Lecture 7: k-center Problem

1 Introduction

The k-center problem is a facility location problem using complete graphs with weighted edges.

Definition 1.0.1 Let \(G = (V, E) \) be a complete undirected graph with edge costs satisfying the triangle inequality. Let \(C_{ij} \) be the shortest path distance between the nodes \(i \) and \(j \). The problem is to find a subset of the nodes \(S \subseteq V \), with \(|S| = k \) such that, the longest distance, over all nodes in the graph, of the distance of a node from its nearest node in \(S \) is minimized.

In math terms the problem can be expressed as \(S \subseteq V; |S| = k \) such that the \(\text{cost}(S) = \max_{i \in V} \min_{j \in S} C_{i,j} \) is minimized.

Reorder edges \(e_1, e_2, \ldots, e_m \) so that \(\text{cost}(e_1) \leq \text{cost}(e_2) \leq \text{cost}(e_3) \leq \ldots \leq \text{cost}(e_m) \). Consider the subgraph of ”cheap” edges.

Definition 1.0.2 \(G_1 = (V, E_1) \) where \(E_1 \) is the edge (or edges) of lowest cost. If \(G_i \) contains edges \(\{e_1, e_2, \ldots, e_r\} \), we define \(G_{i+1} = (V, E_i + 1) \) to contain \(E_i \cup \{e_{r+1}\} \) plus any additional edges that cost the same as \(e_{r+1} \).

Definition 1.0.3 A Dominating Set of \(G \) is a subset \(S \subseteq V \) such that every node in \(V - S \) is adjacent to a node in \(S \).

The optimal solution to k-center is a dominating set in \(G \). For example, each node in a complete graph is by itself a dominating set.

Let the cost of the optimal solution to k-center be \(c^* \). Let \(e_{c1} \) be the first edge of cost \(c^* \) in \(\{e_1, \ldots, e_m\} \) and let \(e_{c2} \) be the last edge of cost \(c^* \) in \(\{e_1, \ldots, e_m\} \).

\(^1\)These notes were revised from scribe notes from Jeff Livingston in 2002.
Claim 1.0.4 There is a dominating set in G_{c2} of size k or less.

Claim 1.0.5 There is no dominating set in G_{c2-1} of size k or less. If there was, this dominating set would be a solution to the k-center problem of cost at most $e_{c2-1} < e_{c2}$.

From the two claims, we can conclude that the k-center problem with triangle inequality is equivalent to finding the smallest index i such that G_i has a dominating set of size k. This is only true when the triangle inequality is in effect. There is no known polynomial time algorithm to solve the k-center problem since k-center is NP-Hard. Our goal is to lower bound the size of a dominating set in G_i.

Definition 1.0.6 The square of a graph $H = (V, E)$, denote $H^2 = (V, E^2)$ has an edge between i and j iff there is a path of length 1 or 2 hops between i and j.

Lemma 1.0.7 Given H, let I be an independent set in H^2 then $|I| \leq \text{dom}(H)$ where $\text{dom}(H)$ denotes the size of the minimum cardinality dominating set in H.

Proof Let D be a minimum cardinality dominating set in H. For each $d \in D$, its neighborhood is a complete subgraph in H^2. A complete subgraph is also called a clique. H^2 contains $|D|$ cliques spanning all nodes. Any independent set can pick at most 1 node per clique. So $|I| \leq |D|$.

2 Algorithm

1. Construct G^2_1, \ldots, G^2_m.
2. Compute a maximal independent set (MIS) M_i in each graph G^2_i.
3. Find the smallest index i such that the $|M_i| \leq k$, say M_j.
4. Return M_j.
Lemma 2.0.8 For j as defined in the algorithm, cost(e_j) ≤ c^*

Proof For every i < j, we have |M_i| > k otherwise we would have output j. Since dom(G_i) ≥ |M_i| by lemma 1.0.7. This implies that the size of the dom(G_i) > k. The first index for which the k-center solution forms a dominating set > j. So c^* ≥ cost(e_j).

Theorem 2.0.9 The algorithm returns a solution of cost at most 2*OPT.

Proof First observe the MIS S in H_2 is also a dominating set in H_2, and has size exactly k. (If S is not a dominating set, i.e. some vertex v is not in S and it has no neighbor in S. But this implies S∪{v} is an IS! There is a contradiction. S is a MIS.) Thus if we have a MIS equal to the dominating set G^2_i called D, then every node is on a path of length at most 2 from some node in D in G_i. Since each edge in G^2_i has cost < c^*, each node is on a path of length at most 2c^* from some center, and the result follows.