Lecture 21: A Randomized Online Algorithm for Paging1

1 Brief Review

Definition 1.0.1 (Randomized Online Algorithm) A randomized online algorithm A is a probability distribution over deterministic online algorithms A_x where x is the sequence of A’s coin tosses over the course of the algorithm. **The determinism is kept by arguing that all sets of randomly generated coin tosses are known to A.**

Definition 1.0.2 (Oblivious Adversary) An oblivious adversary knows A but has no access to the coin tosses.

Note: (An adaptive adversary furthers this. It also knows A, but changes its strategy by its observations of the coin tosses.)

Definition 1.0.3 (α-competitive for Randomized Algorithms) A randomized online algorithm A is α-competitive against an oblivious adversary if there exists a constant c such that for all input sequences σ:

$$E[C_{A_x}(\sigma)] \leq \alpha C_{\text{min}}(\sigma) + c$$

where min is the optimal offline algorithm, and the expectation is over the set of possible coin toss sequences x.

1These notes are partially based on lecture notes scribed by Jeff Tustin in 2002
2 Randomized Marking Algorithm

The randomized marking algorithm M begins with all pages in memory marked. When there is a request for page p:

- If p is in memory, return it.
- Otherwise:
 1. If all pages in memory are marked, then unmark them all
 2. Swap p with a uniformly selected (based on coin toss) unmarked page in memory **(a page fault occurs)**
- Mark p **(that is now in memory)**

2.1 Unmarking Requests

Definition 2.1.1 (Unmarking Request) For any sequence of input requests σ to M, we say that a request σ_i is an unmarking request if the following are true:

- When σ_i arrives, all pages are marked
- σ_i is a request for a page that is not in memory

In other words, at some point all pages in memory are marked and if a new page is requested that is not in memory, all pages are unmarked.

2.2 Phases

σ can be divided into phases as follows:

Phase 0: Everything up to and including the first unmarking request.

Phase i: The substring from the i^{th} unmarking request to the $i + 1^{st}$
Phase n: The last unmarking phase

Let S_i be the set of all pages in memory before phase i begins.

1. A phase ends when k pages are marked. At the start, just after the unmarking step, no pages are marked. Therefore, k distinct pages are marked in a phase. **(note that k is also the total number of pages that can be marked in memory)**

2. A page is marked once it is accessed in a phase. Hence, that page stays in memory until the end of the phase (i.e. we pay for page q at most once in that phase).

The cost of σ is equal to the total cost of all phases.

Claim 2.2.1 Regardless of the coin tosses, a phase is always k distinct page requests.

Discussion: The definition of a phase is independent of the coin tosses of $M!$ In other words, a phase ends when exactly k distinct page accesses have been made. S_i also does not depend on the coin tosses since it is the k distinct page accesses in phase $i - 1$. Focus on the k distinct page accesses in phase i. For each page, count only the 1st time it is accessed (only time it causes a page fault).

Definition 2.2.2 (Clean Page Request) A request for a page that does not belong to S_i.

All algorithms incur a cost for clean requests. **(i.e., this request has never been asked for, and must be faulted to memory)**

Definition 2.2.3 (Dirty Page Request) A request for a page that does belong to S_i. **(i.e., this request was previously asked for, but may or may not still be in memory)
Question 1: So what is the expected cost of a dirty request? σ_j is a dirty request to page p at time j within phase i. Assume there have been s dirty + c clean requests so far in this phase. p is accessed for the 1st time which implies p belongs to U, the set of pages at time j from S_i that have not been marked in phase i.

Question 2: What is the probability that p is still in memory after c clean + s dirty requests? p is one of $|U| = k - s - c$ pages in L_i where L_i is the set of $k - s$ pages in S_i that have not been requested so far in phase i.

All pages in L_i are equally likely to be in memory with probability $1 - f$, and thrown out with probability f. Hence,

$$k - s - c = |U| = E[|U|] = \sum_{q \in L_i} (1 - f) = (1 - f)(k - s)$$

Thus,

$$f = \frac{c}{k - s}$$

Therefore the expected cost of the $S + 1$st dirty request is $\frac{c}{k - s}$

If there are l_i clean requests total in phase i, there are $k - l_i$ dirty requests. The number of clean requests preceding any dirty request is less than l_i. Any dirty request is certainly less than l_i, if there are at most l_i clean requests total. Thus, we can bound the expected cost of all dirty requests in a phase by

$$D = \frac{l_i}{k} \frac{l_i}{k - 1} + \cdots + \frac{l_i}{k - (k - l_i - 1)}$$
Which leads us to the expected cost of dirty plus clean requests:

\[
\begin{align*}
\leq & \quad D + l_i = l_i \left(1 + \frac{1}{k} + \frac{1}{k-1} + \frac{1}{k-2} + \cdots + \frac{1}{k-(k-l_i-1)}\right) \\
\leq & \quad l_i H_k
\end{align*}
\]

Therefore, the expected cost of \(M \) on phase \(i \) of \(\sigma \) is \(\leq l_i H_k \)

3 Analysis

3.1 Comparison to Offline Algorithm

In this section we will compute how competitive \(M \) is to an offline algorithm. We begin by bounding the total cost of any offline algorithm \(A \) on a phase, and then simulate \(A \) and \(M \) on the same input sequence \(\sigma \).

A potential function \(\Phi_i \) is the number of pages in \(A \)'s memory that are not in \(M \)'s memory just before phase \(i \) begins. Note: Phases are not dependent on \(A \)'s coin tosses.

\(M \) receives \(l_i \) clean requests in phase \(i \). By the definition of clean, they are not in \(M \)'s memory at the start of phase \(i \). At least \(l_i - \Phi_i \) of these pages are also not in \(A \)'s memory at the start of phase \(i \). Thus \(C_i(A) \geq l_i - \Phi_i \)

Lemma 3.1.1 \(C_i(A) \geq l_i - \Phi_i \)

By definition, \(A \) has \(\Phi_{i+1} \) pages at the end of phase \(i \) that are not in \(M \)'s memory. \(M \) has a set \(P_i \) of \(\Phi_{i+1} \) pages at the end of phase \(i \) that are not in \(A \)'s memory. However, each page in \(M \)'s memory at the end of phase \(i \) was accessed in phase \(i \). Thus all pages in \(P_i \) must have been in \(A \)'s memory sometime in phase \(i \), but were rejected.

Lemma 3.1.2 \(C_i(A) \geq \Phi_{i+1} \)
By combining lemmas 1 and 2:

\[
2C_i(A) \geq \Phi_{i+1} + l_i - \Phi_i \\
C_i(A) \geq 0.5(l_i + \Phi_{i+1} - \Phi_i) \\
C_i(A) \geq 0.5(\sum l_i)
\]

Therefore, \(M \) is \(2H_k \)-competitive (like \(2 \log k \)).

Final remarks: Randomizing defangs the adversary!