
On the Loal Distinguishing Numbers of CylesC. T. Cheng L. J. CowenDepartment of Mathematial SienesJohns Hopkins UniversityBaltimore, MD 21218heng,owen�mts.jhu.eduSeptember 2, 1998AbstratConsider the indued subgraph of a labeled graph G rooted at vertex v, denotedby N iv, where V (N iv) = fu : 0 � d(u; v) � ig. A labeling of the verties of G,� : V (G) ! f1; :::; rg is said to be i-loal distinguishing if 8u; v 2 V (G); u 6= v, N iv isnot isomorphi to N iu under �. The ith loal distinguishing number of G, LDi(G) isthe minimum r suh that G has an i-loal distinguishing labeling that uses r olors.LDi(G) is a generalization of the distinguishing number D(G) as de�ned in [1℄.An exat value for LD1(Cn) is omputed for eah n. It is shown that LDi(Cn) =
(n 12i+1 ). In addition, LDi(Cn) � 24(2i+ 1)n 12i+1 (log n) 2i2i+1 for onstant i was provenusing probabilisti methods. Finally, it is noted that for almost all graphs G, LD1(G) =O(log n).1 IntrodutionThe following problem was reently reintrodued by Albertson and Collins [1℄. Suppose aprofessor has a set of n keys on a irular key ring that look similar enough to eah otherso that they are indistinguishable to the naked eye. To tell the keys apart, he attahes aolored marker on eah key. How many di�erent olors of markers must he have, in order tolabel the keys, so that he an distinguish the keys from eah other? When n � 6, two olorssuÆe. The professor simply hooses 5 ontiguous keys, labels them with olors 1; 2; 1; 2 and2 respetively, and labels the rest of the keys with olor 1. Sine the string 12122 is not apalindrome, i.e., it is not the same as its reverse, the professor an identify eah key by itslokwise distane from the two ontiguous keys olored 2. However, perhaps surprisingly,it an be shown that when n = 3; 4; 5, three di�erent olors are required.If n is large, notie that the professor has to look all the way aross the key ring andount nearly up to n=2 keys to determine his key. Going bak to our original problem,suppose we add the restrition that in order to determine the key he is holding, the professoris allowed to look only at that key and at most i keys to the left and right of that key. Now,what is the minimum number of olors he needs? This number, whih we all the ith loal1



distinguishing number of the yle, is the main subjet of this paper. But we an de�ne theith loal distinguishing number in a more general setting as follows.The answer to the original problem and the new problem are both dependent on the fatthat the keyholder was irular. If, instead, the keys were suspended from a straight rod,for example, the answer to the original problem would hange: it is not hard to see that twoolors suÆe for all n � 2. In [1℄, Albertson and Collins generalized the original problem toarbitrary graphs. Given a graph G, they de�ned the distinguishing number of G, denotedD(G), to be the minimum number of olors so that there exists a oloring of G that uses thisnumber of olors whose group of olor-preserving automorphisms is trivial. In partiular, thegroup of automorphisms of the unolored yle onsists of all rotations of the yle and ipsabout eah vertex of the yle. However, for n � 6, the only automorphism of an n-vertexyle when 2-olored as we desribed in the �rst paragraph is the identity sine the olorsof the verties must be preserved. In partiular, the 5 ontiguous verties labeled 1; 2; 1; 2; 2must be mapped to themselves. Thus, D(Cn) = 2 if n � 6.
u vFigure 1: N2u �= N2v and thus, LD2(G) > 1. By assigning a olor to v di�erent from those of theremaining verties, we an easily prove that LD2(G) = 2.Let G = (V (G); E(G)) be a graph and v 2 V (G). Let N iv be the neighborhood of vout to distane i in G; that is, N iv is the indued subgraph of G rooted at v for whihV (N iv) := fu : 0 � d(v; u) � ig. If G is a olored graph, we also refer to N iv as the ithnaming subgraph of v. The ith naming subgraph of u and the ith naming subgraph of v aresaid to be isomorphi if and only if there is an isomorphism from N iu to N iv that maps uonto v, and that additionally preserves olors. A labeling, or oloring, of the verties of G,� : V (G)! f1; :::rg, is said to be i-loally distinguishing if no two verties have isomorphiith naming subgraphs. Consequently, we say that � is an LDi-labeling of G. The ith loaldistinguishing number of G, denoted by LDi(G), is the minimum r suh that G has an LDilabeling that uses r olors. (See �gure 1 for an example.) We note that D(G) is a lowerbound on LDi(G), for all i.This paper onsiders LDi(Cn). When i = 0, LD0(Cn) is learly n, and LDi(Cn), for �xedonstant i, will learly tend to in�nity as n!1. It is not lear that LDi(Cn) will be stritlynon-dereasing, however, as a funtion of n. In Setion 2, we solve LD1(Cn) exatly, andprove that it inreases monotonially as a funtion of n. The information- theoreti lowerbound we derived in the preliminary setion implies that LDi(Cn) = 
(n 12i+1 ). In Setion 3,we use probabilisti arguments to give upper bounds for LDi(Cn) when i is a onstant. Inpartiular, we show LDi(Cn) � 24(2i+ 1)n 12i+1 (logn) 2i2i+1 .When i = diameter(G), LDi(G) = D(G). Thus, LDbn2 (Cn) = D(Cn). In Setion 4, weshow that, in fat, for i = dlog2 n+ 1e, LDi(Cn) = D(Cn). This implies that, in our originalproblem, there exists a labeling of the keys with two olors suh that the professor an alwaysidentify the key he is holding by searhing at most O(logn) neighboring keys on both sides,2



instead of searhing the entire key ring.At this point, we know little about LDi(G) for graphs other than yles. However as a�rst step, we show that for almost all graphs on n verties, when n >> 0, LD1(G) = O(logn)in Setion 5.Preliminaries. Consider a vertex v in Cn. When n > 2i+1, N iv is a path with 2i+1 vertiesentered at vertex v. Let this path onsist of verties (v�i; v�(i�1); : : : ; v�1; v0; v1; : : : ; vi�1; vi)where vj and and v�j are the two verties at distane j from v0 = v.Fix the reading of labels in Cn in one diretion. Let � be a general labeling of Cn. Weassoiate a (2i+ 1)-tuple to v, namely,L(v) := (�(v�i);�(v�(i�1)); :::;�(v�1);�(v0);�(v1); :::�(vi�1);�(vi)):The reversed-tuple we denote byL(v) := (�(vi);�(vi�1); :::;�(v1);�(v0);�(v�1); :::�(v�(i�1));�(v�i)):We say u is equivalent to v and use the notation u ' v when either(i) u ' v via a diret math where L(u) = L(v), or(ii) u ' v via a ip where L(u) = L(v).If u ' v either by a ip or a diret math then they have isomorphi naming subgraphsin Cn. That is, in an LDi-labeling of Cn, no two verties u and v have u ' v.We lose this setion with a simple information-theoreti lower bound on LDi(Cn) basedon the number of inequivalent 2i+ 1-tuples that an be formed using r olors.Lemma 1.1. If n > ri+1(ri+1)2 , then LDi(Cn) > r.Proof: There are r2i+1 (2i + 1)-tuples that an be generated using r olors. Of these, ri+1are palindromes, i.e. (a1; a2; : : : ; a2i; a2i+1) = (a2i+1; a2i; : : : ; a2; a1). The rest are asymmetriand their ips also appear in the enumeration of the (2i+1)-tuples. Thus, the total numberof inequivalent (2i+1)-tuples is r2i+1�ri+12 +ri+1 = ri+1( ri+12 ). If n > ri+1( ri+12 ), any r-labelingof Cn would map at least two verties of Cn to the same (2i+1)-tuple. The lower bound onLDi(Cn) follows.2 On the 1-loal distinguishing number of the yleWhen i = 1, N1v onsists of v and its two neighbors. In this setion, LD1(Cn) is solvedexatly using a onstrutive proof.First, we ask a related question: what is the largest yle that an be 1-loally dis-tinguished using r olors? De�ne t(r) as the number of inequivalent triples that an begenerated using r olors. From the proof of Lemma 1.1, t(r) = r2( r+12 ): Clearly, Ct(r) isthe largest possible yle that an be labeled with r olors so that the labeling is 1-loallydistinguishing. Furthermore, whenever n > t(r), LD1(Cn) > r.Lemma 2.1. (i) If r is odd, LD1(Ct(r)) = r.(ii) If r is even, LD1(Ct(r)�r) = r and LD(1)(Ct(r)�r+j) > r for j > 0, j 2 Z.3



Proof: As in the previous setion, we say two triples are equivalent if they are equivalent viaa diret math or a ip, i.e. (s; t; u) ' (x; y; z) if s = x; t = y; u = z or s = z; t = y; u = x.Instead of labeling the verties of Cn diretly, we desribe a tour on all n = t(r) inequiv-alent triples suh that whenever the tour traverses the edge from (s; t; u) to (x; y; z) thent = x and u = y. We all this property the ontiguity onstraint. If the ontiguity onstraintis maintained, then n ontiguous triples represent the naming subgraphs of the n ontiguousverties in Cn. The labeling of Cn follows naturally, as shown in �gure 2.
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Figure 2: The s� t path and the orresponding labeling in CnLet s and t be any two distint labels so that s 6= t. Then there exists a path from (s; s; s)to (t; t; t) whih traverses all inequivalent triples that uses labels s and t only. In partiular,we onsider the path in �gure 2 and all it the s� t path.When r is odd, the omplete graph on r verties Kr is Eulerian. Let Er be an Eulertour on Kr. We onstrut the tour on Ct(r) based on Er as follows: whenever the edge (s; t)is traversed on Er, the s � t path is traversed on the tour. If (s; s; s) has been traversedbefore, skip to (s; s; t). Sine Kr is Eulerian whenever r is odd, all triples whih use onlytwo distint numbers must be traversed by this tour.Consider all triples (s; t; u) where s; t and u are all distint. There is a path that traversesthe three inequivalent triples involving s; t; and u as shown in �gure 3. We insert the s�t�upath into the s� t path as shown in �gure 4. Notie that the three verties ould have beeninserted in the t� u path or u� s path. We have now traversed all t(r) triples.
(s,t,u)

(t,u,s)

(u,s,t)Figure 3: The s� t� u path.When r is even, not all t(r) triples an be traversed in a proper tour. This is so beausewhenever (u; s; s) is traversed, (s; s; t), u 6= t, must be traversed diretly after it or after thetour goes through (s; s; s). Thus, for a �xed s, only an even number of verties of the form(s; s; t), s 6= t an be traversed. When r is even, there is an odd number of verties of theform (s; s; t), s 6= t . Hene, at least r triples must be skipped in touring the triples. SoLD1(Ct(r)�r+j) > r for j > 0.When r is even, Kr is not Eulerian. Delete a maximum mathing in Kr so all the vertieshave even degrees. Note that r2 edges were deleted. Call this new graph K 0r: As desribed4
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Figure 4: Extending the s� t path.above, onstrut a tour on the triples based on the Euler tour of K 0r: Now, the triples of theform (s; t; u) an be inserted in the tour sine only one of the edges (s; t), (s; u) was deletedfrom Kr. However, there are triples that are missing in the tour. These are the triples thatuse only two distint labels s; t suh that (s; t) was one of the edges deleted from Kr. Insertthe path (s; t; s), (t; s; t) after the triple (u; s; t) is visited. We have skipped exatly 2 triplesper (s; t) pair: (s; s; t) and (s; t; t); and sine r2 edges were deleted, exatly r triples wereskipped in this tour.We are now ready for the main result of this setion. The previous lemma showed that ifn is odd and is exatly equal to t(r), the number of inequivalent triples that an be generatedfrom r olors, there was a labeling of Cn based on a tour that visited all these triples. We,then, onluded that LD1(Cn) = r. We also had a similar result when n is even and equal tot(r)� r. In order to handle yle lengths between n = t(r) and n = t(r + 1), we now showhow to remove piees of these tours to onstrut shorter tours that still �t together.Theorem 2.2. Given Cn, let k 2 R s.t. n = k2(k+1)2 . Let r = dke > 2.(i) If r is odd, LD1(Cn) = r:(ii) If r is even and n � r2(r+1)2 � r, then LD1(Cn) = r ; otherwise, LD1(Cn) = r + 1.Proof: From Lemma 1.1, Cn needs at least r olors to have a 1-loally distinguishinglabeling. From Lemma 2.1, when r is even and n > r2(r+1)2 �r, Cn needs at least r+1 olors.Our strategy now is to modify the Ct(r) and Ct(r)�r tours we have onstruted in Lemma 2.1.We remove paths to obtain smaller tours whih still maintain the ontiguity property. Thefollowing paths and verties were traversed in Ct(r) when r was odd and in Ct(r)�r when rwas even:� r paths of length 0 that go through (s; s; s). We all these paths TYPE 1.� �r2� paths of length 1 that go through (s; t; s), (t; s; t). We all these paths TYPE 2.� �r3� paths of length 2 that go through (s; t; u), (t; u; s), (u; s; t). We all these pathsTYPE 3.Notie that it is possible to skip the above paths in the tour by onneting the twoneighbors at both ends of the path and the ontiguity property is still maintained in the newtour. See �gure 5. 5
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Figure 5: Short-utting the tours in Lemma 2.1 while maintaining the ontiguity onstraint.Let r � 3 be odd, we shall show that there exists an r-labeling for Cn whenever t(r �1)� (r � 1) < n � t(r). Denote the tour that goes through all t(r) triples as T .To obtain a tour on n triples:(i) when n = t(r)� 2j; 0 � j � �r2�, skip j TYPE 2-paths in T .(ii) when n = t(r)� 1� 2j; 0 � j � �r2�, skip a TYPE 1-path and j TYPE 2-paths inT . Denote the tour that goes through t(r)� 2�r2� triples as T 0.(iii) when n = t(r)� 2�r2�� 3z; 0 � z � �r3�, start with T 0 and skip z TYPE 3-paths..(iv) when n = t(r) � 2�r2� � 1 � 3z; 0 � z � �r3�, start with T 0, skip another TYPE1-path and z TYPE 3-paths.(v) when n = t(r)� 2�r2�� 2� 3z; 0 � z � �r3�, start with T 0, skip two TYPE 1-pathsand skip z TYPE 3-paths.Hene, when t(r)�2�r2��3�r3� = r2 � n � t(r), LDi(Cn) � r. But t(r�1)� (r�1) > r2when r � 5. When r = 3, it is easy to hek that a 3-labeling exists for Cn when 7 � n � 9.Thus, laim (i) and (iib) follow.When r � 4, r even, we use the same tehnique above to show that an r-labeling for Cnexists whenever t(r�1) < n � t(r)�r. We reiterate that the r triples skipped in onstrutingT for the labeling of Ct(r)�r were not part of the paths skipped above. Furthermore, t(r)�r � 2�r2�� 3�r3� = r2 � r < t(r � 1) for r � 3.Finally, we note that when r = 2, 2 � n � 6. In these ases, LD1(Cn) = 3.For j = 1; 2, if nj = k2j (kj+1)2 let rj = dkje. If n1 < n2 then r1 � r2. Theorem 2.2 impliesthat LD1(Cn1) � LD1(Cn2). That is, LD1(Cn) is monotoni for yles.3 An Upper Bound on LDi(Cn)The lower bounds from Lemma 1.1 imply LDi(Cn) = 
(n 12i+1 ): In this setion, we give anupper bound on LDi(Cn) for onstant i that is an O(logn) fator o� the lower bound. Theproof uses probabilisti methods, but we remark that a standard argument where we olor atrandom with suÆient number of olors so that with high probability, no pair of verties haveisomorphi naming subgraphs yields a poor upper bound on the number of olors neededfor small i. Instead, we use a two-stage oloring proedure. First, we olor with a smallernumber of olors than would be needed to distinguish all i-th naming subgraphs. However,6



the number of olors we used is big enough so that the size of any lass of verties withequivalent i-naming subgraphs is O(logn). In the seond stage, we then greedily re�ne theoloring so that verties that belong to the same equivalene lass aording to the stage1-oloring have non-isomorphi naming subgraphs after the re�nement.We prove that there exists a oloring withO(n 12i+1 (logn) 2i2i+1 ) olors, assigning eah vertexan ordered pair of olors (x; y) where x is hosen from a set of (n= logn) 12i+1 olors, and y ishosen from a set of O(logn) olors.Fix i. For a oloring � of the verties of Cn, de�ne Sv = fu : u ' v under �g. We will�rst show that a oloring of Cn exists where the maximum size of Sv, for any v, is not toolarge.Lemma 3.1. There exists a oloring of Cn with (n= logn) 12i+1 olors suh that maxv jSvj =24(2i+ 1) logn.Proof: Color the verties of Cn randomly with (n= logn) 12i+1 olors, i.e. for eah vertex inCn selet its olor uniformly at random from the set f1; 2; :::; (n= logn) 12i+1 g. We show theprobability that this oloring has greater than O(logn) verties with isomorphi ith namingsubgraph is less than 1. Thus, the desired oloring must exist.Let Jk be the set that ontains the pair (u; v) suh that N iu and N iv overlap in k positions.Let Auv be the event that u ' v via a diret math and Buv be the event that u ' v via aip. For simpliity, let r be the number of olors used for the labeling of Cn.Claim 3.2. Suppose we selet the olor of eah vertex in Cn uniformly at random from theset f1; 2; : : : ; rg. ThenP (u ' v) = ( 2r2i+1 if (u; v) 2 J01r2i+1 + 1r2i+1�d k2 e (u; v) 2 Jk; 1 � k � 2i:Proof of laim: If (u; v) 2 J0 then the labels of N (i)u and N (i)v are independent. It followsthat P [Auv℄ = 1r2i+1 .Otherwise, suppose (u; v) 2 Jk; 0 < k � 2i. Without loss of generality, let �(v�i) =�(ui�k+1);�(v�i+1) = �(ui�k+2); :::; �(v�i+k�1) = �(ui): Thus, the labels of u�i; u�i+1; :::; ui�kare suÆient to determine all the labels in N iu and N iv if the event Auv is to our. Hene,P [Auv℄ = r2i+1�kr2(2i+1)�k = 1r2i+1 :If (u; v) 2 J0, P[Buv℄ = 1r2i+1 . Suppose N iu and N iv overlap in k positions. Consider thegraph Nuv = N iu [N iv. Nuv has 2(2i+1)� k verties. It is not diÆult to see that the labelsof Nuv must form a palindrome for Buv to our. Thus,P [Buv℄ = r2i+1�b k2 r2(2i+1)�k = 1r2i+1�d k2 e :It is interesting to note that the above laim implies it is more likely for u ' v when theirnaming subgraphs overlap. 7



To bound the size of the equivalene lasses Sv, we do not onsider all N iu at one beausethe naming subgraphs may overlap and the olorings would not be independent. Instead,we partition the verties into 2i + 1 sets eah with non-overlapping naming subgraphs asfollows. Fix a vertex v, and renumber the verties v = 0; 1; 2; :::; n� 1 lokwise around theyle from v. Let Iuv be the indiator random variable for the event Auv [ Buv. Partitionthe verties of Cn into 2(2i + 1) sets A0; A1; :::; A4i+1 so that if 0 < u � dn2 e and j � u(mod 2i + 1) then u 2 Aj. If u > dn2 e and j � u (mod 2i + 1) then u 2 A2i+1+j. Clearly,the naming subgraphs of any two verties in Aj, for any j, do not overlap by the way thepartitions were onstruted and jAjj � d n2(2i+1)e: Furthermore eah set Aj has at most onevertex whose naming subgraphs overlap with N iv. Let Æ = 12(2i+ 1)� 1 = 24i+ 11. Then,P [jSvj > 2(1 + Æ) logn℄ = P [ Xv2V (Cn) Iuv > 2(1 + Æ) logn℄� 4i+1Xj=0 P [Xu2Aj Iuv > 2(1 + Æ) logn2(2i+ 1)℄; (1)sine the Aj's form a partition of V (Cn). FromClaim 3.2, it follows that log n2(2i+1) � E[Pu2Aj Iuv℄ �2 log n2i+1 . Hene,P [Xu2Aj Iuv > 2(1 + Æ) logn2(2i+ 1)℄ � P [Xu2Aj Iuv > 1 + Æ2 E[Xu2Aj Iuv℄℄� 2� 1+Æ2 E[Pu2Aj Iuv ℄ (2)� 2� (1+Æ)2 log n2(2i+1)= n� 1+Æ4(2i+1)= n�3where (2) follows from the fat that if u; w 2 Aj then u and w have disjoint naming subgraphs.The events Iuv and Iuw must be independent from eah other and the Cherno�'s bounds (seee.g. [6℄, p.72) an then be applied to these events. Substituting the above result for Æ on theright hand side of (1), P [jSvj > 2(1 + Æ) logn℄ � 4i+1Xj=0 1n3 = 4i + 1n3and summing over all v,P [jSvj > 2(1 + Æ) logn; for some v℄ � Xv2V (Cn)P [Sv > 2(1 + Æ) logn℄ � 4i+ 1n2 :
8



We note that in fat we have found a oloring with high probability and sine the ondition(that the oloring should indue only small equivalene lasses) is veri�able in linear time,this implies a simple randomized algorithm to �nd this oloring. To prove only the existeneof suh a oloring, we ould have redued the number of olors in this stage by a onstantfator.Theorem 3.3. For any onstant i, LDi(Cn) � 24(2i+ 1)n 12i+1 (logn) 2i2i+1 :Proof: Label Cn suh that for any vertex v, jSvj < 24(2i + 1) logn. Suh a oloring isguaranteed to exist by Lemma 3.1. Let this labeling be �1. Now onsider the verties inlokwise order around the yle, starting arbitrarily. When we reah v, we say v has beenvisited and re-olor v with the olor label �(v) = (�1(v);�2(v)) where �1(v) is its label underthe old oloring and �2(v) is hosen greedily from the set K = f1; 2; ::; 24(2i+ 1) logng asfollows: hoose �2(v) to be the �rst olor in the set K whih does not appear in the setf�2(u)ju is visited ; u ' v under �1g. Suh a new olor always exists by the maximum sizeof the equivalene lasses in the oloring �1. Now �(u) = �(v) if and only if �1(u) = �1(v)and �2(u) = �2(v). But we have hosen �2(u) 6= �2(v) whenever �1(u) = �1(v). Thus, �is a 1-distinguishing labeling that uses at most 24(2i+ 1)n 12i+1 (logn) 2i2i+1 olors.4 Looking out logWe know that LDbn2 (Cn) = 3 when n = 3; 4; 5 and LDbn2 (Cn) = 2 when n > 5 sineLDbn2 (Cn) = D(Cn). On the other hand, for LDi(Cn) = 2, i = 
(logn) by the informationtheoreti lower bound (Lemma 1.1). Here we show LD(dlog n+1e)(Cn) = 2 for n > 5.Theorem 4.1. LD(dlog n+1e)(Cn) = D(Cn).Proof: Let v be a vertex in Cn. When 2 � n � 11, N dlog n+1ev inludes all verties in Cn.Thus, LDdlog n+1e(Cn) = D(Cn) trivially. So assume n > 11. We again use a probabilistiargument. This time a straightforward random labeling of Cn is suÆient to show our result.For simpliity, we assume n = 2j; j a positive integer.Let � be a uniform random labeling of the verties in Cn with two olors. We shall showwith positive probability, � is an LDdlog n+1e labeling. We keep the notation from Setion 3.Note we never onsider events where vertex v is ompared to itself.P (� is a bad labeling) = P ( [(u;v)2V xV Auv [ [(u;v)2V xV Buv)� P ( [(u;v)2V xV Auv) + P ( [(u;v)2V xV Buv):We solve for P[S(u;v)2V xV Auv℄ and P[S(u;v)2V xV Buv℄ separately. From Lemma 3.2, P [Auv℄ =122 log n+3 = 18n2 . So, 9



P [ [(u;v)2V xV Auv℄ � �n2� 18n2 � 116 :Let (u; v) 2 J0. From Lemma 3.2, P[Buv℄ = 18n2 . If we �x u, there are n � (4 logn +6) + 1 verties whose naming subgraphs do not overlap with u. Thus, P(u;v)2J0 P [Buv℄ =18n2 (n(n�4 logn�5)2 ) � 116 .Let (u; v) 2 Jk, 1 � k � 2i, Nuv has 2(2 logn + 3) � k verties and when Buv ours,the labels of Nuv form a palindrome . If we remove the same number of verties from theendpoints of Nuv, then the labels still form a palindrome. Hene, there must be two vertiesi and j where Nij is a palindrome embedded in Nuv and N (1)i and N (1)j overlap in 2 logn+1or 2 logn + 2 positions depending on the parity of k. This implies[(u;v)2Jk ;k>0Buv � [(u;v)2J2 log n+1Buv [ [(u;v)2J2 log n+2Buv:Now, when (u; v) 2 Jk for k = 2 logn + 1 or k = 2 logn + 2, P [Buv℄ = 14n : If we �x u,there are at most 2 verties that overlap with u in k positions. Thus,P [ [(u;v)2Jk ;k>0Buv℄ � X(u;v)2J2 log n+1 P [Buv℄ + X(u;v)2J2 log n+2 P [Buv℄� 2n( 14n) = 12 :Therefore, P [S(u;v)2V xV Buv℄ � P [S(u;v)2J0 Buv℄+P [S(u;v)2Jk;k>0Buv℄ � 916 and our resultfollows. This implies the existene of a 2-labeling of Cn that is an LDdlog n+1e labeling.5 LD1 for Almost All Graphs, Open Problems, FutureDiretionsThis paper has explored the loal distinguishing number of yles. In partiular, we showedthat LDi(Cn) is monotoni when i = 1. However, our general upper bound on LDi(Cn) doesnot. Very reently, Alon [2℄, has improved the upper bound on LDi(Cn) to within a fator of2 by using de Bruijn sequenes and a result of Lempel [5℄. Again, this still does not resolvemonotoniity. We make the following onjeture.Conjeture 5.1. For a onstant i > 1, LDi(Cn) is monotonially non-dereasing in n.We are also interested in the loal distinguishing number of other graph families, and forgeneral graphs. We, thus, ask the following open question:Question 5.2. What is the ith loal distinguishing number of Hn, the n-dimensional hyper-ube? 10



We remark that a random graph property Babai, Erd�os and Selkow used for testingrandom graph isomorphism in [3℄ gives a good starting point for the investigation of LD1(G)for general graphs.Consider a graph, H, on n verties where all but two of the verties have distint degrees.LD1(H) � 2 sine only the two verties with the same degrees need to be distinguished. ForKn, LD1(Kn) = n. While we do not have a tight upper bound for LD1(G) for an arbitrarygraph G, we show that for almost all graphs, LD1(G) = O(logn).Let G be a random graph on n verties where the pair (u; v) is hosen independently as anedge of G with probability p. Label the verties of G as v1; v2; :::; vn suh that d(vi) � d(vi+1).Let r = b3 log2 n. Consider the following onditions:(i) Let U = fv1; v2; :::; vrg. All verties in U have distint degrees;(ii) The remaining n� r verties in V � U have distint neighborhoods in U .Babai, et al. showed that for suÆiently large n, with probability greater than 1� n� 17a random graph on n verties satisfy the two onditions above.Theorem 5.3. Almost all graphs an be 1-loally distinguished with b3 logn+ 1 olors.Proof: Let G be a random graph that satis�es onditions (i) and (ii). To distinguish vertiesin U from verties in V � U , olor all verties in V � U with olor 1 and the verties in Uwith olors 2; :::; b3 logn + 1: The verties in V � U an be distinguished from eah otherbased on their neighborhood sets in U , while the verties in U an be distinguished fromeah other based on their vertex degrees.The tightness of Theorem 5.3 is unknown and we leave it as an open question.6 AknowledgementsWe thank Mike Albertson for his enouragement and an early draft of [1℄. We also thankthe anonymous referees for helpful omments that improved the presentation of this paper.CTC and LJC were supported in part by ONR grant N00014-96-1-0829.Referenes[1℄ M. Albertson, K. Collins, Symmetry Breaking in Graphs, Eletron. J. of Combin., 3(1996).[2℄ N. Alon, personal ommuniation.[3℄ L. Babai, P. Erd�os, S. Selkow, Random Graph Isomorphism, SIAM J. Computing, 3(1980) 628{635.[4℄ B. Bollob�as, Degree sequenes of Random Graphs, Trans. Amer. Math. So., 267 (1981)41{52.[5℄ A. Lempel, m-ary losed sequenes, J. Comb. Theory Ser. A 10 (1971), 253{258.[6℄ R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press (1995).11
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