
The Maelstrom: Network
Service Troubleshooting
Via “Ineffective Procedures”

Alva L. Couch, couch@eecs.tufts.edu
Noah Daniels, ndaniels@eecs.tufts.edu

Tufts University, Medford MA USA
http://www.eecs.tufts.edu/~couch/maelstrom

mailto:couch@eecs.tufts.edu�
mailto:ndaniels@eecs.tufts.edu�
http://www.eecs.tufts.edu/~couch/maelstrom�

Network Troubleshooting
 Target problem: automate network

troubleshooting.
 Starting point: list of services to assure.
 Easy part: how to assure one service.
 Hard part: precedences between

assurance tasks.

Dreams
 Quicker response to network problems.
 More collaboration.
 Less “boring” work.
 Acceptable losses!

Silly Example

A: network up

B: nis bound

C: commands work

D: home dirs available

E: nfs server up

Ideal: “Plug and Play”
Automation
 Grab the scripts that you need from

others.
 Scripts all just “get along” and work

together.
 Make script writers work harder.
 So administrators’ work is easier!

Let’s Automate!
 Suppose we write scripts A,B,C,D,E to

check and repair corresponding
functions.

 Normally, we’d have to remember to
run them in the order “A B E D C”.

 We’d usually do that by predeclaring
precedences: B:A means “B must
follow A”.

Predeclaring Precedences

A: network up

B: nis bound

C: commands work

D: home dirs available

E: nfs server up

B:A C:B C:D D:A D:E E:A

B:A

C:B C:D

D:A D:E

E:A

Predeclaring Precedences
Is a Pain!
 Must know precedences beforehand.
 Must update precedences whenever

you add or remove a script.
 In some cases, precedences are

unknown or dynamic!
 In this case, any fixed order is an

ineffective procedure for
troubleshooting some problems.

One Ineffective Procedure

F: filesystem OK

G: fsck command in filesystem OK

No fixed order
will ensure success.

“Chicken and Egg” problem!

Discovering Order
 Suppose that A,B,C,D,E are crafted so that:

 They fail robustly when called at the wrong time.
 They tell you when they fail.
 They don’t undo each other’s actions.

 Then we may infer their required execution
order from their behavior rather than
declaring precedences beforehand!

Permutation Embedding
 For a set of objects x1,x2,…,xn, all

permutations of the objects are
embedded in the string containing n-1
copies of x1,…,xn, followed by x1.

 E.g., x1,…,xn,x1,…,xn,…..,x1,…xn,x1

n-1 copies trailing x1

Example of
Permutation Embedding
Embedding Permutation
ABCDEABCDEABCDEABCDEA ABCDE
ABCDEABCDEABCDEABCDEA BACDE
ABCDEABCDEABCDEABCDEA ACBDE
… …
ABCDEABCDEABCDEABCDEA ECDBA
ABCDEABCDEABCDEABCDEA DECBA
ABCDEABCDEABCDEABCDEA EDCBA

Exploiting Permutation
Embedding
 Don’t record precedences.
 Try scripts in embedding sequence.
 Record successes.
 Don’t repeat trials that succeed.
 Retry scripts that fail.
 Until all succeed!

Discovering Order (1)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A

Discovering Order (2)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B

Discovering Order (3)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B

Discovering Order (4)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B

Discovering Order (5)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E

Discovering Order (6)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E

Discovering Order (7)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E

Discovering Order (8)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E

Discovering Order (9)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E D

Discovering Order (10)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E D

Discovering Order (11)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E D

Discovering Order (12)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E D

Discovering Order (13)

A

B

C

D

E A B C D E
A B C D E
A B C D E
A B C D E
A

Precedences Execution order

Discovered order:
A B E D C

Effect of Initial Ordering
 Efficiency depends upon initial

ordering of tasks.
 Best case: initial order is appropriate

order.
 Worst case: initial order is opposite

to appropriate order.

Best Case: ABEDC

A

B

C

D

E A B E D C
A B E D C
A B E D C
A B E D C
A

Precedences Execution order

Discovered order:
A B E D C

Worst Case: CBDEA (1)

A

B

C

D

E C B D E A
C B D E A
C B D E A
C B D E A
C

Precedences Execution order

Discovered order:
A

Worst Case: CBDEA (2)

A

B

C

D

E C B D E A
C B D E A
C B D E A
C B D E A
C

Precedences Execution order

Discovered order:
A B E

Worst Case: CBDEA (3)

A

B

C

D

E C B D E A
C B D E A
C B D E A
C B D E A
C

Precedences Execution order

Discovered order:
A B E D

Worst Case: CBDEA (4)

A

B

C

D

E C B D E A
C B D E A
C B D E A
C B D E A
C

Precedences Execution order

Discovered order:
A B E D C

How Bad Can Bad Get?

A B C D E
E D C B A
E D C B A
E D C B A
E D C B A
E

Precedences Execution order

Discovered order:
A B C D E

Small Errors Mean Small
Inefficiencies

A

B

C

D

E A B D E C
A B D E C
A B D E C
A B D E C
A

Precedences Execution order

Discovered order:
A B E D C

Implementation:
The Maelstrom
 The mael command is a dispatcher for

a set of scripts.
 Input is a list of commands to try.
 Mael tries to make them all succeed

(exit code 0).
 Nonzero exit code means failure; try

again.

Seeding the Storm
 Can give mael hints and other

information about its commands.
 B:A - I think command B should be

tried after A.
 B::A – B cleans up after A. B must

be retried if it succeeds before A.
 B:::A – I know B will only succeed

after A.

Command Requirements
 Maelstrom only functions correctly if the

commands that it dispatches are:
 Aware: commands know whether they

failed.
 Homogeneous: commands that change the

same system attribute change it in the same
way.

 (Convergent: commands that discover that
goals are already met do nothing.)

How Difficult Is It to Write a
Conforming Maelstrom Script?
 Easy part: awareness.

 Local to the script.
 Insert enough branches to check for script

preconditions.

 Hard part: homogeneity.
 Global convergence criterion.
 All scripts must agree on desired effects.

Form of Maelstrom Script
 Check all preconditions necessary

for script function.
 If preconditions are not present, fail.
 Else try to fix a problem.
 If that seems to work, succeed.
 Else fail.

Engineering Maelstrom Scripts
 No preconditions for the script as a

software unit.
 Safe to run in any sequence with other

scripts.
 Only thing in doubt: homogeneity.
 Do scripts agree on what to do?

Imperfect Storms
 ::, ::: help compensate for imperfect

command behavior.
 A::B – A and B aren’t homogeneous

and A should be done last, even if B
succeeded last.

 A:::B – A isn’t aware that it needs B,
so do B first.

A Lesson Learned
 Causality is a myth in a sufficiently

complex system.
 Cannot determine what will happen in

general.
 Can determine what repaired a

specific problem.
 This is not the same as what caused

the problem.

Not Causal, but Operational
 Impossible to determine true

precedences between tasks by direct
observation (Sandnes).

 Easy to determine an order that
satisfies unknown precedences.

But Wait, There’s More!
In the Paper:
 Decision trees represent best

practices.
 Mael’s commands can represent

decision trees.
 Mael replaces make’s global

precedence knowledge with dynamic
probes during commands.

 Can implement make in mael.

Status and Availability
 http://www.eecs.tufts.edu/

~couch/maelstrom
 Platform: Perl 5.
 Portable to most any system.
 Intensively tested on a “precedence

simulator” that simulates behavior of
troubleshooting scripts.

 Working on script content now.

http://www.eecs.tufts.edu/~couch/maelstrom�
http://www.eecs.tufts.edu/~couch/maelstrom�

	The Maelstrom: Network Service Troubleshooting �Via “Ineffective Procedures”
	Network Troubleshooting
	Dreams
	Silly Example
	Ideal: “Plug and Play” Automation
	Let’s Automate!
	Predeclaring Precedences
	Predeclaring Precedences�Is a Pain!
	One Ineffective Procedure
	Discovering Order
	Permutation Embedding
	Example of �Permutation Embedding
	Exploiting Permutation Embedding
	Discovering Order (1)
	Discovering Order (2)
	Discovering Order (3)
	Discovering Order (4)
	Discovering Order (5)
	Discovering Order (6)
	Discovering Order (7)
	Discovering Order (8)
	Discovering Order (9)
	Discovering Order (10)
	Discovering Order (11)
	Discovering Order (12)
	Discovering Order (13)
	Effect of Initial Ordering
	Best Case: ABEDC
	Worst Case: CBDEA (1)
	Worst Case: CBDEA (2)
	Worst Case: CBDEA (3)
	Worst Case: CBDEA (4)
	How Bad Can Bad Get?
	Small Errors Mean Small Inefficiencies
	Implementation:�The Maelstrom
	Seeding the Storm
	Command Requirements
	How Difficult Is It to Write a Conforming Maelstrom Script?
	Form of Maelstrom Script
	Engineering Maelstrom Scripts
	Imperfect Storms
	A Lesson Learned
	Not Causal, but Operational
	But Wait, There’s More!�In the Paper:
	Status and Availability

