
Approximation Algorithms for the Class Cover ProblemAdam Cannon and Lenore Cowen �Department of Mathematical SciencesJohns Hopkins UniversityBaltimore, MD 21218AbstractWe introduce the class cover problem, a variant of disk cover with forbidden regions, with applica-tions to classi�cation and facility location problems. We prove similar hardness results to disk cover.We then present a polynomial-time approximation algorithm for class cover that performs within alnn + 1 factor of optimal, which is nearly tight under standard hardness assumptions. In the specialcase that the points lie in a d-dimensional space with Euclidean norm, for some �xed constant d, weobtain a polynomial time approximation scheme.1 IntroductionMany di�erent problems from the realm of classi�cation and clustering, have been formulated as optimiza-tion problems. Examples of problems that have been recently studied include Schulman's new work [11]and others (see, for example, Bradley, Fayyad, and Mangasarian's survey [2]). Formulations such as [11]model what is essentially an unsupervised learning problem, where the clusters are determined entirelyby optimization criteria that endeavor to capture how tightly the points clump together.By contrast, this paper considers a clustering problem modeled by a much simpler, supervised learningproblem: in fact, the simplest classi�cation problem there is. We consider points of two types (forgeneralizations to multiple classes see Section 5), class one points (which we will refer to henceforth asblue points, or positive examples) and class two points (which we will refer to henceforth as red points,or negative examples). The goal is to pick a set of blue centers that separate the blue points from the redpoints in the following way: the distance from any of the blue points to its closest blue center is smallerthan the distance from any of the red points to its closest blue center. This is equivalent to covering theblue points with a set of blue-centered balls of equal radius, such that no red points lie in these balls.It is easy to observe that no matter what the set of blue points and red points are, such a separatingset of blue centers always exists: simply pick all blue points as centers. This trivial separating set hasevery blue point at distance 0. However, it is not a very interesting separating set. The key question, ishow many blue points are really needed: in particular, we seek a minimum cardinality set of blue centersthat satis�es the above de�nition. Thus we de�ne the class cover problem as follows: Let B be the setof points in class one, and R be the set of points in class two, with jRj+ jBj = n. Then the class coverproblem is, Minimize k�Supported in part by O�ce of Naval Research grant N00014-96-1-0829 and Defense Advanced Research Projects Agencyas administered by the Air Force O�ce of Scienti�c Research under contract DOD F49620-99-1-02131



subject to: maxv2B d(v; S)< minv2R d(v; S)where S � B; jSj = kHere the point to set distance d(v; S) is de�ned as mins2S d(v; s). 1We suggest looking at the k for which a set of colored points has a solution to the class cover problemas some sort of measure of how well separated the two classes are: this was the point of view taken inthe paper [6]. Our investigation of the class cover problem was originally motivated by our ApproximateDistance Classi�cation (see Cowen and Priebe [6] and Cannon, Cowen, and Priebe [4]) method for theclassi�cation of high dimensional data. In fact, a set of points whose solution to the class cover problemhas size � k are precisely the \k-separable in one-dimension" sets introduced in [6], and developed furtheras part of the ADC method. We discuss these connections further at the end of the paper.The class cover problem also has a facility location interpretation. One can imagine the blue pointsas preferred or premium customers. Therefore, the objective becomes to locate the facilities in a waythat puts the farthest preferred (blue) customer closer than the nearest regular (red) customer.Our results. Our main result follows from a polynomial time reduction of the class cover problem tothe special case of set cover called the disk cover problem, introduced by Hochbaum and Maass [7].Thisleads to a lnn+1 times optimal approximation algorithm for the class cover problem in general, that runsin cubic time. It also leads to a (1 + �)-times optimal polynomial-time approximation algorithm in thespecial case that the points lie in <d for some �xed d, but with a running time that's doubly exponentialin 1=� and d. We remark that in the special case for achieving a constant factor approximation when thepoints lie in <2, an approximation algorithm for disk cover of Br�onnimann and Goodrich [3] can be usedin place of the disk cover algorithm of [7] as a subroutine, to reduce the running time for class cover inthis case to O(n5 logn).First we show the class cover problem is NP-Complete, and that approximating the class cover problemwithin a factor better than O(logn) is not possible unless NP � ~P . Then we give the transformationof our problem to a quadratic number of instances of the disk cover problem. The running times citedabove then follow immediately from the greedy approximation algorithm for general set cover (includingdisk cover), and the better approximation factors for disk cover in �xed dimension cited above. Finally,we discuss applications to building classi�ers, conclusions, and open problems.2 Hardness resultsClearly the decision problem \Is there a solution to the class cover problem of value � k?" is in NP.It remains to show that the class cover problem is NP-hard. We show not only that it is NP-hard butthat the dominating set problem is essentially a special case of the class cover problem. Thus hardnessof approximation results for dominating set are inherited by class cover.Recall the dominating set problem: Given a graph G(V;E) to determine whether there is a set ofvertices DS of size at most k such that all vertices are either in DS or adjacent to some element of DS.The optimization version of dominating set is to minimize the size of DS, that is, to minimize k. Now,given an instance of dominating set G(V;E) we may construct an instance I of class cover in the following1We remark that we are using the notation d(v; s), which usually implies a metric, and in general most of our applicationswill be in a metric space, however, all of our de�nitions can also be made, and our general result also holds using a semi-metric,i.e. a cost structure c(v; s) that does not satisfy the triangle inequality.2



way. Create a blue point for each vertex v 2 V . Create a single new red point r. Assign the distancebetween two blue points to be 1 if their corresponding vertices in G had an edge between them, and 2otherwise. Assign the red point to be at distance 1.5 from all the blue vertices.Proposition 2.1 Any solution to the derived class cover instance I of size k corresponds directly to adominating set of G of size k. Thus a polynomial time algorithm for class cover would imply a polynomialtime algorithm for dominating set, and a poly-time approximation algorithm for class cover implies a poly-time approximation algorithm for dominating set with the same approximation factor. 2The hardness results now follow from the fact that dominating set is a \class II" problem, accordingto the hardness results classi�cation scheme (as described by Arora and Lund (see [1, 9])) and thus wehave the following corollary:Corollary 2.2 There is no polynomial time approximation algorithm for class cover that approximatesthe optimal solution to class cover within a factor better than (1� �) logn unless NP � ~P . 23 An lnn+ 1-approximation algorithmWe �rst present the algorithm Fixed-Radius, which takes, in addition to the instance of class cover, anadditional parameter � 2 <. We show that when we correctly \guess" � = minv2R d(v; S�), where S�is an optimal solution to class cover, that Fixed-Radius returns a feasible solution to the class coverinstance, of size at most O(jS�j(ln+1)), where jS�j is the size of the optimal solution to class cover. Wethen present the algorithm Bubble-Grow, which generates a polynomial number of guesses for �, and isguaranteed to call Fixed-Radius with the right value for �.Algorithm Fixed-RadiusInput: An instance (B;R) of blue and red points with jBj+ jRj = n and a cost measure c(i; j) de�nedon all pairs of points i; j 2 B [ R. An additional parameter � 2 <.Output: S with S � B, or \� is infeasible".1. For each v 2 B,Let Bv = fu 2 B [Rjc(u; v)< �g2. For each v, if Bv contains any red points, place v in set X .3. Output the collection of sets (balls) C = Sv2BnX Bv .4. If the union of all sets in C does not capture all points in B, then output \� is infeasible" andSTOP.5. Using the greedy approximation to set cover compute D, a collection of sets that cover all pointsin B from C of cardinality at most jD�j(lnn+1), where D� is a minimum cardinality subset of setsBv 2 C whose union captures all points in B.6. Output the set S whose elements are the centers of the balls belonging to D.We make the following claims: 3



Proposition 3.1 If algorithm Fixed-Radius returns a set S, then S is a feasible solution to the classcover problem.Proof: The set cover approximation in Step 5 does not consider balls that contain any red points (theyare eliminated in Step 3). Since the elements of S are the centers of the balls in D output by the setcover approximation algorithm, there can be no red points within distance (cost) � of any point in S.Since D covers the blue points, every blue point must be within distance (cost) � of some element of S.Thus maxv2B d(v; S)� � < minv2R d(v; S) and S is feasible. 2Proposition 3.2 If S�, with jS�j = k is an optimal solution to the class cover problem, then on input� = minv2Rd(v; S�), algorithm Fixed-Radius produces a set S with jSj � k(ln n+ 1).Proof: It is su�cient to show that when � = minv2Rd(v; S�) is input to Fixed-Radius, jS�j = jD�j,where D� is the optimal solution to the set cover problem used in Step 5. Since we can build a feasiblesolution S from D� with jSj = jD�j, we have by optimality of S�, that jS�j � jD�j. Suppose jS�j = k <jD�j, then we grow balls of radius � around the k elements of S�. Since there is a red point at distance(cost) � from some element of S� and since S� is feasible, all of the blue points must be covered by theballs. Therefore these balls are a cover of size k in the set cover problem of Step 5, violating optimalityof D�. Hence jS�j = jD�j as desired. 23.1 The main algorithmBased on the propositions of the previous section, it is clear we could produce an O(logn)-approximationto class cover, if we could run algorithm Fixed-Radius for all � 2 <, 0 < � � maxi;j2B[R c(i; j), andoutput the minimum-sized feasible solution.In particular, we visualize all blue points growing simultaneously balls of radius �; initially � = 0. Ifwe imagine increasing � continuously, we achieve blue-centered balls of radius �: if these balls captureany red (forbidden) point, they \pop" (i.e. are removed from the collection C of active sets.) AlgorithmFixed-Radius runs on the \snapshot" for each �xed �; clearly if � is increased continuously there aretoo many snapshots and this is not polynomial time. Notice that some sort of binary search on � won'twork either, because the behavior of the cover is not monotonic in �. However, we notice that the setsin C do not change continuously as � increases, rather the sets that comprise C only change each timea new point is captured by an existing ball. The number of radii � for which this occurs can be upperbounded by n2, the maximum number of di�erent pairwise distances; thus checking only n2 di�erent �(and choosing the solution of minimum cardinality among them) can be shown to su�ce. In fact, a littlethought shows we can reduce the number of � considered to linear, because it only helps the cover whenmore blue points are captured by a blue-centered ball. Thus for each blue point, a particular � of interestis the one that leads to an open ball with radius equal to its closest red point ( i.e. the value for alphajust before the ball \pops"). This is the idea behind our main algorithm, Bubble-Grow.Algorithm Bubble-GrowInput: An instance (B;R) of nb blue and nr red points with nb + nr = n and a cost measure c(i; j)de�ned on all pairs of points i; j 2 B [R.Output: S with S � B.1. For each vi 2 B, 4



� Create associated list Li = (l1i ; : : : lni ), consisting of the elements x, stored as (x; c(x; vi), andsorted by increasing c(x; vi).� �i  � minx2Rc(x; vi)� hi  � 1� ti  � 12. Sort the lists Li, according to increasing �i, let L(i) = (l1(i); : : : ; ln(i)) denote the ith list under thisordering.3. For i = 1 to nb DOB(i�1)  � ;For j = i to nbtj  � f the largest index k, so that lk(j) has c(x; v(j)) < �(i)gB(j)  � B(j) [ flhj(j) : : : ltj(j)ghj  � tj + 1Output C = fB(i) : 1 � i � nbgIf the union of all sets in C covers all points in BUse the greedy approximation to set cover to output Di, a collection of sets (balls) thatcapture all of the points in B.4. Let D0 be the minimum cardinality solution from among the sets Di output in step 3. Return theset S whose elements are the centers of the balls belonging to D0.Remark: We note that here the Fixed-Radius routine is integrated into step three and not actuallycalled as a separate routine.Proposition 3.3 Suppose that the optimal solution to class cover has cardinality k. Then the abovealgorithm �nds a class cover of cardinality at most k(lnn+ 1).Proof: Let �� be the distance to the nearest red vertex in a minimum size separating set, D�. Sincethe list of �i computed in Step 2 includes all minimum blue-to-red distances, �� = �i for some 1 �i � nb. Consequently, by the argument in Propositions 3.1 and 3.2, one of the set cover lnn + 1-approximate solutions computed in Step 3 of the algorithm must correspond to a lnn+1-approximationof the cardinality of D�. Since the algorithm chooses the globally minimum size set cover solution tobuild its ultimate class cover solution, it must return a class separating set with cardinality less than orequal to k(ln n + 1). The algorithm always outputs some cover since the �rst time through the loop atstep 3 produces at worst the trivial cover (all of B) as a solution. 2Proposition 3.4 Algorithm Bubble-Grow with input n points with nb blue points, runs in O(n3b +nbn log n) = O(n3) time.Proof: The amount of time needed for step 1 is dominated by the amount of time to sort nb lists of nelement lists, for O(nbn logn) time. The second step just sorts n indices, and takes O(n logn) time. Fora �xed i, the construction of the set Bi over all the di�erent values of � takes only linear time, since weare keeping a pointer to the sorted list of points which have been captured so far in Bi's ball, and we just5



scan forward in the list to add new points to the set, when � is increased. Over nb balls, this is a totalof O(nbn) time. Finally, the greedy algorithm for set cover, can be implemented to run in O(n2b) time,and we are running nb di�erent set covers, for a total of O(n3b) time. 2We remark that the analysis above, and our description of the algorithm both assume that thepairwise costs c(i; j) are given as input to the algorithm. In the case that the points are in a metricspace, for example, if they are points in Rd with a Euclidean norm, it is more natural to assume thepoints themselves are simply given as input, and as \step 0" the algorithm would �rst have to computeall pairwise distances, for a cost of O(n2d).Thus we have proved the following theorem:Theorem 3.5 There is a lnn+1-approximation algorithm for class cover that runs in time O(n3+n2d).3.2 Special Case of Fixed Dimension.We now consider the special case where our red and blue points lie in <d, under the Euclidean metric.Suppose S is a set of points in <d, and D is a set of balls of equal radius. The disk cover problem, asde�ned by Hochbaum and Maass [7] is to �nd a minimum number of balls in D that cover the points inS. Hochbaum and Maass prove the following theorem:Theorem 3.6 [7] Let d � 1 be some �nite dimension and � > 0 be �xed. Let � = (��1pd)d. Thenthere is a polynomial times approximation scheme H(d; �) that outputs a cover of n points in a d �dimensionalEuclideanspacebyd-dimensional balls of radius R in O(��d�(2n)d�+1) steps that is (1 + �)dtimes the size of the optimal cover.It just remains to observe that the collection of balls produced by algorithm Fixed-Radius in step3, if it satis�es the condition of step 4, is a legal formulation of the disk cover problem when S = B isa set of points in <d. Thus the Hochbaum-Maass algorithm can be substituted for step 5 of algorithmFixed-Radius to output the approximate cover. Algorithm Bubble-Grow which calls Fixed-Radiusat most n2 times will produce a solution with the same approximation factor as the approximate diskcover to the class cover problem; the running time blows up by a factor of n2 since the running time ofFixed-Radius will be dominated by the running time of the Hochbaum-Maass disk cover algorithm.In the special case of <2, the running time can be further improved by an algorithm of Br�onnimannand Goodrich, who present a constant factor approximation of the 2-dimensional disk cover algorithmthat runs in O(n3 log n) time. Substituting this in for the Hochbaum-Maass algorithm above gives us anO(1) approximation to the class cover problem with a running time of O(n5 log n) (see [3]).4 Applications to Classi�cationGiven a solution S to the class cover problem, it can be incorporated into a simple classi�er as follows:declare a new unclassi�ed point to be in the positive class if it lies within distance maxv2B d(v; S) fromsome blue center, and in the negative class if its distance is at least minv2R d(v; S). (For those pointswhose distance is between maxv2B d(v; S) and minv2R d(v; S), what the classi�er should ideally answerwill be application dependent, either picking its class arbitrarily, randomly, as some function of its relativeproximity to each of these two measures, or alternately it could answer \no decision").The relationship between the simple classi�er de�ned above, and the degenerate one-dimensionalcase of the Cowen/Priebe ADC dimension reduction system is worth noting. Cowen and Priebe [4, 6]consider an orthogonal question in pattern recognition: namely, they look for maps of high-dimensional6



data into low-dimensional space, that preserve inter--class distance in the supervised learning setting,and inter-cluster distance in the unsupervised setting. These maps are chosen from a set of maps intoj-dimensional space that are indexed by j subsets of the orginal data w1; : : :wj , termed the witness sets.The ADC map associated with the sets w1; : : :wj maps the point x to the point in j-dimensional spacewhose ith coordinate is minv2wi d(v; x). It was shown by Linial et. al.[8] that random ADC maps toO(log2 n) dimensions under the Lp norms, with appropriately chosen witness set sizes, approximatelypreserves within a O(logn) factor ALL interpoint distances (not just interclass distances) of an n-pointdata set, independent of the dimensionality of the original data, so this is a rich and interesting set ofmaps to consider.In one dimension, the ADC map picks a single witness set W , and maps each point x to the scalarquantity that is minw2W d(w; x). Clearly, a set W of size k that is feasible for the class cover problem,yields a map into one dimension that places all the blue points to the left of all the red points. Such Ware precisely what Cowen and Priebe call the k-separable sets (see [6]). Why do we want to minimize k?There are two reasons. The �rst is computational; we simply need to compute fewer distances if we havea small witness set. The second reason is more qualitative. Suppose we have nb training observationsfrom the blue class. We believe there is a qualitative di�erence in class structure between instances inwhich there are small separating sets and instances in which the only separating set has size close to orequal to nb.5 Conclusions and Open ProblemsThere is an asymmetry in the way the class cover problem treats blue and red points; this asymmetryallows us to model so-called \one class" problems (where the goal is to separate class \B" from \the rest"or \noise", the class B). To generalize to a symmetric two class problem or to three or more classes, onemight give an alternative de�nition where there is a witness set and a covering of balls required for eachseparate color class, so that no point of a di�erent color lies within these balls.A second issue is that the class cover problem as de�ned is very sensitive to misclassi�ed points, ormistakes. Any point mislabeled as red in a blue neighborhood, or visa versa, can hugely blow up the sizeof the optimal solution, and cause the essential structure of the separating set to be missed. A relaxationof class cover would ask for all but some small subset of the points to satisfy the condition; where we �xthe size, k, of the class separating set and the approximation is on the feasibility of the solution. With theappropriate de�nitions (for example, a reasonable way to count violations of feasibility would be to ask,given a �xed k, for the solution that has the minimum number of pairs (b; r) such that red point r lies inblue ball b, over all blue balls), we conjecture that some sort of approximation algorithm is achievable.Another area for further research, that we alluded to in the previous section, would be in using theclass cover problem to somehow characterize the di�culty of a particular classi�cation instance. We maygeneralize the notion of k-separability in one dimension to j-dimensions by using j-dimensional ADCmaps, and requiring separation of classes by a hyperplane in j dimensions.Finally, we ask if the running time for approximate class cover in the general case, can be reduced toquadratic.AcknowledgmentsWe thank Samir Kuller for his early encouragement and enthusiasm for the problem formulation, andCarey Priebe for interesting discussions. 7
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