Management of the Unknowable

Dr. Alva L. Couch
Tufts University
Medford, Massachusetts, USA
couch@cs.tufts.edu
A counter-intuitive story

• … about breaking well-accepted rules of practice, and getting away with it!
• … about intentionally ignoring available information, and benefiting from ignorance!
• … about accomplishing what was considered impossible, by facing the unknowable.
• … in a way that will seem obvious!
What I am going to do

• Intentionally ignore dynamics of a system, and instead model static steady-state.
• “Manage to manage” the system within rather tight tolerances anyway.
• Derive agility and flexible response from lack of assumptions.
• Try to understand why this works.
Management now: the knowable

- Management now is based upon **what can be known**.
 - Create a model of the world.
 - Test options via the model.
 - Deploy the best option.
The unknowable

• Models of realistic systems are **unknowable**.
• The model of end-to-end response time for a network:
 – **Changes** all the time.
 – Due to perhaps **unpredictable or inconceivable influences**.
• The model of a virtual instance of a service:
 – Can’t account for **effects of other instances** running on the same hardware.
 – Can’t predict their use of **shared resources**.
Kinds of unknowable

• **Inconceivable**: unforeseen circumstances, e.g., states never experienced before.

• **Unpredictable**: never-before-experienced measurements of an otherwise predictable system.

• **Unavailable**: legal, ethical, and social limits on knowability, e.g., inability to know, predict, or even become aware of 3rd-party effects upon service.
Lessons from HotClouds 2009

• Virtualized services are influenced by 3rd party effects.
• One service can discover inappropriate information about a competitor by reasoning about influences.
• This severely limits privacy of cloud data.
• The environment in which a cloud application operates is \textit{unknowable}.
Closed and Open Worlds

- Key concept: whether the management environment is open or closed.
- A **closed world** is one in which all influences are **knowable**.
- An **open world** contains **unknowable** influences.
Inspirations

• **Hot Autonomic Computing 2008**: “Grand Challenges of Autonomic Computing”
• Burgess’ “Computer Immunology”
• The theory of management closures.
• Limitations of machine learning.
Hot Autonomic Computing 2008

• Autonomic computing as proposed now will work, provided that:
 – There are **better models** of system behavior.
 – One can **compose management systems** with predictable results.
 – Humans will **trust** the result.

• These are **closed-world assumptions** that one can “**learn everything**” about the managed system.
Burgess’ Computer Immunology

• Mark Burgess: management does not require complete information.
 – Can act locally toward a global result.
 – Desirable behavior is an emergent property of action.
 – Autonomic computing can be approximated by immunology (Burgess and Couch, MACE 2006).

• Immunology involves an open-world assumption that the full behavior of managed systems is unknowable.
Management closures

- A closure is a self-managing component of an otherwise open system.
 - A compromise between a closed-world (autonomic) and an open-world (immunological) approach.
 - Domain of predictability in an otherwise unpredictable system (Couch et al, LISA 2003).
- Closures can create little islands of closed-world behavior in an otherwise open world.
Machine Learning

• Machine learning approaches to management start with an open world and try to close it.
 – Learning involves observing and codifying an open world.
 – Once that model is learned, the management system functions based upon a closed world assumption that the model is correct.

• Learning can make a closed world out of an open world for a while, but that closure is not permanent.
Open worlds require open minds

• “Seeking closure” is the best way to manage an inherently closed world.
• “Agile response” is the best way to manage an inherently open world.
• This requires avoiding the temptation to try to close an open world!
Three big questions

• Is it possible to manage open worlds?
• What form will that management take?
• How will we know management is working?
The promise of open-world management

• We get **predictable composition** of management systems “for free.”

• We gain **agility and flexible response** by refusing to believe that the world is closed.

• But we have to give up an **illusion of complete knowledge** that is very comforting.
Some experiments

• How little can we know and still manage?
• How much can we know about how well management is doing in that case?
A minimalist approach

- Consider the **absolute minimum** of information required to control a resource.
- Operate in an **open world**.
- Model **end-to-end behavior**.
- Formulate control as a **cost/value tradeoff**.
- Study mechanisms that maximize **reward = value-cost**.
- **Avoid modeling** whenever possible.
Overall system diagram

- **Resources R**: increasing R improves performance.
- **Environmental factors X** (e.g. service load, colocation, etc).
- **Performance P(R,X)**: throughput changes with resource availability and load.
Example: streaming service in a cloud

- **X** includes input load (e.g., requests/second)
- **P** is throughput.
- **R** is number of assigned servers.
Value and cost

- **Value** $V(P)$: value of performance P.
- **Cost** $C(R)$: cost of providing particular resources R.
- **Objective function** $V(P(R,X))-C(R)$: net reward for service.
Closed-world approach

- Model X.
- Learn everything you can about it.
- Use that model to maximize $V(P(R,X)) - C(R)$.
Open-world approach

- X is unknowable.
- Model $P(R)$ rather than $P(R,X)$.
- Use that model to maximize $V(P(R))-C(R)$.
- Maintain agility by using short-term data.
An open-world architecture

- **Immunize** R based upon partial information about $P(R,X)$.
- Distributed agent G knows $V(P)$, predicts **changes in value** $\Delta V/\Delta R$.
- **Closure** Q
 - knows $C(R)$,
 - computes $\Delta V/\Delta R-\Delta C/\Delta R$, and
 - increments or decrements R.

![Diagram showing the architecture with Gatekeeper Operator G, Managed Service, Environmental Factors X, Behavioral Parameters R, and Closure Q.](image-url)
Key differences from traditional control model

• Knowledge is **distributed**.
 – Q knows **cost but not value**
 – G knows **value but not cost**.
 – There can be multiple, distinct concepts of value.

• We **do not model X** at all.
A simple proof-of-concept

- We tested this architecture via simulation.
- Scenerio: cloud elasticity.
- Environment $X = \text{sinusoidal load function}$.
- Resource $R = \text{number of servers assigned}$.
- Performance (response time) $P = \frac{X}{R}$.
- Value $V(P) = 200-P$
- Cost $C(R) = R$
- Objective: maximize $V-C$, subject to $1 \leq R \leq 1000$
- Theoretically, objective is achieved when $R=X^{\frac{1}{2}}$
Some really counter-intuitive results

- Q sometimes *guesses wrong*, and is only statistically correct.
- Nonetheless, Q can keep V-C *within 5% of the theoretical optimum* if tuned properly, while remaining highly adaptive to changes in X.
A typical run of the simulator

- $\Delta(V-C)/\Delta R$ is stochastic (left).
- $V-C$ closely follows ideal (middle).
- Percent differences from ideal remain small (right).
Naïve or clever?

• One reviewer: Naïve approaches sometimes work..

• My response: This is not naïve. Instead, it avoids poor assumptions that limit responsiveness.
Parameters of the system

• Increment ΔR: the amount by which R is incremented or decremented.
• Window w: the number of measurements utilized in estimating $\Delta V/\Delta R$.
• Noise σ: the amount of noise in the measurements of performance P.
Tuning the system

• The accuracy of the estimator that G uses is not critical.
• The window w of measurements that G uses is not critical, (but larger windows magnify estimation errors!)
• The increment ΔR that Q uses is a critical parameter that affects how closely the ideal is tracked.
• This is not machine learning!!!
Model is not critical

• Top run fits $V = aR + b$ so that $\Delta V / \Delta R \approx a$, bottom run fits to more accurate model $V = a/R + b$.

• Accuracy of G’s estimator is not critical, because estimation errors from unseen changes in X dominate errors in the estimator!
Why Q guesses wrong

- We don’t model or account for X, which is changing.
- Changes in X cause mistakes in estimating \(\Delta V/\Delta R \), e.g., load goes up and it appears that value is going down with increasing R.
- These mistakes are quickly corrected, though, because when Q acts incorrectly, it gets almost instant feedback on its mistakes from G.
Increment ΔR is critical

- Plot of time versus V-C.
- $\Delta R=1,3,5$
- ΔR too small leads to undershoot.
- ΔR too large leads to overshoot and instability.
Window w is less critical

- Plot of time versus V-C.
- Window w=10,20,30
- Increases in w magnify errors in judgment and decrease tracking.
0%, 2.5%, 5% Gaussian Noise

- Plot of time versus V-C.
- Noise does not significantly affect the algorithm.
• Plot of time versus V-C.
• Increasing window size increases error due to noise, and does not have a smoothing effect.
Limitations

For this to work,

• One must have a reasonable concept of cost and value for R.

• $V, C, \text{ and } P \text{ must be simply increasing in their arguments (e.g., } V(R+\Delta R) > V(R))$

• $V(P(R))-C(R) \text{ must be convex (i.e., a local maximum is a global maximum)}$
Modeling SLAs

• SLAs are step functions describing value.
• Cannot use an incremental control model.
• Must instead estimate the total value and cost functions.
• Model of static behavior becomes critical.
Handling step-function SLAs

- Distributed agent G knows $V(P)$, R; predicts value $V(R)$.
- Q knows $C(R)$, maximizes $V(R)-C(R)$ by incrementally changing R.

Environmental Factors X
Maximizing a step function

- Compute the estimated \((V-C)(R)\) and the resource value at which it achieves its maximum \(R_{max}\).
- If \(R > R_{max}\), decrease \(R\).
- If \(R < R_{max}\), increase \(R\).
Estimating V-C

- Estimate R from P.
- Estimate V(R) from V(P).
- Subtract C(R).
- Levels V0, V1, V2, C0, C1 and cutoff R1 do not change.
- R0, R2 change over time as X and P(R) change.
Level curve diagrams

- Horizontal lines represent (constant) **cost cutoffs**.
- Wavy lines represent (varying) theoretical **value cutoffs**.
- Best V-C only changes at times where a **value** cutoff crosses a **cost cutoff**.
- Regions between lines and between crossovers represent **constant V-C**.
- Shaded regions are areas of **maximum V-C**.
Maximizing V-C

• Two approaches
 – Estimate whole step-function V-C.
 – Estimate “nearest-neighbor” behavior of V-C
Estimating value cutoffs

• Accuracy of P(R) estimate **decreases with distance from current R value.**
• Choice of model for P(R) is **critical.**
• **V-C need not be convex in R.**
Estimating nearest-neighbor value cutoffs

- Estimate the **two steps** of \(V(R)\) around the current \(R\).
- Fitted model for \(P(R)\) is **not critical**.
- \(V-C\) must be convex in \(R\).
In other words,

- One can make tradeoffs between convexity of the value-cost function and accuracy!
How do we know how well we are doing?

- In a realistic situation, we don’t know optimum values for R.
- Must estimate ideal behavior.
- Our main tool: statistical variation of the estimated model.
Exploiting variation

- Suppose that your estimate of V-C varies widely, but is sometimes accurate.
- Suppose that on some time interval, the estimate of V-C is accurate at least once.
- Then on that interval,\[\max(V-C) \geq \text{actual}(V-C) \]
- Define
 - observed efficiency = \(\frac{\text{sum}(V-C)}{n} \times \max(V-C) \)
 - Actual efficiency = \(\frac{\text{sum}(\text{actual}(V-C))}{\text{sum}(\text{ideal}(V-C))} \)
How accurate is the estimate?

- Three-value tiered SLA.
- Sinusoidal load.

<table>
<thead>
<tr>
<th>loadPeriod</th>
<th>optimum</th>
<th>observed</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.800000</td>
<td>0.618421</td>
<td>0.181579</td>
</tr>
<tr>
<td>200</td>
<td>0.565310</td>
<td>0.453608</td>
<td>0.111702</td>
</tr>
<tr>
<td>300</td>
<td>0.751067</td>
<td>0.647853</td>
<td>0.103214</td>
</tr>
<tr>
<td>400</td>
<td>0.896478</td>
<td>0.760870</td>
<td>0.135609</td>
</tr>
<tr>
<td>500</td>
<td>0.826939</td>
<td>0.728775</td>
<td>0.098164</td>
</tr>
<tr>
<td>600</td>
<td>0.857651</td>
<td>0.760732</td>
<td>0.096919</td>
</tr>
<tr>
<td>700</td>
<td>0.946243</td>
<td>0.845524</td>
<td>0.100719</td>
</tr>
<tr>
<td>800</td>
<td>0.893867</td>
<td>0.807322</td>
<td>0.086545</td>
</tr>
</tbody>
</table>
In this talk, we...

- **Designed** for an open world.
- **Assumed** that behavioral models are **inaccurate** and/or **incomplete**.
- **Mitigated** inaccuracy of models via **cautious action**.
- **Traded** **time delays** against **potential for inaccuracy**.
- **Exploited** **unpredictable variation** to estimate efficiency.
You can use this now

• Analyze what is knowable and what is unknowable.
• Avoid assuming predictable behavior for the unknowable.
• It’s fine to have models, provided that one doesn’t believe them!
Yes, we can!

• We can manage without models and still estimate how well we are doing.
• We can utilize inaccurate models at the cost of having inaccurate estimates of how well management is doing.
• We can compose management systems without chaos, because systems assume an open world in which another system can exist.
But…

• There are many algorithms between the extremes of model-based and model-free control.

• We can model X and $P(R,X)$ and still obtain these benefits…

• … provided that we are willing to stop using models that become *observably incorrect* over time!

• More about this in the next installment (MACE 2009)!
Questions?

Managing the unknowable
MMNS 2009
Dr. Alva L. Couch
Associate Professor of Computer Science
Tufts University
http://www.cs.tufts.edu/~couch
Email: couch@cs.tufts.edu