Toward a cost model for system administration

Alva Couch
Ning Wu
Hengky Susanto
Tufts University
Executive Summary

Cost of SA includes Tangible cost of SA which is Out of SA's control. Intangible cost of SA depends upon practice.

SA risk models lead to "best practice" documents which utilize SA model of troubleshooting cost. Cost of SA varies with environment.

Software Engineering includes Models of cost and complexity which utilize SA models of complexity and service.

Capacity planning inspires Models of task arrival and throughput which quantify Real SA performance data. Estimated waiting time utilized proportionally to tickets and completions.
System Administrator’s Summary

- software engineering theory
- risk assessment techniques
- new metrics for complexity and process efficiency
- operating systems theory
- new ways to compute consequences of decisions
- suggests
- help to define

new ways to improve process leads to lower cost, higher value leads to happily ever after
“Best Practices”

- Cost the least
- Provide the most value
- via several intangibles
 - homogeneity
 - consistency
 - repeatability
 - documentation
 - etc.
Patterson’s cost model

• Cost of downtime \(\approx \) cost of revenue lost + cost of work lost.

• Patterson, “A simple model of the cost of downtime”, Proc. LISA 2002

• Controversial: downtime cost is “intangible”.

• Or is it?
“Best” is relative!

- Patching systems immediately causes more downtime than waiting for patches to stabilize.
Time spent waiting

- Cost of system administration = cost of tangible assets + cost of intangibles
- For most SA’s, cost of tangible assets is out of our control.
- Claim 1: The intangible cost of system administration is approximately proportional to (cumulative) time spent waiting for responses to requests
Learning from real data

- Data source: RT queue, Tufts ECE/CS.
- Data duration ≈ 400 days.
- What is the structure of real data?
- Is there any easy way to describe the schedule of ticket arrivals and service?
Measuring time spent waiting

• Time spent waiting is a function of
 – arrival rate: number of requests coming in
 – service rate: how fast requests can be processed
 – number of “workers” available
 – number of “clients” affected.

• Where
 – arrivals include reconfigurations and refits
 – rate is reciprocal of expected service time
Memory

• A process is **memoryless** if the next event does not depend upon the history of prior events.

 – memoryless arrivals: “Poisson process”
 \(\lambda = \text{arrival rate} \), mean inter-arrival time = \(1/\lambda \),
 standard deviation of inter-arrival times = \(1/\lambda \).

 – memoryless service: “exponential service time”
 \(\mu = \text{service rate} \), mean service time = \(1/\mu \),
 standard deviation of service time = \(1/\mu \).
Memoryless is nice (but perhaps impractical)

- Memoryless arrivals: lots of identical customers behaving independently.
- Arrival processes with memory: bursty behavior, such as a virus infection, spam, or DDoS attack.
- Advantage of memoryless models: closed-form solutions to system performance (from capacity planning)
Multiclass systems

• Typical site has **multiple classes** of requests; some are more complex or take longer than others.
• At first glance, no exponential service times.
• Throw away long times (outliers); exponential service times emerge!
• **Claim 2:** Documentation keeps requests from waiting indefinitely.
Quandary of arrivals

- At first glance arrivals aren’t Poisson
- But (a month of struggling later!)
 - correct for DST
 - sample over one-hour intervals
 - correct sampling for sparse event frequency
 - skip holidays
- And each **hour** exhibits a roughly Poisson arrival rate!
Ticket creation

Number of tickets created

Number of tickets

Time

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

0 20 40 60 80 100 120 140 160 180 200

lunch!

LISA-2005
couch@cs.tufts.edu
Tufts University
Computer Science
Ticket resolution

staff arrives and handles nightly buildup in queue

student responsible for resolving tickets starts workday!
Quantifying time spent waiting

• Our data shows that most requests are actually accomplished at our site in (statistically) comparable times.
• How does one estimate the time needed for a particular request?
• One example: troubleshooting chart.
Simple troubleshooting chart

no ip address

<table>
<thead>
<tr>
<th>Got an address?</th>
<th>DHCP locally enabled?</th>
<th>Got an address?</th>
<th>Dhcpd running?</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Enable DHCP

Restart dhcprd

end
Convert to program graph

A → E → H

B → F → G → H

C → D

D

E

flow
Convert from graph to tree
Collapse to decision tree

\[t_D + t_F + t_G \]
Compute expected value

expected wait = \(t_B + P(C) \left[t_C + P(D) \left[t_D + t_F + t_G + P(H \leftarrow |D)t_H \right] + (1 - P(D))(t_F + t_G + P(H \leftarrow |\neg D)t_H) \right] \)
Notes on the decision tree

• Times t_X describe the **capabilities of administrative staff**.

• Probabilities $P(Y)$ describe the site’s **characteristics and the likelihood of failures**.

• $P(H\prec|D)$: probability of H happening given that D happened **in the past**

• [temporal conditional probability; not Bayesian; Bayesian identities don’t hold! Another month of suffering to figure this out!]
Application: should I check the DHCP server or client first?

• Answer: depends upon site characteristics.
• If the likelihood is that there is a problem with X, should check X first.
• Consequences of incorrect choice: increased cost.
• Humans automatically compensate for poor troubleshooting order.
• Claim 3: Best practices are relative to site and staff capabilities.
Bang!

• The preceding method is “white box”; it measures the practice directly.
• Applying the preceding argument for a non-trivial troubleshooting chart results in an exponential explosion in chart complexity.
• How do we deal with huge charts or complex processes?
• Answer: “black box” estimation.
Estimators from Software Engineering

- Time for service is approximately a function of the number of branches in a troubleshooting chart.
- Number of branches is approximately a function of heterogeneity/diversity of site and services provided.
- So if we quantify diversity/complexity of service environment, we can estimate service time.
- “Function points”: a way of quantifying complexity of service.
Non-product systems

• We understand a great deal about “product systems” in which components act independently.
• System administrators are a non-product system; they communicate and interact with each other.
• Best way to estimate behavior of non-product systems: discrete event simulation.
A simple simulation experiment

- Assume c administrators, four classes of service (from extremely short to extremely long service times), independent arrival rates for classes.
- Theory: a single class system is stable if $\lambda/c\mu < 1$ and diverges to infinite wait time otherwise.
- What happens when a multi-class system approaches the saturation point?
Diminishing returns

The graph shows the cumulative time spent waiting as a function of elapsed time, for different numbers of administrators. The lines represent:
- Solid: two administrators
- Dashed: three administrators
- Dotted: four administrators

The x-axis represents elapsed time, while the y-axis represents cumulative time spent waiting.
Divergence!

![Graph showing cumulative time spent waiting versus elapsed time for different numbers of administrators (one, two, three, four). The graph indicates an increasing divergence as the number of administrators decreases.]
Chaos!

Elapsed time

Incremental time spent waiting

one administrator
two administrators
three administrators
four administrators
Running near the edge

arrivals spread out

bursty arrivals

events in a burst, versus events spread out!
Summary

• cumulative service time ≈ intangible cost of operations
• computable from practice graph: function of staff expertise and site composition.
• estimable from guesses for branch depth and task length for each task.
• total effect estimable via discrete event simulation.
Conclusions

• We can estimate the cost of practice by indirect methods.
• Best practices are *always* site relative!
• Running near absolute capacity causes chaotic increases in wait time.
What’s next?

• Simulation studies of particular aspects of the practice:
 – communication vs. documentation,
 – scripting vs. cfengine

• Quantification of function point models
 – various sizes and kinds of sites.
 – complexities of kinds of service.

• Effects of human learning
 – Insignificant for repetitive tasks.
 – Significant for one-time tasks.
Epilogue

• More questions than answers:
 – How can we best use this as a planning tool?
 – How much can we trust it?
 – How to fill in gaping holes in knowledge?

• The potential:
 – better/cheaper/more valuable administrative practices.
 – Ability to ask cheap “what if” questions with reasonable estimates of task complexity.
 – better understanding of critical capacity.
 – happily ever after.
Questions?

Alva Couch (couch@cs.tufts.edu)
Ning Wu (ningwu@cs.tufts.edu)
Hengky Susanto (hsusan0a@cs.tufts.edu)
Tufts University Computer Science
Medford, MA 02155

Note: we plan to make the discrete event simulator open source at some future time after we clean up the user interface.