The Dirichlet-Discrete Model

Readings - Bishop: Section 2.2 and Appendix E
The first six pages of the optional reading by Frigyik, Kapila,
and Gupta are also recommended

- The third class discussed the Beta-Bernoulli Model

» This class will generalize that model from binary random
variables to variables taking values 1n a finite set
(often called “categorical” or “discrete” variables)

-+ For example, the set of words 1n a vocabulary

- For simplicity, we will denote this set as {1, 2, ..., V}
where V 1s at least 2 and known 1n advance
(the case where V 1s not known 1n advance 1s a topic for a
more advanced class)



Discrete Random Variables

+ The Beta-Bernoulli model had a single parameter, u

- Now u becomes a vector with V components:
= [},h, L2, ..., Mv] with “12 0 and Z Wi = |

» The set of all legal n is denoted AV
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Discrete Random Variables

+ The Beta-Bernoulli model had a single parameter, u

- Now u becomes a vector with V components:
= [},h, L2, ..., Mv] with “12 0 and Z Wi = |

» The set of all legal n is denoted AV

+ The value of a discrete random variable can be represented

by a “one-hot” vector with V components:
10,0,...,0,1,0, ..., 0], where the position of the 1
indicates the value of the variable

- If Xj 1s a discrete random variable, we can express its
probability distribution as DiscretePMF(X =w) =[], p¥wi

where Xwi = 1 only when X; =w
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The Likelihood Function

+ Suppose we observe N words from a vocabulary of size V
and denote the random variables associated with these
observations by X, X, ..., XN

» Although these words will not usually be independent, we

can make a simplifying assumption (called “bag-of-words”)
that the Xj are 1.1.d. (independent and 1dentically distributed)

» This gives the likelihood function

P(Xi, Xo, ..., XN| u) =11, [, p*i = Hi L

where m;=>_ Xy is a count of the number of times word i
appears 1n the dataset
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» Since In(x), the natural logarithm of x, 1s an increasing
function of x, we can maximize the log-likelihood instead of
maximizing the likelihood directly. This simplifies the math
and helps prevent numerical problems.
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A Maximum Likelihood Estimate for n

» Since In(x), the natural logarithm of x, 1s an increasing
function of x, we can maximize the log-likelihood instead of
maximizing the likelihood directly. This simplifies the math
and helps prevent numerical problems.

» ML =arg max Y. m;In W
where the maximum is over all p in AY

- Since AV is the V-1 dimensional subspace of legal

V dimensional probability vectors, this 1s a constrained
optimization problem and we can use Lagrange multipliers
to find the u that gives the maximum of the likelihood
function
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Lagrange Multipliers

- Suppose that we want to maximize f(x) subject to a constraint g(x) =0,
where x 1s a D-dimensional vector

» g(x) =0 defines a D-1 dimensional surface and the gradient
Vg(x) is perpendicular to this surface

- At the point where {(x) reaches its maximum, V{(x) must also be
perpendicular to the surface - 1f the gradient had any component along the
surface we could move along the surface in this direction to get to a larger
value for f(x)

- Since these two gradient vectors point in the same (or exact opposite)
direction, we can write V1(x) + AVg(x) =0

- This motivates the definition of the Lagrangian:
L(x, 1) = f(x) + Ag(x)

+ To maximize f(x) subject to g(x) = 0, take partial derivatives of L(x, A) with
respect to A and the components of x and set these derivatives to zero
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Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for n

» First write the Lagrangian:
L(Ml, 2, ..., Uy, 7\«) = Zimi In M1+7L(1 - Zi Hl)

» The partial derivative with respect to A just gives back the
constraint ). ui=1

» The partial derivatives with respect to w: give the equations
mi/wi-A =0, or w=mi/A

- Plugging these values of i into the constraint gives
A=2;mi=N

» Putting this all together gives pMt = [mi/N, mo/N, ..., mv/N]
which has all its components 1n the interval [0,1] as desired
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multinomial:
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Sufficient Statistics and the Multinomial Distribution

- This means that (under the bag-of-words assumption) all we
need to know about the data 1s contained in the quantities m;
so the mj are called sufficient statistics for pyM-

» The distribution of the m; values, conditioned on p and N 1s
multinomial.

MU.lt(ml, mp, ..., My | L, N) — C(N, m;, Mo, ..., mV) Hi Himi

where C(N; m;, m,, ..., my) =N!/(m;! m,! ... my!)
are the multinomial coefficients found 1n the expansion of
(xi+ X+ . x)Y

- Continuing the analogy to the Beta-Bernoulli model, we can
generalize the multinomial distribution to the Dirichlet
distribution, again replacing the factorials with gamma functions
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parameters of the multinomial distribution



The Dirichlet Distribution

» The Dirichlet distribution 1s a conjugate prior for the
parameters of the multinomial distribution

» The probability density function (PDF) of the Dirichlet
distribution 1s given by

DirPDF(u | ai, a2, ..., av ) =c(a) | |; pe!

where the normalizing factor c(a) =13 ai)/[[. I'(ai)

generalizes the multinomial coefficient by replacing
the factorials with gamma functions



The Dirichlet Distribution

» The Dirichlet distribution 1s a conjugate prior for the
parameters of the multinomial distribution

» The probability density function (PDF) of the Dirichlet
distribution 1s given by

DirPDF(u | ai, a2, ..., av ) =c(a) | |; pe!

where the normalizing factor c(a) =13 ai)/[[. I'(ai)

generalizes the multinomial coefficient by replacing
the factorials with gamma functions

- When V=2, this 1s the Beta distribution



The Dirichlet Distribution

» The Dirichlet distribution 1s a conjugate prior for the
parameters of the multinomial distribution

» The probability density function (PDF) of the Dirichlet

distribution 1s given by
DII'PDF(’.I | di, d2, ..., dAv ) = C(a) Hi “iai-l

where the normalizing factor c(a) =T} a;)/[]; ['(ai)

generalizes the multinomial coefficient by replacing
the factorials with gamma functions

- When V=2, this 1s the Beta distribution

» The Dirichlet distribution 1s defined on the probability simplex

given by the constraints > . ;=1 and w; >0
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where the first factor i1s the likelihood and the second 1s the
prior
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Distributions Derived from the Dirichlet-Discrete Model

- The Dirichlet-Discrete joint distribution defines a complete
model:

P(X1, X2, ..., XN, 1) =
[ [], DiscretePMF(X, | p)] DirPDF(u | a;, a,, ..., av)

where the first factor 1s the likelihood and the second 1s the prior

« Several distributions can be derived from this:
— Evidence: P(Xi, Xa, ..., XN) = .[ av P(X1, X2, ..., XN, n) dn

— Posterior: P(un | X1, Xo, ..., Xn), obtained by dividing the
joint distribution by the evidence (Bayes rule)

— Predictive Posterior: P(Xn | X1, X2, ..., XN-1) =
jAVP(XN ) P(p | X1, X2, ..., XN-1) dp



Deriving the MAP Estimate from the Posterior

Suppose we have some prior knowledge of n, represented as a
prior distribution, and we want to combine this with new data
X1, X2, ..., XN, to obtain a posterior distribution for p and use

this to get a maximum a posteriori (MAP) estimate for p
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»  Suppose we have some prior knowledge of n, represented as a
prior distribution, and we want to combine this with new data
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c(a), don’t depend on u, so they don’t affect the MAP
estimate:

P(n| X1, X2, ..., XN) ~
| [ 1, DiscretePMF(X, | n)] DirPDF(u | a1, a, ..., av ) ~

where ~ means that factors not involving u have been omitted



Deriving the MAP Estimate from the Posterior

»  Suppose we have some prior knowledge of u, represented as a
prior distribution, and we want to combine this with new data
X1, X2, ..., XN, to obtain a posterior distribution for p and use
this to get a maximum a posteriori (MAP) estimate for p

» The evidence, P(X1, X2, ..., Xx), and the normalizing factor,
c(a), don’t depend on u, so they don’t affect the MAP

estimate:

P(u | X1, X2, ..., XN) ~
[ [1, DiscretePMF(X, | n)] DirPDF(u | ai, a, ..., av ) ~

| Hn Hi piei | . Hi pt =

where ~ means that factors not involving n have been omitted



Deriving the MAP Estimate from the Posterior

» Suppose we have some prior knowledge of n, represented as a
prior distribution, and we want to combine this with new data
X1, X2, ..., XN, to obtain a posterior distribution for p and use
this to get a maximum a posteriori ((MAP) estimate for p

- The evidence, P(Xi, Xa, ..., Xn), and the normalizing factor,
c(a), don’t depend on pu, so they don’t affect the MAP estimate:

P(u | X1, X2, ..., XN) ~
||, DiscretePMF(X, | p)] DirPDF(u | ai, a, ..., av ) ~

i Xni ai-l  —
L TLw® ] T pee
[ I puymivait

where ~ means that factors not involving u have been omitted
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Deriving the MAP Estimate from the Posterior

- uMAY =arog max P(n | X1, Xo, ..., XN)
= arg max | |; pmitai-
= arg max ) .(mitai-1) In

- Note that the aj need to be at least 1 to ensure that
the coefficients (mj+ai-1) are non-negative

» Given that
uMAP = arg max > .(mit+ai-1) In i

we can again use Lagrange multipliers to obtain

uMAP = [(mi+a;-1)/(N+> (ai-1), ..., (myvtay-1)/(N+> (ai-1)]



