The Dirichlet-Discrete Model

Readings - Bishop: Section 2.2 and Appendix E The first six pages of the optional reading by Frigyik, Kapila, and Gupta are also recommended

- The third class discussed the Beta-Bernoulli Model
- This class will generalize that model from binary random variables to variables taking values in a finite set (often called "categorical" or "discrete" variables)
- For example, the set of words in a vocabulary
- For simplicity, we will denote this set as $\{1,2, \ldots, \mathrm{~V}\}$ where V is at least 2 and known in advance (the case where V is not known in advance is a topic for a more advanced class)

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, μ
- Now μ becomes a vector with V components:

$$
\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}\right] \text { with } \mu_{\mathrm{i}} \geq 0 \text { and } \sum \mu_{\mathrm{i}}=1
$$

- The set of all legal $\boldsymbol{\mu}$ is denoted Δ^{V}

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, μ
- Now μ becomes a vector with V components:

$$
\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}\right] \text { with } \mu_{\mathrm{i}} \geq 0 \text { and } \sum \mu_{\mathrm{i}}=1
$$

- The set of all legal $\boldsymbol{\mu}$ is denoted Δ^{V}
- The value of a discrete random variable can be represented by a "one-hot" vector with V components: $[0,0, \ldots, 0,1,0, \ldots, 0]$, where the position of the 1 indicates the value of the variable

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, μ
- Now μ becomes a vector with V components:

$$
\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}\right] \text { with } \mu_{\mathrm{i}} \geq 0 \text { and } \sum \mu_{\mathrm{i}}=1
$$

- The set of all legal $\boldsymbol{\mu}$ is denoted Δ^{V}
- The value of a discrete random variable can be represented by a "one-hot" vector with V components: $[0,0, \ldots, 0,1,0, \ldots, 0]$, where the position of the 1 indicates the value of the variable
- If X_{i} is a discrete random variable, we can express its probability distribution as $\operatorname{DiscretePMF}(\mathrm{X}=\mathrm{w})=\prod_{\mathrm{i}} \mu_{\mathrm{i}}{ }^{\mathrm{X}_{\mathrm{wi}}}$ where $\mathrm{X}_{\mathrm{wi}}=1$ only when $\mathrm{X}_{\mathrm{i}}=\mathrm{w}$

The Likelihood Function

- Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$

The Likelihood Function

- Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$
- Although these words will not usually be independent, we can make a simplifying assumption (called "bag-of-words") that the X_{i} are i.i.d. (independent and identically distributed)

The Likelihood Function

- Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$
- Although these words will not usually be independent, we can make a simplifying assumption (called "bag-of-words") that the X_{i} are i.i.d. (independent and identically distributed)
- This gives the likelihood function

$$
\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}} \mid \boldsymbol{\mu}\right)=\prod_{\mathrm{n}} \prod_{\mathrm{i}} \mu_{\mathrm{i}}^{\mathrm{X}_{\mathrm{ni}}}=\prod_{\mathrm{i}} \mu_{\mathrm{i}}^{\mathrm{m}_{\mathrm{i}}}
$$

where $m_{i}=\sum_{\mathrm{n}} \mathrm{X}_{\mathrm{ni}}$ is a count of the number of times word i appears in the dataset

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- Since $\ln (x)$, the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- Since $\ln (x)$, the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.
- $\boldsymbol{\mu}^{\mathrm{ML}}=\arg \max \sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}$
where the maximum is over all $\boldsymbol{\mu}$ in Δ^{V}

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- Since $\ln (x)$, the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.
- $\boldsymbol{\mu}^{\mathrm{ML}}=\arg \max \sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}$
where the maximum is over all $\boldsymbol{\mu}$ in Δ^{V}
- Since Δ^{V} is the $\mathrm{V}-1$ dimensional subspace of legal V dimensional probability vectors, this is a constrained optimization problem and we can use Lagrange multipliers to find the $\boldsymbol{\mu}$ that gives the maximum of the likelihood function

Lagrange Multipliers

- Suppose that we want to maximize $f(\mathbf{x})$ subject to a constraint $\mathrm{g}(\mathbf{x})=0$, where \mathbf{x} is a D-dimensional vector

Lagrange Multipliers

- Suppose that we want to maximize $f(\mathbf{x})$ subject to a constraint $\mathrm{g}(\mathbf{x})=0$, where \mathbf{x} is a D-dimensional vector
- $g(\mathbf{x})=0$ defines a D-1 dimensional surface and the gradient $\nabla \mathrm{g}(\mathbf{x})$ is perpendicular to this surface

Lagrange Multipliers

- Suppose that we want to maximize $f(\mathbf{x})$ subject to a constraint $\mathrm{g}(\mathbf{x})=0$, where \mathbf{x} is a D -dimensional vector
- $g(\mathbf{x})=0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where $f(\mathbf{x})$ reaches its maximum, $\nabla f(\mathbf{x})$ must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for $f(\mathbf{x})$

Lagrange Multipliers

- Suppose that we want to maximize $f(\mathbf{x})$ subject to a constraint $\mathrm{g}(\mathbf{x})=0$, where \mathbf{x} is a D-dimensional vector
- $g(x)=0$ defines a D-1 dimensional surface and the gradient $\nabla \mathrm{g}(\mathbf{x})$ is perpendicular to this surface
- At the point where $f(\mathbf{x})$ reaches its maximum, $\nabla f(\mathbf{x})$ must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for $f(\mathbf{x})$
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla \mathrm{f}(\mathbf{x})+\lambda \nabla \mathrm{g}(\mathbf{x})=0$

Lagrange Multipliers

- Suppose that we want to maximize $\mathrm{f}(\mathbf{x})$ subject to a constraint $\mathrm{g}(\mathbf{x})=$ 0 , where \mathbf{x} is a D -dimensional vector
- $\mathrm{g}(\mathbf{x})=0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where $\mathrm{f}(\mathbf{x})$ reaches its maximum, $\nabla \mathrm{f}(\mathbf{x})$ must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for $f(\mathbf{x})$
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla \mathrm{f}(\mathbf{x})+\lambda \nabla \mathrm{g}(\mathbf{x})=0$
- This motivates the definition of the Lagrangian:

$$
\mathcal{L}(\mathbf{x}, \lambda)=\mathrm{f}(\mathbf{x})+\lambda \mathrm{g}(\mathbf{x})
$$

Lagrange Multipliers

- Suppose that we want to maximize $f(\mathbf{x})$ subject to a constraint $g(\mathbf{x})=0$, where \mathbf{x} is a D -dimensional vector
- $g(\mathbf{x})=0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where $f(\mathbf{x})$ reaches its maximum, $\nabla f(\mathbf{x})$ must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for $f(x)$
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla f(\mathbf{x})+\lambda \nabla \mathrm{g}(\mathbf{x})=0$
- This motivates the definition of the Lagrangian:

$$
\mathcal{L}(\mathbf{x}, \lambda)=\mathrm{f}(\mathbf{x})+\lambda \mathrm{g}(\mathbf{x})
$$

- To maximize $f(\mathbf{x})$ subject to $g(\mathbf{x})=0$, take partial derivatives of $\mathcal{L}(\mathbf{x}, \lambda)$ with respect to λ and the components of \mathbf{x} and set these derivatives to zero

Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- First write the Lagrangian:

$$
\mathcal{L}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}, \lambda\right)=\sum_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}+\lambda\left(1-\sum_{\mathrm{i}} \mu_{\mathrm{i}}\right)
$$

Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- First write the Lagrangian: $\mathcal{L}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}, \lambda\right)=\sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}+\lambda\left(1-\sum_{\mathrm{i}} \mu_{\mathrm{i}}\right)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i}=1$

Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- First write the Lagrangian: $\mathcal{L}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}, \lambda\right)=\sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}+\lambda\left(1-\sum_{\mathrm{i}} \mu_{\mathrm{i}}\right)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{\mathrm{i}}=1$
- The partial derivatives with respect to μ_{i} give the equations $\mathrm{m}_{\mathrm{i}} / \mu_{\mathrm{i}}-\lambda=0$, or $\mu_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} / \lambda$

Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- First write the Lagrangian: $\mathcal{L}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}, \lambda\right)=\sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}+\lambda\left(1-\sum_{\mathrm{i}} \mu_{\mathrm{i}}\right)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i}=1$
- The partial derivatives with respect to μ_{i} give the equations $\mathrm{m}_{\mathrm{i}} / \mu_{\mathrm{i}}-\lambda=0$, or $\mu_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} / \lambda$
- Plugging these values of μ_{i} into the constraint gives $\lambda=\sum_{i} \mathrm{~m}_{\mathrm{i}}=\mathrm{N}$

Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- First write the Lagrangian: $\mathcal{L}\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\mathrm{v}}, \lambda\right)=\sum_{\mathrm{i}} \mathrm{m}_{\mathrm{i}} \ln \mu_{\mathrm{i}}+\lambda\left(1-\sum_{\mathrm{i}} \mu_{\mathrm{i}}\right)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i}=1$
- The partial derivatives with respect to μ_{i} give the equations $\mathrm{m}_{\mathrm{i}} / \mu_{\mathrm{i}}-\lambda=0$, or $\mu_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} / \lambda$
- Plugging these values of μ_{i} into the constraint gives $\lambda=\sum_{i} \mathrm{~m}_{\mathrm{i}}=\mathrm{N}$
- Putting this all together gives $\boldsymbol{\mu}^{\mathrm{ML}}=\left[\mathrm{m}_{1} / \mathrm{N}, \mathrm{m}_{2} / \mathrm{N}, \ldots, \mathrm{m}_{\mathrm{V}} / \mathrm{N}\right]$ which has all its components in the interval $[0,1]$ as desired

Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_{i} so the m_{i} are called sufficient statistics for $\boldsymbol{\mu}^{\mathrm{ML}}$

Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_{i} so the m_{i} are called sufficient statistics for $\boldsymbol{\mu}^{\mathrm{ML}}$
- The distribution of the m_{i} values, conditioned on $\boldsymbol{\mu}$ and N is multinomial:

$$
\operatorname{Mult}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{v}} \mid \boldsymbol{\mu}, \mathrm{N}\right)=\mathrm{C}\left(\mathrm{~N} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{v}}\right) \prod_{\mathrm{i}} \mu_{\mathrm{i}^{\mathrm{m}}}
$$

where $\mathrm{C}\left(\mathrm{N} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{v}}\right)=\mathrm{N}!/\left(\mathrm{m}_{1}!\mathrm{m}_{2}!\ldots \mathrm{m}_{\mathrm{v}}!\right)$ are the multinomial coefficients found in the expansion of

$$
\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{xv}_{\mathrm{v}}\right)^{\mathrm{N}}
$$

Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_{i} so the m_{i} are called sufficient statistics for $\boldsymbol{\mu}^{\mathrm{ML}}$
- The distribution of the m_{i} values, conditioned on $\boldsymbol{\mu}$ and N is multinomial:

$$
\operatorname{Mult}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{v}} \mid \boldsymbol{\mu}, \mathrm{N}\right)=\mathrm{C}\left(\mathrm{~N} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{v}\right) \prod_{\mathrm{i}} \mu_{\mathrm{i}}^{\mathrm{mi}_{\mathrm{i}}}
$$

where $\mathrm{C}\left(\mathrm{N} ; \mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{v}}\right)=\mathrm{N}!/\left(\mathrm{m}_{1}!\mathrm{m}_{2}!\ldots \mathrm{m}_{\mathrm{v}}!\right)$
are the multinomial coefficients found in the expansion of

$$
\left(x_{1}+x_{2}+\ldots+x_{v}\right)^{N}
$$

- Continuing the analogy to the Beta-Bernoulli model, we can generalize the multinomial distribution to the Dirichlet distribution, again replacing the factorials with gamma functions

The Dirichlet Distribution

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution

The Dirichlet Distribution

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

$$
\operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)=c(\mathbf{a}) \prod_{i} \mu_{i^{i-1}}^{a_{i}}
$$

where the normalizing factor $c(\mathbf{a})=\Gamma\left(\sum_{i} a_{i}\right) / \prod_{i} \Gamma\left(a_{i}\right)$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

The Dirichlet Distribution

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

$$
\operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)=c(\mathbf{a}) \prod_{i} \mu_{i^{i-1}}^{a_{i}}
$$

where the normalizing factor $c(\mathbf{a})=\Gamma\left(\sum_{i} a_{i}\right) / \prod_{i} \Gamma\left(a_{i}\right)$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

- When $V=2$, this is the Beta distribution

The Dirichlet Distribution

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

$$
\operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)=c(\mathbf{a}) \prod_{i} \mu_{i^{i}{ }^{a}-1}
$$

where the normalizing factor $c(\mathbf{a})=\Gamma\left(\sum_{i} \mathrm{a}_{\mathrm{i}}\right) / \prod_{\mathrm{i}} \Gamma\left(\mathrm{a}_{\mathrm{i}}\right)$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

- When $\mathrm{V}=2$, this is the Beta distribution
- The Dirichlet distribution is defined on the probability simplex given by the constraints $\sum_{i} \mu_{i}=1$ and $\mu_{i} \geq 0$

Distributions Derived from the Dirichlet-Discrete Model

- The Dirichlet-Discrete joint distribution defines a complete model:
$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right)=$
$\left[\prod_{n} \operatorname{DiscretePMF}\left(X_{n} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)$
where the first factor is the likelihood and the second is the prior

Distributions Derived from the Dirichlet-Discrete Model

- The Dirichlet-Discrete joint distribution defines a complete model:
$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right)=$
$\left[\prod_{n} \operatorname{DiscretePMF}\left(X_{n} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)$ where the first factor is the likelihood and the second is the prior
- Several distributions can be derived from this:
— Evidence: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)=\int_{\Delta \mathrm{V}} \mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right) \mathrm{d} \boldsymbol{\mu}$

Distributions Derived from the Dirichlet-Discrete Model

- The Dirichlet-Discrete joint distribution defines a complete model:
$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right)=$
$\left[\prod_{n} \operatorname{DiscretePMF}\left(X_{n} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)$
where the first factor is the likelihood and the second is the prior
- Several distributions can be derived from this:
— Evidence: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)=\int_{\Delta \mathrm{V}} \mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right) \mathrm{d} \boldsymbol{\mu}$
- Posterior: $\mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$, obtained by dividing the joint distribution by the evidence (Bayes rule)

Distributions Derived from the Dirichlet-Discrete Model

- The Dirichlet-Discrete joint distribution defines a complete model:
$\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right)=$
$\left[\prod_{n} \operatorname{DiscretePMF}\left(X_{n} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right)$
where the first factor is the likelihood and the second is the prior
- Several distributions can be derived from this:
—— Evidence: $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)=\int_{\Delta \mathrm{V}} \mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}, \boldsymbol{\mu}\right) \mathrm{d} \boldsymbol{\mu}$
— Posterior: $\mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$, obtained by dividing the joint distribution by the evidence (Bayes rule)
- Predictive Posterior: $\mathrm{P}\left(\mathrm{X}_{\mathrm{N}} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}-1}\right)=$

$$
\int_{\Delta V} P\left(X_{N} \mid \boldsymbol{\mu}\right) P\left(\boldsymbol{\mu} \mid X_{1}, X_{2}, \ldots, X_{N-1}\right) d \boldsymbol{\mu}
$$

Deriving the MAP Estimate from the Posterior

- Suppose we have some prior knowledge of $\boldsymbol{\mu}$, represented as a prior distribution, and we want to combine this with new data $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$, to obtain a posterior distribution for $\boldsymbol{\mu}$ and use this to get a maximum a posteriori (MAP) estimate for $\boldsymbol{\mu}$

Deriving the MAP Estimate from the Posterior

- Suppose we have some prior knowledge of $\boldsymbol{\mu}$, represented as a prior distribution, and we want to combine this with new data $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$, to obtain a posterior distribution for μ and use this to get a maximum a posteriori (MAP) estimate for $\boldsymbol{\mu}$
- The evidence, $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$, and the normalizing factor, $\mathrm{c}(\mathbf{a})$, don't depend on $\boldsymbol{\mu}$, so they don't affect the MAP estimate:
$\mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right) \sim$
$\left[\prod_{n} \operatorname{DiscretePMF}\left(X_{n} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid a_{1}, a_{2}, \ldots, a_{v}\right) \sim$
where \sim means that factors not involving $\boldsymbol{\mu}$ have been omitted

Deriving the MAP Estimate from the Posterior

- Suppose we have some prior knowledge of $\boldsymbol{\mu}$, represented as a prior distribution, and we want to combine this with new data $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$, to obtain a posterior distribution for $\boldsymbol{\mu}$ and use this to get a maximum a posteriori (MAP) estimate for $\boldsymbol{\mu}$
- The evidence, $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$, and the normalizing factor, $\mathrm{c}(\mathbf{a})$, don't depend on $\boldsymbol{\mu}$, so they don't affect the MAP estimate:

$$
\begin{aligned}
& \mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right) \sim \\
& \quad\left[\prod_{\mathrm{n}} \operatorname{DiscretePMF}\left(\mathrm{X}_{\mathrm{n}} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{v}}\right) \sim \\
& \quad\left[\prod_{\mathrm{n}} \prod_{\mathrm{i}} \mu_{\mathrm{i}}^{\mathrm{X}_{\mathrm{ni}}}\right] \cdot \prod_{\mathrm{i}} \mu_{\mathrm{i}^{\mathrm{a} i-1}}=
\end{aligned}
$$

where \sim means that factors not involving $\boldsymbol{\mu}$ have been omitted

Deriving the MAP Estimate from the Posterior

- Suppose we have some prior knowledge of $\boldsymbol{\mu}$, represented as a prior distribution, and we want to combine this with new data $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}$, to obtain a posterior distribution for μ and use this to get a maximum a posteriori (MAP) estimate for $\boldsymbol{\mu}$
- The evidence, $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$, and the normalizing factor, $c(\mathbf{a})$, don't depend on $\boldsymbol{\mu}$, so they don't affect the MAP estimate:

$$
\begin{aligned}
& \mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right) \sim \\
& \quad\left[\prod_{\mathrm{n}} \operatorname{DiscretePMF}\left(\mathrm{X}_{\mathrm{n}} \mid \boldsymbol{\mu}\right)\right] \operatorname{DirPDF}\left(\boldsymbol{\mu} \mid \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{v}}\right) \sim \\
& \quad\left[\prod_{\mathrm{n}} \prod_{i} \mu_{\mathrm{i}}^{\mathrm{X}_{\mathrm{ni}}}\right] \cdot \prod_{\mathrm{i}} \mu_{\mathrm{i}^{\mathrm{a}-1}}= \\
& \quad \prod_{\mathrm{i}} \mu_{\mathrm{i}^{\mathrm{mi}+\mathrm{a}_{\mathrm{a}}-1}}
\end{aligned}
$$

where \sim means that factors not involving $\boldsymbol{\mu}$ have been omitted

Deriving the MAP Estimate from the Posterior

- $\boldsymbol{\mu}^{\mathrm{MAP}}=\arg \max \mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$
$=\arg \max \prod_{i} \mu_{i^{m i}+\mathrm{a}_{\mathrm{i}}-1}$ $=\arg \max \sum_{i}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}}-1\right) \ln \mu_{\mathrm{i}}$

Deriving the MAP Estimate from the Posterior

- $\boldsymbol{\mu}^{\mathrm{MAP}}=\arg \max \mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$

$$
=\arg \max \prod_{\mathrm{i}} \mu_{\mathrm{i}^{\mathrm{m} i+\mathrm{a}_{\mathrm{i}}-1}}
$$

$$
=\arg \max \sum_{i}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}}-1\right) \ln \mu_{\mathrm{i}}
$$

- Note that the a_{i} need to be at least 1 to ensure that the coefficients $\left(m_{i}+a_{i}-1\right)$ are non-negative

Deriving the MAP Estimate from the Posterior

- $\boldsymbol{\mu}^{\mathrm{MAP}}=\arg \max \mathrm{P}\left(\boldsymbol{\mu} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$

$$
\begin{aligned}
& =\arg \max \prod_{i} \mu_{i^{m} \mathrm{~m}_{\mathrm{i}}-1} \\
& =\arg \max \sum_{i}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}}-1\right) \ln \mu_{\mathrm{i}}
\end{aligned}
$$

- Note that the a_{i} need to be at least 1 to ensure that the coefficients $\left(m_{i}+a_{i}-1\right)$ are non-negative
- Given that

$$
\boldsymbol{\mu}^{\mathrm{MAP}}=\arg \max \sum_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}}+\mathrm{a}_{\mathrm{i}}-1\right) \ln \mu_{\mathrm{i}}
$$

we can again use Lagrange multipliers to obtain

$$
\boldsymbol{\mu}^{\mathrm{MAP}}=\left[\left(\mathrm{m}_{1}+\mathrm{a}_{1}-1\right) /\left(\mathrm{N}+\sum_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}-1\right), \ldots,\left(\mathrm{m}_{\mathrm{v}}+\mathrm{a}_{\mathrm{v}}-1\right) /\left(\mathrm{N}+\sum_{\mathrm{i}}\left(\mathrm{a}_{\mathrm{i}}-1\right)\right]\right.\right.
$$

