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Abstract

Consider the induced subgraph of a labeled graph G rooted at vertex v, denoted
by N!, where V(N!) = {u : 0 < d(u,v) < i}. A labeling of the vertices of G,
®:V(G) — {1,...,r} is said to be i-local distinguishing if Yu,v € V(G),u # v, N! is
not isomorphic to N under ®. The ith local distinguishing number of G, LD*(G) is
the minimum r such that G has an i-local distinguishing labeling that uses r colors.
LD?(@G) is a generalization of the distinguishing number D(G) as defined in [1].

An exact value for LD!(C,,) is computed for each n. It is shown that LD!(C,,) =
Q(nT}H) In addition, LD*(C,,) < 24(2i + 1)n2i1ﬁ(log n)%i1 for constant ¢ was proven
using probabilistic methods. Finally, it is noted that for almost all graphs G, LD!(G) =
O(logn).

1 Introduction

The following problem was recently reintroduced by Albertson and Collins [1]. Suppose a
professor has a set of n keys on a circular key ring that look similar enough to each other
so that they are indistinguishable to the naked eye. To tell the keys apart, he attaches a
colored marker on each key. How many different colors of markers must he have, in order to
label the keys, so that he can distinguish the keys from each other? When n > 6, two colors
suffice. The professor simply chooses 5 contiguous keys, labels them with colors 1,2, 1,2 and
2 respectively, and labels the rest of the keys with color 1. Since the string 12122 is not a
palindrome, i.e., it is not the same as its reverse, the professor can identify each key by its
clockwise distance from the two contiguous keys colored 2. However, perhaps surprisingly,
it can be shown that when n = 3,4, 5, three different colors are required.

If n is large, notice that the professor has to look all the way across the key ring and
count nearly up to n/2 keys to determine his key. Going back to our original problem,
suppose we add the restriction that in order to determine the key he is holding, the professor
is allowed to look only at that key and at most ¢ keys to the left and right of that key. Now,
what is the minimum number of colors he needs? This number, which we call the ith local



distinguishing number of the cycle, is the main subject of this paper. But we can define the
i1th local distinguishing number in a more general setting as follows.

The answer to the original problem and the new problem are both dependent on the fact
that the keyholder was circular. If, instead, the keys were suspended from a straight rod,
for example, the answer to the original problem would change: it is not hard to see that two
colors suffice for all n > 2. In [1], Albertson and Collins generalized the original problem to
arbitrary graphs. Given a graph G, they defined the distinguishing number of G, denoted
D(G), to be the minimum number of colors so that there exists a coloring of G that uses this
number of colors whose group of color-preserving automorphisms is trivial. In particular, the
group of automorphisms of the uncolored cycle consists of all rotations of the cycle and flips
about each vertex of the cycle. However, for n > 6, the only automorphism of an n-vertex
cycle when 2-colored as we described in the first paragraph is the identity since the colors
of the vertices must be preserved. In particular, the 5 contiguous vertices labeled 1,2, 1,2, 2
must be mapped to themselves. Thus, D(C,,) = 2 if n > 6.

u \Y

Figure 1: N2 = N? and thus, LD?(G) > 1. By assigning a color to v different from those of the
remaining vertices, we can easily prove that LD?(G) = 2.

Let G = (V(G),E(G)) be a graph and v € V(G). Let N! be the neighborhood of v
out to distance 7 in G; that is, N! is the induced subgraph of G rooted at v for which
V(ND) = {u:0 < d(v,u) <i}. If Gis a colored graph, we also refer to N! as the ith
naming subgraph of v. The ith naming subgraph of v and the ¢th naming subgraph of v are
said to be isomorphic if and only if there is an isomorphism from N! to N! that maps u
onto v, and that additionally preserves colors. A labeling, or coloring, of the vertices of G,
®: V(G) — {1,...r}, is said to be i-locally distinguishing if no two vertices have isomorphic
ith naming subgraphs. Consequently, we say that ® is an LD'-labeling of G. The ith local
distinguishing number of G, denoted by LD'(G), is the minimum r such that G has an LD
labeling that uses r colors. (See figure 1 for an example.) We note that D(G) is a lower
bound on LD*(G), for all i.

This paper considers LD*(C,,). When i = 0, LD°(C,,) is clearly n, and LD*(C,,), for fixed
constant i, will clearly tend to infinity as n — oo. It is not clear that LD*(C,,) will be strictly
non-decreasing, however, as a function of n. In Section 2, we solve LD'(C,,) exactly, and
prove that it increases monotonically as a function of n. The information- theoretic lower
bound we derived in the preliminary section implies that LD*(C,,) = Q(n?le) In Section 3,
we use probabilistic arguments to give upper bounds for LD?(C,,) when i is a constant. In
particular, we show LD!(C,,) < 24(2i + l)nﬁ(log n)%w11

When i = diameter(G), LD'(G) = D(G). Thus, LD21(C,) = D(C,). In Section 4, we
show that, in fact, for i = [log, n + 1], LD*(C,) = D(C,,). This implies that, in our original
problem, there exists a labeling of the keys with two colors such that the professor can always
identify the key he is holding by searching at most O(logn) neighboring keys on both sides,
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instead of searching the entire key ring.

At this point, we know little about LD!(G) for graphs other than cycles. However as a
first step, we show that for almost all graphs on n vertices, when n >> 0, LD'(G) = O(logn)
in Section 5.

Preliminaries. Consider a vertex v in C,,. When n > 2i+1, N! is a path with 2i+1 vertices
centered at vertex v. Let this path consist of vertices (v_;,v_(i1),..., v 1,00, V1, ..., Vi 1, V;)
where v; and and v_; are the two vertices at distance j from vy = v.

Fix the reading of labels in (), in one direction. Let ® be a general labeling of C,,. We
associate a (2i + 1)-tuple to v, namely,

L(v) := (®(v_), P(v_(i-1))s s P(v_1), P(w0), P(v1), ...@(v51), P(v5)).
The reversed-tuple we denote by
L(v) = (®(v;), ®(vi 1), ..., P(v1), @(vg), P(v_1), L O(v_(i1)), P(v)).

We say u is equivalent to v and use the notation u >~ v when either
(i) u >~ v via a direct match where L(u) = L(v), or
(ii) u ~ v via a flip where L(u) = L(v).

If u ~ v either by a flip or a direct match then they have isomorphic naming subgraphs
in C,. That is, in an LD'-labeling of C,,, no two vertices u and v have u ~ v.

We close this section with a simple information-theoretic lower bound on LD'(C,,) based
on the number of inequivalent 27 + 1-tuples that can be formed using r colors.

Lemma 1.1. Ifn > %, then LD(C,,) > r.

Proof: There are r**' (2i + 1)-tuples that can be generated using 7 colors. Of these, r'*!

are palindromes, i.e. (a1, as, ..., s, Goi11) = (@211, A, .. ,a2,a7). The rest are asymmetric
and their flips also appear in the enumeration of the (2i + 1)-tuples. Thus, the total number
of inequivalent (2i+1)-tuples is T i+l = pit1 (2L qf gy > ¢ (24 Cany p-labeling
of C,, would map at least two vertices of C,, to the same (2i + 1)-tuple. The lower bound on

LDY(C,,) follows. O

2  On the I-local distinguishing number of the cycle

When 7 = 1, N} consists of v and its two neighbors. In this section, LD'(C,,) is solved
exactly using a constructive proof.

First, we ask a related question: what is the largest cycle that can be 1-locally dis-
tinguished using r colors? Define ¢(r) as the number of inequivalent triples that can be
generated using r colors. From the proof of Lemma 1.1, t(r) = r?(%). Clearly, Cyy is
the largest possible cycle that can be labeled with r colors so that the labeling is 1-locally

distinguishing. Furthermore, whenever n > ¢(r), LD'(C,,) > r.

Lemma 2.1. (i) If r is odd, LD'(Cy)) = r.
(i) If r is even, LD (Cyyy—,) = 1 and LD(l)(Ct(T),TH) > forj>0,j€Z.
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Proof: As in the previous section, we say two triples are equivalent if they are equivalent via
a direct match or a flip, i.e. (s,t,u) ~ (z,y,2)if s=z,t=y,u=zors=z1t=y,u=uzx.

Instead of labeling the vertices of C,, directly, we describe a tour on all n = t(r) inequiv-
alent triples such that whenever the tour traverses the edge from (s,t,u) to (z,y,2) then
t =z and u = y. We call this property the contiguity constraint. If the contiguity constraint
is maintained, then n contiguous triples represent the naming subgraphs of the n contiguous
vertices in (). The labeling of C,, follows naturally, as shown in figure 2.

(ssh) s t

~ t
(ss9) (sts) (Lt pN

(t,st) ¢
I/ S"
S 1
(st o
Figure 2: The s — ¢ path and the corresponding labeling in C,,

Let s and ¢ be any two distinct labels so that s # t. Then there exists a path from (s, s, s)
to (t,t,t) which traverses all inequivalent triples that uses labels s and ¢ only. In particular,
we consider the path in figure 2 and call it the s — ¢ path.

When r is odd, the complete graph on r vertices K, is Eulerian. Let E, be an Euler
tour on K,. We construct the tour on Cy,) based on E, as follows: whenever the edge (s,t)
is traversed on E,., the s — ¢ path is traversed on the tour. If (s,s,s) has been traversed
before, skip to (s, s,t). Since K, is Eulerian whenever r is odd, all triples which use only
two distinct numbers must be traversed by this tour.

Consider all triples (s, t,u) where s,t and u are all distinct. There is a path that traverses
the three inequivalent triples involving s, ¢, and u as shown in figure 3. We insert the s—t—u
path into the s — ¢t path as shown in figure 4. Notice that the three vertices could have been
inserted in the ¢ — u path or u — s path. We have now traversed all #(r) triples.

I (stu)
!

(t,u,s)

® (usi)
Figure 3: The s — ¢t — u path.

When 7 is even, not all ¢(r) triples can be traversed in a proper tour. This is so because
whenever (u, s, s) is traversed, (s, s,t), u # t, must be traversed directly after it or after the
tour goes through (s, s, s). Thus, for a fixed s, only an even number of vertices of the form
(s,s,t), s # t can be traversed. When r is even, there is an odd number of vertices of the
form (s,s,t), s # t . Hence, at least r triples must be skipped in touring the triples. So
LD (Cyry—ryj) > 1 for j > 0.

When 7 is even, K, is not Eulerian. Delete a maximum matching in K, so all the vertices
have even degrees. Note that § edges were deleted. Call this new graph K. As described
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(s;sit) (st,u)

(t,u,s)

.(u,st)

(t.st) (tt)
[ ]

P

(stt)

Figure 4: Extending the s — ¢ path.

above, construct a tour on the triples based on the Euler tour of K. Now, the triples of the

form (s, t,u) can be inserted in the tour since only one of the edges (s,t), (s,u) was deleted

from K,. However, there are triples that are missing in the tour. These are the triples that

use only two distinct labels s, ¢ such that (s,t) was one of the edges deleted from K,. Insert

the path (s,t,s), (¢, s,t) after the triple (u, s, t) is visited. We have skipped exactly 2 triples
T

per (s,t) pair: (s,s,t) and (s,t,7); and since g edges were deleted, exactly r triples were

skipped in this tour. ]

We are now ready for the main result of this section. The previous lemma showed that if
n is odd and is exactly equal to #(r), the number of inequivalent triples that can be generated
from r colors, there was a labeling of C,, based on a tour that visited all these triples. We,
then, concluded that LD'(C,,) = r. We also had a similar result when n is even and equal to
t(r) — r. In order to handle cycle lengths between n = t(r) and n = t(r + 1), we now show
how to remove pieces of these tours to construct shorter tours that still fit together.

Theorem 2.2. Given C,, let k € R s.t. n = kQ(];H). Let r = k] > 2.
(i) If v is odd, LD*(C,) = r.

(ii) If r is even and n < TQ(TTH) —r, then LDY(C,) = r ; otherwise, LD'(C,) = r + 1.

Proof: From Lemma 1.1, C, needs at least r colors to have a 1-locally distinguishing
labeling. From Lemma 2.1, when r is even and n > TZ(TTH) —r, C, needs at least 41 colors.
Our strategy now is to modify the Cy,) and Cy(,)—, tours we have constructed in Lemma 2.1.
We remove paths to obtain smaller tours which still maintain the contiguity property. The
following paths and vertices were traversed in Cy,y when 7 was odd and in Cy(y_, when r

was even:
e 1 paths of length 0 that go through (s, s, s). We call these paths TYPE 1.
. (;) paths of length 1 that go through (s,t,s), (¢,s,t). We call these paths TYPE 2.

° (2) paths of length 2 that go through (s,t,u), (¢, u,s), (u,s,t). We call these paths
TYPE 3.

Notice that it is possible to skip the above paths in the tour by connecting the two
neighbors at both ends of the path and the contiguity property is still maintained in the new
tour. See figure 5.



(x,st)

_ (x,5,t)
, I / (sts) | I
/ (sS9 / I l (t,u,s)
I\\ I\\ (t,st) : I
i (55) ~ I ; (st
~ \. (Svtly) (S,t,y) .

Figure 5: Short-cutting the tours in Lemma 2.1 while maintaining the contiguity constraint.

Let r > 3 be odd, we shall show that there exists an r-labeling for C,, whenever #(r —
1) — (r — 1) <n < t(r). Denote the tour that goes through all ¢(r) triples as T.

To obtain a tour on n triples:

(i) when n = #(r) — 25, 0 < j < (}), skip j TYPE 2-paths in T'.

(ii) when n = t(r) =1 =24, 0 < j < (}), skip a TYPE 1-path and j TYPE 2-paths in
T. Denote the tour that goes through #(r) — 2(}) triples as T".

(iii) when n = #(r) — 2(}) — 32z, 0 < z < (), start with 7" and skip z TYPE 3-paths..

(iv) when n = #(r) — 2(}) —1 =3z, 0 < z < (}), start with 7", skip another TYPE
1-path and z TYPE 3-paths.

(v) when n = t(r) — 2(;) —-2-32,0<z2< (g), start with 7", skip two TYPE 1-paths
and skip z TYPE 3-paths.

Hence, when #(r) —2(}) —3(%) = r? <n <i(r), LDY(C,) <r. But t(r—1)— (r — 1) > r?
when r > 5. When r = 3, it is easy to check that a 3-labeling exists for C,, when 7 < n < 9.
Thus, claim (i) and (iib) follow.

When r > 4, r even, we use the same technique above to show that an r-labeling for C,
exists whenever ¢(r—1) < n < t(r)—r. We reiterate that the r triples skipped in constructing
T for the labeling of Cy)_, were not part of the paths skipped above. Furthermore, #(r) —
r—2(3) —3(G) =r*—r<it(r—1)forr>3.

Finally, we note that when r = 2, 2 < n < 6. In these cases, LD'(C,) = 3. O

2(L.
For j =1,2,if n; = k~7(k‘27+1) let r; = [k;]. If ny < ny then ry < ry. Theorem 2.2 implies

that LDY(C,,) < LD'(C,,). That is, LD*(C,,) is monotonic for cycles.

3 An Upper Bound on LD!(C,)

The lower bounds from Lemma 1.1 imply LD*(C,,) = Q(NT}H) In this section, we give an
upper bound on LD?(C,,) for constant i that is an O(logn) factor off the lower bound. The
proof uses probabilistic methods, but we remark that a standard argument where we color at
random with sufficient number of colors so that with high probability, no pair of vertices have
isomorphic naming subgraphs yields a poor upper bound on the number of colors needed
for small 7. Instead, we use a two-stage coloring procedure. First, we color with a smaller
number of colors than would be needed to distinguish all i-th naming subgraphs. However,



the number of colors we used is big enough so that the size of any class of vertices with
equivalent i-naming subgraphs is O(logn). In the second stage, we then greedily refine the
coloring so that vertices that belong to the same equivalence class according to the stage
1-coloring have non-isomorphic naming subgraphs after the refinement.

We prove that there exists a coloring with O(nz;+1 (log n)22_+1) colors, assigning each vertex

an ordered pair of colors (z,y) where z is chosen from a set of (n/log n)T}H colors, and y is
chosen from a set of O(logn) colors.

Fix i. For a coloring ® of the vertices of C,,, define S, = {u : v ~ v under ®}. We will
first show that a coloring of C,, exists where the maximum size of S,, for any v, is not too
large.

Lemma 3.1. There ezists a coloring of C,, with (n/logn) T colors such that max, |.S,| =

24(2i + 1) log n.

1
Proof: Color the vertices of C,, randomly with (n/logn)?+I colors, i.e. for each vertex in

C,, select its color uniformly at random from the set {1,2, ..., (n/log n)ﬁl} We show the
probability that this coloring has greater than O(logn) vertices with isomorphic ith naming
subgraph is less than 1. Thus, the desired coloring must exist.

Let J; be the set that contains the pair (u,v) such that N! and N overlap in k positions.
Let A,, be the event that u ~ v via a direct match and B,, be the event that u ~ v via a
flip. For simplicity, let  be the number of colors used for the labeling of C,.

Claim 3.2. Suppose we select the color of each vertex in C,, uniformly at random from the
set {1,2,...,r}. Then

7«21'% Zf (U, U) € JO

T+ (u,v) € Ji, 1 < k < 2i.

- z
p2it1-T51

P(u~v)=

Proof of claim: If (u,v) € Jy then the labels of N and N are independent. It follows
that P[A,,] = =i

Otherwise, suppose (u,v) € J, 0 < k < 2i. Without loss of generality, let ®(v_;) =
D (i gy1), Pv 1) = P(ui_ks2), o P(v_izk_1) = ®(u;). Thus, the labelsof u_;, u_;yq, ..., u;
are sufficient to determine all the labels in N! and N! if the event A,, is to occur. Hence,

T2i+17k 1

P[A,] = -

P2t~k p2i+l”

If (u,v) € Jy, P[Bu| = rh% Suppose N! and N overlap in k positions. Consider the
graph N,, = N:UN!. N,, has 2(2i + 1) — k vertices. It is not difficult to see that the labels
of N,, must form a palindrome for B,, to occur. Thus,

T2¢+17L§J 1

P[B,,] = =

r22i+l)—k  2it1-[4]°

O
It is interesting to note that the above claim implies it is more likely for u ~ v when their
naming subgraphs overlap.



To bound the size of the equivalence classes S,, we do not consider all N! at once because
the naming subgraphs may overlap and the colorings would not be independent. Instead,
we partition the vertices into 27 4+ 1 sets each with non-overlapping naming subgraphs as
follows. Fix a vertex v, and renumber the vertices v = 0,1, 2,...,n — 1 clockwise around the
cycle from v. Let I, be the indicator random variable for the event A,, U B,,. Partition
the vertices of C), into 2(2i + 1) sets Ag, Ay, ..., Agir1 so that if 0 < u < [2] and j = u

2

(mod 2i + 1) then u € A;. If u > [5] and j = u (mod 2i + 1) then u € Ay;;q14;. Clearly,

the naming subgraphs of any two vertices in A;, for any j, do not overlap by the way the
partitions were constructed and |A4;| < [2(22"—+1)1 Furthermore each set A; has at most one
vertex whose naming subgraphs overlap with N!. Let 6 = 12(2i + 1) — 1 = 24i + 11. Then,

P[|S,| > 2(1+§)logn] = Z I, >2(1+9)logn]
veV(Ch)
4i+1 log n
< ZPZIM>2 +6)3 e )] (1)
= ucA;

since the A;’s form a partition of V' (C,,). From Claim 3.2, it follows that 2(135:11) S ER uea, Tl <

2logn
2i+1 7

Hence,

logn

, 144
ool < PIY L > ——E[Y L]
@) S P > 2

UEA; ucA;

P Ly >2(1+50)

UEAJ‘

145
9 2 Bl uea; lurl (2)

IN

_(1445) logn
< 9 2 2(2i+1)
_ 144

= n @i

= n73
where (2) follows from the fact that if u, w € A; then u and w have disjoint naming subgraphs.
The events I, and I,,, must be independent from each other and the Chernoff’s bounds (see
e.g. [6], p.72) can then be applied to these events. Substituting the above result for 4 on the
right hand side of (1),

P[S,] > 2(1 + 6)logn] < ) ==

and summing over all v,

4; + 1
n2

P[|S,| > 2(1 + ) logn, for some v] < Z P[S, > 2(1+9)logn] <
veV(Cr)




We note that in fact we have found a coloring with high probability and since the condition
(that the coloring should induce only small equivalence classes) is verifiable in linear time,
this implies a simple randomized algorithm to find this coloring. To prove only the existence
of such a coloring, we could have reduced the number of colors in this stage by a constant
factor.

Theorem 3.3. For any constant i, LD'(C,) < 24(2i + 1)nﬁ(log n)22_+1

Proof: Label C, such that for any vertex v, |S,| < 24(2i + 1)logn. Such a coloring is
guaranteed to exist by Lemma 3.1. Let this labeling be ®;. Now consider the vertices in
clockwise order around the cycle, starting arbitrarily. When we reach v, we say v has been
visited and re-color v with the color label ®(v) = (®1(v), P2(v)) where ®;(v) is its label under
the old coloring and ®,(v) is chosen greedily from the set K = {1,2,..,24(2i + 1)logn} as
follows: choose ®,(v) to be the first color in the set K which does not appear in the set
{®s(u)|u is visited ,u ~ v under ®;}. Such a new color always exists by the maximum size
of the equivalence classes in the coloring ®;. Now ®(u) = ®(v) if and only if ®;(u) = &4 (v)
and ®9(u) = Py(v). But we have chosen ®y(u) # P9(v) whenever ®;(u) = ®;(v). Thus, ¢

is a 1-distinguishing labeling that uses at most 24(2i + 1)nﬁ(log 77)21% colors. O

4 Looking out log

We know that LDL31(C,) = 3 when n = 3,4,5 and LDL21(C,) =
LD21(C,) = D(C,). On the other hand, for LDZ(C’ ) =2,i=Q(logn

0
theoretic lower bound (Lemma 1.1). Here we show LDU log n+11) (Cn) =

2 when n > 5 since
n) by the information
2 for n > 5.

Theorem 4.1. LDUsn+1)(C ) = D(C,,).

Proof: Let v be a vertex in C,,. When 2 < n < 11, Nvﬂognﬂ] includes all vertices in C,,.
Thus, LDMen+11(C,) = D(C,) trivially. So assume n > 11. We again use a probabilistic
argument. This time a straightforward random labeling of C), is sufficient to show our result.
For simplicity, we assume n = 2/, j a positive integer.

Let ® be a uniform random labeling of the vertices in C,, with two colors. We shall show
with positive probability, ® is an LD°&”+11 ]abeling. We keep the notation from Section 3.
Note we never consider events where vertex v is compared to itself.

P(®is abad labeling) = P( | ) AwU |J Buw)

(u,v)eVaV (u,0)eVaV
< U 4w+PC | Buw.
(u,0)eVaV (u,0)eVaV

We solve for PlU.myevav Auwl and P[U, ,)ev oy Buo] separately. From Lemma 3.2, P[A,,] =
L = So,

92 log n+3 Snz



(u,0)eVaV

Let (u,v) € Jy. From Lemma 3.2, P[B,,] = g5. If we fix u, there are n — (4logn +
6) + 1 vertices whose naming subgraphs do not overlap with u. Thus, Z( P[By,] =

%(n(nf4logn75)) < L
8n’ 2 = 16

Let (u,v) € Ji, 1 < k < 2i, Ny, has 2(2logn + 3) — k vertices and when B,, occurs,
the labels of N,, form a palindrome . If we remove the same number of vertices from the
endpoints of N,,, then the labels still form a palindrome. Hence, there must be two vertices
» and 7 where N;; is a palindrome embedded in NV, and Ni(l) and N](l) overlap in 2logn + 1

or 2logn + 2 positions depending on the parity of k. This implies

u,w)€Jo

lJ Buw U Bwu |J B

(U,’U)Ejk,k>0 (uzv)EJQIOgn+1 (U,’L))EJQ log n+2

M

Now, when (u,v) € J; for k = 2logn +1 or k = 2logn + 2, P[B,,] = 1-. If we fix u,
there are at most 2 vertices that overlap with u in k& positions. Thus,

Pl |J Bl < > PBu+ Y P[B,)]

(uav)eJk'yk>0 (u,v)GJz log n+1 (U,U)GJQ log n+42
1 1

Y

< 2n( 5

Therefore, P[U, yevev Buol < PlUuwes, Buol + PlU w0 By, < =% and our result

€Jy k>0 —uv 16

follows. This implies the existence of a 2-labeling of C,, that is an LDM°8"+11 Jabeling. O

5 LD' for Almost All Graphs, Open Problems, Future
Directions

This paper has explored the local distinguishing number of cycles. In particular, we showed
that LD'(C,,) is monotonic when 7 = 1. However, our general upper bound on LD*(C,,) does
not. Very recently, Alon [2], has improved the upper bound on LD*(C,,) to within a factor of
2 by using de Bruijn sequences and a result of Lempel [5]. Again, this still does not resolve
monotonicity. We make the following conjecture.

Conjecture 5.1. For a constant i > 1, LD(C,,) is monotonically non-decreasing in n.

We are also interested in the local distinguishing number of other graph families, and for
general graphs. We, thus, ask the following open question:

Question 5.2. What is the ith local distinguishing number of H,,, the n-dimensional hyper-
cube?
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We remark that a random graph property Babai, Erdos and Selkow used for testing
random graph isomorphism in [3] gives a good starting point for the investigation of LD'(G)
for general graphs.

Consider a graph, H, on n vertices where all but two of the vertices have distinct degrees.
LD!(H) < 2 since only the two vertices with the same degrees need to be distinguished. For
K,, LD'(K,) = n. While we do not have a tight upper bound for LD'(G) for an arbitrary
graph G, we show that for almost all graphs, LD'(G) = O(logn).

Let G be a random graph on n vertices where the pair (u, v) is chosen independently as an
edge of G with probability p. Label the vertices of G as vy, vy, ..., v, such that d(v;) > d(v;y1).
Let r = |3logy n]. Consider the following conditions:

(i) Let U = {v1, v, ..., v, }. All vertices in U have distinct degrees;
(ii) The remaining n — r vertices in V' — U have distinct neighborhoods in U.

_1
7

Babai, et al. showed that for sufficiently large n, with probability greater than 1 — n
a random graph on n vertices satisfy the two conditions above.

Theorem 5.3. Almost all graphs can be 1-locally distinguished with |3logn + 1| colors.

Proof: Let G be a random graph that satisfies conditions (i) and (ii). To distinguish vertices

in U from vertices in V — U, color all vertices in V — U with color 1 and the vertices in U

with colors 2, ..., [3logn| + 1. The vertices in V — U can be distinguished from each other

based on their neighborhood sets in U, while the vertices in U can be distinguished from

each other based on their vertex degrees. 0
The tightness of Theorem 5.3 is unknown and we leave it as an open question.
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