The Dirichlet-Discrete Model

Readings - Bishop: Section 2.2 and Appendix E The first six pages of the optional reading by Frigyik, Kapila, and Gupta are also recommended

- The third class discussed the Beta-Bernoulli Model
- This class will generalize that model from binary random variables to variables taking values in a finite set (often called "categorical" or "discrete" variables)
- For example, the set of words in a vocabulary
- For simplicity, we will denote this set as {1, 2, ..., V} where V is at least 2 and known in advance (the case where V is not known in advance is a topic for a more advanced class)

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, $\boldsymbol{\mu}$
- Now μ becomes a vector with V components: $\mu = [\mu_1, \mu_2, ..., \mu_V]$ with $\mu_i \ge 0$ and $\sum \mu_i = 1$
- The set of all legal μ is denoted Δ^{V}

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, μ
- Now μ becomes a vector with V components: $\mu = [\mu_1, \mu_2, ..., \mu_V]$ with $\mu_i \ge 0$ and $\sum \mu_i = 1$
- The set of all legal μ is denoted Δ^{V}
- The value of a discrete random variable can be represented by a "one-hot" vector with V components:
 [0, 0, ..., 0, 1, 0, ..., 0], where the position of the 1 indicates the value of the variable

Discrete Random Variables

- The Beta-Bernoulli model had a single parameter, μ
- Now μ becomes a vector with V components: $\mu = [\mu_1, \mu_2, ..., \mu_V]$ with $\mu_i \ge 0$ and $\sum \mu_i = 1$
- The set of all legal μ is denoted Δ^{V}
- The value of a discrete random variable can be represented by a "one-hot" vector with V components:
 [0, 0, ..., 0, 1, 0, ..., 0], where the position of the 1 indicates the value of the variable
- If X_i is a discrete random variable, we can express its probability distribution as $DiscretePMF(X = w) = \prod_i \mu_i^{X_{wi}}$ where $X_{wi} = 1$ only when $X_i = w$

The Likelihood Function

• Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by X₁, X₂, ..., X_N

The Likelihood Function

- Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by X₁, X₂, ..., X_N
- Although these words will not usually be independent, we can make a simplifying assumption (called "bag-of-words") that the X_i are i.i.d. (independent and identically distributed)

The Likelihood Function

- Suppose we observe N words from a vocabulary of size V and denote the random variables associated with these observations by X₁, X₂, ..., X_N
- Although these words will not usually be independent, we can make a simplifying assumption (called "bag-of-words") that the X_i are i.i.d. (independent and identically distributed)
- This gives the likelihood function

 $P(X_1, X_2, ..., X_N | \mu) = \prod_n \prod_i \mu_i^{X_{ni}} = \prod_i \mu_i^{m_i}$

where $m_i = \sum_n X_{ni}$ is a count of the number of times word i appears in the dataset

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

• Since ln(x), the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

• Since ln(x), the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.

•
$$\boldsymbol{\mu}^{ML} = \arg \max \sum_{i} m_{i} \ln \mu_{i}$$

where the maximum is over all μ in Δ^{V}

A Maximum Likelihood Estimate for $\boldsymbol{\mu}$

- Since ln(x), the natural logarithm of x, is an increasing function of x, we can maximize the log-likelihood instead of maximizing the likelihood directly. This simplifies the math and helps prevent numerical problems.
- $\mu^{ML} = \arg \max \sum_{i} m_{i} \ln \mu_{i}$ where the maximum is over all μ in Δ^{V}
- Since Δ^V is the V-1 dimensional subspace of legal V dimensional probability vectors, this is a constrained optimization problem and we can use *Lagrange multipliers* to find the µ that gives the maximum of the likelihood function

Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector

•

•

•

- Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector
- $g(\mathbf{x}) = 0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface

- Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector
- $g(\mathbf{x}) = 0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where f(x) reaches its maximum, ∇f(x) must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for f(x)

- Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector
- $g(\mathbf{x}) = 0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where f(x) reaches its maximum, ∇f(x) must also be perpendicular to the surface if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for f(x)
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$

- Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector
- $g(\mathbf{x}) = 0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where f(x) reaches its maximum, ∇f(x) must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for f(x)
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$
- This motivates the definition of the Lagrangian:

 $\mathcal{L}(\mathbf{x},\lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$

- Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, where x is a D-dimensional vector
- $g(\mathbf{x}) = 0$ defines a D-1 dimensional surface and the gradient $\nabla g(\mathbf{x})$ is perpendicular to this surface
- At the point where f(x) reaches its maximum, ∇f(x) must also be perpendicular to the surface - if the gradient had any component along the surface we could move along the surface in this direction to get to a larger value for f(x)
- Since these two gradient vectors point in the same (or exact opposite) direction, we can write $\nabla f(\mathbf{x}) + \lambda \nabla g(\mathbf{x}) = 0$
- This motivates the definition of the Lagrangian: $\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$
- To maximize $f(\mathbf{x})$ subject to $g(\mathbf{x}) = 0$, take partial derivatives of $\mathcal{L}(\mathbf{x}, \lambda)$ with respect to λ and the components of \mathbf{x} and set these derivatives to zero

• First write the Lagrangian:

۲

•

•

 $\mathcal{L}(\mu_1, \mu_2, \ldots, \mu_V, \lambda) = \sum_i m_i \ln \mu_i + \lambda(1 - \sum_i \mu_i)$

• First write the Lagrangian: $\mathcal{L}(\mu_1, \mu_2, ..., \mu_V, \lambda) = \sum_i m_i \ln \mu_i + \lambda(1 - \sum_i \mu_i)$

•

• The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i} = 1$

• First write the Lagrangian: $\mathcal{L}(\mu_1, \mu_2, \dots, \mu_V, \lambda) = \sum_i m_i \ln \mu_i + \lambda (1 - \sum_i \mu_i)$

•

- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i} = 1$
- The partial derivatives with respect to μ_i give the equations $m_i/\mu_i \lambda = 0$, or $\mu_i = m_i/\lambda$

- First write the Lagrangian: $\mathcal{L}(\mu_1, \mu_2, \dots, \mu_V, \lambda) = \sum_i m_i \ln \mu_i + \lambda (1 - \sum_i \mu_i)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i} = 1$
- The partial derivatives with respect to μ_i give the equations $m_i/\mu_i \lambda = 0$, or $\mu_i = m_i/\lambda$
- Plugging these values of μ_i into the constraint gives $\lambda = \sum_i m_i = N$

- First write the Lagrangian: $\mathcal{L}(\mu_1, \mu_2, \dots, \mu_V, \lambda) = \sum_i m_i \ln \mu_i + \lambda (1 - \sum_i \mu_i)$
- The partial derivative with respect to λ just gives back the constraint $\sum_{i} \mu_{i} = 1$
- The partial derivatives with respect to μ_i give the equations $m_i/\mu_i \lambda = 0$, or $\mu_i = m_i/\lambda$
- Plugging these values of μ_i into the constraint gives $\lambda = \sum_i m_i = N$
- Putting this all together gives $\mu^{ML} = [m_1/N, m_2/N, ..., m_V/N]$ which has all its components in the interval [0,1] as desired

Sufficient Statistics and the Multinomial Distribution

• This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_i so the m_i are called *sufficient statistics* for μ^{ML}

Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_i so the m_i are called *sufficient statistics* for μ^{ML}
- The distribution of the m_i values, conditioned on μ and N is *multinomial*:

Mult(m₁, m₂, ..., m_V | μ , N) = C(N; m₁, m₂, ..., m_V) $\prod_{i} \mu_{i}^{m_{i}}$

where $C(N; m_1, m_2, ..., m_V) = N! / (m_1! m_2! ... m_V!)$ are the *multinomial coefficients* found in the expansion of $(x_1 + x_2 + ... + x_V)^N$

Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we need to know about the data is contained in the quantities m_i so the m_i are called *sufficient statistics* for μ^{ML}
- The distribution of the m_i values, conditioned on **µ** and N is *multinomial*:

Mult(m₁, m₂, ..., m_v | μ , N) = C(N; m₁, m₂, ..., m_v) $\prod_{i} \mu_{i}^{m_{i}}$

where $C(N; m_1, m_2, ..., m_V) = N! / (m_1! m_2! ... m_V!)$ are the *multinomial coefficients* found in the expansion of $(x_1 + x_2 + ... + x_V)^N$

• Continuing the analogy to the Beta-Bernoulli model, we can generalize the multinomial distribution to the *Dirichlet* distribution, again replacing the factorials with gamma functions

• The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution

•

•

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

DirPDF($\mu | a_1, a_2, ..., a_V$) = c(**a**) $\prod_i \mu_i^{a_i - 1}$

where the normalizing factor $c(\mathbf{a}) = \Gamma(\sum_{i} a_{i}) / \prod_{i} \Gamma(a_{i})$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

DirPDF($\mu | a_1, a_2, ..., a_V$) = c(**a**) $\prod_i \mu_i^{a_i - 1}$

where the normalizing factor $c(\mathbf{a}) = \Gamma(\sum_{i} a_{i}) / \prod_{i} \Gamma(a_{i})$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

• When V=2, this is the Beta distribution

- The Dirichlet distribution is a conjugate prior for the parameters of the multinomial distribution
- The probability density function (PDF) of the Dirichlet distribution is given by

DirPDF($\mu \mid a_1, a_2, ..., a_V$) = c(**a**) $\prod_i \mu_i^{a_i - 1}$

where the normalizing factor $c(\mathbf{a}) = \Gamma(\sum_{i} a_{i}) / \prod_{i} \Gamma(a_{i})$ generalizes the multinomial coefficient by replacing the factorials with gamma functions

- When V=2, this is the Beta distribution
- The Dirichlet distribution is defined on the probability simplex given by the constraints $\sum_i \mu_i = 1$ and $\mu_i \ge 0$

• The Dirichlet-Discrete joint distribution defines a complete model:

 $P(X_1, X_2, ..., X_N, \mu) =$

[\prod_n DiscretePMF(X_n | μ)] DirPDF(μ | a_1 , a_2 , ..., a_v) where the first factor is the likelihood and the second is the prior

• The Dirichlet-Discrete joint distribution defines a complete model:

 $P(X_1, X_2, ..., X_N, \mu) =$

[\prod_n DiscretePMF(X_n | μ)] DirPDF(μ | a_1 , a_2 , ..., a_v) where the first factor is the likelihood and the second is the prior

• Several distributions can be derived from this: — Evidence: $P(X_1, X_2, ..., X_N) = \int_{\Delta V} P(X_1, X_2, ..., X_N, \mu) d\mu$

• The Dirichlet-Discrete joint distribution defines a complete model:

 $P(X_1, X_2, ..., X_N, \mu) =$

[\prod_n DiscretePMF(X_n | μ)] DirPDF(μ | a_1 , a_2 , ..., a_v) where the first factor is the likelihood and the second is the prior

• Several distributions can be derived from this: — Evidence: $P(X_1, X_2, ..., X_N) = \int_{\Delta V} P(X_1, X_2, ..., X_N, \mu) d\mu$

— Posterior: $P(\mu | X_1, X_2, ..., X_N)$, obtained by dividing the joint distribution by the evidence (Bayes rule)

• The Dirichlet-Discrete joint distribution defines a complete model:

 $P(X_1, X_2, ..., X_N, \boldsymbol{\mu}) = [\prod_n \text{DiscretePMF}(X_n | \boldsymbol{\mu})] \text{DirPDF}(\boldsymbol{\mu} | a_1, a_2, ..., a_V)$ where the first factor is the likelihood and the second is the prior

- Several distributions can be derived from this: — Evidence: $P(X_1, X_2, ..., X_N) = \int_{\Delta V} P(X_1, X_2, ..., X_N, \mu) d\mu$
 - Posterior: $P(\mu | X_1, X_2, ..., X_N)$, obtained by dividing the joint distribution by the evidence (Bayes rule)

- Predictive Posterior: $P(X_N | X_1, X_2, ..., X_{N-1}) = \int_{\Delta V} P(X_N | \boldsymbol{\mu}) P(\boldsymbol{\mu} | X_1, X_2, ..., X_{N-1}) d\boldsymbol{\mu}$

Suppose we have some prior knowledge of µ, represented as a prior distribution, and we want to combine this with new data X₁, X₂, ..., X_N, to obtain a posterior distribution for µ and use this to get a *maximum a posteriori* (MAP) estimate for µ

- Suppose we have some prior knowledge of µ, represented as a prior distribution, and we want to combine this with new data X₁, X₂, ..., X_N, to obtain a posterior distribution for µ and use this to get a *maximum a posteriori* (MAP) estimate for µ
- The evidence, P(X₁, X₂, ..., X_N), and the normalizing factor, c(a), don't depend on μ, so they don't affect the MAP estimate:

 $\begin{array}{l} P(\boldsymbol{\mu} \mid X_1, X_2, \ldots, X_N) \sim \\ [\prod_n \text{DiscretePMF}(X_n \mid \boldsymbol{\mu})] \text{ DirPDF}(\boldsymbol{\mu} \mid a_1, a_2, \ldots, a_V) \sim \end{array}$

where ~ means that factors not involving μ have been omitted

- Suppose we have some prior knowledge of µ, represented as a prior distribution, and we want to combine this with new data X₁, X₂, ..., X_N, to obtain a posterior distribution for µ and use this to get a *maximum a posteriori* (MAP) estimate for µ
- The evidence, P(X₁, X₂, ..., X_N), and the normalizing factor, c(a), don't depend on μ, so they don't affect the MAP estimate:

$$\begin{split} P(\boldsymbol{\mu} \mid X_1, X_2, \dots, X_N) &\sim \\ [\prod_n \text{DiscretePMF}(X_n \mid \boldsymbol{\mu})] \text{ DirPDF}(\boldsymbol{\mu} \mid a_1, a_2, \dots, a_V) &\sim \\ [\prod_n \prod_i \mu_i^{X_{ni}}] \cdot \prod_i \mu_i^{a_{i-1}} = \end{split}$$

where ~ means that factors not involving μ have been omitted

- Suppose we have some prior knowledge of μ, represented as a prior distribution, and we want to combine this with new data X₁, X₂, ..., X_N, to obtain a posterior distribution for μ and use this to get a *maximum a posteriori* (MAP) estimate for μ
- The evidence, P(X₁, X₂, ..., X_N), and the normalizing factor,
 c(a), don't depend on μ, so they don't affect the MAP estimate:

$$\begin{split} P(\boldsymbol{\mu} \mid X_1, X_2, \dots, X_N) &\sim \\ [\prod_n \text{DiscretePMF}(X_n \mid \boldsymbol{\mu})] \text{ DirPDF}(\boldsymbol{\mu} \mid a_1, a_2, \dots, a_V) &\sim \\ [\prod_n \prod_i \mu_i^{X_{ni}}] \cdot \prod_i \mu_i^{a_i - 1} &= \\ \prod_i \mu_i^{m_i + a_i - 1} \end{split}$$

where \sim means that factors not involving μ have been omitted

- $\mu^{MAP} = \arg \max P(\mu \mid X_1, X_2, ..., X_N)$
 - $= \arg \max \prod_{i} \mu_{i}^{m_{i}+a_{i}-1}$
 - = arg max $\sum_{i}(m_i+a_i-1) \ln \mu_i$

• $\boldsymbol{\mu}^{\text{MAP}} = \arg \max P(\boldsymbol{\mu} \mid X_1, X_2, ..., X_N)$ = $\arg \max \prod_i \mu_i^{m_i + a_i - 1}$

= arg max $\sum_{i}(m_i+a_i-1) \ln \mu_i$

• Note that the a_i need to be at least 1 to ensure that the coefficients (m_i+a_i-1) are non-negative

•
$$\boldsymbol{\mu}^{MAP} = \arg \max P(\boldsymbol{\mu} \mid X_1, X_2, ..., X_N)$$

= $\arg \max \prod_i \mu_i^{m_i + a_i - 1}$
= $\arg \max \sum_i (m_i + a_i - 1) \ln \mu_i$

- Note that the a_i need to be at least 1 to ensure that the coefficients (m_i+a_i-1) are non-negative
- Given that

 $\mu^{MAP} = \arg \max \sum_{i} (m_i + a_i - 1) \ln \mu_i$

we can again use Lagrange multipliers to obtain

 $\boldsymbol{\mu}^{\text{MAP}} = [(m_1 + a_1 - 1)/(N + \sum_i (a_i - 1), \dots, (m_v + a_v - 1)/(N + \sum_i (a_i - 1))]$