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ABSTRACT 

Current interactive surfaces provide little or no in-

formation about which fingers are touching the surface, the 

amount of pressure exerted, or gestures that occur when not 

in contact with the surface. These limitations constrain the 

interaction vocabulary available to interactive surface 

systems. In our work, we extend the surface interaction 

space by using muscle sensing to provide complementary 

information about finger movement and posture. In this 

paper, we describe a novel system that combines muscle 

sensing with a multi-touch tabletop, and introduce a series 

of new interaction techniques enabled by this combination. 

We present observations from an initial system evaluation 

and discuss the limitations and challenges of utilizing 

muscle sensing for tabletop applications. 

Author Keywords 

Surface computing, tabletops, muscle sensing, EMG. 

ACM Classification 

H.5.2 [Information interfaces and presentation]: User 

Interfaces.
 
– Input devices and strategies; Graphical user 

interfaces. 

INTRODUCTION 

Interactive surfaces extend traditional desktop computing 

by allowing direct manipulation of objects, drawing on our 

experiences with the physical world. However, the limited 

scope of information provided by current tabletop 

interfaces falls significantly short of the rich gestural 

capabilities of the human hand. Most systems are unable to 

differentiate properties such as which finger or person is 

touching the surface, the amount of pressure exerted, or 

gestures that occur when not in contact with the surface. 

These limitations constrain the design space and interaction 

bandwidth of tabletop systems. 

In this paper, we explore the feasibility of expanding the 

interaction possibilities on interactive surfaces by sensing 

muscle activity via forearm electromyography (EMG). 

EMG allows us to infer additional information about each 

contact with an interactive surface, and provides novel 

information about hand and finger movement away from 

the surface. We employ muscle sensing in combination 

with the contact sensing of a standard multi-touch tabletop 

(Microsoft Surface) and introduce novel interactions that 

emerge from this combination of sensor streams. 

As demonstrated in previous sensor fusion work, the 

combination of multiple complementary streams can often 

be greater than sum of the parts [8,10,15]. For example, in 

our work, we use muscle sensing to determine which finger 

is in contact with a surface, assess the level of pressure 

exerted by the user while they are pressing down, and even 

detect activity when a user’s hand is not in contact with the 

surface. Combining these sensing modalities allows us to 

explore finger-specific input, pressure-sensitive interaction, 

and free-space gestures that complement traditional on-

surface interactions. 

The contributions of this paper are: (1) a novel multimodal 

system that combines muscle-sensing with interactive 

surface input; (2) four proof-of-concept interaction 

techniques that make use of finger identification, pressure 

detection, and free-space hand movement in conjunction 

with surface contact information; (3) a preliminary system 

evaluation demonstrating the feasibility of our approach; 

and (4) a discussion of the benefits and limitations muscle 
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Figure 1. Our system uses electromyography 

(muscle activity) sensors placed on the forearm to 

infer finger identity, estimate finger pressure, and 

allow off-surface gestures. 
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sensing offers as a complementary technology to those 

employed by the tabletop community. 

BACKGROUND AND RELATED WORK 

We briefly review relevant work on interactive surfaces and 

provide background on muscle-sensing and its use in 

human-computer interaction. 

Interactive Surface Sensing 

While most available multi-touch systems are capable of 

tracking various points of user contact with a surface (e.g., 

[5]), the problem of identifying particular fingers, hands, or 

hand postures is less well solved. Existing approaches to 

solving this problem include camera-based sensing, electro-

static coupling, and instrumented gloves.  

Several camera-based interactive surface systems have 

demonstrated the capability to image the user’s hands, 

either above the display (e.g., [22]) or through the display 

(e.g., [2,20]), but none of these explore contact 

identification or freehand interactions in the space above 

the surface. Malik et al. [13] used two overhead cameras to 

detect hand postures as well as which finger of which hand 

touched a surface, but required a black background for 

reliable recognition. In general, camera-based approaches 

have two shortcomings: fingers and hands can easily be 

occluded and contact pressure is not robustly observable.  

Techniques such as frustrated total internal reflection 

(FTIR) [7] are able to estimate contact pressure by 

detecting changes in the shape of a contact that are often 

indicative of pressure changes; however, this approach has 

limited precision, and FTIR systems cannot reliably 

discriminate contact shape changes due to posture 

adjustments from those due to pressure variation. FTIR 

systems also cannot reliably identify contacts as belonging 

to particular fingers. 

Benko et al. [1] demonstrated a multi-finger interaction 

technique which required users to wear instrumented 

gloves for finger identification. Gloves have also been 

extensively used in virtual reality research. For example, 

Cutler et al. [4] used gloves for above-the-surface 3D 

interactions. While simple and reliable, gloves suffer from 

many issues, including hygiene, comfort, access time, and a 

reduction in the directness offered by “direct touch” 

interfaces.  

Interaction in the space above the interactive surface has 

also been explored with styli [12], video cameras [21, 22, 

23], and depth-sensing cameras [2,24]. The use of depth-

sensing cameras is particularly of interest, as it facilitates 

precise 3D hand positioning and gesture-tracking without 

requiring the user to wear on-body sensors. However, low 

sensing resolution, finger visibility, and occlusion issues 

make such approaches potentially more error-prone than 

the approach described in this paper. In addition, neither 

depth-sensing or standard video cameras are able to directly 

sense contact pressure and require gestures to be “within 

sight” of the surface. Other technologies such as Izadi et 

al.’s SecondLight [9] permit projection onto objects held in 

the space above the surface. While supporting an 

interesting set of interactions, this does not allow input 

away from the surface, only output.  

While not in the domain of surface computing, Sugiura and 

Koseki [19] demonstrated the concept of finger-dependent 

user interface elements and interactions. They relied on a 

standalone fingerprint reader to determine which finger was 

used and assigned data and specific properties to each of 

the user’s fingers.  

Muscle Sensing 

In an independent line of work, researchers have 

demonstrated the feasibility of using forearm 

electromyography (EMG) to decode fine finger gestures for 

human-computer interaction [17,18]. EMG measures the 

electrical signals used by the central nervous system to 

communicate motor intentions to muscles, as well as the 

electrical activity associated directly with muscle 

contractions. We refer the reader to [14] for a thorough 

description of EMG. 

EMG has conventionally been used in clinical settings for 

gait analysis and for muscle function assessment during 

rehabilitation. More recent research has explored the use of 

EMG for direct input, specifically for controlling prosthetic 

devices (e.g. [6,16]). Work in this area has demonstrated 

experimentally that such a system can be used to 

differentiate among finger and hand gestures performed by 

hands resting on a non-interactive table [20,25,26]. 

Furthermore, these gestures extend to scenarios in which 

the user’s hand is not constrained to a surface, including 

gestures performed when holding objects [18]. 

COMBINING MUSCLE AND TOUCH SENSING  

Touch-sensitive surfaces and EMG provide complementary 

streams of information. Touch-sensitive surfaces provide 

precise location and tracking information when a user’s 

hand is in contact with the surface. They can also precisely 

record temporal information about the arrival and removal 

of contacts. EMG can detect which muscle groups, and 

consequently which fingers, are engaged in the current 

interaction. It can also approximate the level of activation 

of those muscle groups, which allows the estimation of 

contact pressure. Furthermore, EMG can provide 

information about an interaction even when a user’s hand is 

no longer in contact with a surface. However, EMG cannot 

provide spatial information, and is not as reliable as touch-

sensing for temporally-sensitive gestures. We thus 

introduce a multimodal system that relies on surface input 

for spatial information and muscle sensing for finger 

identification, pressure, and off-surface gestures. 

Hardware and Setup 

Our system is implemented using a Microsoft Surface 

(http://microsoft.com/surface) and a BioSemi Active Two 

EMG device (http://biosemi.com). The EMG device 

samples eight sensor channels at 2048 Hz.  



We placed six sensors and two ground electrodes in a 

roughly uniform ring around the upper forearm of the 

user’s dominant hand for sensing finger gestures (Figure 2). 

We also placed two sensors on the forearm of the non-

dominant hand for recognizing coarse muscle activation. 

We chose this configuration to minimize setup complexity 

while allowing us to demonstrate the feasibility of 

bimanual interactions. The current asymmetric setup was a 

constraint of only having 8 sensor channels, and beyond 

this, more sensors on both arms would yield finer 

resolution of muscles and touches. 

In general, our approach was to place EMG sensors in a 

narrow band on the upper forearm, which we believe is 

relatively unobtrusive while allowing us to sense finger 

movements accurately. Our current system utilizes a wired 

connection between the sensors and an amplifier, but 

wireless EMG systems such as that made by ZeroWire 

(http://zerowire-emg.com) have recently become 

commercially available. We envision our system eventually 

becoming a thin wireless band worn just below the elbow. 

Interpretation of Muscle Signals 

Our system uses the EMG signals to provide four 

primitives to applications on the interactive surface. 

Level of pressure. The pressure primitive is a smoothed, 

down-sampled representation of the raw level of muscle 

activation on the dominant hand. This feature requires no 

training, but only a ten-second calibration procedure that 

allows the system to scale pressure values appropriately. 

The latency of pressure reporting is approximately 150ms. 

Contact finger identification. This primitive is based on a 

machine learning methodology demonstrated in the work of 

Saponas et al. [17,18]. Specifically, we use a support vector 

machine to analyze frequency and amplitude information in 

the EMG signal and determine which finger is applying 

pressure to the surface. This primitive requires about two 

minutes of training for each user. In prior work, users have 

typically been asked to respond to various controlled 

stimuli while the arm is in a fixed position in order to 

collect labeled data. This can be tiring and boring. In our 

training, we instead prompt users to use each of their 

fingers to draw freely on the surface. At the end of the 

training period, the system analyzes the training data to 

build a real-time classifier. Building the classifier requires 

less than five seconds. The latency of finger identification 

is approximately 300ms.  

“Pinch” and “Throw” gestures. A “pinch” gesture consists 

of bringing a finger rapidly against the thumb, and lifting 

away from the surface, the way one might pick up a small 

object from a table. The “throw” gesture consists of rapidly 

opening the fingers from the pinched state, as one might do 

when throwing an object held between pinched fingers. The 

“pinch” and “throw” gestures are detected by looking for 

characteristic changes in the muscle activation level of the 

dominant hand. Detecting these gestures requires no 

training, but identifying the fingers performing these 

gestures currently requires a two-minute training procedure 

identical to that described for contact finger identification, 

except that instead of drawing on a surface, the system asks 

the user to pinch specific fingers against his or her thumb in 

mid-air for five seconds at a time during a two minute 

training period. The latency of pinch detection and 

identification is also approximately 300ms. 

“Flick” gesture. The “flick” gesture consists of a simple 

wave of the hand. The “flick” gesture is detected by 

looking for characteristic changes in the muscle activation 

level of the hand. This primitive requires no training other 

than a ten-second calibration procedure that allows the 

system to scale pressure values appropriately. The latency 

of “flick” detection is approximately 50ms. 

Due to the equipment constraint of having only 8 EMG 

sensor channels and the resulting asymmetric setup, we 

bound each of the gestures to a specific hand. The 

dominant hand, with the larger number of sensors, could 

sense pressure, contact-finger identification, as well as the 

pinch and throw gestures. The flick gesture was restricted 

to the non-dominant hand. 

Calibrating and training our system for all four primitives 

requires approximately five minutes per user. We discuss 

incorporating these primitives into hybrid interaction 

techniques in the next section. 

 

Figure 3. An example drawing demonstrates both 

pressure-painting and finger-dependent painting. A 

different color is mapped to each finger, and 

pressure controls stroke saturation.  

 

 

 

Figure 2. EMG sensors on a user’s arm. 



Hybrid EMG-Surface Interactions 

We have prototyped four interaction techniques to 

demonstrate and evaluate the utility of EMG sensing for 

interactive surfaces. These interactions are all prototyped 

within a simple painting and image-manipulation 

application. 

Pressure-sensitive painting: To demonstrate our system’s 

ability to estimate contact pressure, we associate different 

saturation levels in our painting application with different 

levels of finger pressure (more pressure results in darker 

strokes) (Figure 3). 

Finger-aware painting: To demonstrate our system’s 

ability to associate surface contacts with specific fingers, 

we associate different brush colors with the index and 

middle fingers (Figure 3). When the interactive surface 

detects a contact, it immediately queries the EMG system 

for the identity of the active finger, and uses that color for 

the brush stroke associated with this contact. Because we 

have independent processing streams for touch and muscle 

sensing, we begin to draw a translucent stroke to maintain 

the sensation of responsiveness, and only fill in the color 

when the EMG system has returned with the finger it 

detects. 

Finger-dependent pick and throw: To demonstrate our 

system’s ability to detect gestures more complex than 

simple touches, and to persist the state of those gestures 

even when the hand leaves the surface, we map the “pinch” 

and “throw” gesture primitives to “cut/copy” and “paste” 

operations on a simple photo canvas. Thus the user is able 

to pick a photo up from the table and throw it back onto the 

canvas. Picking is initiated on the surface, by placing two 

fingers on the desired photo and then performing a pinch 

gesture (Figure 4). By pinching with the index or middle 

finger, the user can specify whether to initiate a cut or a 

copy operation, respectively. A user holds on to a copied or 

cut photo by maintaining the pinch posture, even after the 

hand has left the surface, and pastes the object back onto 

the surface by executing the throw gesture. The user can 

perform arbitrary actions (e.g., switch between canvases) 

while she is holding the object and has not thrown it back. 

Undo flick: To demonstrate our system’s ability to 

facilitate bimanual, off-the-surface interaction, we map the 

“flick” gesture performed by the non-dominant hand to the 

undo operation in our painting application. This action 

removes the most-recently-created stroke. 

EXPLORATORY SYSTEM EVALUATION 

To gather initial feedback on our system, we recruited 6 

participants (3 female) from within our organization. Each 

participant spent approximately 90 minutes interacting with 

our system and was provided with a $10 compensation for 

their time. The goals of our evaluation were to validate the 

basic feasibility of our system and interaction techniques, 

to assess their robustness and reliability, and to gather 

anecdotal responses from novice users about our proposed 

interaction techniques. 

Tasks 

At the beginning of each participant’s experimental session, 

we applied EMG sensors to the participant’s arm as 

described in the previous section. We then asked the 

participant to make a tight fist and then relax, allowing 

calibration of the signal level for each hand. Introduction 

and the initial setup took approximately 15 minutes. 

Participants then completed the following five tasks (in 

order): 

Task 1: Copy an image from a given paper template 

(Figure 5a) using the pressure-sensitive painting technique. 

The image was presented on paper and contained varying 

 

Figure 5. Four tasks from our user evaluation: (a) 

Task 1: copy an image using contact pressure to 

control saturation; (b) Task 2: copy an image using 

index and middle fingers to paint two separate 

colors; (c) Task 3: draw lines with alternating colors; 

and (d) Task 5: move three images and copy three 

images to a different canvas. 

 

 

 

Figure 4. Performing the finger-dependent pick and 

throw interaction: A user picks up a virtual object 

by pinching it on the surface and lifting his hand 

away from the surface. Releasing the pinch return 

the object the current canvas. 



levels of light and dark strokes. 

Task 2: Copy an image from a given paper template 

(Figure 5b) using the finger-aware painting technique. The 

image was presented on paper and contained blue and 

green strokes, which were mapped to the participant’s 

index and middle fingers, respectively. 

Task 3: Make a series of vertical lines across the surface, 

changing color with each vertical line (Figure 5c). Each 

participant filled two canvases with vertical lines. 

Task 4: Write the numbers from 1 to 10 on the surface, 

executing the “undo flick” gesture after each even number, 

but not after odd numbers. Correct execution of this task 

would leave only the odd numbers written on the surface. If 

an even number contained multiple strokes, participants 

executed the “undo flick” gesture as many times as was 

necessary to erase the number completely. 

Task 5: Presented with a pile of six images on a canvas, 

either copy or move each image to another canvas, 

depending on the image category. Specifically, they had to 

copy images of cats and move images of dogs (Figure 5d). 

Participants picked up images using our “pick” gesture, 

where the index finger initiated a “move/cut” operation and 

the middle finger initiated a “copy” operation. While the 

image was held in their dominant hand, participants pressed 

an on-screen button with their non-dominant hand to switch 

to the target canvas, and used the “throw” gesture to place 

the image on that canvas.  

There were two additional training sessions: First, before 

performing Task 2, participants spent two minutes training 

the system to recognize finger-specific contacts. Second, 

participants spent another two minutes training the finger-

specific “pinch” gesture before Task 5. Training in both 

cases consisted of repeated activation of a desired hand 

pose or gesture using a stimulus-response training method, 

i.e., the user was prompted with a particular pose/gesture 

on the screen, they performed it for 2 seconds, and then 

they relaxed their hand muscles.  

Before performing each task, participants were given time 

to practice each interaction and ask questions. This practice 

session took no longer than 5 minutes. When comfortable 

with the interaction, participants proceeded to complete the 

specific tasks, which were untimed. On average, 

participants completed each task within one minute. 

At the conclusion of the session, each participant 

completed a questionnaire that solicited feedback about 

each interaction. 

Results 

In this section, we present quantitative results from each of 

our tasks. Discussion of the implications of these results is 

presented in the following section. 

Task 1: We analyzed Task 1 (copying an image using 

pressure-sensitive painting) by defining 22 features, such as 

“line 2 is lighter than line 1”, and “line 3 demonstrates the 

correct brightness gradient”, and coding errors on each of 

these features for each participant. The resulting drawings 

can be seen in the top row of Figure 6. Across our six 

participants, the mean accuracy was 93.9% (sd = 4.7%). In 

short, all participants were able to effectively manipulate 

pressure to control brush darkness in a drawing task.  

Task 2: The task of copying a multi-color image is more 

open-ended and therefore difficult to formally analyze, as 

participants used different numbers of strokes to complete 

the image. Anecdotally, success on task 3 (vertical lines) 

was indicative of users’ ability to perform task 2: while all 

six participants completed the target drawing (middle row 

of Figure 6), one had some difficulty reliably selecting the 

finger color.  

Task 3: We analyzed Task 3 (finger-aware drawing of 

alternating blue and green vertical lines) by computing the 

percentage of lines drawn in the correct color for each 

participant (see bottom row of Figure 6). Across our six 

participants, the mean accuracy was 90.9% (sd = 11.1%). 

This includes one participant for whom finger classification 

did not perform at a level comparable to the other 

participants. In this errant case, the classification was 

biased toward one finger, resulting in an accuracy of only 

71%. Without this participant, the mean accuracy overall 

was 94.8%. In short, five out of six participants were able 

to effectively specify brush colors by painting with different 

fingers. 

Task 4: We analyzed Task 4 (writing numbers and 

selectively erasing half of them with the “undo flick” 

gesture) by counting the number of false-positive and false-

negative “undo” operations performed by each participant. 

All participants but one completed this task with no errors. 

The one participant had two false positive errors. In short, 

five out of six participants were able to reliably execute and 

control the “undo flick” gesture without any false positives.  

Task 5: We analyzed Task 5 (picking and throwing 

images) by counting the number of “mis-triggers” and 

“mis-classifications.” Mis-triggers were instances where 

the system detected a pinch or throw gesture that the user 

did not intend, or failed to detect an intended gesture. Mis-

classifications were instances where the system correctly 

detected the presence of a “pick” gesture but failed to 

correctly identify the gesturing finger. Three of our six 

participants performed this task without any errors of either 

type. Two of the remaining three participants experienced 

no mis-triggers, but had 2 and 3 mis-classifications, 

respectively. The remaining participant experienced 2 mis-

triggers and 1 mis-classification. In short, this was the most 

difficult of our interactions, but the three perfect executions 

of this task support its basic feasibility. In the following 

section, we will discuss hypotheses surrounding the 

classification errors experienced by the other participants. 

In summary, while it is important to keep in mind that we 

base our observations on a very limited set of six 

participants, only one experienced difficulties getting 

reliable recognition, while five performed all tasks without 

problems. 



DISCUSSION AND FUTURE WORK 

Here we discuss the lessons learned from developing our 

system and testing our interaction techniques, and present 

opportunities for future work. 

Calibration and Training 

One goal when developing sensing and recognition systems 

is to construct an accurate model that requires minimal 

calibration and training. Our system currently requires 

gross calibration each time a user dons the EMG device. 

This comes in the form of a making a tight fist and then 

relaxing each of the hands. Because of the variance in 

muscle activity across users and the inconsistency in sensor 

placement, even for repeated use on the same user, this is 

necessary to normalize the raw amplitudes and find the 

basic working range of the signal. This calibration provides 

sufficient information to model pressure gestures, pick and 

throw gestures, as well as our flick gesture, since these 

function based on thresholds set on the signal amplitude.  

Other gestures such as distinguishing between different 

fingers require more training since the relationship between 

the raw signal and the desired recognition result is less 

obvious. In these cases, we have users perform tasks in 

which we collect labeled data that can be used by machine 

learning techniques to dynamically build the classification 

model.  

We believe that this training exercise must be carefully 

designed in order to collect data that is representative of 

real use scenarios. For example, traditional EMG training 

methodologies have largely employed a stimulus-response 

paradigm, in which the user is told exactly which gesture to 

perform and when. In the case of finger identification, we 

could have had the user press down with each of their 

fingers when we told them to. This is not only potentially 

boring and annoying to perform, but also provides data that 

is quite different from that which has to be recognized.  

In our tests, we had users paint images of their choice while 

using fingers of our specification, which was a much more 

compelling exercise that provided better training data. Even 

then, some users performed the training very differently 

than they did the task. While we cannot quantify this, our 

informal observations of the user that had poor recognition 

results leads us to believe that they were trying so hard to 

train the system correctly that their arm might have been 

abnormally tense when they did this, leading to the 

construction of a poor model. 

These issues point toward a limitation of our current 

system. We did not explicitly tell users that they had to 

perform the tasks and gestures in any given way, and we 

found that users who deviated most from the way they 

trained the system generally had the worst recognition 

results. This is hardly surprising, but most users were able 

to naturally self-correct after the training phase, and with a 

few minutes of practice, quickly learned how to perform 

the gestures in a way as to get reliable classification.  

Classification Limitations 

The recognition rates achieved by our system – for example 

the 90% mean accuracy for finger identification – might be 

considered low when compared to the error rates of 

standard input devices such as mice and keyboards. 

However, our accuracies are comparable to other “non-

traditional” input modalities such as speech and gesture, 

both of which have achieved success in a variety of 

applications where the benefits of alternative modalities 

compensate for reduced accuracy. In addition, we believe 

that a more synergistic combination of touch sensing and 

muscle sensing would probably yield better recognition 

results. For example, we could consider the changes in the 

 

Figure 6. Pictures painted by participants in our exploratory system evaluation, where rows 1, 2, and 3 show the 

results of Tasks 1, 2, and 3 respectively. Task 1: copy the leftmost image using pressure-sensitive painting. Task 2: 

copy the leftmost image using index and middle fingers to paint in blue and green, respectively. Task 3: draw 

alternating blue and green lines using index and middle fingers, similar to task 2. The leftmost target images were 

provided to our participants on paper. 



touch contact area as well as the outline of the hand in the 

hover zone to further aid our recognition system.  

The present work also did not explore the long-term 

performance of our classifiers, and finding techniques that 

create models that are robust to variations in sensor 

placement and user performance remains future work. The 

need to individually place electrodes on a user’s arm limits 

the reusability of training data and thus the long-term 

robustness of our system, but we are currently investigating 

a novel, dry-electrode armband form factor which allows 

the user to quickly attach sensors to their arm. This 

approach shows potential in facilitating calibration data 

reuse across multiple sessions for each individual user.  

Gesture Sets 

In this work, we only classify a single contact at a time. 

This is not an intrinsic limitation of the approach, but rather 

one of implementation. It remains future work to develop 

recognition techniques that deal with compound gestures, 

whether through training explicitly for these gestures or by 

inferring them from models of the individual gestures. If 

multiple digits are touching the surface at the same time, 

the system could also use the relative position and ordering 

of the fingers and the information about which fingers are 

currently touching the surface to infer which finger is 

which. Even minute changes in pressure and finger flex 

could be correlated with minute changes in finger contact 

area and relative position to other contacts to precisely 

identify each finger in contact with the surface. 

One of our explicit design decisions was to utilize only the 

index and middle fingers. This was a simplification since 

we sought to explore modality fusion rather than explicit 

EMG system performance. That said, [17] and [18] have 

shown that the recognition accuracy does not degrade 

drastically even when people use all five fingers. This work 

demonstrated that the little finger was the least reliable for 

EMG classification, which we believe is acceptable since 

the little finger is typically the least comfortable to design 

gestures around. It should be noted that we expect that the 

natural way to use the thumb on a surface is probably not 

equivalent to the best-case scenario tested in that work and 

we would likely see slightly degraded performance there as 

well; the muscles controlling the thumb, are less accessible 

to a forearm EMG sensor than the muscles that drive the 

other fingers. 

Interaction and Interface Considerations 

A slightly more opportunistic idea is to make use of a 

unique property of muscle-sensing: it is sometimes possible 

to detect a physical movement event before it actually 

occurs. This is because before we make a motion, we have 

preparatory muscle activation that can be sensed by EMG. 

Hence, it may be possible to detect actions such as pressing 

a button slightly before the physical event actually occurs, 

which could perhaps be integrated into interaction 

techniques for tabletops to, for example, begin animating a 

change to an object that will be affected on screen. 

In our prototype system, we implemented and evaluated 

each of our interaction techniques separately. However, 

these can obviously be integrated into a single system. 

Pressure sensing can be done simultaneous with finger 

identification and the surfaces ability to sense contact shape 

for hybrid interactions such as simultaneously controlling, 

stroke shape, color, and saturation. Similarly, finger 

identification on the surface (e.g., painting) and finger 

identification off the surface (e.g., pinching) can be inferred 

simultaneously through separate classifiers while using 

surface contact information to determine how to use the 

results.  

In addition to our hybrid interaction techniques, we 

explored the concept of finger-dependent user interface 

elements (Figure 7), i.e., on-screen elements that can be 

activated only when touched with a specific finger (similar 

to the concept introduced in [19]). We prototyped finger-

dependent ink-wells for selecting the finger brush color, 

and middle-finger quit button for exiting our application. 

Such elements are harder to activate by mistake than 

standard widgets, which could be useful for actions with 

high cost of accidental activation (e.g., delete or quit). 

CONCLUSION 

We have presented a novel fusion of complementary 

sensing modalities: touch sensing via an interactive surface 

and muscle sensing via EMG. Our approach enhances the 

existing tabletop paradigm and enables new interaction 

techniques not typically possible with standard interactive 

surfaces. Our exploratory system evaluation provides 

important insights into the feasibility, reliability and 

effectiveness of our approach. We believe that with the 

future development of miniaturized, wireless, and wearable 

EMG sensing devices, our techniques will provide useful 

interaction capabilities for the next generation of interactive 

surfaces.  
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