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tConsider the indu
ed subgraph of a labeled graph G rooted at vertex v, denotedby N iv, where V (N iv) = fu : 0 � d(u; v) � ig. A labeling of the verti
es of G,� : V (G) ! f1; :::; rg is said to be i-lo
al distinguishing if 8u; v 2 V (G); u 6= v, N iv isnot isomorphi
 to N iu under �. The ith lo
al distinguishing number of G, LDi(G) isthe minimum r su
h that G has an i-lo
al distinguishing labeling that uses r 
olors.LDi(G) is a generalization of the distinguishing number D(G) as de�ned in [1℄.An exa
t value for LD1(Cn) is 
omputed for ea
h n. It is shown that LDi(Cn) =
(n 12i+1 ). In addition, LDi(Cn) � 24(2i+ 1)n 12i+1 (log n) 2i2i+1 for 
onstant i was provenusing probabilisti
 methods. Finally, it is noted that for almost all graphs G, LD1(G) =O(log n).1 Introdu
tionThe following problem was re
ently reintrodu
ed by Albertson and Collins [1℄. Suppose aprofessor has a set of n keys on a 
ir
ular key ring that look similar enough to ea
h otherso that they are indistinguishable to the naked eye. To tell the keys apart, he atta
hes a
olored marker on ea
h key. How many di�erent 
olors of markers must he have, in order tolabel the keys, so that he 
an distinguish the keys from ea
h other? When n � 6, two 
olorssuÆ
e. The professor simply 
hooses 5 
ontiguous keys, labels them with 
olors 1; 2; 1; 2 and2 respe
tively, and labels the rest of the keys with 
olor 1. Sin
e the string 12122 is not apalindrome, i.e., it is not the same as its reverse, the professor 
an identify ea
h key by its
lo
kwise distan
e from the two 
ontiguous keys 
olored 2. However, perhaps surprisingly,it 
an be shown that when n = 3; 4; 5, three di�erent 
olors are required.If n is large, noti
e that the professor has to look all the way a
ross the key ring and
ount nearly up to n=2 keys to determine his key. Going ba
k to our original problem,suppose we add the restri
tion that in order to determine the key he is holding, the professoris allowed to look only at that key and at most i keys to the left and right of that key. Now,what is the minimum number of 
olors he needs? This number, whi
h we 
all the ith lo
al1



distinguishing number of the 
y
le, is the main subje
t of this paper. But we 
an de�ne theith lo
al distinguishing number in a more general setting as follows.The answer to the original problem and the new problem are both dependent on the fa
tthat the keyholder was 
ir
ular. If, instead, the keys were suspended from a straight rod,for example, the answer to the original problem would 
hange: it is not hard to see that two
olors suÆ
e for all n � 2. In [1℄, Albertson and Collins generalized the original problem toarbitrary graphs. Given a graph G, they de�ned the distinguishing number of G, denotedD(G), to be the minimum number of 
olors so that there exists a 
oloring of G that uses thisnumber of 
olors whose group of 
olor-preserving automorphisms is trivial. In parti
ular, thegroup of automorphisms of the un
olored 
y
le 
onsists of all rotations of the 
y
le and 
ipsabout ea
h vertex of the 
y
le. However, for n � 6, the only automorphism of an n-vertex
y
le when 2-
olored as we des
ribed in the �rst paragraph is the identity sin
e the 
olorsof the verti
es must be preserved. In parti
ular, the 5 
ontiguous verti
es labeled 1; 2; 1; 2; 2must be mapped to themselves. Thus, D(Cn) = 2 if n � 6.
u vFigure 1: N2u �= N2v and thus, LD2(G) > 1. By assigning a 
olor to v di�erent from those of theremaining verti
es, we 
an easily prove that LD2(G) = 2.Let G = (V (G); E(G)) be a graph and v 2 V (G). Let N iv be the neighborhood of vout to distan
e i in G; that is, N iv is the indu
ed subgraph of G rooted at v for whi
hV (N iv) := fu : 0 � d(v; u) � ig. If G is a 
olored graph, we also refer to N iv as the ithnaming subgraph of v. The ith naming subgraph of u and the ith naming subgraph of v aresaid to be isomorphi
 if and only if there is an isomorphism from N iu to N iv that maps uonto v, and that additionally preserves 
olors. A labeling, or 
oloring, of the verti
es of G,� : V (G)! f1; :::rg, is said to be i-lo
ally distinguishing if no two verti
es have isomorphi
ith naming subgraphs. Consequently, we say that � is an LDi-labeling of G. The ith lo
aldistinguishing number of G, denoted by LDi(G), is the minimum r su
h that G has an LDilabeling that uses r 
olors. (See �gure 1 for an example.) We note that D(G) is a lowerbound on LDi(G), for all i.This paper 
onsiders LDi(Cn). When i = 0, LD0(Cn) is 
learly n, and LDi(Cn), for �xed
onstant i, will 
learly tend to in�nity as n!1. It is not 
lear that LDi(Cn) will be stri
tlynon-de
reasing, however, as a fun
tion of n. In Se
tion 2, we solve LD1(Cn) exa
tly, andprove that it in
reases monotoni
ally as a fun
tion of n. The information- theoreti
 lowerbound we derived in the preliminary se
tion implies that LDi(Cn) = 
(n 12i+1 ). In Se
tion 3,we use probabilisti
 arguments to give upper bounds for LDi(Cn) when i is a 
onstant. Inparti
ular, we show LDi(Cn) � 24(2i+ 1)n 12i+1 (logn) 2i2i+1 .When i = diameter(G), LDi(G) = D(G). Thus, LDbn2 
(Cn) = D(Cn). In Se
tion 4, weshow that, in fa
t, for i = dlog2 n+ 1e, LDi(Cn) = D(Cn). This implies that, in our originalproblem, there exists a labeling of the keys with two 
olors su
h that the professor 
an alwaysidentify the key he is holding by sear
hing at most O(logn) neighboring keys on both sides,2



instead of sear
hing the entire key ring.At this point, we know little about LDi(G) for graphs other than 
y
les. However as a�rst step, we show that for almost all graphs on n verti
es, when n >> 0, LD1(G) = O(logn)in Se
tion 5.Preliminaries. Consider a vertex v in Cn. When n > 2i+1, N iv is a path with 2i+1 verti
es
entered at vertex v. Let this path 
onsist of verti
es (v�i; v�(i�1); : : : ; v�1; v0; v1; : : : ; vi�1; vi)where vj and and v�j are the two verti
es at distan
e j from v0 = v.Fix the reading of labels in Cn in one dire
tion. Let � be a general labeling of Cn. Weasso
iate a (2i+ 1)-tuple to v, namely,L(v) := (�(v�i);�(v�(i�1)); :::;�(v�1);�(v0);�(v1); :::�(vi�1);�(vi)):The reversed-tuple we denote byL(v) := (�(vi);�(vi�1); :::;�(v1);�(v0);�(v�1); :::�(v�(i�1));�(v�i)):We say u is equivalent to v and use the notation u ' v when either(i) u ' v via a dire
t mat
h where L(u) = L(v), or(ii) u ' v via a 
ip where L(u) = L(v).If u ' v either by a 
ip or a dire
t mat
h then they have isomorphi
 naming subgraphsin Cn. That is, in an LDi-labeling of Cn, no two verti
es u and v have u ' v.We 
lose this se
tion with a simple information-theoreti
 lower bound on LDi(Cn) basedon the number of inequivalent 2i+ 1-tuples that 
an be formed using r 
olors.Lemma 1.1. If n > ri+1(ri+1)2 , then LDi(Cn) > r.Proof: There are r2i+1 (2i + 1)-tuples that 
an be generated using r 
olors. Of these, ri+1are palindromes, i.e. (a1; a2; : : : ; a2i; a2i+1) = (a2i+1; a2i; : : : ; a2; a1). The rest are asymmetri
and their 
ips also appear in the enumeration of the (2i+1)-tuples. Thus, the total numberof inequivalent (2i+1)-tuples is r2i+1�ri+12 +ri+1 = ri+1( ri+12 ). If n > ri+1( ri+12 ), any r-labelingof Cn would map at least two verti
es of Cn to the same (2i+1)-tuple. The lower bound onLDi(Cn) follows.2 On the 1-lo
al distinguishing number of the 
y
leWhen i = 1, N1v 
onsists of v and its two neighbors. In this se
tion, LD1(Cn) is solvedexa
tly using a 
onstru
tive proof.First, we ask a related question: what is the largest 
y
le that 
an be 1-lo
ally dis-tinguished using r 
olors? De�ne t(r) as the number of inequivalent triples that 
an begenerated using r 
olors. From the proof of Lemma 1.1, t(r) = r2( r+12 ): Clearly, Ct(r) isthe largest possible 
y
le that 
an be labeled with r 
olors so that the labeling is 1-lo
allydistinguishing. Furthermore, whenever n > t(r), LD1(Cn) > r.Lemma 2.1. (i) If r is odd, LD1(Ct(r)) = r.(ii) If r is even, LD1(Ct(r)�r) = r and LD(1)(Ct(r)�r+j) > r for j > 0, j 2 Z.3



Proof: As in the previous se
tion, we say two triples are equivalent if they are equivalent viaa dire
t mat
h or a 
ip, i.e. (s; t; u) ' (x; y; z) if s = x; t = y; u = z or s = z; t = y; u = x.Instead of labeling the verti
es of Cn dire
tly, we des
ribe a tour on all n = t(r) inequiv-alent triples su
h that whenever the tour traverses the edge from (s; t; u) to (x; y; z) thent = x and u = y. We 
all this property the 
ontiguity 
onstraint. If the 
ontiguity 
onstraintis maintained, then n 
ontiguous triples represent the naming subgraphs of the n 
ontiguousverti
es in Cn. The labeling of Cn follows naturally, as shown in �gure 2.
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Figure 2: The s� t path and the 
orresponding labeling in CnLet s and t be any two distin
t labels so that s 6= t. Then there exists a path from (s; s; s)to (t; t; t) whi
h traverses all inequivalent triples that uses labels s and t only. In parti
ular,we 
onsider the path in �gure 2 and 
all it the s� t path.When r is odd, the 
omplete graph on r verti
es Kr is Eulerian. Let Er be an Eulertour on Kr. We 
onstru
t the tour on Ct(r) based on Er as follows: whenever the edge (s; t)is traversed on Er, the s � t path is traversed on the tour. If (s; s; s) has been traversedbefore, skip to (s; s; t). Sin
e Kr is Eulerian whenever r is odd, all triples whi
h use onlytwo distin
t numbers must be traversed by this tour.Consider all triples (s; t; u) where s; t and u are all distin
t. There is a path that traversesthe three inequivalent triples involving s; t; and u as shown in �gure 3. We insert the s�t�upath into the s� t path as shown in �gure 4. Noti
e that the three verti
es 
ould have beeninserted in the t� u path or u� s path. We have now traversed all t(r) triples.
(s,t,u)

(t,u,s)

(u,s,t)Figure 3: The s� t� u path.When r is even, not all t(r) triples 
an be traversed in a proper tour. This is so be
ausewhenever (u; s; s) is traversed, (s; s; t), u 6= t, must be traversed dire
tly after it or after thetour goes through (s; s; s). Thus, for a �xed s, only an even number of verti
es of the form(s; s; t), s 6= t 
an be traversed. When r is even, there is an odd number of verti
es of theform (s; s; t), s 6= t . Hen
e, at least r triples must be skipped in touring the triples. SoLD1(Ct(r)�r+j) > r for j > 0.When r is even, Kr is not Eulerian. Delete a maximum mat
hing in Kr so all the verti
eshave even degrees. Note that r2 edges were deleted. Call this new graph K 0r: As des
ribed4
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Figure 4: Extending the s� t path.above, 
onstru
t a tour on the triples based on the Euler tour of K 0r: Now, the triples of theform (s; t; u) 
an be inserted in the tour sin
e only one of the edges (s; t), (s; u) was deletedfrom Kr. However, there are triples that are missing in the tour. These are the triples thatuse only two distin
t labels s; t su
h that (s; t) was one of the edges deleted from Kr. Insertthe path (s; t; s), (t; s; t) after the triple (u; s; t) is visited. We have skipped exa
tly 2 triplesper (s; t) pair: (s; s; t) and (s; t; t); and sin
e r2 edges were deleted, exa
tly r triples wereskipped in this tour.We are now ready for the main result of this se
tion. The previous lemma showed that ifn is odd and is exa
tly equal to t(r), the number of inequivalent triples that 
an be generatedfrom r 
olors, there was a labeling of Cn based on a tour that visited all these triples. We,then, 
on
luded that LD1(Cn) = r. We also had a similar result when n is even and equal tot(r)� r. In order to handle 
y
le lengths between n = t(r) and n = t(r + 1), we now showhow to remove pie
es of these tours to 
onstru
t shorter tours that still �t together.Theorem 2.2. Given Cn, let k 2 R s.t. n = k2(k+1)2 . Let r = dke > 2.(i) If r is odd, LD1(Cn) = r:(ii) If r is even and n � r2(r+1)2 � r, then LD1(Cn) = r ; otherwise, LD1(Cn) = r + 1.Proof: From Lemma 1.1, Cn needs at least r 
olors to have a 1-lo
ally distinguishinglabeling. From Lemma 2.1, when r is even and n > r2(r+1)2 �r, Cn needs at least r+1 
olors.Our strategy now is to modify the Ct(r) and Ct(r)�r tours we have 
onstru
ted in Lemma 2.1.We remove paths to obtain smaller tours whi
h still maintain the 
ontiguity property. Thefollowing paths and verti
es were traversed in Ct(r) when r was odd and in Ct(r)�r when rwas even:� r paths of length 0 that go through (s; s; s). We 
all these paths TYPE 1.� �r2� paths of length 1 that go through (s; t; s), (t; s; t). We 
all these paths TYPE 2.� �r3� paths of length 2 that go through (s; t; u), (t; u; s), (u; s; t). We 
all these pathsTYPE 3.Noti
e that it is possible to skip the above paths in the tour by 
onne
ting the twoneighbors at both ends of the path and the 
ontiguity property is still maintained in the newtour. See �gure 5. 5
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Figure 5: Short-
utting the tours in Lemma 2.1 while maintaining the 
ontiguity 
onstraint.Let r � 3 be odd, we shall show that there exists an r-labeling for Cn whenever t(r �1)� (r � 1) < n � t(r). Denote the tour that goes through all t(r) triples as T .To obtain a tour on n triples:(i) when n = t(r)� 2j; 0 � j � �r2�, skip j TYPE 2-paths in T .(ii) when n = t(r)� 1� 2j; 0 � j � �r2�, skip a TYPE 1-path and j TYPE 2-paths inT . Denote the tour that goes through t(r)� 2�r2� triples as T 0.(iii) when n = t(r)� 2�r2�� 3z; 0 � z � �r3�, start with T 0 and skip z TYPE 3-paths..(iv) when n = t(r) � 2�r2� � 1 � 3z; 0 � z � �r3�, start with T 0, skip another TYPE1-path and z TYPE 3-paths.(v) when n = t(r)� 2�r2�� 2� 3z; 0 � z � �r3�, start with T 0, skip two TYPE 1-pathsand skip z TYPE 3-paths.Hen
e, when t(r)�2�r2��3�r3� = r2 � n � t(r), LDi(Cn) � r. But t(r�1)� (r�1) > r2when r � 5. When r = 3, it is easy to 
he
k that a 3-labeling exists for Cn when 7 � n � 9.Thus, 
laim (i) and (iib) follow.When r � 4, r even, we use the same te
hnique above to show that an r-labeling for Cnexists whenever t(r�1) < n � t(r)�r. We reiterate that the r triples skipped in 
onstru
tingT for the labeling of Ct(r)�r were not part of the paths skipped above. Furthermore, t(r)�r � 2�r2�� 3�r3� = r2 � r < t(r � 1) for r � 3.Finally, we note that when r = 2, 2 � n � 6. In these 
ases, LD1(Cn) = 3.For j = 1; 2, if nj = k2j (kj+1)2 let rj = dkje. If n1 < n2 then r1 � r2. Theorem 2.2 impliesthat LD1(Cn1) � LD1(Cn2). That is, LD1(Cn) is monotoni
 for 
y
les.3 An Upper Bound on LDi(Cn)The lower bounds from Lemma 1.1 imply LDi(Cn) = 
(n 12i+1 ): In this se
tion, we give anupper bound on LDi(Cn) for 
onstant i that is an O(logn) fa
tor o� the lower bound. Theproof uses probabilisti
 methods, but we remark that a standard argument where we 
olor atrandom with suÆ
ient number of 
olors so that with high probability, no pair of verti
es haveisomorphi
 naming subgraphs yields a poor upper bound on the number of 
olors neededfor small i. Instead, we use a two-stage 
oloring pro
edure. First, we 
olor with a smallernumber of 
olors than would be needed to distinguish all i-th naming subgraphs. However,6



the number of 
olors we used is big enough so that the size of any 
lass of verti
es withequivalent i-naming subgraphs is O(logn). In the se
ond stage, we then greedily re�ne the
oloring so that verti
es that belong to the same equivalen
e 
lass a

ording to the stage1-
oloring have non-isomorphi
 naming subgraphs after the re�nement.We prove that there exists a 
oloring withO(n 12i+1 (logn) 2i2i+1 ) 
olors, assigning ea
h vertexan ordered pair of 
olors (x; y) where x is 
hosen from a set of (n= logn) 12i+1 
olors, and y is
hosen from a set of O(logn) 
olors.Fix i. For a 
oloring � of the verti
es of Cn, de�ne Sv = fu : u ' v under �g. We will�rst show that a 
oloring of Cn exists where the maximum size of Sv, for any v, is not toolarge.Lemma 3.1. There exists a 
oloring of Cn with (n= logn) 12i+1 
olors su
h that maxv jSvj =24(2i+ 1) logn.Proof: Color the verti
es of Cn randomly with (n= logn) 12i+1 
olors, i.e. for ea
h vertex inCn sele
t its 
olor uniformly at random from the set f1; 2; :::; (n= logn) 12i+1 g. We show theprobability that this 
oloring has greater than O(logn) verti
es with isomorphi
 ith namingsubgraph is less than 1. Thus, the desired 
oloring must exist.Let Jk be the set that 
ontains the pair (u; v) su
h that N iu and N iv overlap in k positions.Let Auv be the event that u ' v via a dire
t mat
h and Buv be the event that u ' v via a
ip. For simpli
ity, let r be the number of 
olors used for the labeling of Cn.Claim 3.2. Suppose we sele
t the 
olor of ea
h vertex in Cn uniformly at random from theset f1; 2; : : : ; rg. ThenP (u ' v) = ( 2r2i+1 if (u; v) 2 J01r2i+1 + 1r2i+1�d k2 e (u; v) 2 Jk; 1 � k � 2i:Proof of 
laim: If (u; v) 2 J0 then the labels of N (i)u and N (i)v are independent. It followsthat P [Auv℄ = 1r2i+1 .Otherwise, suppose (u; v) 2 Jk; 0 < k � 2i. Without loss of generality, let �(v�i) =�(ui�k+1);�(v�i+1) = �(ui�k+2); :::; �(v�i+k�1) = �(ui): Thus, the labels of u�i; u�i+1; :::; ui�kare suÆ
ient to determine all the labels in N iu and N iv if the event Auv is to o

ur. Hen
e,P [Auv℄ = r2i+1�kr2(2i+1)�k = 1r2i+1 :If (u; v) 2 J0, P[Buv℄ = 1r2i+1 . Suppose N iu and N iv overlap in k positions. Consider thegraph Nuv = N iu [N iv. Nuv has 2(2i+1)� k verti
es. It is not diÆ
ult to see that the labelsof Nuv must form a palindrome for Buv to o

ur. Thus,P [Buv℄ = r2i+1�b k2 
r2(2i+1)�k = 1r2i+1�d k2 e :It is interesting to note that the above 
laim implies it is more likely for u ' v when theirnaming subgraphs overlap. 7



To bound the size of the equivalen
e 
lasses Sv, we do not 
onsider all N iu at on
e be
ausethe naming subgraphs may overlap and the 
olorings would not be independent. Instead,we partition the verti
es into 2i + 1 sets ea
h with non-overlapping naming subgraphs asfollows. Fix a vertex v, and renumber the verti
es v = 0; 1; 2; :::; n� 1 
lo
kwise around the
y
le from v. Let Iuv be the indi
ator random variable for the event Auv [ Buv. Partitionthe verti
es of Cn into 2(2i + 1) sets A0; A1; :::; A4i+1 so that if 0 < u � dn2 e and j � u(mod 2i + 1) then u 2 Aj. If u > dn2 e and j � u (mod 2i + 1) then u 2 A2i+1+j. Clearly,the naming subgraphs of any two verti
es in Aj, for any j, do not overlap by the way thepartitions were 
onstru
ted and jAjj � d n2(2i+1)e: Furthermore ea
h set Aj has at most onevertex whose naming subgraphs overlap with N iv. Let Æ = 12(2i+ 1)� 1 = 24i+ 11. Then,P [jSvj > 2(1 + Æ) logn℄ = P [ Xv2V (Cn) Iuv > 2(1 + Æ) logn℄� 4i+1Xj=0 P [Xu2Aj Iuv > 2(1 + Æ) logn2(2i+ 1)℄; (1)sin
e the Aj's form a partition of V (Cn). FromClaim 3.2, it follows that log n2(2i+1) � E[Pu2Aj Iuv℄ �2 log n2i+1 . Hen
e,P [Xu2Aj Iuv > 2(1 + Æ) logn2(2i+ 1)℄ � P [Xu2Aj Iuv > 1 + Æ2 E[Xu2Aj Iuv℄℄� 2� 1+Æ2 E[Pu2Aj Iuv ℄ (2)� 2� (1+Æ)2 log n2(2i+1)= n� 1+Æ4(2i+1)= n�3where (2) follows from the fa
t that if u; w 2 Aj then u and w have disjoint naming subgraphs.The events Iuv and Iuw must be independent from ea
h other and the Cherno�'s bounds (seee.g. [6℄, p.72) 
an then be applied to these events. Substituting the above result for Æ on theright hand side of (1), P [jSvj > 2(1 + Æ) logn℄ � 4i+1Xj=0 1n3 = 4i + 1n3and summing over all v,P [jSvj > 2(1 + Æ) logn; for some v℄ � Xv2V (Cn)P [Sv > 2(1 + Æ) logn℄ � 4i+ 1n2 :
8



We note that in fa
t we have found a 
oloring with high probability and sin
e the 
ondition(that the 
oloring should indu
e only small equivalen
e 
lasses) is veri�able in linear time,this implies a simple randomized algorithm to �nd this 
oloring. To prove only the existen
eof su
h a 
oloring, we 
ould have redu
ed the number of 
olors in this stage by a 
onstantfa
tor.Theorem 3.3. For any 
onstant i, LDi(Cn) � 24(2i+ 1)n 12i+1 (logn) 2i2i+1 :Proof: Label Cn su
h that for any vertex v, jSvj < 24(2i + 1) logn. Su
h a 
oloring isguaranteed to exist by Lemma 3.1. Let this labeling be �1. Now 
onsider the verti
es in
lo
kwise order around the 
y
le, starting arbitrarily. When we rea
h v, we say v has beenvisited and re-
olor v with the 
olor label �(v) = (�1(v);�2(v)) where �1(v) is its label underthe old 
oloring and �2(v) is 
hosen greedily from the set K = f1; 2; ::; 24(2i+ 1) logng asfollows: 
hoose �2(v) to be the �rst 
olor in the set K whi
h does not appear in the setf�2(u)ju is visited ; u ' v under �1g. Su
h a new 
olor always exists by the maximum sizeof the equivalen
e 
lasses in the 
oloring �1. Now �(u) = �(v) if and only if �1(u) = �1(v)and �2(u) = �2(v). But we have 
hosen �2(u) 6= �2(v) whenever �1(u) = �1(v). Thus, �is a 1-distinguishing labeling that uses at most 24(2i+ 1)n 12i+1 (logn) 2i2i+1 
olors.4 Looking out logWe know that LDbn2 
(Cn) = 3 when n = 3; 4; 5 and LDbn2 
(Cn) = 2 when n > 5 sin
eLDbn2 
(Cn) = D(Cn). On the other hand, for LDi(Cn) = 2, i = 
(logn) by the informationtheoreti
 lower bound (Lemma 1.1). Here we show LD(dlog n+1e)(Cn) = 2 for n > 5.Theorem 4.1. LD(dlog n+1e)(Cn) = D(Cn).Proof: Let v be a vertex in Cn. When 2 � n � 11, N dlog n+1ev in
ludes all verti
es in Cn.Thus, LDdlog n+1e(Cn) = D(Cn) trivially. So assume n > 11. We again use a probabilisti
argument. This time a straightforward random labeling of Cn is suÆ
ient to show our result.For simpli
ity, we assume n = 2j; j a positive integer.Let � be a uniform random labeling of the verti
es in Cn with two 
olors. We shall showwith positive probability, � is an LDdlog n+1e labeling. We keep the notation from Se
tion 3.Note we never 
onsider events where vertex v is 
ompared to itself.P (� is a bad labeling) = P ( [(u;v)2V xV Auv [ [(u;v)2V xV Buv)� P ( [(u;v)2V xV Auv) + P ( [(u;v)2V xV Buv):We solve for P[S(u;v)2V xV Auv℄ and P[S(u;v)2V xV Buv℄ separately. From Lemma 3.2, P [Auv℄ =122 log n+3 = 18n2 . So, 9



P [ [(u;v)2V xV Auv℄ � �n2� 18n2 � 116 :Let (u; v) 2 J0. From Lemma 3.2, P[Buv℄ = 18n2 . If we �x u, there are n � (4 logn +6) + 1 verti
es whose naming subgraphs do not overlap with u. Thus, P(u;v)2J0 P [Buv℄ =18n2 (n(n�4 logn�5)2 ) � 116 .Let (u; v) 2 Jk, 1 � k � 2i, Nuv has 2(2 logn + 3) � k verti
es and when Buv o

urs,the labels of Nuv form a palindrome . If we remove the same number of verti
es from theendpoints of Nuv, then the labels still form a palindrome. Hen
e, there must be two verti
esi and j where Nij is a palindrome embedded in Nuv and N (1)i and N (1)j overlap in 2 logn+1or 2 logn + 2 positions depending on the parity of k. This implies[(u;v)2Jk ;k>0Buv � [(u;v)2J2 log n+1Buv [ [(u;v)2J2 log n+2Buv:Now, when (u; v) 2 Jk for k = 2 logn + 1 or k = 2 logn + 2, P [Buv℄ = 14n : If we �x u,there are at most 2 verti
es that overlap with u in k positions. Thus,P [ [(u;v)2Jk ;k>0Buv℄ � X(u;v)2J2 log n+1 P [Buv℄ + X(u;v)2J2 log n+2 P [Buv℄� 2n( 14n) = 12 :Therefore, P [S(u;v)2V xV Buv℄ � P [S(u;v)2J0 Buv℄+P [S(u;v)2Jk;k>0Buv℄ � 916 and our resultfollows. This implies the existen
e of a 2-labeling of Cn that is an LDdlog n+1e labeling.5 LD1 for Almost All Graphs, Open Problems, FutureDire
tionsThis paper has explored the lo
al distinguishing number of 
y
les. In parti
ular, we showedthat LDi(Cn) is monotoni
 when i = 1. However, our general upper bound on LDi(Cn) doesnot. Very re
ently, Alon [2℄, has improved the upper bound on LDi(Cn) to within a fa
tor of2 by using de Bruijn sequen
es and a result of Lempel [5℄. Again, this still does not resolvemonotoni
ity. We make the following 
onje
ture.Conje
ture 5.1. For a 
onstant i > 1, LDi(Cn) is monotoni
ally non-de
reasing in n.We are also interested in the lo
al distinguishing number of other graph families, and forgeneral graphs. We, thus, ask the following open question:Question 5.2. What is the ith lo
al distinguishing number of Hn, the n-dimensional hyper-
ube? 10



We remark that a random graph property Babai, Erd�os and Selkow used for testingrandom graph isomorphism in [3℄ gives a good starting point for the investigation of LD1(G)for general graphs.Consider a graph, H, on n verti
es where all but two of the verti
es have distin
t degrees.LD1(H) � 2 sin
e only the two verti
es with the same degrees need to be distinguished. ForKn, LD1(Kn) = n. While we do not have a tight upper bound for LD1(G) for an arbitrarygraph G, we show that for almost all graphs, LD1(G) = O(logn).Let G be a random graph on n verti
es where the pair (u; v) is 
hosen independently as anedge of G with probability p. Label the verti
es of G as v1; v2; :::; vn su
h that d(vi) � d(vi+1).Let r = b3 log2 n
. Consider the following 
onditions:(i) Let U = fv1; v2; :::; vrg. All verti
es in U have distin
t degrees;(ii) The remaining n� r verti
es in V � U have distin
t neighborhoods in U .Babai, et al. showed that for suÆ
iently large n, with probability greater than 1� n� 17a random graph on n verti
es satisfy the two 
onditions above.Theorem 5.3. Almost all graphs 
an be 1-lo
ally distinguished with b3 logn+ 1
 
olors.Proof: Let G be a random graph that satis�es 
onditions (i) and (ii). To distinguish verti
esin U from verti
es in V � U , 
olor all verti
es in V � U with 
olor 1 and the verti
es in Uwith 
olors 2; :::; b3 logn
 + 1: The verti
es in V � U 
an be distinguished from ea
h otherbased on their neighborhood sets in U , while the verti
es in U 
an be distinguished fromea
h other based on their vertex degrees.The tightness of Theorem 5.3 is unknown and we leave it as an open question.6 A
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