
Approximate Distance Classi�cationAdam H. Cannon Lenore J. Cowen Carey E. PriebeDepartment of Mathematical SciencesThe Johns Hopkins UniversityBaltimore, MD, 21218AbstractWe investigate the use of a class of nonlinear projec-tions from a high-dimensional Euclidean space to a low-dimensional space in a classi�cation (supervised learn-ing) context. The projections developed by Cowen andPriebe approximately preserve interclass distances. Pro-jected data was obtained from data sets that have beenextensively studied in the machine learning and statis-tical pattern recognition communities, and analyzed inthe projected space using standard statistical techniques.A simple implementation involving no pre-processing ordata dependent adjustments produced results that arenear-competitive with the best known established classi-�cation rates on these benchmark data sets. Thus evenin moderate dimensional spaces the utility and robust-ness of classi�cation schemes based on these projectionsis demonstrated.1 IntroductionClassi�cation and clustering in high dimensions arenotoriously di�cult problems. Conventional methodsthat work well on low-dimensional data are often un-able to uncover su�cient structure for data in higher-dimensional spaces. Instead of searching for clusteringstructure of the original, high-dimensional observations,it is common practice to employ dimension reductionmethods. The question \How to project?" naturallyarises. Some success has been achieved in moderatelyhigh-dimensional spaces using linear projections com-bined with projection pursuit methods (see Huber [8]and Asimov [1]), but �nding useful linear projections invery high dimensions frequently remains a barrier. In1997, Cowen and Priebe [4] introduced a class of non-linear projections that is easy to construct and has beendemonstrated to preserve clustering structure in high-dimensional data sets that strongly cluster. The motiva-tion behind their work is to reduce dimensionality whileapproximately preserving intercluster distances. Conse-quently the classi�cation and clustering techniques based

on them are referred to as Approximate Distance Clas-si�cation and Clustering methods or ADC methods forshort.The ADC projections Cowen and Priebe present in [4]and [10] are a family of projections to low-dimensionalspace, each indexed by a subset of the observations(called the witness set). In Cowen and Priebe's pa-per, ADC was presented as a \battle-axe in a darkroom", a crude tool that could preserve some , and some-times enough, clustering structure so that classi�cationand clustering could be accomplished in 106-dimensionalspace, a dimensionality for which conventional meth-ods fail for theoretical and computational reasons. Inthis paper, it is shown that on data with a few num-ber of classes in moderately high dimensional-spaces, wecan build simple classi�ers based on 1-dimensionalADCprojections1 that are surprisingly competitive with thebest, most highly tuned methods on the data sets weexamined.In order to build a classi�er based on ADC projec-tions we needed to solve three problems:� Sample Problem: How many projections do weneed to generate to get some that are useful?� RecognitionProblem: How do we distinguish the\best" (or most useful) projections from the rest?� Resolution Problem: How do we classify an ob-servation if our analysis would give con
icting classlabels for di�erent projections?The �rst of these problems is addressed to some de-gree by Cowen and Priebe [4]. In the sequel we explorepossible solutions to the second and third problems andtest their merits experimentally on known benchmarkdata sets. The data sets considered in this study have2-3 classes, no missing data values, and range in dimen-sionality from 4 to 30 dimensions.1We believe that one-dimensional projections su�ced partiallybecause of the low number of classes in the chosen data sets. Seediscussion in Section 9.



The techniques in this paper extend immediately tohigher dimensional data; in this case the issue was thatmost of the benchmarks we found to compare with wereonly of moderately high dimensions. Extending to datasets with a large number of classes on the other hand, willprobably require projections to j-dimensional space (forj > 1), rather than just the 1-dimensional projections.2 The Method2.1 Problem FormulationThe classi�cation or supervised learning problem maybe described in the following way using the notation ofDevroye, Gy�or� and Lugosi [5]. Suppose we are givenDn, a collection of n labelled observations in <d, wherefor each observation Xi 2 <d, we are also given an as-sociated class label Yi 2 f1; : : : ; Cg, where C is �nite.We call Dn the labeled training data and assume that itis a representative sample of the general population ofinterest. Given a new unclassi�ed observation X 2 <d,we wish to predict its associated class label Y .Formally, let Dn be �xed and gDn : <d ! f1; : : : ; Cg.If gDn is well de�ned for all Dn � f<d � f1; : : : ; Cggn,then gn : <d�f<d�f1; : : : ; Cggn ! f1; : : : ; Cg is calleda discriminant function or classi�er. If it is now assumedthat the training data is a set of random variable pairs(Xi; Yi) from the same distribution as (X;Y ), when Dnis sampled independently according to the distributionof (X;Y ), L(gn) = Pfgn(X) 6= Y g is the probability oferror of classi�er gn. Intuitively, a good classi�er is onewhich minimizes the probability of error. If the sequencefgng is de�ned for each integer n > n0, then fgng iscalled a classi�cation rule. For the remainder of thepresent paper we will usually assume that there are onlytwo classes, 0 and 1. That is, Yi 2 f0; 1g.2.2 ADC ProjectionsGiven a set of observations in a high-dimensional spacewe �rst seek a projection of the data into a lower-dimensional space for which approximate interclusterdistances are maintained. In this paper, we map to<1.(see [4] for the general de�nition of the ADC map.)De�nition 1 Let S = fx1; x2; : : : ; xng be a collectionof n vectors in <d. Let D � S, and k � k denote theL2 norm. The associated ADC map is de�ned as thefunction ADCD : xi ! minz2D kxi � zk:The set D in the above de�nition will be referred toas the witness set that generates its associated projec-

tion. Clearly each ADC map is completely determinedby the witness set used and each determines a projectionfrom <d to <. In what follows, we will always choose Dentirely from one of the classes, without loss of general-ity, call it class 1. Note that since the class labels Yi areknown it is easy to choose all the members of D fromwithin the same class in the training set.2.3 Identifying Good Witness SetsIt is hoped that the projected data will retain some de-sirable characteristics that will allow the conventionalmethods to classify accurately. If they do, a standardclassical method (We compared several: k-nearest neigh-bor, standard linear, and standard quadratic discrimi-nant functions, see Section 3.) is trained on the labeledprojected training data. This gives a classi�er for theprojected data set, gn;D. When presented with a newunlabeled observation X, the function gn;D classi�es byprojecting X to one-dimensional space using ADCD andthen labeling ADCD(X) using the trained conventionaldiscriminant function. We call the conventinal functionused in combination with the ADC map the ADC sub-classi�er.Cowen and Priebe show that if the original data clus-ters well in some sense, then some witness sets will leadto projections that are of su�cient quality for successfulclassi�cation. Given training data consisting of n pairs ofvectors (Xi; Yi) 2 <d � f0; 1g, with n0 = Pni=1 IfYi=0gand n1 = Pni=1 IfYi=1g, without loss of generality, letus consider witness sets sampled uniformly at randomfrom class 1. If we limit the size of the witness sets ton1=2, there arePbn12 cj=1 C(n1; j) possible witness sets andtherefore at most this many projections. (Some witnesssets may generate identical projections.) We would liketo identify the sets and associated projections that aremost useful to us.There are many existing methods to measure the qual-ity of a projection (see Devroye, Gy�or� and Lugosi [5],Huber [8], Diaconis and Freedman [6]). Here the qualityof a projection generated by a witness set D was mea-sured based on how well a subclassi�er would performon a observation from the training set if instead thatobservation had been deleted fromDn. That is, the pro-jection generated by D was evaluated with respect toa particular ADC subclassi�er g by using the deletedestimate (also called leave-one-out, cross validation, orU-method) for the probability of error, L(gn;D), of thesubclassi�er when applied to the training data projectedby ADCD. If we let Dn;i be the training sequence withthe ith pair (Xi; Yi) deleted, the leave-one-out estimate



of L(gn;D) is given by:L̂n(gn;D) := 1n nXi=1 Ifgn�1;D (Xi;Dn;i)6=Yig;where the Dn;i is included in the argument of the clas-si�er to indicate that it was trained on the deleted se-quence Dn;i. More details on the deleted estimate canbe found in Devroye, Gy�or� and Lugosi [5], chapter 24.2.4 Filtering and Combining ResultsSo far the procedure is as follows. First, we sample wwitness sets from the set of all size s subsets of the train-ing data in class 1. Then, the deleted estimate evaluateseach witness set that is chosen. Now we select the rbest-scoring witness sets. (How to set w, s and r is dis-cussed in the sequel). r is called the �ltering parameter.Observe that each of these witness sets implicitly as-signs in a natural way a class label to any new unknownobservation: namely, the class that the subclassi�er onthe projected data according to that witness set wouldassign. If we have reason to believe that the trainingdata closely resembles the test data in distribution, thebest-scoring witness sets, would classify with the lowestprobability of error.Note, however, that when w > 1, multiple witnesssets may not agree on the assigned class label. If thereis a con
ict, it is resolved using majority vote (w will beset as an odd number). We found that taking w > 1 andvoting improved the performance of our classi�er, as willbe seen by our results reported in Section 4.3 Selecting ADC Subclassi�ersIn describing the ADC procedure recall that the con-ventional decision function used to classify the projecteddata was called the ADC subclassi�er. We compared theADC classi�cation method plugging in the three non-parametric classi�ers described below.k-Nearest Neighbor. The k-nearest neighbor rule isdue to Fix and Hodges (1951). According to this rule,given a training sequence Dn, to classify an unlabeledobservation, X, we look at the k closest observations toX in the training data and vote to determine a label forX. Formally,gn(x) = � 1 ifPni=1wniIfYi=1g >Pni=1wniIfYi=0g0 otherwise,where wni = 1=k when Xi is among the k nearest neigh-bors of x and wni = 0 otherwise.

Linear Discriminant Function. Given an unlabeledobservation X, a linear discriminant function is one thatis linear in the components of X. In particular, we canwrite the linear discriminant function h as h(x) = wtx+w0; where w is a weight vector and w0 a threshold value.The training data is used to determine values for w andw0.A classi�er based on a linear discriminant functionmay be de�nedgn(x) = � 1 if h(x) > 00 otherwise.In our case, since we are classifying one-dimensionaldata, we use the L1 distance to the class sample means,�̂0 and �̂1, weighted by class size to construct a discrim-inant function. Hence when �̂1 < �̂0, (which is what weexpect when sampling witness sets from class 1) we seth(x) = �1 � x+ n0�̂0 + n1�̂1n :Quadratic Discriminant Function. The quadraticdiscriminant function is a generalization of the linearfunction that includes products of pairs of componentsof X. We will base our quadratic discriminant functionon the Mahalanobis distance of the unlabeled observa-tion X to the class sample means �̂0 and �̂1. Given adistribution with covariance matrix � and mean �, theMahalanobis distance between a vector x and the mean� is given byM(x; �) =p(x� �)t��1(x� �):Using sample covariance matrices for each class we cande�ne the quadratic discriminant function ash(x) =M(x; �̂1)�M(x; �̂0):The classi�er based on this function is de�ned exactly asit was in the linear case. Namely,gn(x) = � 1 if h(x) > 00 otherwise.4 Experimental ResultsAll three of the data sets used here are available from theMachine Learning Repository of the Computer ScienceDepartment of the University of California at Irvine [9].We used these data sets because have been extensivelystudied and are well documented. The \best known re-sults" which we cite on each of these data sets are fromthe same source.



To test performance, a �ve-fold cross validation proce-dure was implemented on the three sets of data. For eachset the data were partitioned into �ve equally sized cells.Five experiments were performed, in each one a di�erentcell was reserved for test data. Multiple versions of theADC classi�er were constructed by changing the sub-classi�er, witness set size, and �lter parameter r. In allof the experiments 30 witness sets were initially sampledfrom the training data before �ltering. 2 The ADC clas-si�er was trained on the other four cells and then testedon the heldout test data. The fraction of correctly classi-�ed test data was averaged over the 5 experiments and isreported for each variation of the classi�er's parameters.Wisconsin Breast Cancer Data This database wasdonated to the UCI Repository by Nick Street in Novem-ber 1995. It consists of 569 observations, each with 30real valued input features describing characteristics ofcell nuclei obtained from a digitized image of a �ne nee-dle aspirate of a breast mass. There are two classes,malignant and benign. There are no missing attributevalues and the class distribution is 357 benign and 212malignant.Three tables are presented in the appendix summa-rizing our results for the Wisconsin breast cancer data.Witness sets were sampled from the benign class. Eachtable corresponds to a di�erent choice for the �lteringparameter r: 1, 5 and 11. Increasing r tended to im-prove the classi�cation rate. In each case results werecomputed for witness set sizes of 5, 10, 20 and 30, andthe mean result for each witness set size is reported inthe table. Six subclassi�ers were used: the linear andquadratic functions described in Section 3, and threeversions of k-nearest neighbor with k set to 1, 5, 9.It was easy to get over 93.9%, showing robustness ofthis method to poorly optimizing the parameters w, s,and r at this misclassi�cation threshold. For comparisonpurposes, ordinary k nearest neighbors was also imple-mented for odd k = 1; : : :7. The best among these was 5nearest neighbors, and it achieved only 93.1% classi�ca-tion rates. Our best reported result is 95.6% comparedto a reported best known result of 97.5%Iris Plants Database. This is the famous Fisher IrisData and was donated to the UCI Repository by MichaelMarshall in July 1988. Each observation has 4 attributes(plant characteristics). There are 3 classes each referring2The number 30 was determined empirically: initial experi-ments were conducted sampling 10, 20, 30, and 40 witness setsand while accuracy tended to increase as more sets were sampled,the improvement was relatively small after 30.

to a type of iris plant. There are a total of 150 observa-tions, 50 in each class.For the Fisher Iris data, varying the �ltering param-eter r had little e�ect on the results, hence results fromonly one scheme, with r = 3 are tabulated in the tables.Results from experiments that used witness set sizes of3, 5, and 10 are reported. For witness set sizes over 10,accuracy did not increase signi�cantly and decreased insome cases. All three varieties of subclassi�cation func-tions were implemented. Due to the relatively smallnumber of observations in each class, k-nearest neigh-bor was run using k = 1, k = 3, and k = 9 only. Sincethe Fisher Iris data has 3 classes, 3 passes were madefor each witness set size sampling witness sets from oneclass each time. That is, the classi�cation problem wastreated as three 2-class problems, distinguishing Ci andCi for i = 1; 2; 3: Each table shows how many class i ob-servations were misclassi�ed when sampling from class i.All parameter variations gave 100 percent correct class 1classi�cation. Class 2 and 3 classi�cations proved moresensitive to subclassi�er choice, with nearest neighborrules outperforming linear and quadratic discriminants.Sampling witness sets from class 2 gave a better rate ofcorrect classi�cations (best was 94.7%) than samplingfrom class 3 (best was 94%). The best results achievableon this data set is known to be 2-3 misclassi�cations.Pima Indian Diabetes Database. This databasewas donated to the UCI Repository by Vincent Sigillitoat the Applied Physics Laboratory of The Johns Hop-kins University in 1990. It contains 768 instances eachwith 8 numeric valued attributes. Patients are femalesat least 21 years of age and of Pima Indian heritage.There are two classes, tested positive or negative for di-abetes. There are no missing attribute values and theclass distribution is 268 tested positive and 500 testednegative.The witness sets were sampled from the negative ob-servations. Only one value of the �ltering parameterr = 5 is reported with witness set sizes of 5, 10 and20. Again, the three di�erent subclassi�cation functionswere used. As with the Fisher Iris data, k-nearest neigh-bor subclassi�ers were implemented using k = 1; k = 3;and k = 9. Variance over the 5-fold cross validationseemed signi�cant; we report not only the mean resultsover the 5 experiments but also the worst and best cases.For comparison purposes, ordinary k nearest neighborswas also implemented for odd k = 1; : : :7. The bestamong these was 7 nearest neighbors, and it achievesslightly better performance than we do.Due to great di�erences in scale, range, and varianceamong the attributes of the Pima Indian diabetes data,



it may be desirable to attempt some preprocessing of thedata before implementing the ADC classi�cation algo-rithm. Here, only the raw data has been analyzed usingthe same procedure described above.5 ConclusionsResults on the Wisconsin breast cancer data set and theFisher iris data set compare very well with previous workon these data. The Pima Indian diabetes results are alsonearly competitive with previous work. In all three casesit should be emphasized that these results are obtainedusing a very simple implementation of the 1-dimensionalADC procedure. The classi�ers are not data dependentand no preprocessing of data is carried out. Further-more, considerable robustness to parameter settings isalso evident. As witness set size, jDj, and �ltering pa-rameter r were varied, results remained relatively stable.Another strength of the procedure presented here isits 
exibility with respect to the goodness criterion usedfor evaluating witness sets. In this paper we have con-structed the sets Gc;r using an empirical error minimiza-tion approach on the projections generated by the wit-ness sets. However, we are free to use any goodness cri-terion we choose to evaluate witness sets or projectionswithout altering the underlying algorithm. While thereare many existing methods for evaluating projections, itmay also be possible to �nd some desirable structure inthe witness set itself to quantify without generating itscorresponding projection.Furthermore, any desired classi�cation function maybe used as a subclassi�er. Here we have only used threevarieties, but optimizing subclassi�er selection over big-ger classes of functions is another area where we suspectimprovements can be made.All of these 
exibilities give the ADC approach amodular nature that allows for easy implementaion andshould provide great adaptability to a wide range of datasets.While we showed utility of 1-dimensional ADC as aclassi�er experimentally on data sets which had very fewclasses and no missing data values, it remains an openproblem to extend these methods to data sets with moreclasses and missing data values. One straightforwardway to attack the multiple class case is to consider all2-class subproblems, as was done here for the 3 classesin Fisher's iris data. However, as the number, C, ofclasses grows, this may not be the best approach. To�nd projections that will be good for multiple classessimultaneously, Cowen and Priebe's [4] treatment of themultiple cluster case suggests that it will be necessaryto consider the j-dimensional ADC projections where
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ADC subclassi�er jDj = 5 = 10 = 20 = 301-nearest neighbor 86.8 87.7 87.7 77.25-nearest neighbor 93.0 93.9 92.1 86.89-nearest neighbor 92.1 93.0 90.4 89.5Linear Discr. 93.0 93.0 93.0 93.0Quadratic Discr. 93.9 93.9 91.2 93.9Table 1: Wisconin Breast Cancer Data: r = 1. Bestknown result: 97.5%, 5-nearest neighbor result: 93.1%Our best ADC result with 1 vote: 93.9%ADC subclassi�er jDj = 5 = 10 = 20 = 301-nearest neighbor 90.4 92.1 90.4 88.65-nearest neighbor 92.1 93.9 92.1 91.29-nearest neighbor 92.1 93.9 93.0 90.4Linear Discr. 93.0 91.2 93.0 91.2Quadratic Discr. 89.5 93.9 93.0 94.7Table 2: WBCD: r = 5, Best known result: 97.5%, 5-nearest neighbor result: 93.1%. Our best ADC result:94.7%.ADC subclassi�er jDj = 5 = 10 = 20 = 301-nearest neighbor 92.1 92.1 91.2 91.25-nearest neighbor 92.1 92.1 93.0 93.09-nearest neighbor 92.1 93.0 93.0 92.1Linear Discr. 93.0 91.2 92.1 91.2Quadratic Discr. 90.4 95.6 93.0 93.9Table 3: WBCD: r = 11, Best known result: 97.5%, 5-nearest neighbor result: 93.1%. Our best ADC result:95.6%.ADC subclassi�er jDj = 3 = 5 = 101-nearest neighbor 94 93.3 94.73-nearest neighbor 93.3 92.0 93.39-nearest neighbor 92.6 94.7 94.7Linear Discr. 89.3 90 91.3Quadratic Discr. 87.3 86 84.7Table 4: Fisher Iris Data, Class 2 classi�cation. (Class1 separation was 100 percent in every column)ADC subclassi�er jDj = 3 = 5 = 101-nearest neighbor 93 93.3 87.33-nearest neighbor 94 94 91.39-nearest neighbor 92 91.3 93.3Linear Discr. 52 47 45Quadratic Discr. 87.3 86 88.7Table 5: Fisher Iris Data, Class 3 classi�cation.

ADC subclassi�er Mean Worst Best1-nearest neighbor 62.3 54.9 66.03-nearest neighbor 69.1 64.0 73.99-nearest neighbor 68.6 61.4 73.2Linear Discr. 65.4 64.7 66.7Quadratic Discr. 66.1 64.0 67.0Table 6: Pima Indian Results, r = 5, Witness set size= 5, best known result: 76%, 7-nearest neighbor result:mean = 72.8%, best = 75.0%, worst=70.3%. Our bestADC result: 73.9%.ADC subclassi�er Mean Worst Best1-nearest neighbor 66.5 60.1 71.23-nearest neighbor 69.1 64.0 73.99-nearest neighbor 69.1 63.4 72.5Linear Discr. 65.4 64.1 66.7Quadratic Discr. 66.1 64.0 66.7Table 7: Pima Indian Results, Witness set size = 10,best known result: 76%, 7-nearest neighbor result: mean= 72.8%, best = 75.0%, worst=70.3%. Our best ADCresult 73.9%.ADC subclassi�er Mean Worst Best1-nearest neighbor 66.5 60.1 71.23-nearest neighbor 69.1 64.1 72.59-nearest neighbor 72.2 64.1 74.5Linear Discr. 65.4 63.4 67.3Quadratic Discr. 65.5 64.1 66.7Table 8: Pima Indian Diabetes Results, Witness set size= 20, best known result: 76%, 7-nearest neighbor result:mean = 72.8%, best = 75.0%, worst=70.3%. Our bestADC result 74.5%.


