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What is a matroid?
• A mathematical structure that generalizes concepts from 

graph theory, linear algebra, etc. 

• Introduced in the 1930s by Whitney, Nakasawa, MacLane, 
and van der Warden 

• Based on the concept of hereditary system 

• This lecture assumes matroids are finite to avoid problems 
with duality, though recent work by Bruhn, Diestel, 
Kriesell, Pendavingh, and Wollan (2013), has extended the 
theory to infinite objects called B-matroids
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So what is a hereditary system?
• A hereditary system, M, on a set, E (the ground set), 

consists of a nonempty collection, IM, of subsets of E with 
the property that every member of IM also has all its 
subsets in IM. 

• Hereditary systems are also called independence systems 
or abstract simplicial complexes 

• The members of IM are called independent sets. 

• There may be several ways of specifying IM. These are 
called aspects of M.
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An example of a hereditary system and 
independent sets

• E = edges of the kite 

• IM = sets of edges with no cycle 

• every set with more than three edges is dependent 

• two more dependent sets = ?? 

• maximal independent sets = spanning trees
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Some more terminology for independent sets

• BM = bases = maximal independent sets 

• CM  = circuits = minimal dependent sets 

• rM (X a subset of E) =  rank = maximum size of an independent set  
= max{ |Y| : Y ⊆ X, Y ∈ IM } 

• rM ( ) satisfies the following two properties (Lemma 8.2.17):  
    (r1) The rank of the empty set is zero  
    (r2) If X ⊆ E and e ∈ E, then rM ( X ) ≤ rM ( X + e ) ≤ rM ( X ) + 1
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Another example of a hereditary system

• IM = sets of edges with no cycle 

• dependent sets = ?? 

• CM = circuits = ?? 

• BM = bases = ?? 

• rM( ) = rank = ?? 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Another example of a hereditary system

• IM = sets of edges with no cycle 

• dependent sets = {1,2} and {1,2,3} 

• CM = circuits = {1,2} 

• BM = bases = {1,3} and {2,3} 

• rM( ) = rank = size (if independent)  
    r({1,2}) = 1        r({1,2,3}) = 2
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A matroid is a hereditary system with an 
additional property

• One such property is the base exchange property : 

• if B1 and B2 are bases, then for every e in B1 - B2  
there is an f in B2 - B1 so that B1 - {e} + { f }  is a base 

• For example, in a connected graph the bases are spanning trees  
Deleting an edge from a spanning tree disconnects it  
The two components can be reconnected using a different edge from 
another spanning tree 

• One consequence is that all bases have the same size, which you 
already know to be true of spanning trees (or spanning forests in the 
case of graphs with more than one component)
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A matroid is a hereditary system with an 
additional property

• Another such property is the (weak) absorption property : 

• if X is a subset of E and f and g are members of E with  
    r(X) = r(X + e) = r( X + f ), then  
    r(X) = r(X + e + f ) 

•   

•   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A matroid is a hereditary system with an 
additional property

• Another such property is the (weak) absorption property : 

• if X is a subset of E and f and g are members of E with  
    r(X) = r(X + e) = r( X + f ), then  
    r(X) = r(X + e + f ) 

• There must be a strong absorption property : 

• if X and Y are subsets of E with  
    r(X) = r(X + e) for all e in Y, then  
    r( X ∪ Y ) = r( X )
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A matroid is a hereditary system with an 
additional property

• A fourth such property is the augmentation property : 

• if I1 and I2 are independent sets with |I1| > |I2 |, then  
    I2 + e is independent for some e in I1 - I2 

•   

•  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A matroid is a hereditary system with an 
additional property

• A fourth such property is the augmentation property : 

• if I1 and I2 are independent sets with |I1| > |I2 |, then  
    I2 + e is independent for some e in I1 - I2 

• Theorem 3.1.10 (Berge, 1957): A matching M in a graph G is a 
maximum matching in G ⇔ G has no M-augmenting path 

• so if G has an M-augmenting path then there is a matching M’  
with |M’| > |M| and M’△M contains an M-augmenting path
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Transversal matroids from matchings in a 
bipartite graph

• For a bipartite graph, G = (U, V, E) let the elements of  
a matroid be the vertices in U and the independent sets  
be sets of endpoints of matchings 

• This matroid satisfies the augmentation property and  
is called a transversal matroid 

• In the example above, the matroid is isomorphic to  
the kite with independent sets being acyclic subsets of edges
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Graphic matroids

• The cycle matroid of a graph, G, is the matroid with ground set E(G) 
and circuits (minimal dependent sets) given by the cycles of G 

• A matroid that can be defined in this way is called a graphic matroid 

• Not every matroid is graphic

14



Vectorial matroids

• The ground set, E, is a set of vectors, {xi}, in a vector space 

• I = subsets of E that are linearly independent 

• Dependent sets must have ∑ ci xi = 0 with some ci being nonzero 

• Circuits are sets of xi with ∑ ci xi = 0 forcing all ci  ≠ 0 

• Not every matroid is vectorial 

• The column matroid of this matrix  
is the cycle matroid of the kite:
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Uniform matroids and free matroids

• Uk,n is the uniform matroid of rank k defined on any ground set of size n 
with bases being all of the subsets of size k 

• so the independent sets are all of the subsets of size at most k 

• If n = k this is called the free matroid of rank n 

• Uniform matroids may or may not be graphic and graphic matroids may 
or may not be uniform (Exercise 8.2.6 in West)
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Partition matroids

• If E is partitioned into distinct blocks E1, E2, … Ek, the partition 
matroid induced by this partition is the matroid with independent sets 
having at most one element in each block of the partition 

• In a directed graph, each edge has a head and a tail, so the edges can be 
partitioned in two ways, called the head partition and the tail partition
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Matroids and greedy algorithms

• Matroids can be defined by the greedy algorithm property: 

• For any nonnegative weight function on the ground set, the greedy 
algorithm selects an independent set of maximum total weight 

• greedy( matroid M ) returns: independent set I 
   I ← empty;  E ← M.E; 
   while (E is nonempty) { 
        e ← an element of E of maximum weight; 
        remove e from E; 
        if (I + e is independent) then I ← I + e; 
   } 
   return I
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Matroids and matchings

• Given a bipartitite graph G = (U, V, E) it would seem natural to 
define a matroid by defining the independent sets to be the  
matchings of G 

• This doesn’t always work (Exercises 8.2.1 and 8.2.2 in West) 

• Suppose G is a directed graph with all edges directed from U to V,  
then any matching is contained in both the head partition and the  
tail partition 

• This motivates the definition of the intersection of two matroids  
(which may not be a matroid)
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Matroid intersection

• Given matroids M1 and M2, with independent sets I1 and I2, 
M1 ∩ M2 is the hereditary system with independent sets  
being those sets that are independent in both M1 and M2 

• Although M1 ∩ M2 is not a matroid in general, it does have  
the following property, proved by the Matroid Intersection Theorem:  
     max{|I| : I ∈ I1 ∩ I2} = min {r1(A) + r2(Ā)} 
where the min is over all subsets of the ground set and Ā is the 
complement of A with respect to the ground set 

• The matroid intersection algorithm (Papdimitriou and Steiglitz) solves this 
max-min problem in time O( |E|3 C(|E|) ) where C(|E|) is the time required 
for matroid queries
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Problems with intersections of  
more than two matroids

• Intersecting more than two matroids can lead to NP-complete 
problems, so there’s not much hope for a polynomial-time algorithm 
for solving matroid intersection problems of higher order 

• Papadimitriou and Steiglitz show how to define the Hamiltonian path 
problem as the intersection of three matroids
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The (weak) elimination property

• The weak elimination property : 

• If C1 and C2 are distinct circuits and x ∈ C1 ∩ C2 then there is  
another circuit contained in C1 ∪ C2 - x 

•   

•  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The (weak) elimination property

• The weak elimination property : 

• If C1 and C2 are distinct circuits and x ∈ C1 ∩ C2 then there is  
another circuit contained in C1 ∪ C2 - x 

• There must be a strong elimination property : 

• If C1 and C2 are circuits with x ∈ C1 ∩ C2 and x1 ∈ C1 - C2  
then there is another circuit containing x1 contained in C1 ∪ C2 - x
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Submodularity of the rank function

• M is a matroid if its rank function is submodular : 

• for any two subsets, X and Y, of the ground set 
    r( X ∩ Y ) + r( X ∪ Y ) = r( X ) + r( Y ) 

• This is related to the dimension formula for subspaces of a vector 
space: 

• dim( U ∩ V ) + dim( span( U ∪ V ) ) = dim( U ) + dim( V )  
    where U and V are subspaces of a vector space
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Alternative definition of transversal matroids

• Suppose the ground set E is the union of m sets A1, A2,… Am  

• The transversal matroid induced by these sets can be defined via an  
E,[m] bipartite graph with edges (e,i) whenever e ∈ Ai 

• The independent sets of this matroid are the subsets of E that are 
saturated by matchings in this bipartite graph
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