
The Dirichlet-Discrete Model

Readings - Bishop: Section 2.2 and Appendix E 
The first six pages of the optional reading by Frigyik, Kapila, 
and Gupta are also recommended 

• The third class discussed the Beta-Bernoulli Model  

• This class will generalize that model from binary random 
variables to variables taking values in a finite set  
(often called “categorical” or “discrete” variables)  

• For example, the set of words in a vocabulary  

• For simplicity, we will denote this set as {1, 2, …, V}  
where V is at least 2 and known in advance  
(the case where V is not known in advance is a topic for a 
more advanced class)



Discrete Random Variables

• The Beta-Bernoulli model had a single parameter, µ  

• Now µ becomes a vector with V components:  
    µ = [µ1, µ2, …, µV] with   µi ≥ 0   and   ∑ µi = 1 

• The set of all legal µ is denoted  ∆V  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Discrete Random Variables

• The Beta-Bernoulli model had a single parameter, µ  

• Now µ becomes a vector with V components:  
    µ = [µ1, µ2, …, µV] with   µi ≥ 0   and   ∑ µi = 1 

• The set of all legal µ is denoted  ∆V  

• The value of a discrete random variable can be represented 
by a “one-hot” vector with V components:  
[ 0, 0, …, 0, 1, 0, …, 0],  where the position of the 1 
indicates the value of the variable  

• If Xi is a discrete random variable, we can express its 
probability distribution as  DiscretePMF(X = w) = ∏i  µiXwi  
where Xwi = 1 only when Xi = w
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The Likelihood Function
• Suppose we observe N words from a vocabulary of size V 

and denote the random variables associated with these 
observations by X1, X2, …, XN  

• Although these words will not usually be independent, we 
can make a simplifying assumption (called “bag-of-words”) 
that the Xi are i.i.d. (independent and identically distributed)  

• This gives the likelihood function  
 
      P(X1, X2, …, XN| µ) = ∏n  ∏i µiXni  = ∏i µimi  
 
where  mi = ∑n Xni  is a count of the number of times word i 
appears in the dataset
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• Since ln(x), the natural logarithm of x, is an increasing 

function of x, we can maximize the log-likelihood instead of 
maximizing the likelihood directly.  This simplifies the math 
and helps prevent numerical problems.  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A Maximum Likelihood Estimate for µ 
• Since ln(x), the natural logarithm of x, is an increasing 

function of x, we can maximize the log-likelihood instead of 
maximizing the likelihood directly.  This simplifies the math 
and helps prevent numerical problems.  

• µML = arg max ∑i mi ln µi  
        where the maximum is over all µ in ∆V  

• Since ∆V is the V-1 dimensional subspace of legal  
V dimensional probability vectors, this is a constrained 
optimization problem and we can use Lagrange multipliers 
to find the µ that gives the maximum of the likelihood 
function
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Lagrange Multipliers
• Suppose that we want to maximize f(x) subject to a constraint g(x) = 0, 

where x is a D-dimensional vector  

• g(x) = 0 defines a D-1 dimensional surface and the gradient  
∇g(x) is perpendicular to this surface  

• At the point where f(x) reaches its maximum, ∇f(x) must also be 
perpendicular to the surface - if the gradient had any component along the 
surface we could move along the surface in this direction to get to a larger 
value for f(x)  

• Since these two gradient vectors point in the same (or exact opposite) 
direction, we can write   ∇f(x) + λ∇g(x) = 0 

• This motivates the definition of the Lagrangian:  
            L(x, λ) = f(x) + λg(x)  

• To maximize f(x) subject to g(x) = 0, take partial derivatives of L(x, λ) with 
respect to λ and the components of x and set these derivatives to zero
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Using Lagrange Multipliers to Find a Maximum Likelihood Estimate for µ 

• First write the Lagrangian:  
L(µ1 , µ2 , … , µV , λ) = ∑i mi ln µi + λ(1 - ∑i µi )  

• The partial derivative with respect to λ just gives back the 
constraint  ∑i µi = 1 

• The partial derivatives with respect to µi  give the equations  
mi/µi - λ = 0,   or   µi = mi/λ 

• Plugging these values of µi into the constraint gives  
λ = ∑i mi = N  

• Putting this all together gives µML = [m1/N, m2/N, …, mV/N]  
which has all its components in the interval [0,1] as desired
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Sufficient Statistics and the Multinomial Distribution

• This means that (under the bag-of-words assumption) all we 
need to know about the data is contained in the quantities mi  
so the mi are called sufficient statistics for µML  

• The distribution of the mi values, conditioned on µ and N is  
multinomial: 
 
    Mult(m1, m2, …, mV | µ, N) = C(N; m1, m2, …, mV) ∏i µi

mi 

  
where  C(N; m1, m2, …, mV) = N! / (m1! m2! … mV!)  
are the multinomial coefficients found in the expansion of  
     (x1 + x2 + …+ xV)N  

• Continuing the analogy to the Beta-Bernoulli model, we can 
generalize the multinomial distribution to the Dirichlet 
distribution, again replacing the factorials with gamma functions
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The Dirichlet Distribution
• The Dirichlet distribution is a conjugate prior for the 

parameters of the multinomial distribution  

• The probability density function (PDF) of the Dirichlet 
distribution is given by  
 
    DirPDF(µ | a1, a2, …, aV ) = c(a) ∏i µiai-1  

 
where the normalizing factor  c(a) = Γ(∑i ai)/∏i Γ(ai)  
generalizes the multinomial coefficient by replacing  
the factorials with gamma functions  
     

• When V=2, this is the Beta distribution  

• The Dirichlet distribution is defined on the probability simplex 
given by the constraints ∑i µi = 1 and µi  ≥ 0
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Distributions Derived from the Dirichlet-Discrete Model

• The Dirichlet-Discrete joint distribution defines a complete 
model: 
 
P(X1, X2, …, XN, µ) = 
     [ ∏n  DiscretePMF(Xn | µ)]  DirPDF(µ | a1, a2, …, aV )  
where the first factor is the likelihood and the second is the prior  

• Several distributions can be derived from this:  
— Evidence:  P(X1, X2, …, XN) = ∫ ∆V P(X1, X2, …, XN, µ) dµ  
 
— Posterior:  P(µ | X1, X2, …, XN), obtained by dividing the  
           joint distribution by the evidence (Bayes rule)  
 
— Predictive Posterior:  P(XN | X1, X2, …, XN-1) = 
              ∫ ∆V P(XN | µ) P(µ | X1, X2, …, XN-1) dµ  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• Suppose we have some prior knowledge of µ, represented as a 

prior distribution, and we want to combine this with new data  
X1, X2, …, XN, to obtain a posterior distribution for µ and use 
this to get a maximum a posteriori (MAP) estimate for µ  

• The evidence, P(X1, X2, …, XN), and the normalizing factor, 
c(a), don’t depend on µ, so they don’t affect the MAP estimate:  
 
P(µ | X1, X2, …, XN) ~  
     [ ∏n  DiscretePMF(Xn | µ)]  DirPDF(µ | a1, a2, …, aV ) ~  
     [ ∏n  ∏i µi

Xni  ] . ∏i µiai-1     = 
     ∏i µimi+ai-1  

 
where ~ means that factors not involving µ have been omitted  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Deriving the MAP Estimate from the Posterior
• µMAP = arg max P(µ | X1, X2, …, XN)  

         = arg max ∏i µimi+ai-1  
         = arg max ∑i(mi+ai-1) ln µi 

• Note that the ai need to be at least 1 to ensure that  
the coefficients (mi+ai-1) are non-negative  

• Given that 
     µMAP = arg max ∑i(mi+ai-1) ln µi 

 

we can again use Lagrange multipliers to obtain  
 
µMAP = [(m1+a1-1)/(N+∑i(ai-1), …, (mV+aV-1)/(N+∑i(ai-1)]


