

sidering non-noisy observations, but slightly modifying the model by adding a

diagonal term on the covariance function for fj. Therefore, instead of estimating K

and σ2, it is convenient to put these two terms together, forming K̂ = K + σ2I.

In other words, we add a σ2 term to the variance of f̃j and remove it from yj

which becomes deterministic. In this case, comparing to the derivation in Equa-

tion (3.7)—(3.10) we have f̃j = yj − fj and f̃j is determined given zj. Comparing to

Equation (3.8) we have the posterior mean µ
g
js = K̂K̂−1(yj − µs) = yj − µs and the

posterior covariance matrix Cg
j vanishes. Applying these values in Equation (3.29)

we get K̂ = 1
M ∑j ∑s γjs(yj − µs)(yj − µs)T. In the standard EM algorithm for the

GMM, this is equal to the estimated covariance matrix when all k clusters are as-

sumed to have the same variance.

Accordingly, when time series are synchronously sampled, the proposed model

can be viewed as an extension of the Phased K-means (Rebbapragada et al., 2009).

The Phased K-means (PKmeans) re-phases the time series before the similarity cal-

culation and updates the centroids using the phased time series. Therefore, with

shared covariance matrix, our model is a shift-invariant (Phased) GMM and the

corresponding learning process is a Phased EM algorithm where each time series

is re-phased in the E step. In experiments presented below we use Phased GMM

directly in the feature space and generalize it so that each class has a separate co-

variance matrix.

We use the same experimental data to investigate the performance of the DP-

GMT where the truncation level is set to be 30 and the concentration parameter α

of the DP is set to be 1. The results are shown in Figure 3-6 and Table 3.2 where

BIC-GMT means that the model order is chosen by BIC where the optimal k is cho-

sen from 1 to 30. The poor performance of SCMT shows that a single center is
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Figure 3-6: OGLEII data: Comparison of model selection methods using densely
sampled data. The plot shows the performance of GMT with varying k, BIC for
the GMT model, and DP-GMT. For visual clarity we only include the standard
deviations on the GMT plot.

SCMT GMT DP-GMT BIC-GMT

RESULTS 0.874± 0.008 0.952± 0.005 0.949± 0.005 0.950± 0.002

Table 3.2: Accuracies with standard deviations reported on OGLEII dataset.

not sufficient for this data. As evident from the graph the DP-GMT is not distin-

guishable from the BIC-GMT. The advantage of the DP model is that this equiva-

lent performance is achieved with much reduced computational cost because the

BIC procedure must learn many models and choose among them whereas the DP

learns a single model.

Classification using sparse-sampled time series

The OGLEII data set is in some sense a “nice” subset of the data from its cor-

responding star survey. Stars with small number of samples are often removed

in pre-processing steps. For example, Wachman (2009) developed full system to

process the MACHO survey and applied the kernel method to classify stars. In

its pipeline, part of the preprocessing rejected 3.6 million light curves out of the

approximately 25 million because of an insufficient number of observations. The

proposed method potentially provides a way to include these instances in the clas-
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sification process. In the second experiment, we demonstrate the performance of

the proposed method on times series with sparse samples. Similar to the synthetic

data, we started from sub-sampled versions of the original time series to simulate

the condition that we would encounter in future star surveys.

Recall that our algorithm requires inverting K(x̆, x̆) which is cubic in the num-

ber of sample points. For this dataset, x̆ has more than 18000 measurements, mak-

ing the inference infeasible. We therefore used a simple approximation in this ex-

periment where we clip the samples to a fine grid of 200 equally spaced time points

on [0, 1], which is also the set of allowed time shifts. This avoids having a very high

dimensional x̆. While this is a crude method, it works reasonably well because the

input x is single dimensional and we can use a fine grid for the clipping. In the

next chapter, we develop a methodologically sound approach for such inference.

As in the previous experiment, each time series is universally phased, normal-

ized and linearly-interpolated to length 50 to be plugged into GMM and 1-NN as

well as the phased GMM mentioned above. The RBF kernel is used for the pro-

posed method and we use model order 15 as above. Moreover, the performance

for PKmeans is also presented, where the classification step is as follows: we learn

the PKmeans model with k = 15 for each class and then the label of a new example

is assigned to be the same as its closest centroid’s label. PKmeans is also restarted

5 times and the best clustering is used for classification.

The results are shown in Figure 3-7 (Left). As can be easily observed, when each

time series has sparse samples (i.e., number of samples per task is fewer than 30),

the proposed method has a significant advantage over the other methods. As the

number of samples per task increases, the proposed method improves quickly and

performs close to its optimal performance given by previous experiment. Three

additional aspects that call for discussion can be seen in the figure. First, note

that for all three methods, the performance with dense data is lower than the re-

sults reported in Table 3.1. This can be explained by fact that the data set obtained

by the interpolation of the sub-sampled measurements contains less information

than that interpolated from the original measurements. Second, notice that the
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Figure 3-7: OGLEII data: Left: Comparison of algorithms with sparsely sampled
data; Right: Comparison of model selection methods for GMT with sparsely sam-
pled data.

Phased EM algorithm always outperforms the GMM plus UP demonstrating that

re-phasing the time series inside the EM algorithm improves the results. Third,

when the number of samples increases, the performance of the Phased EM grad-

ually catches up and becomes better than the proposed method when each task

has more than 50 samples. GMM plus universal phasing (UP) also achieves better

performance when time series are densely sampled. One reason for the perfor-

mance difference is the difference in the way the kernel is estimated. In Figure 3-7

GMT uses the parametric form of the kernel which is less expressive than get-

ting precise estimates for every K(t1, t2). The GMM uses the non-parametric form

which, given sufficient data, can lead to better estimates. A second reason can be

attributed to the sharing of the covariance function in our model where the GMM

and the Phased GMM do not apply this constraint.

Finally, we use the same experimental setting to compare the performance of

various model selection models. The results are shown in Figure 3-7 (Right). The

performance of BIC is not distinguishable from the optimal k selected in hindsight.

The performance of DP is slightly lower but it comes close to these models.

To summarize, we conclude from the experiments with astronomy data that

Phased EM is appropriate with densely sampled data but that the GMT and its

variants should be used when data is sparsely and non-synchronously sampled.
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In addition BIC coupled with GMT performs excellent model selection and DP

does almost as well with a much reduced computational complexity.

Class discovery:

We show the potential of our model for class discovery by running the GMT model

on the joint data set of the three classes (not using the labels). Then, each cluster

is labeled according to the majority class of the instances that belong to the cen-

ter. For a new test point, we determine which cluster it belongs to via the MAP

probability and its label is given by the cluster to which it is assigned. We run 10

trials with different random initializations. In accordance with previous experi-

ments that used 15 components per class we run GMT with model order of 45. We

also run DP-GMT with a truncation level set to 90. The GMT obtains accuracy and

standard deviation of [0.895, 0.010] and the DP models obtains accuracy and stan-

dard deviation of [0.925, 0.013]. Note that it is hard to compare between the results

because of the different model orders used. Rather than focus on the difference, the

striking point is that we obtain almost pure clusters without using any label infor-

mation. Given the size of the data set and the relatively small number of clusters

this is a significant indication of the potential for class discovery in astrophysics.

3.5 Related Work

Classification of time series has attracted an increasing amount of interest in recent

years due to its wide range of potential applications, for example ECG diagno-

sis (Wei and Keogh, 2006), EEG diagnosis (Lu et al., 2008), and Speech Recogni-

tion (Povinelli et al., 2004). Common methods choose some feature based repre-

sentation or distance function for the time series (for example the sampled time

points, or Fourier or wavelet coefficients as features and dynamic time warping

for distance function) and then apply some existing classification method (Os-

owski et al., 2004; Ding et al., 2008). Our approach falls into another category, that

is, model-based classification where the time series are assumed to be generated
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by a probabilistic model and examples are classified using maximum likelihood

or MAP estimates. A family of such models, closely related to the GMT, is dis-

cussed in detail below. Another common approach uses Hidden Markov models

as a probabilistic model for sequence classification, and this has been applied to

time series as well (Kim and Smyth, 2006).

Learning Gaussian processes from multiple tasks has previously been investi-

gated in the hierarchical Bayesian framework, where a group of related tasks are

assumed to share the same prior. Under this assumption, training points across

all tasks are utilized to learn a better covariance function via the EM algorithm (Yu

et al., 2005; Schwaighofer et al., 2005). In addition, Lu et al. (2008) extended the

work of Schwaighofer et al. (2005) to a non-parametric mixed-effect model where

each task can have its own random effect. Our model is based on the same algorith-

mic approach where the values of the function for each task at its corresponding

points (i.e. {f̃j} in our model) are considered as hidden variables. Furthermore,

the proposed model is a natural generalization of Schwaighofer et al. (2005) where

the fixed-effect function is sampled from a mixture of regression functions each of

which is a realization of a common Gaussian process. Along a different dimen-

sion, our model differs from the infinite mixtures of Gaussian processes model for

clustering (Jackson et al., 2007) in two aspects: first, instead of using zero mean

Gaussian process, we allow the mean functions to be sampled from another Gaus-

sian process; second, the individual variation in our model serves as the covariance

function in their model but all mixture components share the same kernel.

Although having a similar name, the Gaussian process mixture of experts model

focuses mainly on the issues of non-stationarity in regression (Rasmussen and

Ghahramani, 2002; Tresp, 2001). By dividing the input space into several (even in-

finite) regions via a gating network, the Gaussian process mixture of expert model

allows different Gaussian processes to make predictions for different regions.

In terms of the clustering aspect, our work is most closely related to the so-

called mixture of regressions (Gaffney and Smyth, 2005, 2003; Gaffney, 2004; Gaffney

and Smyth, 1999). The name comes from the fact that these approaches substi-
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tute component density models with conditional regression density models in the

framework of standard mixture model. For phased time series, Gaffney and Smyth

(1999) first proposed the regression-based mixture model where they used Poly-

nomial and Kernel regression models for the mean curves. Further, Gaffney and

Smyth (2003) integrated the linear random effects models with mixtures of regres-

sion functions. In their model, each time series is sampled by a parametric re-

gression model whose parameters are generated from a Gaussian distribution. To

incorporate the time shifts, Chudova et al. (2003) proposed a shift-invariant Gaus-

sian mixture model for multidimensional time series. They constrained the co-

variance matrices to be diagonal to handle the non-synchronous case. They also

treated time shifts as hidden variables and derived the EM algorithm under full

Bayesian settings, i.e. where each parameter has a prior distribution. Further-

more, Gaffney and Smyth (2005) developed a generative model for misaligned

curves in a more general setting. Their joint clustering-alignment model also as-

sumes a normal parametric regression model for the cluster labels, and Gaussian

priors on the hidden transformation variables which consist of shifting and scal-

ing in both the time and magnitude. Our model extends the work of Gaffney and

Smyth (2003) to admit non-parametric Bayesian regression mixture models and

at the same time handle the non-phased time series. If the group effects are as-

sumed to have a flat prior, our model differs from Chudova et al. (2003) in the

following two aspects in addition to the difference of Bayesian treatment. First,

our model does not include the time shifts as hidden variables but instead esti-

mates them as parameters. Second, we can handle shared full covariance matrix

instead of diagonal ones by using a parametric form of the kernel. On the other

hand, given the time grid x̆, we can design the kernel for individual variations as

K(x̆i, x̆j) = aiδij(x̆i, x̆j), i, j = 1, · · · , IN. Using this choice, our model is the same

as Chudova et al. (2003) with shared diagonal covariance matrix. In summary,

in additional to being non-parametric and thus more flexible, our model allows a

more flexible structure of the covariance matrix that can treat synchronized and

non-synchronized time series in a unified framework, but at the same time it is
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constrained to have the same covariance matrix across all clusters.

3.6 Conclusion

We developed a novel Bayesian nonparametric multi-task learning model (GMT)

where each task is modeled as a sum of a group-specific function and an individ-

ual task function with a Gaussian process prior. We also extended the model such

that the number of groups is not bounded using a Dirichlet process mixture model

(DP-GMT). We derive efficient EM and variational EM algorithms to learn the pa-

rameters of the models and demonstrated their effectiveness using experiments in

regression, classification and class discovery. Our models are particularly useful

for sparsely and non-synchronously sampled time series data, and model selection

can be effectively performed with these models.
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Chapter 4

Sparse Grouped Mixed-effects GP

One of the main difficulties with the GMT model and algorithms in the previous

chapter, is computational cost. While the number of samples per task (Nj) is small,

the total sample size ∑j Nj can be huge, and the cubic complexity of GP inference

can be prohibitively large. Some improvement can be obtained when all the input

tasks share the same sampling points, or when different tasks share many of the

input points (Pillonetto et al., 2009, 2010). However, if the number of distinct sam-

pling points is large the complexity remains high. In particular, this is the case in

some of the experiments of the previous chapter where sample points are clipped

to a fine grid to avoid the high cardinality of the example set.

The same problem, handling large samples, has been addressed in single task

formalizations of GP, where several approaches for so-called sparse solutions have

been developed (Rasmussen and Williams, 2006; Seeger and Lawrence, 2003; Snel-

son and Ghahramani, 2006; Titsias, 2009). These methods approximate the GP with

m� N support variables (or inducing variables, pseudo inputs) Xm and their cor-

responding function values fm and perform inference using this set. Thus, instead

of clipping to a grid, new sampling points are adaptively chosen and their values

are estimated instead of being “moved to” nearby data points.

In this chapter, we develop a methodologically sound sparse solution for the

grouped mixed-effect GP model. Specifically, we extend the approach of Titsias

(2009) and develop a variational approximation that allows us to efficiently learn
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the shared hyper-parameters and choose the sparse pseudo samples. In addition,

we show how the variational approximation can be used to perform prediction

efficiently once learning has been performed. Our approach is particularly useful

when individual tasks have a small number of samples, different tasks do not share

sampling points, and there is a large number of tasks. Our experiments, using ar-

tificial and real data, validate the approach showing that it can recover the perfor-

mance of inference with the full sample, that it performs better than simple sparse

approaches for multi-task GP, and that for some applications it significantly out-

performs alternative sparse multi-task GP formulations (Álvarez and Lawrence,

2011).

The rest of this chapter is organized as follows. Section 4.1 reviews the mixed-

effect GP model and its direct inference. Section 4.2 develops the variational infer-

ence and model selection for the sparse mixed-effect GP model. Section 4.3 shows

how to extend the sparse solution to the grouped mixed-effect GP model. We dis-

cuss related work in Section 4.5 and demonstrate the performance of the proposed

approach using three datasets in Section 4.4. The last section concludes with a

summary and directions for future work.

4.1 Mixed-effects GP for Multi-task Learning

In the next section, we develop the mixed-effect model and its sparse solution

without considering grouping, i.e., using Assumption 1. The model and results

are extended to include grouping in Section 4.3.

To prepare for these derivations, we start by reviewing direct inference in the

mixed-effect model. Assumption 1 implies that for j, l ∈ {1, · · · , M}, the following

holds:

Cov[ f j(s), f l(t)] = Cov[ f̄ (s), f̄ (t)] + δjl ·Cov[ f̃ (s), f̃ (t)] (4.1)

where δjl is the Kronecker delta function. Given dataD j = {(xj
i , yj

i)}, i = 1, 2, · · · , Nj
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and let X be the concatenation of the examples from all tasks X = (xj
i), and sim-

ilarly let Y = (yj
i), where i = 1, 2, · · · , Nj, j = 1, 2, · · · , M and N = ∑j Nj. It can

easily been seen that, for any j ∈ {1, · · · , M} and new input x∗ for task j, we have

 f j(x∗)

Y

 ∼ N
0,

K†(x∗, x∗) K†(x∗,X )

K†(X , x∗) K†(X ,X ) + σ2I

 (4.2)

where the covariance matrix K† is given by

K†((xj
i), (xl

k)) = K(xj
i , xl

k) + δjl · K̃((xj
i , xl

k).

From (4.2) we can extract the marginal distribution Pr(Y) where

Y|X ∼ N (0, K†(X ,X ) + σ2I), (4.3)

which can be used for model selection, that is, learning the hyper-parameters of

the GP. Equation (4.2) also provides the predictive distribution where

IE( f j(x∗)|Y) = K†(x∗,X )(K†(X ,X ) + σ2I)−1Y

Var( f j(x∗)|Y) = K†(x∗, x∗)−K†(x∗,X )(K†(X ,X ) + σ2I)−1K†(X , x∗).
(4.4)

This works well in that sharing the information improves predictive performance

but, as the number of tasks grows, the dimension N increases leading to slow

inference scaling as O(N3). In other words, even though each task may have a

very small sample, the multi-task inference problem becomes infeasible when the

number of tasks is large.

In single task GP regression, to reduce the computational cost, several sparse

GP approaches have been proposed (Rasmussen and Williams, 2006; Seeger and

Lawrence, 2003; Snelson and Ghahramani, 2006; Titsias, 2009). In general, these

methods approximate the GP with a small number m � N of support variables

and perform inference using this subset and the corresponding function values fm.

Different approaches differ in how they choose the support variables and the sim-
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plest approach is to choose a random subset of the given data points. Recently,

Titsias (2009) introduced a sparse method based on variational inference using a

set Xm of inducing samples, which are different from the training points. In this

approach, the sample points Xm are chosen to maximize a variational lower bound

on the marginal likelihood, therefore providing a clear methodology for the choice

of the support set. Following their idea, Álvarez et al. (2010) proposed the varia-

tional inference for sparse convolved multiple output GPs.

In this chapter we extend this approach to provide a sparse solution for the

aforementioned model as well as generalizing it to the Grouped mixed-effect GP

model. As in the case of sparse methods for single task GP, the key idea is to intro-

duce a small set of m auxiliary inducing sample points Xm and base the learning

and inference on these points. For the multi-task case, each f̃ j(·) is specific to the

jth task. Therefore, it makes sense to induce values only for the fixed-effect por-

tion fm = f̄ (Xm). The details of this construction are developed in the following

sections.

4.2 Sparse Mixed-effects GP Model

In this section, we develop a sparse solution for the mixed-effects model without

group effect. The model is simpler to analyze and apply, and it thus provides

a good introduction to the results developed in the next section for the grouped

model.

4.2.1 Variational Inference

In this section we specify the sparse model, and show how we can learn the hyper-

parameters and the inducing variables using the sparse model. As mentioned

above, we introduce auxiliary inducing sample points Xm and hidden variables

fm = f̄ (Xm). Let fj = f̄ (xj) ∈ IRNj and f̃j = f̃ (xj) ∈ IRNj denote the values

of the two functions at xj. In addition let K∗j = K(x∗, xj), Kjj = K(xj, xj) and

Kmm = K(Xm,Xm), and similarly for K̃∗j, K̃jj, K̃mm. We wish to maximize the
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marginal likelihood Pr(Y) and perform the inference (i.e., calculate the posterior

distribution over the hidden variables).

Recall the variational EM method introduced in Section 3.3.3. We are given

observed data X, hidden variables Z, and we introduce the distribution q(Z) to

approximate Pr(Z|X). The variational lower bound of the log likelihood is given

by

ln Pr(X|θ) = ln
∫

q(Z)
[

Pr(X, Z|θ)
q(Z)

]
dZ >

∫
q(Z) ln

[
Pr(X, Z|θ)

q(Z)

]
dZ,

where the inequality holds because of Jensen’s inequality. In this section we use

exactly the same lower bound as in (3.32), but this time through an observation

due to Titsias (2009), we are able to optimize it directly and do not need the EM

algorithm.

In the following, we evaluate and optimize the variational lower bound of the

proposed sparse model. To this end, we need the complete data likelihood and the

variational distribution. The complete data likelihood is given by:

Pr({yj}, {fj, f̃j}, fm)

= Pr({yj}|{fj, f̃j})Pr({f̃j})Pr({fj}|fm)Pr(fm)

=

[
M

∏
j=1

Pr(yj|fj, f̃j)Pr(f̃j)

]
Pr({fj}|fm)Pr(fm).

Then, we approximate the posterior Pr({fj, f̃j}, fm|{yj}) on the hidden variables

by

q({fj, f̃j}, fm) =

[
M

∏
j=1

Pr(f̃j|fj, yj)

]
Pr({fj}|fm)φ(fm) (4.5)

which extends the variational form used by Titsias (2009) to handle the individual

variations as well as the multiple tasks. One can see that the variational distri-

bution is not completely in free form. Instead, q(·) preserves the exact form of

Pr(f̃j|fj, yj) and in using Pr({fj}|fm) it implicitly assumes that fm is a sufficient

statistic for {fj}. The free form φ(fm) corresponds to Pr(fm|Y) but allows it to di-
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verge from this value to compensate for the assumption that fm is sufficient. Notice

that we are not making any assumption about the sufficiency of fm in the gener-

ative model and the approximation is entirely due to the variational distribution.

An additional assumption is added later to derive a simplified form of the predic-

tive distribution.

With the two ingredients ready, the variational lower bound (Jordan et al., 1999;

Bishop, 2006), denoted as FV(Xm, φ), is given by:

log Pr(Y) > FV(Xm, φ)

=
∫

q({fj, f̃j}, fm)× log

[
Pr({yj}, {fj, f̃j}, fm)

q({fj, f̃j}, fm)

]
d{fj}d{f̃j}dfm

=
∫ [ M

∏
j=1

Pr(f̃j|fj, yj)

]
Pr({fj}|fm)φ(fm)

× log

[
M

∏
l=1

Pr(yl|fl, f̃l)Pr(f̃l)

Pr(f̃l|fl, yl)
· Pr(fm)

φ(fm)

]
d{fj}d{f̃j}dfm

=
∫

φ(fm)

{
log G(fm,Y) + log

[
Pr(fm)

φ(fm)

]}
dfm.

The inner integral denoted as log G(fm,Y) is

∫ [ M

∏
j=1

Pr(f̃j|fj, yj)

]
Pr({fj}|fm)×

M

∑
l=1

log

[
Pr(yl|fl, f̃l)Pr(f̃l)

Pr(f̃l|fl, yl)

]
d{fj}d{f̃j}

=
M

∑
j=1

∫
Pr(f̃j|fj, yj)Pr(fj|fm)× log

[
Pr(yj|fj, f̃j)Pr(f̃j)

Pr(f̃j|fj, yj)

]
dfjdf̃j

(4.6)

where the second line holds because in the sum indexed by l all the product mea-

sures
M

∏
j=1,j 6=l

Pr(f̃j|fj, yj)Pr({fn}n 6=l|fm, fl)d{fj}d{f̃j},

are integrated to 1, leaving only the j-th integral. In the following we show that

log G(fm,Y) =
m

∑
j=1

[
log
[
N (yj|αj, K̂jj)

]
− 1

2
Tr
[
(Kjj −Qjj)[K̂jj]

−1
] ]

(4.7)
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where αj = KjmK−1
mmfm, K̂jj = σ2

j I + K̃jj, and Qjj = KjmK−1
mmKmj. Thus we have

FV(Xm, φ) =
∫

φ(fm)

[
log G(fm,Y) + log

[
Pr(fm)

φ(fm)

]]
dfm

=
∫

φ(fm) log

∏j

[
N (yj|αj, K̂jj)

]
Pr(fm)

φ(fm)

 dfm

− 1
2

M

∑
j=1

Tr
[
(Kjj −Qjj)[K̂jj]

−1
]

.

(4.8)

Let v be a random variable and g any function, then by Jensen’s inequality

IE[log g(v)] ≤ log IE[g(v)]. Therefore, the best lower bound we can derive from

(4.8), if it is achievable, is the case where equality holds in Jensen’s inequality. It

follows that φ(fm) can be chosen to obtain equality, and therefore, the variational

lower bound is

FV(Xm, φ) = log
∫

∏
j

[
N (yj|αj, K̂jj)

]
Pr(fm)dfm −

1
2

M

∑
j=1

Tr
[
(Kjj −Qjj)[K̂jj]

−1
]

.

Evaluating the integral by marginalizing out fm and recalling that Y is the concate-

nation of the yj, we get

FV(Xm, θ, θ̃) = log
[
N (Y|0, ΛmK−1

mmΛT
m + K̂m)

]
−

M

∑
j=1

[
1
2

Tr
[
(Kjj −Qjj)[K̂jj]

−1
] ]

(4.9)

where

Λm =


K1m

K2m
...

KMm

 and K̂m =
M⊕

j=1

K̂jj =


K̂11

K̂22
. . .

K̂MM

 .

In (4.9), we have explicitly written the parameters that can be chosen to further op-

timize the lower bound, namely the support inputs Xm, and the hyper-parameters
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θ and θ̃ in K and K̃ respectively. Finally, observe that in (4.9), FV does not depend

on q(·) and we are able to obtain a closed form for φ∗(fm) directly. As a result,

we can optimize FV with respect to both q(·) and the parameters directly and do

not need to resort to the EM algorithm. In contrast, in general, the variational

lower bound normally contains both q(·) and other parameters, making the EM

algorithm necessary, as in Section 3.3.3 and later in Section 4.3.

By calculating derivatives of (4.9) we can optimize the lower bound using a

gradient based method. We provide the details of the gradients and their compu-

tation in the next Section where we discuss the solution of the grouped model. In

the experiments in this Chapter, we use stochastic gradient descent (SGD), which

works better than the Conjugate Gradient (CG) in this scenario where the number

of tasks is large, by using a heuristic search over subsets of points in the dataset.

As in the previous chapter, this is reasonable because the input time is single di-

mensional, but gradients can be hard to use in the high dimensional case or with

discrete inputs. Titsias (2009) outlines methods that can be used when gradients

are not useful.

Evaluating log G(fm,Y)

Consider the j-th element in the sum of (4.6):

Ĝj(fj, yj) =
∫

Pr(f̃j|fj, yj)Pr(fj|fm) log

[
Pr(yj|fj, f̃j)Pr(f̃j)

Pr(f̃j|fj, yj)

]
dfjdf̃j

=
∫

Pr(f̃j|fj, yj)Pr(fj|fm)

× log

[
Pr(f̃j|yj, fj)Pr(yj|fj)

Pr(f̃j|fj)
· Pr(f̃j)

Pr(f̃j|fj, yj)

]
dfjdf̃j

=
∫

Pr(fj|fm) log
[
Pr(yj|fj)

] (∫
Pr(f̃j|fj, yj)df̃j

)
dfj

=
∫

Pr(fj|fm) log
[
Pr(yj|fj)

]
dfj = IE[fj|fm]

log
[
Pr(yj|fj)

]
where the third line holds because of the independence between f̃j and fj. We next

show how this expectation can be evaluated. This is more complex than the single-
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task case (Titsias, 2009) because of the coupling of the fixed-effect and the random

effect. Recall that

Pr(fj|fm) = N (fj|KjmK−1
mmfm, Kjj −KjmK−1

mmKmj)

and

yj|fj ∼ N (fj, K̂jj)

where K̂jj = σ2I + K̃jj. Denote K̂−1
jj = LTL where L can be chosen as its Cholesky

decomposition. We have

log
[
Pr(yj|fj)

]
= −1

2
(yj − fj)TK̂−1

jj (yj − fj) + log
[
(2π)−

Nj
2

]
+ log

[
|K̂jj|−

1
2

]
= −1

2
(Lyj − Lfj)T(Lyj − Lfj) + log

[
(2π)−

Nj
2

]
+ log

[
|K̂jj|−

1
2

]
.

Notice that

Pr(Lfj|fm) = N (LKjmK−1
mmfm, L(Kjj −Qjj)LT)

where Qjj = KjmK−1
mmKmj. Recall the fact that for x ∼ N (µ, Σ) and a constant

vector a, we have IE[‖a− x‖2] = ‖a− µ‖2 + Tr(Σ). Thus,

IE[fj|fm]
log
[
Pr(yj|fj)

]
= −1

2
‖Lyj − LKjmK−1

mmfm‖2

− 1
2

Tr(L(Kjj −Qjj)LT) + log
[
(2π)−

Nj
2

]
+ log

[
|K̂jj|−

1
2

]
=

{
− 1

2

[
y−KjmK−1

mmfm

]T (
LT L

) [
y−KjmK−1

mmfm

]
+ log

[
(2π)−

Nj
2

]
+ log

[
|Kjj|−

1
2

]}
− 1

2
Tr
[

L(Kjj −Qjj)LT
]

= log
[
N (yj|αj, K̂jj)

]
− 1

2
Tr
[
(Kjj −Qjj)K̂−1

jj

]
where αj = KjmK−1

mmfm. Finally, calculating ∑j Ĝj(fj, yj) we get (4.7).
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Variational distribution φ∗(fm)

For equality to hold in Jensen’s inequality, the function inside the log must be

constant. In our case this is easily achieved because φ(fm) is a free parameter,

and we can set ∏j

[
N (yj|αj, K̂jj)

]
Pr(fm)

φ(fm)

 ≡ c,

yielding the bound given in (4.9). Setting φ(fm) ∝ ∏j

[
N (yj|αj, K̂jj)

]
Pr(fm) yields

the form of the optimal variational distribution

φ∗(fm) ∝ ∏
j

[
N (yj|αj, K̂jj)

]
Pr(fm)

∝ exp

{
− 1

2
fT

m

[
K−1

mmΦK−1
mm

]
fm + fT

m

(
K−1

mm ∑
j

Kmj

[
K̂jj

]−1
yj

)}
,

from which we observe that φ∗(fm) is

N
(

fm

∣∣∣∣∣KmmΦ−1 ∑
j

Kmj[K̂jj]
−1yj, KmmΦ−1Kmm

)
(4.10)

where Φ = Kmm + ∑j Kmj[K̂jj]
−1Kjm. Notice that by choosing the number of tasks

to be 1 and the random effect to be a noise process, i.e. K̃(s, t) = σ2δ(s, t), (4.9) and

(4.10) are exactly the variational lower bound and the corresponding variational

distribution in (Titsias, 2009).

4.2.2 Prediction using the Variational Solution

Given any task j, our goal is to calculate the predictive distribution of f j(x∗) =

f̄ (x∗) + f̃ j(x∗) at some new input point x∗. As described before, the full inference

is expensive and therefore we wish to use the variational approximation for the

predictions as well. The key assumption is that fm contains as much information

as Y in terms of making prediction for f̄ . This will be made explicit below. To start

with, it is easy to see that the predictive distribution is Gaussian and that it satisfies
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IE[ f j(x∗)|Y ] = IE[ f̄ (x∗)|Y ] + IE[ f̃ j(x∗)|Y ]

Var[ f j(x∗)|Y ] = Var[ f̄ (x∗)|Y ] + Var[ f̃ j(x∗)|Y ] + 2Cov[ f̄ (x∗), f̃ j(x∗)|Y ].
(4.11)

The above equation is more complex than the predictive distribution for single-

task sparse GP (Titsias, 2009) because of the coupling induced by f̄ (x∗), f̃ j(x∗)|Y .

We next show how this can be calculated via conditioning.

To calculate the terms in (4.11), three parts are needed, i.e., Pr( f̄ (x∗)|Y), Pr( f̃ (x∗)|Y)

and Cov[ f̄ (x∗), f̃ j(x∗)|Y ]. Using the assumption of the variational form given

in (4.5), we have the following facts,

1. fm|Y ∼ φ∗(fm) = N (µ, A) where µ and A are given in (4.10).

2. fm is sufficient for {fj}, i.e. Pr({fj}|fm,Y) = Pr({fj}|fm). Since we are inter-

ested in prediction for each task separately, by marginalizing out fl, l 6= j, we

also have Pr(fj|fm,Y) = Pr(fj|fm) and

fj|fm,Y ∼ N
(

KjmK−1
mmfm, Kjj −KjmK−1

mmKmj

)
. (4.12)

3. For f̃ j(x∗) we can view yj − fj as noisy realizations from the same GP as

f̃ j(xj) and therefore

f̃ j(x∗)|fj,Y ∼ N
(

K̃∗j

[
K̃jj + σ2

j Ij

]−1 [
yj − fj

]
, K̃∗∗ − K̃∗j

[
K̃jj + σ2

j Ij

]−1
K̃j∗

)
.

(4.13)

In order to obtain a sparse form of the predictive distribution we need to make

an additional assumption.

Assumption 4 We assume that fm is sufficient for f̄ (x∗), i.e.,

Pr( f̄ (x∗)|fm,Y) = Pr( f̄ (x∗)|fm),
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implying that

f̄ (x∗)|fm,Y ∼ N
(

K∗mK−1
mmfm, K∗∗ −K∗mK−1

mmKm∗
)

. (4.14)

The above set of conditional distributions also imply that f̄ (x∗) and f̃ j(x∗) are

independent given fm and Y .

To evaluate (4.11), we have the following:

Firstly, we can easily get Pr( f̄ (x∗)|Y) by marginalizing out fm|Y in (4.14),

Pr( f̄ (x∗)|Y) =
∫

Pr( f̄ (x∗)|fm)φ
∗(fm)dfm

yielding

f̄ (x∗)|Y ∼ N
(

K∗mK−1
mmµ, K∗∗ −K∗mK−1

mmKm∗ + K∗mK−1
mm AK−1

mmKm∗

)
. (4.15)

Similarly, we can obtain Pr( f̃ (x∗)|Y) by first calculating Pr(fj|Y) by marginalizing

out fm|Y in (4.12) and then marginalizing out fj|Y in (4.13), as follows. First we

have fj|Y ∼ N (KjmK−1
mmµ, B) where

B = Kjj −KjmK−1
mmKmj + KjmK−1

mm AK−1
mmKmj.

Next for Pr( f̃ (x∗)|Y), we have

Pr( f̃ j(x∗)|Y) =
∫

Pr( f̃ j(x∗)|fj, yj)Pr(fj|Y)dfj

and marginalizing out fj, f̃ (x∗)|Y can be obtained as

N
(

K̃∗j

[
K̃jj + σ2

j Ij

]−1 (
yj −KjmK−1

mmµ
)

, K̃∗∗ − K̃∗j

[
K̃jj + σ2

j Ij

]−1
K̃j∗

+ K̃∗j

[
K̃jj + σ2

j Ij

]−1
KjmK−1

mm × B×K−1
mmKmj

(
K̃jj + σ2

j Ij

)−1
K̃j∗

)
.

(4.16)
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Finally, to calculate Cov[ f̄ (x∗) f̃ j(x∗)|Y ] we have

Cov[ f̄ (x∗), f̃ j(x∗)|Y ] = IE
[

f̄ j(x∗) · f̃ j(x∗)|Y
]
− IE

[
f̄ (x∗)|Y

]
IE
[

f̃ (x∗)|Y
]

where

IE
[

f̄ j(x∗) · f̃ j(x∗)|Y
]
= IEfm|Y IE

[
f̄ j(x∗) · f̃ j(x∗)|fm,Y

]
= IEfm|Y

[
IE
[

f̄ j(x∗)|fm
]
· IE
[

f̃ j(x∗)|fm, yj]] (4.17)

where the second line holds because, as observed above, the terms are condition-

ally independent. The first term IE
[

f̄ j(x∗)|fm
]

can be obtained directly from (4.14).

By marginalizing out fj|fm in (4.13) such that

Pr( f̃ j(x∗)|fm, yj) =
∫

Pr( f̃ j(x∗)|fj,Y)Pr(fj|fm)dfj,

we can get the second term. This yields

N
(

K̃∗j

[
K̃jj + σ2

j Ij

]−1 (
yj −KjmK−1

mmfm

)
, K̃∗∗ − K̃∗j

[
K̃jj + σ2

j Ij

]−1
K̃j∗

+ K̃∗j

[
K̃jj + σ2

j Ij

]−1
C
(

K̃jj + σ2
j Ij

)−1
K̃j∗

) (4.18)

where C = Kjj − KjmK−1
mmKmj. To simplify the notation, let H = K∗mK−1

mm, F =

K̃∗j

(
K̃jj + σ2

j Ij

)−1
and G = KjmK−1

mm. Then (4.17) can be evaluated as

HyjF · IE[fm]− FG
(

IE
[
fmfT

m|Y
])

HT = HyjF · µ− FG
[
A + µµT

]
HT.

We have therefore shown how to calculate the predictive distribution in (4.11).

The complexity of these computations is O(N3
j + m3) which is a significant im-

provement over O(N3) where N = M× Nj.
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4.3 Sparse Grouped Mixed-effects GP Model

In this section, we extend the sparse solution of the mixed-effect GP model to the

grouped mixed-effect model. We abuse notation and still call it GMT. We show

how to perform the inference and model selection efficiently.

4.3.1 Generative Model

First, we specify the sparse GMT (SGMT) model, and show how we can learn

the hyper-parameters and the inducing variables using this sparse model. The

generative process (shown in Fig. 4-1) is as follows, where Dir and Multi denote

the Dirichlet and the Multinominal distribution respectively.

1. Draw the mean effect functions: f̄k(·)|θθθk ∼ GP(0,Kk(·, ·)), k = 1, 2, · · · , K;

2. Draw πππ|ααα0 ∼ Dir(ααα0);

3. For the j-th task (time series);

• Draw zj|πππ ∼Multi(πππ);

• Draw the random effect: f̃ j(·)|θ̃θθ ∼ GP(0, K̃(·, ·));

• Draw yj|zj, f j, xj, σ2
j ∼ N

(
f j(xj), σ2

j · Ij

)
, where f j = f̄zj + f̃ j and where

to simplify the notation Ij stands for INj .

This is slightly different from the model of Chapter 3 in that we no longer model

the phase shift aspect and in that we provide prior over π and no longer treat it as

a parameter. In contrast with Chapter 3 and following Section 4.2, our algorithm

below also treats f̄ as a hidden variable and does not estimate it directly as as

parameter. Finally, in contrast with Chapter 3, we do learn the kernel of the fixed-

effects and each center uses its own kernel function Kk.
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Figure 4-1: Plate graph of the GMT-GP. Blue nodes denote observations, green
nodes are (hyper)parameters and the gray nodes are latent variables.

4.3.2 Variational Inference

In this section we show how to perform the learning via variational approxima-

tion. The derivation follows the same outline as in the previous section but due to

the hidden variables zj that specify group membership, we have to use the vari-

ational EM algorithm. As mentioned above, for the k-th mixed-effect (or center),

we introduce mk auxiliary inducing support variables X k
m and the hidden variable

ηηηk = f̄k(X k
m), which is the value of k-th fixed-effect function evaluated at X k

m.

Let fk = f̄k(X ) ∈ IRN denote the function values of the k-th mean effect so

that fj
k = f̄k(xj) ∈ IRNj is the sub-vector of fk corresponding to the j-th task. Let

f̃j = f̃ (xj) ∈ IRNj be the values of the random effect at xj. Denote the collection of

the hidden variables as F = {fk}, F̃ = {f̃j}, H = {ηηηk}, Z = {zj}, and πππ. In addition

let Kk
∗j = Kk(x∗, xj), Kk

jj = Kk(xj, xj), Kjk = Kk(xj,X k
m) and Kkk = Kk(X k

m,X k
m),

and similarly K̃∗j = K̃(x∗, xj), K̃jj = K̃(xj, xj) and K̂jj = K̃jj + σ2
j Ij where Ij stands

for INj .

To learn the hyper-parameters we wish to maximize the marginal likelihood

Pr(Y). In the following we develop a variational lower bound for this quantity.

To this end, we need the complete data likelihood and the variational distribution.

The complete data likelihood is given by

Pr(Y ,F, F̃ , H, Z, πππ) = Pr(Y|F, F̃ , Z)Pr(F|H)Pr(Z|πππ)Pr(πππ)Pr(F̃ )Pr(H) (4.19)
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where

Pr(H) =
K

∏
k=1

Pr(ηηηk), Pr(F̃ ) =
M

∏
j=1

Pr(f̃j),

Pr(πππ) = Dir(πππ|α0), Pr(Z|πππ) =
M

∏
j=1

K

∏
k=1

π
zjk
k

Pr(F|H) =
K

∏
k=1

Pr(fk|ηηηk), Pr(Y|F, F̃ , Z) =
M

∏
j=1

K

∏
k=1

[
Pr(yj|f̃j, fk)

]zjk

where, as usual {zjk} represent zj as a unit vector. We approximate the posterior

Pr(F, F̃ , H, Z, πππ|Y) on the hidden variables using

q(F, F̃ , H, Z, πππ) = q(F, F̃ , H|Z)q(Z)q(πππ) (4.20)

where

q(F, F̃ , H|Z) = Pr(F̃ |F, Z,Y)Pr(F|H)Φ(H)

=
M

∏
j=1

K

∏
k=1

[
Pr(f̃j|fk, yj)

]zjk
K

∏
k=1

Pr(fk|ηηηk)φ(ηηηk).

This extends the variational form of the previous section to handle the grouping.

Our use of fk as the complete set of observation when the true group is k makes for

a convenient notation and simplifies the derivation. The variational lower bound,
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denoted as FV , is given by:

log Pr(Y) > FV∫
q(F, F̃ , H, Z, πππ)× log

[
Pr(Y ,F, F̃ , H, Z, πππ)

q(F, F̃ , H, Z, πππ)

]
dF dF̃ dH dZ dπππ

=
∫

q(πππ)q(Z)q(F, F̃ , H|Z)

× log

[
Pr(Y|F, F̃ , Z)Pr(F|H)Pr(Z|πππ)Pr(π)Pr(F̃ )Pr(H)

q(F, F̃ , H|Z)q(Z)q(πππ)

]
dFdF̃dHdZdπππ

=
∫

q(Z)q(πππ) log
[

Pr(πππ)Pr(Z|πππ)

q(Z)q(πππ)

]
dπππdZ

+
∫

q(Z)q(F, F̃ , H|Z) log

[
Pr(Y|F, F̃ , Z)Pr(F|H)Pr(F̃ )Pr(H)

q(F, F̃ , H|Z)

]
dFdF̃dHdZ

To begin with, we evaluate the second term denoted as FV2, as follows. The term

inside the log can be evaluated as

∆∆∆ =
∏j,k

[
Pr(yj|f̃j, fk)

]zjk ∏k Pr(fk|ηηηk)∏j Pr(f̃j)∏k Pr(ηηηk)

∏j,k
[
Pr(f̃j|fk, yj)

]zjk ∏k Pr(fk|ηηηk)φ(ηηηk)

=
m

∏
j=1

K

∏
k=1

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]zjk

×
K

∏
k=1

Pr(ηηηk)

φ(ηηηk)
.

Thus, we can write FV2 as

FV2 =
∫

q(Z)q(F, F̃ , H|Z)(log ∆∆∆) dFdF̃dHdZ

=
∫

q(Z)

[∫ K

∏
k=1

φ(ηηηk)

{
log G(Z, H,Y) +

K

∑
k=1

log
[

Pr(ηηηk)

φ(ηηηk)

]}
dH

]
dZ,

where

log G(Z, H,Y) =
∫

Pr(F̃ |F, Z)Pr(F|H) log

[
M

∏
j=1

K

∏
k=1

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]zjk
]

dFdF̃ .
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We show below that log G(Z, H,Y) can be decomposed as

log G(Z, H,Y) =
M

∑
j=1

K

∑
k=1

zjk log G(ηηηk, yj),

where

log G(ηηηk, yj) = log
[
N (yj|αk

j , K̂jj)
]
− 1

2
Tr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]
, (4.21)

where αk
j = KjkK−1

kk ηηηk and Qk
jj = KjkK−1

kk Kkj. Consequently, the variational lower

bound is

FV =
∫

q(Z)q(π) log
[

Pr(πππ)Pr(Z|πππ)

q(Z)q(πππ)

]
dπππdZ

+
∫

q(Z)

[∫ K

∏
k=1

φ(ηηηk)

{
log G(Z, H,Y) +

K

∑
k=1

log
[

Pr(ηηηk)

φ(ηηηk)

]}
dH

]
dZ

To optimize the parameters we use the variational EM algorithm.

• In the Variational E-Step, we estimate q∗(Z), q∗(πππ) and {φ∗(ηηηk)}.

To get the variational distribution q∗(Z), we take derivative of FV w.r.t. q(Z)

and set it to 0. This yields

log q∗(Z) =
∫

q(πππ) log(Pr(Z|πππ))dπππ +
∫ K

∏
k=1

φ(ηηηk) log G(Z, H,Y)dH

=
M

∑
j=1

K

∑
k=1

zjk

[
IEq(πππ)[log πk] + IEφ(ηηηk)

[log G(ηηηk, yj)]
]
+ const

from which (see similar derivation in (Bishop, 2006, chap. 9)) we obtain

q∗(Z) =
M

∏
j=1

K

∏
k=1

r
zjk
jk , rjk =

ρjk

∑K
k=1 ρjk

log ρjk = IEq(πππ)[log πk] + IEφ(ηηηk)
[log G(ηηηk, yj)],

(4.22)

where IEq(πππ)[log πk] = ψ(αk)−ψ(∑k αk) where ψ is the digamma function, αk
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is defined below in (4.24), and IEφ(ηηηk)
[log G(ηηηk, yj)] is given below in (4.37).

For the variational distribution of q∗(πππ) the derivative yields

log q∗(πππ) = log Pr(πππ) +
∫

q(Z) log(Pr(Z|πππ))dπππ + const

= (α0 − 1)
K

∑
k=1

log(πk) +
M

∑
j=1

K

∑
k=1

IE[zjk] log πk + const,

where we have used the form of the Dirichlet distribution. Taking the expo-

nential of both sides, we have

q∗(πππ) = Dir(πππ|ααα) (4.23)

where

αk = α0 + Nk, Nk =
M

∑
j=1

rjk. (4.24)

The final step is to get the variational distribution of φ∗(ηηηk), k = 1, · · · , K.

Notice that only FV2 is a function of φ(ηηηk). We can rewrite this portion as

∫ K

∏
k=1

φ(ηηηk)

({∫
q(Z)

M

∑
j=1

K

∑
k=1

zjk

[
log G(ηηηk, yj)

]
dZ

}
+

K

∑
k=1

log
[

Pr(ηηηk)

φ(ηηηk)

])
dH

=
∫ K

∏
k=1

φ(ηηηk)

(
M

∑
j=1

K

∑
k=1

IEq(Z)[zjk]
[
log G(ηηηk, yj)

]
+

K

∑
k=1

log
[

Pr(ηηηk)

φ(ηηηk)

])
dH

=
K

∑
k=1

∫
φ(ηηηk)

{[
M

∑
j=1

IEq(Z)[zjk] log G(ηηηk, yj)

]
+ log

[
Pr(ηηηk)

φ(ηηηk)

]}
dηηηk.

(4.25)

Thus, our task reduces to find φ∗(ηηηk) separately. Taking the derivative of

(4.25) w.r.t. φ(ηηηk) and setting it to be zero, we have

log φ∗(ηηηk) =
M

∑
j=1

IEq(Z)[zjk] log G(ηηηk, yj) + log Pr(ηηηk) + const.

Using (4.21) and the fact that second term in (4.21) is not a function of ηηηk, we
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obtain

φ∗(ηηηk) ∝
M

∏
j=1

[
N (yj|αk

j , K̂k
jj)
]IEq(Z)[zjk]

Pr(ηηηk). (4.26)

Thus, we have φ∗(ηηηk) proportional to

exp

{
−1

2
(ηηηk)T

(
K−1

kk ΦK−1
kk

)
ηηηk + (ηηηk)

T

(
K−1

kk

M

∑
j=1

IEq(Z)[zjk]Kkj[K̂jj]
−1yj

)}
,

where

Φ = Kkk +
M

∑
j=1

rjkKkj[K̂jj]
−1Kjk.

Completing the square yields the Gaussian distribution φ∗(ηηηk) = N (µµµk, ΣΣΣk),

where

µµµk = KkkΦ−1
M

∑
j=1

rjkKkj[K̂jj]
−1yj, ΣΣΣk = KkkΦ−1Kkk. (4.27)

• In the Variational M-Step, based on the previous estimated variational dis-

tribution, we wish to find hyperparameters that maximize the variational

lower bound FV . The terms that depend on the hyperparameters and the in-

ducing variables {X k
m} are given in (4.25). Therefore, using (4.21) again, we

have

FV(Xk, θ) =
K

∑
k=1

∫
φ∗(ηηηk)

{[
M

∑
j=1

rjk log G(ηηηk, yj)

]
+ log

[
Pr(ηηηk)

φ∗(ηηηk)

]}
dηηηk

=
K

∑
k=1

∫
φ∗(ηηηk)

{
log

[
M

∑
j=1

rjkN (yj|αk
j , K̂jj)

]
+ log

[
Pr(ηηηk)

φ∗(ηηηk)

]}
dηηηk

− 1
2

K

∑
k=1

m

∑
j=1

rjkTr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]

=
K

∑
k=1

∫
φ∗(ηηηk)

log

∏M
j=1

[
N (yj|αk

j , K̂jj)
]rjk

Pr(ηηηk)

φ∗(ηηηk)


 dηηηk

− 1
2

K

∑
k=1

m

∑
j=1

rjkTr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]

From (4.26), we know that the term inside the log is constant, and therefore,
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extracting the log from the integral and cancelling the φ∗ terms we see that

the k’th element of first term is equal to the logarithm of

∫ M

∏
j=1

[
N (yj|αk

j , K̂jj)
]rjk

Pr(ηηηk)dηηηk. (4.28)

We next show how this multivariate integral can be evaluated. First consider

[
N (yj|αk

j , K̂jj)
]rjk

=

(
(2π)−

Nj
2 |K̂jj|−

1
2

)rjk

exp
{
−

rjk

2
(yj − αk

j )
T[K̂jj]

−1(yj − αk
j )

}
=

(
(2π)−

Nj
2 |K̂jj|−

1
2

)rjk

exp
{
−1

2
(yj − αk

j )
T
[
r−1

jk K̂jj

]−1
(yj − αk

j )

}

=

(
(2π)−

Nj
2 |K̂jj|−

1
2

)rjk

(2π)−
Nj
2 |r−1

jk K̂jj|−
1
2

· (2π)−
Nj
2 |r−1

jk K̂jj|−
1
2

× exp
{
−1

2
(yj − αk

j )
T
[
r−1

jk K̂jj

]−1
(yj − αk

j )

}
= AjkN (yj|αk

j , r−1
jk K̂k

jj),

where Ajk = (rjk)
Nj
2 (2π)

Nj(1−rjk)
2 |K̂jj|

1−rjk
2 . Thus, we have

M

∏
j=1

[
N (yj|αk

j , K̂jj)
]rjk

=

[
M

∏
j=1

Ajk

]
M

∏
j=1
N (yj|αk

j , r−1
jk K̂jj).

The first part is not a function of ηηηk and therefore, for the integration we are

only interested in the second part. Since Y is the concatenation of all yj’s, we

can write
M

∏
j=1
N (yj|αk

j , r−1
jk K̂jj) = N (Y|ΛkK−1

kk ηηηk, K̂k), (4.29)
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where

Λk =


K1k

K2k
...

KMk

 and K̂k =
M⊕

j=1

r−1
jk K̂k

jj =


r−1

1k K̂11

r−1
2k K̂22

. . .

r−1
MkK̂MM

 .

Therefore, the integral can the written as the following marginal distribution

of Pr(Y|k),

∫ M

∏
j=1
N (yj|αk

j , r−1
jk K̂jj)Pr(ηηηk)dηηηk =

∫
N (Y|ΛkK−1

kk ηηηk, K̂k)Pr(ηηηk)dηηηk = Pr(Y|k).

(4.30)

Using the fact that Pr(ηηηk) = N (0, Kkk) and observing that (4.29) is a condi-

tional Gaussian, we have

Pr(Y|k) = N (0, ΛkK−1
kk ΛT

k + K̂k).

Using this form and the portion of Ajk that depends on the parameters we

obtain the variational lower bound FV(X , θ),

K

∑
k=1

log Pr(Y|k) +
K

∑
k=1

M

∑
j=1

1− rjk

2
log |K̂jj| −

1
2

K

∑
k=1

M

∑
j=1

rjkTr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]
=

K

∑
k=1

log Pr(Y|k) + K− 1
2

M

∑
j=1

log |K̂jj| −
1
2

K

∑
k=1

M

∑
j=1

rjkTr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]
(4.31)

This extends the bound for the single center K = 1 case given in (4.9). Fur-

thermore, following the same reasoning as the previous derivation, the direct

inference for the full model can be obtained where ηk is substituted with fk

and the variational lower bound becomes

FV(X , θ) =
K

∑
k=1

logN (Y|0, Kkk + K̂k) +
K− 1

2

M

∑
j=1

log |K̂jj|. (4.32)
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We have explicitly written the parameters that can be chosen to further op-

timize the lower bound (4.31), namely the support inputs {X k
m}, and the

hyper-parameters θ which are composed of {θk} and {θ̃θθ} in Kk and K̃ re-

spectively.

By calculating derivatives of (4.31) we can optimize the lower bound using

a gradient based method. It is easy to see that the complexity for calculating

the derivative of the second and third terms of (4.31) is O(N). Thus, the

key computational issue of deriving a gradient descent algorithm involves

computing the derivative of log Pr(Y|k). We first show how to calculate the

inverse of the N× N matrix Υ = ΛkK−1
kk ΛT

k + K̂k. Using the matrix inversion

lemma (the Woodbury identity (Bishop, 2006)), we have

(ΛkK−1
kk ΛT

k + K̂k)−1 = [K̂k]−1 − [K̂k]−1Λk

(
Kkk + ΛT

k [K̂
k]−1Λk

)−1
ΛT

k [K̂
k]−1.

Since K̂k is a block-diagonal matrix, its inverse can be calculated in ∑jO(N3
j ).

Now, Kkk + ΛT
k [K̂

k]−1Λk is an mk × mk matrix where mk is the number of

inducing variables for the k-th mean effect. Therefore the computation of

(4.31) can be done in O(m3
k + ∑j N3

j + Nm2
k). Next, consider calculating the

derivative of the first term. We have

∂ Pr(Y|k)
∂θj

=
1
2
YTΥ−1 ∂Υ

∂θj
Υ−1Y − 1

2
Tr(Υ−1 ∂Υ

∂θj
),

where, by the chain rule, we have

∂Υ

∂θj
=

∂Λk
∂θj

K−1
kk ΛT

k − kK−1
kk

∂Kkk
∂θj

K−1
kk ΛT

k + ΛkK−1
kk

∂ΛT
k

∂θj
+

∂K̂k

∂θj
.

Therefore, pre-calculating YTΥ−1 and sequencing the other matrix opera-

tions from left to right the gradient calculation for each hyperparameter can

be calculated in O(Nm2
k). In our implementation, we use stochastic coordi-

nate descent, where at each iteration, one coordinate (parameter) is chosen at

random and we perform gradient descent on that coordinate.
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Evaluating log G(Z, H,Y)

In this section, we develop the expression for log G(Z, H,Y).

log G(Z, H,Y)

=
∫

∏
l,p

[
Pr(f̃l|fp, yl)

]zlp
K

∏
v=1

Pr(fv|ηηηv)×
M

∑
j=1

K

∑
k=1

zjk log

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]
dFdF̃

= ∑
j,k

zjk

[∫ ( K

∏
v=1

Pr(fv|ηηηv)

)
× Pr(f̃j|fk, yj)× log

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]
dFdf̃j

]

= ∑
j,k

zjk

[ ∫
Pr(f̃j|fk, yj)

×
[∫

Pr(fk|ηηηk)
K

∏
v=1,v 6=k

Pr(fv|ηηηv)dF−k

]
× log

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]
dfkf̃j

]

= ∑
j,k

zjk

[∫
Pr(f̃j|fk, yj)Pr(fk|ηηηk)× log

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]
dfkdf̃j

]

= ∑
j,k

zjk log G(ηηηk, yj)

(4.33)

where the second line holds because in the sum indexed by j and k all the product

measures
M

∏
l=1,l 6=j

K

∏
p=1

[
Pr(f̃l|fp, yl)

]zlp
,

are integrated to 1, leaving only the Pr(f̃j|fk, yj). Our next step is to evaluate

log G(ηηηk, yj), we have

∫
Pr(f̃j|fk, yj)Pr(fk|ηηηk)× log

[
Pr(yj|fk, f̃j)Pr(f̃j)

Pr(f̃j|fk, yj)

]
dfkdf̃j

=
∫

Pr(f̃j|fk, yj)Pr(fk|ηηηk)× log
[

Pr(yj|fk, f̃j)Pr(f̃j) · Pr(yj|fk)
Pr(yj|fk, f̃j)Pr(f̃j|fk)

]
dfkdf̃j

=
∫

Pr(fk|ηηηk) log
[
Pr(yj|fk)

]
dfk (4.34)

=
∫

Pr(fj|ηηηk) log
[
Pr(yj|fj)

]
dfj (4.35)
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where the one to last line holds because of the independence between f̃j and fk. We

next show how this expectation can be evaluated. This is the same derivation as

in the single center case (Section 4.2), but we repeat it here using the appropriate

notation for completeness.

Recall that Pr(fj|ηηηk) = N (fj|KjkK−1
kk ηηηk, Kk

jj −KjkK−1
kk Kkj). Denote K̂−1

jj = LTL

where L can be chosen as its Cholesky factor, we have

log
[
Pr(yj|fj)

]
= −1

2
(Lyj − Lfj)T(Lyj − Lfj) + log

[
(2π)−

Nj
2

]
+ log

[
|K̂jj|−

1
2

]
.

Notice that Pr(Lfj|ηηηk) = N (LKjkK−1
kk ηηηk, L(Kk

jj −Qk
jj)L

T) where Qk
jj = KjkK−1

kk Kkj.

Thus, we have

log G(ηηηk, yj) = IE[fj|ηηηk]
log
[
Pr(yj|fj)

]
= −1

2

∥∥∥∥Lyj − LKjkK−1
kk ηηηk

∥∥∥∥2

− 1
2

Tr(L(Kk
jj −Qk

jj)L
T) + log

[
(2π)−

Nj
2

]
+ log

[
|K̂jj|−

1
2

]
= log

[
N (yj|αj, K̂jj)

]
− 1

2
Tr
[
(Kk

jj −Qk
jj)K̂

−1
jj

]
where αk

j = KjkK−1
kk ηηηk. Finally, we have

log G(H,Y) =
m

∑
j=1

K

∑
k=1

zjk

[
log
[
N (yj|αk

j , K̂jj)
]
− 1

2
Tr
[
(Kk

jj −Qk
jj)[K̂jj]

−1
] ]

. (4.36)

Furthermore, marginalization out ηηηk, we have

IEφ∗(ηηηk)
log G(ηηηk, yj)

= log
[
N (yj|µk

j , K̂jj)
]
− 1

2
Tr
[
KjkK−1

kk (ΣΣΣk −Kkk)K−1
kk KjkK̂−1

jj

]
.

(4.37)

4.3.3 Algorithm Summary

The various steps in our algorithm and their time complexity are summarized in

Algorithm 2.

89



Algorithm 2 VARIATIONAL EM ALGORITHM FOR SPARSE GMT
1: Initialize X and the hyper parameters θ;
2: repeat
3: Calculate {rjk} using (4.22) with time complexity O(KNm2

k)
4: Estimate q∗(Z) using (4.22) with time complexity O(MK);
5: Estimate q∗(πππ) using (4.23) with time complexity O(MK);
6: Estimate {φ∗(ηηηk)} using (4.27) with time complexity O(KNm2

k);
7: Use the stochastic coordinate descent to optimize the hyperparameters

and pseudo inputs. For this, calculate the derivatives of the variational
lower bound (4.31) that can be done in O(KNm2

k).
8: until converges or reach the iteration limit

4.3.4 Prediction Using the Sparse Model

The proposed sparse model can be used for two types of problems. Prediction for

existing tasks and prediction for a newly added task. We start with deriving the

predictive distribution for existing tasks. Given any task j, our goal is to calcu-

late the predictive distribution Pr( f j(x∗)|Y) at new input point x∗, which can be

written as

K

∑
k=1

Pr( f j(x∗)|zjk = 1,Y)Pr(zjk = 1|Y) =
K

∑
k=1

rjk Pr( f j(x∗)|zjk = 1,Y). (4.38)

That is, because zjk form a partition we can focus on calculating Pr( f j(x∗)|

zjk = 1,Y) and then combine the results using the partial labels. Calculating

(4.38) is exactly the same as the predictive distribution in the non-grouped case,

the derivation in Section 4.2 gives the details. The complexity of these computa-

tions is O(K(N3
j + m3)) which is a significant improvement over O(KN3) where

N = ∑j Nj. Instead of calculating the full Bayesian prediction, one can use Max-

imum A Posteriori (MAP) by assigning the j-th task to the center c such that c =

argmax Pr(zjk = 1|Y). Preliminary experiments (not shown here) show that the

full Bayesian approach gives better performance. Our experiment below uses the

results of Bayesian prediction.
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Our model is also useful for making prediction for newly added tasks. Suppose

we are given {xM+1, yM+1} and we are interested in predicting f M+1(x∗). We

use the variational procedure to estimate its partial labels w.r.t. different centers

Pr(zM+1,k = 1|Y) and then (4.38) can be applied for making the prediction. In

the variational procedure we update the parameters for ZM+1 but keep all other

parameters fixed. Since each task has small number of samples, we expect this step

to be computationally cheap.

4.4 Experiments

For performance criteria we use the standardized mean square error (SMSE) and

the mean standardized log loss (MSLL) that are defined in (Rasmussen and Williams,

2006). We compare the following methods. The first four methods use the same

variational inference as describe in Section 4.2. They differ in the form of the vari-

ational lower bound they choose to optimize.

1. Direct Inference: use full samples as the support variables and optimize the

marginal likelihood. When k = 1, the marginal likelihood is described in

Section 4.2 and the predictive distribution is (4.4). For general k, Fv is given

in (4.32).

2. Variational Sparse GMT (MT-VAR): the proposed approach.

3. MTL Subset of Datapoints (MT-SD): a subset X k
m of size mk is chosen uni-

formly from the input points from all tasks X for each center. The hyper-

parameters are selected using X k
m (the inducing variables are fixed in ad-

vance) and their corresponding observations by maximizing the variational

lower bound. We call this MT-SD as a multi-task version of SD (see Ras-

mussen and Williams, 2006, Chap. 8.3.2), because in the single center case,

this method uses (4.3) and (4.4) using the subset Xm,Ym and xj, yj as the full

sample (thus discarding other samples).
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4. MTL Projected Process Approximation (MT-PP): the variational lower bound

of MT-PP is given by the first two terms of (4.31) ignoring the trace term,

and therefore the optimization chooses different pseudo inputs and hyper-

parameters. We call this method MT-PP because in the single center case,

it corresponds to a multi-task version of PP (see Rasmussen and Williams,

2006, chap. 8.3.3).

5. Convolved Multiple Output GP (MGP-FITC, MGP-PITC): the approaches

proposed in (Álvarez and Lawrence, 2011). For all experiments, we use code

from (Álvarez and Lawrence, 2011) with the following setting. The kernel

type is set to be gg. The hyper-parameters, parameters and the position of in-

ducing variables are obtained via optimizing the marginal likelihood using

a scaled conjugate gradient algorithm. The support variables are initialized

as equally spaced points over the range of the inputs. We set the param-

eter Rq = 1, which means that the latent functions share the same covari-

ance function. Whenever possible, we set Q which, roughly speaking, corre-

sponds to the number of centers in our approach, to agree with the number

of centers. The maximum number of iterations allowed in the optimization

procedure is set to be 200. The number of support variables is controlled in

the experiments as in our methods.

Three datasets are used to demonstrate the empirical performance of the pro-

posed approach. The first synthetic dataset contains data sampled according to our

model. The second dataset is also synthetic but it is generated from differential

equations describing glucose concentration in biological experiments, a problem

that has been previously used to evaluate multi-task GP (Pillonetto et al., 2010).

Finally, we apply the proposed method on the astrophysics dataset described in

the previous chapter.

As in the previous chapter, for all experiments, the kernels for different centers

are assumed to be the same. The hyperparameter for the Dirichlet distribution is

set to be α0 = 1/K. Unless otherwise specified, the inducing variables are initial-
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ized to be equally spaced points over the range of the inputs. To initialize, tasks

are randomly assigned into groups. We run the conjugate gradient algorithm (im-

plemented via minimize.m in MATLAB) on a small subset of tasks (100 tasks each

having 5 samples) to get the starting values of hyperparameters of the K̃ and K,

and then follow with the full optimization as above. Finally, we repeat the en-

tire procedure 5 times and choose the one that achieves the best variational lower

bound. The maximum number of iterations for the stochastic coordinate descent

is set to be 50 and the maximum number of iterations for the variational inference

is set to be 30. The entire experiment is repeated 10 times to obtain the average

performance and error bars.

4.4.1 Synthetic data

In the first experiment, we demonstrate the performance of our algorithm on a

regression task with artificial data. More precisely, we generated 1000 single-center

tasks where each f j(x) = f̄ (x) + f̃ j(x) is generated on the interval x ∈ [−10, 10].

Each task has 5 samples. The fixed-effect function is sampled from a GP with

covariance function

Cov[ f̄ (t1), f̄ (t2)] = e−(t1−t2)
2/2.

The individual effect f̃ j is sampled via a GP with the covariance function

Cov[ f̃ j(t1), f̃ j(t2)] = 0.25e−(t1−t2)
2/2.

The noise level σ2 is set to be 0.1. The sample points xj for each task are sampled

uniformly in the interval [−10, 10] and the 100 test samples are chosen equally

spaced in the same interval. The fixed-effect curve is generated by drawing a single

realization from the distribution of f̄ while the {fj} are sampled i.i.d. from their

common prior. We set the number of latent functions Q = 1 for MGP.

The results are shown in Figure 4-2. The left column shows qualitative results

for one run using 20 support variables. We restrict the initial support variables
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to be in [−7, 7] on purpose to show that the proposed method is capable of find-

ing the optimal inducing variables. It is clear that the predictive distribution of

the proposed method is much closer to the results of direct inference. The right

column gives quantitative results for SMSE and MSLL showing the same, as well

as showing that with 40 pseudo inputs the proposed method recovers the perfor-

mance of full inference. The MGP performs poorly on this dataset, indicating that

it is not sufficient to capture the random effect.

We note that the comparison in Figure 4-2 (and similar comparisons later in this

chapter) compare the performance of the algorithms when using the same number

of pseudo inputs, and not directly at the same time complexity. In terms of asymp-

totic run time the direct inference is O(N3) and the SD method requires O(m3).

All other algorithms require O(Nm2) and PP is closely related to the proposed

method. In practice, in our experiments SD is faster when using the same m but it

is significantly worse in terms of accuracy. PP and our algorithm have very close

run times. On the other hand, we see a large computational advantage over MGP.

We also see a large computational advantage over MGP in this experiment.

When the number of inducing variables is 20, the training time for FITC (the time

for constructing the sparse model plus the time for optimization) is 1515.19 seconds

whereas the proposed approach is about 7 times faster (201.81 sec.)1.

1The experiment was performed using MATLAB R2012a on an Intel Core Quo 6600 powered
Windows 7 PC with 4GB memory.
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Figure 4-2: Synthetic Data: Comparison between the proposed method and other
approaches. Left Column: Predictive distribution for the fixed-effect. The solid
line denotes the predictive mean and the corresponding dotted line is the predic-
tive variance. The black crosses at the top are the initial value of the inducing
variables and the red ones at the bottom are their values after learning process.
Right Column: The average SMSE and MSLL for all the tasks.
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4.4.2 Simulated Glucose Data

We evaluate our method to reconstruct the glucose profiles in an intravenous glu-

cose tolerance test (IVGTT) (Vicini and Cobelli, 2001; Denti et al., 2010; Pillonetto

et al., 2010) where Pillonetto et al. (2010) developed an online multi-task GP so-

lution for the case where sample points are frequently shared among tasks. This

provides a more realistic test of our algorithm because data is not generated ex-

plicitly by our model. More precisely, we apply the algorithm to reconstruct the

glucose profiles in an intravenous glucose tolerance test (IVGTT) where blood sam-

ples are taken at irregular intervals of time, following a single intravenous injection

of glucose. We generate the data using a minimal model of glucose which is com-

monly used to analyze glucose and insulin IVGTT data (Vicini and Cobelli, 2001),

as follows (Denti et al., 2010)

Ġ(t) = −[SG + X(t)]G(t) + SG · Gb + δ(t) · D/V

Ẋ(t) = −p2 · X(t) + p2 · SI · [I(t)− Ib]

G(0) = Gb, X(0) = 0

(4.39)

where D denotes the glucose dose, G(t) is plasma glucose concentration and I(t)

is the plasma insulin concentration which is assumed to be known. Gb and Ib are

the glucose and insulin base values. X(t) is the insulin action and δ(t) is the Dirac

delta function. SG, SI , p2, V are four parameters of this model.

We generate 1000 synthetic subjects (tasks) following the setup in previous

work: 1) the four parameters are sampled from a multivariate Gaussian with the

results from the normal group in Table 1. of (Vicini and Cobelli, 2001), i.e.

µ = [2.67, 6.42, 4.82, 1.64]

Σ = diag(1.02, 6.90, 2.34, 0.22);

2) I(t) is obtained via spline interpolation using the real data in (Vicini and Cobelli,
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2001); 3) Gb is fixed to be 84 and D is set to be 300; 4) δ(t) is simulated using a

Gaussian profile with its support on the positive axis and the standard deviation

(SD) randomly drawn from a uniform distribution on the interval [0, 1]; 5) Noise

is added to the observations with σ2 = 1. Each task has 5 measurements chosen

uniformly from the interval [1, 240] and 10 additional measurements are used for

testing. Notice that the approach in (Pillonetto et al., 2010) cannot deal the situation

efficiently since the inputs do not share samples often.

The experiments were done under both the single center and the multi center

setting and the results are shown in Figure 4-3. The plots of task distribution on the

top row suggest that one can get more accurate estimation by using multiple cen-

ters. For the multiple center case, the number of centers for the proposed method

is arbitrarily set to be 3 (K = 3) and the number of latent function of MGP is set

to be 2 (Q = 2) (We were not able of obtain reasonable results using MGP when

Q = 3). First, we observe that the multi-center version performs better than the

single center one, indicating that the group-based generalization of the traditional

mixed-effect model is beneficial. Second, we can see that all the methods achieve

reasonably good performance, but that the proposed method significantly outper-

forms the other methods.
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Figure 4-3: Simulated Glucose Data. Left Column: Single center K = 1 results;
Right Column: Multiple center K = 3 results; Top: 15 tasks (Blue) with observa-
tions (Red Diamonds) and estimated fixed-effect curve (Green) obtained from 1000
IVGTT responses. Although the data is not generated by our model, it can be seen
that different tasks have a common shape and might be modeled using a fixed ef-
fect function plus individual variations. Middle: The average SMSE for all tasks;
Bottom: The average MSLL for all tasks.
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4.4.3 Real Astrophysics Data

We evaluate our method again using the dataset extracted from the OGLEII sur-

vey that includes stars of 3 types (RRL, CEPH, EB) which constitute 3 datasets in

our context. Here we use a random subset of 700 stars (tasks) for each type and

preprocess the data normalizing each star to have mean 0 and standard deviation

1, and using universal phasing (see Section 3.4.2) to phase each time series to align

the maximum of a sliding window of 5% of the original points. For each time se-

ries, we randomly sample 10 examples for training and 10 examples for testing per

evaluation of SMSE and MSLL. The number of centers is set to be 3 for the pro-

posed approach and for MGP we set Q = 1 (We were not able to use Q > 1). The

results are shown in Figure 4-4. We can see that the proposed model significantly

outperforms all other methods on EB. For Cepheid and RRL whose shape is sim-

pler, we see that the error of the proposed model and of MGP are close and both

outperform other methods.

Recall that in Section 3.4.2, we used a simple approach clipping sample points

to a fine grid of 200 equally spaced points, due to the high dimensionality of the full

sample (over 18000 points). We compare the proposed approach to the naive clip-

ping approach in the context of time series classification. With exactly the same ex-

perimental setting as in Section 3.4.2, we use the sparsely sampled OGLEII data set

where each time series is downsampled to have 10 points. As the sparse method

does not handle phase shift we compare to both the algorithm in Chapter 3 and

to the same algorithm without phasing running on the universally phased data.

The results is shown in Figure 4-5. Comparing the two UP methods we see that

the variational approach is significantly better. With phasing the original GMT

performs slightly better with large number of inducing variables, but is still sig-

nificantly worse when this number is small. We believe that this difference will

become more important and prominent when inputs are high dimensional and

therefore harder to cover with a naive dense sample.
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Figure 4-4: OGLEII: The average SMSE and MSLL for all the tasks are shown in
the Left and Right Column. Top: Cepheid; Middle: EB; Bottom: RRL.
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Figure 4-5: Sparsly-sampled OGLEII: Classification Results.

4.5 Related Work

Our work is related to (Titsias, 2009) particularly in terms of the form of the vari-

ational distribution of the inducing variables. However, our model is much more

complex than the basic GP regression model. With the mixture model and an ad-

ditional random effect per task, we must take into account the coupling of the

random effect and group specific fixed-effect functions. The technical difficulty

that the coupling introduces is addressed in this Chapter, yielding a generalization

that is consistent with the single-task solution.

The other related thread comes from the area of GP for multi-task learning.

Bonilla et al. (2008) proposed a model that learns a shared covariance matrix on

features and a covariance matrix for tasks that explicitly models the dependency

between tasks. They also presented techniques to speed up the inference by using

the Nystrom approximation of the kernel matrix and incomplete Cholesky decom-

position of the task correlation matrix. Their model, which is known as the linear

coregionalization model (LCM) is subsumed by the framework of convolved mul-

tiple output Gaussian process (Álvarez and Lawrence, 2011). The work of Álvarez
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and Lawrence (2011) also derives sparse solutions which are extensions of differ-

ent single task sparse GP (Snelson and Ghahramani, 2006; Quiñonero-Candela and

Rasmussen, 2005). Our work differs from the above models in that we allow a ran-

dom effect for each individual task. As we show in the experimental section, this

is important in modeling various applications. If the random effect is replaced

with independent white noise, then our model is similar to LCM. To see this, from

(4.38), we recognize that the posterior GP is a convex combination of K indepen-

dent GPs (mean effect). However, our model is capable of prediction for newly

added tasks while the models in (Bonilla et al., 2008) and (Álvarez and Lawrence,

2011) cannot. Further, the proposed model can naturally handle heterotopic inputs,

where different tasks do not necessarily share the same inputs. In (Bonilla et al.,

2008), each task is required to have same number of samples so that one can use

the property of Kronecker product to derive the EM algorithm.

4.6 Conclusion

In this Chapter, we develop an efficient variational learning algorithm for the

grouped mixed-effect GP for multi-task learning, which compresses the informa-

tion of all tasks into an optimal set of support variables for each mean effect. Ex-

perimental evaluation demonstrates the effectiveness of the proposed method. In

future, it will be interesting to derive an online sparse learning algorithm for this

model. Another important direction is to investigate efficient methods for selec-

tion of inducing variables when the input is in a high dimensional space. In this

case, the clipping method of (Wang et al., 2010) is clearly not feasible. The vari-

ational procedure can provide appropriate guidance, but simple gradient based

optimization may not suffice.
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Chapter 5

Nonparametric Bayesian Estimation

of Periodic Light Curves

5.1 Introduction

Many physical phenomena exhibit periodic behavior. Discovering their period

and the periodic pattern they exhibit is an important task toward understanding

their behavior. In astrophysics, significant effort has been devoted to the analysis

of light curves from periodic variable stars. For example, the left part of Figure 5-

1 shows the magnitude of a light source over time. The periodicity of the light

source is not obvious before we fold it. However, as the right part illustrates, once

folded with the correct period, that is when we move the measurements at time t to

time t mod T, we get convincing evidence of periodicity. The object in this figure

is classified as an eclipsing binary (EB) star for the OGLE dataset used in the pre-

vious chapters. Other sources (e.g., RRL and Cepheids) show periodic variability

due to processes internal to the star (Petit, 1987). In the previous chapters we used

astronomy data that was already preprocessed by identifying the period and fold-

ing it. In this chapter, we address the important task of estimating the period in

order to enable those algorithms to be applied on other unprocessed datasets. The

problem of period estimation from noisy and irregularly sampled observations has

been studied before in several disciplines. Most approaches identify the period by
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Figure 5-1: Left: brightness of an eclipsing binary (EB) star over time; Right: bright-
ness versus phase.

some form of grid search. That is, the problem is solved by evaluating a criterion

Φ at a set of trial periods {p} and selecting the period p that yields the best value

for Φ(p). The commonly-used techniques vary in the form and parametrization of

Φ, the evaluation of the fit quality between model and data, the set of trial periods

searched, and the complexity of the resulting procedures. Two methods we use

as baselines in our study are the LS periodogram (Scargle, 1982; Reimann, 1994)

and the phase dispersion minimization (PDM) (Stellingwerf, 1978), both known

for their success in empirical studies. The LS method is relatively fast and is equiv-

alent to maximum likelihood estimation under the assumption that the function

has a sinusoidal shape. It therefore makes a strong assumption on the shape of the

underlying function. On the other hand, PDM makes no such assumptions and

is more generally applicable, but it is slower and is less often used in practice. A

more extensive discussion of related work is given in Section 5.4.

This chapter makes several contributions toward solving the period estimation

problem. First, we present a new model for period finding, based on Gaussian Pro-

cesses (GP), that does not make strong assumptions on the shape of the periodic

function. In this context, the period is a hyperparameter of the covariance func-

tion of the GP and accordingly the period estimation is cast as a model selection

problem for the GP. As our experiments demonstrate, the new model leads to sig-

nificantly better results compared to LS when the target function is non-sinusoidal.

The model also significantly outperforms PDM when the sample size is small.

Second, we develop a new algorithm for period estimation within the GP model.

In the case of period estimation the likelihood function is not a smooth function of

the period parameter. This results in a difficult estimation problem which is not
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well explored in the GP literature (Rasmussen and Williams, 2006). Our algorithm

combines gradient optimization with grid search and incorporates several mecha-

nisms to improve the complexity over the naive approach.

In particular we propose and evaluate: an approximation using a two level

grid search, approximation using limited cyclic optimization, a method using sub-

sampling and averaging, and a method using low-rank Cholesky approximations.

An extensive experimental evaluation using artificial data identifies the most use-

ful approximations and yields a robust algorithm for period finding.

Third, we develop a novel approach for using astrophysics knowledge, in the

form of a probabilistic generative model, and incorporate it into the period estima-

tion algorithm. In particular, we propose to employ GMT to bias the selection of

periods by using it as a prior over periods or as a post-processing selection crite-

rion choosing among periods ranked highly by the GP. The resulting algorithm is

applied and evaluated on astrophysics data showing significantly improved per-

formance over previous work.

The next section defines the period estimation problem in terms of the model

selection of GP. The following three sections present our algorithm, report on ex-

periments evaluating it and applying it to astrophysics data, and discuss related

work. The final section concludes with a summary and directions for future work.

5.1.1 Problem Definition

In the case of period estimation the sample points xi are scalars xi representing

the corresponding time points, and we denote x = [x1, . . . , xn]T. The underlying

function f (·) is periodic with unknown period p and corresponding frequency

w = 1/p. To model the periodic aspect we use a GP with a periodic RBF covariance

function,

Kθ(xi, xj) = β exp

{
−

2 sin2 (wπ(xi − xj)
)

`2

}
, (5.1)

where the set of hyperparameters of the covariance function is given by θ = {β, w, `}.

It can be easily seen that any f generated by Kθ is periodic with period T = 1/w.
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To see why this kernel gives rise to periodic functions, consider two points x2 =

x1 + k · T + ε/wπ, we have the joint distribution

 f (x1)

f (x2)

 ∼ N
0,

β β̃

β̃ β

 ,

where β̃ = β · exp(−o(ε2)). Thus, as ε→ 0, we have

IE[ f (x2)| f (x1)] =
β̃

β
f (x1)→ f (x1)

and

Var[ f (x2)| f (x1)] = β− β̃2

β
→ 0.

Figure (5-2) illustrates the role of the other two hyperparameters. We can see

that β controls the magnitude of the sampled functions. At the same time, ` which

is called characteristic length determines how sharp the variation is between two

points. The plots also demonstrate that the shape of the periodic functions is highly

variable. If desired, other base kernels (Rasmussen and Williams, 2006) can be

used and made to be periodic in a similar manner, and as in other work it is easy

to add a “trend” to the data to capture functions that are not purely periodic. In

this Chapter we focus on period finding with the purely periodic kernel and leave

such extensions to future work.

In our problem each star has its own period and shape and therefore each has

its own set of hyperparameters. Our model, thus, assumes that the following gen-

erative process is the one producing the data. For each time series j with arbitrary

sample points xj = [xj
1, · · · , xj

Nj
]T, we first draw a zero-mean GP

f j|θj ∼ GP(0,Kθj). (5.2)

Then, given xj and f j we sample the observations

yj ∼ N ( f j(xj), σ2
j I). (5.3)
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Figure 5-2: Sample functions from a GP with covariance function in (5.1) where the
period is fixed to be 5, i.e. w = 0.2. Top row: β = 0.1 vs β = 10 while ` is fixed to
be 0.6. Bottom row: ` = 0.3 vs ` = 1 with β = 0.3.

Denote the complete set of parameters byMj = {θj, σ2
j }. For each time series j, the

inference task is to select the correct model for the data {xj, yj}, that is, to findMj

that best describes the data. This is the main computational problem studied in this

chapter. In the rest of this Chapter, we drop the sub-index and consider estimating

M from {x, y} as we estimate the period for each time series separately.

Before presenting the algorithm we clarify two methodological issues. First,

notice that our model assumes homogeneous noise N (0, σ2), i.e. the observation

error for each xi is the same. Experimental results on the OGLEII dataset (not

shown here) show that σ2 estimated from the data is very close to the mean of

the recorded observation errors, and therefore there is no advantage in explicitly

modeling the recorded observation errors. Of course, this may be different in other

surveys; incorporating observation errors can be easily done by using σ2
obs + σ2 in
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Figure 5-3: Illustration of sensitivity of the marginal likelihood. A light curve is
generated using the GP model with parameters β = 1, w = 0.25, and ` = 1. Left:
The marginal likelihood function versus the period, where the dotted line indicates
the true period. Right: The black circles are the observations and the dotted line
(covered by the dark estimated curve) is the true function. The dark line which
covers the true curve and the light line are the learned regression functions given
two different starting points of w.

(5.3).

Second, as defined above our task is to find the full set of parametersM. There-

fore, our framework and induced algorithms can estimate the underlying function,

f , through the posterior mean f̂ , and thus yield a solution for the regression prob-

lem – predicting the value of the function at unseen sample points. However, our

main goal and interest in solving the problem is to infer the frequency w where

the other parameters are less important. Therefore, a large part of the evaluation

in this Chapter focuses on accuracy in identifying the frequency, although we also

report results on prediction accuracy for the regression problem.

5.2 Algorithm

We start by demonstrating experimentally that gradient based methods are not

sufficient for period estimation. We generate synthetic data and maximize the

marginal likelihood w.r.t. θ = {β, w, `} using conjugate gradients. For this experi-

ment, 30 samples in the interval [−10, 10] are generated according to the periodic
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1: Initialize the parameters randomly.
2: repeat
3: Jointly find w̃, β∗, `∗, σ∗ that maximize (2.12) using conjugate gradi-

ents.
4: for all w in a coarse grid set C do
5: Calculate the marginal likelihood (2.12) or the LOO Error (2.14)

using β∗, `∗, σ∗.
6: end for
7: Set w to the best value found in the for loop.
8: until Number of iterations reaches L1 (L1 = 2 by default)
9: Record the Top K (K = 10 by default) frequenciesW∗ found in the last run

of for loop (lines 4-6).
10: repeat
11: Jointly find w̃, β∗, `∗, σ∗ that maximize (2.12) using conjugate gradi-

ents.
12: for all w in a fine grid set F that coversW∗ do
13: Calculate the marginal likelihood (2.12) or the LOO Error (2.14)

using β∗, `∗, σ∗.
14: end for
15: Set w to the best value found in the for loop.
16: until Number of iterations reaches L2 (L2 = 2 by default)
17: Output the frequency w∗ that maximizes the marginal likelihood or mini-

mizes the LOO Error in the last run of for loop (lines 11-13).

Figure 5-4: Hyperparameter Optimization Algorithm

covariance function in (5.1) with θ = [1, 0.25, 1]. Fixing β, ` to their correct val-

ues, the marginal likelihood w.r.t. the period 1/w is shown in Figure 5-3 left. The

figure shows that the marginal likelihood has numerous local minima in the high

frequency (small period) region that have no relation to the true period. Figure 5-3

right shows two functions with the learned parameters based on different starting

points (initial values).

The function plotted in dark color estimates the true function correctly while

the one in light color does not. This is not surprising because from Figure 5-3 left,

we can see that there is only a small region of initial points from which the algo-

rithm can find the correct period. We repeated this experiment using several other

periodic functions with similar results. These preliminary experiments illustrate

two points:
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• At least for the simple data in this experiment, and when other parameters

are known, the marginal likelihood function is maximized at the correct pe-

riod. This shows that in principle we can find the correct period by opti-

mizing the marginal likelihood. In practice, the region around the maximum

may be very narrow, we have to deal with multiples of the correct period,

and we need to account for possibly very small periods so that the problem

is not so easy.

• On the other hand, the plots clearly show that it is not possible to identify the

period using only gradient based search.

Therefore, as in previous work (Reimann, 1994; Hall et al., 2000), our algorithm

uses grid search for the frequency. The grid used for the search must be sufficiently

fine to detect the correct frequency and this implies high computational complex-

ity. We therefore follow a two level grid search for frequency where the coarse grid

must intersect the smooth region of the true maximum and the fine grid can search

for the maximum itself. The two-level search significantly reduces the computa-

tional cost. Our algorithm, presented in Figure 5-4 combines this with gradient

based optimization of the other parameters. There are several points that deserve

further discussion, as follows:

1. In step 3, we can successfully maximize the marginal likelihood w.r.t. β, `

and σ2 using the conjugate gradients method, but this approach does not work

for the frequency w. The reason is that the objective function is highly sensitive

w.r.t. w and the gradient is not useful for finding the global maximum. This prop-

erty justifies the structure of our algorithm. This issues has been observed before

and grid search (in particular using two stages) is known to be the most effective

solution (Reimann, 1994; Hall et al., 2000).

2. Our algorithm uses cyclic optimization estimating w, σ, β, `. That is to say,

we fix other parameters σ, β, ` and optimize w and then optimize σ, β, ` when w

is fixed. We keep doing this iteratively but use a small number of iterations (in our

experiments, the default number of iterations is 2). A more complete algorithm
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would iterate until convergence but this incurs a large computational cost. Our

experiments demonstrate that a small number of iterations is sufficient.

3. In steps 3 and 11 we incorporate w into the joint optimization of the marginal

likelihood. This yields better results than optimizing w.r.t. the other parameters

with fixed w. This shows that the gradient of w sometimes still provides useful

information locally, although the obtained optimal value w̃ is discarded.

4. We use an adaptive search in the frequency domain, where at the first stage

we use a coarse grid and later a fine grid search is performed at the neighbors of

the best frequencies previously found. By doing this, the computational cost is

dramatically reduced while the accuracy of the algorithm is still guaranteed.

5. Two possible improvements to the algorithm that might appear useful are

less effective than our algorithm. First, in the coarse grid search, optimizing β, `

and σ2 for each w separately is too expensive because each computation of the gra-

dient requires costly inversion of the kernel matrix. Second, one might be tempted

to replace the fine grid search with a gradient based search for the optimal w. Our

experiments on OGLEII (not reported here) show that this routine is inferior both

in accuracy and in time complexity. This suggests that the region around the max-

imum is very narrow in many cases, and shows that gradient search is expensive

in this problem.

Two additional approximations are introduced next, specifically targeting the

coarse and fine grids respectively and using observations that are appropriate in

each case.

5.2.1 Ensemble Subsampling

The coarse grid search in lines 4-6 of the algorithm needs to compute the covari-

ance matrix w.r.t. each frequency in C and invert the corresponding covariance

matrix, and therefore the total time complexity is O
(
|C|N3). In addition, differ-

ent stars do not share the same sampling points.1 Therefore the covariance matrix

1 When multiple time series have the same sampling points (as might be the case with a whole
field in a survey) we can store the values of the kernel matrices and their inverses (per setting of w,
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and its inverse cannot be cached to be used on all stars. The computational cost

is too high when the coarse grid has a large cardinality. Our observation here is

that it might suffice to get an approximation of the likelihood at this stage of the

algorithm, because additional fine grid search is done in the next stage.

Therefore, to reduce the time complexity, we propose an ensemble approach

that combines the marginal likelihood of several subsampled times series. The

idea (Protopapas et al., 2005) is that the correct period will get a high score for all

sub-samples, but wrong periods that might score well on some sub-samples (and

be preferred to others due to outliers) will not score well on all of them and will

thus not be chosen. For the approximation, we sub-sample the original time series

such that it only contains a fraction f of the original time points, repeating the pro-

cess R times. The marginal likelihood score is the average over the R repetitions.

Our experiments over the synthetic dataset justify using f = 15% and R = 10. For

OGLEII we constrain this to have at least 30 points (to maintain minimal accuracy)

and at most 40 points (to limit complexity). This approximation reduces the time

complexity to O
(
|C| × R× ( f N)3).

5.2.2 First Order Approximation with Low Rank Approximation

Similar to the previous case, the time complexity of fine grid search is O(|F |N3).

In this case we can reduce the constant factor in theO(N3) term. Notice that in step

13, other parameters are fixed and the grid is fine so that the marginal likelihood

is a smooth function of w. Suppose we have w0, w1 ∈ F where F is the fine grid

and ∆w = |w0 − w1| < ε, where ε is a predefined threshold. Then, given Kw0 , the

covariance matrix w.r.t. w0, we can get Kw1 by its Taylor expansion as

Kw1 = Kw0 +
∂K
∂w

(w0)∆w + o(ε2). (5.4)

β and l) and reuse these. This has the potential to significantly reduce the time complexity of the
algorithm.
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Denote K̃ = ∂K
∂w (w0) where K̃∆w can be seen as a small perturbation to Kw0 . At

first look, the Sherman-Morrison-Woodbury formula (Bishop, 2006) appears to be

suitable for calculating the update of the inverse efficiently. Unfortunately, prelim-

inary experiments (not shown here) indicated that this method fails due to numeri-

cal instability. Instead, we use an update for the Cholesky factors of the matrix and

calculate the inverse through these. Namely, given the Cholesky decomposition of

Kw0 = LLT we calculate L̃ such that L̃L̃
T
= Kw0 + ∆wK̃ ≈ Kw1 .

It can be easily seen that K̃ is a real symmetric matrix. Denote its eigendecom-

position as K̃ = UΛUT, then it can be written as the sum of a series of rank one

components,

K̃ =
N

∑
i=1

sgn(λi)

(√
|λi|ui

)(√
|λi|ui

)T
(5.5)

where λi is the ith eigenvalue and ui is the corresponding eigenvector. Further-

more, we perform a low rank approximation to K̃ such that

K̃ ≈
M

∑
i=1

sgn(λ(i))
(√
|λ(i)|u(i)

) (√
|λ(i)|u(i)

)T
(5.6)

where M < N is a predefined rank and λ(i) and u(i) are the ith largest (in absolute

value) eigenvalue and its corresponding eigenvector. Therefore we have,

Kw1 ≈ L̃L̃
T
= LLT +

M

∑
i=1

sgn(λ(i))((∆w)1/2`i)((∆w)1/2`i)
T (5.7)

where `i =
√
|λ(i)|u(i). Seeger (2007) shows that L̃ can be calculated from L where

each rank one update can be done in O(N2). Then the complexity for calculating

the Cholesky factor of Kw1 becomes O(MN2). Therefore, we can choose an ε-

net E of the fine grid such that ∀w ∈ F , supv∈E |w − v| < ε, perform the exact

Cholesky decomposition directly only on the ε-net, and use the approximation on

the other frequencies. In this way we reduce the complexity from O(|F |N3) to

O(|E |N3 + |F |MN2).
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5.2.3 Astrophysical Input Improvements

For some cases we may have further information on the type of periodic functions

one might expect. We propose to use such information to bias the selection of

periods, by using it to induce a prior over periods or as a post-processing selection

criterion. The details of these steps are provided in the next section.

5.3 Experiments

This section evaluates the various algorithmic ideas using synthetic and astro-

physics data and then applies the algorithm to a different set of lightcurves.

5.3.1 Synthetic data

In this section, we evaluate the performance of several variants of our algorithm,

study the effects of its parameters, and compare it to the two most used meth-

ods in the literature: the LS periodogram (LS) (Lomb, 1976) and phase dispersion

minimization (PDM) (Stellingwerf, 1978).

The LS method (Lomb, 1976) chooses w to maximize the periodogram defined

as:

PLS(ω) =
1
2

{
[∑ yj cos(ηj)]

2

∑ cos2(ηj)
+

[∑ yj sin(ηj)]
2

∑ sin2(ηj)

}
, (5.8)

where ηj = ω(xj − τ). The phase τ (that depends on ω) is defined as the value

satisfying tan(2ωτ) =
∑ sin(2ωxj)

∑ cos(2ωxj)
. As shown by (Reimann, 1994), LS fits the data

with a harmonic model using least-squares.

In the PDM method, the period producing the least possible scatter in the de-

rived light curve is chosen. The score for a proposed period can be calculated

by folding the light curve using the proposed period, dividing the resulting ob-

servation phases into bins, and calculating the local variance within each bin,

σ2 =
∑j(yj−ȳ)2

N−1 , where ȳ is the mean value within the bin and the bin has N sam-
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ples. The total score is the sum of variances over all the bins. This method has no

preference for a particular shape (e.g., sinusoidal) for the curve.

We generate two types of artificial data, referred to as harmonic data and GP

data below. For the first, data is sampled from a simple harmonic function,

y ∼ N
(

a sin(ωx + φ1) + b cos(ωx + φ2), σ2I
)

(5.9)

where a, b ∼ Uniform(0, 5), ω ∼ Uniform(1, 4), φi ∼ N (0, 1) and the noise level

σ2 is set to be 0.1. Note that this is the model assumed by LS. For the second, data

is sampled from a GP with periodic covariance function in (5.1). We generate β, `

uniformly in (0, 3] and (0, 3] respectively and the noise level σ2 is set to be 0.1. The

period is drawn from a uniform distribution between (0.5, 2.5]. For each type we

generate data under the following configuration. We randomly sampled 50 time

series each having 100 time samples in the interval [−5, 5]. Then the comparison is

performed using sub-samples with size increasing from 10 to 100. This is repeated

ten times to generate means and standard deviations in the plots.

The setting of the algorithms is as follows: In our algorithm we only use one

stage grid search. For our algorithm and LS, the lowest frequency fmin to be ex-

amined is the inverse of the span of the input data 1/(xmax − xmin) = 1/T. The

highest frequency fmax is N/T. For the grid, the range of frequencies is broken into

even segments of 1/8T. For PDM we set the frequency range to be [0.02, 5] with

the frequency increments of 0.001 and the number of bins in the folded period is

set to be 15.

For performance measures we consider both “accuracy” in identifying the pe-

riod and the error of the regression function. For accuracy, we consider an algo-

rithm to correctly find the period if its error is less than 1% of the true period, i.e.,

| p̂ − p|/p 6 1%. For the astrophysics data set, we consider the “true period” as

the period identified by domain expert. Further experiments (not shown here) jus-

tify this approach by showing that the accuracies reported are not sensitive to the

predefined error threshold.
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The results, where our algorithm does not use the sampling and low rank ap-

proximations, are shown in Figure 5-5 and they support the following observa-

tions.

1. As expected, the top left plot shows that LS performs very well on the har-

monic data and it outperforms both PDM and our algorithm. This means that if

we know that the expected shape is sinusoidal, then LS is the best choice. This

confirms the conclusion of other studies. For example, in the problem of detect-

ing periodic genes from irregularly sampled gene expressions (Wentao et al., 2008;

Glynn et al., 2006), the periodic time series of interest were exactly sine curves. In

this case, studies showed that LS is the most effective comparing to several other

statistical models.

2. On the other hand, the top right plot shows that our algorithm is significantly

better than LS on the GP data showing that when the curves are non-sinusoidal the

new model is indeed useful.

3. The two plots in top row together show that our algorithm performs sig-

nificantly better than PDM on both types of data, especially when the number of

samples is small.

4. The first two rows show the performance of the cyclic optimization proce-

dure with 1-5 iterations. We clearly see that for these datasets there is little im-

provement beyond two iterations. The bottom row shows two examples of the

learned regression curves using our method with different number of iterations.

Although one iteration does find the correct period, the reconstruction curves are

not accurate. However, here too, there is little improvement beyond two iterations.

This shows that for the data tested here two iterations suffice for period estimation

and for the regression problem.

5. The performance of marginal likelihood and cross validation is close, with

marginal likelihood dominating on the harmonic data and doing slightly worse in

GP data.
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Figure 5-5: Results for harmonic data (left column) and GP data (right column).
Left: Accuracy (mean and standard deviation) versus the number of samples,
where solid lines marked with nml represent GP with marginal likelihood where
n denotes the number of iterations. The corresponding dotted lines marked nrss
denote cross-validation results with n iterations. Middle: Reconstruction error for
the regression function versus the number of samples. Right: Reconstruction curve
of GP in two specific runs using maximum likelihood with different number of it-
erations.
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Figure 5-6: Accuracy (solid line) and Run time (dash-line) of approximation meth-
ods as a function of their parameters. Left: sub-sampling ratio (with R = 10).
Middle: number of repetitions (with 15% sub-sampling). Right: rank in low rank
approximation.

ORIGINAL SUBSAMPLING SUB + LOWR
ACC 0.831± 0.033 0.857± 0.038 0.849± 0.028
S/TS 518.52± 121.49 197.59± 14.10 170.75± 17.93

Table 5.1: Comparison of GPs: Original, Subsampling and Subsampling plus low
rank Cholesky update. ACC denotes accuracy and S/TS denotes the running time
in seconds per time series.

We next investigate the performance of the speedup techniques. For this we use

GP data under the same configuration as the previous experiments. The experi-

ment was repeated 10 times where in each round we generate 100 lightcurves each

having 100 samples but generated from different θs. For the algorithm we used

two iterations for cyclic optimization and varied the subsampling size, number of

repetitions and rank of the approximation. Table 5.1 shows results with our chosen

parameter setting using sampling rate of 15%, 10 repetitions, approximation rank

M = bN
2 c and grid search threshold ε = 0.005. We can see that the subsampling

technique saves over 60% percent of the run time while at the same time slightly

increasing the accuracy. Low rank Cholesky approximation leads to an additional

15% decrease in run time, but gives slightly less good performance. Figure 5-6

plots the performance of the speedup methods under different parameter settings.

The figure clearly shows that the chosen setting provides a good tradeoff in terms

of performance vs. run time.
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5.3.2 Astrophysics Data

In this section, we estimate the periods of unfolded astrophysics time series from

the OGLEII survey.

We first explore, validate and develop our algorithm using a subset of OGLEII

data and then apply the algorithm to the full OGLEII data except this development

set. The OGLE subset is chosen to have 600 time series in total where each category

is sampled according to its proportion in the full dataset.

Evaluating the General GP Algorithm

The setting for our algorithm is as follows: The grid search ranges are chosen to

be appropriate for the application using coarse grid of [0.02, 5] in the frequency

domain with the increments of 0.001. The fine grid is a 0.001 neighborhood of the

top frequencies each having 20 points with a step of 0.0001. We use K = 20 top

frequencies in step 9 of the algorithm and vary the number of iterations in a cyclic

optimization. When using sub-sampling, we use 15% of the original time series,

but restrict sample size to be between 30 and 40 samples. This guarantees that

we do not use too small a sample and that complexity is not too high. For LS we

use the same configuration as in the synthetic experiment. Results are shown in

Table 5.2 and they mostly confirm our conclusions from the synthetic data. In par-

ticular, the marginal likelihood (ML) is slightly better than Cross Validation (CV)

and subsampling yields a small improvement. In contrast with the artificial data,

more iterations do provide a small improvement in performances and 5 iterations

provide the best results in this experiment. Finally, we can also see that all of the

GP variants outperform LS.

Although this is an improvement over existing algorithms, accuracy of 80%

is still not satisfactory. As discussed by Wachman (2009), one particularly chal-

lenging task is finding the true period of EB stars. The difficulty comes from the

following two aspects. First, for a symmetric EB, the true period and half of the

true period are not clearly distinguishable quantitatively. Secondly, methods that
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GP-ML GP-CV SGP-ML SGP-CV LS

1ITR ACC 0.7856 0.7769 0.7874 0.7808 0.7333
2ITR ACC 0.7892 0.7805 0.7910 0.7818 -
3ITR ACC 0.7928 0.7806 0.7964 0.7845 -
4ITR ACC 0.7946 0.7812 0.7982 0.7875 -
5ITR ACC 0.7964 0.7823 0.8000 0.7906 -

Table 5.2: Comparisons of different GPs on OGLEII subset. GP-ML and GP-CV
are GP with the ML and CV criteria. SGP-ML and SGP-CV are the corresponding
subsampling versions. The first column denotes the number of iterations.

are better able to identify the true period of EBs are prone to find periods that are

integer multiples of single bump stars like RRLs and Cepheids. On the other hand,

methods that fold RRLs and Cepheids correctly often give “half” of the true period

of EBs. In particular, the low performance of LS is due to the fact that it gives a half

or otherwise wrong period for most EBs.

To illustrate the results Figure 5-7 shows the periods found by LS and by GP on

4 stars. The top row shows 2 cases where the GP method finds the correct period

and LS finds half the period. The bottom row shows cases where LS identifies the

correct period and the GP does not. In the example on the left the GP doubles the

period. In the example on the right the GP identifies a different period from LS but

given the spread in the correct period the period it uncovers is not unreasonable.

Incorporating Domain Knowledge

We next show how this issue can be alleviated and the performance can be im-

proved significantly using a learned probabilistic generative model. The methods

developed are general and can be applied whenever such a model is available.

As discussed in Chapter 3, periodic stars come in families and the GMT model

can learn the shapes of subgroups through the mean effect of each group. Once

model parameters are learned we can calculate the likelihood of a light curve

folded using a proposed period. Given the models, learned from a disjoint set

of time series, for Cepheids, EBs and RRLs with parameter setsMi, i = {C, E, R},

there are two perspectives on how they can be used:
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Figure 5-7: Examples of light curves where GP and LS and identify different peri-
ods and one of them is correct. Each pair shows the time series folded by GP on
the left and LS on the right. The top row shows cases where LS identifies half the
period. The bottom row shows cases where GP identifies double the period or a
different period.

γ 0 .1 .3 .5 .7 .9 1
ACC 0.87027 0.85946 0.81802 0.81802 0.80901 0.80721 0.8

Table 5.3: Comparison of different regularization parameters on OGLEII subset
using MAP.

Model as Prior: The models can be used to induce an improper prior distribution

(or alternatively a penalty function) on the period p. Given period p and sample

points x the prior is given by

Pr(p) = max
i∈{C,E,R}

(Pr(y|x, p;Mi)) (5.10)

where from the perspective ofMi, x and corresponding points in y are interpreted

as if they were sampled modulo p. Thus, combining this prior with the marginal

likelihood, a Maximum A Posteriori (MAP) estimation can be obtained. Adding

a regularization parameter γ to obtain a tradeoff between the marginal likelihood

and the improper prior we get our criterion:

log Pr(p|x, y;M) = γ log Pr(y|x, p;M)

+ (1− γ) log Pr(p)
(5.11)
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where Pr(y|x, p;M) is exactly as (2.12) where the period portion ofM is fixed to

be p. When using this approach with our algorithm we use (5.11) instead of (2.12)

as the score function in lines 5 and 13 of the algorithm. The results for different

values of γ (with subsampling and 5 iterations) are shown in Table 5.3. The results

show that GMT on its own (γ = 0) is a good criterion for period finding. This is as

one might expect because the OGLEII dataset includes only stars of the three types

captured by GMT.

In this experiment, regularized versions do not improve the result of the GMT

model. However, we believe that this will be the method of choice in other cases

when the prior information is less strong. In particular, if the data includes un-

known shapes that are not covered by the generative model then the prior on its

own will fail. On the other hand when using (5.11), with enough data the prior

will be dominated by the likelihood term and therefore the correct period can be

detected. In contrast, the filter method discussed next does not have such func-

tionality.

Model as Filter: Our second approach uses the model as a post-processing filter

and it is applicable to any method that scores different periods before picking the

top scoring one as its estimate. For example, suppose we are given the top K best

periods {pi}, i = 1, · · · , K found by LS, then we choose the one such that

p∗ = argmax
i∈{1,··· ,K}

(
max

j∈{C,E,R}

[
log Pr(y|x, pi;Mj)

])
. (5.12)

Thus, when using the GMT as a filter, step 17 in our algorithm is changed to record

the top K frequencies from the last for loop, evaluate each one using the GMT model

likelihood, and output the top scoring frequency.

Heuristic for Variable Periodic Stars: The two approaches above are general and can

be used in any problem where a model is available. For the astrophysics problem

we develop another heuristic that specifically addresses the half period problem

of EBs. In particular, when using the filter method, instead of choosing the top K

periods, we double the selected periods, evaluate both the original and doubled
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ORIGINAL SINGLE FILTER FILTER

LS 0.7333 0.7243 0.9053
GP 0.8000 0.8829 0.9081

LS+GP - 0.8811 0.9297

Table 5.4: Comparisons of the Accuracy of different algorithms on OGLEII subset
using the GMT as a filter. SINGLE denotes without the double period heuristic.

METHOD IN (WACHMAN, 2009) LS-FILTER GP-FILTER GP-LS-FILTER

ACC 0.8680 0.8975± 0.04 0.8963± 0.03 0.9243± 0.03

Table 5.5: Comparisons of accuracies for full set of OGLEII.

periods {pi, 2pi} using the GMT model, and choose the best one.

Results of experiments using the filter method with and without the domain

specific heuristic are given in Table 5.4, based on the 5 iteration version of subsam-

pling GP. The filter method significantly improves the performance of our algo-

rithm showing its general applicability. The domain specific heuristic provides an

additional improvement. For LS, the general filter method does not help but the

domain specific heuristic significantly improves its performance. By analyzing the

errors of both GP and LS, we found that their error regions are different. There-

fore, we further propose a method that combines the two methods in the following

way: pick the top K periods found by both methods and evaluate the original and

doubled periods using the GMT to select the best one. As Table 5.4 shows, the

combination gives an additional 2% improvement on the OGLEII subset.

Application

Finally, we apply our method using marginal likelihood with two level grid search,

sub-sampling, 2 iterations, and filtering on the complete OGLEII data set minus the

development OGLEII subset. Note that the parameters of the algorithm, other than

domain dependent heuristics, are chosen based on our results from the artificial

data. The accuracy is reported using 10-fold cross validation under the following

setting: the GMT is trained using the training set and we seek to find the periods
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for the stars in the test set. We compare our results to the best result from (Wach-

man, 2009) that used an improvement of LS, despite the fact that they filtered out

1832 difficult stars due to insufficient sampling points and noise. The results are

shown in Table 5.5. We can see that our approach significantly outperforms exist-

ing methods on OGLEII.

5.4 Related Work

Period detection has been extensively studied in the literature and especially in as-

trophysics. The periodogram, as a tool for spectral analysis, dates back to the 19th

century when Schuster applied it to the analysis of some data sets. The behav-

ior of the periodogram in estimating frequency was discussed by Deeming (1975).

The periodogram is defined as the modulus-squared of its discrete Fourier trans-

form (Deeming, 1975). Lomb (1976) and Scargle (1982) introduced the so-called

Lomb-Scargle (LS) Periodogram that was discussed above and which rates peri-

ods based on the sum-of-squares error of a sine wave at the given period. This

method has been used in astrophysics (Cumming, 2004; Wachman, 2009) and has

also been used in Bioinformatics (Glynn et al., 2006; Wentao et al., 2008). One can

show that the LS periodogram is identical to the equation we would derive if we

attempted to estimate the harmonic content of a data set at a specific frequency

using the linear least-squares model (Scargle, 1982). This technique was originally

named least-squares spectral analysis method Vaníček (1969). Many extensions

of the LS periodogram exist in the literature (Bretthorst, 2001). Hall and Li (2006)

proposed the periodogram for non-parametric regression models and discussed its

statistical properties. This was later applied to the situation where the regression

model is the superposition of functions with different periods (Hall, 2008).

The other main approach uses least-squares estimates, equivalent to maximum

likelihood methods under Gaussian noise assumption, using different choices of

periodic regression models. This approach, using finite-parameter trigonometric

series of different orders, has been explored by various authors (Hartley, 1949;
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Quinn and Thomson, 1991; Quinn and Fernandes, 1991; Quinn, 1999; Quinn and

Hannan, 2001). Notice that if the order of the trigonometric series is high then this

is very close to nonparametric methods (Hall, 2008).

Another intuition is to minimize some measure of dispersion of the data in

phase space. Phase Dispersion Minimization (Stellingwerf, 1978), described above,

performs a least squares fit to the mean curve defined by averaging points in bins.

Lafler and Kinman (1965) described a procedure which involves trial-period fold-

ing followed by a minimization of the differences between observations of adjacent

phases.

Other least squares methods use smoothing based on splines, robust splines,

or variable-span smoothers. Craven and Wahba (1978) discussed the problem of

smoothing periodic curve with spline functions in the regularization framework

and invented the generalized cross-Validation (GCV) score to estimate the period

of a variable star. Oh et al. (2004) extended it by substituting the smoothing splines

with robust splines to alleviate the effects caused by outliers. Supersmoother, a

variable-span smoother based on running linear smooths, is used for frequency

estimation in (McDonald, 1986).

Several other approaches exist in the literature. Perhaps the most related work

is (Hall et al., 2000) who studied nonparametric models for frequency estimation,

including the Nadaraya-Watson estimator, and discussed their statistical proper-

ties. This was extended to perform inference for multi-period functions (Hall and

Yin, 2003) and evolving periodic functions (Genton and Hall, 2007; Hall, 2008).

Our work differs from (Hall et al., 2000) in three aspects: 1) the GP framework

presented in this Chapter is more general in that one can plug in different periodic

covariance functions for different prior assumptions; 2) we use marginal likeli-

hood that can be interpreted to indicate how the data agrees with our prior belief;

3) we introduce mechanisms to overcome the computational complexity of period

selection.

Other approaches include entropy minimization (Huijse et al., 2011), data com-

pensated discrete Fourier transform (Ferraz-Mello, 1981), and Bayesian models
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(Gregory and Loredo, 1996; Scargle, 1998). Recently, Bayesian methods have also

been applied to solve the frequency estimation problem, for example Bayesian bin-

ning for Poisson-regime (Gregory and Loredo, 1996) and Bayesian blocks (Scargle,

1998). Ford et al. (2011) proposed a Bayesian extension of multi-period LS that is

capable of estimating periodic functions having an additional polynomial trend.

The main difference to our work is the kernel based formulation in our approach.

5.5 Conclusion

In this chapter, we introduce a nonparametric Bayesian approach for period esti-

mation based on Gaussian process regression. We develop a model selection al-

gorithm for GP regression that combines gradient based search and grid search,

and incorporates several algorithmic improvements and approximations leading

to a considerable decrease in run time. The algorithm performs significantly better

than existing state of the art algorithms when the data is not sinusoidal. Further,

we show how domain knowledge can be incorporated into our model as a prior

or post-processing filter, and apply this idea in the astrophysics domain. Our al-

gorithm delivers significantly higher accuracy than existing state of the art in esti-

mating the periods of variable periodic stars.

An important direction for future work is to extend our model to develop a

corresponding statistical test for periodicity, that is, to determine whether a time

series is periodic. This will streamline the application of our algorithm to new as-

trophysics catalogs such as MACHO (Alcock et al., 1993) where both periodicity

testing and period estimation are needed. Another important direction is estab-

lishing the theoretical properties of our method. Hall et al. (2000) provided the

first-order properties of nonparametric estimators such that under mild regularity

conditions, the estimator is consistent and asymptotically normally distributed.

Our method differs in two ways: we use a GP regressor instead of Nadaraya-

Watson estimator, and we choose the period that minimizes marginal likelihood

rather than using a cross-validation estimate. Based on the well known connection
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between kernel regression and GP regression, we conjecture that similar results

exist for the proposed method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have studied GPs for multi-task learning under the framework

of mixed-effects models. In summary, we have made the following achievements.

1. We propose a family of novel nonparametric Bayesian models for multi-task

learning and show how they can be used for time series classification, clustering

and prediction in Chapter 3 and Chapter 4.

2. We propose, in Chapter 3, the Shift-invariant Grouped Mixed-effects GP (GMT)

and Infinite GMT (DP-GMT) that are capable of 1) dealing with phase shift

for periodic time series; 2) performing automatic model selection. We de-

velop details for the EM algorithm for the GMT model and a Variational EM

algorithm for DP-GMT optimizing the MAP estimates for the parameters of

the models. The main insights in the GMT solution are in estimating the

expectation for the coupled hidden variables (the cluster identities and the

task specific portion of the time series) and in solving the regularized least

squares problem for a set of phase-shifted observations. In addition, for the

DP-GMT, we show that the variational EM algorithm can be implemented

with the same complexity as the fixed order GMT without using sampling.

Thus the DP-GMT provides an efficient model selection algorithm compared

to alternatives such as Bayesian Information Criterion (BIC). As a special case
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our algorithm yields the (Infinite) Gaussian mixture model for phase shifted

time series, which may be of independent interest, and which is a generaliza-

tion of the algorithms of Rebbapragada et al. (2009) and Gaffney and Smyth

(2003).

3. To address the Achilles’ heel (cubic time complexity) of GP based approaches,

in Chapter 4, we propose a sparse solution for the Grouped Mixed-effects GP

model. Specifically, we extend the approach of Titsias (2009) and develop a

variational approximation that allows us to efficiently learn the shared hyper-

parameters and choose the sparse pseudo samples. In addition, we show

how the variational approximation can be used to perform prediction effi-

ciently once learning has been performed. Our approach is particularly use-

ful when individual tasks have a small number of samples, different tasks

do not share sampling points, and there is a large number of tasks. Our ex-

periments, using artificial and real data, validate the approach showing that

it can recover the performance of inference with the full sample, that it per-

forms better than simple sparse approaches for multi-task GP, and that for

some applications it significantly outperforms alternative sparse multi-task

GP formulations (Álvarez and Lawrence, 2011).

4. Finally, we introduce the period estimation problem to the machine learn-

ing community and develop a new algorithm for period estimation with the

GP model. In the case of period estimation the likelihood function is not

a smooth function of the period parameter. This results in a difficult esti-

mation problem which is not well explored in the GP literature (Rasmussen

and Williams, 2006). Our algorithm combines gradient optimization with

grid search and incorporates several mechanisms that include an approxi-

mation using a two level grid search, approximation using limited cyclic op-

timization, a method using sub-sampling and averaging, and a method using

low-rank Cholesky approximations. Moreover, we develop a novel approach

for using astrophysics knowledge, in the form of a probabilistic generative
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model, and incorporate it into the period estimation algorithm. In particu-

lar, we propose to employ GMT to bias the selection of periods by using it

as a prior over periods or as a post-processing selection criterion choosing

among periods ranked highly by the GP. The resulting algorithm is applied

and evaluated on astrophysics data showing significantly improved perfor-

mance over previous work.

6.2 Future Work

The work in this thesis has focused on GP models where the response variable is

real valued and is naturally modeled as a classical regression task. As illustrated

in the introduction the GMT model is natural for many application domains in-

cluding astronomy and medicine. On the other hand, in some problems, the label

comes from a discrete captures count events, or has some other specific distribu-

tion. Moreover, a generalization of GMT to capture such response variables would

be natural and it can provide a flexible and powerful prediction model for the ap-

plication. As we discuss next this is the case, for example, in epidemiology.

Tracking and predicting the occurrences of diseases and their number is an

important task for society as it can help in planning, prevention, and timely inter-

vention. In recent years, the big-data phenomenon has become relevant for epi-

demiology because we now have access to historical records of hospitalizations

and other medical conditions, and these can be cross-referenced with historical

data about the same localities including weather events, population size and pop-

ulation at risk, environmental factors such as contamination, and socio-economic

factors such population density, and average wealth of the population. All of these

may be significant factors for the occurrence and spread of different diseases.

Considering every location as a separate task, it would be interesting to de-

velop a prediction model to capture and predict the number of events in a location

at any time and setting of local measurements. Hypothesizing that the behavior

in different locations can be grouped into types we get a natural fit for the GMT
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model.

Therefore, one immediate future work is to extend the proposed models to the

aforementioned count regression, and more general settings where the response

variable yj is not normally distributed. This will allow us to apply the proposed

model to a wider range of problems.

More precisely, we wish to propose the a novel GP generalization of the mixture

of generalized linear mixed effect models of multi-task learning. Given M related tasks

{D j}, we assume the following generative model,

1. Draw f̄s|K0 ∼ exp
{
−1

2
‖ f̄s‖2

H0

}
, s = 1, 2, · · · , k

2. For the jth learning task,

• Draw zj|α ∼ Multinomial(α)

• Draw f̃ j|K ∼ exp
{
−1

2
‖ f̃ j‖2

H

}
• For the ith example in jth learning task,

– Draw yj
i |zj, f j, xj

i ∼ Pr(yj| f j(xj
i)), where f j = f̄zj ∗ δtj + f̃ j.

That is, the generating process is the same as the GMT model but we allow the

likelihood Pr(yj| f j(xj
i)) to be more general instead of multivariate normal. We are

interested in the following two cases,

• Classification: In this case, the prediction is binary {−1,+1} and we use the

logistic function that gives the following likelihood,

Pr(yj = +1| f j(xj
i)) =

1

1 + exp(− f j(xj
i))

.

• Counting: In this case, the prediction is a non-negative number in N+ ∪ 0

and we use the Poisson distributiopn,

Pr(yj = p| f j(xj
i)) = Poission(exp(− f j(xj

i)))

=
exp(− f j(xj

i))
p exp(− exp(− f j(xj

i)))

p!
.
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In the following section, we will present some preliminary work towards this

direction with the simplest case where we only have one task and no random effect,

i.e. the standard GP model. We wish to extend the variational sparse solution in

Chapter 4 to general likelihood functions that include the aforementioned counting

and binary classification setting. Thus we provide a sparse solution for generalized

GP models using Gaussian approximation as in (Opper and Archambeau, 2009) .

Sparse GP: a Variational Approach

Given data {xi, yi}, i = 1, · · · , N, we begin with the standard GP generative model,

f ∼ GP(0,Kθ), yi ∼ Pr(yi| f (xi)).

Denote f := [ f (x1), · · · , f (xN)]
T. The prior distribution of the latent function is

Pr(f) = N (0, K) where K is the kernel matrix (N × N) with (i, j) entry Kθ(xi, xj).

We are interested in the following three tasks

1. Inference: calculate the posterior distribution over the hidden variables f.

Pr(f|Y) ∝
N

∏
i=1

Pr(yi|fi))Pr(f).

2. Prediction: calculate the predictive distribution for a test point x∗,

Pr(y∗|Y) =
∫

Pr(y∗|f(x∗))Pr( f (x∗)|f)Pr(f|Y)d f (x∗)df.

3. Model Selection: find the best hyperparameter θ∗ that maximizes the marginal

likelihood

Pr(Y|θ) =
∫

Pr(y|f)Pr(f|θ)df.

Notice that only when the likelihood is Gaussian, we can obtain the closed form so-

lution. As in the regression case, standard solution for estimation or even approxi-

mate the posterior distribution cost O(N3) time. Following the ideas in Chapter 4,
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we use a set of m auxiliary variables (Xm, fm) and wish to find the “best” auxiliary

variables via variational model selection.

Let us briefly recap the approach discussed in Chapter 4. Firstly, we aug-

ment the latent variables f to be f̂ = {f, fm} with prior distribution Pr(f, fm) =

Pr(f|fm)Pr(fm) where the first part is conditional Gaussian and the second part

comes from the GP prior Pr(fm) = N (0, K). The likelihood remains ∏i Pr(yi|fi)).

Up till now, the model remains exact.

The approximation comes with the following step. Direct inference over f̂ (i.e.

calculating Pr(f̂|Y) requires cubic time. To obtain a sparse solution, we consider

finding a variational approximation to the posterior distribution. The variational

distribution is assumed to be q(f, fm) = Pr(f|fm)φ(fm) where the first part pre-

serves the conditional Gaussian format and the second part is the one of primary

interest.

We wish to find the variational distribution q(f, fm) that approximates the true

posterior distribution Pr(f, fm|Y) as closely as possible. To this end, we find the

one that minimizes the KL divergence KL(q(f, fm)||Pr(f, fm|Y)). At the same time,

we are maximizing a variational lower bound (VLB) on the true marginal likelihood,

log Pr(y) = log
∫

Pr(y, f, fm)dfdfm

>
∫

q(f, fm) log
Pr(y, f, fm)

q(f, fm)
dfdfm

=
∫

Pr(f|fm)φ(fm) log
Pr(y|f)Pr(f|fm)Pr(fm)

Pr(f|fm)φ(fm)
dfdfm

=
∫

φ(fm)

{∫
Pr(f|fm) log Pr(y|f)df + log

Pr(fm)

φ(fm)

}
dfm

=
∫

φ(fm)
∫

Pr(f|fm) log Pr(y|f)dfdfm −KL(φ(fm)||Pr(fm))

=
∫

φ(fm)
∫

Pr(f|fm) log
n

∏
i=1

Pr(yi|fi)dfdfm −KL(φ(fm)||Pr(fm))

VLB =
N

∑
i=1

IEφ(fm)

[
IEfi|fm(log Pr(yi|fi))

]
−KL(φ(fm)||Pr(fm)),
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where

Pr(fi|fm) = N (vi, σ2
i ) := N (kimK−1fm, Kii − kimK−1kmi).

Unlike Chapter 4 where the optimal variational distribution is multivariate Nor-

mal because of the Gaussian likelihood, we no longer have closed form solution

for general likelihood functions. Instead, we use Gaussian approximation and as-

sume a Gaussian form of the variational distribution φ(fm) = N (m, V). Thus the

marginal variational distribution is obtained

q(fi) =
∫

Pr(f, fm|y)dfmd{fj 6=i} =
∫

Pr(f|fm)φ(fm)dfmd{fj 6=i}

= N (kimK−1m, Kii + kimK−1(V−K)K−1kmi).
(6.1)

Therefore, we have the variational lower bound to be

VLB =
N

∑
i=1

IEq(fi)
(log Pr(yi|fi)) (6.2)

+
1
2
(log |VK−1| − tr(VK−1)−mTK−1m + N).

Therefore, optimizing the VLB w.r.t. the parameters (m, V) and the hyper-parameters

in K solves the inference and model selection problems. In the following, we will

develop a concrete algorithm for the counting problem, i.e. the likelihood is Pois-

son distribution. In the case of Poisson regression, the log likelihood is

log Pr(yi|fi) = log(Poission(yi|(exp(fi)))

= yifi − exp(fi)− log yi!.

Considering its expectation over q(fi) we can see that the first term is simple

and the second term gives rise to the moment generating function of a Gaus-

sian. Recall that the moment generating function IE[etX] where X ∼ N (µ, σ2) is
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exp(tµ + σ2t2/2) (Durrett, 2004). From (6.1), we have

IEq(fi)
(log Pr(yi|fi)) = yikimK−1m− exp

{
kimK−1m

+
1
2
(Kii + kimK−1(V−K)K−1kmi)

}
.

Denote Φi(m, V) = kimK−1m + 1
2(Kii + kimK−1(V−K)K−1kmi). Putting it all to-

gether, we obtain

N

∑
i=1

IEq(fi)
(log Pr(yi|fi)) = yTKnmK−1m−

n

∑
i=1

exp(Φi).

Our current focus is the inference problem, that is, we suppose the hyper-parameters

and the pesudo inputs are known and wish to find the variational parameters

(m, V). To this end, we optimize the VLB using a gradient based method. Before

moving forward, notice that

∂Φi

∂m
= K−1kmi,

∂Φi

∂V
=

1
2

K−1kmikimK−1 :=
1
2

Ki,

where for convenience we denote Ki = K−1kmikimK−1.

Therefore the gradient is

∂VLB
∂m

= −K−1m + K−1Kmny−K−1
n

∑
i=1

exp(Φi)kmi

∂VLB
∂V

=
1
2
(V−1 −K−1 −

n

∑
i=1

exp(Φi)Ki)

=
1
2
(V−1 −K−1 −K−1(Kmn exp(Φ)Knm)K−1).

Furthermore, we have the Hessian of the VLB is

∂VLB
∂mmT = −K−1 −

n

∑
i=1

exp(Φi)Ki

∂VLB
∂VVT = −1

2
(V−1 ⊗V−1)− 1

4

n

∑
i=1

exp(Φi)Ki ⊗Ki,
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Figure 6-1: Sparse GP Poisson Regression: SD vs. Variational Approach with
Evenly spaced pseudo inputs and Pseudo inputs randomly chosen from the train-
ing set (same as the SD).

where ⊗ denotes the Kronecker product. In the following experiment, we use the

Newton method to optimize m and simple gradient descent to optimize V. We

can, in priciple use a second order method to optimize V using the equation above

but we have found this to be numerically difficult due to the high dimension of

the Hessian w.r.t. V. We compare the proposed approach with the subset of data

points (SD), which, as described in Chapter 4, only uses a portion of the training set

to perform inference using the Laplace Approximation (Rasmussen and Williams,

2006). We use a synthetic data that is sampled as follows,

1. Sample a one-dimensional GP: f ∼ GP(0,K) where K(s, t) = e−(s−t)2/2.

2. Sample the counts: yi ∼ Poisson(yi| exp( f (xi))), i = 1, 2, · · · , n.

The hyperparameters of both approaches are fixed to be the ones that are actually

used to sample the data. We take the posterior mean as the prediction and the

evaluation metric is the mean absolute error, i.e. e = ∑ |ŷi − yi|/n. Experimental

results with two types of pseudo inputs are reported in Figure 6-1. On the left hand

side, we use an evenly spaced grid while a randomly subset of the original points

is chosen on the right hand side. From the results, we can draw two conclusions:
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1. the proposed approach converges much faster than SD;

2. even with the same pseudo inputs as the SD, the proposed approach has

a significant advantage in terms of inference. Note that although the same

poitns are used, the SD methods uses only the response {yi} at these points

while the variational approach re-estimate the distribution of {yi} using the

entire dataset and in this way it makes better use of data.

At the same time, we encountered some numerical issues when the number of

pseudo inputs is large. These numerical issues, the model selection problem and

the extension to the GMT model are left for future work.
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