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Recent advances in non-invasive brain–machine or brain–computer interfaces (BMIs/

BCIs) have demonstrated that humans can control computers or simple robotic devices

using only brain signals. These successes have lead to the suggestion that BMIs could

significantly improve the safety and efficiency of space operations. Electroencephalo-

graphy (EEG) and near infrared spectroscopy (NIRS)-based BMIs are most relevant for

potential space applications due to their portability, non-invasiveness, and relative

inexpensiveness. However, BMIs using these methods are limited in their speed,

content, and accuracy of information transfer. In this paper, we suggest that the

performance limitations of current BMIs may reflect the incomplete information of non-

invasive signals rather than merely a lack of maturity of the technology. As an

alternative to using BMIs for direct control, we describe how new research on

monitoring spontaneously generated brain signals may be practically applied in space

operations.

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Research on brain–machine interfaces (BMIs, also
known as brain–computer interfaces) has advanced
so quickly in the past few decades one could imagine
that in a few years’ time intuitive, practically effortless,
and precise control of external devices will be possible
through thought alone. This development could
have implications for space operations, perhaps most
importantly to enable direct mental teleoperation of
semi-automatic manipulators in the hostile external
environment from within the safety of the spacecraft
[1,2].

Unfortunately, researchers are encountering signifi-
cant limitations in the speed, accuracy, and usability of
non-invasive BMI technology. In one view, these limita-
tions will be overcome with more sensitive and extensive
measurement equipment and more sophisticated feature
extraction and machine learning algorithms [2–4]. While
modest improvements in the performance of current
systems are certainly achievable and will be highly
valuable for certain clinical populations and some parti-
cular healthy-user applications, it is unlikely that variants
of existing non-invasive techniques will reach the perfor-
mance levels necessary to make BMIs an attractive option
for most of the space applications proposed to date (e.g.
control of external robotics, EVA suits, and other space-
craft systems [2]).

This is not to discourage BMI research for safety-
critical operations in healthy users; instead, we suggest
that a related yet distinct approach is much closer to
implementation and offers unique benefits. ‘Passive’ BMIs
(pBMIs) use signals which are associated with sponta-
neously generated brain states to provide a novel input
channel to computers [5]. This process occurs without the
user’s attention or intention, meaning that the user’s
primary mode of interaction is not disturbed. Instead of
providing an additional means for direct volitional control
in which the user concentrates on a specific environ-
mental stimulus or performs a mental activity that is
associated with a command, pBMIs provide a secondary
means of system control, enabling the improvement of
human-system performance [6].

In this paper, we first provide a brief overview of BMI
approaches and explore suggestions for space applica-
tions. We then describe the origin of the brain signals
suggested for use in space to clarify why they may be
inadequate particularly for robotic control. Finally, we
describe the emerging area of pBMI research and outline
its possible contributions to safe and efficient space
operations.
Please cite this article as: E.B.J. Coffey, et al., Brain–machin
intentionally generated brain signals, Acta Astronautica (2010
2. Current non-invasive BMIs for space applications

2.1. Overview of BMIs

Consensus on the definition of a brain–machine inter-
face has not been reached, with some researchers prefer-
ring to include only those interfaces which allow the user
to send conscious commands to a device, while others use
the more inclusive definition of any direct communication
pathway between the brain and an external device. The
narrower, command-oriented definition may reflect the
origins of the research area, which until recently has
focused exclusively on providing a means of communica-
tion and control to severely paralyzed patients. We use the
broader definition for two reasons: devices often use the
same equipment, technology, and techniques, thus pro-
ductively forming a single research area; and in some
applications it is very difficult to clearly divide conscious,
intentional commands from other brain signals that could
be used to control a device (e.g. in a case where a high-level
command is intentionally given by the user, yet the device
takes brain signals from covert neural processes, or when a
device uses these identical neural processes in the absence
of a high-level command).

Though the specifics differ according to the application
and implementation, the common general steps in a BMI
are recording a signal generated by the brain, filtering and
pre-processing the acquired signal to remove known
artefacts and improve the quality, and extracting aspects
of the brain signal relevant for the application [7]. The
results are then used as inputs for controlling a device.
Communication in the reverse direction, from the device
directly to the brain, is difficult and has only been
achieved to some degree in invasive experiments [8].
Instead, feedback to the user is usually achieved through
visual, auditory, or tactile channels.

Most methods for monitoring brain activity in medicine
and research, from large scale measurement of the brain
regions down to the firing of individual neurons, can be
used to provide input signals for BMIs. Invasive measure-
ment of small groups of neurons via electrodes implanted
in tissue around or in the brain has produced the most
impressive BMI performance, as signals of high quality and
dimensionality are obtainable, and some direct feedback is
possible [7,9,10,8]. Even if healthy users would voluntarily
accept the risks of a craniotomy, the degree of long-term
stability and safety of implants is not yet adequate for
clinical use [7,10,11]. Space operations exert loads and
vibrations on the body which would likely increase the risk
of damage and scarring at the point of contact between the
measuring probe and the brain tissue, contributing to
e interfaces in space: Using spontaneous rather than
), doi:10.1016/j.actaastro.2009.12.016
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Table 1
Comparison of characteristics of brain signal sensor techniques used for BMI.

Method Principle of operation Signal characteristics Portability, comfort, etc.

Functional magnetic

resonance imaging (fMRI)

Hemodynamic; measures

difference in magnetic

properties between

oxyhemoglobin and deoxy-

hemoglobin. The head is placed

in a strong magnetic field which

causes atoms to align.

Perturbations in atomic spin

alignment after radio pulses of

specific frequencies are used to

identify changes in blood

oxygenation levels.

Temporal resolution: � 2 s;

spatial resolution: o5 mm.

Near real-time user feedback

(1.3 s) has been demonstrated

[13]

The scanner is large due to

need for strong super-cooled

magnets, and it is very loud.

Subject must not move more

than � 2 mm. Note that some

more portable variants are in

development but not yet in

use

Magneto-encephalography

(MEG)

Electromagnetic; measures

weak magnetic fields at the

scalp generated by neural

activity via very sensitive

detectors such as

Superconducting QUantum

Interference Devices (SQUIDs).

The signal is not distorted by

the biological tissues between

the neurons and the sensor

Temporal resolution: � 1 ms;

spatial resolution: � 1 cm

Equipment is large, a

magnetically shielded room is

required, and the subject

must not move. Detectors do

not require electrode gel and

a helmet-like device can allow

for the fast application of

large numbers

Electro-encephalography

(EEG)

Electromagnetic; measured by

scalp electrodes where each

channel represents the voltage

difference between a given

electrode and a designated

reference electrode. The skull,

meninges, and cerebral-spinal

fluid cause some attenuation

and distortion of the signal

Temporal resolution: � 1 ms;

spatial resolution: � 10 cm;

real-time analysis possible

Relatively small, portable, and

inexpensive. Movement

causes artefacts and increases

signal noise, but it is possible

to record useful signals during

natural behaviors. Electrodes

must be applied to the scalp

using conductive gel or paste.

Suitably sensitive ‘dry’

electrodes are in development

Near infrared spectroscopy

(NIRS)

Hemodynamic; the difference

in optical absorption and

refraction properties between

oxyhemoglobin and deoxy-

hemoglobin in the near infrared

spectral range is measured

using a laser or LED light

transmitted through the skull

and detected several

centimetres away, resulting in

the examination of a shallow

‘banana-shaped’ volume of

tissue between transmitter and

receiver

Temporal resolution: � 2 s;

spatial resolution: � 10 cm,

limited depth of a few

centimetres from the skull;

real-time analysis possible.

(Note: a ‘fast NIRS’ associated

more directly with neural

activity has also been reported,

but its signal is weak and may

not be reliably detectable [14])

Relatively small, portable, and

inexpensive. Movement

causes artefacts and increases

noise, though it is possible to

record useful signals during

natural behaviors
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unacceptable health risks and signal loss over time. Safe
implants may eventually be developed, but are out of reach
for near-term space applications.

We restrict our discussion to BMI methods which
measure brain activity non-invasively; that is, without
inserting sensors into the body or injecting substances to
enhance biological signals. The two main aspects of brain
activity that can be measured at the scalp are electro-
magnetic activity, which is associated with the activities
of large numbers of neurons and is recordable in the order
of milliseconds; and hemodynamic activity, which mea-
Please cite this article as: E.B.J. Coffey, et al., Brain–machin
intentionally generated brain signals, Acta Astronautica (2010
sures comparatively slower oxygenation changes to
metabolically active brain areas over a period of seconds.
In Table 1, we include a brief summary of most of the
techniques used for BMIs to date [7,12,13].

Each of these methods and several combinations have
been explored for BMI use (see [15] for a recent review).
Electroencephalography (EEG) is the most commonly
employed method for BMIs due to its portability, relative
inexpensiveness, and extensive history in medicine and
basic research. The use of Near infrared spectroscopy
(NIRS) is increasing, yet comparatively few studies have
e interfaces in space: Using spontaneous rather than
), doi:10.1016/j.actaastro.2009.12.016
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been conducted. The other methods are currently un-
suitable for most healthy-user applications due to size,
restrictions on user movement, and expense.

BMIs can also be classified by the type of mental activity
generating the BMI signals. Zander et al. suggested a rough
distinction between ‘active’, ‘passive’, and ‘reactive’ BMIs
[5]. Active BMIs (aBMIs) are those used for direct control of
devices which are based on signals generated intentionally
by the user, for example a wheelchair steered by signals
that correspond with motor imagery tasks performed by
the user. Passive BMIs (pBMIs) instead are used for
supporting systems rather than directly controlling de-
vices. They are not based on intentional thoughts, but on
spontaneously generated states of the user’s cognition that
do not require the directed attention of the user or
otherwise interfere with ongoing mental or motor activ-
ities. For example, a change in the power of EEG frequency
bands can be used to predict when drivers are about to fall
asleep [16]. The active vs. passive distinction is less clear in
certain cases, but the categorization serves as a starting
point for discussion.

Reactive BMIs (rBMIs) are somewhere in between.
They are based on brain signals that are automatically
generated upon perception of certain external stimuli.
rBMIs can be considered more active or passive depending
on the degree of intentional involvement of the user. For
example, a P300 speller is closer to an aBMI. The user is
presented with a matrix of letters, in which rows and
columns randomly flash brightly. When the user focuses
their attention on the letter they wish to select, the brain
produces a unique reactive signal after the letter of
interest is highlighted, which allows for its identification
after several repetitions. The properties of reactively
generated signals can also be used to obtain information
about the user’s states (more like pBMIs). For example, the
latency and amplitude of reactive signals to periodically
presented tones known as auditory event-related poten-
tials is known to differ systematically with mental
workload [17]. Although the user must be able to perceive
the presented signals, many stimuli produce useful
reactions without requiring the user’s directed attention.
We refer mainly to the aBMI vs. pBMI distinction for the
remainder of this paper, specifying the reactive nature of
the signal where necessary for clarity.

Aside from the signal recording technology and the
active, passive, or reactive distinction, BMIs can be
classified based on if communication from brain to
machine can occur at any time or only at specific times
(asynchronous vs. synchronous); if training and adapta-
tion takes place on the part of the user or the computer;
and if the signal of interest is the brain’s transient
response to an event or a more prolonged change such
as spectral power differences between consecutive win-
dows of time [7].
2.2. Suitable brain monitoring methods for space

Menon et al. recently outlined the preferred character-
istics of BMIs for use in space flight [2]. They include non-
invasiveness and user comfort; low weight and volume;
Please cite this article as: E.B.J. Coffey, et al., Brain–machin
intentionally generated brain signals, Acta Astronautica (2010
high reliability, efficiency, robustness and sensitivity as
compared with alternatives; and compatibility with
potentially interfering devices such as those that produce
electromagnetic signals. Whereas performance character-
istics vary between specific BMI designs, both EEG and
NIRS equipment meet the general usability requirements
for space applications [18] (see Sections 2.4–2.7 for a
discussion of the performance requirements of BMIs in
space operations). A combined approach is currently
under investigation in a number of labs that may further
improve brain activity detection since EEG and NIRS
operate on different principles and time scales and are
susceptible to different noise sources [18].

The spaceflight environment includes factors which
may affect the use and function of EEG and NIRS-based
BMIs. Some of these factors, such as sensory and motor
adaptation to microgravity, psychological stress, poor
sleep, and vestibular disturbances, may directly alter the
brain activity of the user on which a BMI is based (see [19]
for a review of physiological issues in space). Despite the
electrically ‘noisy’ environment, EEG has been used
successfully to study sleep and waking brain function in
space since the Gemini 7 mission in 1965. Changes in the
EEG signals relating to different mental processes in space
have not been systematically studied [20], although there
is evidence for differences in the brain’s rhythmic
electroencephalographic activity in microgravity [21].
Some authors have noted the possibility of interference
in EEG-based BMI function due to light flashes, which are
thought to result from high-energy charged particles
traversing the retina [2,3]. These are not likely to be a
major problem for BMIs, since flashes are generally
reported only when the cabin is dark and the astronauts’
vision has adapted to the dark, likely resulting in low-
intensity, transient responses in the brain during periods
in which the astronaut is not working. To the best of our
knowledge, NIRS has not been used in space to measure
brain activity, although the prospect has been suggested
[18] and several labs are developing suitable technology
(e.g. [22]). The shift of fluids towards the head that occurs
in microgravity will likely change the appearance of
hemodynamic brain signals, and may mask or alter signals
which are reliable indicators of cognitive phenomena on
the ground.

While it is likely that there will be some differences in
a user’s BMI-related brain processes in space, particularly
relating to the sensory-motor and vestibular systems,
astronauts are able to function normally in space in many
activities. This suggests that most brain signals usable for
BMIs on the ground will also be present in space, although
work is needed to determine how to adjust for differences.
2.3. Suggested space applications for BMIs

A study conducted by the Advanced Concepts Team at
the European Space Agency in 2005 [1] listed control of
robotic systems including robotic replacements for hu-
man extra-vehicular activities (EVAs); tele-controls of
autonomous vehicles (for use in exploration, repairs, and
maintenance); and hands-free direct control of cabin
e interfaces in space: Using spontaneous rather than
), doi:10.1016/j.actaastro.2009.12.016

dx.doi.org/10.1016/j.actaastro.2009.12.016


ARTICLE IN PRESS

E.B.J. Coffey et al. / Acta Astronautica 67 (2010) 1–11 5
instrumentation and equipment among potential BMI
applications in space. The study also mentions the
potential usefulness of combining BMI with other inter-
active techniques, for example the control of exoskeletons
using electromyography (EMG), which measures electrical
signals from the muscles rather than the brain (and is
therefore beyond the scope of this article). Menon and
colleagues [2] emphasized the potential role of BMIs in
controlling external manipulators, providing environmen-
tal or external control in EVA suits, maximizing astronaut
efficiency by performing several operations using a single
BMI, or by enabling multiple astronauts to command a
single BMI. Broschart et al. [3] concluded that surface
rovers and semiautomatic manipulators are the most
relevant area of BMI application in space operations. All of
these suggested applications involve intentional com-
mands by the user, and so may be implemented with
aBMIs (or in some cases rBMIs, though the necessity of
presenting stimuli may be impractical). Since the idea of
aBMI-controlled external robotic manipulators arises
frequently, we take this as a starting point to consider
the suitability of current technology for space purposes.

EVAs are conducted in order to perform construction,
equipment installation or removal, and repair tasks. Their
reduction is desirable as safety risks to astronauts are
much higher during EVA than other operations, and also
because EVAs require extensive ground training and time-
consuming in-flight preparation. Automated robotic solu-
tions can take over some tasks, but are not yet sufficiently
flexible and adaptable to replace many EVA activities [23].
Robotic systems that can be manually controlled from
inside a spacecraft or from the ground using traditional
interfaces such as joysticks and display screens are also
used to reduce the need for EVAs and where EVAs are not
possible. One such unit is the Special Purpose Dexterous
Manipulator, a component of the International Space
Station’s Mobile Servicing System which is capable of
handling some of the delicate assembly, replacement, and
repair tasks previously performed during EVAs. However,
control of teleoperated manipulators remains complex,
slow, and limited in application.

Robotic systems that could be operated with high
accuracy and little delay simply by thinking of movement,
as one ‘operates’ their own limbs, would be highly
desirable. At minimum to be an attractive alternative to
EVAs or various existing forms of teleoperation, BMI-
operated manipulators would have to enable the same
level of performance in terms of speed, accuracy, safety,
and flexibility that can currently be achieved.
2.4. The information transfer gap

Kim et al. recently published a review of aBMI
developments from the perspective of robotics, in which
the performance requirements for full, real time dextrous
control of a robotic arm are outlined as well as some of the
challenges in using invasive aBMIs for robotic control [10].
According to Kim et al., dextrous control requires a
minimum of 20 commands per second, much higher than
achieved by current EEG-based aBMIs with average
Please cite this article as: E.B.J. Coffey, et al., Brain–machin
intentionally generated brain signals, Acta Astronautica (2010
transfer rates in the order of 0.5 bits per second (bps) for
non-invasive systems to around 6.5 bps for invasive
systems [9,11,24]. To illustrate the current state of BMI
technology, we report recently published results for the
well-known aBMI ‘Berlin Brain Computer Interface’, in
which six subjects performed three simple cursor-control
tasks using a motor imagery EEG-based aBMI [25]. After a
brief period of data collection to train the classifier, five of
six subjects were able to control the BMI, achieving
average information transfer rates of around 0.3 bps in
each of the three tasks. The information transfer rate
required for dexterous control of a robotic arm (which
would need to include control of direction, speed, grip
strength, and perhaps complex joint structures) is there-
fore orders of magnitude greater than that which is
currently available.

Though real-time dexterous robotic control using
aBMIs is currently beyond our technological capacities,
intermediate applications may be found that have more
reasonable information transfer requirements. For exam-
ple, aBMIs could be used to control a single dimension of
interest during other operations, or for hands-free opera-
tion of environmental controls within EVA suits [2]. aBMIs
could also be used to decode high-level commands which
are then implemented semi-autonomously by robotics or
other systems, possibly with the user monitoring activ-
ities and intervening with further high-level commands as
appropriate [3,8]. This could reduce the information
transfer rate required to within a range plausible for
non-invasive signals, and already seems practically useful
for applications such as leg neuroprostheses which are
able to assist with control of balance without express
commands from the brain [8].

Unfortunately, not many situations have been put
forward under which aBMI activation of a complex semi-
autonomous robotic activity or other low-dimensional
control might be preferable to the simpler and highly
reliable solution of using a button, or in the case that
hands-free operation is desirable, other input modalities
(e.g. voice commands, eye tracking, etc.). An additional
consideration is whether the astronaut will consider a
device that can be used to occasionally send a discrete
command as sufficiently valuable to warrant the incon-
venience of calibrating and wearing another piece of
equipment.
2.5. The accuracy gap

Accuracy levels reached by aBMIs have depended on
factors including individual differences in physiology, the
type of task, the hardware and software used (including
any kind of predictive mechanism or error signal correc-
tion), signal noise levels, and the particular user’s ability
to carry out the mental task. In classifier-based aBMIs,
accuracy must be traded-off with information transfer
rate and command latency, because better signals are
obtained from longer windows for feature extraction
algorithms in the case of aBMIs, or more stimulus
presentations for rBMIs. These aspects must be considered
for a meaningful comparison of BMI accuracy, but for a
e interfaces in space: Using spontaneous rather than
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rough idea, the Berlin Brain Computer Interface used as an
example in the preceding section achieved an average
accuracy of about 90% when discriminating between two
conditions, with individual accuracies ranging from 78.1%
to 98.0% [25] (for an explanation of the many accuracy
and performance measures used in BMI research, please
refer to [26]). Accuracy can be expected to decrease with
the increased dimensionality that would be needed for
many tasks. Increased signal noise due to user movement
or signal interference from other tasks also decreases
accuracy.

Accuracy in space operations would not only be a
matter of reducing user frustration and maximizing task
performance. A very high level of accuracy is needed in
most of the proposed applications to avoid compromising
safety, damaging equipment, and impeding mission
operations. The current gap in required vs. available
accuracy is a major obstacle to using aBMIs for critical
space control tasks.

2.6. The feedback gap

Rapid, multidimensional feedback is crucial for the
accurate, smooth control of robotic arm-like devices, and
to avoid causing equipment damage [9,8]. The robotic
system must therefore be able to sense slip and location of
forces and must be able to either act on these inputs
autonomously, or communicate this information to the
user in real-time such that the user can adapt their own
output accordingly. Kim et al. report that the present state
of tactile robotic sensors is insufficient for such fine
manipulation [8]. Even it if were, the quality and content
of the feedback to the user is constrained by the sensory
modalities used.

For precise normal-speed movements in complex
dynamic systems, the commonly used visual modality
may introduce problematically long latencies [9],
although real-time visual feedback has been successfully
used for basic robotic control in invasive animal studies
[8]. Incorporating other modalities, for example through
tactile cues provided by pneumatic pressure cuffs and
vibrating transmitters, can increase the amount of
information transferred and perhaps reduce feedback
latencies; however, preliminary studies on tactile feed-
back suggest that it will be very difficult to communicate
the level of detail and dimensionality to the user required
for fine and flexible manipulation [8]. Recent interest in
distance surgery applications are fueling rapid develop-
ment in this area (for example see [27]), but for now,
feedback requirements are another obstacle for proposed
BMI implementations in space.

2.7. The intuitive use gap

One goal of aBMI researchers is to achieve intuitive
interactions, whereby a robotic system may be ‘managed
by the astronaut as a sort of appendix of his body’ [3].
There appears to be an assumption in the literature that
aBMIs are inherently more intuitive to use than physical
means of controlling machines. As most people would
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likely agree who have tried to make a ball that is sliding
across a screen move upward by imagining moving their
right hand (while inhibiting any actual motion), this is not
necessarily the case.

The assumption that aBMIs are intuitive may arise
from a lack of clarity about what is meant by ‘intuitive-
ness’ in common speech. As a working definition, we
suggest that the intuitive usability goal of aBMIs should
be specified to mean either: (1) that the user can learn to
operate the system easily because its operation is based
on either high-level intentions or skills similar to existing,
well-learned skills; or (2) that the normal operation of the
system can become automatic (i.e. in the same way that
skills such as riding a bicycle become routine with
practice), thus minimizing the cognitive demands and
required effort during normal use. The ‘learnability’ factor
may be less important for astronauts than the general
public, although it could reduce time required for training.
The degree to which aBMI use can become automatic for
the user is critical, as it will determine if the aBMI can
augment astronaut abilities, or can only be used in lieu of
other output modalities.

According to these definitions, the use of existing
aBMIs is less intuitive than many conventional and novel
means of human-computer interaction. A BMI user’s
experience may include focusing on one of a set of
options repeatedly presented on a screen or through
speakers (rBMIs), imagining a left or right hand move-
ment arbitrarily associated with an outcome, or voluntary
regulation of signals known as slow cortical potentials
after biofeedback training (aBMIs). Even if these activities
prove to be somewhat ‘automatable’ with extensive
practice, intentionally controlled BMIs engage perceptual
pathways and attention, thus reducing their availability
for other activities. The degree to which intentionally
generated signals are changed or obscured by signals
generated spontaneously by users engaged in other tasks
is unknown.

Far from improving astronaut performance by aug-
menting their capabilities, foreseeable aBMIs might
actually reduce their capacity to carry out normal tasks
while offering only a slow and limited alternative
communication channel. In contrast, new ways of guiding
robotics are currently in development which are improv-
ing upon the intuitiveness of existing controls. For
example, a ‘data glove’ which instructs a robotic arm to
mimic the user’s arm position (see [28]) might be both
intuitive to learn and to use, as it relies on well-developed
skills of arm control.
2.8. Expected improvements

The information transfer rate and classification accu-
racy of aBMIs is being gradually improved by the
development of data cleaning techniques and machine
learning algorithms which allow for real-time single trial
analysis, and reduce the need for subject training or data
collection for algorithm adaptation (for example, see
[25]). It is likely that future refinements in aBMI
technology will be able to better compensate for
e interfaces in space: Using spontaneous rather than
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inter-individual differences which currently lead to a
wide range of performance in BMI control, for example by
selecting optimal sensor placements and using advanced
feature extraction algorithms. Using predictive technol-
ogy based on task requirements or user patterns (e.g. T9
word completion software by Nuance Communications)
and incorporating feedback from the brain’s intrinsic
reactions to error should further improve performance
[29], as well as combining EEG and NIRS technology in a
single device to take advantage of the strengths of each
(for example, see [30–32]). Some researchers are experi-
menting with using cheaper, simpler equipment such as
one and two-channel EEG to identify robust signals for
specific applications [33]. Interest of the entertainment
and gaming industry is contributing to the speed of
development of this technology. Together, these trends
are likely to increase the usefulness of aBMIs in clinical
settings and some healthy-user applications.

In the following section, we describe why we do not
feel that non-invasive aBMIs will be able to reach
performance levels suitable for proposed space applica-
tions like controlling robotic manipulators. It remains
possible that aBMIs may be usefully applied to some low-
dimensionality non-critical tasks in space operations. The
value of aBMI-based solutions to space human-machine
interaction challenges will have to be considered on a
case-by-case basis, taking into account the operational
environment and all available solutions.

3. Inherent limitations of non-invasive brain signals

If the signal recorded from the brain is fundamentally
lacking in the depth and dimensionality of information
necessary to control such a device, no amount of clever
signal processing will enable its recovery. The non-
invasive techniques discussed in this paper do not provide
unlimited access to cognitive processes. We provide a
brief explanation of the relationship between neural
activity and its non-invasive measurement. The interested
reader is referred to [34] for a comprehensive review of
the cognitive basis of motor control, which will provide a
deeper insight into the limitations of these non-invasive
techniques to capture relevant information for fine
movements. In-depth information on the brain’s electro-
physiological and hemodynamic activity and responses
can be found in [35,36].

3.1. Electroencephalography

EEG is recorded as a set of weak time-varying
differences in voltage (100 ms, with a frequency spectrum
of � 0:1 to � 60 Hz) between electrodes in contact with
the scalp and a reference electrode attached somewhere
on the head or body. These small voltage differences are
produced by the activity of neurons, which create local
currents when charged ions flow in and out of the cell
[37].

Particular types of currents are measurable as EEG
signal at the scalp under a very specific set of conditions.
The signal origin must be close to the skull, meaning EEG
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originates mainly in the outer layer of the brain known as
the cerebral cortex, a 4–5 mm thick highly folded brain
region responsible for activities such as movement
initiation, conscious awareness of sensation, language,
and higher-order cognitive functions [37]. Only large
groups of neurons which are precisely aligned and firing
in concert can contribute to EEG signals; otherwise the
current is not strong enough to be detected, or opposite
charges may cancel out. The laminar structure of the
cortex facilitates the summation of an aspect of neural
activity known as postsynaptic potentials, which repre-
sent the reception of both inhibitory and excitatory
signals rather than neural firing itself [38]. Much of the
brain’s activity is invisible to EEG electrodes, therefore the
EEG represents a small sampling of neural activity from
only one of many brain structures involved in activities of
interest for aBMIs such as motor control [35]. Further-
more, this signal is attenuated and spatially smeared as it
is conducted through the cerebral spinal fluid, meninges,
and highly resistive skull. This results in poor spatial
resolution even with high numbers of electrodes because
reconstructing the location of the signal origins is an
inverse problem with no unique mathematical solution
[38]. The signal is also easily obscured by higher-
amplitude artifacts, which may be generated by muscle
activity, eye blinks or eye movements, cardiac rhythm,
and ambient electrical noise. This is normally handled by
discarding contaminated data segments, filtering, aver-
aging, or in the case of eye blinks, applying corrections.

For these reasons, useful details about the intended
movement possibly present in cerebral motor areas such
as the direction, speed, and limb configuration are very
difficult or impossible to discern from EEG signals [9]. Kim
et al. concluded that scalp EEG recordings lack the
resolution required for dexterous control of robotic
devices in real time [8].
3.2. Near infrared spectroscopy

Near infrared light is weakly absorbed by water and
hemoglobin and is able to penetrate up to several
centimetres into brain tissue, including the layers of the
cerebral cortex and possibly some underlying white
matter [39]. Basic NIRS equipment known as ‘continuous
wave’ NIRS can measure the relative changes in concen-
tration of oxygenated and deoxygenated blood over time
(more complex NIRS equipment also exists which can
measure absolute concentrations).

NIRS signals correlate highly with blood oxygen-level
dependent (BOLD) fMRI, which has been extensively
studied in the last decades [39]. The strong correlation
between the two means that many fMRI findings of
regional activity specificity in the cerebral cortex can be
used to guide NIRS research and applications, and to
better understand experimental results.

When a brain area is activated, metabolic activity
increases, leading to a brief decrease in oxyhemoglobin
and increase in deoxyhemoglobin after about 2 s in the
immediate vicinity of the activated neurons. This stimu-
lates the increase of blood flow to a wider area, which
e interfaces in space: Using spontaneous rather than
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causes oxyhemoglobin levels to begin to increase to a
peak at about 5 s following neural firing, and then slowly
declining over about 5–10 s after neural activity returns to
normal [36]. NIRS signals therefore measure an indirect,
delayed, non-specific, and not completely understood
chain of events relating to the energy use of large areas
of cortical neurons.

4. Passive BMIs

aBMIs use significant effort and mental resources to
send commands that are generally more effectively
communicated through other means. Instead, pBMIs offer
valuable information at no performance cost that is not
available using other modalities. The signals of interest for
pBMIs occur spontaneously in association with changes in
the cognitive activity of the user. It has long been known
that EEG is sensitive to many of aspects of mental states,
for example by showing changes in the power of certain
frequency bands [37]. Similarly, NIRS can detect cognitive
state-related brain activations. Signals have been obtained
that reliably relate to attention level, workload, task
engagement, awareness of aspects of the environment,
alertness or fatigue, and awareness of erroneous re-
sponses, among others [6,29,40,41], with progress made
towards real-time classification [25,33,42].

Since pBMIs use similar equipment and techniques as
other BMIs, they are subject to similar speed and accuracy
limitations. However, pBMI applications do not require
such high communication performance as direct control
devices operated by aBMIs. For example, an aBMI that
requires 5 s of data to generate a command would be of
limited use for most applications, but a pBMI that can
cause a change in automation level of a human-machine
interface within 5 s of an increased workload would likely
be adequate to improve user performance.

There are three areas in which pBMIs may be useful for
space applications. Only the first can be properly called a
BMI, in which real-time signals are used to modify the
interaction between human and machine in operational
roles. The second type of application is in the research and
design phase of astronaut (or flight controller) equipment
and tasks, in which pBMI techniques can be used to
objectively measure and compare the usability of differ-
ent designs. The third application may be thought of as an
additional benefit of using the first; signals collected for
practical use may be recorded and stored for later
analysis, providing scientists with a wealth of information
for basic research during real tasks. These data are scarce,
as recording equipment is usually used during discrete,
independent experiments.

4.1. Operational roles for pBMIs

Extensive literature indicates that task conditions that
impose high cognitive workload lead to performance
errors even in alert individuals working under routine
conditions, and that modest amounts of sleep loss or
circadian desynchronization can further degrade perfor-
mance [12,38]. Increasingly, high-technology operational
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jobs (such as in aviation, industry, and the military)
include automated systems which reduce the need for
human involvement in routine tasks and computations.
While automation does decrease certain types of errors, it
also changes the nature of the user workload from active
involvement to passive monitoring. This can give rise to
critical errors or omissions when the human-machine
team fails to communicate relevant aspects of their tasks,
and the user loses full awareness of the situation [40].

Augmented cognition is an area of study which aims to
enhance human task performance and cognitive capabil-
ities by reducing stress, fatigue, and information overload
or underload. This is accomplished by regulating displays
and controls for complex systems, or by optimally redis-
tributing shared tasks between human and machine, based
on real-time measures of the user’s state [43]. Changes in
displays or automation level could simply be initiated by
the user (e.g. the use of autopilot in aviation); however,
several studies have found that the need to monitor one’s
own workload actually further increases workload and
leads to reduced performance [44,45]. Also, operators may
not always be the best judges of when levels of automation
need to change. Adaptive automation based on mental
state measures has been shown to increase situational
awareness in military monitoring-type experiments as well
as simple laboratory tasks, and to reduce potential costs
due to complacency, fatigue, and skill degradation
[46,44,6,40]. Significant performance improvements are
found even though current real-time brain state classifiers
typically produce accuracy rates of only 70–85% [6].

One such study by Kohlmorgen et al. [47] demon-
strated an EEG-based system able to detect high mental
workload periods in a real driving situation where
subjects were asked to simultaneously perform secondary
and tertiary tasks. The secondary task was designed to
assess the driving-relevant performance measure of
reaction time without imposing much additional work-
load, and required the participant to react to recorded
instructions (‘left’ or ‘right’) with a button press through-
out both high and low workload periods. The tertiary task
was either an auditory workload scheme or a mental
calculation task meant to represent common driving
activities such as interacting with other vehicle occupants
or with electronic equipment. An EEG classifier was
trained using data collected in an initial session, and
was then used in real-time to distinguish between high
and low workload periods using a sliding window of 10–
30 s (adapted for the user). The input to the workload
classifier was the power of each bandpass-filtered EEG
channel. If high workload was detected, the driver’s
workload was relieved by temporarily suspending the
secondary task. Average reaction time performance was
compared with that in the training session, in which the
secondary task was not altered by user workload
measurements. Despite significant variability in classifi-
cation accuracy between subjects (from around 50%
(chance level) to over 90%), Kohlmorgen et al. found that
the adaptive strategy leads to better reaction times on
average as compared with the unmitigated session. The
differences were both statistically significant and signifi-
cant in task-relevant terms (i.e. reaction time
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improvements were of magnitudes shown previously to
affect accident rates).

Space applications could build on early work such as
this, but would require a thorough environment and task
analysis to determine which measures, paradigms, and
combinations are relevant for a particular job. Numerous
applications are possible. For example, pBMIs could be
used in training to provide feedback on behaviors that
increase alertness and concentration. pBMIs could be used
to offload routine tasks during flight operations such as
docking procedures to automated systems when there is a
risk of cognitive overload. pBMIs could also be used to
provide the astronaut with activity planning and time
management suggestions, such as when might be the best
time to take a break, exercise, or perform simple routine
tasks based on their own alertness and fatigue profiles
and upcoming unmovable mission tasks. pBMIs could
provide information to astronauts on their own readiness
to perform a complex task. If operational pressures have
resulted in inadequate rest or a disturbed circadian
rhythm, an astronaut could compare his/her measure-
ments during a diagnostic task with personal stored
profiles to help gage if a change in schedule or reassign-
ment of a safety-critical task is in order. A pBMI could be
worn during lengthy activities to warn of reduced
vigilance or impending ‘microsleeps’, which are asso-
ciated with declines in performance [12]. Well-known
evoked brain signals such as the error negativity or P300
could be used to detect and mitigate user errors before
they cause operational problems, or even to create a tool
which help astronauts to quickly recognize needed items
amid clutter (i.e. in combination with an eye-tracker).
4.2. Neuroergonomics roles for pBMIs

Factors that influence human performance are nor-
mally examined using subjective reports, performance
measures such as reaction time, and some non-brain
physiological signals (e.g. cardiovascular measures, re-
spiration, galvanic skin response, ocular motor activity,
and speech) [41]. Since these measures are somewhat
indirectly related to the thought processes responsible for
task performance, researchers are now adding brain
imaging techniques to their toolboxes [33,25]. The new
field of neuroergonomics explores how current research
and developments in cognitive science and neuroscience
can be used to further improve performance in real-world
environments [40].

The same brain state information proposed for use in
real-time operation can be used for the evaluation and
development of human tasks and interfaces. Data could be
collected during dedicated experiments, during personnel
training, or even during real operations, which would
provide varying degrees of experimental control and real-
world validity. In transportation safety research, EEG has
been used to analyze cognitively demanding situations
encountered during simulated driving or piloting tasks
[47]. Points where errors frequently occur can be
identified and countered with displays that most clearly
provide critical information and repress irrelevant tasks,
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fail-safes to prevent common errors, and operating
procedures that facilitate perception of critical informa-
tion (e.g. the visual scan patterns used by pilots to
examine subsets of their instruments during piloting
activities). The inclusion of EEG and NIRS among other
measurements provides further insight into cognitive
resource use, based on temporal and spatial patterns of
brain activation [48].

In principle, EEG and/or NIRS equipment could already
be used to examine any astronaut or flight controller task
for some of the aspects that have already been reasonably
well studied, such as workload and vigilance [6]. Good
places to start include areas in which tasks and designs
are performed frequently, are safety-critical, and are
similar to tasks in other, larger industries in which
progress has already been made, for example in flight,
air traffic control, and road and rail transportation.

4.3. Basic research using pBMIs

While neuroscience findings can aid in the develop-
ment of pBMI applications, the reverse is also true; pBMIs
have the potential to significantly contribute to our
understanding of human cognition [6,25]. This would
likewise be true of any aBMIs developed for space use
(although aBMIs tend to be specialized for the collection
of sensory-motor signals, which are less relevant for
higher-level cognitive tasks). There is often a big differ-
ence in human behavior and cognition between labora-
tory tasks and the real environment they are meant to
represent [49]. pBMIs can increase scientists’ access to
human cognition in complex, real-world environments.

There are limited opportunities in space for dedicated
neuroscience experiments as they compete for time with
many operational and scientific objectives. Portable
pBMIs could enable researchers to gather large amounts
of data about cognition during real operations, which
could yield valuable information. It will be necessary to
determine what activities and periods the astronaut
would accept to wear the device, and what extra
information would be necessary for scientists to answer
a given research question (e.g. a record of environmental
parameters within an EVA suit, a detailed daily schedule,
body temperature, and heart rate). Sample topics of
particular interest for space researchers might include:
perceptuomotor adaptation to body movements in three
dimensions, space motion sickness during free movement,
circadian rhythm adaptation to schedule changes in the
absence of natural zeitgebers, stress and workload
imposes by the daily timeline, sleep disturbances and
differences in sleep architecture, and the cognitive and
performance correlates of various interactions with other
crew and with equipment.

4.4. Next steps for pBMIs in space

Although pBMIs are much closer to implementation
than aBMIs, work is still required, particularly for in-space
operational deployment. Ideally, equipment should be
developed to include a comfortable head attachment with
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a minimum of sensors and amplifiers that communicate
wirelessly to a small processing unit or existing computer,
all of which is compatible with existing space systems and
regulations. Equipment should be light and robust, and
should require minimal set-up time prior to use. The
differences in cognitive processes in the microgravity
environment and in their appearance in physiological
recordings must be investigated. Suitable applications for
augmented cognition techniques must be identified,
which would include task analysis to determine what
real-time adjustments in automation or interaction can be
safely and usefully made [6]. Brain signals which indicate
cognitive states of interest need to be identified and
verified to ensure their suitability, first in simulated task
environments on ground, followed by environments that
approximate space flight conditions (e.g. parabolic flights
or bed-rest studies), followed by in-flight validation.
Classification algorithms that adapt optimally to the
user’s brain signal and to aspects of the space environ-
ment that could affect system operations must be
developed. Appropriate directions for basic research use
of a BMI system have to be developed, taking into
consideration existing research programs, the unique
opportunities and operational constraints of space flight,
and the astronauts’ privacy.
5. Conclusions

In our opinion, non-invasive brain machine interfaces
capable of interpreting brain signals to precisely control
external artificial systems such as robotic manipulators
and unmanned vehicles in the relatively near future is
highly unlikely, due to inherent limitations in the
information content and quality of non-invasively ob-
tained signals like EEG and NIRS. Important goals such as
reducing the need for astronauts to physically perform
labor outside of their spacecraft may be more effectively
and quickly tackled through other means, including
development of intelligent autonomous robotics and
where human involvement is required, more intuitive
variations on traditional physical control and feedback
methods. Uses for intentionally controlled BMIs may have
some limited relevance to assist in hands-free operation
of non-critical equipment, but will not be suitable for
replacement of many existing equipment and system
control solutions.

Recent advances in EEG and NIRS BMI technology and
basic research in neuroergonomics have enabled the
relatively straightforward development of systems that
could use spontaneously generated signals to contribute
to the safety and effectiveness of space operations. This is
possible through real-time adaptive automation, and for
offline analysis and development of better human inter-
faces. Technology used in either of these applications
could also be employed to simultaneously record data for
basic and space-related neuroscience research. The main
benefits of this direction are that valuable additional
information is made available without compromising
existing astronaut capability, since pBMIs obtain informa-
tion from naturally occurring brain signals without
Please cite this article as: E.B.J. Coffey, et al., Brain–machin
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making demands on the user’s physical and mental
resources.
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