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ABSTRACT
This paper presents compact roundtrip routing schemes with
local tables of size Õ(

√
n) and stretch 6 for any directed net-

work with arbitrary edge weights; and with local tables of
size Õ(ǫ−1n2/k) and stretch min((2k/2 − 1)(k + ǫ), 16k2 +
8k − 8), for any directed network with polynomially-sized
edges, both in the topology-independent node-name model.1

These are the first topology-independent results that apply
to routing in directed networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications, Store
and Forward Networks; G.2.2 [Discrete Mathematics]:
Graph Theory— Path and Circuit Problems, Network Prob-
lems, Trees, Graph labeling.

Keywords
Compact Routing, Digraphs, Stretch, Distributed Lookup
Tables.

1. INTRODUCTION
This paper concerns compact roundtrip routing for di-

rected graphs in the topology-independent node-name model
first introduced by Awerbuch and Peleg in 1989. Most recent
results in compact routing (and all previous results on com-
pact roundtrip routing in directed networks) (see, e.g. [4, 6,
9, 10, 14, 15, 22, 25] and the surveys of [11, 30]) have been
in a model where the routing scheme designer may assign
his/her own O(log n)-bit or sometimes O(log2 n)-bit node la-
bels, dependent on network topology. That is, when a packet

∗Supported in part by NSF grant IIS-0099446.
†Supported in part by NSF grant CCR-0208629.
‡Supported in part by NSF grant EHR-0227879.
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destined for i arrives, “i” has been renamed, not by some ar-
bitrary permutation P but by the routing scheme designer,
in order to give maximum information about the underlying
topology of the network. (An alternate but equivalent for-
mulation is that a packet destined for i arrives also with a
short O(log n)-bit address in its header, chosen by the com-
pact routing scheme designer, dependent on network topol-
ogy.) For example, if the underlying network was a planar
grid, in the topology-dependent model, the algorithm de-
signer could require a packet destined for a node to come
addressed with its (x, y) coordinates.

In [2], Awerbuch et al. argue that while topology-dependent
node labels might be fine for static networks, they make less
sense in a dynamic network, where there is changing network
topology. There are serious consistency and continuity is-
sues if the identifying label of a node changes as network
connectivity evolves. In such a model, a node’s identifying
label needs to be decoupled from network topology. In fact,
network nodes should be allowed to choose arbitrary names
(subject to the condition that node names are unique), and
packets destined for a particular node enter the network with
the node name only, with no additional topological address
information. In the grid example above, the packet would
come with a destination name independent of its (x, y) coor-
dinates, and would have to learn how to associate its (x, y)
coordinates to its name from the local routing tables as it
wandered the network. Below, we call this the TINN model
(for topology independent node names.)

Awerbuch et al., in the same paper where they introduced
the TINN model, produced the first TINN compact rout-
ing schemes for undirected networks. A paper of Awerbuch
and Peleg in the following year [3], presented an alternate
scheme with a polynomial space/stretch tradeoff. Our recent
result joint with Rajaraman and Taka [1], presents compact-
routing TINN schemes that achieve a reduction in the maxi-
mum length of the routes or stretch of these schemes. These
schemes, like the ones we present in this paper, are univer-
sal, meaning they apply to any n-node (weighted) network.
However, the previous results all apply only to undirected
networks.

In fact, no results are known for constructing (one-way,
topology-dependent) compact routing schemes on directed
networks; and it appears that it is hard to “compact” rout-
ing schemes when the network is directed. For example, it
is shown in [8] that distinguishing between pairs of vertices
at distances 2 and ∞ even in unweighted directed graphs is
at least as hard as Boolean matrix multiplication. Roditty



et al. [22] observe that sparse spanners don’t exist for all
digraphs, and there is further discussion in [6, 27]. In the
2000 PODC conference, Cowen and Wagner [6] made the ob-
servation that in directed graphs, instead of bounding the
length of a one-way path from node x to node y in terms
of the shortest distance d(x, y), we could bound the length
of a roundtrip from node x through node y in terms of a
shortest cycle between the two nodes, which is of length
d(x, y) + d(y, x). This would account for a packet and its
acknowledgment, for example. As observed by Cowen and
Wagner [6], sparse roundtrip spanners do exist in this model,
and and can be used as a basis for compact roundtrip rout-
ing schemes in directed networks. The (name-dependent)
roundtrip routing scheme of [6] was subsequently improved
by Roditty et al [22]. Here we present the first universal
compact roundtrip routing schemes for (weighted) directed
networks in the TINN model.

1.1 Model and Definitions

The metric. Let G = (V, E) be a strongly connected di-
rected graph with n nodes and m edges, and positive real
weights w(i, j) on each directed edge (i, j) ∈ E. In Sec-
tions 3 and 4, we further assume that the weights fall in the
range [1, W ], where W is of size at most a polynomial in

n, that is W = O(nO(1)). Let d(i, j) denote the length of
a minimum-weight path from i to j; the distance from i to
j. If p(u, v) is the length of a path p from u to v, then the
stretch of p is defined as p(u, v)/d(u, v). The stretch of a
routing scheme that describes point to point routes between
each ordered pair of vertices (u, v) is the maximum stretch
over all pairs u, v ∈ G. We define the roundtrip distance be-
tween i and j as r(i, j) = d(i, j) + d(j, i), the minimum cost
of a directed tour beginning and ending at i, and passing
through j. Notice that r(i, j) = r(j, i).
The routing scheme. A roundtrip routing scheme is a
scheme where a packet that is labeled with destination “t”
arrives at a source node s, the local routing algorithms route
the packet successfully to t, and an acknowledgment or reply
packet is routed back to s. A roundtrip routing scheme
is called compact if packet headers are polylogarithmic in
size, and all local routing tables are sublinear in size. A
compact roundtrip routing scheme has stretch α if and only
if, the length of the path to route from s to t, and route the
acknowledgment back, is of length at most α× r(s, t).
Node names. In this paper, we study compact roundtrip
routing in the TINN model where node names are topology-
independent. In particular, we assume node names of the
vertices of V are an arbitrary permutation of {0, . . . , n−1}.
At first glance, this is too weak a model: that is, what we
ultimately want for practical application in distributed net-
works is a model where nodes with only local network knowl-
edge can choose their own O(log n)-bit names; requiring
them to be exactly a permutation of the integers {0, . . . , n−
1} seems to require their assignment by a centralized en-
tity that, among other things, knows exactly the number
of nodes in the network. However, a reduction in [1] shows
that, if nodes choose their own names from a range space suf-
ficiently large, they will be unique with high probability, and
that these names can be hashed to the values {0, . . . , n− 1}
with small numbers of collisions. It is straightforward to
adapt our protocols to this setting with only a constant

blowup in the size of the routing tables.2 For details see
[1]; the generalization of this hashing scheme to roundtrip
routing in directed graphs is entirely straightforward. So in
what follows, we assume the labels are a permutation of [n]
and implicitly apply the reduction at the end to handle the
more general case.
Edge names. Each node v is also assumed to have a unique
name from a set of size O(V ) assigned to each outgoing
edge; again these names are assumed to be assigned by an
adversary, with no global consistency. As an illustrative
example, suppose u and v are adjacent, and say u is assigned
the unique node name 1 and v is assigned the unique node
name 5. However, u’s link to v may be labeled port 200
while v’s link to u may be labeled port 1080, where these
numbers have no relation to 1 and 5. In addition, v may have
another link called port 200, but this might go to a different
vertex y! This is equivalent to the model that Fraigniaud
and Gavoille call the fixed-port model [10]; in contrast, the
designer-port model considered by [10] allows the network
designer to specify port names dependent on global network
topology.
Headers. Some recent topology-dependent compact rout-
ing schemes have been able to “wire-in” the routing informa-
tion to a short packet header that arrives with the packet,
and so intermediate nodes do not have to modify packet
headers. In the TINN model, as routing information is dis-
covered, it will be written into the header of the packet
before it is forwarded. All TINN schemes therefore require
writable packet headers. While packets initially arrive with
O(log n) names, in our schemes we will write up to O(log2 n)
bits of learned routing information into the packet header.

1.2 Our Results
A key idea in all our schemes is that of a distributed dictio-

nary, first introduced by Peleg [18]. In each of our schemes,
we assign blocks of dictionary entries to nodes in a balanced
way, while ensuring that the entire address space is covered
in some neighborhood structure (or recursive neighborhood
structure for the later schemes). We also make use of the
(topology-dependent) roundtrip routing scheme of Roditty
et al. [22]. In designing roundtrip schemes, we note that the
main difficulty usually comes from the following: while our
measure, roundtrip distance, averages the distances d(u, v)
and d(v, u), we still have to route along one-way edges. Thus
the cost of return from a lookup must be appropriately amor-
tized, even though we cannot in general retrace the same
path back.

In Section 2, we present the first compact roundtrip rout-
ing scheme in the TINN model. The algorithm uses lo-
cal routing tables of size Õ(

√
n), packet headers of size

O(log2 n), and achieves stretch 6. In Sections 3 and 4,
we generalize this scheme to achieve stretch/space trade-

offs: with tables of size bounded by Õ(ǫ−1n2/k, one scheme

achieves stretch k + 2k/2(k + ǫ), and the second scheme
achieves stretch 16k2+8k−8 (both schemes require that edge
weights be bounded by a polynomial in n). The first gener-

2In fact this reduction will continue to work in a model
where an adversary chooses the node names, provided they
are required to be unique, and the adversary chooses the
node names before the protocol selects the particular hash
function from the family of universal hash functions to map
the node names, or else the adversary could force too many
collisions.



alized scheme follows easily from the definition of roundtrip
routing and a result in [1], the second general scheme in-
volves some substantial new ideas and produces the best
space/stretch tradeoff for larger k. Putting the two together
gives the result claimed in the abstract.

Finally, some work has been done on lower bounds for
(one-way) compact routing in undirected graphs, that ap-
plies to the TINN model. In particular, a construction of
Gavoille and Gengler [12] implies that any compact rout-
ing scheme that uses o(n)-sized tables at every node in the
TINN model, must have stretch ≥ 3. (In fact, the result
of [12] is stronger; the lower bound holds even when the
packet arrives with up to log2 n bits of topology-dependent
routing information). We show below that this result implies
a stretch lower bound of 2 for compact roundtrip routing in
the TINN model.

2. STRETCH 6 SCHEME
In this section, we construct a TINN compact roundtrip

routing scheme with Õ(n1/2)-sized routing tables, O(log2 n)-
sized routing headers, while achieving stretch 6.

Following [5] and [22], we define the roundtrip distance
metric as follows: let G = (V, E) be an edge-weighted di-
rected graph. Recall that d(u, v) denotes the shortest path
from u to v, and r(u, v) = d(u, v)+d(v, u). Two nodes u and
w are related by u ≺v w (read: u is closer to v than w is,
by the roundtrip metric) if and only if one of the following
is true:

1. r(v, u) < r(v, w)

2. r(v, u) = r(v, w) and d(u, v) < d(w, v)

3. r(v, u) = r(v, w) and d(u, v) = d(w, v) and IDu <
IDw

This produces a total order of V for each node v: v ≺v

u1 ≺v u2 ≺v . . . ≺v un−1. We call this sequence Initv.
Additionally, we define u �v w to mean u ≺v w or u = w.

Given a weighted directed graph G, we determine for each
node u, a neighborhood ball N(u) of the first n1/2 nodes in
Initu.

We divide the address space {0, . . . , n− 1} into
√

n-sized
blocks Bi, for i = 0, . . . ,

√
n− 1, such that block Bi consists

of the node labels i
√

n to (i + 1)
√

n− 1. (Assume for sim-
plicity that n is a perfect square). Each node i will store
a particular set of blocks Si, such that every node is close
enough to a node which stores each type of block. This is
illustrated in figure 1.

Lemma 2.1. Let G be a directed graph on n nodes, and
let N(v) denote a set of the first

√
n nodes of Initv. Let

{Bi|0 ≤ i <
√

n} denote a set of blocks. There exists an
assignment of sets Sv of blocks to nodes v, so that

• ∀v ∈ G, ∀i, 0 ≤ i <
√

n, there exists an j ∈ N(v) with
Bi ∈ Sj

• ∀v ∈ G, |Sv| = O(log n)

Proof. This is a restatement of the lemma proved in [1],
the only difference being N(v) is now defined in terms of
Initv and roundtrip distance. The proof is identical. 2

We also make use of the following result of Roditty et
al. [22] in the topology-dependent model:
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Figure 1: A Block distribution example showing a sec-

tion of a 36 node directed graph, with a node u and its

neighborhood N(u). The example is unweighted, but the

lemma works for weighted graphs as well. In this case

the possible block labels are {0, . . . , 5}. The sets Sv are

indicated as vertical stacks of block labels. Notice that

in the first (lower) “layer”, there is no “4” in N(u), but

on the second layer there is a “4”. The block distribu-

tion lemma guarantees that we never need more than

O(log n) blocks per node (for constant k) to ensure that

each neighborhood contains each type of block.

Lemma 2.2. [22] There exists a name-dependent compact
roundtrip routing algorithm for directed graphs with stretch
3, which uses Õ(n1/2) space. The path taken by a packet
routing from u to v in this scheme satisfies p(u, v) ≤ r(u, v)+
d(u, v).

In the following, let Tab3(x) refer to the storage table at
node x, and let R3(x) be the topology-dependent address
of node x, according to a stretch three roundtrip routing
scheme as described in Lemma 2.2.

2.1 Storage Requirements
Storage: Each node u stores the following in its local rout-
ing table:

1. For every node v in N(u), (v, R3(v)).

2. For every i, 0 ≤ i <
√

n, (i, t), where t ∈ N(u) satisfies
Bi ∈ St (such a node t exists by our construction of
Su in Lemma 2.1).

3. For every block Bk in Su, and for each node j in Bk,
the dictionary entry (j, R3(j)).

4. u stores the routing table Tab3(u).

Analysis of Space Requirements: It is easy to verify
that these entries take Õ(n1/2) space. (1) takes Õ(

√
n) space

by definition of N(u). (2) consists of Õ(
√

n) entries each of
constant size. For (3) we note that since we are storing

Õ(1) information for each of the
√

n nodes in each block,

it takes Õ(
√

n) space per block times the number of blocks
that are stored at a node (which is O(log n)), for a total of

Õ(
√

n) space per node. Finally, (4) takes Õ(
√

n) space by
Lemma 2.2.



upon receipt of packet P at node s:

// initialize local variables from the packet header
(SrcID, SrcLabel, NextID, NextLabel,
DestID, DestLabel, DictID, Mode) ← ReadPacketHeader(P)

if (Mode = NewPacket):
Mode ← Outbound ; SrcID ← MyNodeID ; SrcLabel ← GetR3Label(SrcID)
if (DestID is within neighborhood according to local table)

NextID ← DestID
else: // remote dictionary lookup is needed

DictID ← GetLookupNodeID(MyNodeID,DestID) ; NextID ← DictID
NextLabel ← GetR3Label(NextID)

else if (Mode = ReturnPacket):
Mode ← Inbound ; NextID ← SrcID ; NextLabel ← SrcLabel

else if (Mode = Outbound and MyNodeID = DictID):
DestLabel ← GetR3Label(DestID) ; NextID ← DestID ; NextLabel ← DestLabel

else if ((Mode = Outbound and MyNodeID = DestID) or
(Mode = Inbound and MyNodeID = SrcID)):

Deliver the packet to the host node
exit(Success)

endif

// write modified local variables back into packet header
WritePacketHeader(SrcID, SrcLabel, NextID, NextLabel,

DestID, DestLabel, DictID, Mode, P)
// forward packet
NextEdge ← GetRTZNextEdge(NextLabel)
Forward the packet P on NextEdge
exit(Success)

Figure 2: The local routing algorithm at node s.

2.2 Algorithm and Stretch Analysis
The local routing algorithm is presented as pseudocode in

Figure 2. When a packet enters the network at source node s
it is labeled with its topology-independent destination node
name t, and a Mode variable which is set to NewPacket.
Other header fields are empty.

When a reply packet is sent, Mode is set to ReturnPacket
before the routing algorithm receives it. Other Mode values
are self-explanatory from the pseudocode. The distinction
from a NewPacket is that some topology-dependent infor-
mation learned in the original direction may now appear in
the header of packet that is being acknowledged. Functions
GetR3Label() and GetRTZNextEdge() both look up infor-
mation stored in the local routing table.

The stretch analysis proceeds as follows: Let s be the
source node and t the destination node. There are two cases
to consider.

1. t ∈ N(s): Then the entry (t, R3(t)) is stored at node s,
by (1) above. So we can route to t and back to s with
a stretch of 3, by Lemma 2.2, using the tables stored
in (4).

2. t 6∈ N(s): If (t, R3(t)) is stored at node s, this is the
same as case (1). If we fail to find (t, R3(t)) stored at s,
it must be that t 6∈ N(s). We then compute the index
i for which t ∈ Bi, and look up the node w ∈ N(s)
that stores entries for all nodes in Bi. Now we route
to node w, where we look up R3(t), and then route to t
using Lemma 2.2. The return trip to s is accomplished

using R3(s), which is contained in the packet header.

Lemma 2.3. Given a strongly connected directed graph
with arbitrary edge weights, the compact roundtrip routing
algorithm above uses Õ(

√
n) space, Õ(1) sized packet head-

ers, and achieves stretch 6.

Proof. If t ∈ N(s), the algorithm costs stretch 3, by
Lemma 2.2. Otherwise, the length of the route taken from s
to w to t and back to s is given by p(s,w)+ p(w, t)+ p(t, s),
which by Lemma 2.2 is ≤ r(s,w)+d(s, w)+r(w, t)+d(w, t)+
r(t, s) + d(t, s), and thus certainly ≤ r(s,w) + d(s,w) +
r(w, s)+r(s, t)+d(w, t)+r(t, s)+d(t, s). But since w ∈ N(s)
but t 6∈ N(s), it must be that r(s, w) ≤ r(s, t) so this is
≤ 4r(s, t) + d(s, w) + d(w, t) + d(t, s), which is ≤ 4r(s, t) +
d(s, w) + d(w, s) + d(s, t) + d(t, s) by the triangle inequal-
ity. Using again the fact that r(s,w) ≤ r(s, t), we have that
4r(s, t)+d(s,w)+d(w, s)+d(s, t)+d(t, s) ≤ 6r(s, t), whence
the result. 2

We also note that the algorithm could operate by routing
from s to w and back to s, before routing to t and back.
This would be slightly simpler to analyze and would result
in the same worst-case stretch. However it often will result
in worse average case performance since it always routes
through s when routing from w to t.



3. A GENERALIZED ROUTING SCHEME

3.1 Preliminaries
We use a randomized distribution of blocks of lookup in-

formation first introduced by Arias et al.[1]. The following
description is nearly syntactically identical to the one in [1]
for the undirected case, but the neighborhoods themselves
will be different (since they are based on roundtrip distance),
and thus the actual information that is stored will be differ-
ent as well.

Given a directed graph G with n nodes, we assume for
simplicity that n is a kth power, and define the alphabet
Σ = {0, . . . , n1/k − 1}. For each 0 ≤ i ≤ k, Σi is the set
of words over Σ of length i. Let 〈u〉 ∈ Σk be the base

n1/k representation of u, padded with leading zeros so it is
of length exactly k. For each 0 ≤ i ≤ k, we also define
functions σi : Σk −→ Σi , such that σi((a0, . . . , ak−1)) =
(a0, . . . , ai−1). That is, σi extracts the prefix of length i
from a string α ∈ Σk.

For each α ∈ Σk−1, define the sets Bα = {u ∈ V |σk−1(〈u〉) =

α}. We will call these sets blocks. Clearly |Bα| = n1/k. We
abuse notation slightly by defining σi(Bα) = σi(α0), where
α0 is the word in Σk obtained by appending a 0 to α. Note
that by this definition, σk−1(Bα) = σk−1(〈u〉) if and only if
u ∈ Bα.

For every node u, we define the neighborhoods N i(u) as

the set of the first ni/k nodes in Initu. Now we can state
the following lemma, which is originally proved in [1].

Lemma 3.1. [1] Given a directed graph G, there exists an
assignment of sets of blocks Sv to nodes v, so that

• ∀v ∈ G, ∀i, 0 ≤ i < k, ∀τ ∈ Σi, there exists a node
w ∈ N i(v) with Bα ∈ Sw such that σi(Bα) = τ

• ∀v ∈ G, |Sv| = O(log n) 2

The proof of the lemma is by the probabilistic method,
and it yields a simple randomized procedure for generating
the desired assignments of sets of blocks to nodes. Origi-
nally it was applied to undirected graphs, but the proof for
directed graphs is no different, because the result is a gen-
eral one on sets of neighborhoods; only the definition of the
neighborhoods has changed. Lemma 2.1, used in Section 2,
is a special case of this preceding lemma, given by setting
k = 2.

3.2 Required Results
Our algorithm uses the roundtrip spanner construction

of Roditty et al.[22]. For the definition of the double-trees
referred to in the following lemma, see Section 4 of this
paper.

Lemma 3.2. [22] Let G be a weighted directed graph on
n nodes with edge weights in the range [1, W ]. For every
integer k ≥ 1 and every ǫ > 0, there exists a (2k + ǫ)-
roundtrip spanner of G which includes an arbitrary node v

in at most O( k2

ǫ
n1/k(log n)1−1/k log (nW )) double-trees.

We will use a routing scheme that achieves stretch 2k + ǫ,
using local routing tables of size Õ(n1/k), and headers of size
o(log2n), which is derived from [22] under the assumption
that weights are polynomially sized, which is made through-
out this section. The stretch in this context is lower than

the 4k + ǫ they state, because we can use our lookup tables
to store the best double-tree in their spanner for a particular
pair of nodes.

3.3 Storage
Let Tab(x) refer to the storage table at node x in the algo-

rithm of Roditty et al.[22], and let R2(u, v) (which is of size
o(log2 n) bits) be the minimum of routing information re-
quired to route from node u to node v and back, in a (2k+ǫ)-
roundtrip spanner. This information consists of the name of
the most convenient double tree T in the tree cover for rout-
ing from u to v, as well as the topology-dependent routing
addresses of nodes u and v within that tree T . Therefore the
routing address R2(u, v) does not work from all the nodes
in the directed graph. Note that R2(u, v) is not exactly the
same as is stored in the algorithm of Roditty et al., and they
deduce R2(.) from their node labels. Their labels are of size
o( k

ǫ
log2 n log(nW )) bits, are globally valid – they are used

for routing to node v from any node u in the digraph, with
stretch 4k + ǫ.

Let {Su|u ∈ V } be a collection of sets of blocks that satis-
fies Lemma 3.1. For each node u, let S′

u = Su

S{Bβ}, where
u ∈ Bβ (that is, each node always stores the block its own
address belongs to).

Given these definitions, we specify the memory contents
of each node u as follows:

1. Tab(u)

2. For every v ∈ N1(u), the pair (v, R2(u, v)).

3. The set S′
u of O(log n) blocks Bα, and for each block

Bα ∈ S′
u, the following:

(a) For every 0 ≤ i < k − 1, and for every τ ∈ Σ,
we store the routing address R2(u, v), where v is
the nearest node containing a block Bβ such that
σi(Bβ) = σi(Bα) and the (i + 1)st element of
σk−1(Bβ) is τ .

(b) For every τ ∈ Σ, we store the routing address
R2(u, v), where the node v satisfies σk−1(Bβ) =
σk−1(v) and the kth element of σk(v) is τ .

Lemma 3.3. The storage requirement of our algorithm is
Õ(n1/k) for fixed k.

Proof: We need Õ(n1/k) space for (1). Since |N1(u)| =
n1/k for all u, it is clear that (2) also requires Õ(n1/k) space.
For (3) we note that |Su| = O(log n) blocks. For each block,

we store kn1/k values R2(u, v), where the size of R2(u, v)

in bits is Õ(1). Therefore the space requirement for (3) is

Õ(kn1/k). The total of all these space requirements is clearly

Õ(n1/k log(nW )), which is Õ(n1/k) for fixed k when W is

bounded by O(nO(1)). 2

3.4 Routing Algorithm
Given a source node s and destination node t, our roundtrip

routing algorithm visits a sequence of nodes s = v0, . . . , vk =
t (not necessarily distinct) to reach t, and vk−1, . . . , v0 to re-
turn to s. Just like in [1], the sequence s = v0, . . . , vk = t has
the property that each vi (except vk) contains a block Bβi

for which σi(Bβi
) = σi(t). When vi 6= vi+1 we route from

vi to vi+1 along route Hop(vi, vi+1), which is the route in



the (2k + ǫ)-roundtrip-spanner from u to v. This is possible
because R2(u, v) is stored at u. On the return trip, we route
from each vi+1 to vi using R2(vi, vi+1) which is appended
to the header during the outbound phase. Algorithm 3.4 is
presented below. The idea of matching increasing prefixes
of node names is well known in the parallel algorithms lit-
erature for multidimensional array routing (see [17]); it has
also been used more recently in the context of peer to peer
systems for locating replicated objects [26, 16, 19, 13], and
also for compact routing in undirected graphs [1].

Algorithm 3.4.
for i← 0 upto k − 1 step 1:

if (i+1 < k): vi+1 ← closest node to vi in the set
N i+1(vi)

T{v|∃Bβ ∈ Sv : σi+1(Bβ) = σi+1(〈t〉)}
else: vk ← t
if (vi 6= vi+1):

push R2(vi, vi+1) onto header
route to vi+1 along Hop(vi, vi+1) using R2(vi, vi+1)

for i← k downto 1 step -1:
pop R2(vi, vi+1) from header
route back to vi along Hop(vi+1, vi) using R2(vi, vi+1)

Lemma 3.5. Algorithm 3.4 correctly delivers packets from
any source node s, to any destination t and back.

Proof: At each vi we read the name-dependent routing in-
formation R2(vi, vi+1) which suffices to route to the node
vi+1. Delivery to node vi+1 is assured by the correctness of
the algorithm of Roditty et al.[22]. The algorithm is guar-
anteed to find node t, because in the worst case we have
stored information for routing to a node v in Nk(vk−1) = V
such that σk(v) = σk(t), and the latter condition implies
v = t. The return trip is successful because we store all the
R2(vi, vi+1) labels in the header and each one suffices for
returning to vi. 2

3.5 Stretch Analysis

Lemma 3.6. For 0 ≤ i ≤ h− 1, r(vi, vi+1) ≤ 2ir(s, t).

Proof. Recall that vi is the ith node visited by the routing
algorithm, as defined above. For each 0 ≤ i ≤ k, let v∗

i be
the closest node to node s by the roundtrip distance metric
Inits, such that σi(v∗

i ) = σi(t). The proof is by induction.
For the basis case, we note that based on the algorithm

r(s, v1) = r(v0, v1) ≤ 20r(s, t), since t itself is a candidate
to be v1. If r(s, t) < r(s, v1), then t would have been cho-
sen to be node v1, because t contains a block Bβ such that
σ1(Bβ) = σi(t).

The inductive hypothesis is that for all i such that 0 ≤
i ≤ l − 1 < k − 1, we have r(vi, vi+1) ≤ 2ir(s, t). We bound
r(vl, vl+1) as follows:

r(vl, vl+1) ≤ r(vl, v
∗
l+1) (1)

≤ r(vl, s) + r(s, v∗
l+1) (2)

≤ r(s, t) + r(vl, s) (3)
≤ r(s, t) + r(s, vl) (4)

≤ r(s, t) +
Pl−1

i=0 r(vi, vi+1) (5)

≤ r(s, t)
h

1 +
Pl−1

i=0 2i
i

(6)

≤ 2lr(s, t)

where (1) follows by definition of vl+1 and v∗
l+1; (2) be-

cause r(vl, v
∗
l+1) is a shortest roundtrip distance; (3) follows

by commutativity, and because t is candidate for v∗
l+1; (4)

follows by symmetry; (5) is true because r(s, vl) is the short-
est distance, and (6) follows by the induction hypothesis. 2

Theorem 3.7. Algorithm 3.4 uses space Õ(n1/k) for fixed
k, headers of size o(k log2 n) and delivers packets correctly
with stretch (2k − 1)(2k + ǫ).

Proof. We have already established space requirements and
correctness of the algorithm in Lemma 3.3 and Lemma 3.5
respectively. The header size of o(k log2 n) is obtained from
the k push operations each of which pushes a o(log2 n) rout-
ing label. It only remains to prove the stretch bound. Let
r̃(u, v) be the roundtrip path taken by our algorithm while

routing from u to v and back, and let d̃(u, v) be the one-way
path taken by our algorithm from node u to node v.

r̃(s, t) =
Pk−1

i=0 d̃(vi, vi+1) +
Pk−1

i=0 d̃(vi+1, vi) (1)

≤ Pk−1
i=0 r̃(vi, vi+1) (2)

≤ Pk−1
i=0 (2k + ǫ)r(vi, vi+1) (3)

≤ (2k + ǫ)
Pk−1

i=0 r(vi, vi+1) (4)

≤ (2k + ǫ)
Pk−1

i=0 2ir(s, t) (5)
≤ (2k + ǫ)(2k − 1)r(s, t) (6)

Step (1) simply expresses the roundtrip path in terms of
its 2k segments. Step (3) uses the stretch of (2k + ǫ) of the
roundtrip spanner construction of Roditty et al.[22]. Step
(5) results from applying Lemma 3.6. 2

The apparently more sensible approach of routing from t
directly back to s (without going back through the lookup
nodes vk−1, . . . , v1) requires that we also implement the full
compact roundtrip routing 4k + ǫ scheme of Roditty et al.,
and that we include a header of size o( k

ǫ
log2 n log(nW )) for

the return trip to s using the scheme of Roditty et al. This is
necessary so that at node t we can determine a best double-
tree for routing directly back to s. Using this approach we
obtain a worse stretch of 2k + 2k(2k + ǫ), in addition to
having longer headers and two sets of routing tables.

4. A GENERALIZED ROUTING SCHEME
WITH A POLYNOMIAL TRADEOFF

In this section we present a compact roundtrip routing
scheme that achieves a polynomial tradeoff between stretch
and maximum storage. Unlike the scheme in Theorem 3.7,
the second scheme we present does not follow directly from
any of the results in [1]. It uses a new underlying roundtrip
cover construction, then prefix matches addresses in a hi-
erarchy of neighborhood covers. The first scheme has an
exponential tradeoff between space and stretch; while the
stretch/space tradeoff of the second scheme is polynomial.
However, for small values of k, the first scheme gives a bet-
ter tradeoff than the second; putting the two results together
gives the bound claimed in the abstract.

All edge weights in this section are assumed to be of poly-
nomial size. Our construction is based on a hierarchical
sparse double-tree construction similar to the sparse tree
construction used in [3] but adapted to directed weighted
graphs and roundtrip distance. We need the following defi-
nitions:

Given a weighted directed graph G = (V, E) with |V | = n,

we define N̂m(v) as the set of nodes in V that are within
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match the destination 2357.

roundtrip distance m from v ∈ V , RTDiam(G) as the max-
imum roundtrip distance between any pair of nodes in G,
RTRad(v,G) as the maximum roundtrip distance between
v and any node in G, RTRad(G) as min{RTRad(v,G)|v ∈
V }, and RTCenter(G) as any vertex v ∈ V such that
RTRad(v,G) = RTRad(G).

A cluster C is a subset of the nodes in the graph, and a
cover is a collection of clusters C = {Ci}i covering all the
vertices of G, that is, such that

S

i Ci = V . We extend
our definition of RTDiam(), RTRad(), and RTCenter() to
clusters C by considering the subgraph induced by the ver-
tices in C. Finally, these definitions are extended to covers
C by taking the maximum over the values of every cluster
in the cover, e.g., RTRad(C) = max{RTRad(C)|C ∈ C}.

Let C be a strongly connected set of vertices, and v =
RTCenter(C) its center. We define OutTree(C) as the
shortest paths tree rooted at v that spans all the vertices
in C. Let InTree(C) be the (reversed) tree that consists
of the shortest paths from every node in C to the root v.
Let DoubleT ree(C) be the union of the two trees InTree(C)
and OutTree(C). Define RTHeight(T ) where T is a double-
tree as the maximum roundtrip distance from the root of T
to any vertex in T . Notice that by construction, we have
RTHeight(DoubleT ree(C)) = RTRadius(C). We will call
a double-tree cover a collection of double-trees that cover
the whole set of vertices of G.

We generalize the sparse cover construction in [3] for undi-
rected graphs and one-way distance metric to general di-
rected graphs and any distance metric. Hence, it applies
to directed graphs and our new roundtrip distance metric.
Moreover, we construct a double-tree sparse cover by build-
ing a double-tree on top of every cluster generated by the
sparse cover. We obtain:

Theorem 4.1. Given an integer k > 1, a weighted di-
rected graph G = (V, E) with |V | = n and a roundtrip dis-
tance r s.t. 1 ≤ r ≤ RTDiam(G), it is possible to construct
a double-tree cover T satisfying the following:

1. For every node v ∈ V there is a double-tree T ∈ T
spanning all the vertices in N̂r(v).

2. For every double-tree T ∈ T : RTHeight(T ) ≤ (2k −
1)r.

3. For any v ∈ V , v appears in at most 2kn1/k double-
trees, that is, |{T |T ∈ T and v ∈ T}| ≤ 2kn1/k .

Proof. Omitted from this extended abstract. 2

The following is a sketch of our construction. We use
a similar hierarchy of covers as in [3], adapted to directed
weighted graphs and double-tree covers. For every i =
1, . . . , ⌈log(RTDiam(G))⌉, we apply Theorem 4.1 with r =
2i and construct a cover Ti such that (1) there exists a

double-tree in the cover that includes N̂2i

(v) for every v ∈
V , (2) the roundtrip height of such a double-tree is at most
(2k − 1)2i, and (3) every vertex appears in no more than

2kn
1

k double-trees. For each i = 1, . . . , ⌈log(RTDiam(G))⌉,
every node v in the network chooses a double-tree Ci that

contains N̂2i

(v). Following [3]’s terminology, we refer to
that double-tree as v’s home double-tree at level i. Notice
that the existence of such a tree is guaranteed by property
(1) above.

The idea is to route within shallow home double-trees first
and increasingly search in higher double-trees until one is
found that contains both source and destination. To route
within a double-tree C, we will always go through the root of
the tree. We use the following result for single-source com-
pact routing in the topology-dependent model with optimal
stretch, due to Thorup and Zwick [25], and also to Fraig-
niaud and Gavoille [10]. While it is stated for undirected
graphs, it is straightforward to apply this particular result
to the OutTree(·) component of a double-tree.

Lemma 4.2. [10, 25] There is a routing scheme for any
tree T with root r such that given any node u in T , the
scheme routes along the optimal path from r to u in the
fixed port model. The storage costs are Õ(1) per node in the
tree, and the address size is O(log2 n).

Given a double-tree T , let TreeTab(T,x) and TreeR(T,x)
refer to the storage table and address, respectively of node x
under a tree-routing scheme that satisfies the requirements
of Lemma 4.2 on the tree component OutTree(·).

To route within a double-tree C, every node will keep
a pointer ex,RTCenter(C) following edges in the InTree(·)
component of C, and also the tables TreeTab(C,x). No-
tice that to route from the center to any node once name-
dependent labels are known can be done optimally using a
routing scheme such as in Lemma 4.2. To route from any
node to the root can be done optimally using the pointers
ex,RTCenter(C) placed at every node in C. Notice that the
distance traveled in this manner when routing between two
arbitrary nodes in C is at most twice the roundtrip height
of the double-tree C.

4.1 Storage
To simplify the presentation we assume that n = qk for

an integer q, and define the alphabet Σ = {0, . . . , q − 1}.



Let 〈u〉 be the length k string over Σ which is the base n1/k

representation of u. For each 0 ≤ i ≤ k, we also define
functions σi : Σk −→ Σi , so that for strings x and y over
the alphabet Σ, σi(xy) = x if and only if |xy| = k and
|x| = i.

For every level i = 1, . . . , ⌈log(RTDiam(G))⌉, u ∈ V
stores the following:

1. An identifier for u’s home double-tree at level i.

2. For every double-tree Ci in the i-th level cover that
vertex u is in, u stores:

(a) TreeTab(Ci, u) and its own name-dependent la-
bel TreeR(Ci, u).

(b) The first link eu,RTCenter(Ci) towards the center
of Ci.

(c) For every τ ∈ Σ (notice there are n1/k choices)
and for every j = 0, . . . , k − 1 (k choices), the
label TreeR(Ci, v), where v ∈ Ci is the nearest
node such that σj(〈u〉) = σj(〈v〉) and the (j + 1)
element of v is τ , if such node v exists.

Notice that (a) and (b) are used to route within the double-
tree Ci when topology-dependent information is known and
(c) implements the distributed dictionary to find topology-
dependent labels.

The total storage requirement is ⌈log(RTDiam(G))⌉×
(poly-log(n) + 2kn

1

k × (poly-log(n) + log(n) + kn
1

k ), where
⌈log(RTDiam(G))⌉ accounts for all the levels in the hier-

archy, 2kn
1

k accounts for the maximum number of double-

trees a vertex appears in, and (log(n) + poly-log(n) + kn
1

k )
is the combined storage requirement of every node within

a single double-tree. The term kn
1

k accounts for the the
tree routing addresses of prefix-matching closest nodes. No-
tice also that poly-log(n) bits are sufficient to identify a

double-tree in a given level since there are at most 2kn1+ 1

k

such double-trees. The total storage at a node is therefore

Õ(k2n
2

k log(RTDiam(G))), which is Õ(n
2

k ) for constant k
and polynomial-sized edge weights.

4.2 Routing Algorithm
To route from s to t and back, we attempt to find node

t in the home double-tree of s, Ci, for increasing values of
i = 1, . . . , ⌈log(RTDiam(G))⌉.

To route to t in a double-tree Ci we go through a series
of nodes s = v0, v1, . . . , vh = t in Ci. The message always
carries the tree routing label of the origin s and an identifier
for s’s home double-tree Ci. From any intermediate node,
say vj , in this series (s is the first such node), it is routed
to a node vj+1 in Ci (among the nodes vj has routing labels
for) which matches the largest possible prefix of the name of
destination t, and which has a longer matching prefix than
the currently matched prefix at vj . If one of these nodes does
not exist in Ci, then the message is returned to s (this is
when failure is detected and the search continues in the next
level)3. Otherwise, the message reaches the destination after
3It is important to note that the source node s will not be
visited again in this lookup, since the lookup always tries to
match prefixes larger than those matched so far. Therefore,
when the message returns to s it is the case that either
it visited the destination and came back (success) or the
destination is not in the current home double-tree (failure,
continue in higher levels).

at most k such trips. A final trip will be needed to go back to
the origin. Notice that intermediate nodes vj might appear
in different double-trees, and we retrieve the information
corresponding to the appropriate double-tree (in this case
Ci). We can do this because an identifier of Ci is included
in the message header.

In the following pseudocode summary of the algorithm, c
refers to the current node, and its value is implicitly changed
by a command to “route”. Nodes s and t are the source
and destination respectively. For any nodes s, c, t ∈ V and
for each i ≤ ⌈log(RTDiam(G))⌉ and h ≤ k + 1 we define
NextNode(s, c, t, Ci) as follows:

• if c = t then the return value is s

• if c 6= t then we choose the largest possible h such that
there is a node in Ci that satisfies σh(〈c′〉) = σh(〈t〉)
and σh(〈c〉) 6= σh(〈t〉). Among the nodes with the
largest possible h, we choose the closest node c′ to c
(by roundtrip distance Initv).

• if c 6= t and such a node (as in previous bullet) does not
exist within Ci, then NextNode(s, c, t, Ci) is simply
the node s, to enable a return to the starting point.

Algorithm PolyRoute(s,t)
i← 1
Found← false
while (not Found and i ≤ ⌈log(RTDiam(G))⌉):

// try for roundtrip through t in Ci as follows
h← 1 // invariant: current node c is s
SourceLabel← TreeR(Ci, s)
repeat:

v ← NextNode(s, c, t, Ci)
h← largest value such that σh(〈v〉) = σh(〈t〉)
if (v 6= s):

NextWaypointLabel← TreeR(Ci, v)
else:

NextWaypointLabel← SourceLabel
if (v = t):

Found← true
Route to v within Ci

until (v = s)
i← i + 1

4.3 Stretch Analysis
Let the roundtrip distance between s and t be r. There

exists a level i ≤ log(2r) such that s’s home double-tree Ci

contains t. When routing within the double-tree Ci there
are at most k + 1 nodes visited, and the distance traveled
between nodes is no more than twice the roundtrip height
of Ci. The total distance r(s, t) traveled within Ci is:

r(s, t) ≤ 2RTHeight(Ci)× (k + 1)
≤ 2(2k − 1)2i × (k + 1) By Theorem 4.1
≤ (4k − 2)2r(k + 1) i ≤ log(2r)
≤ 8k2r + 4kr − 4r

The total distance traveled in the whole process is at most
twice the distance in the last level visited, hence the total
distance is 16k2r+8kr−8r. The stretch is therefore 16k2 +
8k − 8.



4.4 Remarks on the Underlying Roundtrip
Spanner and Related Work

We are aware of an alternative double-tree sparse cover
construction that was used in [22] in a similar way as we use
the double-tree sparse cover here. It is indeed possible to
use this alternative construction, but it would yield a worse
stretch of 16k2 + 16k while keeping similar storage bounds.

The alternative sparse cover looks more attractive at first
since the blow-up in radius that it imposes is of only k as
opposed to the blow-up of 2k − 1 in the construction used
here. However, the double-trees built by the construction in
[22] lack an important property, namely, that given a vertex
v there is a double-tree containing the whole neighborhood
of v. The construction in [22] only guarantees that there
is a double tree containing any vertex in the neighborhood
of v and v itself, but it can be a different tree for different
vertices in v’s neighborhood. This is a problem since every
vertex has to choose a single double tree as home double-
tree, so that in [22]’s construction it can be the case that the
home double-tree of v does not contain vertices in its close
neighborhood. To fix this, [22] have to incur in a blow-up of
the radius of 2, so that the total blow-up in distance is 2k
which is worse than 2k − 1. We remark that by using the
sparse cover presented here, the name-dependent scheme in
[22] can be improved to have stretch 4k − 2 + ǫ.

We also note that their scheme is able to identify the
level in which routing will succeed by inspecting the name-
dependent labels. This is not possible here since we do not
know name-dependent labels at the start, and it is part of
the routing scheme to figure these out.

5. LOWER BOUND

Theorem 5.1. There exists an n-node network on which
every TINN roundtrip routing scheme of stretch < 2 requires
Ω(n) bits of routing information at some node.

Proof: Let N be an undirected n-node network for which
every TINN routing algorithm of stretch < 3 requires Ω(n)
space. Such an N exists by the result of [12]. Let N ′ be the
directed network constructed by replacing each undirected
edge in N by two oppositely-directed edges. Let R be a
roundtrip routing scheme for N ′ whose local tables are all
of size o(n), and let pR(u, v) denote the (one-way) path a
packet will take from u to v based on routing scheme R.
Then there exists some u and v s.t. pR(u, v) ≥ 3d(u, v);
else since R is also a routing scheme for N , this contra-
dicts the lower bound of [12]. Thus pR(u, v) + pR(v, u) ≥
3d(u, v) + d(v, u) ≥ 2d(u, v) + 2d(v, u) ≥ 2r(u, v), where
the middle inequality follows because by construction of N ′,
d(u, v) = d(v, u) for all nodes u, v. 2

6. CONCLUSIONS AND OPEN PROBLEMS
This paper presents distributed compact roundtrip rout-

ing algorithms, based on sublinear space local routing ta-
bles. One set of open questions involves how these tables
could be most efficiently be set up, and whether this could
be done efficiently in a distributed fashion. We note that in
a static network, a centralized algorithm could be used to
compute these routing tables in polynomial time: in fact, it
is straightforward to show how to do so in time proportional

to the time it takes to compute all-pairs shortest paths on
a digraph (see [30]). An open problem is how to efficiently
maintain these tables in a dynamic network, where nodes
enter, leave, or there is changing network topology. Notice
that the strength of the TINN model is that the node names
are decoupled from network topology; thus a distributed al-
gorithm to efficiently update the tables could ultimately lead
to a self-stabilizing algorithm for routing in the TINN model:
packets could wander the network until information about
topological updates reach their local neighborhood.

Another open question is as follows. What is the mini-
mum stretch possible in a universal compact (again, mean-
ing sublinear space at every node) roundtrip routing scheme
in the TINN model? This paper provides an upper bound
of 6, and a lower bound of 2 on the answer to this question;
we conjecture that both the upper and lower bounds can be
tightened. In the undirected TINN case, the known upper
and lower bounds are 5 and 3 (see [1] and [12] respectively).

Finally, peer to peer networks has been a topic of increas-
ing interest [13, 16, 19, 21, 23, 24, 28, 29]. It has been sug-
gested to us [7, 20] that some of the techniques developed
here, could perhaps be applied to the design of better algo-
rithms for routing and searching in peer-to-peer networks.
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