
The Burrows-Wheeler Transform
with applications to bioinformatics

Anselm Blumer
9 March, 2020

ablumer@cs.tufts.edu

mailto:ablumer@cs.tufts.edu

Introduction to the Burrows-Wheeler Transform

• The Burrows-Wheeler Transform (BWT) was developed in the early
1990s by Michael Burrows at the Digital Equipment Corporation Systems
Research Center in Palo Alto based on earlier work by David J. Wheeler

• Burrows used it as part of a data compression system but it has also been
applied to sequence alignment in genomics

•  

•  
 
 

Introduction to the Burrows-Wheeler Transform

• The Burrows-Wheeler Transform (BWT) was developed in the early
1990s by Michael Burrows at the Digital Equipment Corporation Systems
Research Center in Palo Alto based on earlier work by David J. Wheeler

• Burrows used it as part of a data compression system but it has also been
applied to sequence alignment in genomics

• The input string can be specified using an end-of-string character ($) or as
a (string, length) pair. These slides use the former method.

•  
 
 

Introduction to the Burrows-Wheeler Transform

• The Burrows-Wheeler Transform (BWT) was developed in the early
1990s by Michael Burrows at the Digital Equipment Corporation Systems
Research Center in Palo Alto based on earlier work by David J. Wheeler

• Burrows used it as part of a data compression system but it has also been
applied to sequence alignment in genomics

• The input string can be specified using an end-of-string character ($) or as
a (string, length) pair. These slides use the former method.

• The BWT transforms the input string by permuting its characters in such
a way that the inverse transform can recover the original string without
using any information aside from the permuted string (including the new
location of the $)

High-level description of the 
Burrows-Wheeler Transform

• The BWT is easy to describe at a high level

• The inverse transform is a bit more complicated

•  

•  

High-level description of the 
Burrows-Wheeler Transform

• The BWT is easy to describe at a high level

• The inverse transform is a bit more complicated

• Both are based on two operations, sorting and left-rotations (moving the
first character of the string to the end) or right-rotations

•  

High-level description of the 
Burrows-Wheeler Transform

• The BWT is easy to describe at a high level

• The inverse transform is a bit more complicated

• Both are based on two operations, sorting and left-rotations (moving the
first character of the string to the end) or right-rotations

• Efficient implementations require more sophisticated data structures and
algorithms

High-level pseudocode for the  
Burrows-Wheeler Transform

• BWT(inString) returns outString  
 tempString[0] = inString 
 for i = 1 to inString.Length - 1  
 tempString[i] = LeftRotate(tempString[i-1])  
 sort the tempString array lexicographically  
 outString = the last characters of each tempString

High-level pseudocode for the  
inverse Burrows-Wheeler Transform

• iBWT(inString) returns outString  
 n = inString.length 
 allocate X[1..n,1..n], an array of $ characters  
 for i = 1 to inString.Length  
 insert inString into the first column of X  
 sort the rows of X lexicographically  
 right-rotate the rows of X  
 outString = the row that ends in $

Example of the Burrows-Wheeler Transform

• Starting from the input string X0 = X = a0a1a2…an-2$, create n-1 new strings by
successive left rotations, so X1 = a1a2…an-2$a0 , X2 = a2…an-2$a0a1 …

• For example, X0 = AATA$, X1 = ATA$A, X2 = TA$AA, X3 = A$AAT, X4 = $AATA,

•  

•  

•  

Example of the Burrows-Wheeler Transform

• Starting from the input string X0 = X = a0a1a2…an-2$, create n-1 new strings by
successive left rotations, so X1 = a1a2…an-2$a0 , X2 = a2…an-2$a0a1 …

• For example, X0 = AATA$, X1 = ATA$A, X2 = TA$AA, X3 = A$AAT, X4 = $AATA,

• Sort these n strings lexicographically, but keep track of their names:  
X4 = $AATA, X3 = A$AAT, X0 = AATA$, X1 = ATA$A, X2 = TA$AA

•  

•  

Example of the Burrows-Wheeler Transform

• Starting from the input string X0 = X = a0a1a2…an-2$, create n-1 new strings by
successive left rotations, so X1 = a1a2…an-2$a0 , X2 = a2…an-2$a0a1 …

• For example, X0 = AATA$, X1 = ATA$A, X2 = TA$AA, X3 = A$AAT, X4 = $AATA,

• Sort these n strings lexicographically, but keep track of their names:  
X4 = $AATA, X3 = A$AAT, X0 = AATA$, X1 = ATA$A, X2 = TA$AA

• The transformed Burrows-Wheeler string is formed by concatenating the last
characters of the sorted strings: B = AT$AA

•  

Example of the Burrows-Wheeler Transform

• Starting from the input string X0 = X = a0a1a2…an-2$, create n-1 new strings by
successive left rotations, so X1 = a1a2…an-2$a0 , X2 = a2…an-2$a0a1 …

• For example, X0 = AATA$, X1 = ATA$A, X2 = TA$AA, X3 = A$AAT, X4 = $AATA,

• Sort these n strings lexicographically, but keep track of their names:  
X4 = $AATA, X3 = A$AAT, X0 = AATA$, X1 = ATA$A, X2 = TA$AA

• The transformed Burrows-Wheeler string is formed by concatenating the last
characters of the sorted strings: B = AT$AA

• The suffix array (to be used later) is the array of names (indices) of the rotated strings
in sorted order: S = [4,3,0,1,2]

Pictorial example of the Burrows-Wheeler Transform

• Input string: X = X0 = AATA$ with length n = 5 

• Array containing rotated strings and names:  
 
 

• Array of sorted strings:

• Output string: B = AT$AA (from second-to last column of array)

• Suffix array: S = [4,3,0,1,2] (from subscripts in the last column)

A A T A $ X0

A T A $ A X1

T A $ A A X2

A $ A A T X3

$ A A T A X4

$ A A T A X4

A $ A A T X3

A A T A $ X0

A T A $ A X1

T A $ A A X2

Example of the Inverse Burrows-Wheeler Transform

• Given the output of the Burrows-Wheeler transform B = AT$AA it is possible to reconstruct the
input

• B gives the last characters of the sorted strings, so  
X? = - - - - A, X? = - - - - T, X? = - - - - $, X? = - - - - A, X? = - - - - A

•  

•  

•  
 

•  

Example of the Inverse Burrows-Wheeler Transform

• Given the output of the Burrows-Wheeler transform B = AT$AA it is possible to reconstruct the
input

• B gives the last characters of the sorted strings, so  
X? = - - - - A, X? = - - - - T, X? = - - - - $, X? = - - - - A, X? = - - - - A

• The strings are in sorted order, so the first characters must be $ A A A T :  
X? = $ - - - A, X? = A - - - T, X? = A - - - $, X? = A - - - A, X? = T - - - A

•  

•  
 

•  

Example of the Inverse Burrows-Wheeler Transform

• Given the output of the Burrows-Wheeler transform B = AT$AA it is possible to reconstruct the
input

• B gives the last characters of the sorted strings, so  
X? = - - - - A, X? = - - - - T, X? = - - - - $, X? = - - - - A, X? = - - - - A

• The strings are in sorted order, so the first characters must be $ A A A T :  
X? = $ - - - A, X? = A - - - T, X? = A - - - $, X? = A - - - A, X? = T - - - A

• The strings were all formed from left rotations of the input string, so right-rotating the first string
above shows that the $ must have been preceded by an A

•  
 

•  

Example of the Inverse Burrows-Wheeler Transform

• Given the output of the Burrows-Wheeler transform B = AT$AA it is possible to reconstruct the
input

• B gives the last characters of the sorted strings, so  
X? = - - - - A, X? = - - - - T, X? = - - - - $, X? = - - - - A, X? = - - - - A

• The strings are in sorted order, so the first characters must be $ A A A T :  
X? = $ - - - A, X? = A - - - T, X? = A - - - $, X? = A - - - A, X? = T - - - A

• The strings were all formed from left rotations of the input string, so right-rotating the first string
above shows that the $ must have been preceded by an A

• Right-rotating the next three strings shows that the A’s were preceded by T, $, and A  
and right-rotating the last string shows that the T was preceded by an A:  
X? = $ - - - A, X? = A - - A T, X? = A - - A $, X? = A - - - A, X? = T - - - A

•  

Example of the Inverse Burrows-Wheeler Transform

• Given the output of the Burrows-Wheeler transform B = AT$AA it is possible to reconstruct the
input

• B gives the last characters of the sorted strings, so  
X? = - - - - A, X? = - - - - T, X? = - - - - $, X? = - - - - A, X? = - - - - A

• The strings are in sorted order, so the first characters must be $ A A A T :  
X? = $ - - - A, X? = A - - - T, X? = A - - - $, X? = A - - - A, X? = T - - - A

• The strings were all formed from left rotations of the input string, so right-rotating the first string
above shows that the $ must have been preceded by an A

• Right-rotating the next three strings shows that the A’s were preceded by T, $, and A  
and right-rotating the last string shows that the T was preceded by an A:  
X? = $ - - - A, X? = A - - A T, X? = A - - A $, X? = A - - - A, X? = T - - - A

• The original string was either AATA$ or ATAA$, but the second of these is impossible, since  
A$ATA comes before AA$AT in sorted order, contradicting the A - - A T

The Burrows-Wheeler Transform and substring matching

• Since every substring of X occurs as a prefix of at least one of the rotated strings, the
Burrows-Wheeler Transform algorithm can be used as part of a string matching
algorithm

• The BWT algorithm produces the suffix array, giving the sorted order of the rotated
strings. In other words, S[i] is the start position of the ith smallest rotated string

• If W is any substring of X, it will occur as a prefix of successive rotated strings,  
so define: 
 Rmin(W) = the smallest index i where W is a prefix of XS[i]  
 Rmax(W) = the largest index i where W is a prefix of XS[i]

• Thus the set of all occurrences of W in X is given by { S[k] | Rmin(W) ≤ k ≤ Rmax(W) }

A recursive calculation for Rmin and Rmax

• Rmin() and Rmax() can be calculated recursively, as follows

• Rmin(empty string) = 0 Rmax(empty string) = n - 1

• If a is any character, then  
 
 Rmin(aW) = C(a) + Occ(a, Rmin(W) - 1) + 1  
 Rmax(aW) = C(a) + Occ(a, Rmax(W))  
 
where C(a) is the number of positions in X occupied by characters that come
lexicographically before a, and Occ(a, i) is the number of occurrences of a in positions 0
through i of the BWT output string

• Rationale: C(a) counts the number of strings that come before any string beginning with a 
Occ(a, Rmax(W)) counts the number of strings beginning aW 
Occ(a, Rmin(W) - 1) counts the number of strings beginning with a that come before any
string beginning with aW

P Ferragina and G Manzini, Opportunistic data structures with applications (FOCS 2000)

Inexact search

• The search procedure outlined on the previous slides finds all exact occurrences of
query string W in target string X, but applications to sequence alignment require the
ability for inexact matches

• There are three ways a match can be inexact:  
 mismatch: a character in W corresponds to a different character in X  
 insertion: a character would need to be inserted into X to match W  
 deletion: a character would need to be deleted from X to match W

• Examples using X = ACCTCGG  
 W = CAT matches the second position of X with one mismatch  
 W = CAT matches positions 1 through 5 of X with three mismatches  
 W = CAT matches the third position of X with one insertion  
 W = CAT matches positions 1 through 5 of X with two insertions  
 W = TGG matches the fourth position of X with one deletion  
 W = CAT doesn’t match any position of X with any number of deletions  

Inexact search with mismatches

inexactM(X, W, i, z, k, l) returns set of intervals  
 i: position in query string, initially right end  
 z: number of mismatches allowed 
 [k, l]: [Rmin, Rmax] interval 
if (i < 0) return { [k, l] } 
setVal = empty; 
ksave = k; lsave = l;  
for each b in {A, C, G, T} 
 k = ksave; l = lsave; 
 k = C(b) + Occ(b, k-1) + 1;  
 l = C(b) + Occ(b, l) 
 if (k <= l) then 
 if (b = W[i]) setVal = setVal ⋃ inexactM(X, W, i-1, z, k, l) 
 else setVal = setVal ⋃ inexactM(X, W, i-1, z-1, k, l) 
return setVal

Speeding up the search using a lower bound

• The search algorithm on the previous slide is correct, but not efficient as it explores all
possible mismatches. Parts of the search tree can be pruned off using a lower bound
array, D, where D(i) is a bound on the number of mismatches possible at the ith
position of W when searching in X.

• Conceptually, D can be calculated by the following inefficient procedure:

• calculateD(W, X) returns array of int 
 z = 0; j = 0; 
 for i=0 to W.length()-1 
 if (W[j, i] is not a substring of X) then 
 z = z+1; j = i+1; 
 D[i] = z

• This can be made more efficient by replacing the search implied by the “if” statement
with a Burrows-Wheeler interval calculation for the reverse of X

Rationale for the lower bound

• D(0) is either 0 or 1. A 1 indicates that the character W[0] does not occur in X, so W
cannot occur in X with zero modifications.

• D(1) is either 0, 1, or 2. A 2 indicates that W[0] does not occur in X and neither does
the substring W[1]W[0] (since calculateD() was called using the reverse of X). This
means that at least two modifications are required to match W with a substring of X.  
A 1 indicates that either W[0] does not occur or W[1]W[0] does not occur, so at least
one modification is required.

• Generalizing this, if z is less than D(i) at a call to inexactM() then there is no chance
for a match, so this branch of the search can be pruned.

Inexact search with mismatches, insertions,
and deletions, using the lower bound

inexactM(X, W, i, z, k, l) returns set of intervals 
 i: position in query string, initially right end 
 z: number of mismatches allowed 
 [k, l]: [Rmin, Rmax] interval 
if (z < D(i)) return;  
if (i < 0) return { [k, l] } 
setVal = inexactM(X, W, i-1, z-1, k, l);  
ksave = k; lsave = l; 
for each b in {A, C, G, T} 
 k = ksave; l = lsave; 
 k = C(b) + Occ(b, k-1) + 1; 
 l = C(b) + Occ(b, l) 
 if (k <= l) then  
 setVal = setVal ⋃ inexactM(X, W, i, z-1, k, l) 
 if (b = W[i]) setVal = setVal ⋃ inexactM(X, W, i-1, z, k, l) 
 else setVal = setVal ⋃ inexactM(X, W, i-1, z-1, k, l) 
return setVal

Efficient calculation of the lower bound

• The following procedure gives a more efficient calculation of the lower bound array D  
Note that it calls OccRev(), which is defined in terms of the Burrows-Wheeler
transformation for the reverse of X

• calculateD(W, X) returns array of int  
 z = 0; k = 0; l = X.length()-1;  
 for i=0 to W.length()-1 
 k = C(W[i]) + OccRev(W[i], k-1) + 1; 
 l = C(W[i]) + OccRev(W[i], l); 
 if (k > l) then 
 z = z+1; k = 0; l = X.length()-1; 
 D[i] = z

References

• M Burrows and DJ Wheeler (1994) A block-sorting lossless data compression algorithm,
Technical report 124, Palo Alto, CA, Digital Equipment Corporation

• Heng Li and Richard Durbin (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform, Bioinformatics, 25 (14) pp. 1754-60.

• Heng Li and Richard Durbin (2010) Fast and accurate long read alignment with Burrows-
Wheeler transform, Bioinformatics, 26 (5) pp. 589-95.

• Dan Gusfield (1997) Algorithms on Strings, Trees, and Sequences, Cambridge University
Press

• Wikipedia

• There’s a nice tutorial at http://blog.thegrandlocus.com/2016/07/a-tutorial-on-burrows-
wheeler-indexing-methods

http://blog.thegrandlocus.com/2016/07/a-tutorial-on-burrows-wheeler-indexing-methods

Notation

• ∑ - a lexicographically ordered alphabet (e.g. {A, C, G, T})

• $ ∉ ∑ - end-of-string symbol, lexicographically before all symbols in ∑

• X = a0a1a2…an-2$ - input string with end-of-string symbol

• X[i] = ai - the symbol at position i of the input string

• X[i, j] = ai ai+1 … aj - the substring from positions i through j

• Xi = X[i, n-1] - the ith suffix of the input string

