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Network Troubleshooting
 Target problem: automate network 

troubleshooting.
 Starting point: list of services to assure.
 Easy part: how to assure one service.
 Hard part: precedences between 

assurance tasks.



Dreams
 Quicker response to network problems.
 More collaboration. 
 Less “boring” work. 
 Acceptable losses!



Silly Example

A: network up

B: nis bound

C: commands work

D: home dirs available

E: nfs server up



Ideal: “Plug and Play” 
Automation
 Grab the scripts that you need from 

others. 
 Scripts all just “get along” and work 

together.
 Make script writers work harder.
 So administrators’ work is easier!



Let’s Automate!
 Suppose we write scripts A,B,C,D,E to 

check and repair corresponding 
functions. 

 Normally, we’d have to remember to 
run them in the order “A B E D C”.

 We’d usually do that by predeclaring 
precedences: B:A means “B must 
follow A”.



Predeclaring Precedences

A: network up

B: nis bound

C: commands work

D: home dirs available

E: nfs server up

B:A C:B C:D D:A D:E E:A

B:A

C:B C:D

D:A D:E

E:A



Predeclaring Precedences
Is a Pain!
 Must know precedences beforehand.
 Must update precedences whenever 

you add or remove a script.
 In some cases, precedences are 

unknown or dynamic!
 In this case, any fixed order is an

ineffective procedure for 
troubleshooting some problems.



One Ineffective Procedure

F: filesystem OK

G: fsck command in filesystem OK

No fixed order
will ensure success.

“Chicken and Egg” problem!



Discovering Order
 Suppose that A,B,C,D,E are crafted so that:

 They fail robustly when called at the wrong time.
 They tell you when they fail.
 They don’t undo each other’s actions.

 Then we may infer their required execution
order from their behavior rather than 
declaring precedences beforehand! 



Permutation Embedding
 For a set of objects x1,x2,…,xn, all 

permutations of the objects are 
embedded in the string containing n-1 
copies of x1,…,xn, followed by x1.

 E.g., x1,…,xn,x1,…,xn,…..,x1,…xn,x1

n-1 copies trailing x1



Example of 
Permutation Embedding
Embedding Permutation
ABCDEABCDEABCDEABCDEA ABCDE
ABCDEABCDEABCDEABCDEA BACDE
ABCDEABCDEABCDEABCDEA ACBDE
… …
ABCDEABCDEABCDEABCDEA ECDBA
ABCDEABCDEABCDEABCDEA DECBA
ABCDEABCDEABCDEABCDEA EDCBA



Exploiting Permutation 
Embedding
 Don’t record precedences.
 Try scripts in embedding sequence.
 Record successes.
 Don’t repeat trials that succeed.
 Retry scripts that fail.
 Until all succeed!



Discovering Order (1)

A

B

C

D

E A B   C   D   E
A   B   C   D   E
A   B   C   D   E
A   B   C   D   E
A                     

Precedences Execution order

Discovered order:
A



Discovering Order (2)

A

B

C

D

E A B C   D   E
A   B   C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B



Discovering Order (3)

A

B

C

D

E A B C   D   E
A   B   C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B



Discovering Order (4)

A

B

C

D

E A B C   D E
A   B   C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B



Discovering Order (5)

A

B

C

D

E A B C   D E
A   B   C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E



Discovering Order (6)

A

B

C

D

E A B C   D E
A B   C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E



Discovering Order (7)

A

B

C

D

E A B C   D E
A   B C   D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E



Discovering Order (8)

A

B

C

D

E A B C   D E
A   B C D   E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E



Discovering Order (9)

A

B

C

D

E A B C   D E
A B C D E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E D



Discovering Order (10)

A

B

C

D

E A B C   D E
A B C D E
A   B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E D



Discovering Order (11)

A

B

C

D

E A B C   D E
A   B C D E
A B   C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E D



Discovering Order (12)

A

B

C

D

E A B C   D E
A   B C D E
A   B C   D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E D



Discovering Order (13)

A

B

C

D

E A B C   D E
A   B C D E
A   B   C D   E
A   B   C   D   E
A

Precedences Execution order

Discovered order:
A B E D C



Effect of Initial Ordering
 Efficiency depends upon initial 

ordering of tasks.
 Best case: initial order is appropriate 

order.
 Worst case: initial order is opposite 

to appropriate order.



Best Case: ABEDC

A

B

C

D

E A B E D C
A   B   E   D   C
A   B   E   D   C
A   B   E   D   C
A                     

Precedences Execution order

Discovered order:
A B E D C



Worst Case: CBDEA (1)

A

B

C

D

E C   B   D E A
C   B   D   E   A
C   B   D   E   A
C   B   D   E   A
C                     

Precedences Execution order

Discovered order:
A



Worst Case: CBDEA (2)

A

B

C

D

E C   B   D E A
C B  D E   A
C   B   D   E   A
C   B   D   E   A
C                     

Precedences Execution order

Discovered order:
A B E



Worst Case: CBDEA (3)

A

B

C

D

E C   B   D E A
C B  D E   A
C B D E   A
C   B   D   E   A
C                     

Precedences Execution order

Discovered order:
A B E D



Worst Case: CBDEA (4)

A

B

C

D

E C   B   D E A
C B  D E   A
C B D E   A
C B   D   E   A
C                     

Precedences Execution order

Discovered order:
A B E D C



How Bad Can Bad Get?

A B C D E
E   D   C B A
E D C B   A
E D C B   A
E D C   B   A
E

Precedences Execution order

Discovered order:
A B C D E



Small Errors Mean Small 
Inefficiencies

A

B

C

D

E A B D E C
A B D E C
A   B   D   E   C
A   B   D   E   C
A                     

Precedences Execution order

Discovered order:
A B E D C



Implementation:
The Maelstrom
 The mael command is a dispatcher for 

a set of scripts.
 Input is a list of commands to try.
 Mael tries to make them all succeed

(exit code 0). 
 Nonzero exit code means failure; try 

again.



Seeding the Storm
 Can give mael hints and other 

information about its commands.
 B:A - I think command B should be 

tried after A.
 B::A – B cleans up after A. B must 

be retried if it succeeds before A.
 B:::A – I know B will only succeed 

after A.



Command Requirements
 Maelstrom only functions correctly if the 

commands that it dispatches are: 
 Aware: commands know whether they 

failed.  
 Homogeneous: commands that change the 

same system attribute change it in the same 
way.

 (Convergent: commands that discover that 
goals are already met do nothing.)



How Difficult Is It to Write a 
Conforming Maelstrom Script?
 Easy part: awareness.

 Local to the script.
 Insert enough branches to check for script 

preconditions.

 Hard part: homogeneity.
 Global convergence criterion.
 All scripts must agree on desired effects.



Form of Maelstrom Script
 Check all preconditions necessary 

for script function. 
 If preconditions are not present, fail.
 Else try to fix a problem.
 If that seems to work, succeed.
 Else fail.



Engineering Maelstrom Scripts
 No preconditions for the script as a 

software unit.
 Safe to run in any sequence with other 

scripts.
 Only thing in doubt: homogeneity.
 Do scripts agree on what to do?



Imperfect Storms
 ::, ::: help compensate for imperfect 

command behavior.
 A::B – A and B aren’t homogeneous

and A should be done last, even if B
succeeded last.

 A:::B – A isn’t aware that it needs B, 
so do B first.



A Lesson Learned
 Causality is a myth in a sufficiently 

complex system.
 Cannot determine what will happen in 

general.
 Can determine what repaired a 

specific problem.
 This is not the same as what caused

the problem.



Not Causal, but Operational
 Impossible to determine true 

precedences between tasks by direct 
observation (Sandnes).

 Easy to determine an order that 
satisfies unknown precedences.



But Wait, There’s More!
In the Paper:
 Decision trees represent best 

practices.
 Mael’s commands can represent 

decision trees.
 Mael replaces make’s global 

precedence knowledge with dynamic 
probes during commands. 

 Can implement make in mael.



Status and Availability
 http://www.eecs.tufts.edu/ 

~couch/maelstrom
 Platform: Perl 5.
 Portable to most any system.
 Intensively tested on a “precedence 

simulator” that simulates behavior of 
troubleshooting scripts. 

 Working on script content now.
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