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Abstract

We investigate the use of a class of nonlinear projec-
tions from a high-dimensional Euclidean space to a low-
dimensional space in a classification (supervised learn-
ing) context. The projections developed by Cowen and
Priebe approximately preserve interclass distances. Pro-
jected data was obtained from data sets that have been
extensively studied in the machine learning and statis-
tical pattern recognition communities, and analyzed in
the projected space using standard statistical techniques.
A simple implementation involving no pre-processing or
data dependent adjustments produced results that are
near-competitive with the best known established classi-
fication rates on these benchmark data sets. Thus even
in moderate dimensional spaces the utility and robust-
ness of classification schemes based on these projections
is demonstrated.

1 Introduction

Classification and clustering in high dimensions are
notoriously difficult problems. Conventional methods
that work well on low-dimensional data are often un-
able to uncover sufficient structure for data in higher-
dimensional spaces. Instead of searching for clustering
structure of the original, high-dimensional observations,
it is common practice to employ dimension reduction
methods. The question “How to project?” mnaturally
arises. Some success has been achieved in moderately
high-dimensional spaces using linear projections com-
bined with projection pursuit methods (see Huber [8]
and Asimov [1]), but finding useful linear projections in
very high dimensions frequently remains a barrier. In
1997, Cowen and Priebe [4] introduced a class of non-
linear projections that is easy to construct and has been
demonstrated to preserve clustering structure in high-
dimensional data sets that strongly cluster. The motiva-
tion behind their work is to reduce dimensionality while
approximately preserving intercluster distances. Conse-
quently the classification and clustering techniques based

on them are referred to as Approzimate Distance Clas-
stfication and Clustering methods or ADC' methods for
short.

The ADC projections Cowen and Priebe present in [4]
and [10] are a family of projections to low-dimensional
space, each indexed by a subset of the observations
(called the witness set). In Cowen and Priebe’s pa-
per, ADC was presented as a “battle-axe in a dark
room”, a crude tool that could preserve some , and some-
times enough, clustering structure so that classification
and clustering could be accomplished in 10°-dimensional
space, a dimensionality for which conventional meth-
ods fail for theoretical and computational reasons. In
this paper, it is shown that on data with a few num-
ber of classes in moderately high dimensional-spaces, we
can build simple classifiers based on 1-dimensional ADC'
projections’ that are surprisingly competitive with the
best, most highly tuned methods on the data sets we
examined.

In order to build a classifier based on ADC' projec-
tions we needed to solve three problems:

e Sample Problem: How many projections do we
need to generate to get some that are useful?

¢ Recognition Problem: How do we distinguish the
“best” (or most useful) projections from the rest?

¢ Resolution Problem: How do we classify an ob-
servation if our analysis would give conflicting class
labels for different projections?

The first of these problems is addressed to some de-
gree by Cowen and Priebe [4]. In the sequel we explore
possible solutions to the second and third problems and
test their merits experimentally on known benchmark
data sets. The data sets considered in this study have
2-3 classes, no missing data values, and range in dimen-
sionality from 4 to 30 dimensions.

1We believe that one-dimensional projections sufficed partially
because of the low number of classes in the chosen data sets. See
discussion in Section 9.



The techniques in this paper extend immediately to
higher dimensional data; in this case the issue was that
most of the benchmarks we found to compare with were
only of moderately high dimensions. Extending to data
sets with a large number of classes on the other hand, will
probably require projections to j-dimensional space (for
J > 1), rather than just the I-dimensional projections.

2 The Method

2.1 Problem Formulation

The classification or supervised learning problem may
be described in the following way using the notation of
Devroye, Gyorfi and Lugosi [5]. Suppose we are given
D, a collection of n labelled observations in #¢, where
for each observation X; € R, we are also given an as-
sociated class label V; € {1,...,C}, where C is finite.
We call D, the labeled training data and assume that it
is a representative sample of the general population of
interest. Given a new unclassified observation X € R¢,
we wish to predict its associated class label Y.

Formally, let D, be fixed and gp, : ¢ — {1,...,C}.
If gp, is well defined for all D, C {R? x {1,...,C}}",
then g, : RIx (R4 x {1,...,C}}" — {1,...,C} is called
a discriminant function or classifier. If it 1s now assumed
that the training data is a set of random variable pairs
(X;,Y;) from the same distribution as (X,Y"), when D,
i1s sampled independently according to the distribution
of (X,Y), L(gn) = P{gn(X) # Y} is the probability of
error of classifier ¢,. Intuitively, a good classifier is one
which minimizes the probability of error. If the sequence
{gn} is defined for each integer n > ng, then {g,} is
called a classification rule. For the remainder of the
present paper we will usually assume that there are only
two classes, 0 and 1. That is, Y; € {0, 1}.

2.2 ADC Projections

Given a set of observations in a high-dimensional space
we first seek a projection of the data into a lower-
dimensional space for which approximate intercluster
distances are maintained. In this paper, we map to
R!.(see [4] for the general definition of the ADC map.)

Definition 1 Let S = {@1,22,...,2,} be a collection
of n wvectors in ®%. Let D C S, and || - || denote the
Lo norm. The associated ADC map is defined as the
function
ADCp :x; — minl|z; — z||.
z€D

The set D in the above definition will be referred to
as the witness set that generates its associated projec-

tion. Clearly each ADC map is completely determined
by the witness set used and each determines a projection
from R¢ to R. In what follows, we will always choose D
entirely from one of the classes, without loss of general-
ity, call it class 1. Note that since the class labels Y; are
known it is easy to choose all the members of D from
within the same class in the training set.

2.3 Identifying Good Witness Sets

It is hoped that the projected data will retain some de-
sirable characteristics that will allow the conventional
methods to classify accurately. If they do, a standard
classical method (We compared several: k-nearest neigh-
bor, standard linear, and standard quadratic discrimi-
nant functions, see Section 3.) is trained on the labeled
projected training data. This gives a classifier for the
projected data set, g, p. When presented with a new
unlabeled observation X, the function g, p classifies by
projecting X to one-dimensional space using ADCp and
then labeling ADCp(X) using the trained conventional
discriminant function. We call the conventinal function
used in combination with the ADC map the ADC' sub-
classifier.

Cowen and Priebe show that if the original data clus-
ters well in some sense, then some witness sets will lead
to projections that are of sufficient quality for successful
classification. Given training data consisting of n pairs of
vectors (X;,Y;) € R x {0,1}, with ng = >, Iry,=0y
and ny = 2?21 Iyy,=1y, without loss of generality, let
us consider witness sets sampled uniformly at random
from class 1. If we limit the size of the witness sets to
n1/2, there are Z]L:le C(n1;j) possible witness sets and
therefore at most this many projections. (Some witness
sets may generate identical projections.) We would like
to identify the sets and associated projections that are
most useful to us.

There are many existing methods to measure the qual-
ity of a projection (see Devroye, Gyorfi and Lugosi [5],
Huber [8], Diaconis and Freedman [6]). Here the quality
of a projection generated by a witness set D was mea-
sured based on how well a subclassifier would perform
on a observation from the training set if instead that
observation had been deleted from D,,. That is, the pro-
jection generated by I was evaluated with respect to
a particular ADC' subclassifier g by using the deleted
estimate (also called leave-one-out, cross validation, or
U-method) for the probability of error, L(g, p), of the
subclassifier when applied to the training data projected
by ADCp. If we let D), ; be the training sequence with
the ith pair (X;,Y;) deleted, the leave-one-out estimate



of L(gn,p) is given by:

1 n
Ln (gn,D) = g Z I{gn—l,D(Xan,l);’le}’
i=1
where the D, ; is included in the argument of the clas-
sifier to indicate that 1t was trained on the deleted se-
quence Dy, ;. More details on the deleted estimate can
be found in Devroye, Gyorfi and Lugosi [5], chapter 24.

2.4 Filtering and Combining Results

So far the procedure is as follows. First, we sample w
witness sets from the set of all size s subsets of the train-
ing data in class 1. Then, the deleted estimate evaluates
each witness set that i1s chosen. Now we select the r
best-scoring witness sets. (How to set w, s and r is dis-
cussed in the sequel). r is called the filtering parameter.
Observe that each of these witness sets implicitly as-
signs in a natural way a class label to any new unknown
observation: namely, the class that the subclassifier on
the projected data according to that witness set would
assign. If we have reason to believe that the training
data closely resembles the test data in distribution, the
best-scoring witness sets, would classify with the lowest
probability of error.

Note, however, that when w > 1, multiple witness
sets may not agree on the assigned class label. If there
is a conflict, it is resolved using majority vote (w will be
set as an odd number). We found that taking w > 1 and
voting improved the performance of our classifier, as will
be seen by our results reported in Section 4.

3 Selecting ADC' Subclassifiers

In describing the ADC' procedure recall that the con-
ventional decision function used to classify the projected
data was called the ADC subclassifier. We compared the
ADC classification method plugging in the three non-
parametric classifiers described below.

k-Nearest Neighbor. The k-nearest neighbor rule is
due to Fix and Hodges (1951). According to this rule,
given a training sequence D, to classify an unlabeled
observation, X, we look at the k closest observations to
X in the training data and vote to determine a label for
X. Formally,

gn(x) — { 1 lf Zi:l w”iI{lel} > Zi:l wniI{Y,:O}

0 otherwise,

where w,; = 1/k when X; is among the k nearest neigh-
bors of x and w,; = 0 otherwise.

Linear Discriminant Function. Given an unlabeled
observation X, a linear discriminant function is one that
is linear in the components of X. In particular, we can
write the linear discriminant function h as h(z) = w'z +
wg, where w is a weight vector and wy a threshold value.
The training data is used to determine values for w and
wo.

A classifier based on a linear discriminant function
may be defined

gn(x):{ 1 if h(z) >0

0 otherwise.

In our case, since we are classifying one-dimensional
data, we use the L distance to the class sample means,
fto and i1, weighted by class size to construct a discrim-
inant function. Hence when ji; < fig, (which is what we
expect when sampling witness sets from class 1) we set

noflg + N1 fiq
—

hz)=—1 -2+

Quadratic Discriminant Function. The quadratic
discriminant function is a generalization of the linear
function that includes products of pairs of components
of X. We will base our quadratic discriminant function
on the Mahalanobis distance of the unlabeled observa-
tion X to the class sample means jip and 1. Given a
distribution with covariance matrix ¥ and mean g, the
Mahalanobis distance between a vector  and the mean
1 1s given by

Mz, p) = /(& — p)' S~ (& — p).

Using sample covariance matrices for each class we can
define the quadratic discriminant function as

hx) = Mz, i) = Mz, juo).

The classifier based on this function is defined exactly as
it was in the linear case. Namely,

gn(x):{ 1 if h(z) >0

0 otherwise.

4 Experimental Results

All three of the data sets used here are available from the
Machine Learning Repository of the Computer Science
Department of the University of California at Trvine [9].
We used these data sets because have been extensively
studied and are well documented. The “best known re-
sults” which we cite on each of these data sets are from
the same source.



To test performance, a five-fold cross validation proce-
dure was implemented on the three sets of data. For each
set the data were partitioned into five equally sized cells.
Five experiments were performed, in each one a different
cell was reserved for test data. Multiple versions of the
ADC classifier were constructed by changing the sub-
classifier, witness set size, and filter parameter r. In all
of the experiments 30 witness sets were initially sampled
from the training data before filtering. 2 The ADC clas-
sifier was trained on the other four cells and then tested
on the heldout test data. The fraction of correctly classi-
fied test data was averaged over the b experiments and is
reported for each variation of the classifier’s parameters.

Wisconsin Breast Cancer Data This database was
donated to the UCI Repository by Nick Street in Novem-
ber 1995. It consists of 569 observations, each with 30
real valued input features describing characteristics of
cell nuclei obtained from a digitized image of a fine nee-
dle aspirate of a breast mass. There are two classes,
malignant and benign. There are no missing attribute
values and the class distribution is 357 benign and 212
malignant.

Three tables are presented in the appendix summa-
rizing our results for the Wisconsin breast cancer data.
Witness sets were sampled from the benign class. Each
table corresponds to a different choice for the filtering
parameter r: 1, 5 and 11. Increasing r tended to im-
prove the classification rate. In each case results were
computed for witness set sizes of 5, 10, 20 and 30, and
the mean result for each witness set size is reported in
the table. Six subclassifiers were used: the linear and
quadratic functions described in Section 3, and three
versions of k-nearest neighbor with %k set to 1, 5, 9.
It was easy to get over 93.9%, showing robustness of
this method to poorly optimizing the parameters w, s,
and r at this misclassification threshold. For comparison
purposes, ordinary k nearest neighbors was also imple-
mented for odd £ = 1,...7. The best among these was b
nearest neighbors, and it achieved only 93.1% classifica-
tion rates. Our best reported result is 95.6% compared
to a reported best known result of 97.5%

Iris Plants Database. This is the famous Fisher Iris
Data and was donated to the UCI Repository by Michael
Marshall in July 1988. Each observation has 4 attributes
(plant characteristics). There are 3 classes each referring

2The number 30 was determined empirically: initial experi-
ments were conducted sampling 10, 20, 30, and 40 witness sets
and while accuracy tended to increase as more sets were sampled,
the improvement was relatively small after 30.

to a type of iris plant. There are a total of 150 observa-
tions, 50 in each class.

For the Fisher Iris data, varying the filtering param-
eter r had little effect on the results, hence results from
only one scheme, with » = 3 are tabulated in the tables.
Results from experiments that used witness set sizes of
3,5, and 10 are reported. For witness set sizes over 10,
accuracy did not increase significantly and decreased in
some cases. All three varieties of subclassification func-
tions were implemented. Due to the relatively small
number of observations in each class, k-nearest neigh-
bor was run using £ = 1, &k = 3, and £ = 9 only. Since
the Fisher Iris data has 3 classes, 3 passes were made
for each witness set size sampling witness sets from one
class each time. That is, the classification problem was
treated as three 2-class problems, distinguishing C; and
C; for i = 1,2,3. Each table shows how many class i ob-
servations were misclassified when sampling from class i.
All parameter variations gave 100 percent correct class 1
classification. Class 2 and 3 classifications proved more
sensitive to subclassifier choice, with nearest neighbor
rules outperforming linear and quadratic discriminants.
Sampling witness sets from class 2 gave a better rate of
correct classifications (best was 94.7%) than sampling
from class 3 (best was 94%). The best results achievable
on this data set is known to be 2-3 misclassifications.

Pima Indian Diabetes Database. This database
was donated to the UCI Repository by Vincent Sigillito
at the Applied Physics Laboratory of The Johns Hop-
kins University in 1990. It contains 768 instances each
with 8 numeric valued attributes. Patients are females
at least 21 years of age and of Pima Indian heritage.
There are two classes, tested positive or negative for di-
abetes. There are no missing attribute values and the
class distribution is 268 tested positive and 500 tested
negative.

The witness sets were sampled from the negative ob-
servations. Only one value of the filtering parameter
r = b is reported with witness set sizes of 5, 10 and
20. Again, the three different subclassification functions
were used. As with the Fisher Iris data, k-nearest neigh-
bor subclassifiers were implemented using £ = 1,k = 3,
and k& = 9. Variance over the 5-fold cross validation
seemed significant; we report not only the mean results
over the b experiments but also the worst and best cases.
For comparison purposes, ordinary k nearest neighbors
was also implemented for odd & = 1,...7. The best
among these was 7 nearest neighbors, and it achieves
slightly better performance than we do.

Due to great differences in scale, range, and variance
among the attributes of the Pima Indian diabetes data,



it may be desirable to attempt some preprocessing of the
data before implementing the ADC' classification algo-
rithm. Here, only the raw data has been analyzed using
the same procedure described above.

5 Conclusions

Results on the Wisconsin breast cancer data set and the
Fisher iris data set compare very well with previous work
on these data. The Pima Indian diabetes results are also
nearly competitive with previous work. In all three cases
it should be emphasized that these results are obtained
using a very simple implementation of the 1-dimensional
ADC procedure. The classifiers are not data dependent
and no preprocessing of data is carried out. Further-
more, considerable robustness to parameter settings is
also evident. As witness set size, |D|, and filtering pa-
rameter r were varied, results remained relatively stable.

Another strength of the procedure presented here is
its flexibility with respect to the goodness criterion used
for evaluating witness sets. In this paper we have con-
structed the sets G , using an empirical error minimiza-
tion approach on the projections generated by the wit-
ness sets. However, we are free to use any goodness cri-
terion we choose to evaluate witness sets or projections
without altering the underlying algorithm. While there
are many existing methods for evaluating projections, it
may also be possible to find some desirable structure in
the witness set itself to quantify without generating its
corresponding projection.

Furthermore, any desired classification function may
be used as a subclassifier. Here we have only used three
varieties, but optimizing subclassifier selection over big-
ger classes of functions is another area where we suspect
improvements can be made.

All of these flexibilities give the ADC' approach a
modular nature that allows for easy implementaion and
should provide great adaptability to a wide range of data
sets.

While we showed utility of 1-dimensional ADC' as a
classifier experimentally on data sets which had very few
classes and no missing data values, it remains an open
problem to extend these methods to data sets with more
classes and missing data values. One straightforward
way to attack the multiple class case is to consider all
2-class subproblems, as was done here for the 3 classes
in Fisher’s iris data. However, as the number, C', of
classes grows, this may not be the best approach. To
find projections that will be good for multiple classes
simultaneously, Cowen and Priebe’s [4] treatment of the
multiple cluster case suggests that it will be necessary
to consider the j-dimensional ADC' projections where

j > 1 grows as a function of the number of classes.
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ADC subclassifier | [D|=5|=10] =20 | =30
1-nearest neighbor 86.8 87.7 | 87.7 | 77.2
5-nearest neighbor 93.0 93.9 | 92.1 | 86.8
9-nearest neighbor 92.1 93.0 | 90.4 | 89.5

Linear Discr. 93.0 93.0 | 93.0 | 93.0
Quadratic Discr. 93.9 93.9 | 91.2 | 93.9

Table 1: Wisconin Breast Cancer Data: » = 1. Best
known result: 97.5%, b-nearest neighbor result: 93.1%
Our best ADC result with 1 vote: 93.9%

ADC subclassifier | |[D|=5|=10| =20 | =30
1-nearest neighbor 90.4 92.1 | 90.4 | 88.6
5-nearest neighbor 92.1 93.9 | 92.1 | 91.2

9-nearest neighbor 92.1 93.9 | 93.0 | 90.4
Linear Discr. 93.0 91.2 | 93.0 | 91.2
Quadratic Discr. 89.5 93.9 | 93.0 | 94.7

Table 2: WBCD: r = 5, Best known result: 97.5%, 5-
nearest neighbor result: 93.1%. Our best ADC result:
94.7%.

ADC subclassifier | [D|=5] =10 | =20 | =30
1-nearest neighbor 92.1 92.1 | 91.2 | 91.2
5-nearest neighbor 92.1 92.1 | 93.0 | 93.0
9-nearest neighbor 92.1 93.0 | 93.0 | 92.1
Linear Discr. 93.0 91.2 | 92.1 | 91.2
Quadratic Discr. 90.4 95.6 | 93.0 | 93.9

Table 3: WBCD: r = 11, Best known result: 97.5%, 5-
nearest neighbor result: 93.1%. Our best ADC result:
95.6%.

ADC subclassifier | |[D|=3 | =5 | =10
1-nearest neighbor 94 93.3 | 94.7
3-nearest neighbor 93.3 92.0 | 93.3
9-nearest neighbor 92.6 94.7 | 94.7
Linear Discr. 89.3 90 | 91.3
Quadratic Discr. 87.3 86 84.7

Table 4: Fisher Iris Data, Class 2 classification. (Class
1 separation was 100 percent in every column)

ADC subclassifier | |[D|=3 | =5 | =10
1-nearest neighbor 93 93.3 | 87.3
3-nearest neighbor 94 94 | 913
9-nearest neighbor 92 91.3 | 93.3
Linear Discr. 52 47 45

Quadratic Discr. 87.3 86 88.7

Table 5: Fisher Iris Data, Class 3 classification.

| ADC subclassifier || Mean | Worst | Best |
1-nearest neighbor 62.3 54.9 66.0
3-nearest neighbor 69.1 64.0 73.9
9-nearest neighbor 68.6 61.4 73.2
Linear Discr. 65.4 64.7 66.7
Quadratic Discr. 66.1 64.0 67.0

Table 6: Pima Indian Results, » = 5, Witness set size
=5, best known result: 76%, T-nearest neighbor result:
mean = 72.8%, best = 75.0%, worst=70.3%. Our best
ADC result: 73.9%.

| ADC subclassifier || Mean | Worst | Best |
1-nearest neighbor 66.5 60.1 71.2
3-nearest neighbor 69.1 64.0 73.9
9-nearest neighbor 69.1 63.4 72.5
Linear Discr. 65.4 64.1 66.7
Quadratic Discr. 66.1 64.0 66.7

Table 7: Pima Indian Results, Witness set size = 10,
best known result: 76%, T-nearest neighbor result: mean
= 72.8%, best = 75.0%, worst=70.3%. Our best ADC
result 73.9%.

| ADC subclassifier || Mean | Worst | Best |

1-nearest neighbor 66.5 60.1 71.2
3-nearest neighbor 69.1 64.1 72.5
9-nearest neighbor 72.2 64.1 74.5
Linear Discr. 65.4 63.4 67.3
Quadratic Discr. 65.5 64.1 66.7

Table 8: Pima Indian Diabetes Results, Witness set size
= 20, best known result: 76%, 7-nearest neighbor result:
mean = 72.8%, best = 75.0%, worst=70.3%. Our best
ADC result 74.5%.



