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Abstract. While the research in affective computing has been exclusively deal-
ing with the recognition of explicit affective and cognitive states, carefully de-
signed psychological and neuroimaging studies indicated that a considerable 
part of human experiences is tied to a deeper level of a psyche and not available 
for conscious awareness. Nevertheless, the unconscious processes of the mind 
greatly influence individuals’ feelings and shape their behaviors. This paper 
presents an approach for automatic recognition of the unconscious experiences 
from physiological data. In our study we focused on primary or archetypal un-
conscious experiences. The subjects were stimulated with the film clips corres-
ponding to 8 archetypal experiences. Their physiological signals including car-
diovascular, electrodermal, respiratory activities, and skin temperature were 
monitored. The statistical analysis indicated that the induced experiences could 
be differentiated based on the physiological activations. Finally, a prediction 
model, which recognized the induced states with an accuracy of 79.5%, was 
constructed. 
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1 Introduction 

Since the beginning of the last decade affective computing has become a prominent 
research direction and attracted attention of researches who work on new generations 
of human-computer interfaces. Originally, Rosalind Picard defined affective compu-
ting as a computing that “relates to, arises from, or deliberately influences emotions” 
[1]. However, later affective computing gave an impulse to a more generic research 
area of physiological computing. The latter was introduced by Fairclough [2] and 
extended the scope of investigation from emotions to general psychological states of 
users. Physiological computing is seen as a novel mode of human-computer interac-
tion (HCI) that enables development of computer systems, which are aware of the 
users’ emotional and cognitive states and, thus, can dynamically adapt to their needs 
without the requirement of purposeful and overt communication from the users. 

The research in physiological computing has built upon and confirmed many   
findings from psychophysiology, the field that extensively studies the physiological 
bases of psychological processes. In particular, it has become clear that responses of 
the autonomic nervous system have a good potential of being applied in computing 
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applications because they are capable of predicting changes in psychological states of 
individuals and can be measured with relatively cheap, quick and unobtrusive me-
thods [3]. The possible applications of physiological computing cover a range of do-
mains and can be roughly divided into two branches: cognitive and affective. Cogni-
tive physiological computing is directed at monitoring and improvement of the users’ 
performance. For instance, in adaptive automation scenarios where an operator needs 
to control an aircraft or a vehicle, it is important to identify the states of boredom and 
low vigilance because they are likely to increase the risk of accidents [4, 5]. On the 
other hand, affective physiological computing is aimed at increase of pleasure in inte-
raction with computer systems and is well suited for domains such as entertainment or 
computer-based learning [6]. Naturally, there is an overlap between these two 
branches of physiological computing [3] due to the fact that cognition and affect are 
interrelated in the human psyche. 

One course of investigation in physiological computing involves study of the psy-
chological states that have been identified in psychology but have not yet been consi-
dered with regard to HCI. It is of little surprise that research in psychology and neu-
roscience has collected more knowledge about human cognition, affect and behavior 
than any other disciplines. For this reason, physiological computing is largely based 
on original experiments in psychophysiology [2] and  adoption of new insights from 
these fields seems rational. An emerging trend in psychological science over the past 
30 years is understanding and acceptance of the fact that human experience is exten-
sively tied to a deeper level of psyche, which is not directly available to conscious 
awareness and, thus, defined as the unconscious. Although it may sound controversial 
and surprising, often people are not very well aware of and not able to accurately 
report on their higher order cognitive processes [7]. The absence of introspective 
awareness about the unconscious mental processes does not mean that they have no 
influence or effect on behaviors, experiences and memories. On the contrary, careful-
ly designed experiments with both healthy volunteers and brain-damaged patients 
have indicated that a large part of people’s everyday behaviors is conducted without 
any conscious control [8]. As the phenomenon of the unconscious is still to be fully 
understood by the scientific community, there has not been developed an established 
definition for it yet. However, in order to avoid ambiguity and confusion, the uncons-
cious processes have been operationally defined by Bargh “in terms of a lack of 
awareness of the influences or effects of a triggering stimulus and not of the trigger-
ing stimulus itself” [9]. This definition emphasizes the important distinction between 
unconscious and subliminal by resolving the common confusion about these two phe-
nomena. People outside of psychological science often equate the unconscious with 
processing of stimuli, which are too weak or short to enter the conscious awareness 
and, therefore, are referred to as subliminal. In fact, the unconscious information 
processing is not necessarily associated with presentations of subliminal stimuli and 
runs continuously as a parallel background process in human mind [10]. 

Carl Jung, a Swiss psychiatrist, developed his concept of the unconscious in the 
beginning of the previous century. According to Jung, the unconscious consists of two 
components: the personal unconscious and the collective unconscious. The personal 
unconscious is a repository for all of one’s feelings, memories, knowledge and 
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thoughts that are not conscious at a given moment of time [11]. They may be re-
trieved from the personal unconscious with a varying degree of difficulty that depends 
on how actively they are being repressed. On the other hand, the collective component 
of the unconscious is universal and has contents and modes of behavior that are uni-
form in all individuals [12]. The collective unconscious represents the deepest level of 
the psyche and does not arise individually but is inherited and contains innate beha-
vior patterns for survival and reproduction developed over evolutionary time. The 
content of the collective unconscious was conceptualized by Jung as archetypes or 
pre-existent forms. Archetypes are very close analogies to instincts because the latter 
are impersonal, inherited traits that present and motivate human behavior long before 
any consciousness develops [13]. Furthermore, feelings and ideas emerged from arc-
hetypes continue to influence people despite any degree of consciousness later on. 
Archetypes define the patterns of instinctual behaviors and are conceptualized as im-
ages or representations of the instincts. 

The unconscious side of the human psyche is a profoundly intriguing phenomenon 
guiding smart and adaptive processes that shape behaviors and experiences of people 
and yet remain hidden from their conscious awareness. While research in physiologi-
cal computing has made a considerable progress in recognition of cognitive and affec-
tive states of the users, the investigation has been primary focused on conscious psy-
chological states. Thus, sensing a deeper level of human experiences defined by the 
unconscious processes remains a largely unexplored area. Interestingly, there is some 
initial evidence from psychophysiology [14] that the unconscious experiences of 
people can be indirectly assessed with their physiological signals. This fact implies 
that although the unconscious processes are hidden from the conscious mind, traces of 
the unconscious can be observed from bodily activations. However, a further investi-
gation is required in order to evaluate the feasibility of sensing the users’ unconscious 
mental processes in HCI scenarios by means of physiological computing. 

In this study our primary goal was the evaluation of the possibility to sense the un-
conscious experiences of the users in an automatic and unobtrusive manner. However, 
as the unconscious is a complex phenomenon, the scope of our study was limited to 
the collective unconscious. Unlike the personal unconscious that is highly diverse and 
individual, the collective unconscious consists of the universal archetypes. For this 
reason, it is better suited for computing applications where a range of common arche-
typal experiences could be employed for system adaptation to psychological states of 
the users. More specifically, this study was aimed at investigating the feasibility of 
sensing and distinguishing various archetypal experiences of the users based on the 
analysis of physiological signals such as heart rate or skin conductance. 

In accordance with our research objectives an experiment was designed where ex-
plicit emotional feelings, such as fear or joy, and a range of common archetypal expe-
riences were elicited in individuals. The explicit emotions were included in this study 
to serve as a benchmark that can be used to compare our results with other affect rec-
ognition studies. Simultaneously with the presentation of emotional and archetypal 
stimuli physiological signals of the participants were unobtrusively measured with a 
number of wireless sensors. Subsequently, signal processing methods were applied to 
the collected physiological data and a set of appropriate features was extracted with 
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advanced data mining techniques. In order to explore the obtained dataset several 
statistical tests were utilized. Finally, predictive models that allow for a meaningful 
classification of the subjects’ psychological states were constructed based on the vec-
tor of features extracted earlier. 

2 Methods 

2.1 Experimental Design 

Stimuli. An appropriate set of stimuli was required for the elicitation of the explicit 
emotions and the archetypal experiences in the experiment. Past research in affect 
elicitation have applied different media types for emotion induction in laboratory 
conditions, including images and sounds [15, 16], music [17], and films [18]. These 
media types differ from one another in many aspects. For instance, still images and 
sounds are commonly presented to subjects for very short periods of time and have a 
high temporal resolution. On the other hand, music and film clips accommodate a 
lower degree of temporal resolution lasting for several minutes and deliver heteroge-
neous cognitive and affective activations. In comparison with the other types of me-
dia, film clips are powerful in capture of attention because of their dynamic display 
that includes both visual and auditory modalities [18]. Another characteristic of film 
clips is the ability to elicit intensive emotional responses that lead to activations in 
cognitive, experiential, central physiological, peripheral physiological and behavioral 
systems [19]. Taking into account the pros and cons of each media type film clips 
were chosen for this study because they effectively elicit emotions and last for several 
minutes. The latter fact was important for calculation of heart rate variability parame-
ters that require at least 5 minutes of data [20]. With regard to the archetypal stimuli 
we assumed that the media with a high affective impact would also have a large influ-
ence on the collective unconscious. For this reason, film clips were utilized for the 
induction of both the explicit emotions and the archetypal experiences. 

Emotions or feelings are commonly represented in affective computing with the 
dimensional model [21]. This model projects emotions in the affective space with two 
or three dimensions. In case of two dimensions an emotional state in the affective 
space is characterized by values of arousal and valence. The dimension of arousal 
ranges from calm to aroused states while the dimension of valence ranges from nega-
tive to positive states [22]. For this study five explicit emotions, amusement, fear, joy, 
sadness and neutral state, were selected. They uniformly cover the two-dimensional 
affective space. According to the previous work in this field [23], the neutral state is 
located close to the origin of the affective space and each one of the other four emo-
tions is situated in a separate quadrant of the space. The film clips for elicitation of 
each chosen explicit emotional state were identified based on the previous studies in 
affect induction and recognition. The seminal work of Gross [18] and Pantic [24] 
provides guidance with regard to application of video in emotion research and even 
proposes sets of film clips that can be readily used as emotional stimuli. However, we 
could not always use the recommended clips for the two following reasons. First, 
some of the film clips were considerably shorter than 5 minutes. Second, from the 
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pilot study we learnt that some of the clips taken from old movies do not emotionally 
engage people because they are perceived as old-fashioned. Thus, we introduced five 
film clips that were selected according to the requirements of this study and presented 
them in Table 1. 

Having prepared stimuli for the explicit emotions, it was next necessary to obtain 
film clips for the archetypal experiences. Jung discovered that symbolic representa-
tions of archetypes had been present across cultures for thousands of years. Archetyp-
al symbols are commonly found in artwork, myths, storytelling, and continue to be 
actively employed in modern mass media [25]. This fact led us to the idea that the set 
of stimuli could be constructed by extracting typical archetypal appearances from a 
variety of rich media sources. However, beforehand we had to determine which   
archetypes would be included in the experiment. 

Table 1. Information about sources of the film clips 

Film clip Movie Film clip Movie 

Stimuli for Explicit Emotions 

Neutral 
Coral Sea Dreaming: 

Awaken [26] 
Fear 

The Silence of The Lambs 
[27] 

Amusement Mr. Bean [28] Joy The Lion King [29] 
Sadness Forrest Gump [30]   

Archetypal stimuli 

Anima American Beauty [31] Hero Return Braveheart [32] 
Animus Black Swan [33] Mentor The King’s Speech [34] 

Hero Departure Braveheart [32] Mother All About My Mother [35] 
Hero Initiation Braveheart [32] Shadow Fight Club [36] 

For this study eight archetypes (anima, animus, hero-departure, hero-initiation, he-
ro-return, mentor, mother and shadow) were selected based on their importance and 
representativeness. Therefore, only films depicting the most common archetypes [12] 
formed our set of stimuli. The archetypes of anima, animus and shadow were chosen 
based on their appearance in the manuscripts of Jung [13]. Three archetypes of a hero 
exemplify important stages in the hero’s journey described by Joseph Campbell [37]. 
He identified that a prototypic journey, which a hero undertakes in a generic narrative, 
includes stages of departure, initiation, and return. The archetype of mentor is found 
in the research of Campbell as well and signifies a character that supports the hero in 
acquiring knowledge and power. Finally, mother is yet another major archetype [38] 
that was picked for this study. 

Next, film clips embodying these eight archetypes were needed. Similar to the sti-
muli for the explicit emotions and to the previous studies that employed films [19] we 
obtained our clips by editing fragments of full-length commercial movies. However, 
unlike the explicit emotions, there was no guidance from the past research with regard 
to the selection of the stimuli. Thus, our choices had to be evaluated and, if necessary, 
corrected by experts in the area of archetypal research. Therefore, we pursued colla-
boration with The Archive for Research in Archetypal Symbolism (ARAS), which is 



 Automatic Recognition of the Unconscious Reactions from Physiological Signals 21 

 

an organization that since the early 1930s has been collecting and annotating mytho-
logical, ritualistic, and symbolic images from all over the world [39]. Thanks to the 
cooperation with ARAS and their feedback, our set of archetypal stimuli was con-
structed from the clips, which were obtained from the movies listed in Table 1. 

Unfortunately, copies of the film clips employed in the study cannot be shared due 
to the fact that they were extracted from commercial movies. However, all of the 
movies are freely available on the market and we will provide the editing instructions 
to produce exactly the same clips upon request. 

Participants. Thirty-six healthy volunteers were recruited for this study. Many of 
them were undergraduate or graduate students. Eventually, 10 participants had to be 
excluded from the data analysis due to technical problems with Shimmer wireless 
physiological sensors. One more participant was excluded because he did not comply 
with the procedure of the experiment and the validity of his data was questionable. 
For this reason, only data from 25 subjects, consisting of 12 women and 13 men, was 
utilized in this study. Of these, 11 participants were from Europe, 10 participants 
originally came from Asia, 3 participants were from Middle East and one participant 
was from South America. The average age for the women was 23.0 years (SD = 1.9) 
and for the men 25.4 years (SD = 4.5). Participants had normal or corrected to normal 
vision and hearing. Prior to the experiment each subject signed an informed consent 
form and was later financially compensated for participation in the laboratory session 
that took approximately 2 hours. 

Apparatus. The laboratory was equipped with a high definition beamer that in a ci-
nema like settings projected the film clips on a white wall with dimensions 592 x 222 
cm. The couch that accommodated participants during the study was situated at a 
viewing distance of approximately 4 meters in front of the white wall. Additionally to 
the beamer, a computer screen and a mouse were located near the couch. After watch-
ing a film clip subjects were required to use the mouse for providing a self-report 
about their feelings by rating them against a number of scales, which were displayed 
on the screen. The procedure of the experiment including presentation of the clips, 
collection of the feedback, and time tracking was synchronized and automated with a 
website. Heart activities and skin conductance of participants were monitored with 
Shimmer wearable wireless sensors that streamed physiological data to a computer 
via Bluetooth connection. The three-lead Shimmer electrocardiogram sensor was 
connected with four disposable pregelled Ag/AgCl spot electrodes. Two of the elec-
trodes were placed below the left and right collarbones and the other two were at-
tached to the left and right sides of the belly. The electrode placed on the right side of 
the belly served as a reference. The same type of electrodes was used to connect the 
Shimmer GSR sensor to thenar and hypothenar eminences of the participant’s palm 
on a non-dominant hand for measurement of the skin conductance. Regrettably, due 
to the malfunctioning of the Shimmer ECG sensor, physiological data of 10 partici-
pants was partly missing and had to be excluded from the analysis. A Refa amplifier 
from TMSI BV in combination with an inductive respiration belt and a temperature  
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sensor was used for the measurement of the respiration and skin temperature. A respi-
ration belt with an appropriate size was strapped around the participant’s chest and the 
temperature sensor was fixed on the subject’s belly with a sticky tape. 

Procedure. Each participant went through a session of the experiment individually. 
Upon arrival to the laboratory, a participant was invited to sit upright on the couch. 
Then, the participant was asked to read and sign the provided informed consent form. 
Next, the experimenter demonstrated the required positioning of the physiological 
sensors on a body, assisted the participant to attach them, and ensured that the sensors 
streamed signals of good quality. After placement of the sensors the experimenter 
allowed a time interval of approximately five minutes to pass before presentation of 
the first film clip. This interval was necessary for the electrode gel to soak into the 
participant’s skin and thereby establish a stable electrical connection [40]. Mean-
while, an overview of the study was given to the subject. The overview further clari-
fied the procedure of the study explaining that several film clips would be played, and 
the participant's physiological signals would be continuously recorded during the 
film's demonstration. However, the actual goal of the experiment remained undis-
closed and, for this reason, the participant was not aware of any emotions or arche-
types pictured in the clips. Following the overview, the subject was asked to make her 
comfortable on the couch and refrain from unnecessary movements during the ses-
sion. The light in the laboratory was dimmed so that the viewing experience became 
similar to the one in a movie theater. The demonstration of the film clips always 
started with the neutral film (Coral Sea Dreaming: Awaken [26]) because the partici-
pants had to be brought to the same psychophysiological baselines. Piferi et al. [41] 
argued that a relaxing aquatic video could be used for establishing the baseline. Then, 
the other film clips were shown in random order. A short video demonstrating a 
breathing pattern preceded presentation of each film clip (including the neutral one). 
This video lasted for 40 seconds and its purpose was to dismiss psychological and 
physiological effects of the previous stimuli. During this video the participant was 
required to follow the breathing pattern and thereby adjust her respiration rate to the 
common baseline. Upon completion of viewing a film clip, the participant provided a 
retrospective self-report by rating her feelings along a number of dimensions using 
the computer screen and the mouse located near the participant’s dominant hand. The 
discussion of the data collected in self-reports is out of the scope of this manuscript 
and will be presented elsewhere. As soon as the participant submitted the self-report 
for the last film clip, the light in the room was turned on and the experimenter helped 
the subject with detaching the physiological sensors from her body. Finally, the par-
ticipant was debriefed and reimbursed. 

Physiological Signals. A number of physiological signals were monitored in this 
study. The decision regarding inclusion of a particular signal in the experiment was 
made based on the background literature in psychophysiology and will be further 
discussed in this section. 
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Electrocardiogram (ECG) is a measurement of the heart's electrical activity con-
ducted with electrodes attached to the skin surface and recorded over a period of time. 
ECG was monitored at 512 Hz and then cleaned with low-pass, high-pass, and notch 
filters. ECG contains plenty of information about the cardiovascular activity, and in 
the psychophysiological domain it is commonly used for the calculation of the heart 
rate (HR) and heart rate variability (HRV). The heart rate is a simple measurement 
that characterizes the heart’s activity in terms of the number of heart beats per minute 
[42]. The HR was obtained from the ECG signal by identifying beats with an algo-
rithm provided in [43] and computing the average heart rate over a moving window of 
10 seconds. We expected to see a relation between the psychological states of the 
subjects and their HR because this measure had been widely applied in physiological 
computing and, according to Kreibig [44], the HR is the most often reported cardi-
ovascular measure in psychophysiological studies of emotion. Next, several HRV 
parameters from time and frequency domains were calculated based on the heart beats 
data with an HRVAS software package [45]. Time domain parameters included the 
standard deviation of the beat to beat intervals (SDNN), the square root of the mean 
of the sum of the squares of differences between adjacent beat to beat intervals 
(RMSSD), and the standard deviation of differences between adjacent beat to beat 
intervals (SDSD) [20]. A pool of frequency domain parameters consisted of a total 
power, a power in a very low frequency range (VLF, 0-0.04 Hz), a power in a low 
frequency range (LF, 0.04-0.15 Hz), a power in a high frequency range (HF, 0.15-0.4 
Hz), and a ratio of the power in a low frequency range to the power in a high frequen-
cy range (LF/HF) [20]. 

Skin conductance describes variations in the electrodermal activity of skin and is 
associated with processes of eccrine sweating, which are controlled by the sympathet-
ic branch of the autonomic nervous system [40]. According to [23], skin conductance 
is closely related to psychological processes and particularly to the level of arousal. 
Skin conductance has tonic and phasic components. The tonic component reflects 
relatively slow changes in skin conductance over longer periods of time lasting from 
tens of seconds to tens of minutes. Thus, it is indicative of a general level of arousal 
and is known as the skin conductance level (SCL). A different perspective is given by 
the phasic component of skin conductance, which is called the skin conductance re-
sponse (SCR), because it reflects high frequency variations of the conductance and is 
directly associated with observable stimuli [40]. The skin conductance signal was 
recorded at 512 Hz. Although such a high sampling rate is not imperative for mea-
surement of the skin conductance signal, complex analysis approaches and smoothing 
procedures can benefit from higher resolution data [40]. The SCL was obtained from 
the raw skin conductance signal by applying a low pass filter at 1 Hz. An additional 
high pass filter was set at 0.5 Hz for the SCR. 

Respiration is yet another physiological signal that has been often studied in psy-
chophysiology [46]. This signal is correlated with processes in the sympathetic nerv-
ous system and is indicative of psychological states of individuals [47]. The raw  
respiration signal was monitored at 512 Hz and treated with low pass and high pass 
filters. Then, the respiration rate (RR) was obtained from the signal based on the 
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guidelines provided by the manufacturer of the respiration sensor (TMSI BV). After-
wards, the RR was averaged with a moving window of 10 seconds. 

Skin temperature (ST) fluctuates due to localized variations in the blood flow cha-
racterized by vascular resistance or arterial blood pressure that are in turn modulated 
by the sympathetic nervous system [48]. It has been previously reported in literature 
[49] that affective stimuli can cause variations in ST of individuals. The ST signal 
was monitored at 512 Hz. However, the raw data was later harmlessly resampled to 
64 Hz because it is a slow changing signal. High frequency noise was eliminated with 
a low pass filter of 10 Hz that was applied to the resampled signal. Finally, the signal 
was smoothed with a moving window of 10 seconds. 

Keeping in mind practical HCI applications, we preferred not to include electroen-
cephalography (EEG) measures in this study due to concerns about the robustness of 
the EEG signal. 

2.2 Statistical Analysis 

As stated in the introduction, one of the motivations for this study was the question 
whether the patterns of physiological responses to various archetypal experiences are 
different and, furthermore, if the difference is statistically significant. We were also 
interested how physiological activations modulated by the explicit emotions of the 
participants are different comparing to their responses elicited by the archetypal   
stimuli. A number of statistical tests had to be conducted in order to answer these 
questions. 

Each subject watched all the film clips that formed our sets of stimuli for the expli-
cit emotions and the archetypal experiences. Thus, the study had repeated-measures 
design where physiological measurements were made on the same individual under 
changing experimental conditions. An appropriate statistical test for this type of de-
sign would be multivariate analysis of variance (MANOVA) for repeated measures 
[50]. However, certain assumptions of this test were violated for some of the physio-
logical signals’ features in our study. Namely MANOVA does not allow inclusion of 
time-varying covariates in the model and an unequal number of repeated observations 
per an experimental condition. The former requirement could not be fulfilled because 
the physiological baselines that were introduced to the statistical model as covariates 
consisted of multiple data points. Although this assumption could easily be satisfied 
by transforming a number of data points into a single feature, we preferred to preserve 
the richness of our dataset and refrained from, for instance, averaging the baseline 
record. The latter prerequisite of MANOVA demands an equal number of repeated 
measurements per experimental condition. It could not be met due to the fact that the 
film clips presented during the experiment had slightly different length and, conse-
quently, the size of vectors with physiological data varied. While all the clips lasted 
for approximately 5 minutes, there was a considerable difference between some of the 
stimuli. The shortest film clip had duration of 4 minutes and 46 seconds whereas the 
longest one was 6 minutes and 35 seconds. 

The limitations of MANOVA can be overcome if the statistical analysis is per-
formed with linear mixed models (LMM). LMMs are parametrical statistical models 
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for clustered, longitudinal or repeated-measures data that characterize the relation-
ships between continues dependent variables and predictor factors [51]. LLMs have 
another advantage over MANOVA – they allow participants with missing data points 
to be included in the analysis. In contrast, MANOVA drops the entire dataset of a 
subject even if just one data point is absent. The general specification of an LMM for 
a given participant i can be defined as follows: 

 iiiii uZXY εβ ++=  (1) 

In this equation Yi is a vector of continues responses for the i-th subject and Xi is a 
design matrix that contains values of the covariates associated with the vector of 
fixed-effect parameters . The Zi matrix is comprised of covariates that are associated 
with random effects for the i-th subject. The vector or random effects is assumed to 
follow a multivariate normal distribution and is denoted with ui. Finally, the i vector 
represents residuals. A more elaborate introduction into LMMs can be found in, for 
instance, [51] or [52]. 

A software implementation of statistical procedures included in SPSS Version 19 
(SPSS, Inc.) was utilized to answer the research questions pointed out earlier. Physio-
logical responses of the subjects were treated as dependent variables (continuous res-
ponses), the film clips represented fixed variables and the physiological baselines 
measured during the presentation of the video with a breathing pattern before each 
stimulus were used as covariates. The LMMs main effect tests whether the patterns of 
the participants’ physiological responses are different between various stimuli. The 
HRV features were analyzed with MANOVA as they met the requirements of this 
method. All statistical tests used a 0.05 significance level. 

2.3 Data Mining Techniques 

The statistical analysis can enable us to determine whether or not it is possible to dis-
tinguish the archetypal experiences of people based on the patterns of their physiolog-
ical activations corresponding to each of the archetypes. However, a statistically sig-
nificant difference between the physiological responses associated with various arche-
types does not allow evaluation of the practical feasibility to accurately predict psy-
chological states of the participants. On the other hand, a prediction model that maps 
physiological signals and the unconscious states of the users is what will be appre-
ciated by HCI practitioners. Thus, besides the statistical analysis, data mining tech-
niques were applied to the dataset in order to obtain a predictive model that would 
facilitate evaluation of the classification accuracy among the archetypal experiences. 
In order to make physiological data from different individuals comparable, the base-
line values were subtracted from the data corresponding to stimuli presentations. The 
result of the subtraction was then normalized to a range from 0 to 1 for each subject 
separately. 

Classification Methods. As demonstrated film clips had a duration of approximately 
5 minutes, the physiological data that was recorded for each stimulus formed temporal 
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sequences. The time sequences classification is different from the recognition of static 
information due to the increased complexity of the classification task. In general three 
main kinds of sequence classification algorithms can be distinguished [53] as shown 
below. However, there are also alternative approaches (see, for instance, [54]). 

• Feature based classification essentially transforms a sequence classification prob-
lem to a representation amenable for conventional classification methods such as 
decision trees and neural networks. 

• Sequence distance based classification relies on a distance measure that defines the 
similarity between a pair of time sequences. Similar to the feature based classifica-
tion the idea of this method is to translate a sequence classification task into a do-
main where some existing classification algorithm can be used.  

• Model based classification makes an assumption that time series are generated by 
an underlying model. This method requires a statistical model that given a class of 
data sequences defines the probability distribution of the sequences in the class 
[53]. 

In physiological computing, the feature based method of time sequence classification 
currently dominates [3]. From our point of view, this approach was also well tailored 
to this study. It has several advantages comparing to the other classification methods. 
First, this method provides a convenient way to include non-temporal attributes, such 
as some of the HRV features or the gender of subjects, into the analysis, which se-
quence distance or model approaches do not [55]. Second, contrary to HMM, this 
method does not require a considerable amount of training data in order to demon-
strate a satisfying performance [55]. Taking into consideration the fact that the physi-
ological data of 10 participants had to be discarded from the analysis, the quantity of 
data was clearly not enough to achieve competitive classification accuracy with 
HMM. Third, the identification of model streams representing typical time series   
that correspond to various psychological states is not trivial in the sequence distance 
method. 

After the selection of attributes, several classifiers were used to construct predic-
tive models for classification. In our analysis 5 classification methods  frequently used 
in physiological computing [3] were evaluated. K-nearest neighbor (kNN) is a simple 
algorithm that performs instance-based learning classifying an object based on the 
classes of its neighbors. The second classifier was support vector machine (SVM) that 
constructs a set of hyperplanes for classification purposes. The third classification 
method relied on a probabilistic model built with the naïve Bayes algorithm. The 
fourth approach was linear discriminant analysis (LDA) that is well suited for small 
data samples and is easy in implementation [3]. Finally, the fifth classification method 
was the C4.5 algorithm for generation of decision trees. The decision trees were used 
in conjunction with Adaptive Boosting (AdaBoost) [56] in order to achieve higher 
accuracy. It was important to guarantee that the classification algorithms are not 
trained and tested on the same dataset because we wanted to obtain subject indepen-
dent results. Therefore a leave-one-out cross-validation technique was employed for 
assessments of the classification performance. 
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Selection of Features. An essential prerequisite of the classification is the extraction 
of feature vectors from data sequences. The main goal pursued by the extraction of 
features is a compression of data sequences to smaller sets of static features. The slid-
ing window, the Discrete Wavelet Transform (DWT) and the Discrete Fourier Trans-
form (DFT) [57–59] are three methods for conversion of time series to static data. The 
sliding window method performs best with low frequency and relatively short time 
sequences because an increase of the signal’s frequency and length leads to genera-
tion of high dimensional feature vector. For long and high frequency data series the 
DWT and DFT approaches have been introduced. The idea behind these methods is 
the transformation of a sequence from the time domain to the time-frequency plane 
(DWT) or to the frequency domain respectively (DFT). Taking into consideration the 
aspects of our setup, the sliding window method for extraction of feature vectors    
was an appropriate way to prepare the dataset for the classification. Another name of 
this approach is segmentation since it first involves partition of a time axis into     
multiple segments with equal length and then averaging of temporal data along the 
segments [59]. 

Our next step was to use the segmentation method with the collected physiological 
data. The ECG signal provided 38 features in total: 30 features were obtained from 
the HR temporal data by averaging values of the HR along the segments of 10 
seconds; 8 features of the HRV signal (SDNN, RMSSD, SDSD, total power, VLF, 
LF, HF, and LF/HF). A total of 60 features were extracted from the skin conductance 
signal. The first 30 features belonged to the SCL signal that was averaged over 30 
segments of 10 seconds each. The remaining 30 features were generated in a similar 
manner from the SCR signal. Then, the respiration signal was converted to 30 features 
representing the average RR calculated on each of the segments. Another 30 features 
were obtained from the ST signal by calculating average values over the 30 segments. 
Finally, we had 158 features ready for the classification. 

Dimension Reduction. Reduction of dimensionality is a recommended step in the 
data mining process. There are various techniques for the reduction of features includ-
ing principal component analysis (PCA) and LDA. For the purposes of our study 
LDA was chosen over PCA because in general PCA has the weakness of only capita-
lizing on between-class information, while LDA uses both within- and between-class 
information for better performance [60]. Two aspects of LDA should be mentioned 
here. First, strictly speaking, LDA is not a feature selection but a feature extraction 
method that obtains the new attributes by a linear combination of the original dimen-
sions. The reduction of dimensionality is achieved by keeping the components with 
highest variance. Second, LDA can be used for both the identification of important 
features and classification [3]. Dimension reduction with LDA reduced 158 features 
into 7 components. For illustration of the importance of each physiological signal in 
the extracted components, coefficients of determination (R2) were calculated and put 
in Table 2. The coefficients of determination specify the amount of variance in one of 
the 7 discriminant functions that can be described by all the features of a certain    
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physiological signal. The data in Table 2 suggests that electrocardiography and skin 
conductivity were two measurements which contributions to the discriminant       
functions were the strongest. 

Table 2. Coefficients of determination (R2) for the seven discriminant functions 

 1 2 3 4 5 6 7 Average 

ECG 0.553 0.228 0.607 0.971 0.742 0.905 0.184 0.599 

SC 0.098 0.060 0.151 0.098 0.164 0.299 0.507 0.197 

RR 0.003 0.000 0.003 0.005 0.006 0.001 0.000 0.003 

ST 0.004 0.030 0.004 0.000 0.006 0.056 0.002 0.015 

3 Results 

3.1 Statistical Analysis 

The initial motivation of this study was to explore the relationships between the arc-
hetypal experiences and their physiological correlations. The statistical analysis was 
to answer the question whether the archetypal experiences of the participants elicited 
with the film clips have a significant effect on their physiological signals. The fea-
tures extracted from ECG, skin conductance, respiration and skin temperature record-
ings were arranged to form three types of datasets: one with the data for the explicit 
emotions, another with the data for the archetypal experiences and the unified dataset. 

LMMs were fit to each of the datasets with the HR features. The analysis, which 
the HR entered as a dependent variable, demonstrated a significant interaction effect 
between the film clips and the HR baselines for all the datasets: the explicit emotions 
dataset, [F(4, 541.443) = 2.513, p = 0.041], the archetypal experiences dataset [F(7, 
1028.618) = 3.503, p = 0.001] and the unified dataset, [F(12, 1521.573) = 3.929, p <= 
0.001]. 

As the HRV features were calculated over the whole duration of every stimulus 
and were represented with a single data point, they could be easily analyzed with 
MANOVA for repeated measures. This test showed a significant main effect of the 
film clips on the HRV parameters of the participants’ physiological responses for two 
of the datasets: the explicit emotions dataset, [F(32, 329.811) = 2548, p <= 0.001 
(Wilks’ lambda)] and the unified dataset, [F(96, 1903.193) = 1987, p <= 0.001 
(Wilks’ lambda)]. However, the same test for the archetypal experiences dataset was 
not significant, [F(56, 872.323) = 1281, p = 0.085 (Wilks’ lambda)]. 

The relationship between the SCL features and the presentations of the stimuli was 
investigated with LMMs. The statistical tests indicated a significant interaction effect 
between the film clips and the SCL baselines for the explicit emotions dataset [F(4, 
2884,487) = 42.130, p <= 0.001], the archetypal experiences dataset [F(7, 5880.869) 
= 38.795, p <= 0.001] and the unified dataset [F(12, 9868.854) = 27.615, p <= 0.001]. 
Next, we ran analysis for the SCR features in a similar manner. A significant interac-
tion effect between the film clips and the baseline covariates was discovered for the 



 Automatic Recognition of the Unconscious Reactions from Physiological Signals 29 

 

explicit emotions dataset, [F(4, 707.582) = 13.473, p <= 0.001], the archetypal expe-
riences dataset, [F(7, 1391.923) = 11.401, p <= 0.001] and the unified dataset, [F(12, 
2109.957) = 10.667, p <= 0.001]. 

Then, we looked at the respiration data and performed tests with LMMs that were 
fit to the RR measurements. The interaction between the film clips and the baseline 
RR did not demonstrated significance for the archetypal experiences dataset, [F(7, 
1071.446) = 1.070, p = 0.380] and the unified dataset [F(12,1686.540) = 1.667, p = 
0.068]. Nevertheless, the same test was significant for the explicit emotions dataset, 
[F(4, 611.304) = 2.931, p = 0.020]. 

 

Fig. 1. Heart rate responses of the subjects to the film clips. The mean values and 95% confi-
dence intervals of the HR are represented with the bold lines and the vertical bars. 

Finally, the features of the skin temperature recordings were analyzed. Again, 
LMMs built on the ST data were used for the statistical testing. However, we could 
not complete the analysis because the statistical software did not achieve a conver-
gence within 100 of iterations. 

For illustrative purposes, the data of HR signal that contributed to the discriminant 
functions the most is presented on Fig. 1. The mean values and 95% confidence inter-
vals of the HR are indicated for several of the stimuli. 

3.2 Classification 

After the statistical analysis an evaluation of several predictive models was con-
ducted.  This evaluation was aimed at answering the question of how accurate the 
archetypal experiences can be predicted and classified by computational intelligence 
algorithms from physiological data. 

Similar to the statistical analysis the classification was performed on three collec-
tions of data records: the explicit emotions dataset, the archetypal dataset and the 
unified dataset that integrated all the available data. Every selected classification me-
thod (kNN, SVM, naïve Bayes, LDA and AdaBoost with decision trees) was applied 
to each of the datasets. 

For the archetypal dataset the model constructed with the kNN method was able to 
correctly classify 74% of the instances. However, the same classification approach 
resulted in the recognition rate of 72% for the explicit emotions dataset and of 49.8% 
for the unified dataset. The number of nearest neighbors equal to 20 (k = 20) lead to 
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the optimal performance in all the cases. The SVM algorithm provided better classifi-
cation accuracy than kNN for the archetypal dataset (75.5%) and for the unified data-
set (68.3%). On the other hand it demonstrated slightly lower recognition rate on the 
explicit emotions dataset (71.2%). The naïve Bayes and LDA approaches enabled us 
to achieve similar performance on the archetypal dataset (79.5%) and the explicit 
emotions dataset (74.4%). The recognition rate on the unified dataset was higher with 
the LDA method (61.2%) comparing to the naïve Bayes classifier (57.2%). Finally, 
decision trees in conjunction with AdaBoost led to the poorest classification results: 
67% for the archetypal dataset, 68.8% for the explicit emotions dataset and 47.1% for 
the unified dataset. A summary of the classification results is provided in Table 3. 

Table 3. Classification performance achieved with different methods for the archetypal, the 
explicit and the unified datasets 

Dataset kNN SVM Naïve Bayes LDA AdaBoost 

Archetypal 74% 75.5% 79.5% 79.5% 67% 
Explicit 72% 71.2% 74.4% 74.4% 68.8% 

Unified 49.8% 68.3% 57.2% 61.2% 47.1% 

4 Discussion 

4.1 Statistical Analysis 

A number of statistical tests were run on the collected data. Their outcomes gave evi-
dence of a significant relationship between some of the physiological signals and the 
psychological conditions of the subjects. Whereas the patterns in three out of the four 
measurements reflected the induced explicit emotions, no association could be in-
ferred from the skin temperature signal. These findings were anticipated and go along 
with the state of the art of physiological computing. Unfortunately, the skin tempera-
ture signal did not justify our expectations and, from our point of view, its variations 
are too slow to successfully contribute to the differentiation of emotions. The arche-
typal states of the participants demonstrated statistically significant relationship with 
the HR, SCL and SCR features extracted from the ECG and skin conductance signals. 
In comparison with the explicit emotions, the archetypal experiences lead to observa-
ble activations in a smaller number of the physiological features. Nevertheless, our 
results show that the patterns of physiological responses to various archetypal expe-
riences are different and the difference is statistically significant. Furthermore, the 
analysis performed with the unified dataset, which integrated the explicit emotions 
and the archetypal experiences, supported the hypothesis of possibility to distinguish 
between these two types of stimuli. 

4.2 Classification Accuracy 

Having conducted the statistical analysis we were curious how accurately computa-
tional intelligence methods can classify the archetypal experiences. The findings of 
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our study indicate that prediction models built with data mining techniques and 
trained on the physiological data of the subjects achieved reasonably high precision. 
Five different classification methods were used to obtain the models that demonstrat-
ed classification rates from 67% to 79.5%. These results are not subject-depended and 
characterize the ability of the models to predict the correct archetypal conditions from 
the physiological recordings of an unknown user. While it is easy to check the classi-
fication accuracy of the explicit emotions against other studies in affect recognition, 
the same comparison for the archetypal experiences is challenging. We are aware of 
only one study [61] where the responses of people to brief presentations of mandala 
symbols, which are considered to express the archetype of the self, were measured 
with physiological sensors. The reported classification rate of 23.3% is considerably 
lower than the results obtained in this study. This fact can be explained with the dif-
ferences in the design of the experiments. In particular, the duration of stimuli presen-
tation and the type of stimuli seem to be important. Indeed, the film clips extracted 
from blockbuster movies are likely to be more powerful than the images of mandala 
presented for several seconds. Our findings for the archetypal experiences can also be 
set against previous studies in affect recognition just to have a relative benchmark. 
Judging by the review provided in [3], the classification accuracy of our models is on 
par with the ones demonstrated in those studies. Although in some cases higher rec-
ognition rates have been reported, for instance in [62–64] researchers achieved classi-
fication precision of up to 97.4%, two types of limitations, which seem to exist in 
these studies, have to be taken into account. First, in some cases the classification is 
subject-dependent, meaning that recognition algorithms are adjusted to perform well 
only with the data belonging to a particular individual and cannot be generalized. 
Second, the number of the psychological conditions that are being predicted is impor-
tant because the more classes to be classified, the more difficult the problem becomes. 
This can be illustrated with a simple example – in a case of two classes problem, ac-
curacy of 50% is attained simply by chance, while in a situation with 8 classes the 
chance level drops to 12.5%. In our experiment we had 8 conditions to be differen-
tiated, but the best recognition rates were obtained in the studies that considered only 
2 or 3 affective states. 

Looking at the obtained results it seems clear that the Naïve Bayes and LDA classi-
fication methods generally outperformed other approaches. A particularly interesting 
finding is that higher prediction accuracy was obtained for the archetypal dataset 
comparing to the explicit emotions dataset. The better recognition rate was achieved 
despite of the fact that the archetypal dataset contained 8 classes while the explicit 
emotion dataset only 5. From our point of view, the archetypes were classified more 
accurately than the explicit emotions because by definition they elicit cognitive and 
affective activations that are universal across the population. On the other hand, the 
explicit emotions are more subject-dependent and considerably vary due to an indi-
vidual’s personality. 

In the future work it will be necessary to improve the classification accuracy. From 
our point of view, an increase of the recognition rate can be achieved by taking into 
account additional parameters of physiological signals and performing subject-
dependent classification. 
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4.3 Archetypal Stimuli 

The stimuli for induction of the archetypal experiences were a crucial component of 
the study. However, as it was the first experiment where the archetypal experiences 
were elicited with film clips, we did not have an empirical evidence that the stimuli 
we identified with the help of ARAS [39] would successfully express the 8 targeted 
archetypes. Another concern was related to the length of the film clips. Due to the fact 
that they each lasted approximately five minutes, it was reasonable to expect highly 
heterogeneous affective and cognitive responses of the participants that would com-
plicate the recognition problem. Judging by our findings, the selection of the film 
clips was satisfactory and the universal unconscious reactions in subjects from various 
regions of the world were elicited successfully. This conclusion can be made based on 
the accurate recognition rate that otherwise would not be possible to attain. 

4.4 Limitations 

Several limitations of this study should be highlighted. First, a relatively small num-
ber of participants can be considered as a limitation. Next, during the presentation of 
the film clips the subjects generally sit still and the amount of movements was small. 
For this reason, we did not have to implement any dedicated signal processing me-
thods for combating the movement artifacts that would likely be necessary in many 
HCI scenarios. The third limitation is the generalizability of the results. Only a single 
example of each archetype was presented to the participants. This fact limits the gene-
ralizability of our findings and demands new studies with more representations for 
every archetype to be carried out. Finally, it is necessary to perform comparison of the 
physiological data and the self-reports provided by the subjects. Such a comparison 
will indicate to which extent the participants were able to consciously perceive the 
archetypal appearances in the film clips. 

4.5 Conclusion 

To a large extent people are driven by the collective unconscious in their decisions, 
motivations, and behaviors. So far, the unconscious experiences of the users have re-
ceived little attention in physiological computing because it has been primary dealing 
with cognition and affect. In this study the feasibility of recognizing the archetypal ex-
periences of users, which constitute the collective unconscious, with wireless sensors 
and without human interventions, was evaluated. The experiment that featured 8 arche-
types visualized with the film clips was executed in order to collect physiological data. 
We then applied data mining methods to the obtained dataset, performed statistical 
analysis and built several prediction models that demonstrated prediction accuracy of up 
to 79.5%. Thus, physiological sensors coupled with computational intelligence algo-
rithms can facilitate development of HCI interfaces that sense archetypal experiences of 
the users and use this information for system adaptation. 
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