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1 IntroductionA proper (vertex) coloring of a graph is an assignment ofcolors to its vertices such that no two adjacent verticesreceive the same color. Determining the chromaticnumber of G, the minimum number of colors needed toproperly color G, is NP-hard. It remains NP-hard evento determine if a planar graph is 3-colorable [17]. Eventhe relaxation of the problem to approximate coloring ishard, in the sense that [25] using results of [3, 13] showedthat there exists an � > 0 such that no polynomial timealgorithm can n�-approximate the chromatic numberunless P = NP . (in [4] the value of � is improved underdi�erent hardness assumptions). In the special case of3-colorable graphs, [22] showed that it is not possible to4-color a 3-colorable graph unless P = NP .This paper is concerned with relaxing the coloringproblem in an additional way, we relax the requirementthat each color class be an independent set as follows:Definition 1.1. A (k; d) coloring of a graph G, isa coloring of the vertices of G with k colors, such thateach vertex is adjacent to at most d vertices of the samecolor.For the scheduling problem where vertices representjobs (say users on a computer system), and edgesrepresent con
icts (needing to access one or more ofthe same �les), allowing a defect means tolerating somethreshold of con
ict: each user may �nd the maxslowdown incurred for retrieval of data with 2 con
ictingother users on the system acceptable, and with morethan 2 unacceptable.1.1 Previous Work. Defective coloring was intro-duced almost simultaneously by Burr and Jacobson (see[1]), Harary and Jones [19] and Cowen, Cowen andWoodall [11]. Surveys of this and related colorings aregiven in [15] and [33]. Cowen, Cowen and Woodall [11]focussed on graphs embedded on surfaces and gave acomplete characterization of all k and d such that everyplanar graph is (k; d)-colorable. Namely, there does notexist a d such that every planar graph is (1; d)- or (2; d)-colorable; there exist planar graphs which are not (3; 1)-colorable, but every planar graph is (3; 2)-colorable. To-gether with the (4; 0)-coloring implied by the 4-ColorTheorem, this solves defective chromatic number for the1



2plane. More recently, Poh [28] and Goddard [18] showedthat any planar graph has a special (3; 2)-coloring inwhich each color class is a linear forest (no cycles),though this can in fact be read out of a more generalresult of Woodall [33, Theorem 2.2].For general surfaces, it was shown in [11] that foreach genus g � 0, there exists a k = k(g) such that everygraph on the surface of genus g is (4; k)-colorable. Thiswas improved to (3; k)-colorable by Archdeacon [2].For general graphs, a result of Lov�asz from the1960s [24], which has been rediscovered many timessince (cf. [6, 9, 23, 33]), provides a O(�E)-time algo-rithm for defective coloring graphs of maximum degree�. Theorem 1.1. (Lov�asz) For any k, any graph ofmaximum degree � with E edges can be (k; b�=kc)-colored in time O(�E).Proof. Start with any k-coloring. Consider somevertex v with more than b�=kc of its neighbors self-colored. Since in any k-coloring of the vertices of G,there is always one color class with at most b�=kcmembers in the neighbor set of v, we can 
ip v's colorto this color, thereby decreasing the total number ofmonochromatic edges in the graph by at least 1. Thuswe are done in at most E steps. 2The papers [1, 15, 16] provide other bounds on thedefective chromatic number in terms of other parame-ters and in terms of other defective chromatic numbers.The complexity of constructing defective coloringsis less well-studied. However, R. Cowen [12] showedthat (2; 1)-coloring is NP-Complete for general graphs.We also remark that the proof that any planar graph is(3; 2)-colorable in [11] is constructive, and gives a sim-ple quadratic-time algorithm for (3; 2) coloring planargraphs (just as the proof of the 5-color theorem is con-structive, and immediately implies an n2 algorithm|improved by [10, 14, 26, 32] to a linear-time algorithm).1.2 This paper. In this paper, we �rst extend theresults on the plane to the torus. First, we show thatany graph embeddable on the torus is (3; 2)-colorable.Then we show that any such graph is also (5; 1)-colorable. In both cases, an algorithm for producing thecoloring results, though in the (3; 2) case, the algorithmdepends on the recent linear-time embedding algorithmfor toroidal graphs by Mohar [27], and in the (5; 1)-case,it depends on the graph-minors algorithm of Robertson,Sanders, Seymour, Thomas [29] for 4-coloring planargraphs in quadratic time. The question of whether ornot every toroidal graph is (4; 1)-colorable remains anopen question.Second, we consider defective colorings of graphson arbitrary surfaces. For genus 
, let �d(
) be

the maximum d-defect coloring number of all graphsembeddable on the surface S
 . We show that �d(
) ��0(
)=(d + 1) + 4. Also, Archdeacon [2] showed thatevery graph embeddable on the surface S
 is (3; 3
 +O(1))-colorable. We show that this is improvableto (3; cp
)-colorable, which shows that the maximumdefect needed for 3-colorability is within a constantfactor of that needed for the maximum clique on thatsurface. We present a linear time algorithm that �ndsthe (3; cp
)-coloring. (In this case, an embedding is notrequired.)Hardness results are then presented. We show,perhaps surprisingly, that determining if a graph is(2; 1)-colorable is NP-complete for planar graphs, andthis generalizes to (2; d)-coloring for d � 1. We showthat determining if a planar graph is (3; 1)-colorable isalso NP-Complete. And in general graphs we show that(k; d)-coloring is NP-Complete for all k � 3, and alld � 0, as expected.These impossibility results for general graphs donot, of course, rule out good algorithms for defectivecoloring of bounded-degree graphs. The result of Lov�aszmentioned in the introduction implies, for example, thatany cubic graph can be (2; 1)-colored in linear time (thisis equivalent to the happy partition problem studied byKarlo� [21] for 3-regular graphs), and any six-regulargraph can be (3; 2) colored in linear time.That result also allows generalizing approximationalgorithms for 3- and k-coloring to defects. In partic-ular, a generalization of Wigderson's simple algorithmgives an O(�E) time algorithm to (d(8nd ):5e; d) color,and modi�cation of the KMS algorithm yields a poly-nomial time algorithm to (O((nd )1=4 log(nd )); d) colorany 3-colorable graph. These algorithms can be com-bined with algorithms that �nd large independent setsin high-degree 3-colorable graphs (as in the approachesof [5, 7, 8], to achieve better bounds: the �rst algo-rithm in the very recent Blum-Karger paper for approx-imate 3-coloring uses ~O((n)2=9) colors, and we achievea ~O((n=d)2=9); d)-coloring.Much better approximation ratios may be di�cultto obtain: in general graphs we show that (k; d)-coloringis NP-Complete for all constant k � 3, and d � 0. Asimple reduction from proper coloring and the result of[25] shows that for any constant defect d, there existsan " > 0 such that �d cannot be approximated withina factor of n" unless P = NP.The paper concludes with some open problems.2 Defective coloring on the torusSince every planar graph embeds on the torus there doesnot exist a d such that every toroidal graph is (2; d)-colorable. For 3 colors we need a result that is slightly



3stronger than, but whose proof is strongly similar to theproofs of, Theorem 5 in [11] and Theorem 1 in [18].Theorem 2.1. Every planar graph can be (3; 2)-colored such that any two speci�ed vertices v1 and v2receive speci�ed colors and such that for i = 1; 2 vihas no neighbor with the same color (except for possiblyv3�i).Proof. We prove this by induction on the numberof vertices. First case: v1 and v2 are adjacent, and arerequired to be the same color. Then we contract themto a single vertex, choose a second vertex arbitrarily,and then use the induction hypothesis to (3; 2)-colorthe resultant graph so that the vertex v1v2 is given thespeci�ed color. When we uncontract, v1 and v2 areproperly colored in the resulting (3; 2)-coloring exceptfor the edge v1v2, as required.Second case: v1 and v2 are not adjacent. We mayassume G is a maximal planar graph. So there mustbe a cycle that separates v1 and v2 in G: let W besuch a cycle of minimum length (so W is chord-free).Let G1 (G2) consist of v1 (v2) and all the other verticesand edges inside (outside) W . Let G01 (G02) be obtainedfromG1 (G2) by contracting W into a single new vertexw. These are both planar graphs with fewer verticesthan G. Now by induction, color G01 (G02) with therequisite speci�ed color for v1 (v2) and w speci�ed toget a color distinct from either the color speci�ed forv1 or v2 (possible, since there are three colors), andthe vertices v1, v2 and w each without defect. We nowtransfer these colors back to G, giving all the vertices ofW the color assigned to w.Third case: v1 and v2 are adjacent and required tobe di�erent colors. Then we insert a new vertex on theedge between them, and without violating planarity addedges if necessary, to make G again a maximal planargraph. We then proceed as in the second case. 2Theorem 2.2. Every toroidal graph can be (3; 2)-colored. Furthermore, the coloring can be found inquadratic time.Proof. Without loss of generality we may assumethat G is a maximal toroidal graph. Let C be a minimalnoncontractible cycle ofG. Then cut down the middle ofC: split every vertex and every edge of C into two partsyielding G0 with two copies C1 and C2 of the cycle. Foreach edge linking a vertex v in C to a vertex w outside Cthat edge remains linking w and one of the copies of v asindicated. See Figure 1. At the same time this cut turnsthe torus into a sphere with the graph G0 embedded onthe sphere such that C1 and C2 are the boundaries ofregions.Form graph G00 from G0 by contracting C1 and C2each to a single vertex v1 and v2. Since G00 is planar, by

Figure 1: Cutting along minimumnoncontractible cycleC making C1 and C2 yields a planar graph; C1 and C2are then contracted to single vertices.the above theorem we can 3-color the vertices ofG00 suchthat each color class has maximum degree two, and v1and v2 both receive color 1 while none of their neighborshave color 1.This yields immediately a coloring of G where allthe vertices of C receive color 1. This is the desired(3; 2)-coloring.This coloring can be found in quadratic time. Inusing Theorem 2.1 a total of at most a linear numberof cycles are found and a suitable cycle can be found inlinear time. On the torus a combinatorial embeddingcan be found in linear time by the work of Mohar [27].One simple way to �nd a noncontractible cycle isto consider a breadth-�rst search tree and all theelementary cycles that contain one edge outside the tree.One of these cycle must be noncontractible (as everycycle in the graph is a combination of these elementarycycles). There is a linear number of cycles. To testwhether a cycle is suitable, one may use the embeddingof the original graph and then determine the genus ofthe embeddings of the two subgraphs by counting thevertices, edges and faces and using Euler's formula. 2We turn next to colorings with defect 1.Lemma 2.1. If H is planar and u and v are verticesof H, then H can be (5; 1)-colored such that the inducedgraph hN (u) [N (v) � fu; vgi is 3-colored.Proof. Find a maximal collection P of internallydisjoint (u; v)-paths of length 3. Construct H 0 by, foreach path uaibiv in P, contracting the edge aibi. Theresultant graph H 0 is planar.So by the 4-color theorem, we can 4-color the graphH 0. If we uncontract to get H we have a (4; 1)-coloring of H, since all vertices are properly colored,save those pairs of vertices that were contracted, whichare adjacent with the same color and so have defect 1.If u and v receive the same color in this coloring, we aredone.



4 Otherwise, suppose u receives color 1 and v receivescolor 2. Then any common neighbor is colored 3 or 4.In particular, all the internal vertices of the paths inP receive color 3 or 4, and color classes 1 and 2 areboth independent sets. Now re-color every vertex inhN (u) [ N (v) � fu; vgi that has color 1 or 2 with anew color, color 5. Trivially hN (u) [ N (v) � fu; vgi is3-colored.To prove the theorem we need to show that the newcoloring is a (5; 1)-coloring. For this it is su�cient toshow that the vertices with color 5 form an independentset. But suppose that there are vertices a and b whichare adjacent and colored 5. Then in the original coloringof H they must have had di�erent colors. Say vertex ahad color 2 and vertex b had color 1. Then vertex acannot be adjacent to vertex v and so must be adjacentto vertex u. Similarly, vertex b must be adjacent tovertex v. This yields a path uabv of length 3 in H.Since neither a nor b received color 3 or 4, this is a pathinternally disjoint from the ones in P|a contradiction.2 Theorem 2.3. One can (5; 1)-color any graph em-bedded in the torus. Furthermore, the coloring can befound in quadratic time.Proof. Let G be embedded in the torus. Then thereexists a minimal noncontractible cycle C that is aninduced cycle. Construct a planar graph H by cuttingalong the edges of C, to form two copies of C, andcontracting the two cycles to two single vertices u andv. By the above lemma we can (5; 1)-color H so thatthe neighbors of u and v are 3-colored. This translatesto a (5; 1)-coloring of G � C where the neighbors of Care 3-colored. Since there are two colors which we mayuse for C, we obtain the desired conclusion.As in the previous theorem, �nding the minimalnon-contractible cycle and reducing to a planar graphis accomplished in quadratic time. The time to color theresulting planar graph according to the previous lemmais dominated by the time to 4-color it, which is quadraticby the forbidden minors algorithm of Robertson, Sey-mour, et. al. 2Actually, we obtain the conclusion with at least oneof the color classes being an independent set. But weare unable to resolve the following question.Question 2.1. Is every graph on the torus (4; 1)-colorable?3 General generaFor �xed number of colors, namely 3, Archdeacon [2]showed that a graph is approximately (3; 3
)-colorable.The next theorem shows that this can be improved to(3; cp
)-colorable, and gives a linear time algorithm

to �nd the coloring. This shows that the maximumdefect needed for 3-colorability is within a constantfactor of that needed for the maximum clique on thatsurface. The results of this section follow from countingarguments and thus do not require an embedding of thegraph. If the genus 
 is unknown it can be guessed andincreased if the guaranteed coloring wasn't found.Lemma 3.1. Let t > 12, and suppose G is a graphwith minimum degree at least 3, the vertices of G ofdegree less than t form an independent set, and G hasa 2-cell embedding on the surface of genus 
. Thenthe number of vertices of degree at least t is at most24(
 � 1)=(t� 12).Proof. Let S denote the set of vertices of degree lessthan t and T the vertices of degree at least t. Now, ineach region that is not a triangle add edges betweenvertices of T . One way to do this is, if v1; : : : ; v4 arefour consecutive vertices on the boundary of the regionwith v1 2 T , then if v3 2 T then join v1 and v3 by anedge inside the region, otherwise join v2 and v4, andrepeat as necessary. The result is a triangulation of amultigraphH which has minimumdegree at least 3, andin which the vertices S of degree less than t still form anindependent set. (Multiple edges can arise between twovertices x and y with several common neighbors, whenedges are added between them in each region.)Let � denote the number of edges between S and T ,and � denote the number of edges between vertices of T .Let vi denote the number of vertices of degree i. SinceS is an independent set, it follows that � = Pi<t iviand � + 2� = Pi�t ivi. Since the embedding is atriangulation, it also follows that � � 2�. Hence(t=2� 6)jT j = (t=2� 6)Xi�t vi� X3�i<t(2i� 6)vi +Xi�t(i=2 � 6)vi= Xi<t(i � 6)vi + �+Xi�t(i=2� 6)vi� Xi<t(i � 6)vi + (�=2 + �) +Xi�t(i=2 � 6)vi= Xi (i � 6)vi= 12
 � 12;where the last equality is Euler's formula for triangula-tions. 2Theorem 3.1. A graph of genus 
, in O(V + E)time is (3;max(12;p12
 + 6))-colorable.Proof. Let t = max(12;p12
+7). First pre-processthe graph by removing all vertices of degree at most 2.



5Next, remove all edges e that join two vertices of degreeless than t. Then the minimumdegree is at least 3, andthe vertices of degree less than t form an independentset S.By the above lemma it follows that T = V (G)� Shas at most 24(
 � 1)=(t � 12) members. We forma 3-coloring by making all the vertices of S the �rstcolor, and then half the members of T receive the secondcolor and half the third color. Replacing edges e thatwere removed only a�ects the defects at their endpoints,which have defect at most their degree. Finally, verticesof degree at most 2 can be re-inserted and given a colordistinct from their neighbors. 2Theorem 3.2. There is an O(dp
E + V ) algo-rithm to (p12
=(d + 1) + 6; d) color graphs of genus
. Proof. Suppose G of genus 
 has n vertices and qedges. Set k = p12
=(d+ 1) + 6. Label the vertices ofG v1; v2; : : : ; vn such that vi has the maximum degree�i in the graph Gi = G�fv1; v2; : : : ; vi�1g. (Note that�1 � �2 � : : : � �n.)Case 1: n � (d + 1)p12
. If �1 � (k �1)(d+ 1), then color the graph with k colors by Lov�asz(Theorem 1.1). (This can be done in O(�E) time,where � is at most n � O(dp
) by the same method asin the proof of Theorem 2.1). Otherwise, let j, rangingfrom 0 to K�2 be the �rst index for which �j(d+1)+1 �(k � j � 1)(d + 1) for 0 � j � k � 2. (We prove sucha j exists by contradiction. �1 � (k � 1)(d + 1) and�j(d+1)+1 � (k� j�1)(d+1) for 0 � j � k�2, implies2q = nXi=1�i� (k � 1)(d+ 1) + k�2Xj=1(k � j � 1)(d+ 1)2� (d+ 1)2(k � 2)2 (3.1)But recall that in a graph of genus 
, q � 3n+ 6
,which is � 3(d + 1)p12
 + 6
, by our assumption forcase 1 on n.)Now color vi : : : vi(d+1) with color i for i = 1 : : : j.Then the remainder of the graph can be colored withcolors j+1 : : :k, using Lov�asz (Theorem 1.1). (This canbe done inO(�E) time where � is at most n � O(dp
),by the same method as in the proof of Theorem 2.1).Case 2: n > (d+1)p12
. Find a vertex v of degreeat most (6n + 12
)=n < 6 +p12
=(d+ 1). So one canremove vertex v, color the graph G� v recursively, andthen re-insert vertex v and properly color it. 2The above theorem shows that the number of col-ors needed is asymptotically only a few more than those

needed for the maximum clique on that surface. How-ever, while the theorems in this section are asymptot-ically optimal as a function of the genus, for very lowgenus, say 1 or 2, the colorings they produce may besomewhat unsatisfying. For example, Theorem 4.2 willproduce a (3; 10) coloring of any toroidal graph, whereaswe have already shown that any toroidal graph can be(3; 2)-colored in quadratic time.4 Hardness resultsWe show in this section that determining whether ornot a graph is (2; d)-colorable is NP-complete even forplanar graphs. This extends a result of R. Cowen [12]who showed that (2; 1)-coloring is NP-complete in gen-eral graphs. We show that determining if a planar graphis (3; 1)-colorable is also NP-Complete.We also show that determining whether a graph ofmaximum degree 4 is (2; 1)-colorable is NP-complete,and in general so is determining whether a graph ofmaximum degree 2(d + 1) is (2; d)-colorable for d � 1.Thus there is no simple characterization of graphs forwhich equality holds in Theorem 1.1 and thus there isno equivalent of Brooks' theorem in general for defectivecolorings.Not surprisingly, (k; d)-coloring is NP-Complete ingeneral graphs for all k � 3, and all d � 0. A simplereduction from proper coloring and the result of [25]shows that for any constant defect k, there exists an" > 0 such that �d cannot be approximated within afactor of n" unless P = NP.4.1 Defective coloring in the plane. It is easyto (2; 0)-color any (planar) graph in linear time ifsuch a coloring exists. Determining whether a planargraph is 3-colorable is NP-complete. Since, as was re-marked in the introduction, the theorem in [11] pro-vides a quadratic-time algorithm to (3; 2)-color any pla-nar graph, together with the results of this section, thischaracterizes the complexity of defective coloring in theplane. 1Theorem 4.1. To determine whether or not agraph is (2; 1)-colorable is NP-complete even for graphsof maximum degree 4 and for planar graphs.Proof. We �rst show that (2; 1)-colorability is NP-hard for graphs of maximumdegree 4 by reduction from3-SAT, and then use an idea similar to that used in[30] to planarize the structure. We will show that forany 3-CNF �, there exists a graph G� of maximum1In theory, the 4-color theorem gave a polynomial time al-gorithm for 4-coloring planar graphs; this was improved toquadratic time by the new proof of Robertson, Saunders, Sey-mour, Thomas [29] (although the constants are terrible.)



6degree 4 constructible in polynomial time such that � issatis�able if and only if G� is (2; 1)-colorable.We de�ne a \regulator" as a gadget between twovertices x and y which forces them to have the samecolor but they have no defect within the gadget. Oneregulator consists of vertices u1; u2; : : : ; u6 such that u1and u2 are both adjacent to all four other vertices andu3u4 and u5u6 are edges. See Figure 2. When weconnect x to u3 and y to u6, the only (2; 1)-coloringof this subgraph has fu1; u2; x; yg as one color-class.
x yFigure 2: A regulator: x and y must have the same colorin a (2; 1)-coloringWe need a vertex-gadget: a large subgraph that hasa unique (2; 1)-coloring up to interchanging the namesof the colors. One way to form a vertex-gadget is tostring a series of vertices together with regulators, anduse a K2;3 as a \oppositer" as depicted in Figure 3. Weuse a double line to indicate a regulator.

x x x ¬x ¬x ¬xFigure 3: A vertex-gadget: x and :x receive oppositecolorsNow for an or-gate we use a 5-cycle. Say it'slabeled v1v2v3v4v5v1. Two neighboring vertices v1 andv2 of the 5-cycle are joined by regulators to the verticescorresponding to the desired literals. Then the vertexv4 at distance 2 from them must receive one of thecolors that they do. We can join the output vertex by aregulator to another or-gate and thus simulate an orof three literals. Finally we join the output vertex fromall the second or-gates by regulators. The subgraphassociated with the clause p_q_r is shown in Figure 4.The graph that results is G� and has degree at most 4.The number of vertices in G� is linear in the number mof literals in �; so this reduction is polynomial.Suppose we have a (2,1)-coloring of G�. Withoutloss of generality, assume that the output of each clauseis colored 1. By construction, at least one of the inputsto each clause is colored 1 also. If we associate 1 withtrue and 2 with false, this coloring yields a satisfyingassignment for �. Conversely, if � is satis�able, then

p q r

z

Figure 4: z can be colored 1 iff at least one of p, q or ris colored 1the truth assignment yields a (2; 1)-coloring for G� asfollows: color the vertices associated with true variableswith color 1 and the others with color 2. Then for eachor, if there is one 1-input, color the graph appropriately.It is easy to see that this is a (2,1)-coloring, so we aredone.The graph constructed for the reduction above isunlikely to be planar. However, it can be made planaras follows. We can arrange the vertex-gadgets and theclauses so that the only edges that can cross are onesjoining vertex-gadgets to or-gates. Then, whenever twoedges cross, we can uncross them as shown in Figure 5.It is easy to argue that x0 must receive the same color asx, and y0 must receive the same color as y. The numberof times we might need to use the uncrosser is at mostthe number of pairs of edges in G�, so the resultinggraph would have O(m4) vertices|still polynomial. 2
x

y

y’
x’Figure 5: Uncrossing edges in G�.Notice that the planarizing structure in this con-struction increases the maximumdegree of the graph to5. We have been unable to �nd a reduction to planargraphs of maximum degree 4.Theorem 4.2.a) For any positive integer d, deciding whether a planargraph is (2; d)-colorable is NP-complete.b) Deciding whether a planar graph is (3; 1)-colorable is



7NP-complete.Proof. a) The reduction is from (2; 1)-coloring inplanar graphs. For each vertex v in G introduce thestructure Dv de�ned as follows. The vertex set of Dvconsists of the sets B1; B2; : : : ; Bd�1, each of cardinality2d+ 1, and the vertices c1; c2; : : : ; cd�1. The only edgesin Dv join ci to all of Bi and Bi+1 for 1 � i < d � 1,and cd�1 to all of Bd�1. Then v is joined to B1 and allof the ci. See Figure 6. In any (2; d)-coloring of Dv thevertices ci must all have the same color. Furthermore,at least d � 1 of each Bi must have the color oppositeto the ci. This means that v has defect at least d � 1in Dv. But by giving all the ci the same color as v andall the Bi the opposite color one can ensure that v hasdefect exactly d � 1 in Dv. Thus the resulting planargraph G0 has a (2; d)-coloring if and only if the originalgraph G had a (2; 1)-coloring.
v

B B

BFigure 6: v has defect d� 1 = 3 in Dvb) The reduction is from planar 3-coloring (cf.Stockmeyer [30]). For any graph G in the plane, formthe graph G0 by joining to each vertex of G the 6-vertexHaj�os subgraph H depicted in Figure 7. Since H isouterplanar, all its vertices can be joined to a singlevertex of G and the resulting graph will still be planar.Furthermore, it is simple to check that H is not (2; 1)-colorable, so in any (3; 1)-coloring, all 3 colors mustappear among the vertices of each copy of H, while Hcan be (3; 1)-colored so that a speci�ed color appearsonly once thereby giving each vertex in G exactly onenew defect. Thus G0 will be (3; 1)-colorable if and onlyif G was (3; 0)-colorable. 2Figure 7: An outerplanar graph, H, which is not (2; 1)-colorable.Part (a) of the above theorem implies there is notalways a Brooks{type improvement on Lov�asz's bound.

However we do not know what happens for 3 or morecolors. For example, what is the complexity of (3; 1)-coloring in graphs of maximum degree 6? (We canonly prove intractability for degree 7.) Thus we askthe following question:Question 4.1. In general, what is the complexityof (k; d)-coloring in graphs of maximum degree k(d+1)?5 Approximate Defective ColoringWigderson [31] gives the following algorithm to approx-imately color 3-colorable graphs. Pick a threshold �.Take the node of highest degree and 2 color its neigh-borhood with two new colors. Remove its neighbor-hood. Continue until all nodes have degree at most �.Then we can � + 1 color the remaining graph. Eachround we eliminate at least � nodes using 2 colors, sothe total number of colors used is 2n=� + � + 1, and wechoose � = O(pn) to optimize. We now show how tomodify this allowing for some defect, d.The Wigderson algorithm is a 2-stage procedure,and it �ts into the paradigm that has been used bynearly all subsequent algorithms for approximate 3-coloring (see [5, 7, 20, 8]).1. If the max. or average degree of G is high, use thefact that the graph is 3-colorable to �nd a largeindependent set in the graph2. If the max or average degree of G is low, we cancolor with few colors.We know of no way to improve on step (1), above,when the coloring is relaxed to allow defects, since inall cases, the original algorithms rely heavily on thefact that the (shared) neighborhood of a (set of) vertex(vertices) is 2-colorable, and �nding the 2-coloring iseasy. By contrast (2; d) coloring is NP-Complete forany constant d > 0, as we showed in the previoussection. However, we can generalize both the �rst boundof Wigderson, and the more recent breakthroughs byKarger, Motwani and Sudan [20], both of whichimprove the number of colors used in step (2), to atradeo� for defects. We discuss how to do this, andplug our results into the best new hybrid algorithms toachieve the �nal results in this section.Theorem 5.1. There exists a O(�E)-time algo-rithm to (d(8nd ):5e; d)-color any 3-colorable graph.Proof. We follow the algorithm of Wigderson untilthe maximum degree is �. By Theorem 1.1, theremaining graph can be ( �d ; d) colored in O(�E) time.The total number of colors is 2n=� + �=d which isoptimized by choosing � =p2n=d. 2We next show how to get a similar tradeo� for thenew and better approximation algorithms of Karger,



8Motwani and Sudan [20]. We use the semide�niteprogram approach of [20] to obtain a vector 3-coloring.We then round to an integer defective coloring.5.1 Generalizing the KMS algorithm to de-fects. We sketch how the KMS algorithm generalizesto defects. In the KMS algorithm, �rst, the 3-coloringproblem is relaxed to the vector 3-coloring problem,which is solved in polynomial time using semide�niteprogramming. The vector 3-coloring assigns unit vec-tors from Rn to the vertices so that two vertices thatare adjacent in the graph have vectors whose dot prod-uct is at most �1=2.Next, the vector 3-coloring is rounded to an or-dinary coloring. The better of two rounding methodschooses r = ~O(�1=3) random \centers" (where � is themaximumdegree of the graph), and assigns two vectorsthe same color if they are captured by the same random\center" (see [20] for details). The probability that twovectors corresponding to adjacent vertices are assignedto the same random center is low, since the angle be-tween these vectors is large based on the requirementsof the original SDP. This results (with high probabil-ity) in what they call a semicoloring, where with prob-ability > 1=2, at most n=4 edges are \uncut" meaningtheir endpoints were mapped to the same center. Sinceeach uncut edge is adjacent to at most 2 vertices, thetotal number of vertices adjacent to uncut edges is atmost n=2, so half the vertices in the graph are properlycolored. Recursion on the improperly colored vertices�nishes the coloring with an additional logn factor inthe number of colors. We can tolerate d uncut edgesat each vertex before we need to recolor. Plugging thisobservation into their algorithm with a little additionalwork yields the following result:Theorem 5.2. There exists a polynomial-time al-gorithm to ( ~O((�=d)1=3; d)-color a 3-colorable graph ofon n vertices of degree �.As for KMS, this approach can be combined withthe most clever techniques known for �nding largeindependent sets in high degree graphs, in order tooptimize further the number of colors.For example, combining with the �rst result in therecent preprint of Blum and Karger [8] which obtains~O(n2=9) colors for 3-colorable graphs, we obtain a~O((n=d)2=9; d)-coloring. Thus we obtain the followingtheorem:Theorem 5.3. An n-vertex 3-colorable graph canbe ~O((n=d)2=9; d)-colored in polynomial time.We remark that our tradeo�s generalize to �-colorable graphs for � > 3 just as those of KMS do.The guarantee on the size � of the angle separating thetwo endpoints of an edge in a vector �-coloring is now

only � � arccos(�1=(�� 1)). Thus the probability thatvectors corresponding to adjacent vertices get capturedby the same center increases, but again, we can tolerateup to d such captures at each vertex by allowing defectd.5.2 Tradeo�s. What quality of approximationshould we expect for coloring with defect? Becausegiven a (k; d) coloring of a graph, one can easily obtaina (k(d+ 1); 0) coloring (by d+ 1 coloring each originalcolor class, which has maximum degree d) at most wecould hope to save is a factor of d o� approximationalgorithms for coloring. Thus the following theoremsare easy consequences of hardness results (see [3]) forordinary coloring.Theorem 5.4. (k; d)-colorability is NP-completefor any k � 3 and d � 0.Theorem 5.5. For constant defect d, there existsan " > 0 such that no polynomial-time algorithm can n"-approximate the d-defective chromatic number, unlessP=NP.However, in each of the polynomial-time algorithmswhich approximately 3-color with n" colors, allowing fora defect d, we are saving a multiplicative factor of about1=d". Current approximation algorithms for 3-coloringstill have " bounded su�ciently far from 0 that allowingdefect can still give an interesting tradeo� for even thebest algorithms, but we ask if the savings incurred byallowing defects can be improved.6 Applications and open problemsThe two most immediate open problems are ques-tions 2.1 and 4.1 listed in the text. The �rst askswhether every toroidal graph is (4; 1)-colorable. Thiswould complete the characterization of defective color-ings on the torus. The other asks for the complexity of(k; d)-coloring in graphs of maximum degree k(d + 1).This is known to be easy for d = 0 (by Brooks' theorem)and is now known to be hard for k = 2 and d > 0.We have already asked whether the approximationalgorithms of the previous section can be improved.David Karger has asked if there a universal argumentthat shows for a class of approximation algorithms forvertex coloring that achieve n� colors, we can alwaysachieve (n=d)� colors?The most obvious application of defective coloring isa generalization of the application of coloring to schedul-ing. For the scheduling problem where vertices repre-sent jobs (say users on a computer system), and edgesrepresent con
icts (needing to access one or more ofthe same �les), allowing a defect means tolerating somethreshold of con
ict: each user may �nd the maximum



9slowdown incurred for retrieval of data with 2 con
ict-ing other users on the system acceptable, and with morethan 2 unacceptable. One might generalize this stillfurther: to model di�erent tolerances at di�erent ver-tices. Some jobs may be more tolerant of interferencethan others, or all con
icts could not be equally ex-pensive. This could partially be modeled by allowingmultiple edges, or equivalently weights on the con
ictedges. Notice that the Lov�asz coloring result discussedin Section 1 would still apply in this case. In addition,if di�erent colors correspond to di�erent time periods inthe schedule, it is possible that some jobs may not beable to schedule in all time- slots; rather each job mayhave a di�erent subset of slots in which it is allowedto be scheduled. This is the defective version of the\list-coloring" problem, and would allow the modelingof more complicated constraints.Other approach involves looking at alternative def-initions of defective coloring. One possibility would beto allow some total number of monochromatic edges,rather than the stronger requirement of a maximumthreshold of monochromatic edges at each vertex. Onespeci�c generalization is to allow di�erent defects fordi�erent colors. For example we might use the notation[0,1]-coloring to denote a coloring of the vertices withtwo colors such that the �rst color is an independentset and the second color has defect at most 1. One canshow that even this simple extension of bipartiteness isNP-hard for planar graphs. The generalization of The-orem 1.1 to defects which are bounded as a function ofthe vertex and color has been explored in [6, 9, 23, 33].AcknowledgmentThe �rst and second authors pretentiously thank CafeSha Sha in Greenwich Village, on whose napkins theproof of Theorem 2.2 was �rst scrawled. The �rst andthird authors wish to thank DIMACS: both these au-thors worked on these problems while visiting DIMACSin the Summer of 1994. Thanks to Martin Farach, AlanGoldman, David Karger, Steve Mahaney, Mike Saks,and Carsten Thomassen for helpful discussions.References[1] J. Andrews and M. Jacobson. On a generalizationof chromatic number. Congressus Numer., 47:33{48,1985.[2] D. Archdeacon. A note on defective coloring of graphsin surfaces. Journal of Graph Theory, 11:517{519,1987.[3] S. Arora, C. Lund, R. Motwani, M. Sudan, andM. Szegedy. Proof veri�cation and hardness of ap-proximation problems. In Proceedings of the 33rd An-nual Symposium on Foundations of Computer Science,pages 14{23, 1992.
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