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Abstract

An (ordinary vertex) coloring is a partition of the vertices
of a graph into independent sets. The chromatic number
is the minimum number of colors needed to produce such a
partition. This paper considers a relaxation of coloring in
which the color classes partition the vertices into subgraphs
of degree at most d. d is called the defect of the coloring. A
graph which admits a vertex coloring into &k color classes,
where each vertex is adjacent to at most d self-colored
neighbors is said to be (k, d) colorable.

We consider defective coloring on graphs of bounded
degree, bounded genus, and bounded chromatic number,
presenting complexity results and algorithms. For bounded
degree graphs, a classic result of Lovdsz yields a (k, |A/k])
coloring for graphs with F edges of maximum degree A in
O(AE) time.

For graphs of bounded genus, (2, d), for d > 0 and (3,1)-
coloring are proved NP-Complete, even for planar graphs.
Results of [11] easily can be transformed to (3,2) color any
planar graph in linear time. We show that any toroidal graph
is (3,2)- and (5, 1)-colorable, and quadratic-time algorithms
are presented that find the colorings. For higher surfaces, we
give a linear time algorithm to (3,+/127 + 6) color a graph
of genus v > 2. It is also shown that any graph of genus
vis (v/127/(d + 1) 4 6,d) colorable, and an O(d\/vYE + V)
algorithm is presented that finds the coloring. These bounds
are within a constant factor of what is required for the
maximum clique embeddable in the surface.

Reductions from ordinary vertex coloring show that
(k,d) coloring is NP-complete, and there exists an ¢ > 0
such that no polynomial time algorithm can n‘-approximate

NP. Most

approximation algorithms to approximately color 3-colorable

the defective chromatic number unless P =

graphs can be extend to allow defects. In particular, the

recent Karger-Blum approximate coloring algorithm yields
a polynomial time algorithm to O((n/d)2/9), d)-color any 3-
colorable graph.
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1 Introduction

A proper (vertex) coloring of a graph is an assignment of
colors to its vertices such that no two adjacent vertices
receive the same color. Determining the chromatic
number of (7, the minimum number of colors needed to
properly color G, is NP-hard. It remains NP-hard even
to determine if a planar graph is 3-colorable [17]. Even
the relaxation of the problem to approximate coloring is
hard, in the sense that [25] using results of [3, 13] showed
that there exists an € > 0 such that no polynomial time
algorithm can n®-approximate the chromatic number
unless P = N P. (in [4] the value of ¢ is improved under
different hardness assumptions). In the special case of
3-colorable graphs, [22] showed that it is not possible to
4-color a 3-colorable graph unless P = N P.

This paper is concerned with relaxing the coloring
problem in an additional way, we relax the requirement
that each color class be an independent set as follows:

DerFINITION 1.1. A (k,d) coloring of a graph G, is
a coloring of the vertices of G with k colors, such that
each vertex is adjacent to at most d vertices of the same
color.

For the scheduling problem where vertices represent
jobs (say users on a computer system), and edges
represent conflicts (needing to access one or more of
the same files), allowing a defect means tolerating some
threshold of conflict: each user may find the max
slowdown incurred for retrieval of data with 2 conflicting
other users on the system acceptable, and with more
than 2 unacceptable.

1.1 Previous Work. Defective coloring was intro-
duced almost simultaneously by Burr and Jacobson (see
[1]), Harary and Jones [19] and Cowen, Cowen and
Woodall [11]. Surveys of this and related colorings are
given in [15] and [33]. Cowen, Cowen and Woodall [11]
focussed on graphs embedded on surfaces and gave a
complete characterization of all ¥ and d such that every
planar graph is (k, d)-colorable. Namely, there does not
exist a d such that every planar graph is (1, d)- or (2, d)-
colorable; there exist planar graphs which are not (3, 1)-
colorable, but every planar graph is (3, 2)-colorable. To-
gether with the (4, 0)-coloring implied by the 4-Color
Theorem, this solves defective chromatic number for the



plane. More recently, Poh [28] and Goddard [18] showed
that any planar graph has a special (3,2)-coloring in
which each color class is a linear forest (no cycles),
though this can in fact be read out of a more general
result of Woodall [33, Theorem 2.2].

For general surfaces, it was shown in [11] that for
each genus ¢ > 0, there exists a k = k(g) such that every
graph on the surface of genus g is (4, k)-colorable. This
was improved to (3, k)-colorable by Archdeacon [2].

For general graphs, a result of Lovasz from the
1960s [24], which has been rediscovered many times
since (cf. [6, 9, 23, 33]), provides a O(AFE)-time algo-
rithm for defective coloring graphs of maximum degree
A.

THEOREM 1.1. (LovAsz) For any k, any graph of
mazimum degree A with E edges can be (k,|A/k])-
colored in time O(AE).

Proof. Start with any k-coloring. Consider some
vertex v with more than |A/k| of its neighbors self-
colored. Since in any k-coloring of the vertices of G,
there is always one color class with at most |A/k]
members in the neighbor set of v, we can flip v’s color
to this color, thereby decreasing the total number of
monochromatic edges in the graph by at least 1. Thus
we are done in at most E steps. O

The papers [1, 15, 16] provide other bounds on the
defective chromatic number in terms of other parame-
ters and in terms of other defective chromatic numbers.

The complexity of constructing defective colorings
is less well-studied. However, R. Cowen [12] showed
that (2, 1)-coloring is NP-Complete for general graphs.
We also remark that the proof that any planar graph is
(3,2)-colorable in [11] is constructive, and gives a sim-
ple quadratic-time algorithm for (3,2) coloring planar
graphs (just as the proof of the 5-color theorem is con-
structive, and immediately implies an n? algorithm—
improved by [10, 14, 26, 32] to a linear-time algorithm).

1.2 This paper. In this paper, we first extend the
results on the plane to the torus. First, we show that
any graph embeddable on the torus is (3, 2)-colorable.
Then we show that any such graph is also (5,1)-
colorable. In both cases, an algorithm for producing the
coloring results, though in the (3, 2) case, the algorithm
depends on the recent linear-time embedding algorithm
for toroidal graphs by Mohar [27], and in the (5, 1)-case,
it depends on the graph-minors algorithm of Robertson,
Sanders, Seymour, Thomas [29] for 4-coloring planar
graphs in quadratic time. The question of whether or
not every toroidal graph is (4, 1)-colorable remains an
open question.

Second, we consider defective colorings of graphs
on arbitrary surfaces. For genus 7, let xq4(y) be

the maximum d-defect coloring number of all graphs
embeddable on the surface S,. We show that ya(y) <
xo(7)/(d + 1) + 4. Also, Archdeacon [2] showed that
every graph embeddable on the surface S, is (3,3 +
O(1))-colorable.  We show that this is improvable
to (3, c\/7)-colorable, which shows that the maximum
defect needed for 3-colorability is within a constant
factor of that needed for the maximum clique on that
surface. We present a linear time algorithm that finds
the (3, ¢,/7)-coloring. (In this case, an embedding is not
required.)

Hardness results are then presented. We show,
perhaps surprisingly, that determining if a graph is
(2, 1)-colorable is NP-complete for planar graphs, and
this generalizes to (2, d)-coloring for d > 1. We show
that determining if a planar graph is (3, 1)-colorable is
also NP-Complete. And in general graphs we show that
(k, d)-coloring is NP-Complete for all £ > 3, and all
d > 0, as expected.

These impossibility results for general graphs do
not, of course, rule out good algorithms for defective
coloring of bounded-degree graphs. The result of Lovasz
mentioned in the introduction implies, for example, that
any cubic graph can be (2, 1)-colored in linear time (this
is equivalent to the happy partition problem studied by
Karloff [21] for 3-regular graphs), and any six-regular
graph can be (3,2) colored in linear time.

That result also allows generalizing approximation
algorithms for 3- and k-coloring to defects. In partic-
ular, a generalization of Wigderson’s simple algorithm
gives an O(AE) time algorithm to ([(22)-],d) color,
and modification of the KMS algorithm yields a poly-
nomial time algorithm to (O((%)1/4log(%)),d) color
any 3-colorable graph. These algorithms can be com-
bined with algorithms that find large independent sets
in high-degree 3-colorable graphs (as in the approaches
of [5, 7, 8], to achieve better bounds: the first algo-
rithm in the very recent Blum-Karger paper for approx-
imate 3-coloring uses O((n)%°) colors, and we achieve
a O((n/d)*/®), d)-coloring.

Much better approximation ratios may be difficult
to obtain: in general graphs we show that (k, d)-coloring
is NP-Complete for all constant & > 3, and d > 0. A
simple reduction from proper coloring and the result of
[25] shows that for any constant defect d, there exists
an € > 0 such that x4 cannot be approximated within
a factor of n® unless P = NP.

The paper concludes with some open problems.

2 Defective coloring on the torus

Since every planar graph embeds on the torus there does
not exist a d such that every toroidal graph is (2,d)-
colorable. For 3 colors we need a result that is slightly



stronger than, but whose proof is strongly similar to the
proofs of, Theorem 5 in [11] and Theorem 1 in [18].

THEOREM 2.1. Fvery planar graph can be (3,2)-
colored such that any two specified vertices vi and vs
receive specified colors and such that for i = 1,2 v;
has no neighbor with the same color (except for possibly
1}3_2').

Proof. We prove this by induction on the number
of vertices. First case: v; and vy are adjacent, and are
required to be the same color. Then we contract them
to a single vertex, choose a second vertex arbitrarily,
and then use the induction hypothesis to (3,2)-color
the resultant graph so that the vertex vyvs 1s given the
specified color. When we uncontract, v; and vy are
properly colored in the resulting (3, 2)-coloring except
for the edge vyv2, as required.

Second case: v; and v are not adjacent. We may
assume G is a maximal planar graph. So there must
be a cycle that separates vy and vy in G: let W be
such a cycle of minimum length (so W is chord-free).
Let Gy (G'2) consist of v1 (v2) and all the other vertices
and edges inside (outside) W. Let G} (G4) be obtained
from G1 (G2) by contracting W into a single new vertex
w. These are both planar graphs with fewer vertices
than . Now by induction, color GI1 (GIZ) with the
requisite specified color for v1 (v2) and w specified to
get a color distinct from either the color specified for
vy or va (possible, since there are three colors), and
the vertices v1, vo and w each without defect. We now
transfer these colors back to GG, giving all the vertices of
W the color assigned to w.

Third case: vy and vy are adjacent and required to
be different colors. Then we insert a new vertex on the
edge between them, and without violating planarity add
edges if necessary, to make (G again a maximal planar
graph. We then proceed as in the second case. O

THEOREM 2.2. Fvery toroidal graph can be (3,2)-
colored. Furthermore, the coloring can be found n
quadratic time.

Proof. Without loss of generality we may assume
that GG is a maximal toroidal graph. Let C' be a minimal
noncontractible cycle of G. Then cut down the middle of
C": split every vertex and every edge of C into two parts
yielding G’ with two copies C; and Cs of the cycle. For
each edge linking a vertex v in C' to a vertex w outside C'
that edge remains linking w and one of the copies of v as
indicated. See Figure 1. At the same time this cut turns
the torus into a sphere with the graph G’ embedded on
the sphere such that €y and C5 are the boundaries of
regions.

Form graph G” from G’ by contracting C; and Cs
each to a single vertex vy and vs. Since G is planar, by

Figure 1: Cutting along minimum noncontractible cycle
C making € and C5 yields a planar graph; C; and Cs
are then contracted to single vertices.

the above theorem we can 3-color the vertices of G such
that each color class has maximum degree two, and vy
and vs both receive color 1 while none of their neighbors
have color 1.

This yields immediately a coloring of G where all
the vertices of (' receive color 1. This is the desired
(3,2)-coloring.

This coloring can be found in quadratic time. In
using Theorem 2.1 a total of at most a linear number
of cycles are found and a suitable cycle can be found in
linear time. On the torus a combinatorial embedding
can be found in linear time by the work of Mohar [27].
One simple way to find a noncontractible cycle is
to consider a breadth-first search tree and all the
elementary cycles that contain one edge outside the tree.
One of these cycle must be noncontractible (as every
cycle in the graph is a combination of these elementary
cycles). There is a linear number of cycles. To test
whether a cycle is suitable, one may use the embedding
of the original graph and then determine the genus of
the embeddings of the two subgraphs by counting the
vertices, edges and faces and using Euler’s formula. O

We turn next to colorings with defect 1.

LEmMaA 2.1. If H is planar and u and v are vertices
of H, then H can be (5, 1)-colored such that the induced
graph (N (u) U N(v) — {u,v}) is 3-colored.

Proof. Find a maximal collection P of internally
disjoint (u,v)-paths of length 3. Construct H’ by, for
each path ua;b;v in P, contracting the edge a;b;. The
resultant graph H' is planar.

So by the 4-color theorem, we can 4-color the graph
H'. If we uncontract to get H we have a (4,1)-
coloring of H, since all vertices are properly colored,
save those pairs of vertices that were contracted, which
are adjacent with the same color and so have defect 1.
If w and v receive the same color in this coloring, we are
done.

\ /




Otherwise, suppose u receives color 1 and v receives
color 2. Then any common neighbor is colored 3 or 4.
In particular, all the internal vertices of the paths in
P receive color 3 or 4, and color classes 1 and 2 are
both independent sets. Now re-color every vertex in
(N(u) U N(v) — {u,v}) that has color 1 or 2 with a
new color, color b. Trivially (N(u) U N(v) — {u,v}) is
3-colored.

To prove the theorem we need to show that the new
coloring is a (5, 1)-coloring. For this it is sufficient to
show that the vertices with color 5 form an independent
set. But suppose that there are vertices a and b which
are adjacent and colored 5. Then in the original coloring
of H they must have had different colors. Say vertex a
had color 2 and vertex b had color 1. Then vertex a
cannot be adjacent to vertex v and so must be adjacent
to vertex u. Similarly, vertex b must be adjacent to
vertex v. This yields a path wabv of length 3 in H.
Since neither a nor b received color 3 or 4, this is a path
internally disjoint from the ones in P—a contradiction.
O

THEOREM 2.3. One can (5, 1)-color any graph em-
bedded wn the torus. Furthermore, the coloring can be
found i quadratic time.

Proof. Let G be embedded in the torus. Then there
exists a minimal noncontractible cycle C' that is an
induced cycle. Construct a planar graph H by cutting
along the edges of €, to form two copies of C, and
contracting the two cycles to two single vertices u and
v. By the above lemma we can (5, 1)-color H so that
the neighbors of « and v are 3-colored. This translates
to a (b, 1)-coloring of G — C' where the neighbors of C
are 3-colored. Since there are two colors which we may
use for C'; we obtain the desired conclusion.

As in the previous theorem, finding the minimal
non-contractible cycle and reducing to a planar graph
is accomplished in quadratic time. The time to color the
resulting planar graph according to the previous lemma
is dominated by the time to 4-color it, which is quadratic
by the forbidden minors algorithm of Robertson, Sey-
mour, et. al. O

Actually, we obtain the conclusion with at least one
of the color classes being an independent set. But we
are unable to resolve the following question.

QUESTION 2.1. Is every graph on the torus (4,1)-
colorable?

3 General genera

For fixed number of colors, namely 3, Archdeacon [2]
showed that a graph is approximately (3, 37)-colorable.
The next theorem shows that this can be improved to
(3, cy/7)-colorable, and gives a linear time algorithm

to find the coloring. This shows that the maximum
defect needed for 3-colorability is within a constant
factor of that needed for the maximum clique on that
surface. The results of this section follow from counting
arguments and thus do not require an embedding of the
graph. If the genus 7 is unknown it can be guessed and
increased if the guaranteed coloring wasn’t found.

LEMMA 3.1. Lett > 12, and suppose G s a graph
with minimum degree at least 3, the vertices of G of
degree less than t form an independent set, and G has
a 2-cell embedding on the surface of genus . Then
the number of vertices of degree at least t is at most
24(y = 1)/(t — 12).

Proof. Let S denote the set of vertices of degree less
than ¢ and 7T the vertices of degree at least ¢t. Now, in
each region that is not a triangle add edges between
vertices of 7. One way to do this is, if vy,...,vs are
four consecutive vertices on the boundary of the region
with vy € T, then if v3 € T then join v; and vz by an
edge inside the region, otherwise join vy and w4, and
repeat as necessary. The result is a triangulation of a
multigraph A which has minimum degree at least 3, and
in which the vertices S of degree less than ¢ still form an
independent set. (Multiple edges can arise between two
vertices # and y with several common neighbors, when
edges are added between them in each region.)

Let o denote the number of edges between S and T,
and 7 denote the number of edges between vertices of T'.
Let v; denote the number of vertices of degree 7. Since
S i1s an independent set, it follows that o = Zkt 1;
and o + 28 = > ,5,4v;. Since the embedding is a
triangulation, it also follows that o < 23. Hence

t/2=6)T] = (t/2—6)> v
i>t
< D@6+ Y (i/2-6)
3<i<t i>t
= Z(z —6)v; + o+ Z(z/? —6)v;
i<t >t

< D (=6t (a/24 )+ D> _(i/2—6);

i<t i>t
= > (i—6)w
= 12y —12,

where the last equality is Euler’s formula for triangula-
tions. O

THEOREM 3.1. A graph of genus v, in O(V + E)
time is (3, max(12,1/12y + 6))-colorable.

Proof. Let t = max(12,/12y+T7). First pre-process
the graph by removing all vertices of degree at most 2.



Next, remove all edges e that join two vertices of degree
less than £. Then the minimum degree is at least 3, and
the vertices of degree less than ¢ form an independent
set S.

By the above lemma it follows that 7= V(G) — S
has at most 24(y — 1)/(t — 12) members. We form
a 3-coloring by making all the vertices of S the first
color, and then half the members of T" receive the second
color and half the third color. Replacing edges e that
were removed only affects the defects at their endpoints,
which have defect at most their degree. Finally, vertices
of degree at most 2 can be re-inserted and given a color
distinct from their neighbors. O

THEOREM 3.2. There is an O(d\/7E + V) algo-
rithm to (\/127v/(d + 1) + 6,d) color graphs of genus
.

Proof. Suppose G of genus v has n vertices and ¢
edges. Set k = /127/(d + 1) + 6. Label the vertices of
G vy,vg, ..., v, such that v; has the maximum degree
A; in the graph G; = G —{v1,va,...,v;—1}. (Note that
A >Ny > 0 > A,

Case 1: n < (d+ 1)/12y. If Ay < (k —
1)(d+ 1), then color the graph with & colors by Lovasz
(Theorem 1.1). (This can be done in O(AFE) time,
where A is at most n < O(d,/y) by the same method as
in the proof of Theorem 2.1). Otherwise, let j, ranging
from 0 to K —2 be the first index for which Ajg11)41 <
(k—j—1(d+1)for 0 <j<k—2 (We prove such
a j exists by contradiction. Ay > (k — 1)(d+ 1) and
Ajiayryer > (k—j—1)(d+1) for 0 < j < k—2, implies

2¢ = Zn:Ai
> (k—l)(d—l—l)—I—Z_:(k—j_1)(d—|—1)2
> (d+1)*(k-2)° _ (3.1)

But recall that in a graph of genus v, ¢ < 3n 4+ 6~,
which is < 3(d 4+ 1)y/12y + 67, by our assumption for
case 1 on n.)

Now color v; ... viaq1) with color 7 for i = 1...j.
Then the remainder of the graph can be colored with
colors j+1...k, using Lovasz (Theorem 1.1). (This can
be done in O(AE) time where A is at most n < O(d\/7),
by the same method as in the proof of Theorem 2.1).

Case 2: n > (d+1)y/12y. Find a vertex v of degree
at most (6n + 12v)/n < 6 4+ +/12y/(d + 1). So one can
remove vertex v, color the graph GG — v recursively, and
then re-insert vertex v and properly color it. O

The above theorem shows that the number of col-
ors needed is asymptotically only a few more than those

needed for the maximum clique on that surface. How-
ever, while the theorems in this section are asymptot-
ically optimal as a function of the genus, for very low
genus, say 1 or 2, the colorings they produce may be
somewhat unsatisfying. For example, Theorem 4.2 will
produce a (3, 10) coloring of any toroidal graph, whereas
we have already shown that any toroidal graph can be
(3,2)-colored in quadratic time.

4 Hardness results

We show in this section that determining whether or
not a graph is (2, d)-colorable is NP-complete even for
planar graphs. This extends a result of R. Cowen [12]
who showed that (2, 1)-coloring is NP-complete in gen-
eral graphs. We show that determining if a planar graph
is (3, 1)-colorable is also NP-Complete.

We also show that determining whether a graph of
maximum degree 4 is (2, 1)-colorable is NP-complete,
and in general so is determining whether a graph of
maximum degree 2(d 4+ 1) is (2, d)-colorable for d > 1.
Thus there is no simple characterization of graphs for
which equality holds in Theorem 1.1 and thus there is
no equivalent of Brooks’ theorem in general for defective
colorings.

Not surprisingly, (k, d)-coloring is NP-Complete in
general graphs for all £ > 3, and all d > 0. A simple
reduction from proper coloring and the result of [25]
shows that for any constant defect £, there exists an
e > 0 such that x4 cannot be approximated within a
factor of n® unless P = NP.

4.1 Defective coloring in the plane. It is easy
to (2,0)-color any (planar) graph in linear time if
such a coloring exists. Determining whether a planar
graph 1s 3-colorable is NP-complete. Since, as was re-
marked in the introduction, the theorem in [11] pro-
vides a quadratic-time algorithm to (3, 2)-color any pla-
nar graph, together with the results of this section, this
characterizes the complexity of defective coloring in the
plane. !

THeEOREM 4.1. To
graph is (2,1)-colorable is NP-complete even for graphs
of maximum degree 4 and for planar graphs.

Proof. We first show that (2, 1)-colorability is NP-
hard for graphs of maximum degree 4 by reduction from
3-SAT, and then use an idea similar to that used in
[30] to planarize the structure. We will show that for
any 3-CNF ¢, there exists a graph G4 of maximum

determine whether or not a

TTn theory, the 4-color theorem gave a polynomial time al-
gorithm for 4-coloring planar graphs; this was improved to
quadratic time by the new proof of Robertson, Saunders, Sey-

mour, Thomas [29] (although the constants are terrible.)



degree 4 constructible in polynomial time such that ¢ is
satisfiable if and only if G is (2, 1)-colorable.

We define a “regulator” as a gadget between two
vertices # and y which forces them to have the same
color but they have no defect within the gadget. One
regulator consists of vertices uy, us, ..., us such that u
and uy are both adjacent to all four other vertices and
usug and usug are edges. See Figure 2. When we
connect = to uz and y to ug, the only (2, 1)-coloring
of this subgraph has {uy, us, 2, y} as one color-class.

Figure 2: A regulator: # and y must have the same color
in a (2, 1)-coloring

We need a vertex-gadget: a large subgraph that has
a unique (2, 1)-coloring up to interchanging the names
of the colors. One way to form a vertex-gadget is to
string a series of vertices together with regulators, and
use a /{5 3 as a “oppositer” as depicted in Figure 3. We
use a double line to indicate a regulator.

L —9
X X —X —X

Figure 3: A vertex-gadget:  and —x receive opposite
colors

o——o—
X X

Now for an OR-gate we use a b-cycle. Say it’s
labeled vivsv3vavsv;. Two neighboring vertices v and
vy of the b-cycle are joined by regulators to the vertices
corresponding to the desired literals. Then the vertex
vyg at distance 2 from them must receive one of the
colors that they do. We can join the output vertex by a
regulator to another OR-gate and thus simulate an OR
of three literals. Finally we join the output vertex from
all the second OR-gates by regulators. The subgraph
associated with the clause pV ¢V r 1s shown in Figure 4.
The graph that results is G4 and has degree at most 4.
The number of vertices in G4 is linear in the number m
of literals in ¢; so this reduction is polynomial.

Suppose we have a (2,1)-coloring of G,. Without
loss of generality, assume that the output of each clause
is colored 1. By construction, at least one of the inputs
to each clause is colored 1 also. If we associate 1 with
TRUE and 2 with FALSE, this coloring yields a satisfying
assignment for ¢. Conversely, if ¢ is satisfiable, then

[
p q
Figure 4: z can be colored 1 iff at least one of p, q or r
is colored 1

the truth assignment yields a (2, 1)-coloring for Gy as
follows: color the vertices associated with true variables
with color 1 and the others with color 2. Then for each
OR, if there is one l-input, color the graph appropriately.
It is easy to see that this is a (2,1)-coloring, so we are
done.

The graph constructed for the reduction above is
unlikely to be planar. However, it can be made planar
as follows. We can arrange the vertex-gadgets and the
clauses so that the only edges that can cross are ones
joining vertex-gadgets to OR-gates. Then, whenever two
edges cross, we can uncross them as shown in Figure 5.
It is easy to argue that x’ must receive the same color as
z, and 3y’ must receive the same color as y. The number
of times we might need to use the uncrosser is at most
the number of pairs of edges in Gy, so the resulting
graph would have O(m*) vertices—still polynomial. O

Figure 5: Uncrossing edges in Gg.

Notice that the planarizing structure in this con-
struction increases the maximum degree of the graph to
5. We have been unable to find a reduction to planar
graphs of maximum degree 4.

THEOREM 4.2.

a) For any positive integer d, deciding whether a planar
graph is (2,d)-colorable is NP-complete.
b) Deciding whether a planar graph is (3,1)-colorable is



NP-complete.

Proof. a) The reduction is from (2, 1)-coloring in
planar graphs. For each vertex v in G introduce the
structure D, defined as follows. The vertex set of D,
consists of the sets By, Ba, ..., Bs_1, each of cardinality
2d+ 1, and the vertices ¢1,¢a,...,¢c4—1. The only edges
in D, join ¢; to all of B; and By for 1 << d—1,
and c¢q_1 to all of Bg_1. Then v is joined to B; and all
of the ¢;. See Figure 6. In any (2, d)-coloring of D, the
vertices ¢; must all have the same color. Furthermore,
at least d — 1 of each B; must have the color opposite
to the ¢;. This means that v has defect at least d — 1
in D,. But by giving all the ¢; the same color as v and
all the B; the opposite color one can ensure that v has
defect exactly d — 1 in D,. Thus the resulting planar
graph G’ has a (2, d)-coloring if and only if the original
graph G had a (2, 1)-coloring.

Figure 6: v has defect d —1 =3 1n D,

b) The reduction is from planar 3-coloring (cf.
Stockmeyer [30]). For any graph G in the plane, form
the graph G’ by joining to each vertex of GG the 6-vertex
Hajés subgraph H depicted in Figure 7. Since H is
outerplanar, all its vertices can be joined to a single
vertex of G' and the resulting graph will still be planar.
Furthermore, it is simple to check that H is not (2,1)-
colorable, so in any (3,1)-coloring, all 3 colors must
appear among the vertices of each copy of H, while H
can be (3,1)-colored so that a specified color appears
only once thereby giving each vertex in ¢ exactly one
new defect. Thus G’ will be (3, 1)-colorable if and only
if G was (3,0)-colorable. O

Figure 7: An outerplanar graph, H, which is not (2, 1)-
colorable.

Part (a) of the above theorem implies there is not
always a Brooks—type improvement on Lovasz’s bound.

However we do not know what happens for 3 or more
colors. For example, what is the complexity of (3,1)-
coloring in graphs of maximum degree 67 (We can
only prove intractability for degree 7.) Thus we ask
the following question:

QUESTION 4.1. In general, what is the complexity
of (k,d)-coloring in graphs of mazimum degree k(d+1)?

5 Approximate Defective Coloring

Wigderson [31] gives the following algorithm to approx-
imately color 3-colorable graphs. Pick a threshold 6.
Take the node of highest degree and 2 color its neigh-
borhood with two new colors. Remove its neighbor-
hood. Continue until all nodes have degree at most §.
Then we can § 4+ 1 color the remaining graph. Each
round we eliminate at least é nodes using 2 colors, so
the total number of colors used is 2n/8 + 6 + 1, and we
choose § = O(/n) to optimize. We now show how to
modify this allowing for some defect, d.

The Wigderson algorithm is a 2-stage procedure,
and it fits into the paradigm that has been used by
nearly all subsequent algorithms for approximate 3-
coloring (see [5, 7, 20, 8]).

1. If the max. or average degree of GG is high, use the
fact that the graph is 3-colorable to find a large
independent set in the graph

2. If the max or average degree of GG is low, we can
color with few colors.

We know of no way to improve on step (1), above,
when the coloring is relaxed to allow defects, since in
all cases, the original algorithms rely heavily on the
fact that the (shared) neighborhood of a (set of) vertex
(vertices) is 2-colorable, and finding the 2-coloring is
easy. By contrast (2,d) coloring is NP-Complete for
any constant d > 0, as we showed in the previous
section. However, we can generalize both the first bound
of Wigderson, and the more recent breakthroughs by
Karger, Motwani and Sudan [20], both of which
improve the number of colors used in step (2), to a
tradeoff for defects. We discuss how to do this, and
plug our results into the best new hybrid algorithms to
achieve the final results in this section.

THEOREM b5.1. There exists a O(AE)-time algo-

rithm to ([(%T")'E’],d)-color any 3-colorable graph.

Proof. We follow the algorithm of Wigderson until
the maximum degree i1s 6. By Theorem 1.1, the
remaining graph can be (4, d) colored in O(6E) time.
The total number of colors is 2n/é + é/d which is

optimized by choosing é = \/2n/d. O
We next show how to get a similar tradeoff for the
new and better approximation algorithms of Karger,



Motwani and Sudan [20]. We use the semidefinite
program approach of [20] to obtain a vector 3-coloring.
We then round to an integer defective coloring.

5.1 Generalizing the KMS algorithm to de-
fects. We sketch how the KMS algorithm generalizes
to defects. In the KMS algorithm, first, the 3-coloring
problem is relaxed to the wector 3-coloring problem,
which is solved in polynomial time using semidefinite
programming. The vector 3-coloring assigns unit vec-
tors from R" to the vertices so that two vertices that
are adjacent in the graph have vectors whose dot prod-
uct is at most —1/2.

Next, the vector 3-coloring is rounded to an or-
dinary coloring. The better of two rounding methods
chooses r = O(Al/?’) random “centers” (where A is the
maximum degree of the graph), and assigns two vectors
the same color if they are captured by the same random
“center” (see [20] for details). The probability that two
vectors corresponding to adjacent vertices are assigned
to the same random center is low, since the angle be-
tween these vectors is large based on the requirements
of the original SDP. This results (with high probabil-
ity) in what they call a semicoloring, where with prob-
ability > 1/2, at most n/4 edges are “uncut” meaning
their endpoints were mapped to the same center. Since
each uncut edge is adjacent to at most 2 vertices, the
total number of vertices adjacent to uncut edges is at
most n/2, so half the vertices in the graph are properly
colored. Recursion on the improperly colored vertices
finishes the coloring with an additional logn factor in
the number of colors. We can tolerate d uncut edges
at each vertex before we need to recolor. Plugging this
observation into their algorithm with a little additional
work yields the following result:

THEOREM 5.2. There exists a polynomial-time al-
gorithm to (O((A/d)l/B,d)-color a 3-colorable graph of
on n vertices of degree A.

As for KMS, this approach can be combined with
the most clever techniques known for finding large
independent sets in high degree graphs, in order to
optimize further the number of colors.

For example, combining with the first result in the
recent preprint of Blum and Karger [8] which obtains
O(n2/9) colors for 3-colorable graphs, we obtain a
O((n/d)2/?  d)-coloring. Thus we obtain the following
theorem:

THEOREM 5.3. An n-vertex 3-colorable graph can
be O((n/d)2/9, d)-colored in polynomial time.

We remark that our tradeoffs generalize to y-
colorable graphs for x > 3 just as those of KMS do.
The guarantee on the size 8§ of the angle separating the
two endpoints of an edge in a vector y-coloring is now

only 6 > arccos(—1/(x —1)). Thus the probability that
vectors corresponding to adjacent vertices get captured
by the same center increases, but again, we can tolerate
up to d such captures at each vertex by allowing defect

d.

5.2 Tradeoffs. What quality of approximation
should we expect for coloring with defect? Because
given a (k,d) coloring of a graph, one can easily obtain
a (k(d+ 1),0) coloring (by d 4 1 coloring each original
color class, which has maximum degree d) at most we
could hope to save 1s a factor of d off approximation
algorithms for coloring. Thus the following theorems
are easy consequences of hardness results (see [3]) for
ordinary coloring.

THEOREM 5.4. (k,d)-colorability is NP-complete
for any k >3 and d > 0.

THEOREM 5.5. For constant defect d, there exists
an € > 0 such that no polynomeal-time algorithm can n®-

approrimate the d-defective chromatic number, unless
P=NP.

However, in each of the polynomial-time algorithms
which approximately 3-color with n® colors, allowing for
a defect d, we are saving a multiplicative factor of about
1/d®. Current approximation algorithms for 3-coloring
still have ¢ bounded sufficiently far from 0 that allowing
defect can still give an interesting tradeoff for even the
best algorithms, but we ask if the savings incurred by
allowing defects can be improved.

6 Applications and open problems

The two most immediate open problems are ques-
tions 2.1 and 4.1 listed in the text. The first asks
whether every toroidal graph is (4, 1)-colorable. This
would complete the characterization of defective color-
ings on the torus. The other asks for the complexity of
(k, d)-coloring in graphs of maximum degree k(d + 1).
This is known to be easy for d = 0 (by Brooks’ theorem)
and is now known to be hard for &k = 2 and d > 0.

We have already asked whether the approximation
algorithms of the previous section can be improved.
David Karger has asked if there a universal argument
that shows for a class of approximation algorithms for
vertex coloring that achieve n® colors, we can always
achieve (n/d)¢ colors?

The most obvious application of defective coloring is
a generalization of the application of coloring to schedul-
ing. For the scheduling problem where vertices repre-
sent jobs (say users on a computer system), and edges
represent conflicts (needing to access one or more of
the same files), allowing a defect means tolerating some
threshold of conflict: each user may find the maximum



slowdown incurred for retrieval of data with 2 conflict-
ing other users on the system acceptable, and with more
than 2 unacceptable. One might generalize this still
further: to model different tolerances at different ver-
tices. Some jobs may be more tolerant of interference
than others, or all conflicts could not be equally ex-
pensive. This could partially be modeled by allowing
multiple edges, or equivalently weights on the conflict
edges. Notice that the Lovasz coloring result discussed
in Section 1 would still apply in this case. In addition,
if different colors correspond to different time periods in
the schedule, it is possible that some jobs may not be
able to schedule in all time- slots; rather each job may
have a different subset of slots in which it 1s allowed
to be scheduled. This is the defective version of the
“list-coloring” problem, and would allow the modeling
of more complicated constraints.

Other approach involves looking at alternative def-
initions of defective coloring. One possibility would be
to allow some total number of monochromatic edges,
rather than the stronger requirement of a maximum
threshold of monochromatic edges at each vertex. One
specific generalization is to allow different defects for
different colors. For example we might use the notation
[0,1]-coloring to denote a coloring of the vertices with
two colors such that the first color 1s an independent
set and the second color has defect at most 1. One can
show that even this simple extension of bipartiteness is
NP-hard for planar graphs. The generalization of The-
orem 1.1 to defects which are bounded as a function of
the vertex and color has been explored in [6, 9, 23, 33].
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