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Abstract— The automated detection of emotions opens the 

possibility to new applications in areas such as education, mental 

health and entertainment. There is an increasing interest on 

detection techniques that combine multiple modalities. In this 

study, we introduce automated techniques to detect users' 

affective states from a fusion model of facial videos and 

physiological measures. The natural behavior expressed on faces 

and their physiological responses were recorded from subjects 

(N=20) while they viewed images from the International Affective 

Picture System (IAPS). This paper provides a direct comparison 

between user-dependent, gender-specific, and combined-subject 

models for affect classification. The analysis indicates that the 

accuracy of the fusion model (head movement, facial color, and 

physiology) was statistically higher than the best individual 

modality for spontaneous affect expressions. 

Keywords- Affective computing, machine learning, video 

analysis, multichannel physiology, multimodal fusion. 

I.  INTRODUCTION  

The number of applications using video cameras for 
tracking faces is growing exponentially. Cameras are 
constantly capturing images of human faces on cell phones, 
webcams, even in automobiles— often with the goal of using 
the facial information as a clue to understand more about the 
user’s current state of mind [1], [2]. In recent years, researchers 
in the field of affective computing have developed affective 
sensors, computational techniques/ tools, and applications [2]. 
A lot of these studies primarily focus on a single modality such 
as facial expressions or acoustic-prosodic features of speech. 
However, it is unclear whether all emotions are expressed via 
facial expressions and paralinguistic features of speech. For 
example, there is some evidence that naturalistic episodes of 
boredom and engagement, two affective states that are 
ubiquitous in almost any task, cannot be reliably detected from 
the face [3], [4]. Another drawback of these behavioral uni-
modal (facial expressions and speech patterns) affect detection 
systems is that, they can be masked, where users may attempt 
to disguise certain negative emotions. Hence, alternate 
channels (e.g. physiology) need to be considered along with 
behavioral modalities to detect the subtle expressions 
associated with complex emotions. On the other hand, in 
naturalistic situation emotions are expressed in a multimodal 
fashion, which cannot be detected accurately from just single 
modality, therefore, having multimodal information for affect 
recognition is advantageous [5].  

Affect detection systems that integrate information from 
different modalities have been widely advocated, yet they are 
still rarely implemented [6]. In recent years, multimodal 
approaches of affect detection are becoming increasingly 
popular in affective computing due to its advantages [7], [8]. In 
this study, physiological measures such as heart activity, skin 
response, facial muscle activity and breathing patterns are 
considered along with face and head related features to 
improve the accuracy of affect recognition. There are a number 
of factors that distinguish the current approach from previous 
ones. Firstly, behavioral responses (head movement and face 
color) were recorded with a video camera while subjects 
viewed emotional images from International Affective Picture 
System (IAPS) [9] designed to elicit intense emotions. In this 
scenario the probability that we accessed natural emotional 
behavior is higher than in studies that used deliberately posed 
faces [10], [11]. Secondly, the physiological data was collected 
during this controlled stimulus presentation, which was used as 
additional features along with the video features to improve the 
overall accuracy of affect detection in a multimodal fashion. 
Thirdly, we adopted the circular order of the circumplex model 
[12] of affect during the image presentation for emotion 
stimulation. This is suitable because it helps determine the 
current subtle and complex affective state of the user, which 
can then be used to control the course of the interaction.  

In this paper, we present results for affect detection from 
the individual modalities (physiology and video) and their 
fusion model. The results presented show the difference in 
three types of models; user-dependent model, gender specific 
model, and combined-subject model. These models are useful 
for human computer interaction (HCI) applications targeting 
general or specific group of users. It is also interesting to 
compare the user-dependent, gender-specific, and combined-
subject models, which may provide valuable information to 
social scientists studying how these differences can affect the 
expression of emotions. 

Section two gives brief background on multimodal fusion 
and a brief review on multimodal approaches in affective 
computing. Section three explains the data collection procedure 
and the computational model. Section four presents the results 
for this study followed by the conclusion in section five.  



II. BACKGROUND 

One of the main goals of multimodal affect recognition 
systems is to achieve better accuracy by integrating 
information from different input modalities (e.g. video and 
physiology) rather than each single channel. There are three 
methods to fuse multichannel information each depending on 
when information from the multiple sensors are integrated [5].  

Data fusion is performed on the raw data for each signal 
and can only be applied when the signals have the same 
temporal resolution. It can be used for integrating physiological 
signals coming from the same recording equipment as is 
commonly the case with physiological signals, but it could not 
be used to integrate a video signal with a text transcript. It is 
also not commonly used because of its sensitivity to noise 
produced by the malfunction or misalignment of the different 
sensors. 

Feature fusion is performed on the set of features extracted 
from each signal. This approach is more commonly used in 
multimodal HCI and has been used in affective computing, for 
example, in the Augsburg Bio-signal Toolbox [13]. Features 
for each signal (EKG, EMG, etc.) are primarily the mean, 
median, standard deviation, maxima, and minima, together 
with some unique features from each sensor. These are 
individually computed for each sensor and then combined 
across sensors.  

Decision fusion is performed by merging the output of the 
classifier for each signal. Hence, the affective states would first 
be classified from each sensor and would then be integrated to 
obtain a global view across the various sensors. It is also the 
most commonly used approach for multimodal HCI [14]. 

Previous work on multimodal affect recognition tried to 
make use of both feature level and decision level fusion, but 
have mostly achieved better performance for feature fusion. 
Busso et al. integrated facial expression and speech at both 
feature and decision level using support vector machine (SVM) 
to recognize four emotions – sadness, happiness, anger and 
neutral [15]. They reported classification results of 89.1% for 
the bimodal model using feature fusion. The result for their 
decision level fusion was slightly lower than the feature level. 
Jonghwa Kim evaluated feature level, decision level, and 
hybrid fusion performance integrating multichannel 
physiological signals and speech signal for detecting valance 
and arousal using linear discriminant analysis (LDA) classifier 
[16]. Their fusion scheme reported results for feature, decision, 
and hybrid fusion, where the performance for the feature fusion 
was highest. 

On a more naturalistic situation, Kapoor and Picard 
developed a contextually grounded probabilistic system to infer 
a child’s interest level on the basis of upper and lower facial 
feature tracking, posture patterns (current posture and level of 
activity), and some contextual information (difficulty level and 

state of the game) [17]. The combination of these modalities 
yielded a recognition accuracy of 86 percent, which was 
significantly greater than that achieved from the facial features 
(67 percent upper face and 53 percent lower face) and 
contextual information (57 percent). However, the posture 
features alone yielded an accuracy of 82 percent that would 
indicate that the other channels are redundant with posture. 

More recently, D'Mello and Graesser considered a 
combination of facial features, gross body language, and 
conversational cues for detecting some of the learning-centered 
affective states [7]. Their affect detector was based on feature 
fusion where their analysis indicated that the accuracy of the 
multichannel model was statistically higher than the individual 
channels for the fixed but not spontaneous judgments. They 
also investigated decision fusion but the classification accuracy 
rates were similar to feature fusion. Hussain et. al. [8] 
evaluated the performance of detecting valence and arousal 
using multichannel physiology and their fusion at various 
levels (feature, decision, and hybrid). They achieved significant 
improvement for the decision and hybrid fusion levels over the 
individual channels. 

III. METHOD 

A. Participants and Materials 

The participants were 20 undergraduate/postgraduate 
engineering students. The participants’ age ranged from 18 to 
30 years and there were 8 males and 12 females. Due to sensor 
failure and loss of data from two subjects, results are presented 
for 18 subjects. The participants also signed an informed 
consent prior to the experiment. The experiment took 
approximately one hour.  

The experiments were conducted indoors with a varying 
amount of ambient sunlight entering through windows in 
combination with normal artificial fluorescent light. 
Participants were asked to sit in front of a computer and 
interact normally while their video was recorded by an 
ordinary webcam (Logitech Webcam Pro 9000). All videos 
were recorded in color (24-bit RGB with 3 channels, 8 
bits/channel) at 15 frames per seconds (fps) with pixel 
resolution of 640×480 pixels and saved in AVI format. 

The participants were also equipped with physiological 
sensors that monitored electrocardiogram (ECG), facial 
electromyogram (EMG), respiration, and galvanic skin 
response (GSR). The physiological signals were acquired using 
a BIOPAC MP150 system with AcqKnowledge software at 
1000 samples per second for all channels. ECG was collected 
with two electrodes placed on the wrists. Two channels of 
EMG were recorded from the zygomatic and corrugator 
muscles respectively. A respiration band was strapped around 
the chest and GSR was recorded from the index and middle 
finger of the left hand. Fig. 1 presents the experiment setup and 
mentioned sensors.  



 

Figure 1.  Experiment setup and sensors 

B. Procedure 

The participants viewed emotionally charged photos from 
the IAPS collection. A total of 90 images (three blocks of 30 
images each) for 10 seconds each were presented, followed by 
6 seconds pauses between the images. The images were 
selected so that the IAPS valence and arousal normative scores 
for the stimuli spanned a 3×3 valence/arousal space. 
Participants also self-reported their emotions by clicking radio 
buttons on the appropriate location of 3×3 valence/arousal grid 
after viewing each image. 

In this paper, results are presented using the normative 
ratings instead of self-reports. Therefore, the computational 
model was trained and tested using a balanced class 
distribution, which could be suitable for evaluating accuracies 
of classification without applying any up or down sampling 
techniques. The IAPS normative ratings are useful because 
they are standardized scientifically for assessing basic and 
applied problems in psychology [9]. Moreover, many people 
do not know how to recognize, express and label/scale their 
own feelings, therefore self reports sometimes can be 
unreliable [18]. However, self-reports provide important 
information and should not be ignored; therefore the collected 
self ratings will be used as an extension of this work in future 
studies. 

C. Feature Extraction 

A total number of 279 features were extracted from video 
and the physiological signals. Feature vectors were calculated 
using 10 seconds time window corresponding to the duration of 
each IAPS image presentation.  The feature vectors were also 
labeled with the normative ratings (1-3 degrees of valence/ 
arousal). The feature extraction process is explained briefly in 
the following subsections. 

1) Video Features 
All video recordings were analyzed offline using MATLAB 

and Open Computer Vision library (OpenCV). In this work, 
two types of image based features were explored: geometric 
and chromatic features. Five geometrical data of the face (x and 
y coordinates, width, height and area) were derived which 
determined the position of the head in each frame. In addition, 

each frame was separated into red, green and blue colors. The 
impact of different emotion on the user skin color is also 
explored in this study.  

Statistical features were calculated based on these eight 
image-based features. By defining a time window, a set of 
statistical features can be derived. A number of statistical 
features such as mean, median, standard deviation, minima and 
maxima were computed. In addition, some motion features 
were calculated by subtracting the values of last frame of the 
time window from the first values. Altogether, 65 features were 
extracted from each video. The procedure of video feature 
extraction was conducted as follows: 

a) Face tracking (Geometric features extraction) 

First of all, for each video, we detected the face and 
extracted the necessary features. We utilized OpenCV for 
detecting and tracking the face in the video recording using an 
extended boosted cascade classifier (Haar classifier [19]). Most 
of the classifiers identify a number of false positive due to 
background artifacts and this rate would be raised if the 
movement increases in the video. In order to improve the 
performance of face detection module a fast and simple face 
tracking algorithm was developed to increase the speed of 
further calculation and reduce the false face positive. 
Accordingly, in each frame a dynamic region of interest (ROI) 
was selected based on the face area which was detected in 
previous frame (+30% of detected face area). The algorithm 
always looks for the face in this tracking ROI. If the face was 
not found in this region, the ROI was expanded to whole 
image. 

b)   Skin color (Chromatic features extraction) 

In this study, two facial EMG sensors were placed, 
therefore, needed to be removed from the video frames before 
extracting the color features. This was done by tracking ROI 
where a rectangle of 60% width and full height of the detected 
face region was selected as new ROI and then was separated 
into the RGB channels. The average color value of all pixels in 
the ROI was calculated for each frame to compose raw signals 
for red, green and blue channels. If no face was detected then 
the previous values for the three channels were returned and 
the face detection flag for the current frame was set to zero. 

2) Physiological Features 
Statistical features were extracted from the different 

physiological channels using the Augsburg Bio-signal toolbox 
[13] in Matlab. Some features were common for all signals 
(e.g. mean, median, and standard deviation, range, ratio, 
minimum, and maximum) whereas other features were related 
to the characteristics of the signals (e.g. heart rate variability, 
respiration pulse, frequency). A total of 214 features were 
extracted from the five physiological channel signals (84 from 
ECG, 42 from EMG, 21 from GSR, and 67 for respiration). 

3) Feature Fusion  
Feature level fusion model was created for further analysis. 

In this model, all physiological features were considered as the 
physio modality and both head movement and skin color 
features were considered as the video modality. Hence, the 
fusion model contained all features of these two modalities. We 
investigated the accuracy of classification tasks through video 



and physio modalities and compared them with the fusion 
model.    

D. Classification  

The Waikato Environment for Knowledge Analysis (Weka) 
was used for feature selection and classification. Prior to 
classification, in order to reduce the dimensionality of the large 
number of features which might decrease classification 
performance due to unnecessary features, correlation based 
feature selection (CFS) method was used for choosing the best 
subset of features. The correlation based feature selection 
technique evaluates the worth of a subset of attributes by 
considering the individual predictive ability of each feature 
along with the degree of redundancy between them [20]. 

Six machine learning algorithms; k-nearest neighbor (k=1, 
k=3), linear support vector machine (SVM), BayesNet, J48 
decision tree and linear logistic regression from the weka 
toolbox [21] were selected for classification. Then, a vote 
classifier with the average probability rule for combining the 
classifiers was applied [22]. The training and testing for both 
types of classes (valence and arousal) was performed 
separately with a 10-fold cross validation. The kappa statistic 
[23] was used as the overall classification performance metric 
because it factors out random guessing (i.e., accuracy expected 
due to chance). A kappa of 0.0 represents chance accuracy 
while a kappa of 1.0 would be indicative of perfect 
discrimination. ZeroR, a probabilistic classifier was used as the 
baseline produced kappa of 0.0. In addition, the F-measure 
(from precision and recall) was calculated as an indication of 
how well each affective state was classified. For the 
classification scores of precision (P) and recall (R), the F-
measure (F1) is calculated by; F1=2((P×R)/ (P+R)).  

IV. RESULTS 

The classification results for detecting 1-3 degrees (low, 
medium, high) of valence and arousal is divided into three 
main parts: user-dependent analysis, gender-specific analysis 
and combined-subject analysis. 

A. User-dependent Analysis 

The subsequent analysis focuses on developing user-
dependent models. Distinct models were developed and 
validated for each participant. Fig. 2 presents the mean and 
standard deviation of kappa scores assessing the overall 
performance of discriminating three degrees of valence and 
arousal. The results indicate that the classifier was successful in 
discriminating between three degrees of valence and arousal 

The fusion model achieves 9% and 15% improvement in 
kappa score for detecting valence over the video and physio 
channels respectively. In addition, it should be mentioned that 
the fusion model for 15 out of 18 subjects had kappa scores 
ranging from 0.40 to 0.70 in detecting three degrees of valence.  

On the other hand, the classification results showed that the 
fusion model did not improve the accuracy of detecting degrees 
of arousal from video modality but showed 15% improvement 
over the physio modality. Maximum kappa score of 0.70 was 
achieved by the fusion model for detecting the degrees of 
valence. 

 

Figure 2.  The mean and standard deviation of Kappa scores for valence and 

arousal classification (User-dependent models) 

Next we investigate how well the individual degrees of 
valence and arousal were classified from the video, physio and 
fusion models. Table 1 shows the mean and standard deviation 
of F1 as per valence and arousal category across the 18 subjects 
for the vote classifier. The fusion model has the highest 
accuracy for detecting all three degrees of valence followed by 
the video modality. The performance of the physio modality 
was slightly lower than video for all three degrees of valence. 
As, for arousal, both video and the fusion model had similar F1 
values for detecting low arousal. Video was slightly better than 
the fusion for detecting medium arousal, while it was the 
opposite for detecting high arousal. Physio is able to detect all 
three degrees of arousal with reasonable accuracy but lower 
than both video and fusion models.  

TABLE I.  THE MEAN AND STANDARD DEVIATION OF F1 VALUES FOR 

EACH DEGREE OF VALENCE AND AROUSAL (USER-DEPENDENT MODELS) 

 Valence Arousal 

Low Medium High Low Medium High 

Video 
Mean 0.64 0.51 0.60 0.62 0.49 0.63 

Std 0.15 0.11 0.18 0.14 0.13 0.09 

Physio 
Mean 0.61 0.44 0.58 0.52 0.41 0.51 

Std 0.13 0.12 0.13 0.11 0.12 0.13 

Fusion 
Mean 0.69 0.53 0.71 0.62 0.47 0.65 

Std 0.12 0.15 0.14 0.11 0.12 0.09 
 

B. Gender-specific Analysis 

For this analysis, we separated our dataset into two parts, 
with one part containing only male subjects (n=7) and the other 
part only female subjects (n=11). Then, data from individual 
participants were standardized (converted to z-scores) to 
address individual variations of head behavior. We created 
individual classifiers for each of the datasets in order to 
compare their performance. The kappa score for valence and 
arousal using these models are shown in figures 3 and 4 
respectively. From the figures, we observe that the fusion 
model has the highest accuracy of detecting both valence and 
arousal from the male dataset. However, the video modality 
appears to be the best detector of valence and arousal in the 
female dataset. The good accuracy from the video modality 
also suggests that video-based features are better indicators of 
emotions among women compared to men. Adding the 
physiological features with video exhibit only 3% 
improvement in accuracy for detecting both valence and 
arousal for males, whereas the accuracy of the fusion model 



dropped for females. This suggests that physiological features 
play more important role for detecting emotional responses 
within males compared to females. If reproduced on other 
datasets, this could be a very significant result for developing 
affective computing systems. 

 

Figure 3.  Kappa scores for valence classification (Gender-specific model) 

 

Figure 4.  Kappa scores for arousal classification (Gender-specific model) 

Table 2 gives F1 values for the three degrees of valence and 

arousal across the male and female subject classifiers.  

According to this table, video modality presented the best 

performance in detecting low-valence among female 

participants (F1=0.600) whereas the best performance among 

male participants was achieved by fusion model in classifying 

high-valence (F1=0.615). In contrast, the performance of all 

three models was not so promising in arousal classification 

specially through male participants (F1<0.5).    

TABLE II.   F1 VALUES FOR EACH DEGREE OF VALENCE AND AROUSAL 

(GENDER-SPECIFIC MODELS) 

 
Valence Arousal 

Low Medium High Low Medium High 

Video 
M 0.494 0.448 0.588 0.406 0.415 0.413 

F 0.600 0.462 0.510 0.544 0.431 0.517 

Physio 
M 0.463 0.334 0.543 0.434 0.371 0.404 

F 0.377 0.398 0.425 0.333 0.335 0.389 

Fusion 
M 0.591 0.437 0.615 0.464 0.412 0.465 

F 0.523 0.442 0.524 0.515 0.416 0.517 

M=Male, F=Female 

C. Combined-subject Analysis 

Data from individual participants were first standardized 
and then combined to yield one large data set with 1620 
instances. The dimensionality of the data was also reduced by 
selecting the best features prior to the classification task. Fig. 5 

shows the results for classification detecting three degrees of 
valence and arousal from this dataset. An interesting pattern 
emerges from the combined-subject analysis, where it is 
observed that the video modality is more suitable for detecting 
degrees of arousal (kappa=0.23) but physiological features are 
more suitable for detecting degrees of valence (kappa=0.16). 
The fusion of video and physio exhibits higher accuracy for 
valence (kappa=0.22) but slightly lower for arousal 
(kappa=0.19). Overall, combined-subject model showed lower 
performance compare to user-dependent model, since the 
combined-subject model considered all subjects while user-
dependent models were optimized for the specific 
characteristic of each subject. 

 

Figure 5.  Kappa scores for valence and arousal classifiaction (Combined-

subject model) 

Table 3 shows the F1 values for detecting 1-3 degrees of 
normative valence and arousal. The F1 value indicates that the 
fusion model was best at detecting high and low valence. The 
video modality has a slightly higher F1 value over the fusion 
for detecting medium valence. However, all three degrees of 
arousal is best detecting from video. 

TABLE III.  F1 VALUES FOR DETECTING 1-3 DEGREES OF VALENCE AND 

AROUSAL (COMBINED-SUBJECT MODEL) 

 Valence Arousal 

Low Medium High Low Medium High 

Video 0.438 0.388 0.464 0.529 0.390 0.515 

Physio 0.445 0.366 0.500 0.381 0.381 0.415 

Fusion 0.486 0.381 0.536 0.485 0.374 0.504 

 

V. CONCLUSION 

In this study we proposed a new approach for classifying 
naturalistic expressions of affect through head movements, skin 
color, heart activity, skin response and respiration. We 
evaluated user-dependent, gender-specific, and combined-
subject models.  

The present study provides evidence it is feasible to create a 
fusion model for detecting valence during naturalistic HCI 
(kappa=0.22). It also indicated that adding physiological 
signals did not improve the accuracy of arousal detection over 
the video modality. We believe, based on the research 
reviewed that by adding dynamic facial features the accuracy 
of affect detection could be improved. As future work, the 
proposed model will be improved by adding other facial 
features in order to build an applicable user-independent 
naturalistic emotion recognition system. Furthermore, current 



results show a strong correlation between a combination of 
head movement, skin color features and physiological signals 
and level of affect across subjects. The mean kappa score of 
0.47 for valence prediction and of 0.38 for arousal prediction 
demonstrate the feasibility of using fusion model as an affect 
predictor in user-dependent models. 

Another notable result is that valence can be much better 
predicted than arousal using the fusion model. This has also 
been confirmed by other related work on dimensional emotion 
recognition [24]. Whether such conclusions hold for different 
context and different data remain to be evaluated. Among 1-3 
degree of valence and arousal, the low and the high degrees 
were the best predictable classes that can be detected by 
proposed models.  
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