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Agenda
• intersections and unions of matroids 

• a matroid that is vectorial but not graphical 

• a digression on error-correcting codes 

• spans, closed sets, and hyperplanes 

• a matroid that is neither vectorial nor graphical 

• planar graphs and duals of matroids 

• a finite number of slides about infinite graphs 

• some random slides about random graphs and other random objects 

• infinite matroids



More about intersections of two matroids

• From last time: intersections of hereditary systems are hereditary 
systems, but the intersection of two matroids may not be a matroid 

• This means that a problem defined in terms of the intersection of  
two matroids may not have a solution using a greedy algorithm, 
though Papadimitriou and Steiglitz give an algorithm for solving  
any 2-matroid intersection problem in time polynomial in the 
matroid oracles 

• Details about Edmonds’ Matroid Intersection Algorithm can also be 
found in Paul Wilhelm’s lecture notes at  
 
https://www.mathematik.hu-berlin.de/~wilhelm/greedy-ausarbeitung.pdf

https://www.mathematik.hu-berlin.de/~wilhelm/greedy-ausarbeitung.pdf


More about intersections of three matroids

• Problems defined in terms of the intersection of three matroids  
may be NP-complete 

• For example, the problem of finding a Hamiltonian path in  
a directed graph can be defined in terms of a graphic matroid,  
a head partition matroid, and a tail partition matroid  
(Theorem 12.10 in Papdimitriou and Stieglitz)



Hamiltonian path as a  
3-matroid intersection problem

• A Hamiltonian path in a directed graph has no two edges whose tails 
meet (independent in the tail partition matroid), no two edges whose 
heads meet (independent in the head partition matroid), and doesn’t 
contain a cycle (independent in the graphical matroid for the 
corresponding undirected graph) 

• Finding a set of edges that is simultaneously maximal in these three 
matroids solves the Hamiltonian path problem:  
The graph has a Hamiltonian path ⇔ the maximal set has |V|-1 edges 

• Hamiltonian path is known to be NP-complete, so finding a polynomial-
time algorithm for 3-matroid intersection is worth $1,000,000 (base 10) 
from the Clay Mathematics Institute (and probably a Turing award)



The Matroid Union Theorem

• (West 8.2.55) If M1, M2, … Mk are matroids with independent sets  
defined as subsets of I1, I2, … Ik and rank functions r1, r2, …rk , 
then M1 ∪ M2 ∪ … ∪ Mk is a matroid with independent sets being  
unions of sets that are independent in the component matroids and  
rank function  
     r(X) = min{ ∑ri(Y) + |X - Y| } where the min is over all Y ⊆ X 

• Proved independently by Edmonds and Fulkerson (1965) and  
Nash-Williams (1966) 

• West’s Graph Theory textbook gives several applications of this  
theorem to covering and packing problems
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• a matroid that is vectorial but not graphical 
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• The Fano plane is a projective plane since it satisfies the  
following three properties:  
(in fact it is the smallest projective plane) 

• Any pair of points are on exactly one line  
    (the circle is really a line) 

• Any pair of lines intersect in exactly one point 

• There are four points, no three of which are collinear  
   (for example, the center point plus the three vertices of the large triangle)

The Fano plane



The Fano plane as a matroid

• The Fano plane is a matroid with ground set  
E = {a, b, c, d, e, f, g} (the points of the plane)  
and 3-element circuits defined as the lines  
(straight or circular) shown in this figure 

• The Fano matroid is not graphical 
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• The outside lines {a,d,b}, {a,e,c}, {b,f,c}, and the 
vertical line {a,g,f} are circuits so they would need  
to be cycles in the graphical representation 

• The first two share an edge, so there are two  
possible graphs: 
 
 
 

• In the left graph, it isn't possible to add edge to form the third cycle 

•  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• The outside lines {a,d,b}, {a,e,c}, {b,f,c}, and the 
vertical line {a,g,f} are circuits so they would need  
to be cycles in the graphical representation 

• The first two share an edge, so there are two  
possible graphs: 
 
 
 

• In the left graph, it isn't possible to add edge to form the third cycle 

• In the right graph, it is possible to add f so it forms a cycle {b,f,c} 
but then it’s impossible to form a cycle for {a,g,f}
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The Fano matroid is not graphical
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The Fano plane as a matroid

• The Fano plane is a matroid with ground set  
E = {a, b, c, d, e, f, g} (the points of the plane)  
and 3-element circuits defined as the lines  
(straight or circular) shown in this figure 

• The Fano matroid is not graphical 

• The Fano matroid is vectorial since the  
points can be labelled with binary vectors  
satisfying the appropriate independence  
properties
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The Fano matroid is vectorial

• Columns a…g of this matrix, viewed as  
three-element binary vectors, represent the  
Fano plane as a vectorial matroid  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a b c d e f g

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1
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Communication and error detection  

• Suppose we want to transmit the characters ‘acb’ using binary, but the communication 
channel is unreliable 

• We can encode ‘acb’ into binary using ASCII:  
acb ➔ 1100001 1100011 1100010 ➔ acb  
(note that the actual order of transmission is 100001111000110100011) 

• If a bit error occurs on the fourth bit, this will be received as ‘icb’ 

• Inserting ‘parity check bits’ allows the receiver to detect that there was an error:  
 
No error:   acb ➔ 111000010110001111100010 ➔ acb  
(the underlined bits give each byte even parity)  
 
A single bit error on any byte can be detected by the receiver:  
acb ➔ 111000010110001111100010 ➔ 111010010110001111100010 ➔ ?cb



Communication, error detection, and  
error correction

• If the receiver detects an error it needs to send a request for retransmission,  
but two-way communication isn’t always available 

• An alternative is to add more parity check bits to allow the receiver to correct  
errors without communicating back to the transmitter 

• A simple example:  
Send two ‘parity check bits’ with each bit    0 ➔ 000 ➔ 0  and  1 ➔ 111 ➔ 1 

• Now a bit error can be corrected:  0 ➔ 000 ➔ 100 ➔ 000 ➔ 0 

• ( But double errors won’t be corrected:  0 ➔ 000 ➔ 101 ➔ 111 ➔ 1 ) 

• Communication is much more reliable, at the expense of reducing the  
communication rate by a factor of 3



What does this have to do with matroids?

• It turns out that the matrix representation of the Fano matroid is the parity check matrix of 
a code that will correct one error among each group of seven bits, at the expense of 
slowing communication by a factor of 1.75 

• If (a, b, c, d) are four bits to be transmitted,  
add three parity-check bits calculated by:  
e = b⊕c⊕d, f = a⊕c⊕d, g = a⊕b⊕c  (⊕ is XOR) 

• Two examples:   
    0101 ➔ 0101011 
    1110 ➔ 1110001 

• Suppose the fourth bit is corrupted:  
   0101 ➔ 0101011 ➔ 0100011 
   1110 ➔ 1110001 ➔ 1111001 

• To correct the error, multiply the parity check matrix by the received bit vector

a b c d e f g

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1



What does this have to do with matroids?

• To correct the error, multiply the parity check matrix by the received bit vector  
(in other words, XOR the columns corresponding to 1-bits) 

• For  0101 ➔ 0101011 ➔ 0100011 
this gives (1, 1, 0)T 

• For  1110 ➔ 1110001 ➔ 1111001 
this gives (1, 1, 0)T 

• It’s not a coincidence that in both cases  
this gives a column identical to the fourth  
column of the matrix, signifying that the  
fourth bit needs to be flipped back 

• This coding scheme is called the (7,4) Hamming code

a b c d e f g

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1



The (7, 4) Hamming code

• If (a, b, c, d) are four bits to be transmitted, add three parity-check bits calculated by  
e = b⊕c⊕d, f = a⊕c⊕d, g = a⊕b⊕c 

• To detect and correct an error, multiply the parity check matrix by the received bit vector  
(in other words, XOR together the columns corresponding to 1-bits) 

• Since the columns of the parity check matrix consist of  
all seven nonzero three-bit vectors, every possible  
received word (a,b,c,d,e,f,g) results in either a column  
of all zeroes or one of the columns of the matrix 

• In the first case (a,b,c,d,e,f,g) was a codeword and there  
was no error (or possibly 3 or more errors) 

• In the second case the location of the column indicates  
that correcting a single bit would change (a,b,c,d,e,f,g)  
to a codeword 

• In other words, every possible seven-bit vector is at Hamming distance 0 or 1 from a codeword  
(the Hamming distance between two bit vectors is the minimum number of bits that need to be flipped to convert 
one vector into the other)

a b c d e f g

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1
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Span functions for hereditary systems

• Given a hereditary system M on ground set E, the span function σM  
  is a function from subsets of E to subsets of E given by  
  σM(X) = X ∪ {e ∈ E | Y + e forms a circuit for some Y ⊆ X} 

• Span functions have the following properties (8.2.25)  
(s1) expansive:  X ⊆ σ(X) 
(s2) order-preserving:  Y ⊆ X implies σ(Y) ⊆ σ(X) 
(s3) Steinitz exchange:  If e is not in σ(X) but e is in σ(X+f )  
        then f is in σ(X+e) 

• (8.2.26) If adding e to a set X doesn’t increase its rank then  
    e was in the span of X



Matroids can be defined in terms 
of span functions

• (incorporation)  r( σ(X) ) = r(X) for all X ⊆ E 

• (idempotence)  σ( σ(X) ) = σ(X) for all X ⊆ E 

• (transitivity of dependence)  If e is in the span of X and  
   X is a subset of the span of Y then e is in the span of Y  
   [ e ∈ σ(X) and X ⊆ σ(Y)  ⇒  e ∈ σ(Y) ] 

• (West 8.2.27)



Terminology related to span functions

• Spanning sets:  X ⊆ E with σ(X) = E 

• Closed sets (or flats, or subspaces): X ⊆ E with σ(X) = X 

• Hyperplanes: maximal proper closed subsets of E 

• Span functions are sometimes called closure functions
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The Vámos matroid

• Described by Peter Vámos in 1968 in an  
unpublished manuscript 

• The ground set consists of the eight  
red dots in the figure 

• Every set of four elements is a base  
except for the five planes colored blue 

• The Vámos matroid is neither graphical  
nor vectorial (see James G. Oxley, Matroid Theory, 2006)

Figure by David Eppstein, Creative Commons CC0 1.0 Universal Public Domain Dedication
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Duals of matroids

• A dot above the name of a set will denote the complement with 
respect to the ground set E:  Ẋ = E - X 

• The dual of a matroid can be defined in terms of complements of bases:  
If M is a matroid on ground set E with bases {Bi}, then M* is a matroid  
on E with bases {Ḃi} 

• The fact that this defines a matroid was proved by Whitney in 1935 using 
the base exchange property  
    (for every e in B1 - B2 there is an f in B2 - B1 
        so that B1 - {e} + { f }  is a base) 

• (West 8.2.34) The rank function of the dual of a matroid satisfies  
   r*(X) = |X| - ( r(E) - r(Ẋ) )

27



Duals of connected planar graphs

• A connected planar graph G = (V, E) has a natural dual  
  G* = (V*, E*) formed by associating each face of G  
  (including the unbounded face) with a vertex in V*  
  and each edge in E with with an edge e* connecting  
  the faces on opposite sides of e. 

• A set of edges X ⊆ E is a spanning tree for G if and only if  
  { e* ∈ E* | e ∈ Ẋ } is a spanning tree for G*  
  (This is Exercise 6.1.21 in West)



Graph duals and matroid duals

• The cycle matroid of a graph, G, is the matroid with ground set E(G) 
and circuits (minimal dependent sets) given by the cycles of G 

• The bases of a cycle matroid M(G) of a connected graph G are the 
spanning trees of G 

• Thus the bases of M(G*) are the complements of the bases of M(G) 

• The greedy algorithm finds minimum-weight bases in M(G) and 
simultaneously finds maximum-weight bases in M(G*) 



Bonds in graphs and matroids

• An edge cut of a graph G, denoted [S, V(G)-S], is the set of edges having 
one endpoint in S and the other endpoint in V(G)-S  
(S should neither be empty nor all of V(G) ) 

• A bond is a minimal edge cut 

• The bond matroid of G is the matroid whose circuits are the bonds of G 

• The bond matroid is the dual matroid of the cycle matroid 

• G is planar if and only if its bond matroid is graphic  
(West 8.2.44, proved by Whitney in 1933)
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Infinite graphs

• What is an infinite graph?  
According to Wolfram MathWorld:  
    A graph that is not finite is called infinite. 

• If every vertex has finite degree, the graph is locally finite 

• If the set of vertices is countably infinite and there is at most  
one edge (or two directed edges) between any pair of vertices  
then the set of edges is countable  
(since the union of a countable number of countable sets is countable) 

• It’s also possible to define graphs on sets of vertices with higher cardinality

http://mathworld.wolfram.com/FiniteGraph.html


Examples of infinite graphs

• An infinite sequence of distinct vertices  v1, v2, v3, … together with edges 
(v1, v2), (v2, v3), (v3, v4), … is called a ray 

• The square grid graph   and   the triangular grid graph  
 
 
 
 

• One could define variants of these that are not locally finite, for example 
each vertex in the square grid graph could have an edge to every other 
vertex in the same row or column



The Rado graph

• First constructed by Ackermann in 1937 

• Rediscovered by Erdős and Rényi in 1963 and Richard Rado in 1964  
 
 
 
 
 
 
 

• Vertices are numbered 0,1,2,… and vertex j is connected to all 
vertices with bit j set to 1 (bit 0 is the low-order bit)

010000 001 100011 111101 110 …..

… …

…

…

…
…



Properties of the Rado graph

• It is not locally finite, in fact every vertex has infinite degree 

• Every finite graph and every countably infinite graph is isomorphic to an 
induced subgraph of the Rado graph 

• If one constructs a graph at random starting with a countable set of vertices, 
and connects each pair of vertices independently with probability 0.5,  
the resulting graph is (with probability 1) isomorphic to the Rado graph  
(so the Rado graph is self-complementary) 

• The above statement is still true if 0.5 is replaced by any fixed  
probability 0 < p < 1 

• The automorphism group of the Rado graph is a simple group with  
size equal to the cardinality of the continuum
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Random graphs

• What should we get if we ask for a random graph?



Random graphs

• What should we get if we ask for a random graph? 

• There are two popular and closely related models of random simple 
graphs with n vertices:  
 
- the Erdős-Rényi model (1959), G(n, m) or Gn,m or sometimes Gn,N 
    where m (or N) is the number of edges  
 
- the Gilbert model (1959), G(n, p) or Gn,p 
   



Random graphs

• What should we get if we ask for a random graph? 

• There are two popular and closely related models of random simple 
graphs with n vertices:  
 
- the Erdős-Rényi model (1959), G(n, m) or Gn,m or sometimes Gn,N 
    where m (or N) is the number of edges  
 
one can generate a graph in the Gn,m model by starting with a graph 
with no edges and selecting one of the C(n,2) possible edges at 
random, then selecting one of the remaining C(n,2)-1 edges at 
random, … until the graph has m edges



Random graphs

• What should we get if we ask for a random graph? 

• There are two popular and closely related models of random simple 
graphs with n vertices:  
 
- the Erdős-Rényi model (1959), G(n, m) or Gn,m or sometimes Gn,N 
    where m (or N) is the number of edges  
 
- the Gilbert model (1959), G(n, p) or Gn,p 
 
one can generate a graph in the Gn,p model by flipping a biased coin 
with P(heads) = p for each of the C(n,2) edges and adding that edge 
if the coin is heads  
   



Random numbers

• These models reduce the problem of generating random graphs to the 
problem of generating random numbers or random bits 

• So what is a random number?



Random numbers

• We could ask Google to give us a random number:  
 
 
 
 
 
 
 
 
 
 
 
 
 

• Apparently 9 is a random number (and possibly 1,440,000,000 as well)



Random bits

•  We could ask a Random Bit Generator (RBG)  
 
 
 
 
 
 
 
 
 
 

0 1…..



Random Bit Generators according to NIST  
(the National Institute of Standards and Technology)

• Go to https://csrc.nist.gov/glossary/term/Random-Bit-Generator 

• Random Bit Generator (RBG)  
 
Abbreviation(s) and Synonym(s): 
 
RBG  
 
Definition(s): 
A device or algorithm that outputs a sequence of binary bits that appears to be statistically independent and 
unbiased. An RBG is either a DRBG or an NRBG.  
 
Source(s): 
NIST SP 800-90A Rev. 1 

• This is a 110-page (base ten) document) available at  
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf 

• caveat on page 2:  
The precise structure, design and development of a random bit generator is outside the scope of this document. 

• So let’s try to look up DRBG and NRBG



Random Bit Generators according to NIST  
(the National Institute of Standards and Technology)

• DRBG 
 
Abbreviation(s) and Synonym(s): 
Deterministic Random Bit Generator 
 
Definition(s): 
None 

• NRBG 
 
Abbreviation(s) and Synonym(s): 
Non-deterministic Random Bit Generator 
 
Definition(s): 
None



Statistically independent and unbiased bits

• Suppose you have a sequence of statistically independent but biased bits b1, b2, 
b3, b4, … where P(bi = 1) = p 

• You can generate a sequence of statistically independent and unbiased bits by 
the following algorithm:  
 
for each pair (b2k-1, b2k)  
     if (b2k-1≠ b2k) output b2k-1  

• For example, the sequence 0,0,1,0,1,1,0,0,0,1, … would result in 1,0,… 

• The probability that any iteration of the loop outputs a bit is  
2p(1-p), so the expected time between outputs is 1/p(1-p) 

• This can be improved by using more clever algorithms



Random matroids

• Donald E Knuth of Stanford University wrote an early paper on 
random matroids:  
 
Random Matroids, by Donald E Knuth, Discrete Mathematics 12 
(1975) pp. 341-358
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Infinite matroids

• One would like to define infinite matroids using an extra axiom:  
     An infinite set is independent when all of its  
          finite subsets are independent 

• This turns out to cause problems with duality, leading Rado (1966)  
to challenge matroid theorists to come up with a better definition 

• In 1969, Higgs proposed B-matroids as a solution, but it took until 
2013 to prove that this definition is fully satisfactory  
(see Bruhn, Diestel, Kriesell, Pendavingh, and Wollan: Axioms for 
infinite matroids, available on arXiv)



Independence axioms for B-matroids

• The axiom sets for B-matroids are defined in terms of a maximality 
property of a set I of subsets of E: 
 
(Max)   If I ⊆ X ⊆ E and I ∈ I then the set 
               {I’∈ I | I ⊆ I’ ⊆ X } has a maximal element 

• The independence axioms can then be written:  
 
(I1) The empty set is independent  
(I2) Any subset of an independent set is independent  
(I3) If I and J are independent and J is maximal but I is not,  
       then there is an x in J - I so that (I + x) is independent  
(IMax) The set of all independent sets satisfies (Max)

50



Base axioms for B-matroids

• B-matroids can be defined in terms of bases, B : 

   (B1) B is nonempty 

   (B2) Base exchange - if B1 and B2 are bases and x is in B1-B2 
           then there is a y in B2-B1 so that (B1-x)+y is a base 

   (BMax) The set of all subsets of members of B satisfies (Max)



Circuit axioms for B-matroids

• B-matroids can be defined in terms of circuits, C : 

   (C1) The empty set is not a circuit  
 
   (C2) No circuit is a proper subset of a circuit 

   (C3) If X is a subset of a circuit C and {Cx | x ∈ X} has the property that  
                 x ∈ Cy  ⇔  x = y   for all x, y ∈ X  
           then for any z that is in C but not in any Cx, there is a circuit C’  
           containing z that is contained in  (C ∪  ∪x ∈ X Cx) - X 

   (CMax) The set of all C-independent sets satisfies (Max)  
        (a set is C-independent if none of its subsets are circuits)


