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ABSTRACT
BCIs are traditionally conceived as a way to control appara-
tus, an interface that allows you to “act on” external devices
as a form of input control. We propose an alternative use of
BCIs, that of monitoring users as an additional intelligent
sensor to enrich traditional means of interaction. This vi-
sion is what we consider to be a grand challenge in the field
of multimodal interaction. In this article, this challenge is
introduced, related to existing work, and illustrated using
some best practices and the contributions it has received.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/Methodology, Input devices and strate-
gies

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation, Human Factors

Keywords
Brain-Computer Interface (BCI), Intelligent sensors, Human-
Computer Interaction (HCI)

1. INTRODUCTION
A Brain-Computer Interface (BCI) is traditionally con-

ceived as a way to control apparatus, an interface that al-
lows you to “act on” external devices as a form of input
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control [9, 11, 21]. However, most Brain-Computer Inter-
faces (BCIs) do not provide a reliable and efficient means of
input control and are difficult to learn and use relative to
other available modes. We propose to change the conceptual
use of “BCI as an actor” (input control) into “BCI as an in-
telligent sensor” (monitor). This shift of emphasis promotes
the capacity of BCI to represent spontaneous changes in the
state of the user in order to induce intelligent adaptation at
the interface. BCIs can be increasingly used as intelligent
sensors which “read” passive signals from the nervous sys-
tem and infer user states to adapt Human-Computer Inter-
action (HCI), Human-Robot Interaction (HRI), or Human-
Human Interaction (HHI). This perspective on BCIs chal-
lenges researchers to understand how information about the
user state should support different types of interaction dy-
namics, from supporting the goals and needs of the user
to conveying state information to other users. What adap-
tation to which user state constitutes opportune support?
How does the feedback of the changing HCI, HRI, and HHI
affect brain signals? Many research challenges need to be
tackled.

This article introduces the grand challenge of BCIs as in-
telligent sensors for enhancing HCI. The next section will
provide the required background and will discuss the chal-
lenge of BCIs as intelligent sensors for enhancing HCI, HRI,
and HHI. Next, in Section 3 the best practices on BCIs as
intelligent sensors will be presented. First three operational
BCIs as intelligent sensors will be discussed. Subsequently,
a concise discussion on the contributions accepted for this
grand challenge will be presented. We conclude this article
with a brief conclusion in Section 4.

2. ON BCI AS INTELLIGENT SENSOR
The current grand challenge poses that BCIs can be used

as intelligent sensors to enhance HCI, HRI or HHI. However,
what does this mean and what does this imply? To answer
this question, we define three sub questions:

1. How do BCIs as intelligent sensors relate to conven-
tional BCIs and how do they enhance interaction?

2. What would make these BCIs intelligent? and
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3. How could such BCIs be realized?

These three questions will be addressed in the next three
subsections and, in parallel, the work presented during the
grand challenge will be held against them.

2.1 Types of BCIs and how they can enhance
interaction

In 1973, Jacques J. Vidal coined the expression BCI [19].
Let us start with two quotes from his milestone article:
“Spectral content and correlation ‘have been related to vari-
ous emotional and behavioral states. . . . To provide a direct
link between the inductive mental processes used in solving
problems and the symbol-manipulating, deductive capabil-
ities of the computer, is, in a sense, the ultimate goal in
man-machine communication.” (p. 157 and 158). Vidal [19]
(more or less) already identified the value of BCI and Zan-
der and Kothe [21] suggested the following distinction in
outputs that are directly derived from brain activity:

• Active BCI : Independent of external events, for con-
trolling an application.

• Reactive BCI : Arising in reaction to external stimu-
lation, which is indirectly modulated by the user for
controlling an application.

• Passive BCI : Arising without the purpose of voluntary
control, for enriching HCI with implicit information on
the actual user state.

The current grand challenge addresses BCI as passive BCI,
which enhances other (traditional) interaction modalities
(e.g., mouse, keyboard, speech and gestures). However, such
a combination of modalities was already described by, among
others, Nijholt and colleagues [10].

2.2 Towards intelligence!?
In principle, the processing pipeline of BCIs as intelligent

sensors is no different from that of active or reactive BCIs
up to the phase where the signals are received [7]. From that
point on the processing pipeline is, most likely, essentially
different. Recently, there has been a vivid discussion on the
definition of BCI, which is described in [9]. However, for
reasons of brevity, in this article, we adopt the definition
of Pfurtscheller and colleagues [11], who determined that a
(conventional) BCI should satisfy the following criteria:

1. signals are recorded directly from the brain;

2. at least one recordable brain signal, which the user can
intentionally modulate to effect goal-directed behavior;

3. real time processing; and

4. the user must obtain feedback.

BCIs as intelligent sensors, however, need only to satisfy the
first and third criteria. The fourth criteria can be satisfied;
but, this is not a (strict) requirement. Implicit feedback of
which the user is unaware would be in line with the concept
of BCIs as intelligent sensors (e.g., a subtle change in the in-
teraction with other (artificial) agents). This leaves us with
the second criteria, which excellently marks the difference
between conventional BCIs and BCIs as intelligent sensors.
In both cases, at least one recordable brain signal is needed.

However, in the case of BCIs as intelligent sensors no inten-
tional modulation (i.e., altering brain activity) to achieve a
certain goal is needed.

BCIs as intelligent sensors are a type of passive BCI that
monitor a person by recording signals directly from the brain
and processes them fast, preferably in real time. However,
subsequently, no direct (conscious) goal has to be met (e.g.,
driving a wheelchair). As we will discuss next, this can
relieve the true complexities underlying BCIs [5, 17]:

1. the definition of constructs;

2. their operationalization; and, subsequently,

3. their mapping upon the biosignals (e.g., EEG signals
or other (peripheral) signals).

The outcome of the processing pipeline could be inter-
preted in terms of higher cognitive processes (e.g., the amount
of attention [8, 20]), unconscious processes [12]), or (even)
social processes [1, 15]. With such processes a discretization
into a certain number of levels is not needed, the direction
the process is going to can already be sufficient [3, 6]. Fur-
thermore, it may even not be necessary to interpret patterns
in EEG signals in terms of cognitive processes, a physiolog-
ically driven system could also serve the user [15, 18].

2.3 Suggestions for their implementation
Loosening the criteria of intentional modulation (cf. [11])

also introduces additional complexity and requires more in-
telligence than with conventional BCIs. If there is not a
specific goal to be met, what then is the target to aim at?
And how does this influence the signal processing and ma-
chine learning part of BCIs’ processing pipeline? With BCIs
as intelligent sensors, an interdisciplinary approach would be
advisable; so, this would imply that all signals need to be
processed in an integral framework. Recent advances in neu-
roscience support such an approach, as cognitive processes
are distributed and, at best, (some) can only be partly lo-
calized [12]. Moreover, such localized approaches often fail
in beauty when brought outside the lab into (the noisy) real
world practice. Although signal processing and machine
learning can rely on a thorough foundation [17], the high
complexity introduced by a holistic approach will make it
challenging.

Signal processing and machine learning for BCIs as intel-
ligent sensors asks for new paradigms and unconventional
approaches (cf. [7]). This grand challenge introduces some
of them. Kyrgyzov and Souloumiac [8] present a processing
scheme for adaptive artifact rejection from the EEG. Plass
Oude-Boss and colleagues [13] propose to improve BCI per-
formance after classification. De Sa [3] proposes a method
to tackle the traditional problem of non-stationary EEG sig-
nals. To enable more robust BCIs as intelligent sensors,
they suggest the use of a “control signal that depends inti-
mately on what has already been transmitted, interpreted,
and received”. Most likely a combination of methods and
techniques will be required to enable a successful holistic
approach as is needed with BCIs as intelligent sensors.

3. BEST PRACTICES
This section presents the best practices on BCIs as intelli-

gent sensors. In the first subsection, three operational BCIs
as intelligent sensors, each originating from another domain,
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will be discussed as representatives of current state of the
art best practices. In the second subsection, a concise dis-
cussion is presented on the contributions accepted for this
grand challenge.

3.1 The state of the art
Although BCIs are rarely approached as intelligent sen-

sors, there has already been work conducted on this. Here,
we present three examples of BCIs as intelligent sensors.
The domains of application are art, gaming, and office work,
which nicely illustrates the breadth of application of BCIs
as intelligent sensors.

An artistic example of the use of BCI as an intelligent
sensor is the exposition Staalhemel1 created by Christoph
de Boeck. Staalhemel is an interactive installation with 80
steel segments suspended over the visitor’s head as he walks
through the space. Tiny hammers tap rhythmic patterns on
the steel plates, activated by the brain waves of the visitor
who wears a portable BCI (EEG scanner). Thus, visitors
are directly interacting with their surroundings, in this case
an artistic installation. Although the visitors have a certain
level of control and get a kind of feedback on their user
state by variations in the generated sounds, the exact level
of control on the generated sounds is not deducible due to
the intrinsic variability already present in, and the influence
of other visitors on the sounds generated.

In Alpha-World of Warcraft (alphaWoW) [14] neural cor-
relates with the mood of players are coupled to their avatars
in the immersive game environment. Alpha activity (8-12
Hz rhythms in the EEG) recorded over the parietal lobe is
used to control one aspect of the game character, while con-
ventional controls are still used for the rest. A user playing
World of WarcraftR© can use both conventional controls and
brain activity to control her character in the game. How
changes in alpha activity are experienced by the user, de-
pends on the location where the activity is measured. Ac-
cording to Cantero et al. [2], high alpha activity measured
over the parietal lobe is related to a relaxed alertness. This
seems a beneficial state of mind for gaming, especially com-
pared to drowsiness, which is said to be measured frontally.

Transparant is an office window that aims to reduce dis-
tractions in the user’s environment by varying its opacity
based on the user’s level of focus [4]. The state of the user
(e.g., this focus) is determined by a wireless EEG headset,
which communicates the user state to a smart glass module
which changes the transparency of the office window accord-
ingly. The opacity of the office window is based on the state
of the user and changes accordingly. This serves two goals:
i) support to be and remain focussed and ii) a signalling
function whether or not the user can be disturbed.

3.2 Contributions to this grand challenge
This subsection takes the article of Fairclough and Gil-

leade [5] as starting point and adopts their biocybernetic
loop as fundamental and generic to all categories of physio-
logical computing system, including BCI. The biocybernetic
loop describes the data processing protocol at the heart of all
physiological computing systems, including BCI. The loop
also encompasses the goals of the system design with re-
spect to the anticipated impact of the adaptation on user
behaviour. Par excellence, it supports the positioning of the
contributions of the current grand challenge. The article

1http://www.staalhemel.com/

by Ramirez and Vamvakousis [16] is concerned with the use
of EEG classification to transform the audio properties of
musical performance. In this case, the emotional responses
from the performer are translated into a model of emotional
states. The authors describe how EEG measures may be
interpreted within an activation-valence space to describe
emotional responses. The next step would be to translate
those emotional responses into appropriate audio transfor-
mations, that is, audio manipulations that represent and
possibly reinforce the emotional state of the performer.

A number of articles focused on the inherent challenges of
stage four when the system must classify the psychophysio-
logical data into specific categories in order to trigger a re-
sponse. Plass-Oude Bos and colleagues [13] describe simple
methods to improve detection accuracy after the incoming
brain activity has already been classified, such as gather-
ing additional evidence from other sources of information,
for instance context, and transforming the unstable classifi-
cation results to be more easy to control. They provide an
overview of the different techniques, showing where to apply
them and comparing the effects.

Kyrgyzov and Souloumiac [8] present an approach to im-
prove system interaction via EEG by refining the process
of artifact rejection. The EEG is especially susceptible to
the influence of gross movement, such as head movement, as
well as the impact of eye movement on frontal sites. This
adaptive approach to artifact rejection, which involves pre-
calibration of the user and independent component analy-
sis, represents a way of reducing the number of erroneous
responses from the system.

The article by de Sa [3] presents the intriguing possibil-
ity of categorizing user perceptions of what constitutes an
appropriate response into the process of classification. The
biocybernetic loop generally represents a mapping of psy-
chophysiological triggers onto commands elicited at the in-
terface, for example move up, move down. These authors
argue that EEG activity could be classified into categories
of intended and unintended movement; this distinction could
be used to guide input control and allow the system to detect
erroneous movement.

Physiological computing systems have the potential to in-
crease the efficiency of human information processing as well
as providing novel methods for communication. The article
by Weiden and colleagues [20] describes how detection of the
P300 component may be used to improve the classification of
moving images based on rapid presentation. This technique
was previously used with still images but the application of
this technique to moving images is novel.

The contribution from Pope and Stephens [15] is con-
cerned with the application of biofeedback training across
individuals in order to create a collective dynamic, that is,
two users collaborating either competitively or as part of
a team. This paper describes how physiological responses
may be aggregated and modulated on a group basis. This
type of system relies heavily on the latter stages of adaptive
design and evaluation. The papers presented in the Grand
Challenge have focused on improvement of classification and
the implementation of novel application domains.

4. CONCLUSION
This paper has focused on what we consider a grand chal-

lenge in BCI: the use of a users’ physiological signals to
automatically adapts HCI. This grand challenge has signif-
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icant implications for BCI, HCI, HRI, HHI, as well as for
neuroscience. It asks for a new definition of BCI and a
(significant) adaptation of its processing pipeline (cf. [9]).
HCI can be enriched in subtle ways and interactions hinting
towards intelligence become within reach. Moreover, par ex-
cellence, it could provide neuroscience the means to validate
its lab research in real world contexts. Hence, BCIs as intel-
ligent sensors can add to basic knowledge on neuroscience,
requires rethinking signal processing and machine learning
paradigms for BCI, can enrich HCI, and, as such, yields a
new landscape of BCI applications orthogonal to many of
the existing ones.

If anything, this grand challenge brought, once more, to
bear that a true interdisciplinary approach is required in
making BCIs as intelligent sensors a success. A prerequisite
for this requirement is not only close cooperation between
disciplines, which yields multidisciplinary approaches, but
true interest in and respect for each others theories, methods
and models. Then, and only then, can true interdisciplinary
research arise. If this can be achieved, the development of
BCIs as intelligent sensors can and will take a leap forward.
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